
Titre:
Title: Insider threat resistant SQL-injection prevention in PHP

Auteurs:
Authors: Ettore Merlo, Dominic Letarte et Giuliano Antoniol

Date: Mai 2006

Type: Rapport / Report

Référence:
Citation:

Merlo, E., Letarte, D. & Antoniol, G. (2006). Insider threat resistant SQL-injection
prevention in PHP (Rapport technique n° EPM-RT-2006-04).

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/3138/

Version: Version officielle de l'éditeur / Published version
Non révisé par les pairs / Unrefereed

Conditions d’utilisation:
Terms of Use: Autre / Other

Document publié chez l’éditeur officiel
Document issued by the official publisher

Maison d’édition:
Publisher: Les Éditions de l’École Polytechnique

URL officiel:
Official URL: https://publications.polymtl.ca/3138/

Mention légale:
Legal notice:

Tous droits réservés / All rights reserved

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213622132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://publications.polymtl.ca/3138/
https://publications.polymtl.ca/3138/
http://publications.polymtl.ca/

EPM–RT–2006-04

INSIDER THREAT RESISTANT SQL-INJECTION

PREVENTION INI PHP

Ettore Merlo, Dominic Letarte, Giuliano Antoniol
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

Mai 2006

 EPM-RT-2006-04

Insider threat resistant SQL-injection
prevention in PHP

Ettore Merlo, Dominic Letarte, Giuliano Antoniol
Computer Engineering Department
École Polytechnique de Montréal

Mai 2006

©2006
Ettore Merlo, Dominic Letarte, Giuliano Antoniol
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2006
Bibliothèque nationale du Canada, 2006

EPM-RT-2006-04
Insider threat resistant SQL0-injectionprevention in PHP
par : Ettore Merlo, Dominic Letarte, Giuliano Antoniol
Département de génie informatique
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique : biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue/

http://www.polymtl.ca/biblio/catalogue/

Insider threat resistant SQL-injection prevention in PHP

Ettore Merlo, Dominic Letarte, Giuliano Antoniol

Department of Computer Science, École Polytechnique de Montréal,
C.P. 6079, succ. Centre-ville Montréal (Québec) H3C 3A7

{ettore.merlo, dominic.letarte}@polymtl.ca
antoniol@ieee.org

Abstract

Web sites are either static sites, programs, or
databases. Very often they are a mixture of these three
aspects integrating relational databases as a back-end.
Web sites require configuration and programming atten-
tion to assure security, confidentiality, and trustiness
of the published information.

SQL-injection attacks rely on some weak validation
of textual input used to build database queries. Ma-
liciously crafted input may threaten the confidential-
ity and the security policies of Web sites relying on
a database to store and retrieve information.

Furthermore, insiders may introduce malicious code
in a Web application, code that, when triggered by some
specific input, for example, would violate security poli-
cies.

This paper presents an original approach that com-
bines static analysis, dynamic analysis, and code re-
engineering to automatically protect applications writ-
ten in PHP from both malicious input (outsider threats)
and malicious code (insider threats) that carry SQL-
injection attacks.

The paper also reports preliminary results about ex-
periments performed on an old SQL-injection prone
version of phpBB (version 2.0.0, 37193 LOC of PHP
version 4.2.2 code). Results show that our approach
successfully improved phpBB-2.0.0 resistance to SQL-
injection attacks.

Keywords: SQL-injection, software security analy-
sis, sofware re-engineering

1 Introduction

Web applications, are used to distribute information
from organizations to different users over a network.
Often, they accept interactions from users and perform

some accesses to databases. They are based on assump-
tions about legitimate input that is used to build SQL
queries to be submitted to a database. These applica-
tions are possibly vulnerable to SQL-injection attacks.
These attacks rely on some weak validation of the tex-
tual input that is somehow used to build SQL queries
to be submitted to a database.

In some specific contexts, maliciously crafted input,
that contains SQL instructions or fragment of these,
produces queries whose semantics is different from the
one meant by the designers and may threaten the se-
curity policies of the underlying databases.

SQL-injections attacks have been described in the
literature [9, 10]. Also, regardless of input validation,
insiders may introduce malicious code in an applica-
tion that, when triggered by some specific input, for
example, would violate designers intention regarding
security and accesses. Insider threats references can
be found in [2, 4, 20, 24], but little research work is
published about source level security analysis to pro-
tect against SQL-injection insider threats.

Although the reasons behind successful SQL-
injections attacks are quite known, the problems still
persist for several reasons.

Classes of defense against SQL-injection attacks in-
clude “defensive programming”, sophisticated input
validation, dynamic checks, and source level static
analysis.

Defensive programming and input validation aim
at preventing the insertion of “malicious” strings into
SQL queries. Unfortunately they are are fairly sensi-
tive to new patterns of attacks against which defenses
were not planned. Furthermore, defensive program-
ming may be better suited for new development since
it’s programming intensive, but is weaker in addressing
the issue of protecting legacy systems.

Dynamic checks are sensitive to obsolescence of
checks during time - the application evolves and new
legitimate interactions are added into an application -

that may make the number of false positives increase.
Finally, static analysis suffers from issues about pre-

cision and execution performance, when complex lan-
guages features are considered, such as inter-procedural
transfers of data and control, pointers, arrays, poly-
morphism, and so forth.

This paper presents an original approach to auto-
matically protect applications written in PHP from
both malicious input (outsider threats) and malicious
code (insider threats) that carry SQL-injection attacks.

The presented approach combines static analysis to
parse PHP code and SQL queries, dynamic analysis
to build syntactic models of legitimate SQL queries,
and automatic code re-engineering to protect existing
legacy applications from the above mentioned attacks.

Main contributions of this paper are:

• consideration of both outsider and insider threats

• dynamic analysis to automatically build “model-
based guards” of legitimates SQL queries

• automatic protection of existing legacy applica-
tions written in PHP by appropriately inserting
“model-based guards” in source code

• preliminary experimental assessment of the ap-
proach obtained on legitimate test cases and both
outsider and insider attacks

Section 2 introduces the proposed approach to pre-
vent SQL-injections; section 3 describes the automatic
construction of model-based guards; section 4 presents
proof-of-concepts experiments; section 5 discusses the
preliminary findings reported as experimental results;
section 6 briefly recalls related work and section 7 con-
cludes this paper.

2 Prevention Approach

Injection attacks, in general, and specifically SQL-
injection attacks rely on weak input validation that al-
lows users to somehow manipulate the queries that are
passed to an SQL database.

Communication between applications and databases
is achieved through proper calls to DB-API routines.
A typical example is mysql(str, db) where str is a text
string that contains the SQL-query and db is a database
“handler”.

Several database engines both public domain and
commercial ones are available. Since we place our
model validation guards in between Web applications
and databases, we are transparent to the particularly
adopted DB. However, for the sake of example, and
experiments, we will assume that a MySql [5] DBMS

is used. We also assume that the DBMS engine imple-
ments an extended subset of SQL standard [7]. Also,
in the following, we will not make an explicit distinc-
tion - unless required - between Databases (DB) and
Database Management Systems (DBMS).

As proposed in [16] the presented protection model
makes all communication between program variables
(either user or programmer variables) and DB-API rou-
tines pass through “secured model-based guards” that
perform appropriate security checks.

This approach transfers the burden of assuring the
protection against SQL-injection attacks from applica-
tion developers to a core team of developers responsi-
ble for security issues. Furthermore, the sheer size of
the code to be “secured” is dramatically shrunk, since,
while application developers would have to enforce se-
curity through the whole application, the proposed ap-
proach allows the security against SQL-injection at-
tacks to be enforced only in “secured model-based
guards”.

Another reason why injection attacks may succeed
is because the communication between an application
and the DB-API routines is performed through plain
text. When programming variables are transformed
and integrated in the text based communication be-
tween programs and DB servers, their associated type
information is lost.

As reported in [13], the situation would be different
if SQL queries would go through a specific DB-API
routine (e.g., getInfo(loginStr, passwdStr)) in an API
based architecture, variables can strongly be checked
against syntax, domain ranges, and somehow semantic
content.

The “getInfo” routine should be a secured one, un-
der the “security” developers control, thus program-
mers are allowed to call such a routine, but are not
allowed to directly interrogate the database to extract
login names and passwords and verify the match out-
side the secured functions.

For example, a login name, may be an identifier (an
alphabetic character followed by an arbitrary long se-
quence of alphanumeric characters) and the valid val-
ues of identifiers are those that appear in the DB table
that contain registered users. A similar argument can
be hold for the password: passwords are fixed length
strings which may contain almost any character.

An issue that is not discussed in this paper, but that
is worth to mention, is whether passwords themselves
may contain SQL syntax. In principle, passwords are
arbitrary text strings, but if they contain some SQL
syntactic content, some program may be subject to
SQL-injection when passwords are retrieved from the
database and used in some, possibly malicious, compu-

2

tation.

In general the problem is that of second and higher
order SQL-injections [22]. When data that contains
SQL syntax is stored in a DB or on a persistent
medium, its retrieval from the store and its subsequent
use as part of a dynamic SQL query may cause an SQL-
injection in some higher order SQL-injection vulnerable
statements.

Higher order SQL-injection is not explicitly in the
scope of this paper, so for the purposes of the following
discussion, the reader should assume that applications
mentioned in this paper are not sensitive to higher or-
der SQL-injections either because the application ma-
nipulates passwords and similar free text information
in a secure way, or because DB-API are “guarded” as
proposed in this paper. Indeed, for the purposes of
this paper, we assume that DB-API are “guarded”, so
passwords and other information stored in a database
are assumed free of SQL syntactic content.

If all queries to a database were processed through
secured “guards”, many classes of SQL-injections and
injections in general reported in the literature would
be detected because of their mismatch of types and
domain values of arguments to those functions.

Our approach aims at the construction of applica-
tions protected from SQL-injections by building “se-
cured model-based guards” that perform type and do-
main validation for parameters of SQL statements.
While this could be an appropriate approach for new
systems, existing applications often use string based di-
alog to API for DB accesses, such as the very common
“mysql(str)” call. In this context, security checks have
to be performed on the strings passed as parameters to
DB. This perspective to create model-based monitors
for DB queries, has been introduced in [16]. In their
approach, the source of model, i.e., the source of knowl-
edge for understanding what are legitimate queries to a
DB, is the application itself. Their approach, by using
static analysis, builds syntactic models for all queries
that can be built by computation on input variables
which are considered as having one specific type and
taking values in a specific domain.

In our perspective of building an insider-threat re-
sistant model, this is not enough, since we are ques-
tioning the very source of the computation. In other
words, we cannot take the source code and use static
analysis to infer programmers’ intention, since we as-
sume that their intention may be malicious and may
sabotage DB protection strategies.

The source of legitimate queries is the set of in-
teraction specifications for an application. Following
some simple and conventional software development
process, just for sake of discussion, we may assume that

a Web application went through requirements analysis,
specification, design, coding, testing, and deployment
phases. At requirements analysis time, requirements
for some functionalities had been elicited and legit-
imate interactions had been described. Interactions
would also be more formally described in the Web UI
specifications of applications.

Intuitively, from a developer’s point of view, quite
often a Web form corresponds to one SQL-query or to
a small number of variations from a stem query, so it’s
reasonable to think that specifications should describe
the legitimate interactions associated to a Web form.

When, ideally, this high level process is followed,
models for legitimate queries can be derived from spec-
ifications. Also, scenarios developed during design,
would contain information about legitimate “uses” of
database accesses depending on different roles and
users of the application.

In the context of security analysis, we have to go
further. We may envisage scenarios that contain in-
formation about “secure” and legitimate uses of the
application and also scenarios that contain known and
representative attacks to the application.

Both legitimate and security threatening scenarios
can be used during the test phase to verify and validate
an application under the security perspective.

In this “ideal development” context, protecting DB
accesses from injections by users or by programmers
would be relatively easy: while adopting the same
model-based validation perspective of [16], models
could be built from the UI specifications and security
scenarios rather than from the source code of the appli-
cation. If models were built independently from source
code development, but consistently with specifications
and scenarios, it would be much harder or virtually im-
possible for a user or a programmer to gain illicit access
to database queries by working around specification-
based models.

Security models must deal with fixed SQL queries,
parameterized queries, and queries with free qualifiers,
sub-queries, and other SQL elements. At any given call
site, a dedicated and specialized security model call is
automatically added into an application by source code
transformations, as follows:

...

getInfo(str)
...

where, for example, str may be:

SELECT info

FROM login =′ abc′ AND

passwd =′ xyz′

3

getInfo(String str) {
if (loginMatch(str))

return(mysql(str));
else

return(1);
}

Figure 1. Secure “getInfo”

Using the approach in [16] and building syntactic
models of UI specifications and security scenarios, the
implementation could be the following:

getInfo(String str) {
ast = sqlParse(str);
if (loginMatch(ast))

return(mysql(str));
else

return(1);
}

bool loginMatch(AST type ast)
if (loginModel.contains(ast)) {

return(true);
else

return(false);
}

Figure 2. Parsing based “getInfo”

Existing systems haven’t, in general, been built with
the proposed security model in mind. To make adop-
tion of the proposed security model effective, some au-
tomatic transition must be put in place for evolving
existing systems into secure ones. Again, this requires
some shift of effort and responsibility from application
developers to the security team, as already mentioned.

We need some automatic help to construct model
validation routines for SQL queries. We propose a dy-
namic analysis that helps in quickly building the model
validation routines for legitimate uses of a systems.
Fig. 3 depict the overall prevention process.

3 Model-based guards construction

We use the term “SQL-injection prone software”
for software in which some SQL-injection may occur;
“vulnerable statements” are DB access statements that
may contain part of user supplied input.

Input data may cause some of the above defined
SQL-injection problems. We use the term “SQL-
injection revealing data” for input data that con-
tributes to a successful SQL-injection at a “vulnera-

Parse PHP

Execute
Test Cases

Parse SQL

Statements
Instrument Vulnerable

Guards
Construct Model

Protect Vulnerable
Statements

ApplicationPHP
[instrumented]

PHP AST

SQL Queries Profiles

Test Cases

Model Guards

ApplicationPHP
[unsafe]

ApplicationPHP

[protected]

SQL AST

Figure 3. Scheme of instrumentation

ble statement”. The computation that carries “SQL-
injection revealing data” is called an “SQL-injection
attack”.

Similarly, malicious code that causes an SQL-
injection is called “SQL-injection revealing software”.
This kind of software may or may not be triggered
from input data. For example, some malicious code
may force some secure table from the database to be
printed, in addition to a user’s legitimate query. If this
SQL code is added to all queries, it may not necessar-
ily be triggered by some input. Of course, this kind of
malicious code has very little chances to go undetected
during testing, so more dangerous kinds of malicious
code are triggered by input data, as, for example, when
a particular login name is allowed to obtains secure
DB tables when a particular query is presented to the
database.

Clearly, to obtain an SQL-injection the appropriate
conjunction of “SQL-injection revealing data”, possi-
bly “SQL-injection revealing software” and “vulnerable
statements” has to occur.

The proposed insider threat resistant SQL-injection
prevention approach relies on breaking the “appropri-

4

ate conjunction” of input data, code, and DB access
condition that would allow SQL-injection. Intuitively,
appropriate “guards” will be inserted between input
data, internal code, and DB accesses, so that the ap-
propriate conjunctions of SQL-injection conditions are
prevented from occurring. We found 421 occurrences
of vulnerable statements in the phpBB version used for
the experiments.

As depicted in Fig.3, first we instrument the PHP
code to collect samples of queries that should be legiti-
mately use at DB-API call points (often “mysql(str)”).
Second we run test cases and implementations of se-
curity scenarios to gather the queries that dynamically
are generated at different call sites.

Parsing these queries returns the AST’s of legiti-
mate queries. At each call site, the set of legitimate
queries constitute a small language which is a subset
of SQL language. Model validation routines, that we
call “guards”, can be quickly built by synthesizing SQL
sub-grammars that represent the legitimate queries at
each call site. The proposed approach is robust in the
sense that only explicitly acceptable queries are sent
to DB-API. Other strategies, that try to block attack
patterns, are, in general, weak in blocking newly con-
ceived attacks. New malicious syntactic variations do
not belong to the “allowed” language recognized by
model-based guards and are therefore rejected.

The cardinality of legitimate queries used in the ex-
periments is 1590. Legitimate queries are about 18
tokens long on average, with minimum length 4 and
maximum one 82. When parsed by the SQL parser,
these queries give rise to 417 distinct ASTs for 107
distinct call sites that are used to build model-based
guards.

To build model guards from sets of legitimate
queries, the process is quite straightforward. Legiti-
mate queries are parsed and the corresponding forest
of AST is stored for each call site. Stored AST are
a little generalized since constants, strings and other
kinds of user data are kept in the AST by their type
rather than by their image. Conversely, application de-
pendent identifiers that refer to the database schema
and that carry, for example, the names of tables and
columns, are considered part of the syntactic structure
of SQL queries, to prevent malicious substitution of ta-
ble or column names in legitimate queries. This allows
multiple queries of the same syntactic structure, but
with different values of data.

The proposed approach relies on the assumption
that the number of different SQL-query structure that
are produce at each call site is quite small, since each
call site has a good chance of representing a particular
family of queries related to some legitimate composi-

tion of user variables.
The effectiveness of automation of the proposed ap-

proach relies on the small cardinality of legitimate
queries at a call site. A manual approach would also be
feasible, possibly with better accuracy in terms of com-
pleteness and complex query structures, but it would
be labor intensive and questionably effective on legacy
systems.

Model guards at call sites are built by parsing an
input string that would be sent to a DB-API and by
matching the produce AST with the stored references
ones for legitimate queries. A match guarantees that
the syntactic structure has been allowed for passing
down to the DB-API, while it is conservative to reject
queries that do not match reference ASTs for a call site.
Model-based guards can be automatically synthesized
based on a positive sample of legitimate queries.

We can assume that the test sets and security
scenario’s may not be complete and some legitimate
queries may be rejected because they never contributed
to the sub-grammars used to generate guards. This is
possible, because we try to infer programmers’ inten-
tion using a subset of legitimate uses. The proposed
approach helps in building a transition to secure sys-
tems from old systems that haven’t necessarily been
conceived with security in mind.

Although security specifications would be required,
to make sure that the model-based guards be complete
at least with respect to specified scenarios, the authors
believe that in many application the set of allowed
queries is quite small and that the presented approach
is advantageous in those cases.

In additional, rejected SQL strings may be stored
together with some context information such as IP of
origin, user name, time, and so on. Periodically, some
post-processing of rejected strings may be performed
and occasionally legitimate queries, that have been re-
jected because their structure was not represented in
the set used for dynamic analysis, may be discovered
and they could be considered for addition to the model-
based guards.

Vulnerable statement can be secured by replacing
them with model-based guards that perform the appro-
priate checks at each call site and call the appropriate
DB-API upon successful checks.

...
call sitei : mysql(str, db)

...

becomes:

...
call sitei : sqlModelGuard i(str, db)

...

5

from a practical point of view the actual call has
been implemented as:

...
call sitei : sqlModelGuard(i, str, db))

...

1 int sqlModelGuard(int i,
String str,
dbHandlerType db) {

2 ast = sqlParse(str);
3 if (astMatch(ast, sqlModel[i]))
4 return(mysql(str, db));
5 else

// Rejected string
6 return(1)
7 }

Figure 4. Example of model-based guard

The implementation of model-based guards and the
source code re-engineering to change calls to mySql

into calls to the model-based guards are quite straight-
forward and require little effort. An example of model-
based guard is reported in Fig. 4.

A parser for each of these sub-languages constitute
the model-based guard that filters queries at call sites.
In reality, the sub-languages are so simple, that we have
chosen to implement model guards using prefix trees
based on SQL parser supplied ASTs.

For practical reasons, rather than implementing sep-
arate prefix trees, we have implemented the conceptual
equivalent of one prefix forest, in which call sites are
the entries to individual prefix-trees.

4 Experiments

To validate our approach, we have taken a proof-of-
concept perspective about making an application se-
cure from user or insider SQL-injections.

phpBB [6] is a well-known application for its abun-
dance of documented opportunities for SQL-injections
in its past versions. Indeed, during the past years and
versions, an effort has been deployed to remove SQL-
injections in phpBB by design.

For the reported experiments, we have chosen the
old version 2.0.0 of phpBB, for which publicly available
security bugs have been reported, together with mySql

version 4.0.26. Our objective is to take an old security
flawed version and to automatically transform it into

the same application from the point of view of function-
ality (so it may still be old with respect to functionali-
ties of current version) but with removed SQL-injection
vulnerabilities both in terms of user data triggered in-
jections and/or possibly malicious code injected by an
insider.

Unfortunately, security specifications, user interface
specifications and specifications in general, for phpBB
are not available together with the software distribu-
tion. This is likely to be the case of several systems
and, to collect patterns of legitimate queries, we have
automatically instrumented phpBB by inserting secu-
rity probes before vulnerable statements. Automatic
instrumentation has been achieved by first modifying
a Web available PHP grammar [3] by Satyam imple-
mented in JavaCC [1]. Table 1 gives some feature of
the parsers built and used for this project.

PHP SQL
#Rules 73 2418

Grammar size (LOC) 1221 34133
Parser size (LOC) 11033 118358

Table 1. Parsers Features

An AST visitor that adds instrumentation in the
PHP code according to the desired probes and the
scoping rules has been implemented for the instrumen-
tation.

Simple security test cases and data for the proof-of-
concept approach have been built and divided in two
classes: that of legitimate cases and that of outsiders’
attacks. Execution of legitimate security test cases
gives legitimate patterns of SQL usage. Execution of
attacks gives SQL-injections that should be blocked in
the “secured” version.

Probed strings at vulnerable call points gathered
during test execution, constitute the sub-languages of
SQL queries that are accepted at different call sites.

To parse SQL queries we have built our SQL parser
by considering the mySql syntax available in [5]. Fea-
tures of our SQL parser are reported in Table 1. Sim-
pler SQL grammars are available from the JavaCC
grammar repository site [1].

Making phpBB secure consists in automatically re-
placing calls to mySql with calls to the model-based
guards, at each call site. Similarly to the problem of se-
curity probe instrumentation, we have written a visitor
based on our PHP grammar that makes such a replace-
ment automatically on all 421 vulnerable instances of
mySql calls.

From a phpBB developer point of view, the only
changes to the source code have been the replacemnt

6

of calls to mySql with calls to model-based guards.
Furthermore, there has been 15 lines of new PHP code
to transfer calls from phpBB to model guards, that
have been implemented with 510 lines of Java. Defi-
nitely, phpBB developers mental model of source code
is very little impacted by the automatically added pro-
tection.

4.1 Outsiders SQL-injections experiments

Since the intersection between legitimate cases and
attacks is in principle empty, the only errors are im-
plementation or re-engineering errors. To assess the
strength of the proposed SQL-injection prevention pro-
cess the protected system has been tested against a set
of 176 attacks that had been proven successful before
software protection.

The purposes of the presented experiments is to as-
sess the number of false positives and false negatives
obtained by running the legitimate test cases and out-
siders’ attacks against the secured application.

Tests Outsider attacks Insider attacks
Total number 1590 176 312

Accepted 1590 0 0
Accepted (%) 100 0 0

Rejected 0 176 312
Rejected (%) 0 100 100

Table 2. Experimental results

Both legitimate accesses and outsider attacks can be
simulated by the appropriate sequences of URL and pa-
rameters on the URL line. Table 2 presents the results
obtained from the execution of 176 outsider attacks.

4.2 Insiders SQL-injections experiments

Experiments to simulate insiders’ attacks and to as-
sess the protection against insiders’ required some more
work. We have assumed that insiders can program any-
thing they want to be fed to the model-based guards.

We have written another visitor based on our PHP
grammars that inserts an instance of attack generator
before any call to model-based guards, as follows:

...

str = generate attack();
call sitei : model guard(i, str, db);

...

Furthermore, proper input sequence have to be con-
ceived to reach vulnerable statements and activate the
malicious code simulated by generate attack().

The purposes of the presented experiments is to as-
sess the number of false positives and false negatives

obtained by running insiders’ attacks against the se-
cured application. Results obtained from the execution
of 312 insider attacks are reported in Table 2.

5 Discussion

Experimental results confirm the expectation of a
very high success rate and a very low number of false
positives and false negatives (indeed none has been de-
tected in the presented experiments). Intuitively, it’s
somehow expected, since it’s hard to imagine an attack
that bears the same SQL language structure of a legit-
imate query including specific application dependent
DB tables and columns names.

What’s quite remarkable is that the same precision
of detection is observed for insider attacks. This is
definitely an advantage of our approach with respect
to published ones in the literature that didn’t address
the insider threat perspective.

Nevertheless, false alarms and mis-classified attacks
may still happen if unauthorized SQL queries were by
mistake allowed in the test sets or in the security sce-
narios of legacy applications. In general, the preci-
sion of the presented automatic protection approach on
legacy application, is tied to the representativeness of
the test cases and scenarios. Model guards are indeed
automatically built based on a dynamic approximation
of security specifications. Somehow this approach may
suffer from the completeness problem of dynamic anal-
ysis, but we believe that the impact is much reduced
because, by design, SQL queries to a database from an
network based interactive application, like Web appli-
cations, are in a certain way related to the number of
forms in the same application. This would suggest that
the number of syntactic patterns of SQL queries at the
different call points, may be relatively proportional to
the number of distinct forms.

Conversely, this approximation may be reduced,
when developers from the security team explicitly con-
struct model-based guards hopefully based on security
specifications.

Also, the proposed automatic construction process
for model guards is quite simple and there is plenty
of room for making these models more complex by
leveraging on the power of the underlying general SQL
parser that is used to parse queries.

At one extreme, security developers may even craft
by hand specific sub-grammars for protecting fewer call
points that receive complex and highly variable queries.

Call points that definitely receive complex queries
and potentially all SQL language are full text entries
which are reserved for DB administration purpose or
system administrator accesses. These kinds of accesses

7

are not covered by the presented approach, but, in gen-
eral, these call points are accessible only from files and
programs that required administrator privileges to be
accessed and may not be vulnerable to SQL-injections
from non-privileged users.

Further experiments are required to increase the
number of attacks and the number of analyzed systems
to assess precision and errors in a more statistically
representative perspective.

Another issue to be investigated in a larger set of
attacks is the performance penalty to be paid for model
guards checking.

Instrumentation of application for SQL profiling and
dynamic analysis is linear in the size of the application.
Model guards construction is proportional to the car-
dinality of test cases and to the average length of SQL
queries performed in the tests. Protecting an applica-
tion by introducing the proper calls to model guards,
again, is linear with respect to the application size.

At runtime, parsing an SQL query takes a time pro-
portional to the length of the checked query, which
is often relatively small. Checking the parsed query
against a call point model takes, again, a time propor-
tional to the length of the parsed query.

At the current moment, the proof-of concept pro-
totype implementation is slowed down by the loading
of the Java Virtual Machine (JVM) and the parser
each time parsing is required for an SQL query and
for checking a parsed query against a model guard.
Unfortunately, PHP is a memoryless interpreted lan-
guage, that cannot, by itself, keep programs loaded
from one execution to the next one. Further research
is required to investigate alternative architectures that
would avoid repetitive loading of JVM and the guards.
It’s quite possible to integrate JVM and model guards
loading operation with the loading of phpBB. As an
alternative, daemons could be to created that dialog
with phpBB, and so on.

On the other hand, advantages of the proposed ap-
proach are the portability of the approach to other lan-
guages used in network based application like Java.
In our laboratory, we have developed, in the past
years, several parsers for programming languages and
we have access to some research versions of commercial
tools. Porting our SQL-injection approach to other lan-
guages, would simply require to re-write the visitors for
instrumenting the application for dynamic SQL profil-
ing and for automatic re-engineering. The SQL parser
doesn’t need to be changed. From a syntactic point
of view, working on languages like Java might even be
somehow easier because of their clean syntax and se-
mantics.

Also, the proposed approach may be investigated

in the context of other injection problems like those
possible in XPath [8] and so forth.

6 Related work

AMNESIA [16, 17] is a tool for SQl-injection protec-
tion that uses model-based security by combining static
and dynamic analysis. Their approach builds a static
model of legitimate SQL queries that could be gener-
ated by Java applications using Java String Analysis
(JSA) [12].

Models are designed as non-deterministic finite au-
tomata (NDFA) whose alphabet is that of SQL key-
words, operators, constants, and a special symbol β

for user input.
At runtime, application generated queries are

checked for compliance with the static models.
Our research work has been inspired by their ap-

proach that is similar under the perspective of building
static models of legitimate queries, of runtime parsing
the application generated queries, and of checking the
parsed queries for compliance with the static models.

Significant differences are in the way the static mod-
els are built. AMNESIA builds static models based on
static analysis of the application and in particular using
JSA to infer the set of queries that an application may
generate. Their objective is to separate application
generated queries from user injected ones. Their ap-
proach in intrinsically vulnerable from insider attacks,
since insider malicious code is recognized by JSA as
application generated code and implicitly accepted as
trustworthy. We build static models from dynamic
analysis of the execution of legitimate test cases and
security scenarios. Our approach does not “believe”
the application code to build static models of legiti-
mate queries. Malicious code introduced in the appli-
cation would not be recognized as “trustworthy” by our
approach that is intrinsically insider threat resistant.

Another difference is the language in which applica-
tions are written. Although building the set of legit-
imate queries from static analysis of an application is
conceptually similar for several imperative languages,
in practice semantic differences between languages may
prevent reusing much of the string analysis already
written for other languages. For example, writing some
PHP String Analysis tool may not share much of the
code with JSA because of syntactic and semantic dif-
ferences between the two languages. Conversely, when
a parser is available, adapting our approach to another
language would simply require writing an instrumen-
tation visitor.

Context-Sensitive String Evaluation (CSSE) [23] de-
tects and prevents SQL-injection attacks in PHP code.

8

They modify the PHP interpreter to track user pro-
vided parts of SQL expressions and to perform the
appropriate check to prevent SQL injections. Track-
ing is performed by automatically marking all user-
originated data with meta-data about their “tainted-
ness” and by propagating meta-data through string op-
erations in PHP. No knowledge about the application
is required and no new programming discipline or prac-
tice is required from the developers. Reported precision
is 100%, but developer provided parts of SQL expres-
sion are not subject to such SQL injection checks (be-
cause SQL content is definitely present in developers
originated parts of SQL strings) and the system may
not therefore be protected against insider threats.

JDBC Checker [15] combines automata-theoretic
techniques and a variant of the context-free language
(CFL) reachability problem to find typing context and
scoping information, and to perform SQL type check-
ing on the analyzed programs. Their tool is used to
flag potential errors or verify their absence in dynami-
cally generated SQL queries. JDBC checker can play a
role in SQL-injection detection similar to that of JSA
in AMNESIA.

SQL DOM [21] automatically extracts an object
model of strongly-typed classes from a database schema
and uses this model to generate safe queries that access
a database from C#.

Also, their approach shifts the reasoning from the
world of dynamically generated queries (that may cre-
ate runtime problems) to that of compile time declar-
ative checking of compliance with safe classes.

Their approach allows very precise runtime domain
value checks on parameters to the SQL DOM object
calls. SQL syntactic content in a User supplied param-
eter can easily be detected and rejected.

Their approach, again, protects an application
against malicious user input, while it’s oblivious of in-
sider threats.

While some analogy exists between SQL DOM and
our approach, since the structure of their object model
is similar to the AST structure of SQL queries when
application dependent names of tables and columns are
used in the language model (as in our case), their ob-
ject model corresponds to all queries that can be con-
structed for a database schema, while our approach
restricts the static models to the set of queries that are
actually and legitimately used by the application. This
set may be significantly smaller than the whole domain
of schema dependent SQL queries.

Furthermore, developers using SQL DOM would
have to learn and adopt a new paradigm of program-
ming. Their approach may better fit new development,
while ours is applicable to both new development and

evolution or protection of legacy systems.
Safe Query Objects [13] represent queries as stati-

cally typed objects, while still supporting remote ex-
ecution by a database server. Safe query objects
use object-relational mapping and reflective meta-
programming to translate query classes into traditional
database queries. Safe Query Objects can play a role in
detecting SQL injections similar to that of SQL DOM.

Other approaches for detecting and protecting ap-
plications against SQL-injection can be found in [11,
18, 19, 25]. In previous work [14] the authors detected
buffer overflow problems using genetic algorithms.

7 Conclusions

An original approach that combines static analysis,
dynamic analysis, and code re-engineering to automat-
ically protect applications written in PHP from both
malicious input (outsider threats) and malicious code
(insider threats) that carry SQL-injection attacks has
been presented, implemented and evaluated.

phpBB Web application has been automatically pro-
tected by using the proposed approach. 176 outsider
attacks, that had been proven successful before soft-
ware protection, together with 312 insider attacks have
been submitted to the newly protected version of the
application under study.

Experimental results show a very high success rate
and a very low number of false positives and false neg-
atives (indeed none has been detected in the presented
experiments).

The proposed approach seems very promising on the
presented phpBB test case, but further research and
assessment is needed to evaluate it on larger and more
diversified systems.

8 Acknowledgements

This research work has been partially funded by the
National Sciences and Engineering Research Council
of Canada (NSERC). The authors wish to thank José
Fernandez, Pierre-Marc Bureau, Antoine Rolland, and
Kamel Ayari for their contribution to the discussions
about SQL-injection and security.

9

References

[1] JavaCC. https://javacc.dev.java.net.
[2] National Infrastructure Security Co-ordination Centre.

http://www.uniras.gov.uk/niscc/index-en.html.
[3] PHP grammar. https://javacc.dev.java.net/

/files/documents/17/14269/php.jj.
[4] U.S. Department of Energy.

http://www.ciac.org/ciac/CIACHome.htm.
[5] mySql. http://dev.mysql.com/doc.
[6] phpBB. http://www.phpbb.com.
[7] SQL. http://www.iso.org.
[8] XPath. http://www.w3.org/TR/xpath.
[9] C. Anley. Advanced SQL injection. In Technical re-

port. NGSSoftware Insight Security Research, 2002.
[10] C. Anley. Advanced SQL injection in SQL server ap-

plications. In Technical report, 2002.
[11] S. W. Boyd and A. D. Keromytis. SQLrand: Prevent-

ing SQL injection attacks. In Proc. of the 2nd Applied
Cryptography and Network Security (ACNS) Confer-
ence, volume 3089, pages 292–304. Lecture Notes in
Computer Science, Springer-Verlag, 2004.

[12] A. S. Christensen, A. Moller, and M. I. Schwartzbach.
Precise analysis of string expressions. In Proc. of the
10th International Static Analysis Symposium, SAS,
pages 1–18. Springer-Verlag, June 2003.

[13] W. R. Cook and S. Rai. Safe query objects: Stati-
cally typed objects as remotely executable queries. In
Proc. of the 27th International Conference on Software
Engineering (ICSE). IEEE Computer Society Press,
2005.

[14] C. Del Grosso, G. Antoniol, M. D. Penta, P. Galinier,
and E. Merlo. Improving network applications secu-
rity: a new heuristic to generate stress testing data.
In Proceedings of Genetic and Evolutionary Compu-
tation Conference, pages 1037–1043. IEEE Computer
Society press, 2005.

[15] C. Gould, Z. Su, and P. Devanbu. JDBC checker:
A static analysis tool for SQL/JDBC applications. In
Proc. of the 26th International Conference on Software
Engineering (ICSE) - Formal Demos, pages 697–698.
IEEE Computer Society Press, 2004.

[16] W. G. J. Halfond and A. Orso. AMNESIA: Analy-
sis and Monitoring for NEutralizing SQL-Injection At-
tacks. In Automated Software Engineering (ASE). As-
sociation for Computing Machinery (ACM), Nov 2005.

[17] W. G. J. Halfond and A. Orso. Combining static anal-
ysis and runtime monitoring to counter SQL-injection
attacks. In Proc. of the 3rd International ICSE Work-
shop on Dynamic Analysis (WODA). IEEE Computer
Society Press, May 2005.

[18] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai.
Web application security assessment by fault injection
and behavior. In Proc. of the 11th International World
Wide Web Conference (WWW), May 2003.

[19] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee,
and S.-Y. Kuo. Securing web application code by static
analysis and runtime protection. In Proc. of the 12th
International World Wide Web Conference (WWW),
May 2004.

[20] M. Keeney, D. Cappelli, E. Kowalski, A. Moore,
T. Shimeall, and S. Rogers. Insider threat study:
Computer system sabotage in critical infrastructure
sectors. Technical report, United States Secret Ser-
vice and CERT Coordination Center/SEI, May 2005.

[21] R. McClure and I. Kruger. SQL DOM: Compile time
checking of dynamic SQL statements. In Proc. of
the 27th International Conference on Software Engi-
neering (ICSE), pages 88–96. IEEE Computer Society
Press, 2005.

[22] G. Ollmann. Second-order code injection attacks. In
Technical report. NGSSoftware Insight Security Re-
search, 2004.

[23] T. Pietraszek and C. V. Berghe. Defending against
injection attacks through context-sensitive string eval-
uation. In Proc. of Recent Advances in Intrusion De-
tection (RAID), 2005.

[24] M. R. Randazzo, D. Cappelli, M. Keeney, A. Moore,
and E. Kowalski. Insider threat study: Illicit cyber
activity in the banking and finance sector. Technical
report, United States Secret Service and CERT Coor-
dination Center/SEI, August 2004.

[25] F. Valeur, D. Mutz, and G. Vigna. A learning-based
approach to the detection of SQL attacks. In Proc.
Detection of Intrusions and Malware Vulnerability As-
sessment Conference (DIMVA), pages 123–140. IEEE
Computer Society press, July 2005.

10

	EPM_RT-2006-04_Merlo

