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GEOMETRIC OPTIMIZATION OF A SELF-ADAPTIVE ROBOTIC LEG1

Dmitri Fedorov1 2, Lionel Birglen1
2

1Department of Mechanical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada3

Email: dmitri.fedorov@polymtl.ca; lionel.birglen@polymtl.ca4

5

ABSTRACT6

Inspired by underactuated mechanical fingers, this paper demonstrates and optimizes the self-adaptive7

capabilities of a 2-DOF Hoecken’s-Pantograph robotic leg allowing it to overcome unexpected obstacles en-8

countered during its swing phase. A multi-objective optimization of the mechanism’s geometric parameters9

is performed using a genetic algorithm to highlight the trade-off between two conflicting objectives and se-10

lect an appropriate compromise. The first of those objective functions measures the leg’s passive adaptation11

capability through a calculation of the input torque required to initiate the desired sliding motion along an12

obstacle. The second objective function evaluates the free-space trajectory followed by the leg endpoint us-13

ing three criteria: linearity, stance ratio, and height-to-width. In comparison with the initial geometry based14

on the Hoecken’s linkage, the selected final mechanism chosen from the Pareto front shows an important15

improvement of the adaptation capabilities, at the cost of a slight decrease in the stance phase duration. This16

paper expands on mechanical self-adaptive design philosophy, which recently attracted a lot of attention in17

the field of grasping, to legged locomotion and paves the way for subsequent experimental validation of this18

approach.19

Keywords: optimization; robotic leg; underactuation; linkage; kinetostatic analysis.20

21
22

RÉSUMÉ23

En utilisant une approche similaire aux mécanismes de doigts sous-actionnés, les capacités d’adaptation24

d’une architecture de jambe robotique à deux DDL de type Hoecken’s-Pantographe sont optimisées dans cet25

article afin de lui permettre de surmonter des obstacles imprévus lors de sa phase de vol. Une optimisation26

multiobjectif des paramètres géomtriques du mécanisme a été effectuée afin de mettre en évidence l’op-27

position existant entre deux objectifs contradictoires et choisir un compromis. Le premier de ces objectifs28

2 Corresponding author

CCToMM Mechanisms, Machines, and Mechatronics (M3) Symposium, 2017 1



mesure la capacité d’adaptation passive de la jambe en calculant le couple d’entrée requis pour amorcer le29

glissement désiré le long d’un obstacle. La deuxième fonction objectif évalue la trajectoire de base suivie30

par l’extrémité de la jambe en se basant sur trois critères : linéarité, ratio de la phase de support, et rapport31

hauteur/largeur. En comparaison avec la géométrie initiale pasée sur le mécanisme de Hoecken, le méca-32

nisme final trouvé sur le front de Pareto présente une amélioration marquée des capacités d’adaptation, au33

coût d’une légère réduction de la durée de la phase de support. Cet article étend la philosophie de l’auto-34

adaptation mécanique, qui a récemment beaucoup attiré l’attention dans le domaine de la préhension, à celui35

de la marche, et ouvre la voie à une validation expérimentale de cette approche.36

Mots-clés : optimisation ; jambe robotique ; sous-actionnement ; mécanisme à membrures ; analyse cinéto-37

statique.38
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1. INTRODUCTION39

While the simplicity, energy efficiency, and speed of wheeled locomotion are hard to match, walking40

robots are often a preferred alternative when navigating uneven terrains. Successful robotic leg designs are41

often serial mechanisms comprised of several actuated joints, such as in the StarlETH (Hutter et al., 2012)42

or the HyQ (Semini et al., 2011) robots, or consist of much simpler compliant links, which, despite their43

simplicity, generate a very efficient dynamical gait for the robot and help successful navigation in rough44

terrains, as exemplified by the RHex (Saranli et al., 2001). On the other hand, mechanical linkages can also45

guide the endpoint of a robotic leg using as few as a single actuator and are largely unaffected by the payload46

while in stance phase conversely to designs using compliant links. However, while the limited number of47

actuators required with the designs based on linkages is a significant advantage, it is impossible for the48

leg to depart from the generated trajectory if the presence of an obstacle requires an adaptation. Active49

reconfiguration with the use of additional actuators has however been previously proposed, notably for the50

Theo Jansen linkage (Nansai et al., 2015).51

Among linkages able to generate a suitable leg trajectory for a walking application, the combination of52

the Hoecken’s linkage, also sometimes referred to as Chebyshev’s lambda mechanism, and a pantograph53

for amplification purposes has been studied by many (Ottaviano et al., 2005; Tao and Ceccarelli, 2011;54

Liang et al., 2012), including the authors (Fedorov and Birglen, 2017). In the present paper, the geometric55

parameters of a two degree-of-freedom (DOF) variant of this architecture are, for the first time, optimized to56

take advantage of its self-adaptive capabilities. The desired objective is to allow the leg to "give in" without57

any sensing or control and slide along an obstacle following an unexpected collision, rather than trying to58

pursue an unfeasible trajectory. While a similar behaviour has been previously obtained by making use of59

electronic reflex generation (Park et al., 2013; Focchi et al., 2013), this effect is here intended to be obtained60

purely mechanically. It should be emphasized that, in our case, the leg does not avoid the collision with the61

obstacle, and that it remains in contact with the colliding object during the whole adaptation sequence.62

The proposed approach is directly inspired by the design of self-adaptive mechanisms in the field of63

underactuated robotic hands (Birglen et al., 2008; Birglen, 2009): a single input force is distributed to64

several output phalanges, the motions of which are triggered by contacts between the finger and the grasped65

object. With the use of preloaded springs and mechanical limits, the closing sequence of the phalanges can66
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be achieved without any control or sensors. Similarly, a contact during the swing phase of the proposed67

leg mechanism passively triggers the secondary DOF which allows the leg to depart from its trajectory to68

accommodate the obstacle.69

Ultimately, using a purely mechanical solution to generate a complex behaviour, such as obstacle over-70

coming, can be more affordable than relying on the complex software control of multiple actuators, and71

could prove to be useful for applications where environmental factors such as extreme temperatures or ra-72

diation impact the use of electronic controllers. Similar considerations have guided the recent emergence73

of underactuated grippers as affordable solutions for the grasping of complex objects. The expansion of74

this design philosophy to other applications might prove to be fruitful, as initially investigated in (Khakpour75

et al., 2014) for cable robots and is further investigated here.76

2. MECHANISM DESCRIPTION77

2.1. Geometry78

The leg mechanism described in this paper can be separated in two basic linkages: a four-bar linkage79

acting as a path generator, and a pantograph. More specifically, the geometric parameters of the four-bar are80

initially matching the ones of the Hoecken’s linkage, although they will be altered following the optimization81

described in Section 4. When driven by the rotation θ1 of the input crank, this linkage generates a trajectory82

M1 suitable for a walking application due to the existence of a linear portion and the proportion of the cycle83

(close to 70%) that is spent in this phase, as illustrated in Fig. 1a. The second element of the mechanism84

is the pantograph, i.e., a linkage characterized by a constant ratio of the distance between its two guiding85

points to the distance between either of its guiding points and its following point, see Fig. 1a. The pantograph86

performs three functions in the mechanism, listed here by increasing order of importance for our application:87

1. Amplify the trajectory M1, which is inputed to one of the pantograph’s guiding points.88

2. Ensure that the leg endpoint (i.e., the following point) is the lowest point of the mechanism.89

3. Add a second degree of freedom, θ2, to the mechanism. The associated motion M2 is applied to the90

pantograph’s second guiding point, and therefore, also affects the position of the following point.91
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2.2. Self-adaptive behaviour92

As is often the case with self-adaptive fingers where the motion of a phalanx may not be triggered until93

contact is established with the grasped object, the secondary DOF θ2 is here constrained using a preloaded94

spring and a mechanical limit. In normal operation (i.e., if no obstacles are encountered), this DOF is95

therefore not triggered and the leg endpoint follows the free-space trajectory, illustrated in Fig. 1b, solely96

generated by the rotation of θ1.97

θ1
.Hoecken’s 

four-bar linkage

M1

Guiding points

Following point
v1

v2

θ2
. Pantograph

M1

M2

(a)

Free-space trajectory

Obstacle

Triggered passive motion of the 
second guiding point

P2

P2'

v

ω ω

v'

vP1

δ

Fadaptation

Ffree-space

Mechanical limit

(b)

Fig. 1. Description of the mechanism’s initial geometry: (a) constituent linkages, (b) simulation of the leg encountering
an obstacle during its swing phase and subsequent passive adaptation

If a collision occurs during the swing phase of the leg motion, the continued actuation of θ1 coupled with98

the obstacle resistance at the point of contact cause an increase of the mechanism’s internal forces, which99

is used to overcome the preloaded spring. Then, the resultant motion of θ2 combined to the rotation of100

θ1 allows the leg endpoint to depart from the free-space trajectory and slide along the obstacle. Similarly101

to self-adaptive fingers, the spring acting on the θ2 does not store any useful energy to the walk but only102

prevents incoherent motion of the leg endpoint, and resists the adaptation movement. In order to reduce the103

required actuation effort, the spring stiffness and preloading should therefore be kept as low as possible, i.e.,104

of the minimal magnitude required to balance the inertial effects to which point F is subjected. Since these105

effects are not apparent in the kinetostatic analysis performed in this paper, the selection of the spring is, for106

now, done during the initial testing of the physical linkage (for the first 3d-printed prototype, of total linkage107

mass of ∼100 g described in (Fedorov and Birglen, 2017), a spring with a stiffness of k = 0.05 N/mm and108
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an initial preload of 0.36 N was experimentally deemed suitable).109

In Fig. 1b, the passive adaptation induces a translation (denoted by the vector δδδ ) of the pantograph’s110

guiding point, F , from its initial position (Ff ree−space) to a new location (Fadaptation). The displacement M2111

between these two points can be generated by any motion generator, the simplest choices being a prismatic112

joint (for which M2 is a straight line) or a revolute one (for which M2 is an arc), as in (Fedorov and Birglen,113

2017). The nature of this generator is however left arbitrary.114

Due to the geometry of the pantograph linkage, the vertical component of δδδ must be negative to generate115

a rising motion of the leg endpoint. A purely vertical translation of F would therefore seem advantageous,116

but such a design would render the passive adaptation much more difficult, as will be shown in Section117

3.1. At the other extreme, a completely horizontal δδδ makes adaptation very easy, but could not result in the118

desired vertical motion of the leg endpoint along an obstacle. An intermediate orientation as illustrated in119

Fig. 1b must therefore be selected for the allowed range of motion of point F.120

2.3. Initial geometric parameters121

Although several straight line linkages can be suitable for the generation of the free-space trajectory, the122

Hoecken’s linkage, with only three links, was selected here for its simplicity. Its geometric parameters are123

presented in Fig. 2 (h1 and w1 refer respectively to the trajectory’s height and width) and Table 1, where li j124

refers to the distance between points i and j.125

E

w1

h1

D

C BA

θ1
.

λ

x
y

Fig. 2. Hoecken’s linkage

Geometric Valueparameter
Coordinates of A (0.00 0.00)
Coordinates of B (2.00 0.00)

lAC 1.00
lBD=lCD=lDE 2.50

λ 180◦

Table 1. Initial geometry (four-bar)

Next comes the dimensioning and positioning of the pantograph. The geometry of this linkage can be126

described using only two ratios:127

• ρ is the amplification ratio which relates the sizes of similar triangles FGE and FHJ (see Fig. 3).128

• α is the shape factor of triangles FGE and FHJ, defined as the ratio of lEG to lFG (see Fig. 3 again).129
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φlim

φlim

dmin
ρdmin

F
E

G

H

I

J

φlim

φlim

E

(a)

φlim

dmax
ρdmax

F
G

H
I

JE

(b)
Fig. 3. Geometry of the pantograph linkage with the guiding points either at their (a) closest or (b) farthest allowed
positions

An important consideration when designing the mechanical leg is to prevent the pantograph from reaching130

a singular configuration, of which an indicator is the shape of the parallelogram EGHI: neither of its angles131

should be allowed to become smaller than a threshold value defined by φlim. This condition allows to set a132

design constraint on the permissible values of d, the distance between the guiding points E and F. First, the133

law of cosines is used with triangle EFG in both limit configurations illustrated in Fig. 3, i.e.:134

dmin
2 = l2

FG + l2
EG −2 · lFG · lEG · cos(φlim) (1a)

dmax
2 = l2

FG + l2
EG −2 · lFG · lEG · cos(π −φlim). (1b)

Eqs. (1a) and (1b) can be combined using the previously defined ratio α to establish yet another ratio,135

dmax/dmin, which is maximal when α = 1, i.e., FGE and FHJ are isosceles triangles:136

dmax

dmin
=

√
1+α2 +2α · cos(φlim)

1+α2 −2α · cos(φlim)
. (2)137

The position of point E, one of the pantograph’s guiding points, is always the location of the four-bar’s138

coupler point. Therefore, only six parameters remain unknown for the design of the pantograph:139

• The x and y coordinates of Ff ree−space, the location of guiding point F during the free-space trajectory.140

• The x and y coordinates of Fadaptation(max), the location guiding point F at the maximal position in141

the chosen range of θ2.142

• The pantograph’s ρ and α ratios.143

As illustrated in Fig. 4, a translation δδδ max of F from Ff ree−space to Fadaptation(max) results in a shift of all the144

points of the free-space trajectory by vector (ρ−1)δδδ max, thereby defining the maximal adaptation trajectory.145
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Both the free-space and maximal adaptation trajectories have an identical shape to the Hoecken’s linkage146

output curve, but scaled up to a height h2 = ρh1 and a width w2 = ρw1.147

dmax

ρdmax

E

G

H

I

J

x
y

Ffree-space

h2=ρh1

w2=ρw1

(a)

Free-space trajectory

Maximal adaptation trj.

Total workspace

ρdmin

dmin

a

Fadaptation(max)

E

G

H

I

J

(ρ-1) δ max

Ffree-space

δmax

h2=ρh1

w2=ρw1

(b)

Fig. 4. Dimensioning of the pantograph, (a) F = Ff ree−space,
(b) F = Fmaximal adaptation

Geometric Valueparameter
Coordinates of

(-1.33 11.17)
Ff ree−space

Coordinates of
(2.00 7.35)

Fmax.adaptation
lEG = lFG = lHI 4.73
lEI = lGH = lIJ 11.40

Table 2. Initial geometry (pantograph)

To ensure a unique solution for the dimensioning of the pantograph, which simplifies the subsequent148

optimization, six constraints have been selected. Using Fig. 4 as a reference, these constraints are listed149

below:150

• Ensure a sufficiently large total workspace (i.e., the area theoretically reachable by the leg’s endpoint151

following motions of θ1 and θ2).152

⇒Constraint C1: the vertical distance (ρ−1)δδδ max
T y between the free-space and maximal adaptation153

trajectories is arbitrary chosen to be three times the height h2 of the free-space trajectory:154

(ρ−1)δδδ max
T y = 3h2. (3)155

• Allow for easy passive adaptation of the leg to collisions. As will be detailed in Section 3.1, the ori-156

entation of δδδ has a critical effect on the torque required for the leg to slide along the surface of an157

obstacle. A compromise must be selected between the ease of adaptation and the proportion of the158

workspace located directly above the free-space trajectory.159

⇒Constraint C2: the horizontal distance (ρ −1)δδδ max
T x between the free-space and maximal adap-160
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tation trajectories is arbitrarily chosen at half the width w2 of the free-space trajectory:161

(ρ−1)δδδ max
T x = w2/2. (4)162

• Prevent interference between the leg’s endpoint and Hoecken’s linkage.163

⇒ Constraint C3: the maximal adaptation trajectory is below the lower limit of the four-bar’s en-164

velope. For the Hoecken’s linkage, the distance a between the origin and the maximal adaptation165

trajectory, c.f. Fig. 4, is therefore chosen equal to the length of the crank:166

a = lac. (5)167

• Keep the mechanism as compact as possible.168

⇒ Constraint C4: the centers of the maximal adaptation trajectory and that of M1, the trajectory169

generated by the Hoecken’s linkage, are horizontally aligned.170

⇒Constraint C5: the shape factor α of the pantograph is set at 1.171

• Avoid singularities for all possible configurations of the mechanism.172

⇒Constraint C6: the limit angle φlim is set at 30◦ and Eq. (2) thus becomes:173

dmax

dmin
= 3.73. (6)174

The numerical parameters chosen for constraints C1 and C2 have here been arbitrary selected to demonstrate175

the subsequent geometry optimization procedure, but can be altered depending on specific requirements for176

the mechanism. The unique geometric parameters satisfying these six constraints for the Pantograph linkage177

are computed using an iterative method and are shown in Fig. 4 and Table 2 (the origin is still coincident178

with point A of the four-bar).179
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3. PERFORMANCE EVALUATION180

3.1. Ease of adaptation181

The actuation torque τin (acting on θ1) required to perform the normal motion as well as the adaptation182

described in Section 2.2 can be expressed as a function of the preloading force fp (acting on θ2), the friction183

coefficient µ at the obstacle contact location, and the mechanism’s configuration at the moment of this184

contact. This relationship can be found out by performing a static analysis on the mechanism. Two classes185

of contacts can be defined: in a Type I contact, the collision occurs at the leg endpoint and the orientation of186

the normal unit vector n at this point depends on the obstacle, whereas, in a Type II contact, collision occurs187

elsewhere along the terminal link of the leg and the orientation of the latter changes n. In both cases, the188

unit vector t is defined tangent to the relative sliding motion of the leg and the obstacle (c.f. Fig. 5).189

P1

-f

f

f Tn f Tt

n

t

v1

v2

Relative motion

Relative motion

(a)

-f

f Tn f Tt

f

Leg

P2'

v 1

v 2 n

tRelative motion

Relative motion

(b)

Fig. 5. Velocities and forces at the contact points, with either (a) Type I or (b) Type II contacts.

Using a Coulomb friction model with a coefficient µ and considering the edge of the friction cone, the190

contact force f is first expressed as:191

fT t = µfT n. (7)192

For a Type I contact, f can also be written as:193

f = J∗−T
τττ, (8)194

where τττ =

[
τin − fp

]T

and J∗ is a square submatrix of the mechanism’s Jacobian, mapping the endpoint195
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linear velocity v to the velocities of the DOFs, i.e.,:196

v = J∗θ̇θθ =

[
v1 v2

]
θ̇θθ , (9)197

with θ̇θθ =

[
θ̇1 θ̇2

]T

. The matrix J∗ can be interpreted geometrically as
[

v1 v2

]
where vi is the derivative198

of the leg endpoint’s position with respect to θ̇i. As illustrated in Fig. 5a, v1 is always tangent to the freespace199

trajectory while the orientation of v2 is tangent to M2, the motion associated to θ2. More specifically, if a200

prismatic joint is used for M2 its direction would be parallel to the vector δδδ . For a Type II contact, one201

can similarly define local velocities vi by evaluating J∗ at point P’ which can be very conveniently obtained202

using screw theory (Davidson and Hunt, 2004).203

Eqs. (7) to (9) can then be rearranged to yield the expression of the actuation torque required to overcome204

the preloading of the triggered motion:205

τin =
−v1

T (n+µt)
v2T (n+µt)

fp. (10)206

One might think that an easy way to decrease the ratio τin/ fp would be to maximize the dot product207

v2
T (n+µt), which is the denominator of Eq. (10), by making v2 parallel to n. If a vertical obstacle and the208

generation of M2 by a prismatic joint are assumed, this strategy would be equivalent to making the vector δδδ209

horizontal. In turn, this would result in an unacceptable reduction of the available workspace directly above210

the free-space trajectory, which explains the compromise imposed by the pantograph design constraints C1211

and C2.212

Impact mechanics are neglected for the calculation of the required torque. Indeed, the worst case scenario213

is that, following a collision, the leg is forced to a standstill due to the impact forces and the inertial effects.214

However, the static conditions, for which Eq. (10) is derived, thereby become valid.215

An example of the predicted evolution of the input torque during the sliding motion of the leg following216

a Type II contact, calculated for the initial geometric parameters assuming µ = 0, is shown in Fig. 6. The217

maximal value of τin/ fp is in this case 8.21 at the very beginning of the sliding motion when the leg has218

not yet departed from the free-space trajectory. This maximal value quantifies the ease of adaptation to any219

obstacle for which a contact would be established at this particular point.220
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5.5

6.0

6.5

7.0

7.5

8.0

8.5τin/fp

Contact progression (θ1)

Maximal τin/fp ratio for this contact location

-5° 0° 5° 10°
5.0

15°-10°

Fig. 6. Required input torque for an adaptation following a Type II contact with µ = 0 and a collision point at
(9.5,−6.0)

A similar contact simulation can be performed for all possible collision points as illustrated in Fig. 7a.221

These points form the adaptation workspace, which is a smaller subset of the total workspace (points reach-222

able by the endpoint following rotations of θ1 and θ2). Indeed, no collision can occur at points located above223

the terminal link, such as point P in Fig. 7a, since they are not swept by the leg during normal motion along224

the free-space trajectory. A variation of the initial geometry is therefore introduced to increase the area of225

this adaptation workspace, referred to as the workspace-maximizing shape, in which the terminal link is226

altered so that it is vertical at the beginning of the swing phase. This increases the range of possibly over-227

comable obstacles (c.f. Fig. 7b). It is important to note that altering the shape of this link without changing228

the coordinates of the joints still affects the τin/ fp ratio since the contact location and the orientation of n are229

different. Indeed, all possible obstacle contacts occur at the endpoint (Type I) for the workspace-maximizing230

shape which has the drawback of increasing the required input torques for adaptation.231

Since it is numerically faster to evaluate the required torque for Type I contacts, the adaptation perfor-232

mance index Iadap proposed here is based on the workspace-maximizing shape of the terminal link. As-233

suming vertical obstacles (n = [1 0]T ) and no friction (µ = 0), the τin/ fp ratio is evaluated for all points234

comprising the swing phase of the free-space trajectory, as plotted in Fig. 8, based on the geometry illus-235

trated in Fig. 7b. The value of Iadap is defined as the root mean square (RMS) of the ratio τin/ fp along this236

curve, which is equal to 6.23 for the initial geometry of this particular example. A maximal ratio of 10.56 is237

reached at point Q, illustrated in Fig. 7b.238
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Type I 
contacts

Total workspace

P

τin/fp

0

10

12.5

7.5

5

2.5

∞

(a)

Q

(b)

Fig. 7. Required input torque for all possible collision points with µ = 0, and different shapes of the terminal link: (a)
straight terminal link, (b) workspace-maximizing shape with n = [1 0]T

τin/fp

Location along the flight phase
100%0% 50%

max : 10.56

Iadap : 6.23

0

12.5

10

7.5

5

2.5

Fig. 8. Evaluation of Iadap for the initial geometry

While this index assumes, for comparison purposes, only frictionless endpoint contacts with vertical239

obstacles, which might not be realistic in practical applications, there still exists a direct correlation between240

Iadap and the torque required for the terminal link to slide along an obstacle. A discussion of the mechanism’s241

adaption to specific obstacles follows in Section 5.242

Moreover, other than the trade-off between the adaptation workspace area and the required torque for243

adaptation, there exists an important reason to favoring link (i.e., Type II) rather than endpoint (i.e., Type I)244

contacts with obstacles: potential interference after a successful adaptation. An interference is here defined245

as a contact on the back of the leg which prevents it from returning to the free-space trajectory. This effect,246

illustrated in Fig. 9, is even more pronounced when the pantograph is operated in what is referred to, in the247

literature, as the "ostrich mode" (Ottaviano et al., 2005), i.e., the pantograph’s links are located aft of the248

guiding points.249
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(a)

Interference

(b)

Interference

(c)

Fig. 9. Possible interference between the pantograph and the obstacle after adaptation: (a) straight terminal link,
no interference (b) workspace-maximizing terminal link, slight interference, (c) "ostrich" pantograph configuration,
important interference.

3.2. Free-space trajectory250

The quality of the free-space trajectory is a another key element to consider during the design. The asso-251

ciated performance index is, in addition to Iadap, a second basis for comparison between various geometries.252

Since this trajectory is only a scaling-up of M1, generated by the four-bar linkage, it is easier to directly253

evaluate the latter. To this aim, three criteria scored on a scale from 0 to 100% are defined:254

• Stance phase linearity: the vertical difference ∆h between the top and bottom points of the stance phase

is compared to the total height h2 of the trajectory (in order to account for the transition between swing and

stance phases, their widths are arbitrarily set at 95% of w2, the total trajectory width, as shown in Fig. 10):

lin% =
(

1− ∆h
h2

)
×100% (11a)

• Stance phase ratio: the fraction of the input crank cycle that is spent in the stance phase is compared with

the target fraction chosen at 0.6:

sta% = min
((stance duration

0.6

)
,1
)
×100% (11b)
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•Height-to-width ratio: in order to penalize designs generating trajectories flatter than that of the Hoecken’s

linkage (h1/w1 = 0.19), the height-to-width ratio is compared to this latter value:

hwr% = min
((h1/w1

0.19

)
,1
)
×100% (11c)

A free-space trajectory quality index Itr j combining the stance phase linearity, stance phase ratio, and255

height-to-width ratio criteria into a single performance index is then defined:256

Itr j = 1− lin%
100%

· sta%
100%

· hwr%
100%

(12)257

Table 3 details the calculation of Itr j for the initial geometric parameters listed in Table 1. The obtained258

value, 0.03, is excellent although the mechanism fared much worse when its passive adaptation was evalu-259

ated, with an Iadap of 6.23. It is of course impossible to minimize simultaneously both indices to satisfy the260

two very different objectives, and a compromise between them must be investigated.

Swing phase

Stance phase

w2

h2

Δh

Fig. 10. Hoecken’s linkage trajectory, with points drawn each
10◦ rotation of the input crank.

Linearity score 98.6%
Stance ratio score 98.3%

Height-to-width score 100%
Itrj 0.03

Table 3. Evaluation of Itr j for the
initial geometry

261

4. OPTIMIZATION OF THE GEOMETRY262

Having defined two conflicting performance indices, a multi-objective optimization can be performed263

on a search space comprising all possible linkages generating the trajectory M1, in order to visualize the264

associated Pareto front. For the candidate geometries comprising the Pareto set, i.e., located on this front, a265

decrease of one objective function can only lead to an increase of the other, so their overall merits depend266

solely on the relative importance given to these two criteria.267

For the purpose of this optimization, the search space is limited to the parameters of the crank-rocker four-268

bar linkage, the geometry of which is defined by three variables: lAB, lCD and lBD. Two additional variables,269

lDE and λ , position the coupler point E which is connected to the pantograph. Table 4 describes the allowed270

ranges for these variables, which, along with the inequality constraints defined in Eqs. (13a-c), ensure that271
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the unit-length crank is able to perform a full revolution without encountering a singular configuration.272

Variable Description Limits Inequality Constraints
lAB Base link length 1.1−10

lAB + lBD > lCD +1 (13a)

lCD + lBD > lAB +1 (13b)

lAB + lCD > lBD +1 (13c)

lCD Coupler link length 1.1−10
lBD Rocker link length 1.1−10
lDE Additional distance to coupler point 0.1−10
λ Coupler link shape 0−2π

Table 4. Conditions for the generation of a suitable candidate geometry

As described by the flowchart shown in Fig. 11, both indices Itr j and Iadap are assigned to a candidate273

four-bar linkage by first determining its optimal orientation, minimizing Itr j, and then, generating the unique274

pantograph linkage satisfying constraints C1 to C6 (previously described in Section 2.3) for this particular275

four-bar, which allows to compute Iadap.276

Due to the highly non-linear nature of the problem, a genetic algorithm provided by MATLAB’s Opti-277

mization Toolbox was used with the parameters described in Table 5 to explore the search space and find278

near-optimal solutions. The fitness of the best individuals obtained after 100 generations is plotted in Fig. 12.279

New parameters (lab, lbd, lcd, lde, λ)

Computation of trajectory M1

Evaluation of Itrj

Generation of the pantograph 
(based on C1 to C6)

Evaluation of Iadap

Four-bar is rotatedBest Itrj ? 

Yes
No

Fig. 11. Evaluation sequence of a candi-
date geometry

Multi-Objective Genetic Algorithm
Number of iterations 100
Population size 100
Pareto population limit 35
Crossover fraction 0.8
Crossover mechanism Randomly weighted average
Mutation function Matlab’s Adaptive Feasible algorithm
Selection mechanism Best of 4 randomly selected individuals

Deterministic Nonlinear Optimization Algorithm

Algorithm
Sequential Quadratic
Programming

Function evaluations 357

Table 5. Parameters of the optimization algorithms

Conversely to usual optimization techniques, a genetic algorithm allows to optimize simultaneously both280

objectives by keeping a large population of candidate geometries instead of a single one. Moreover, this281

approach allows to avoid the pitfalls of local minima, which the function can be shown to possess. Indeed,282

as an example, a specific geometry has been selected from the Pareto set for further analysis. As illustrated in283

Fig. 12, this geometry, indicated by "X" in the figure, is located at (or very close to) the global minimum for284
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the particular optimization function I = 3.63Itr j + Iadap. However, a deterministic minimization algorithm285

(described in Table 5) applied to the latter function with the initial geometry as starting point does not286

converge towards this global minimum, but towards a local minimum, identified by "+" in the figure, see287

Table 6.288

3.63

Pareto 
front

Local minimum
(not on Pareto front)

Initial geometry
(not on Pareto front)

Selected geometry
(absolute minimum for 
3.63 Itrj+ Iadap )

Iadap

Itrj

10

0

2

4

6

8

0 0.80.40.2 0.6

Fig. 12. Pareto set found after 100 generations

Parameter Initial Selected Local
Geo. Geo. Min.

lAB 2 6.08 5.23
lCD 2.5 4.99 8.90
lBD 2.5 0 6.17 10.00
lDE 2.5 1.82 3.73

λ 180◦ 270◦ 302◦

Itr j 0.03 0.35 0.32
Iadap 6.23 1.27 2.01

3.63Itr j + Iadap 6.34 2.53 3.17

Table 6. Optimization results

5. ANALYSIS OF THE SELECTED GEOMETRY289

The arbitrarily selected geometry (described in Fig. 13 and Table 7) features a remarkable improvement290

of Iadap from 6.23 to 1.27 at the cost of a deterioration of Itr j from 0.03 to 0.35 compared to the initial291

parameters. The ease of adaptation can be further improved by using a straight terminal link, which would292

ensure Type II contacts for a large portion of the swing phase.293

Adaptation workspace

λ

A
C

B

D

F
G

E

H

I

J
Q

K

Fig. 13. Illustration of the selected geometry

Geometric Value Geometric Valueparameter parameter
Coord. of A (0 0) lAC 1.00
Coord. of B (4.72 -3.83) lBD 6.17

Coordinates of
(4.08 3.14)

lCD 4.99
Ff ree−space lDE 1.82

Coordinates of
(5.27 1.84)

lEG = lFG = lHI 1.75
Fmax.adaptation lEI = lGH = lIJ 9.19

λ 270◦

Table 7. Geometric parameters of the selected design

As is clear from Fig. 14 and Table 8, the main drawback of this design is the reduction of the stance phase294

duration from 59% to 44% of the leg cycle. A possible solution could be to increase the number of legs, or295
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to alter the angular velocity of the input crank using, for instance, non-circular gears or cams.296

Location along the flight phase

τin/fp

2

0

1

100%0% 50%

max : 1.88

Iadap : 1.27

(a)

Swing phase

Stance phase

(b)

Fig. 14. Evaluation of (a) Iadap and (b) Itr j for the selected design. Points
are drawn each 10◦ rotation of the input crank.

Linearity 93.3%
Stance ratio 73.4%

Height-to-width ratio 95.4%
Itrj 0.35

Iadap 1.27

Table 8. Summary of the perfor-
mance indices

The improved adaptation capabilities can be further demonstrated by comparing the required torque for297

adaptation at the most critical point of the swing phase for the initial and selected geometries, i.e., point Q298

in Figs. 7b and 13. The effect of the obstacle angle and friction coefficient on Type I contacts, described299

by Eq. (10), is plotted for both geometries in Fig. 7. Depending on the friction coefficient, adaptation300

in the desired direction is shown to be possible even for overhanging obstacles, i.e., whose normal has a301

downwards component.302

τin/fp

0

10

12.5

7.5

5

2.5

∞

Downwards normal Upwards normal Vertical 
Obstacle angle (°)

Friction coefficient μ

0

0.5

1

0.75

0.25

90 12060 10575

Impossible 
adaptation

(a)

Downwards normal Upwards normal Vertical 
Obstacle angle (°)

Friction coefficient μ

0

0.5

1

0.75

0.25

90 12060 10575

Impossible 
adaptation

(b)

Fig. 15. Influence of obstacle angle and friction coefficient on the adaptation torque ratio at point Q: (a) initial
geometry, (b) selected geometry

Adaptation to this latter type of obstacles has been investigated with the help of the MSC Adams dynamic303

simulation package. Since only a single leg was simulated, the influence of the rest of mechanism was304

represented by constant vertical position and only positive horizontal motion constraints for the mechanism305
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body. The latter is a conservative hypothesis, since during the swing phase of a given leg, the other legs306

usually actively push the body of a multi-legged robot forwards.307

Fig. 16a shows obstacle adaptation for a straight terminal link, resulting in a Type II contact. After the308

adaptation, the leg endpoint returns to the free-space trajectory by following a direction parallel to δ , and309

the next step is initiated. In Fig. 16b, the leg slides upwards along the obstacle, as predicted, even if the first310

contact point has a downwards normal. There is however a slight interference after the adaptation, to which311

the mechanism reacts by moving forwards, resulting in a sliding of point K along the obstacle. This does312

not cause the mechanism to get stuck during the next step, since the terminal link then undertakes a rotation313

around its extremity, i.e., the contact point with the ground. A video of the simulations is available online at314

www.youtube.com/watch?v=-ArcRu-ErvA.315

J
J

J

δ

(a)

J

K

J

KJ

K

δ

-n

(b)

Fig. 16. Mechanism simulation using MSC Adams : Obstacle adaptation with a) a straight terminal link b) the
workspace-maximizing terminal link

6. CONCLUSIONS316

In this paper, the passive reconfiguration of a Hoecken’s-Pantograph robotic leg mechanism due to the use317

of a second triggered DOF, in a similar manner as underactuated mechanical fingers, is investigated. The ge-318

ometric parameters of the mechanism were optimized in order to allow it to efficiently slide along obstacles319

following contacts occurring during its swing phase while retaining an efficient free-space trajectory for the320
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leg endpoint, and the Pareto front representing the trade-off between these objectives was highlighted.321
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