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RÉSUMÉ

Le problème de la k-coupe maximale (max-k-cut) est un problème de partitionnement de graphes
qui est un des représentatifs de la classe des problèmes combinatoires NP-difficiles. Le max-k-
cut peut être utilisé dans de nombreuses applications industrielles. L’objectif de ce problème est
de partitionner l’ensemble des sommets en k parties de telle façon que le poids total des arrêtes
coupées soit maximisé.

Les méthodes proposées dans la littérature pour résoudre le max-k-cut emploient, généralement,
la programmation semidéfinie positive (SDP) associée. En comparaison avec les relaxations de la
programmation linéaire (LP), les relaxations SDP sont plus fortes mais les temps de calcul sont plus
élevés. Par conséquent, les méthodes basées sur la SDP ne peuvent pas résoudre de gros problèmes.
Cette thèse introduit une méthode efficace de branchement et de résolution du problème max-k-cut
en utilisant des relaxations SDP et LP renforcées.

Cette thèse présente trois approches pour améliorer les solutions du max-k-cut. La première ap-
proche se concentre sur l’identification des classes d’inégalités les plus pertinentes des relaxations
de max-k-cut. Cette approche consiste en une étude expérimentale de quatre classes d’inégalités de
la littérature : clique, general clique, wheel et bicycle wheel. Afin d’inclure ces inégalités dans
les formulations, nous utilisons un algorithme de plan coupant (CPA) pour ajouter seulement les
inégalités les plus importantes . Ainsi, nous avons conçu plusieurs procédures de séparation pour
trouver les violations. Les résultats suggèrent que les inégalités de wheel sont les plus fortes. De
plus, l’inclusion de ces inégalités dans le max-k-cut peut améliorer la borne de la SDP de plus de
2%.

La deuxième approche introduit les contraintes basées sur formulation SDP pour renforcer la re-
laxation LP. De plus, le CPA est amélioré en exploitant la technique de terminaison précoce d’une
méthode de points intérieurs. Les résultats montrent que la relaxation LP avec les inégalités basées
sur la SDP surpasse la relaxation SDP pour de nombreux cas, en particulier pour les instances avec
un grand nombre de partitions (k ≥ 7).

La troisième approche étudie la méthode d’énumération implicite en se basant sur les résultats
des dernières approches. On étudie quatre composantes de la méthode. Tout d’abord, nous pré-
sentons quatre méthodes heuristiques pour trouver des solutions réalisables : l’heuristique itérative
d’agrégation, l’heuristique d’opérateur multiple, la recherche à voisinages variables, et la procédure
de recherche aléatoire adaptative gloutonne. La deuxième procédure analyse les stratégies dichoto-
miques et polytomiques pour diviser un sous-problème. La troisième composante étudie cinq règles
de branchement. Enfin, pour la sélection des nœuds de l’arbre de branchement, nous considérons
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les stratégies suivantes : meilleur d’abord, profondeur d’abord, et largeur d’abord. Pour chaque
stratégie, nous fournissons des tests pour différentes valeurs de k. Les résultats montrent que la
méthode exacte proposée est capable de trouver de nombreuses solutions.

Chacune de ces trois approches a contribué à la conception d’une méthode efficace pour résoudre
le problème du max-k-cut. De plus, les approches proposées peuvent être étendues pour résoudre
des problèmes génériques d’optimisation en variables mixtes.
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ABSTRACT

In graph theory, the maximum k-cut (max-k-cut) problem is a representative problem of the class
ofNP-hard combinatorial optimization problems. It arises in many industrial applications and the
objective of this problem is to partition vertices of a given graph into at most k partitions such that
the total weight of the cut is maximized.

The methods proposed in the literature to optimally solve the max-k-cut employ, usually, the associ-
ated semidefinite programming (SDP) relaxation in a branch-and-bound framework. In comparison
with the linear programming (LP) relaxation, the SDP relaxation is stronger but it suffers from high
CPU times. Therefore, methods based on SDP cannot solve large problems. This thesis introduces
an efficient branch-and-bound method to solve the max-k-cut problem by using tightened SDP and
LP relaxations.

This thesis presents three approaches to improve the solutions of the problem. The first approach
focuses on identifying relevant classes of inequalities to tighten the relaxations of the max-k-cut.
This approach carries out an experimental study of four classes of inequalities from the literature:
clique, general clique, wheel and bicycle wheel. In order to include these inequalities, we
employ a cutting plane algorithm (CPA) to add only the most important inequalities in practice
and we design several separation routines to find violations in a relaxed solution. Computational
results suggest that the wheel inequalities are the strongest by far. Moreover, the inclusion of these
inequalities in the max-k-cut improves the bound of the SDP formulation by more than 2%.

The second approach introduces the SDP-based constraints to strengthen the LP relaxation. More-
over, the CPA is improved by exploiting the early-termination technique of an interior-point method.
Computational results show that the LP relaxation with the SDP-based inequalities outperforms the
SDP relaxations for many instances, especially for a large number of partitions (k ≥ 7).

The third approach investigates the branch-and-bound method using both previous approaches.
Four components of the branch-and-bound are considered. First, four heuristic methods are pre-
sented to find a feasible solution: the iterative clustering heuristic, the multiple operator heuristic,
the variable neighborhood search, and the greedy randomized adaptive search procedure. The sec-
ond procedure analyzes the dichotomic and polytomic strategies to split a subproblem. The third
feature studies five branching rules. Finally, for the node selection, we consider the following
strategies: best-first search, depth-first search, and breadth-first search. For each component, we
provide computational tests for different values of k. Computational results show that the proposed
exact method is able to uncover many solutions.
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Each one of these three approaches contributed to the design of an efficient method to solve the
max-k-cut problem. Moreover, the proposed approaches can be extended to solve generic mix-
integer SDP problems.
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CHAPTER 1 INTRODUCTION

The maximum k-cut (max-k-cut) problem is a graph partitioning problem that is a representative
problem of the class ofNP-complete combinatorial optimization problems. Although it has several
industrial applications, there is not a lot of computational studies proposed in the literature and the
existing exact methods are very limited. Therefore, the main objective of this thesis is to investigate
and propose new mathematical optimization techniques to design an efficient method to solve the
problem to optimality.

1.1 Background

Operations research is a scientific approach that applies advanced analytical methods to support the
decision making process and to optimize systems. In order to deal with a problem, it is typically
necessary to create an abstraction of the real-world situation. A mathematical model is used as an
attempt to describe the system.

A wide variety of real-world problems can conveniently be described by a graph, for example, the
famous traveling salesman problem [69] and the seminal problem of the Königsberg bridges [20].
In graph theory, a graph G = (V,E) is defined by a set of vertex V and a set of edges E.

Among all types of graphs, we consider the connected-weighted-simple graphs where V is a finite
set and the edges are undirected with weight wij for all (i, j) ∈ E. Moreover, multiple edges or
loops are disallowed.

Many operations can be performed on a graph, and one of them is a cut. In general, the graph is
k-cut if the vertex set V is partitioned into at most k partitions in such a way that the intersection
of two different partitions Pi ⊆ V and Pj ⊆ V is an empty set, Pi ∩ Pj = ∅ for i 6= j for each
i, j ∈ {1, 2, . . . , k}. In addition, all vertices inside the k partitions should also be in the vertex
set V = P1 ∪ P2 · · · ∪ Pk. The value of k-cut is the sum of weights of all edges joining different
partitions. Calculating the optimal cut is a graph partitioning problem.

1.2 The maximum k-cut problem

The objective of the max-k-cut problem is to partition the vertex set of a graph into at most k parti-
tions such that the total weight of the k-cut is maximized. The problem arises in many applications,
e.g., VLSI circuit design, wireless communication [54] and sports team scheduling [60]. Some of
these applications are reviewed in Chapter 2. Figure 1.1 illustrates the max-k-cut for a graph with
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Figure 1.1 Illustration of a max-k-cut problem in a graph for k = 3.

For the max-k-cut, the special case with k = 2 is known as the max-cut problem. Due to the
equivalence of this problem with unconstrained binary quadratic optimization, the max-cut has
received most attention in the literature, see e.g. [51, 74]. In our investigation, we focus on problems
with k ≥ 3.

The max-k-cut is equivalent to the minimum k-partition problem [31]. In the minimum k-partition,
the task is to minimize the total weight of the edges joining vertices in the same partition. The
k-way equipartition problem is another related problem. In the k-way equipartition, we add some
constraints that force the partitions to be the same (or almost) sizes.

In an unweighted graph, the max-k-cut can also be used to provide bounds for the chromatic num-
ber. The smallest number of colors needed to color the vertices of a graph in such a way that two
adjacent vertices (joined by an edge) cannot have the same color.

1.3 Objective and outline

The objective of this thesis is to design an efficient solver for the max-k-cut problem. Hence,
we investigate the following three objectives in next chapters. First, computational study of some
proposed facet-defining inequalities to identify the most relevant in practice. Second, investigate
ways of strengthen even more the mathematical model of the max-k-cut. Third, design an exact
method to solve the problem to optimality.

In the first chapter of this thesis, we present the state-of-art of max-k-cut with applications, formu-
lations, and methods proposed in the literature. Chapter 3 details the organization of the research.
The Chapters 4, 5, and 6 are the core of the thesis, where we present the two articles and one chap-
ter about the branch-and-bound algorithm where we present an exact method to obtain the global
optimal solution for the max-k-cut problem. Finally, we conclude our work in Chapter 8.
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CHAPTER 2 CRITICAL LITERATURE REVIEW

This chapter presents the state-of-art of the max-k-cut problem. Section 2.1 presents the most im-
portant applications. Section 2.2 review integer formulations and their relaxations. In Section 2.3,
we present some valid inequalities that are proposed in the literature and Section 2.4 presents ap-
proximations, heuristics and exact methods designed to solve the max-k-cut problem.

2.1 Applications

Several industrial optimization problems are formulated as max-k-cut, some of the most important
are described below.

Statistical physics. In [6], two classical applications of max-k-cut are presented: the statistical
physics and very-large-scale-integrated (VLSI) circuit design. The ground states or minimum en-
ergy configuration of sping glasses are determined in statistical physics. The ground state can be
found by minimizing the energy interaction between magnetic atoms in the sping glass. The en-
ergy between two atoms depends on their orientations and their distance. A simplified version of
1-dimensional direction is studied in [6, 52] where the problem is formulated as a max-cut problem.

(VLSI) circuit design. This problem arises in the phase of layer assignment in the construction of
chip where wires belonging to different net may be crossed [6, 8]. Additional cost and often failure
of the board happens when two wires cross in the same layer. Therefore, it is desirable to find a
layer assignment that minimizes cost and failure. In [6], the wires are considered as the vertices,
the crossing as the edges, and the layers as the partitions of a max-k-cut problem. This application
can be generalized to modular design where a system is divided into smaller parts called modules
in order to maximize independence between modules [29].

Team Realignment. A very common problem that is formulated as a k-equipartition problem is
the team scheduling. In [60, 72] the authors study the realignment problem for a football league
where the objective is to minimize the sum of intra-divisional distance. In this application, the cities
are the vertices of the graph, the distances between cities correspond to the weight of edges and
the number of division are the k partitions. An interesting application related to team scheduling is
proposed in [28] to assign doctors for victims in emergency situations.
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Wireless communication. In the case of wireless communications, the wireless network designs
are the hardest problems. Most investigations are related to the problem of frequency assignment
where the aim is to minimize interferences between devices see e.g. [22, 86]. However, in [54] the
objective is to assign a group of exchange stations in such a way that as much traffic as possible
can be routed inside these clusters.

Other applications. Many other cluster problems can be formulated as a max-k-cut problem
such as parallel computing [44], floor planning [12], and others assignment problems like the ones
studied in the capacitated version of max-k-cut [29]: the placement of television commercials and
the placement of containers.

2.2 Formulations of the max-k-cut

The max-k-cut is known to be an NP-hard combinatorial optimization [71]. In order to compu-
tationally solve the problem some integer programming formulations are proposed in the literature
and their relaxations can be separated into two main groups: linear programming (LP) relaxation
and semidefinite programming (SDP) relaxation.

2.2.1 Integer programming formulations

The max-k-cut has essentially three different integer formulations: One formulation with edge-
only variables, another with both node-and-edge variables and a third with node-only variables.
We present all of these formulations.

Edge-only formulation

A 0-1 edge formulation is proposed in [10], where the integer variable xij for each i, j ∈ V is
defined as:

xij =

 0 if edge (i, j) is cut,
1 otherwise.
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Hence, from an edge perspective, the max-k-cut is formulated as:

(EDGE) max
x

∑
i,j∈V,i<j

wij(1− xij) (2.1)

s.t. xih + xhj − xij ≤ 1 ∀i, j, h ∈ V , (2.2)∑
i,j∈Q,i<j

xij ≥ 1 ∀Q ⊆ V with |Q| = k + 1, (2.3)

xij ∈ {0, 1} ∀i, j ∈ V . (2.4)

where Constraint (2.2) and (2.3) are called triangle and clique inequalities, respectively. Triangle
Inequalities (2.2) correspond to the logical conditions that if the edges (i, h) and (h, j) are not cut
then edge (i, j) cannot be cut. The Constraints (2.3) impose that at least one edge in a clique with
k + 1 vertices cannot be cut.

Node-and-edge formulation

Also in [10], the authors present the node-and-edge formulation that has |V |k + |E| variables and
constraints. For each v, i, j ∈ V , for each (i, j) ∈ E and p ∈ {1, . . . , k}. The binary variables are:

xij =

 0 if edge (i, j) is cut,
1 otherwise.

yvp =

 1 if vertex v is in partition p,
0 otherwise.

Therefore, the node-and-edge integer formulations of max-k-cut is defined as:

(No-Ed) max
x

∑
(i,j)∈E,i<j

wij(1− xij) (2.5)

s.t.
k∑
p=1

yvp = 1 ∀v ∈ V , (2.6)

xij ≥ yip + yjp − 1 ∀((i, j) ∈ E, p = 1, . . . , k), (2.7)

xij ≤ yip − yjp + 1 ∀((i, j) ∈ E, p = 1, . . . , k), (2.8)

xij ≤ −yip + yjp + 1 ∀((i, j) ∈ E, p = 1, . . . , k), (2.9)

xij ∈ {0, 1} ∀(i, j) ∈ E, (2.10)

yvp ∈ {0, 1} ∀(v ∈ V, p ∈ {1, . . . , k}). (2.11)

where Inequalities (2.8)-(2.9) can be removed when all edges weight are non-negative.
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Node-only formulation

The last formulation is based on (vertex) node variables. In [25], the authors mention that just
allowing the variables to be xi ∈ {1, . . . , k} for each i ∈ V does not generate useful integer
formulations. Instead, if xi is one of the k vectors a1, a2, . . . , ak in Rk−1 such that the dot product
of this vector is:

ai · aj = −1
k − 1

it provides a convenient quadratic formulation. In Lemma 4 of [25], it is proved that the value
−1/(k − 1) gives the best angle separation for k vectors. Then, for xi ∈ {a1, . . . , ak} we have:

xixj =


−1
k−1 if xi 6= xj (i.e, vertices i and j are in different partitions),
1 if xi = xj.

Finally, we end up with the following quadratic formulation of the max-k-cut:

(NODE) max
x

(k − 1)
k

∑
i,j∈V,i<j

wij(1− xixj) (2.12)

s.t. xi ∈ {a1, a2, . . . , ak} ∀i ∈ V . (2.13)

2.2.2 Linear programming relaxation

Linear programs are the main field of operational research. In a linear programming formulation,
all parameters of the model are known with certainty, all the variables are real, and all expressions
(constraints and the objective function) are linear, i.e., a linear programming respects the following
three assumptions: deterministic property, divisibility, and linearity [18].

The simplex algorithm [13] was, during many years, the unique method available to solve the LP.
Although simplex is, in theory, a non-polynomial algorithm (it can make exponential steps to attain
optimality), it is, in practice, very reliable and efficient. Nowadays, the polynomial interior point
method (IPM) has shown to be a good alternative to the simplex method [34, 58]. In fact, in [34, 61]
the authors show that the IPM enables the solution of many large-scale real-life problems and that
IPM can exploit parallelism quite well.

Typically, a linear formulation is derivate from an integer programming formulation by relaxing
the integrality constraint, i.e., in the LP we replace the constraint x ∈ {0, 1} by its relaxed form
0 ≤ x ≤ 1.
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Edge-only relaxation. By relaxing the Integrality Constraint (2.4) in the EDGE formulation by

0 ≤ xij ≤ 1 ∀i, j ∈ V . (2.14)

we end up with the linear edge formulation of max-k-cut. This LP relaxation is used in the k-
equipartition problems, see e.g. [60, 72] and in [85] the authors use this relaxation to exploit sparsity
in the max-k-cut problem. They show that it is not necessary to add dummy edges (of zero weight)
if the graph is chordal.

We can notice that this formulation suffers from huge number inequalities: in a complete graph it
can have 3

(
|V |
3

)
triangle Inequalities (2.2) and

(
|V |
k+1

)
clique Inequalities (2.3).

The edge-only formulation also suffers for not exploiting the structure of graphs like sparsity. In
general, a chordal extension [39] of a sparse graph still adds a lot of dummy edge.

Node-and-edge relaxation. Replacing the Constraint (2.10) and (2.11) by their correspondent
linear relaxations defines the linear node-and-edge formulation of the max-k-cut problem. This
formulation is applied in the bounding procedure of [22] for a two-level graph partitioning prob-
lem. In [22] the authors show that this relaxation is very weak and it suffers from symmetry. This
formulation is further improved by the so-called representative formulations [2] where a represen-
tative variable is added to break symmetry.

Both linear formulations presented above are investigated in Chapter 5 where we present some
advantages and drawbacks. In summary, the LP formulation can rapidly be solved, but the bounds
of LP are not strong [31], i.e., the linear solution is far from being an optimal solution.

2.2.3 Semidefinite programming relaxation

Semidefinite programming is one of the most active research areas in optimization [70]. In [73]
the author points out that some NP-complete combinatorial problems can benefit from semidefi-
nite optimization because it is solved in polynomial time (with fixed precision), and it can handle
quadratic constraints in its model.

SDP refers to the problem of optimizing a linear function over the intersection of the cone of
positive semidefinite (psd) matrices with an affine set. A matrix M is symmetric (M ∈ Sn) if
MT = M and, in particular, M is a square matrix with dimension n. The matrix M ∈ Sn is psd

(M ∈ S+
n ,M � 0) if:

µTMµ ≥ 0 ∀µ ∈ Rn. (2.15)
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It is known that M ∈ S+
n if and only if all principal submatrix of M are also psd. Moreover, a

diagonal element mii from M is always among the elements of largest absolute value, i.e. for all
i ∈ {1, . . . , n} the element mii = max{|mij| : j ∈ {1, . . . , n}}. Hence, if mii = 0 all elements in
column i and row i of M ∈ S+

n are also 0. Others properties of psd are detailed in [40].

In SDP, the matrix variable X ∈ S+
n replaces the vector x ∈ Rn+ of variables in the LP formulation,

i.e., the cone of the nonnegative orthant x ≥ 0 in the LP is replaced by the cone of semidefinite ma-
trices X � 0. The linear programming is a special case of SDP where all non-diagonal elements of
X are zero. Another similarity with LP is that SDP is convex, and duality theory of LP generalizes
naturally to SDP, in particular, the characterization of optimality is ensured if there exist feasible
points in the interior of primal and dual formulations [41].

Since the studies of [3, 66], the interior point method (IPM) is the most efficient method for solving
semidefinite programming. The IPM iterates inside the SDP cone and it converges very fast by
using Newton’s method. However, the computation of each iteration is often too high for practical
applications with many constraints.

Others, less accurate methods, are proposed to solve the SDP faster. The spectral bundle method

proposed in [43] reformulate the SDP as an eigenvalue optimization problem, in this way, the
bundle method avoid the expensive calculation of Cholesky factorization by using a first order
method that depends only on the calculation of eigenvalues and eigenvectors. However, for the
spectral bundle, there is no polynomial bound on the number of arithmetic operations.

Another way of solving the SDP is by transforming SDP in a semi-infinite programming prob-
lem [49, 50]. In summary, this approach replaces the coneX � 0 by Constraint (2.15). In Chapter 5
we study in detail this approach to formulate a new family of inequalities for the linear edge-only
relaxation of the max-k-cut problem.

Node-only relaxation. The SDP relaxation is based on the quadratic node-only formulation of
the max-k-cut (NODE). To obtain a relaxation of the quadratic formulation we replace the con-
straint (2.13) to:

xi ∈ Bn ∀i ∈ V . (2.16)

where Bn is the unit sphere in n dimensions. Thus, to avoid xi · xj = −1 we add the constraint
xi · xj ≥ −1

k−1 . Thereby, replacing xi · xj for Xij gives the SDP formulation proposed in [25]:
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(SDP ) max
X

(k − 1)
k

∑
i,j∈V,i<j

wij(1−Xij) (2.17)

s.t. Xii = 1 ∀i ∈ V , (2.18)

Xij ≥
−1
k − 1 ∀i, j ∈ V, i < j, (2.19)

X � 0. (2.20)

Although this formulation has only a few constraints, the n(n−1)
2 Constraints (2.19) can impact a lot

the computing time of the SDP. For instance, in [40] the author indicates that it is more efficient
to start only with Constraint (2.18) and to separate Xij ≥ −1

k−1 successively in a cutting plane
algorithm.

2.2.4 SDP versus LP relaxations

Both SDP and LP formulations have their strength and weakness. We see that IPM and simplex
methods are well suitable to provide fast solutions for large linear problems, but in [31] the authors
affirm that the LP relaxations are weak and it could result in the enumeration of all the solutions in
a branch-and-bound method.

In [19] the authors study the relation between the LP and SDP polytopes. They show that SDP
relaxations of max-k-cut violates at most

√
2 − 1 of all triangle Constraint (2.2) and it violates at

most 1
2 of all clique constraints, in comparison with a violation of 1 for the LP relaxation.

Moreover, in [4] the authors affirm that computationally speaking, the strength of the SDP relax-
ations come with the cost of expensive running times.

2.3 Strengthening max-k-cut formulations

A relaxation can be tightened, without removing any feasible solution, by the addition of cutting
planes (also called valid inequalities). In order to strength even more the LP and the SDP relaxations
of the max-k-cut problem, some researchers have proposed some valid inequalities.

A cutting plane algorithm (CPA) is designed to solve a problem by, iteratively, adding only the
most important inequalities. Therefore, this section presents some valid inequalities and introduces
the CPA.
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2.3.1 Valid inequalities

Typically, the triangle (2.2) and clique (2.3) inequalities of the edge-only formulation are also used
to strengthen the SDP formulations. For example, in [81], it is shown that triangle inequalities are
stronger than clique inequalities in the SDP relaxation.

In [9], the authors propose several valid and facet-defining inequalities for k-partition problem
polytopes. Particularly, they use the edge-only linear relaxation to demonstrate the validity of the
following inequalities:

• the General clique inequalities are generalizations of the Clique Inequalities 2.3, and they
are valid if it has more than k vertices and it is facet-defining if the size of this inequality
(number of vertices in it) is not a module of k,

• the wheel inequalities are facet-defining if the main cycle in the structure of this inequality
is odd and if k ≥ 4, and

• the bicycle wheel inequalities are facet-defining for k ≥ 4 if the cycle is odd.

Several valid and facets-defining inequalities for the max-cut problem is studied in [16]. The results
of [16] are generalized for the max-k-cut problem in [10] where some sufficient condition for
hypermetric, cycle and anti-web inequalities are proposed.

In [21], a new family of inequality for the node-and-edge relaxation called projected clique in-
equalities is obtained by the projection of edge-only formulation to node-and-edge formulation.
Computational results show that the new inequalities are of practical use in the case of large sparse
graphs.

In Chapter 4 we review in more detail some of these valid inequalities, especially the ones proposed
in [9].

2.3.2 Cutting plane algorithm

A CPA is designed to find optimal solutions of different types of problems or to tighten bounds [69,
87]. The CPA is a standard technique applied to problems when the number of inequalities is too
large to be explicitly represented in the model [36]. For the max-k-cut, the CPA is, usually, used to
separate triangle and clique inequalities see e.g. [4, 31].

In summary, the CPA starts with a basic relaxation. At each iteration, it solves the problem, then
some separation routines search for violated cut planes (inequalities) and the most violated con-
straints are added to the relaxation. Then, some unimportant constraints (with large slack variables)
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can also be removed. Finally, if some cut planes were added a new iteration is started, otherwise,
we stop the CPA.

Separation routines are exact or heuristic methods applied to search for violated inequalities in a
relaxed solution. For the max-k-cut problem, in [4, 31] a greedy heuristic is applied to search for
clique inequalities and an exact enumeration to search for triangle inequalities. In [15] the authors
show that the separation of odd cycles can be done in polynomial time for wheel and bicycle
wheel inequalities. For the projected inequalities of [21], the author proposes some exact and
heuristic methods for the searching.

A variation of the CPA that uses IPM solvers is applied to the PDCGM solver [35] and in [58].
The technique employed is called the early-termination, where the IPM is stopped before it attains
optimality to search for cut planes that are violated. Normally, the inequalities are stronger when
the early-termination is applied [61].

A formal and more detailed description of CPA is provided in Chapters 4 and 5.

2.4 Methods to solve the max-k-cut problem

In this section, we present some approximations, heuristics and exact methods proposed in the
literature to solve the max-k-cut problem.

2.4.1 Approximations methods

In [33] the famous 0.878-approximation algorithms for the max-cut problem is proposed. The main
idea of this approximation is to solve an SDP formulation and use a randomized rounding heuristic
to obtain a good solution. In this approximation, a random hyperplane that passes through the
origin is chosen, and we partition a vertex vi ∈ V according to the side of the hyperplane that it
falls.

In [25] and [47] the authors extend the approach of [33] to the max-k-cut. In [25], it is shown that
there exist a sequence of constants αk such that:

H(w(Pk)) ≥ αkw(P∗k)

where P∗k denotes the optimal solution, w(P∗k) is the value of P∗k , andH denotes the expected value
of their approximations. In [25, Theorem 1], the authors show that the constants αk satisfies :

• αk >
k−1
k

, and
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• α2 ≥ 0.878567, α3 ≥ 0.800217, α4 ≥ 0.850304, α5 ≥ 0.874243, α10 ≥ 0.926642, and
α100 ≥ 0.990625.

For small values of k, the SDP approximation proposed in [14] gives better results than [25]. For
example, if k = 3 they improved the bound to 0.832718 and for k = 4 to 0.857487. In [14] the
rounding procedure of [25] is applied in a lifted matrix of the SDP solutions.

2.4.2 Heuristic methods

As opposed to exact and approximations method where the first guarantees optimality and the
second a solution that cannot be worse than an α approximation, the heuristic and meta-heuristic
methods attempt to yield good solutions with any guarantee. Typically, the heuristic is much faster
than exact methods, and the heuristic solutions are normally better than the ones of approximation
methods.

For the max-cut (k = 2) problem, many heuristic algorithms have been proposed (see e.g., [89, 48]).
For the max-k-cut, on the other hand, there are much fewer methods proposed. Therefore, we
present all heuristic that we are aware of.

An iterative clustering heuristic (ICH) was proposed in [31] to finds feasible solutions from an SDP
solution. Their computational results show that ICH provides better solutions than those obtained
by [25]. The ICH works by building subgraphs based on the information from an SDP solution
(X∗).

In [90] it is introduced a multi-start-type algorithm called dynamic convexized (DC) method where
a local search algorithm is applied to a dynamically updated auxiliary function.

In [56] the authors present a multiple operator heuristic (MOH). The MOH is an iterative method
that applies five search operators in three search phases. They show that their MOH provides better
bounds in less time than DC method in 90% of their tests.

A more detailed review of some of these heuristic methods is presented in Chapter 6, where we
also compare their efficiency.

2.4.3 Exact methods

Exact methods find optimal solutions for the max-k-cut problem. Most of the methods are based on
the branch-and-bound algorithm. Both algorithms use a tree search strategy to implicitly enumerate
all possible solutions. The difference between these methods is that the branch-and-cut uses a
cutting plane algorithm in all nodes of the three search. We investigate in details the branch-and-
bound framework in Chapter 5.
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In [60, 59] a branch-and-cut algorithm based on edge-only relaxation is applied to the k-way
equipartition problem to solve the realignment problem of a football league where k = 8 and
|V | = 32. The branch-and-cut uses an LP formulation that is reinforced by triangle and clique
inequalities. For problems with 100 to 500 vertices, they have found a percentage gap inferior to
2.5% for k = 4.

A branch-and-bound algorithm with cutting plane algorithm in the root node (called cut-and-branch
algorithm) is applied in [22] for the two-level graph partitioning problem. The linear relaxation
is based on the node-and-edge formulations of max-k-cut. The input graph is simplified by a
preprocessing stage, and the LP relaxation is tightened by the triangle, clique, and general clique
based inequalities. Computational results found the optimal solution for problems with |V | = 100
and k ∈ {2, 3, 4} for sparse graphs.

A branch-and-bound method based on the edge-only formulation of the max-k-cut is investigated
in [85], where it is shown that a chordal graph can be formulated with only |E| variables instead of
n(n−1)

2 . In [85], sparse problems with |V | = 200 and k ∈ {3, 4} are solved in few seconds.

In [31] the semidefinite relaxation is used in a branch-and-cut algorithm called SBC. The SBC
uses triangle and clique inequalities, and the SDP is solved by the spectral bundle method, more-
over, the ICH heuristic is applied to get feasible solutions. The SBC algorithm computes optimal
solutions for dense graphs with 60 vertices, and for sparse graphs with 100.

The BundleBC algorithm proposed in [4] is an improvement of the SBC method. BundleBC

extends the ideas of the Biq Mac solver [74] to max-k-cut. The importance of separating clique
inequalities with triangle inequalities is also investigated in BundleBC. Feasible solutions are
computed via the approximation algorithm proposed in [25]. Computational results show that the
use of the clique inequalities reduces the number of subproblems analyzed in the branch-and-bound
tree, and the BundleBC is shown to be faster than SBC. The BundleBC is able to solve some
dense instances with 70 nodes and sparse with 100, for k ∈ {3, 5, 7}.

2.5 Additional reviews

To close this chapter we refer to the reader the additional literature review on the cutting plane
algorithm in Chapter 4. In Chapter 5, we review the semi-infinite formulations especially for the
linear formulation of SDP. Finally, in Chapter 6, we review in detail all the components of the
branch-and-bound method.



14

CHAPTER 3 ORGANIZATION OF THE THESIS

In this chapter, we present the organization of the research done as part of this thesis. The motiva-
tions and the results initially hoped for are also explained.

In the previous chapter, we presented the state-of-art of the max-k-cut literature. We observe that
some methods are proposed to exactly solve the max-k-cut. In particular, the SBC [31] and the
BundleBC [4] solvers use the SDP formulations of max-k-cut to obtain upper bounds in a branch-
and-cut framework. However, both methods are unable to solve instances with more than 70 ver-
tices.

Several studies show that, on one hand, the SDP yields good bounds, but, on the other hand, it
suffers from expensive running times [4, 19]. Based on this, we aim to design a formulation that
provides a trade-off between quality and time of solution, and we apply this formulation within an
efficient branch-and-bound algorithm.

In Chapters 4 and 5, we report our articles [76] and [77]. In Chapter 6, we present an investigation
of an exact method for the max-k-cut. The chapters are presented in a chronological way. Each
part of the thesis focuses on improving solutions to the max-k-cut problem. We present the steps
performed at each one of the three parts of this thesis.

The first article [76] was accepted to be published on Annals of Operations Research in March 2017,
and is reported in Chapter 4. This article investigates some families of inequalities to strengthen
the max-k-cut relaxation. These inequalities studied were proposed by [9] and they are known
to be facet-defining. Specifically, we considered the five following classes of cutting planes: the
Triangle, Clique, General clique, Wheel and Bicycle wheel inequalities. Due to the fact that
each family of inequality can have a huge number of rows, we design a cutting plane algorithm
(CPA) to add only the most important inequalities. Therefore, for each class, we study several
separation methods. For example, for the wheel and bicycle wheel inequalities, we study four
separation methods for finding violated inequalities in an iteration of CPA. In order to investigate
the impact of each class, we create ten combination of methods that alternate the activation and
deactivation of each family. Moreover, we study dense and sparse graphs, and we compare our
combinations using different benchmarks. Hence, we intend to identify the most important classes
of inequalities to be prioritized in the max-k-cut formulation.

The second article [77] submitted in April 2018 on EURO Journal on Computational Optimization

is presented in Chapter 5. We proposed a family of inequalities to strengthen the LP relaxation
based on the SDP formulation. These inequalities have infinity rows and we design an exact sepa-
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ration routine based on eigenvalue of the relaxed solution. Moreover, we employ a modified CPA
to find deeper cuts. In order to compare the SDP with the new LP formulation we test both methods
for several instances.

Chapter 6 focuses on designing an efficient exact method to obtain global solutions of the max-
k-cut problem. This chapter is the conclusion of our study where we include ideas of the two
previous works [76, 77] in a branch-and-bound algorithm. We investigate five of the most important
components of the branch-and-bound method: upper-bound, feasibility, splitting, branching, and
node selection. For each procedure, we computationally study several strategies. For example,
in the branching rule procedure we study five different rules for selecting a variable in a node of
the branch-and-bound tree. Moreover, we show the evolution of the LP formulations (from [76]
to [77]) and we also compare both LP and SDP formulations in the branch-and-bound scheme for
a variety of instances. This way, an efficient exact method is designed.
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CHAPTER 4 ARTICLE 1: COMPUTATIONAL STUDY OF VALID INEQUALITIES
FOR THE MAXIMUM K-CUT PROBLEM

Authors: Vilmar J. Rodrigues de Sousa, Miguel F. Anjos, Sébastien Le Digabel.
Accepted for publication: Annals of Operations Research

Abstract We consider the maximum k-cut problem that consists in partitioning the vertex set of a
graph into k subsets such that the sum of the weights of edges joining vertices in different subsets
is maximized. We focus on identifying effective classes of inequalities to tighten the semidefinite
programming relaxation. We carry out an experimental study of four classes of inequalities from
the literature: clique, general clique, wheel and bicycle wheel. We considered 10 combinations
of these classes and tested them on both dense and sparse instances for k ∈ {3, 4, 5, 7}. Our compu-
tational results suggest that the bicycle wheel and wheel are the strongest inequalities for k = 3,
and that for k ∈ {4, 5, 7} the wheel inequalities are the strongest by far. Furthermore, we observe
an improvement in the performance for all choices of k when both bicycle wheel and wheel are
used, at the cost of 72% more CPU time on average when compared with using only one of them.

Keywords. Maximum k-Cut, Graph Partitioning, Semidefinite Programming, Computational Study.

AMS subject classifications. 65K05, 90C22, 90C35.

4.1 Introduction

Graph partitioning problems (GPPs) are an important class of combinatorial optimization. There
are various types of GPP based on the number of partitions allowed, the objective function, the
types of edge weights, and the possible presence of additional constraints such as restrictions on the
number of vertices allowed in each partition. This work considers the GPP known as the maximum
k-cut (max-k-cut) problem: Given a connected graph G = (V,E) with edge weights wij for all
(i, j) ∈ E, partition the vertex set V into at most k subsets so as to maximize the total weight of
cut edges, i.e., the edges with end points in two different subsets. This problem is sometimes also
called minimum k-partition problem [31]. The special case of max-k-cut with k = 2 is known as the
max-cut problem and has received most attention in the literature, see e.g. [6, 16, 33, 51, 70, 74].



17

Graph partitioning and max-k-cut problems have myriad applications as VLSI layout design [6],
sports team scheduling [60], statistical physics [52], placement of television commercials [29],
network planning [19], and floorplanning [12].

The unweighted version of max-k-cut is known to be NP-complete [71]. Hence, researchers
have proposed heuristics [11, 56], approximation algorithms [11, 25], and exact methods [4, 31]
for solving the max-k-cut. In particular the approximation method proposed in [25] extends the
famous semidefinite programming (SDP) results for max-cut in [33] to max-k-cut. The authors
of [14] subsequently improved the approximation guarantees for small values of k.

Ghaddar et al. [31] propose the SBC algorithm. It is a branch-and-cut algorithm for the minimum
k-partition problem based on the SDP relaxation of max-k-cut. They found experimentally that for
k > 2 the SDP relaxation yields much stronger bounds than the LP relaxation, for both sparse and
dense instances. This algorithm was improved in [4] which introduced the bundleBC algorithm to
solve max-k-cut for large instances by combining the approach of [31] with the design principles
of Biq Mac [74]. The results in [4] confirm that, computationally speaking, the SDP relaxations
often yield stronger bounds than LP relaxations.

The matrix lifting SDP relaxation of the GPP, and the use the triangle and clique inequalities to
strengthen it, were studied in [81, 83]. In particular [81] shows that this relaxation is equivalent to
the relaxation in [25] and is as competitive as any other known SDP bound for the GPP. The results
also show that the triangle inequalities are stronger than the clique (independent set) inequalities.

Using a similar approach as [81], the authors in [84] propose several new bounds for max-k-cut
from the maximum eigenvalue of the Laplacian matrix of G. Moreover, [84] shows that certain
perturbations in the diagonal of the Laplacian matrix can lead to stronger bounds. In [67] the author
proposes a more robust bound than the one proposed in [84] by using the smallest eigenvalue of the
adjacency matrix of G.

In [21] the authors project the polytopes associated with the formulation with only edge variables
into a suitable subspace to obtain the polytopes of the formulation that has both node and edge
variables. They then derive new valid inequalities and a new semidefinite programming relaxation
for the max-k-cut problem. The authors suggest that the new inequalities may be of practical use
only in the case of large sparse graphs.

The objective of this work is to carry out a computational study of valid inequalities that strengthen
the SDP relaxation for the max-k-cut problem, and to identify the strongest ones in practice. Valid
and facet-inducing inequalities for k-partition were studied in [9, 10]. We focus our analysis on the
following inequalities: Triangle, Clique, General clique, Wheel and Bicycle wheel. To the best
of our knowledge, no research has specifically focused on comparing the strength of the range of
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inequalities considered here.

This paper is organized as follows. Sections 5.1.1 and 4.1.2 review the SDP formulation and relax-
ation of the max-k-cut problem. Section 5.2 presents the classes of inequalities and discusses the
separation methods used. Section 4.3 describes the cutting plane algorithm used, and Section 5.4
presents and discusses the test results. The conclusions from this study are provided in Section 6.7.

4.1.1 Problem formulation

We assume without loss of generality that the graph G = (V,E) is a complete graph because
missing edges can be added with a corresponding weight of zero. Let k ≥ 2 and define the matrix
variable X = (Xij), i, j ∈ V , as:

Xij =


−1
k−1 if vertices i and j are in different partitions of the k-cut of G,
1 otherwise.

The max-k-cut problem on G can be expressed as:

max
X

∑
i,j∈V,i<j

wij
(k − 1)(1−Xij)

k
(4.1)

s.t. Xii = 1 ∀i ∈ V , (4.2)

Xij ∈
{
−1
k − 1 , 1

}
∀i, j ∈ V, i < j, (4.3)

X � 0. (4.4)

We refer to this formulation as (MkP). This formulation was first proposed by [25]. As mentioned
in [25, Lemma 4], the value −1/(k − 1) gives the best angle separation for k vectors.

4.1.2 Semidefinite relaxation

Replacing Constraint (4.3) by −1
k−1 ≤ Xij ≤ 1 defines the SDP relaxation. However, the constraint

Xij ≤ 1 can be removed since it is enforced implicitly by the constraints Xii = 1 and X � 0.
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Therefore the SDP relaxation, denoted (RMkP), is:

max
X

∑
i,j∈V,i<j

wij
(k − 1)(1−Xij)

k
(4.5)

s.t. Xii = 1 ∀i ∈ V , (4.6)

Xij ≥
−1
k − 1 ∀i, j ∈ V, i < j, (4.7)

X � 0. (4.8)

4.2 Formulation and separation of inequalities

The SDP relaxation (RMkP) can be tightened by adding valid inequalities, i.e., cutting planes
that are satisfied for all positive semidefinite matrices that are feasible for problem (MkP) but are
violated by solution X ′ of the (current) SDP relaxation. In this section we present the classes of
inequalities from [9, 10] that we consider adding to tighten the SDP relaxation. For each class, we
describe its properties, its formulation in terms of the SDP variable X , and the separation routine
used.

The first two classes of inequalities (Triangle and Clique) were used in the SBC branch-and-cut
method [31] and in the matrix lifting approach [81, 83]. We are unaware of the other classes having
been computationally tested or used.

4.2.1 Triangle inequalities

Triangle inequalities are based on the observation that if vertices i and h are in the same partition,
and vertices h and j in the same partition, then vertices i and j necessarily have to be in the same
partition. The resulting 3

(
|V |
3

)
triangle inequalities are:

Xih +Xhj −Xij ≤ 1 ∀i, j, h ∈ V . (4.9)

Separation of triangle inequalities

As pointed out in [4], the enumeration of all triangle inequalities is computationally inexpensive,
even for large instances. Therefore, a complete enumeration is done to find triangles in the graph
G that violate (4.9). The tolerance used to detect a violation is 10−5.
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4.2.2 Clique inequalities

The

 |V |
k + 1

 clique inequalities ensure that for every subset of k+ 1 vertices, at least two of the

vertices belong to the same partition. We express them as:

∑
i,j∈Q,i<j

Xij ≥ −
k

2 ∀Q ⊆ V with |Q| = k + 1. (4.10)

Separation of clique inequalities

The exact separation of clique is NP-hard in general, and the complete enumeration is intractable
even for small values of k [31]. We use the heuristic described in [31] to find a violated clique
inequality for a solution X ′ of the SDP relaxation. This heuristic is described here as Algorithm 1,
and returns up to |V | clique inequalities. We use a tolerance ε = 10−5.

for all j ∈ V do
C = {j};
while |C| ≤ k do

Select u ∈ V \C such that u ∈
{

arg min
v

∑
i∈C

X ′i,v | v ∈ V \C
}

;

C = C ∪ {u};
end

if

 ∑
i,z,∈C,i<z

X ′iz < −
k

2 − ε
 then

Q = C;
Construct an inequality of type (4.10);

end
end

Algorithm 1: Heuristic to find violated clique inequalities.

4.2.3 General clique inequalities

The General clique inequalities in [9] are a generalization of the Clique inequality (4.10).

Let Q = (V (Q), E(Q)) be a clique of size p := tk + q where t ≥ 1 and 0 ≤ q < k, i.e., t is the
largest integer such that tk ≤ p. In terms of the SDP variable X , the general clique inequalities
have the form:

∑
i,j∈Q

Xij ≥
k

k − 1

[
z + w

(
k − 1
k
− 1

)]
∀Q ⊆ V, |Q| = p. (4.11)
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where z = 1
2t(t− 1)(k − q) + 1

2t(t+ 1)q and w = p(p−1)
2 . It is proved in [9] that (4.11) is valid for

the polytope of the max-k-cut problem if p ≥ k, i.e., t ≥ 1. Furthermore, it is facet-defining if and
only if 1 ≤ q ≤ k − 1, t ≥ 1, i.e., p is not an integer multiple of k.

Separation of general clique inequalities

Because the clique inequalities are included in general clique, it is clear that enumeration is also
impracticable for general clique. Thus, we propose a heuristic to find the most violated general
clique inequalities for X ′.

Our heuristic is a small modification of the one used to separate the clique inequalities (Algo-
rithm 1). Specifically:

• The argument in the WHILE condition becomes |C| ≤ p− 1.

• The inequality in the IF condition is replaced by

(
w(j) < k

k − 1

[
z + w

(
k − 1
k
− 1

)]
− ε

)
.

The parameter p may vary with the number of partitions k. After preliminary tests using p ∈
{5, 7, 8, 10, 11, 13} for k = 3, p ∈ {6, 7, 9, 11, 13, 14} for k = 4, p ∈ {7, 9, 11, 13, 16, 18} for
k = 5, and p ∈ {9, 11, 13, 16, 18, 20} for k = 7, we settled on with the following choices: p = 5
for k = 3; p = 6 for k = 4; p = 7 for k = 5; and p = 11 for k = 7.

4.2.4 Wheel inequalities

In [9], the q-wheel is defined as Wq = (Vq, Eq), where

• Vq = {v, vi|i = 1, 2, ..., q}

• Eq = Ē ∪ Ê, where Ē = {(v, vi), i = 1, 2, ..., q} and Ê = {(vi, vi+1), i = 1, 2, ..., q}.

where v ∈ V , and all indices greater than q are modulo q. For q = 6, W6 is illustrated in Figure 4.1.

Let Wq be a subgraph of G for q ≥ 3. In terms of the SDP variable X , the wheel inequality is
defined as:

q∑
i=1

Xv,vi
−

q∑
i=1

Xvi,vi+1 ≤
⌊1

2q
⌋

k

k − 1 . (4.12)
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v1

v2

v3

v4

v5

v6

v

Figure 4.1 Example of wheel with q = 6.

The idea of this inequality is that vertex v can be in the same partition as vertices vi and vi+1 if edge
e = (vi, vi+1) is not cut. It is proved in [9] that (4.12) is a valid inequality for max-k-cut, and that
it defines a facet if q is odd and k ≥ 4.

Separation of wheel inequalities

By Inequality (4.12), a q-wheel is violated by X ′ if:

q∑
i=1

X ′v,vi
−

q∑
i=1

X ′vi,vi+1
−
(⌊1

2q
⌋

k

k − 1

)
> 0. (4.13)

For each vertex v ∈ V , we wish to maximize the left-hand side of Inequality (4.13) to find the most
violated wheel inequality.

In [15] it is shown that the odd wheel inequalities can be separated in polynomial-time. We also
considered four heuristics, for a total of five methods tested:

• Exact algorithm [15].

• The GRASP meta-heuristic [23].

• A genetic algorithm (GA) from [80].

• The K-step greedy lookahead [78] with K=2.

• Our own greedy heuristic for multiple sizes of wheel (GMSW), described in Algorithm 2.

The GMSW heuristic achieved, on average, the best ratio between CPU time and performance for
all tests. For instance, the performance ratio (see Section 5.4.3) was less than 0.03% higher than
the exact method. In addition, its CPU time was in average 45% less. In GSMW, the parameter
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for all j ∈ V do
i = 1;
vi = j;
W = {vi};
while i ≤ NbIte do

q = |W |;
z = 0;
if q ≥ 3 then

Select v ∈ V \W s.t.:
z = maxv

∑q
i=1 X

′
v,vi
−∑q

i=1 X
′
vi,vi+1

−
(
b1

2qc
k
k−1

)
;

end
if z > 0 then

Build Inequality (4.12) with W and v;
j = j + 1;
i = NbIte + 1 ;

else
Select u ∈ V \W such that u ∈ {arg min

v
X ′vq ,v +X ′v,v1 | v ∈ V \W};

i = i+ 1;
vi = {u};
W = W ∪ {vi};

end
end

end
Algorithm 2: The GMSW heuristic to find violated wheel inequalities.

NbIte ≤ |V | − 1 is the maximum size allowed for the wheel. We obtained the best results using
NbIte = 2k when 2k ≤ |V | − 1.

4.2.5 Bicycle wheel inequalities

The fourth class of inequalities corresponds to a q-bicycle wheel BWq = (Vq, Eq) subgraph of G,
where:

Vq = {u1, u2} ∪ {vi, i = 1, 2, ..., q}, Eq = E1 ∪ E2 ∪ {ē} ,

E1 = {(ui, vj), i = 1, 2, j = 1..., q}, E2 = {(vj, vj+1), j = 1..., q} ,

ē = {(u1, u2)},

where vertices v, u ∈ V . For q = 5, BW5 is illustrated in Figure 4.2.
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v1

v2

v3

v4

v5

u1

u2

edges ∈ E1

edges ∈ E2

edge ē

Figure 4.2 Example of bicycle wheel with q = 5.

For BWq with q ≥ 3, the corresponding bicycle wheel inequality is defined as:

2∑
i=1

q∑
j=1

Xui,vj
−

q∑
j=1

Xvj ,vj+1 −Xu1,u2 ≤
k

k − 1

[
2b12qc − q + 1

]
+ q − 1. (4.14)

where v ∈ V and all indices greater than q are modulo q. It is proved in [9] that the bicycle wheel
inequality is a valid inequality to (MSkP), and for k ≥ 4 it induces a facet if q is odd and BWq is
an induced subgraph of G.

The idea behind bicycle wheel inequalities is that at least one edge e ∈ E1 must be cut for each
edge from ē or E2 that is cut.

Separation of bicycle wheel inequalities

In [15] is pointed out that the separation for the odd bicycle wheel inequalities (4.14) can also be
done in polynomial time, by adapting the approach in [30].

As we did for wheel separation, we tested also some heuristic method to find violated inequalities
of the form (4.14) for a given X ′.

The basic idea of those heuristics is:

• Search for a cycle that minimizes the sum

j≤q∑
j=1

Xvj ,vj+1

.

• Find the best points u1 and u2 that maximize
(∑i=1,2,j≤q

j,i=1 Xui,vj

)
and (−Xu1,u2).

For finding good cycles in the first step of this heuristic, we tested the same four heuristics men-
tioned in Section 4.2.4. Our tests showed that the GA from [80] with q = 3 obtained the best results
in 95% of the cases. Moreover, this heuristic had the same performance as the exact method for
all tests, and its CPU time was 95% lower.
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The GA has the following features:

• Size of population is 100.

• Half of the initial population was constructed with the GRASP and other half was randomly
selected.

• In crossover process the parents with higher fitness are favored.

• Offspring genes can accept some slight mutations.

We keep the best cycle Cw found in the final population after 100 iterations of the GA. Using this
cycle, the main heuristic then checks all the combinations of u1, u2 ∈ V \Cw to find the one that
maximizes the right-hand side of (4.14).

4.3 Cutting plane algorithm

This section presents the cutting plane algorithm (CPA) used for our computational tests. This
algorithm is similar to the one described in [31]. The basic idea is to start by solving the SDP
problem (RMkP), then check for violated inequalities, add them to the SDP problem, and resolve
to obtain a better upper bound on the global optimal value of the max-k-cut instance.

The pseudo-code of the CPA is given in Algorithm 3. We use the following notation: i is the
iterations counter, F i is the set of inequalities in iteration i, X i is the optimal solution of the SDP
relaxation at iteration i, and S(X i) is the set of valid inequalities for (MkP) that are violated by X i.

Initializations: i = 0, F 0 = ∅.
repeat

X i = Solve (RMkP) with F i;
S(X i) = set of violated inequalities for X i ;
if Constraint (4.3) is satisfied then

STOP ; /* X i is also optimal for (MkP) */
end
if S(X i) == ∅ then

STOP ; /* no violated inequalities */
else

F i+1 = F i ∪ S(X i);
i = i+ 1 ;

end
until STOP;

Algorithm 3: Cutting plane algorithm.
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The set S(X i) of inequalities is obtained by the separation routines of triangle, clique, general
clique, wheel and bicycle wheel inequalities described in Section 5.2. We say that a class of
inequalities is active if its separation routine is applied to find violations in the relaxed solution at
each iteration of the CPA.

The size of the set S(X i) is controlled by the parameter NbIneq: |S(X i)| ≤ NbIneq at each
iteration of the CPA. After some tests with NbIneq ∈ {100, 300, 500, 1000,∞}, the CPA with
NbIneq = 300 was found to be the least expensive in terms of CPU time and CPA iterations for a
variety of graphs and choices of k. This limitation in the CPA imposes that just the most violated
inequalities of the set of activated families are added at each iteration.

4.4 Computational tests

The SDP relaxations of the max-k-cut were solved using the mosek solver [5] on a linux PC with
two Intel(R) Xeon(R) 3.07 GHz processors.

Tests were performed for each value of k ∈ {4, 3, 5, 7} on 147 test instances. Our instances were
taken from the Biq Mac Library [88] or generated using rudy [75].

Section 4.4.1 introduces the combinations of inequalities tested, and the instances used. Sec-
tion 5.4.3 explains the benchmarking methodology used for analyzing the different algorithms,
and Section 5.4.4 reports the computational results. Finally, a summary of our results is given in
Section 4.4.4.

4.4.1 Combinations of inequalities and test instances

This section defines the ten combinations of active inequalities developed to analyze the perfor-
mance of the four classes of inequalities, and the instances used in the tests.

Combinations of inequalities

This section presents ten combinations of classes of inequalities. Each combination differ from
each other by the classes that are activated or deactivated when running the CPA described in
Section 4.3.

The triangle inequalities have been extensively studied in the literature and their efficiency has been
confirmed by various researchers [81, 74, 4]. For this reason, we activated them in all combinations.

From the sixteen possible combinations of the remaining four classes of inequalities (clique,
wheel, bicycle wheel and general clique), we used the ten combinations defined in Table 4.1
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that emphasize the impact of individual classes. The first column of Table 4.1 gives the name of
each combination, and the other five columns indicate with an X which classes are activated in that
combination.

The ten combinations can be summarized as: one that activates none of the four classes (Tri),
another that activates them all (ALL), and for each class “Inequality”, two additional combinations
(Tri + Inequality) and (ALL − Inequality).

Moreover, the ten combinations can be split into two groups: The first group, G1, is formed by
the combinations that activate at most two classes of inequalities, and the second group, G2, corre-
sponds to the combinations that deactivate at most one class.

Table 4.1 Ten combinations for study of valid inequalities.

Name Class of instances
Triangle Clique General clique Wheel Bicycle wheel

Tri X
T+Cl X X
T+GC X X
T+Wh X X
T+BW X X
ALL X X X X X
A-Cl X X X X
A-GC X X X X
A-Wh X X X X
A-BW X X X X

Instances

Of a total of 147 instances, 76 are dense (edge density greater than or equal to 0.5), and the remain-
ing 71 are sparse.

• Random: Twelve complete graphs with the edge weights randomly selected and generated
by rudy [75]. The dimension varies from 50 to 100 and the density between 0.5 and 1.

• spinglass_2g (3g): Eleven instances (3g : four instances) of a toroidal 2D (3D)grid for a
spin glass model with gaussian interactions. The grid has size (nrow)× (ncolumns). They are
sparse with density between 0.05 and 0.3.

• spinglass_2pm (3pm): Two instances (3pm : six instances) of toroidal 2D(3D)-grid for a spin
glass model with +/-J interactions. The grid has size (nrow) × (ncolumns) × (nlayers). The
percentage of negative weights is 50%, dimension n vary from 36 to 64 and density between
0.05 and 0.3.
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• pm1s_n.i: Ten weighted instances with edge weights drawn uniformly from {−1, 0, 1}, den-
sity 0.1 and dimension 80.

• pm1d_n.i: Ten weighted graphs with edge weights drawn uniformly from {−1, 0, 1} and
density 0.99. For densities n ∈ {80, 100}.

• gkai_a(b or c): For each type (a,b or c) five instances with dimensions from 30 to 100,
densities from 0.0625 to 0.5 (b: density 1 and for c: densities from 0.1 to 0.8). Diagonal
coefficients from [−100, 100] (b: [−63,0] and c:[−100, 100]), off-diagonal coefficients from
[−100,100] (b:[0,100] and c: [−50,50]).

• bqp_n-i : For each dimension n, ten weighted graphs with dimension n ∈ {50, 100} and
density 0.1.

• g05_n.i: Ten unweighted graphs with edge probability 0.5 and dimension n ∈ {60, 80, 100}.
• w01_100.i: Ten graphs with integer edge weights chosen from [−10, 10], density 0.1 and

dimension 100.

4.4.2 Comparison methodology

This section explains the tools used to analyze our results. First, we present the performance
profiles proposed in [17], then the data profiles as used in [63], followed by the performance versus
time graphs, and the relevance histograms.

We define a comparison in terms of a set P of problems (the 147 instances) and a set S of opti-
mization algorithms (the ten combinations).

Performance profiles

As in [17, 63], the performance profiles are defined in terms of final objective solution zp,s > 0 ob-
tained for each instance p ∈ P and combination s ∈ S. In our case (relaxation of a maximization),
larger values of zp,s indicate worse performance. For any pair (p, s) of problem p and combination
s, the performance ratio is defined as:

rp,s = 100
(
zp,s − Bestp

Bestp

)
. (4.15)

where Bestp = min{zp,s∀p ∈ P : s ∈ S}.

The performance profiles of a combination s ∈ S is defined as the fraction of problems for which
the performance ratio is at most α, that is,
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ρs(α) = 1
|P|

size{p ∈ P : rp,s ≤ α}. (4.16)

Thus, for a given α one knows the percentage of instances p ∈ P (y axis) that are solved for each
combination s ∈ S (ρs(α) in the x axis).

Data profiles

As pointed out in [63], data profiles are useful to users with a specific computational time limit
who need to choose a combination that is likely to reach a given performance. Hence, it shows the
temporal evolution of combinations to a specific performance ratio (rmax).

The data profiles are defined in terms of CPU time tp,s obtained for each p ∈ P and s ∈ S . So, for
a given time β we define the data profiles of a combination s ∈ S by:

ds(β) = 1
|P|

size{p ∈ P : tp,s ≤ β and rp,s ≤ rmax}. (4.17)

Thus, for given rmax and time β, one sees the percentage of instances that can be solved for each
combination s ∈ S.

Note that in the computational results we do not analyze the data profiles for dense and sparse
graphs separately because the obtained results did not contribute additional insights.

Performance versus time graphs

This benchmark shows the average performance ratio (∆rp,s∀p ∈ P : s ∈ S) in the x-axis, and the
average time of execution (∆tp,s∀p ∈ P : s ∈ S) in the y-axis.

A combination ω dominates σ if ∆rp,ω < rp,σ and ∆tp,ω < ∆tp,σ. Thus, we can analyze domination
between our combinations.

Relevance histograms

We use relevance histograms to quantify the impact of each inequality on the quality of the SDP
bound. Let I = {Cl,Wh,BW,GC} be the set of four classes of inequalities, and ∆rp,s,∀p ∈ P
be the average performance ratio of a combination s ∈ S . We calculate the relevance µi of the
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inequality i ∈ I as:

µi = (∆rp,Tri −∆rp,T+i) + (∆rp,A−i −∆rp,ALL)
2× (∆rp,Tri −∆rp,ALL) . (4.18)

Equation (4.18) is normalized by the largest gap, which is the gap between combinations Tri and
ALL. Thus, if an inequality i ∈ I has relevance 1 it means that ALL −i = Tri and Tri +i = ALL.

4.4.3 Computational results

This section presents and analyzes the results of our tests. Section 4.4.3 demonstrate the bench-
marks of all types of graphs. Sections 4.4.3 and 4.4.3 show the benchmarks of sparse and dense
instances, respectively.

Results on the full set of instances

In this part of the analysis we present and discuss the four benchmarks for all 147 instances (sparse
and dense) together.

Performance profiles:

Figure 4.3 shows the performance profiles for the ten combinations. To facilitate the analysis, the
performance ratio is limited to 0.8.

According to Figure 4.3.a) (for k = 3), the combinations with the best performance are ALL, A-GC
and A-Cl, and the combinations of Group G2 almost always dominate the ones of Group G1.
Moreover, results suggest that the bicycle wheel is an important inequality since T+BW dominates
all the other combinations of G1 and A-BW has the worst performance of the G2. For the same
reasons we can notice that wheel inequality is also very relevant to CPA for k = 3.

The results presented in Figures 4.3.b), c) and d) (for k = 4, 5 and 7, respectively) are very similar.
It can be noticed that all combinations that activate the wheel inequality dominate the others.
Moreover, we observe that all the combinations that have wheel and general clique inequalities
can solve more than 70% of the instances with performance ratio less than 0.05. We also observe
that the plots of Tri and T+Cl are very similar for those partitions, suggesting that the clique
inequalities are ineffective for k ∈ {4, 5, 7}.

Data profiles:

Figure 4.4 shows the data profiles for a maximum performance ratio (rmax) equal to 0.0. Each
graph shows the results for one of k ∈ {3, 4, 5, 7}. Moreover, the time in this analysis is limited to
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Figure 4.3 Performance profiles for all instances. Ideal point is at (0.0, 100).

5× 104 seconds (approximately 14 hours).

In Figure 4.4.a), it can be observed that ALL followed by A-GC are the best combinations, and we
see that combinations of Group G2 perform better than those of G1.

The graphs in Figure 4.4.b) c) and d) can be separated in combinations with and without wheel
inequality, and it can be noticed that all the algorithms that activate wheel inequalities have the
better performance, e.g. T+Wh dominates A-Wh for k ∈ {4, 5, 7}.

Quality versus time:

Figure 4.5 presents the average performance versus CPU time for the ten combinations of the
cutting plane algorithm.

In Figure 4.5.a) it may be seen that A-Cl and T+GC are dominated by ALL and T+Cl, respectively.
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Figure 4.4 Data profiles for all instances with rmax = 0.0. Ideal point is at (0.0, 100).

Moreover, for k = 3, T+Cl, T+GC and Tri are the fastest combinations but they have the worst
performance. It is also noticeable that combinations with bicycle wheel show better performance
but require more CPU time.

It can be observed that the results for k ∈ {4, 5, 7} (Figure 4.5.b) c) and d)) are very similar. In
those graphs A-Wh is always dominated by T+Wh. We also notice that all combination that activate
wheel have on average a performance ratio less than 0.2.

Finally, results in Figure 4.5 suggest that the CPU time of all the combinations is increased with
the number of partitions.

Relevance of inequalities:

Figure 4.6 presents the relevance histograms for partitions k ∈ {3, 4, 5, 7} of four inequalities:
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Figure 4.5 Performance versus CPU time for all instances. Ideal point is at (0.0, 0.0).

Clique, Wheel, Bicycle wheel (B. Wheel) and General clique (Gen. Clique). In Figure 4.6.a),
we see that the bicycle wheel is the most relevant inequality followed by wheel. However, for
k ∈ {4, 5, 7} the wheel inequality is clearly the most significant. Figure 4.6 suggests that the
relevance of the wheel inequality increases with k.

Results for sparse graphs

This section analyzes the results of the ten combinations on the sparse instances (density below
50%). We present the performance profiles, performance versus time and the relevance histograms
for the ten combinations on these 70 instances.

Performance profiles:
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Figure 4.6 Relevance of the inequalities for all instances.

Figure 4.7 shows the performance profiles of the combinations for sparse instances.

In Figure 4.7.a) (k = 3), it can be observed that the combinations with the best results are ALL,
A-GC and A-Cl, followed by A-Wh. For k = 3, it is also noticeable that bicycle wheel is the most
important inequality, since all combinations that deactivate it have the worst performance. For the
same reasons we can include wheel inequalities in second place of importance for k = 3.

Figures 4.7.b), c) and d) (for k = 4, 5 and 7, respectively) are very similar. It can be seen that all
algorithms that the wheel inequality produce the best results. A closer look on those results reveals
a strong relation between T+Wh (the best result for Group G1) and A-BW, suggesting that wheel is
the most significant inequalities to the max-k-cut followed by bicycle wheel.

Quality versus time:
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Figure 4.7 Performance profiles for sparse instances. Ideal point is at (0.0, 100).

Figure 4.8 presents the average performance versus CPU time of the combinations for sparse in-
stances.

In Figure 4.8.a) the combinations T+Cl, T+GC and Tri are the fastest, but they have the worst
performance. The best performance can be credited to A-Wh or T+Wh since those results are the
closest to the ideal point. It is apparent that combinations with the bicycle wheel have the best
performance but the highest CPU time.

It can be noticed that the results for k ∈ {4, 5, 7} (Figure 4.8.b) c) and d)) are very similar. Those
graphs suggest that wheel is the most relevant class of inequalities because all the combinations
where it is activated have the average performance ratio lower than 0.3. Moreover, the combinations
that activate wheel and bicycle wheel inequalities at the same time (A-GC, A-Cl and ALL) have
the best average performance, but the worst CPU time. They present an average time larger than
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2× 105 seconds.

Finally, we observe that the CPU time increases with the number of partitions. For example, for
k = 7 the combinations spend 70% more CPU time solving the cutting plane algorithm than for
k = 4.
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Figure 4.8 Performance versus CPU time for sparse instances. Ideal point is at (0.0, 0.0).

Relevance of inequalities:

Figure 4.9 demonstrates the relevance of the four inequalities for sparse instances. For k = 3,
results shown in Figure 4.9.a), it can be seen that the bicycle wheel is the most relevant inequality
followed by wheel.

For k ∈ {4, 5, 7} it can be noticed that clique and general clique inequalities are ineffective, and
that the wheel inequality is the strongest class by far.
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Figure 4.9 Relevance of the inequalities for sparse instances.

Results for dense graphs

This section analyzes the results of the ten combinations on the dense instances (density greater
than or equal to 50%).

Performance profiles:

Similarly to the previous performances profiles, it can be observed in Figure 4.10.a) (k = 3) that
the combinations with the best results are ALL, A-GC and A-Cl, followed by A-Wh.

The results in Figure 4.10.a) also suggest that bicycle wheel is the most significant inequality since
combinations that activate it have the best performance of G1 and G2. A similar analysis reveals
that wheel is also relevant for this partition.

Figures 4.10.b) c) and d) (for k = 4, 5, 7) suggest that wheel and general clique are, respectively,
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the most relevant, since the activation/deactivation of those inequalities have a huge impact in the
results.

It is also apparent that for k ∈ {4, 5, 7} the results of ALL, A-BW and A-Cl are similar and the
same occurs to Tri, T+Cl and T+BW. It means that the activation or deactivation of clique and
bicycle wheel does not change the performance of the CPA on these instances.
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Figure 4.10 Performance profiles for dense instances. Ideal point is at (0.0, 100).

Quality versus time:

In Figure 4.11.a) the combinations T+Cl, T+GC and Tri are the fastest. However, they have
the worst average performance (higher than 0.8). It can be seen that A-Cl, A-BW, and T+GC are
dominated by other combinations and it is also noticeable that algorithms with bicycle wheel have
the best average performance.

The results for k ∈ {4, 5, 7} (Figure 4.11.b) c) and d)) are very similar. In those graphs we notice
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the relevance of the wheel inequality, since all the algorithms using this inequality have average
performance lower than 0.2. Furthermore, it can be concluded that T+Wh achieves the best results,
because it is the closest to the ideal point.

Finally, we observe that all the combinations spend in average 25% more CPU time for k = 4 than
for the other partitions.
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Figure 4.11 Performance versus CPU time for dense instances. Ideal point is at (0.0, 0.0).

Relevance of inequalities:

Figure 4.12 presents the four relevance histograms for dense instances. In Figure 4.12.a) it can
be noticed that the bicycle wheel is the most relevant class of inequality followed by wheel and
clique.

For k ∈ {4, 5, 7} the results suggests that wheel inequalities are the most relevant. It is also notable
that the clique and general clique inequalities are ineffective when the triangle inequalities are
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activated.
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Figure 4.12 Relevance of the inequalities for dense instances.

4.4.4 Summary of the computational tests

While it is normal that the combination ALL (activation of all the inequalities) has the best per-
formance, it is also the combination that requires the most CPU time. On the other hand, Tri is
the fastest combination but delivers the worst performance. The combination T+Wh achieves, on
average, the best ratio between CPU time and performance for all values of k considered in this
study.

Table 4.2 summarizes the results and shows the best inequalities for each benchmark (performance
profile, performance versus time (QvsT) and inequality relevance) for each value of k ∈ {3, 4, 5, 7},
and for sparse/dense/all instances. We observe that the strongest inequalities for k = 3 are bicycle
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wheel and wheel, and for k ∈ {4, 5, 7} the wheel inequalities are the strongest.

It is also noticeable that the activation of wheel combined with bicycle wheel (or general clique
for dense graphs) improves the performance for all types of partitions. However, it spends in
average 72% (32%) more CPU time for the CPA to terminate. Generally, we see that an increase in
k causes an increase in the CPU time, especially for the sparse instances.

From a practical point of view, wheel is the most attractive inequality because it shows good
performances for all instances and for all types of partitions.

Table 4.2 Summary of the best inequalities for each benchmark.

k Density Performance profiles QvsT Relevance

3
All Bicycle Wheel and Wheel Bicycle Wheel Bicycle Wheel and Wheel

Sparse Bicycle Wheel and Wheel Bicycle Wheel Bicycle Wheel and Wheel
Dense Bicycle Wheel and Wheel Bicycle Wheel Bicycle Wheel and Wheel

4,5,7
All Wheel and General Clique Wheel Wheel

Sparse Wheel and Bicycle Wheel Wheel Wheel
Dense Wheel and General Clique Wheel Wheel

4.5 Discussion

In this paper we carried out an experimental study of several classes of valid inequalities to strengthen
the SDP relaxation of the max-k-cut problem. Specifically we considered the following classes of
cutting planes: Triangle, Clique, General clique, Wheel and Bicycle wheel. We developed a
different separation algorithm for each class. For triangle inequalities we used complete enumera-
tion, for clique, general clique, and wheel inequalities a greedy heuristics was developed, and for
bicycle wheel a genetic algorithm was applied. The inequalities were then tested within a standard
cutting plane algorithm for k ∈ {3, 4, 5, 7}, using nearly 150 instances with varying properties.

To investigate the strength of each class of inequalities we created ten combinations by alternating
the activation and deactivation of the inequalities. In order to guarantee a fair comparison of the
combinations, we analyzed four different benchmarks: performance profiles, data profiles, quality
versus time and relevance histograms.

The results are summarized in Table 4.2. We conclude that bicycle wheel is the strongest inequality
for k = 3 and wheel for k ∈ {4, 5, 7}. Moreover, the inclusion of wheel and bicycle wheel
inequalities at the same time strengthens even more the SDP relaxation of the max-k-cut at the cost
of 72% more CPU time, on average.

In future research we plan to study more efficient algorithms to solve the SDP relaxation with



42

wheel and bicycle wheel inequalities, and to build a branch-and-cut algorithm to find the integer
solution of the max-k-cut problem for both sparse and dense graphs for large instances.
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Abstract. We consider the maximum k-cut problem that involves partitioning the vertex set of
a graph into k subsets such that the sum of the weights of the edges joining vertices in different
subsets is maximized. The associated semidefinite programming (SDP) relaxation is known to pro-
vide strong bounds, but it has a high computational cost. We use a cutting plane algorithm that
relies on the early termination of an interior point method, and we study the performance of SDP
and linear programming (LP) relaxations for various values of k and instance types. The LP re-
laxation is strengthened using combinatorial facet-defining inequalities and SDP-based constraints.
Our computational results suggest that the LP approach, especially with the addition of SDP-based
constraints, outperforms the SDP relaxations for graphs with positive-weight edges and k ≥ 7.

Keywords. Maximum k-cut, graph partitioning, semidefinite programming, eigenvalue constraint,
semi-infinite formulation.

AMS subject classifications. 65K05, 90C22, 90C35

5.1 Introduction

This work focuses on the graph partitioning problem known as the maximum k-cut (max-k-cut).
We consider an undirected graph G = (V,E) with edge weights wij for all (i, j) ∈ E. The task is
to partition the vertex set V into at most k subsets (called clusters or colors) such that the sum of
the edges with end points in different partitions is maximized.

The max-k-cut problem is equivalent to the minimum k-partition problem [31, 85], and the special
case k = 2 that is known as the max-cut problem has attracted considerable attention; see, e.g., [6,
33, 51, 70, 74].

Many industrial applications can be formulated as the max-k-cut problem, including VLSI layout
design [6], statistical physics [52], and wireless communication problems [22, 68].
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The general max-k-cut is known to be NP-hard [71]. Nonetheless, many relaxations [10, 73],
heuristics [56], approximations [25, 47], and exact methods [4, 21, 60] have been proposed, some
of which we study below.

We carry out a computational study to identify the relevance of an inequality based on semidefinite
programming (SDP) and to determine the strongest formulation for each type of instance. To the
best of our knowledge, no research to date has specifically studied SDP-based inequalities for the
linear relaxation of the max-k-cut.

This paper is organized as follows. Section 5.1.1 reviews the SDP and linear programming (LP) for-
mulations of the max-k-cut problem. Section 5.2 presents the SDP-based inequalities. Section 5.3
describes in detail the cutting plane algorithm (CPA) used to solve the relaxations, and Section 5.4
discusses the test results. Finally, some concluding remarks are made in Section 6.7.

5.1.1 Formulations

This section presents a literature review of the two formulations of the max-k-cut problem studied
in this work.

Semidefinite programming formulation

The vertex formulation of the max-k-cut leads to an SDP relaxation. In the approximation method
of [25] the authors define the SDP variable X = (Xij), i, j ∈ V , where Xij = −1

k−1 if vertices i and
j are in different partitions of the k-cut of G and Xij = 1 otherwise. The SDP formulation of the
max-k-cut problem, MkC-SDP, can then be expressed as:

(MkC-SDP) max
X

(k − 1)
k

∑
i,j∈V,i<j

wij(1−Xij) (5.1)

s.t. Xii = 1 ∀i ∈ V , (5.2)

Xij ≥
−1
k − 1 ∀i, j ∈ V, i < j, (5.3)

X � 0. (5.4)

Note that the constraints Xij ≤ 1 for i, j ∈ V are removed from this relaxation since they are
enforced implicitly by the constraints Xii = 1 and X � 0.

Because of the strength of the SDP, many researchers have used this formulation to design approx-
imations [14, 25] and exact methods [4, 31]. In particular, [25] extends the max-cut approximation
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of [33] to the max-k-cut. In [4] the bundleBC algorithm is proposed to solve max-k-cut problems
with 70 vertices by combining the SDP branch-and-cut method of [31] with the principles of the
Biq Mac algorithm [74]. In [4] the authors show that their method achieves a dramatic speedup
in comparison to [31], especially when k = 3.

Linear formulation

Chopra & Rao [10] presented an edge-only 0-1 formulation of max-k-cut. For each edge (i, j) ∈ E,
the variable xij takes the value 0 when (i, j) is cut, and 1 otherwise. Hence, the edge-only linear
relaxation of max-k-cut can be formulated as:

(MkC-LP) max
x

∑
i,j∈V,i<j

wij(1− xij) (5.5)

s.t. xih + xhj − xij ≤ 1 ∀i, j, h ∈ V , (5.6)∑
i,j∈Q,i<j

xij ≥ 1 ∀Q ⊆ V with |Q| = k + 1, (5.7)

0 ≤ xij ≤ 1 ∀i, j ∈ V . (5.8)

where Constraints (5.6) and (5.7) correspond to the triangle and clique inequalities, respectively.
These families of inequalities imply that there are at most k partitions in the integer formulation.

The LP formulation of max-k-cut has been extensively studied; see, e.g., [9, 10, 60]. In [9, 10] the
authors give several valid inequalities and facet-defining inequalities for MkC-LP and for “node-
and-edge” formulations, i.e., linear formulations with both node and edge variables. In [21], via
projection of the edge-only formulation, the authors obtain new families of valid inequalities, along
with new separation algorithms for the node-and-edge formulation. Their results show that these
new inequalities are practical for large sparse graphs.

Two drawbacks of the MkC-LP formulation are mentioned in [22]. First, it cannot exploit structure
of G, such as sparsity. Second, it has O(|E|) variables and O(|V |k+1) constraints. These disad-
vantages can be reduced by simplifying the input graph G. In this work, we exploit sparsity via a
k-core reduction, a block decomposition [22, 46, 79], and a chordal extension [39, 85]. The second
disadvantage is mitigated by a CPA (Section 5.3) that overcomes the huge number of inequalities
by activating only important constraints in the relaxation.

Sparsity can also be exploited by node-and-edge formulations [2, 10, 22]. In [2] the authors used
representative variables to break symmetry. They show that the relevance of their formulation
increases with the number of partitions, but our preliminary tests show that node-and-edge formu-
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lations are expensive and impractical for large graphs.

SDP versus LP

Several researchers have compared the semidefinite relaxation with the linear relaxation for par-
titioning problems. In the branch-and-cut method for the minimum k-partition problem [31], the
authors claim that linear bounds are weak and that this could result in the enumeration of all the
solutions in a branch-and-bound method.

The relation between the LP and SDP polytopes is studied in [19], where the authors show that the
strength of the SDP bounds is related to the fact that “hypermetric inequalities” are implicit in the
MkC-SDP. For example, they show that all triangle constraints are violated by at most

√
2− 1 and

all clique constraints by less than 1/2 in the SDP relaxation, in comparison with a violation of 1
for the LP relaxation.

Moreover, in [4] the authors claim that high computational times are the price to pay for the strength
of SDP relaxations.

The linear and semidefinite relaxations of the graph partitioning problem where each cluster must
have about the same cardinality (also known as the k-equipartition problem) are considered in [54].
The mathematical and experimental results indicate that the linear relaxation is stronger than the
SDP relaxation for large values of k when a bound separation is used (see Section 5.3.1). However,
for small values of k, the latter outperforms the former.

5.2 SDP-based inequality

Since SDP relaxations are expensive but often yield stronger bounds than linear relaxations, we
use semi-infinite programming (SIP) to formulate an SDP-based inequality for the MkC-LP. In this
section we briefly review SIP and then introduce the variable transformation that allows us to map
the infinite SDP constraint to LP. Finally, we present the SDP-based inequality.

5.2.1 Semi-infinite formulation of SDP

The SIP can be defined as an optimization problem with finitely many variables and infinitely many
constraints. The survey [45] discusses the theory, algorithms, and applications of semi-infinite
programming. In [49] the authors study linear semi-infinite programming (LSIP) for generic SDPs.

We note that the convex constraint X � 0 (5.4) is equivalent to

µTXµ = µµT •X ≥ 0 ∀µ ∈ Rn. (5.9)
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where n = |V | and typically the Euclidean norm of µ is one. Theorem 1.1.8 of [40] proves
this equivalent characterization of positive semidefinite matrices. Moreover, [40] provides more
fundamental results from linear algebra and the properties of the cone of symmetric semidefinite
matrices.

The matrix constraint (5.9) has an infinite number of rows. By replacing (5.4) by (5.9) in MkC-SDP

we obtain the LSIP formulation of SDP. In the cut-and-price approach proposed in [50] the authors
use the LSIP of the dual SDP formulation for the maxcut problem. Their results suggest that the
linear approach is able to solve large-scale problems.

5.2.2 Variable transformations

To incorporate Constraint (5.9) in our linear formulation we need to transform the semidefinite
variable Xij ∈

[
−1
k−1 , 1

]
to the related xij ∈ [0, 1] linear formulation. Using the identities xij =

k − 1
k

Xij + 1
k

and Xij = k

k − 1xij −
1

k − 1 for all i, j ∈ V we can map valid inequalities for the
LP to the SDP and vice versa.

5.2.3 SDP-based inequality formulation

By applying the transformation proposed in Section 5.2.2 to Constraint (5.9) we derive the follow-
ing class of inequalities for MkC-LP:

∑
i,j∈V,i<j

µijxij ≥
1
k

∑
i,j∈V,i<j

µij −
k − 1

2k
∑
i∈V

µii ∀µ ∈ Rn. (5.10)

In [49] the authors prove that these inequalities ensure that the set of linear solutions is feasible for
the SDP. In Section 5.3.1 we propose an exact separation routine to deal with the infinite number
of constraints.

5.3 Cutting-plane algorithm

A CPA is an iterative method used to obtain upper bounds on the optimal value of max-k-cut and
to prove optimality. First, the CPA solves the relaxed problem (SDP or LP) to obtain an upper
bound on the integer program, then it searches for violated inequalities and adds some of them
to the relaxation. We first introduce the generic algorithm, then discuss methods for choosing the
inequalities to add/remove, and finally present the method used to solve the relaxations.

We summarize the CPA in Figure 5.1. We say that an iteration is completed every time we enter
Step 6, and we complete the CPA when we enter Step 4 for the last time. Note that others termina-
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tion criteria can be used, e.g., number of iterations, computational time, and improvement at each
iteration.

5.3.1 Separation routines

Separation routines are algorithms that search for violations of a given family of valid inequalities
in a relaxed solution. In this section we present separation routines for some inequalities studied
in [76], for Constraint (5.3) in the SDP formulation, and for Constraint (5.10) proposed in this
work.

Separation of combinatorial inequalities

Some valid and facet-inducing inequalities have been proposed in [10] for the MkC-LP. Five of
these families of constraints are explored computationally in [76], where heuristic and exact meth-
ods are proposed. In this work, we replicate the best separation routines:

• Triangle: complete enumeration.
• Clique: greedy heuristic.
• General clique: greedy heuristic.
• Wheel: greedy heuristic.
• Bicycle wheel: genetic algorithm.

In [76] the authors concluded that in practice, wheel and triangle are the best inequalities. Hence,
we prioritize these two families of inequalities in our ranking algorithm (see Section 5.3.1).

Separation of bound inequalities

In [40] the author indicates that it is more efficient to start the CPA with only the diagonal Con-
straints (5.2) of the SDP formulation and to separate Xij ≥ −1

k−1 iteratively.

Figure 5.2 compares the performance of the SDP formulation with and without bound separation.
It shows the percentage gap (see Section 5.4.1) versus the CPU time (s) for 10 random instances,
with a density of 0.8 and dimension |V | = 100.

Figure 5.2 shows that the first (and only) SDP iteration without bound separation takes, on average,
350 s. In contrast, the CPA with bound separation achieves the same result in less than 10 s.

For brevity, we show the profiles for k = 3 only. However, these results can be generalized to larger
k and to sparse graphs. Moreover, our computational tests on instances with |V | ≥ 300 show that
when there is no bound separation the first iteration takes more than 1 h.



49

1. Initialize. Load the instance and set up the initial relaxation. Initialize the iterate i.

2. Solve the relaxation to optimality or with duality tolerance (εT ) (Section 5.3.3).

3. Search for violations. Use the separation routine to find violated inequalities at the cur-
rent solution (Section 5.3.1).

4. Add inequalities. If there are violated inequalities then add at most NbIneq (see Sec-
tion 5.3.1) of those that are most violated. Otherwise, if the relaxation was solved to
optimality in Step 2 then STOP because the algorithm cannot improve the relaxation.

5. Drop inequalities. If any constraint is no longer important, remove it (Section 5.3.2).

6. Modify current iterate. Increment i. Reduce or increase εT , if necessary. Return to
Step 2.

Figure 5.1 Scheme of cutting plane algorithm (CPA).
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Figure 5.2 Separation of Constraint (5.3) in the SDP formulation.
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Therefore, we apply bound separation for Constraint (5.3). We perform a complete enumeration of
all edges e ∈ E, and only the NbIneq (see Section 5.3.1) most violated inequalities are added for
the next CPA iteration.

Separation of SDP-based inequalities

The family of SDP-based inequalities (5.10) has infinite combinations, which makes it impractical
to add all of them in any formulation. Since the eigenvalues of a positive semidefinite matrix
are non-negative [40], we can execute an exact separation routine in polynomial time to find the
inequalities that are violated in a linear solution.

Let x̂ be an optimal solution of MkC-LP. If the related symmetric matrix X̂ is not semidefinite
(X̂ � 0) then it has at least one negative eigenvalue λ < 0, and the following inequalities are
violated by x̂:

∑
i,j∈V,i<j

vijxij ≥
1
k

∑
i,j∈V,i<j

vij −
k − 1

2k
∑
i∈V

vii. (5.11)

where the columns of v are the eigenvectors corresponding to the values λ. The addition of (5.11)
to MkC-LP will cut off the LP solution and improve the iterate in a cutting plane scheme.

We use the term LP-EIG for the linear approach with eigenvalue separation. We use Eigen [37] to
compute the eigenvalues and eigenvectors of X̂ . Eigen is a C++ template library for linear alge-
bra, and it computes all the eigenvalues and eigenvectors for a self-adjoint matrix (real symmetric
matrix) using a symmetric QR algorithm. The computational cost is approximately O(9n3).

Maximum number of inequalities in CPA

As shown in [76], the inclusion of all the violated inequalities in a CPA iteration can be compu-
tationally impractical. It is better to rank the violated inequalities and append only those that are
most violated. Empirical tests show that the maximum number of inequalities (NbIneq) should be
set to NbIneq = 2|V | for linear methods and NbIneq = 300 for the SDP formulations, similarly
to [76].

5.3.2 Dropping inequalities

An inequality is said to be important when at optimality its slack variable (sk) is close to zero, i.e.,
the inequality is active. Removing unimportant constraints reduces the size of the relaxation and
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thus the computational time to solve the problem.

In [61] the authors observed that tests based on ellipsoids can determine when to drop a constraint,
but the cost of these tests may exceed the computational savings. Therefore, we simply test whether
a slack variable is larger than a fixed value (γ = 0.001), i.e., we remove inequalities with sk >

10−3.

Searching for unimportant inequalities at each CPA iteration takes time, and some constraints can
be repeatedly added and removed. Our computational tests show that the best performance is
obtained when the dropping is done at every third CPA iteration (Itedrop = 3).

5.3.3 Solving the relaxations

One of the most important decisions in the CPA is the choice of the method for solving the relax-
ation. We solve the SDP and LP relaxations of the max-k-cut using the interior point method (IPM)
of mosek [5]. Our computational tests indicated that the default IPM is not efficient so, inspired
by the PDCGM solver [35], we considerably modified the IPM to improve the CPA performance.
This section discusses the main changes; some of them are also applicable to other solvers.

In [34, 58] the authors claim that IPMs are an alternative to the simplex method for LP problems;
they show that IPMs enable the solution of many large real-world problems. As observed in [61]
IPMs can exploit parallelism.

We use the early termination of the IPM. We solve the relaxations approximately with a relative
dual termination tolerance (εT ). As shown in [65], non-extremal solutions may separate valid
inequalities effectively, because the cuts may be deeper and usually fewer are needed. Inequalities
generated by the early termination may provide deeper cuts because the iterate is further from the
boundary of the polyhedron. Moreover, the early termination can save computational time by not
executing all the IPM iterations.

In [58] the author gives the two principal drawbacks of separating valid inequalities before the
current relaxation is solved to optimality. First, it may not be possible to find a constraint, so the
time spent is wasted. Second, the separation routine may return inequalities that are violated by
the current iterate but not by the optimal solution, so we may end up solving a relaxation with
unimportant constraints.

To reduce the impact of the first disadvantage, we use a dynamic tolerance to decide when to stop
the IPM, so we search for violated inequalities only when the duality gap is below a tolerance
(εT ). We increase εT by 25% if the number of violated constraints is greater than 2 ·NbIneq (see
Section 5.3.1) and decrease εT if we have fewer than NbIneq violated constraints. The best results
were obtained when εT was initially set to 0.75.
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The second disadvantage is mitigated by occasionally solving the relaxation to optimality. The best
results were obtained when we set IteoptLP = 5 for LP (i.e., we solved every fifth relaxation) and
IteoptSDP = 2 for SDP. When plotting the results we show only those obtained from relaxations
solved to optimality.

Figure 5.3 plots the data profiles (see Section 5.4.3) of the early-termination and standard IPM for
the SDP and LP-EIG relaxations; the CPU time is limited to 300 s. This figure gives the average
results for 40 random dense (density=0.9) instances with |V | = 100 and k = 3, and the results
can be generalized to other graphs. The gap is smaller for SDP than for LP-EIG because the latter
formulations are unable to solve these problems with a gap below 10%. We conclude that SDP is
stronger than LP-EIG for k = 3. However, in the next sections we show that this is not always the
case: LP-EIG can be much stronger than SDP.

Figure 5.3 shows that early-termination outperforms the standard IPM, especially for the linear
formulation of max-k-cut. For example, with a gap of 20% the early-termination solves all the
LP-EIG problems in 10 s, whereas standard IPM solves just 55% of these problems. Therefore, we
use the early-termination method in our computational tests in the next section.

5.4 Computational tests

We solve the SDP and LP relaxations of max-k-cut using the IPM of mosek [5] on a Linux PC
with two Intel(R) Xeon(R) 3.07 GHz processors. We performed tests for k ∈ {3, 4, . . . , 10, 0.1|V |}
on 228 test problems.

5.4.1 Terminology

In this section we present the terminology used for our analysis.

• Best feasible solution (LBp): The value of the best known integer solution for problem
p. If the optimal solution is unknown we calculate a feasible solution using the variable
neighborhood search metaheuristic [62].

• Final solution (UBp,m): The value of method m at the end of the CPA for problem p. It is
also known as the upper bound for method m.

• Performance ratio (gapp,m): The gap of methodm is the difference between its upper bound
and the best feasible solution. It is calculated as follows:

gapp,m = UBp,m − LBp

LBp

. (5.12)

• Iteration time (itimep,m): The CPU time for one CPA iteration for method m and problem
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Figure 5.3 Study of early termination in interior point method (IPM).

p. The time to solve the final iteration of a problem is tLast.
• Set of methods (M): The three methods listed below are relaxations of the max-k-cut prob-

lem, and all of them use CPA to improve their formulation with the separation of combinato-
rial inequalities (Section 5.3.1):

– LP : Solves the LP formulation.
– LP-EIG: Solves the LP formulation with the separation of SDP-based inequalities (Con-

straint (5.10)).
– SDP : Solves the SDP formulation with the separation of bound inequalities (Sec-

tion 5.3.1).

5.4.2 Instances

We consider 228 instances; 68 are from the Biq Mac library [88] and 160 were randomly gener-
ated using rudy [75].

• Biq Mac problems:
– be: These are the Billionnet and Elloumi instances. For each density d ∈ {0.3, 0.8} we

use ten problems with edge weights chosen from [−50, 50].
– bqp: Ten weighted graphs with dimension 100, density 0.1, and edge weights chosen

from [−100, 0, 100].
– g05: Ten unweighted graphs with edge probability 0.5 and dimension 100.
– ising2: Six one-dimensional Ising chain instances for dimension |V | ∈
{200, 250, 300}.
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– ising3: Three one-dimensional Ising chain instances for dimension |V | ∈
{200, 250, 300}.

– pm1d: Ten weighted graphs with edge weights chosen from {−1, 0, 1}, density 0.99,
and dimension 100.

– pm1s: Ten weighted instances with edge weights chosen from {−1, 0, 1}, density 0.1,
and dimension 100.

• Random problems:
– nRnd_d: Ten weighted problems for density d ∈ {0.2, 0.8} and dimension
|V | ∈ {100, 200, 300, 500} with edge weights chosen from [−100, 100].

– pRnd_d: Ten weighted problems for density d ∈ {0.2, 0.8} and dimension
|V | ∈ {100, 200, 300, 500} with edge weights chosen from [1, 100]. These problems
are also known as the positive-weight instances.

5.4.3 Comparison methodology

We generate a substantial amount of data for each instance; because of space limitations we provide
only the most important information. This section explains the tools used to analyze our results:
the performance table, the performance profiles [17], and the data profiles [63]. We define our
comparisons in terms of a set P of problems, a setM of optimization algorithms, and a set of fixed
partitions or clusters K.

Performance tables

The performance tables show the improvement of each method after 1 h of CPU time in our CPA.
The results are divided into clusters of equal size, k ∈ {3, 10}. For each value of k we provide a
table with the following information:

• For the Biq Mac instances the first column (name) is the problem name. For the random
instances, the first column (weight) indicates the range of the weights.

• The density (dens.) and dimension (|V |) are presented in Columns 2 and 3.
• The next columns (4–15) present the UB gap at the start of CPA, the UB gap at the end, the

CPU time (s) of the final iteration (tLast), and the number of iterations (#ite) performed for
each method m ∈M over 1 h. Moreover, tLast is defined for the final iteration for which the
IPM is solved to optimality.

The results in the performance tables are averages for each family.
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Performance profiles

The performance profiles are defined in terms of the gap for problem p ∈ P . For method m ∈ M
the performance profile is the proportion of problems for which the gap is at most α, i.e.,

ρm(α) = 1
|P|
| {p ∈ P | UBp,m ≤ α} | . (5.13)

Thus, for a given α we know the proportion of problems p ∈ P that are solved for method m ∈M.

Data profiles

As observed by [76], data profiles are useful for selecting the best method when a computational
time limit is imposed. They show the temporal evolution of methods to a specific gap (gapmax).
The data profiles are defined in terms of the iteration time, itimep,m. For a given time β we define
the data profile of method m by

dm(β) = 1
|P|
| {p ∈ P | itimep,m ≤ β, gapp,m ≤ gapmax} | . (5.14)

Thus, for a given gapmax and time β, we know the proportion of problems that can be solved for
method m ∈ S.

5.4.4 Computational results

This section presents and analyzes our computational results. Section 5.4.4 shows the performance
tables for the Biq Mac instances. Section 5.4.4 presents these tables for the random instances. To
compare the performance of SDP and LP-EIG we present the data profiles in Section 5.4.4 and
the performance profiles in Section 5.4.4.

Performance tables: Biq Mac instances

Table 5.1 shows the performance of SDP , LP , and LP-EIG for the Biq Mac problems when
k = 3. The SDP outperforms the linear methods in all the tests. For example, for be and bqp
the first iteration of SDP is stronger than the final iterations of the linear methods. For ising2 and
ising3 the SDP bounds are very strong but their computation are expensive: it takes approximately
1200 s to solve the IPM.

Table 5.2 shows the performance of SDP , LP , and LP-EIG for k = 10. For k = 10 the SDP
method is more expensive and has worse performance than for k = 3. Moreover, LP-EIG outper-
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Table 5.1 Performance comparison for Biq Mac instances and k = 3.

SDP LP LP-EIG
name dens. |V | gap(%) gap(%) gap(%)

start stop tLast #ite start stop tLast #ite start stop tLast #ite

be 0.3 150 34.30 21.49 36 53 51.94 51.70 27 66 51.94 51.62 550 28
0.8 150 32.95 20.97 50 53 46.94 46.94 0 51 46.94 37.07 143 142

bqp 0.1 100 32.23 11.35 7 49 65.01 13.09 1 806 65.01 11.32 29 388
g05 0.5 100 3.73 2.04 13 33 5.35 5.35 0 97 5.35 3.35 189 258

ising2 0.1
200 30.22 3.30 1129 17 25.25 17.29 143 49 25.25 14.11 150 115
250 32.31 4.18 1334 18 27.78 23.66 196 50 27.78 18.52 220 84
300 31.93 4.10 1250 16 26.33 23.46 134 67 26.33 19.16 348 62

ising3 0.1
200 31.08 2.14 1529 17 14.78 11.03 10 320 14.78 9.85 175 115
250 33.41 3.73 1451 17 18.04 15.52 8 349 18.04 13.08 223 84
300 31.96 2.53 1108 16 16.10 13.91 15 316 16.10 12.08 316 64

pm1d 0.9 100 31.15 16.93 10 32 44.72 44.72 0 58 44.72 28.42 101 265
pm1s 0.1 300 31.18 15.81 4 36 58.14 19.04 2 755 58.14 16.05 25 433

forms SDP in 75% of the problems, with a smaller iteration time in most cases. The final gap of
SDP is larger than the initial bound of the linear methods for ising2 and ising3.

Performance tables: random instances

Table 5.3 shows the performance of SDP , LP , and LP-EIG on the random instances when k = 3.
Similarly to the Biq Mac problems, the SDP outperforms the linear methods, especially for the
mixed-weight problems where the initial SDP is better than the final upper bound of the linear
methods. Moreover, for most of the sparse instances, LP does not improve the initial upper bound.
We conclude that for k = 3, the linear formulations are not competitive with the SDP.

Table 5.4 presents the results for k = 10. For mixed-weight problems the SDP has stronger bounds
but their computation is expensive. For positive weights, LP-EIG usually gives the smallest gap
and a competitive iteration time.

Data profiles

This section shows data profiles for SDP and LP-EIG for a specified gap. We plot the results for
k ∈ {3, 4, 6, 7, 10, 0.1|V |} for each method. In Section 5.4.4 we saw that LP does not usually
improve the initial gap, even after one hour of CPA. Therefore, we have excluded these results.

In Figure 5.4, we present the data profiles for instances with positive weights, i.e., all 80 problems
of the family pRnd and 10 from g05. Figure 5.5 displays the results for instances with mixed
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Table 5.2 Performance comparison for Biq Mac instances and k = 10.

SDP LP LP-EIG
name dens. |V | gap(%) gap(%) gap(%)

start stop tLast #ite start stop tLast #ite start stop tLast #ite

be 0.3 150 73.83 25.94 241 24 96.68 92.66 12 161 96.68 60.60 633 34
0.8 150 73.77 28.31 268 22 92.06 91.46 126 50 92.06 46.92 111 153

bqp 0.1 100 76.27 13.62 16 36 68.47 14.05 1 782 68.47 13.05 15 544
g05 0.5 100 8.81 4.51 14 14 2.23 2.23 0 32 2.23 2.23 0 254

ising2 0.1
200 73.65 48.86 1029 14 23.73 16.32 123 60 23.73 15.49 156 113
250 75.23 59.93 942 14 25.35 21.17 174 61 25.35 17.75 217 83
300 75.34 66.30 1038 13 24.36 21.45 121 70 24.36 17.51 277 63

ising3 0.1
200 74.78 53.47 1037 14 13.37 8.48 14 268 13.37 10.22 148 113
250 76.76 62.37 971 14 15.84 13.05 13 308 15.84 12.72 224 83
300 76.54 67.63 862 13 15.06 12.29 22 299 15.06 12.31 313 61

pm1d 0.9 100 68.77 20.92 38 54 86.25 79.01 23 87 86.25 35.06 59 285
pm1s 0.1 300 71.89 18.49 9 26 76.53 18.15 1 811 76.53 16.87 19 607

Table 5.3 Performance comparison for random instances and k = 3.

SDP LP LP-EIG
weight dens. |V | gap(%) gap(%) gap(%)

start stop tLast #ite start stop tLast #ite start stop tLast #ite

[-100, 100]

0.2

100 30.87 14.45 11 56 54.78 34.84 1 797 54.78 19.08 85 145
200 36.33 24.47 112 47 55.67 55.67 4 35 55.67 44.39 167 101
300 39.63 31.02 340 35 54.62 54.62 10 35 54.62 54.32 198 55
500 45.28 39.36 531 23 58.00 58.00 9 44 58.00 58.00 9 8

0.8

100 30.93 15.59 16 62 48.64 48.59 2 111 48.64 28.63 114 263
200 35.65 25.05 106 58 48.51 48.51 1 36 48.51 41.96 190 100
300 37.44 29.32 256 46 49.15 49.15 6 35 49.15 48.97 85 53
500 42.98 37.67 420 25 53.18 53.18 199 41 53.18 53.18 10 25

[1, 100]

0.2

100 8.85 4.66 8 56 14.07 6.75 1 763 14.07 5.82 65 181
200 7.17 5.12 88 53 10.39 10.39 1 39 10.39 8.89 172 102
300 6.30 4.93 353 33 8.44 8.44 2 37 8.44 8.40 201 58
500 5.45 4.78 515 23 6.84 6.84 10 42 6.84 6.84 10 8

0.8

100 2.60 1.37 17 53 3.90 3.90 0 16 3.90 3.10 59 347
200 2.13 1.51 109 51 2.86 2.86 1 28 2.86 2.63 189 93
300 1.74 1.36 227 44 2.27 2.27 2 31 2.27 2.25 396 56
500 1.61 1.40 495 25 1.99 1.99 10 32 1.99 1.99 10 28
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Table 5.4 Performance comparison for random instances and k = 10.

SDP LP LP-EIG
weight dens. |V | gap(%) gap(%) gap(%)

start stop tLast #ite start stop tLast #ite start stop tLast #ite

[-100, 100]

0.2

100 70.22 16.14 31 43 100.41 40.00 1 905 100.41 17.46 70 178
200 78.93 31.98 749 14 104.32 104.32 1 39 104.32 56.00 161 104
300 83.19 55.63 846 14 102.85 102.85 2 41 102.85 70.41 255 57
500 88.09 74.77 860 13 104.56 104.56 9 45 104.56 95.97 479 23

0.8

100 71.24 20.09 56 59 94.43 67.68 17 176 94.43 34.89 62 290
200 76.37 37.61 780 16 93.22 93.22 1 39 93.22 54.52 179 99
300 77.90 52.80 662 16 92.82 92.82 2 43 92.82 63.77 275 59
500 85.68 73.02 783 14 98.92 98.92 9 42 98.92 90.90 539 24

[1, 100]

0.2

100 27.19 0.12 18 11 0.12 0.12 0 18 0.12 0.12 0 17
200 17.64 7.29 905 15 0.48 0.48 1 34 0.48 0.48 1 18
300 14.17 10.06 943 15 1.43 1.43 2 38 1.43 1.43 2 10
500 10.84 9.52 876 13 2.94 2.94 10 62 2.94 2.94 10 6

0.8

100 5.99 2.11 33 17 4.27 3.24 9 662 4.27 1.60 31 437
200 4.30 2.79 170 17 5.05 5.04 4 49 5.05 2.24 121 116
300 3.37 2.66 227 16 3.91 3.91 2 30 3.91 2.56 223 57
500 2.93 2.55 794 14 3.31 3.31 10 35 3.31 3.31 10 23

weights, i.e., 80 instances from nRnd, 20 from be, and 10 from bqp, pm1s, and pm1d.

Positive weights. Figure 5.4 presents the data profiles for gap = 3% and positive weights. LP-

EIG outperforms SDP when k ≥ 7, especially for iterations that take less than 10 s. For example,
for k = 10 and itime =10 s LP-EIG solves approximately 80% of the problems while SDP does
not solve any.

For k ∈ {4, 6} LP-EIG can solve more problems in the first five seconds, but for more expensive
iterations SDP can solve more problems. For k = 3 SDP consistently outperforms LP-EIG.

Mixed weights. Figure 5.5 presents data profiles for gap = 30% and mixed weights. For k ≥ 4
LP-EIG has a slight advantage over SDP for iterations that take less than 5 s. However, neither
method is satisfactory: they solve only 40% of the instances in 100 s. For k = 3, SDP is better
than LP-EIG; it solves more than 50% of the instances within 10 s.

Performance profiles

This section shows the performance profiles of SDP and LP-EIG. We again exclude the LP
method.
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Figure 5.4 Data profiles for instances with positive weights for various values of partition size k.
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Figure 5.5 Data profiles for instances with mixed weights for various values of partition size k.
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Positive weights. Figure 5.6 shows the performance profiles for positive weights and a time of
10 s (we consider only iterations that take less than 10 s). For k ≤ 6 SDP outperforms LP-EIG,
especially for gap ≤ 3.5%. However, for k ≥ 7 this is reversed. In particular, for k = 10 LP-EIG

solves all the instances with a gap below 2.5%, whereas SDP solves only 10% of the instances.

Mixed weights. Figure 5.7 shows the performance profiles for a time of 20 s and mixed weights.
Here, the gap goes from 0% (optimality) to 50% rather than 5% (see Figure 5.6), because no
method could solve the instances with lower gaps, even when we allowed a higher value for itime.
In Figure 5.7 we observe that for k = 3 SDP outperforms LP-EIG, but the latter is more efficient
for k ∈ {4, . . . , 7}. For k ≥ 10 the two methods have similar performance.

5.4.5 Summary of computational tests

The tables of Section 5.4.4 show that for k = 3 the SDP formulation consistently obtains the best
results. However, for k = 10 LP-EIG outperforms SDP for some sparse mixed-weight instances
and for positive-weight instances.

The data and performance profiles presented in Section 5.4.4 indicate that LP-EIG is more efficient
than SDP for positive weights with k ≥ 7 and for mixed weights with k ≥ 4. For k = 3, on the
other hand, the SDP consistently outperforms the linear formulations.

Table 5.5 presents a summary of our computational results, indicating the best method for each
type of problem.

5.5 Discussion

We have proposed a family of SDP-based constraints (5.10) to strengthen the LP relaxation of the
max-k-cut problem. The constraint matrix has an infinite number of rows. Therefore, we use an
exact method based on eigenvalues to separate the linear solutions.

Table 5.5 Best method(s) for each type of problem.

Type of instance Partition size
weight density k ≤ 6 k ≥ 7

mixed
Sparse SDP or LP-EIG SDP or LP-EIG
Dense SDP or LP-EIG SDP or LP-EIG

positive
Sparse SDP LP-EIG
Dense SDP LP-EIG
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Figure 5.6 Performance profiles for instances with positive weights for various values of partition
size k.
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Figure 5.7 Performance profiles for instances with mixed weights for various values of partition
size k.
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To investigate the strength of the proposed constraint, we use a CPA that relies on the early termina-
tion of an IPM, and we study the performance of the SDP and LP relaxations for various values of k
and problem types. Both relaxations are strengthened by combinatorial facet-defining inequalities.

To guarantee a fair comparison, we use three benchmarks: performance tables, data profiles, and
performance profiles. Our results are summarized in Table 5.5.

We conclude that the early termination of the IPM is effective for both the SDP and LP relaxations
in the CPA. Moreover, the SDP-based constraint strengthens the LP relaxation, especially for dense
instances. LP-EIG outperforms SDP for problems with positive weights and k ≥ 7. Additionally,
the new linear formulation is competitive for sparse instances with mixed weights.
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CHAPTER 6 AN EXACT METHOD FOR THE MAXIMUM K-CUT PROBLEM

6.1 Introduction

The max-k-cut is a challenging graph partitioning problem that is known to be a classical prob-
lem of the class of NP-complete problems [71]. It attracts scientific attention from the discrete
community because of its variety of applications.

The objective of the max-k-cut problem is to partition the vertex set of a graph (G = (V,E)) into
at most k subsets in a way that the sum of the weights of the edges joining vertices in different
subsets is maximized.

In this chapter, we investigate the branch-and-bound algorithm to obtain global solutions for the
max-k-cut problem. Therefore, we focus on reviewing all the relevant exact approaches proposed
in the literature.

In [60, 59] the author applied a branch-and-cut algorithm based on the linear programming (LP)
formulation of the k-way equipartition problem in the realignment of a Football league where k = 8
and |V | = n = 32. In [59], for graphs of sizes between 100 to 500 vertices, the problem is solved
with a gap of less than 2.5% for k = 4.

A cut-and-branch algorithm (see Section 6.3.1) based on the node-and-edge linear formulation of
max-k-cut is applied in [22] to solve a two-level graph partitioning problem in mobile wireless
communications. In [22], the LP relaxation is tightened by general clique based inequalities. Com-
putational results found the optimal solution for problems with n = 100 and k ∈ {2, 3, 4} for
sparse graphs.

A branch-and-bound framework based on the edge formulation of max-k-cut is studied in [85].
In [85], the authors show that in a chordal graph the linear and semidefinite formulations can be
defined with only |E| variables instead of n(n−1)

2 . Therefore, using a chordal extension they were
capable of solving to optimality some sparse graphs with n = 200 and k ∈ {3, 4} in a few seconds.

The semidefinite programming (SDP) formulations of max-k-cut are known to provide strong
bounds, especially for dense graphs and small values of k, see for example [4]. Therefore, some
researchers have used this formulation to design exact methods. In [31] the authors design a
branch-and-cut algorithm based on SDP (called SBC) for a variant of max-k-cut called minimum
k-partition. In the SBC, the SDP relaxation was tightened with triangle and clique inequalities.
Their SDP is solved using a dynamic version of the bundle method [43]. The SBC algorithm com-
putes optimal solutions for dense graphs with 60 vertices, and for sparse graphs with 100 vertices.
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The BundleBC algorithm [4] is an improvement of the SBC, where the ideas of Biq Mac

solver [74] are extended to the max-k-cut problem. In [4], the separation of clique inequalities
and some rules for choosing the variables are investigated. Computational results show that the use
of the clique inequalities reduces the number of subproblems analyzed in the branch-and-bound
tree and that the BundleBC solver is faster than SBC.

Our main contribution is to conceive an exact method to efficiently solve instances of the max-k-
cut problem. We investigate several components of the branch-and-bound method, for example,
the procedures for branching and for finding good feasible solutions and four heuristic methods to
find feasible solution. Moreover, this work focuses on studying a branch-and-bound method that
uses the strengthened edge-only LP relaxation of the max-k-cut problem proposed in [77] and the
constrained SDP relaxation presented in [76].

This chapter is organized as follows. Section 6.2 presents the generic scheme of the branch-and-
bound method. Section 6.3 presents the LP and SDP formulation to obtain upper bounds and four
heuristic methods to provide feasible solutions (lower bounds). Section 6.4 studies strategies to
select variables and nodes in the branch-and-bound tree. A computational study is provided in
Section 6.6. Finally, a discussion of results and conclusion are presented in Section 6.7.

6.2 A generic branch-and-bound framework

Various combinatorial problems are solved with the branch-and-bound algorithm [64]. Fundamen-
tally, this method uses a tree search strategy that implicitly enumerates all the solutions.

Initially, the branch-and-bound algorithm consists of only the root node, that corresponds to the
original relaxation of max-k-cut. At each iteration i of the method, a node Pi, not yet explored, is
selected (node selection) and we check if this node can be fathomed (pruned), i.e., if it is integer
feasible, or infeasible, or if it has an upper bound not better than a known feasible solution (also
called an incumbent). Otherwise, it will generate children nodes (branching) that satisfy all the
constraints of Pi and others that are imposed during the branch. In a branch-and-bound algorithm,
the upper and lower bounds are improved until optimality can be proven by generating an optimality
certificate.

The difference between the branch-and-bound and branch-and-cut algorithms is that at each itera-
tion of the latter it is executed a cutting plane algorithm (CPA) to solve the relaxed formulation of
a node to obtain an upper bound.

Although the branch-and-bound framework is simple and its description can be found in any work
of enumerative methods for NP-complete problems, e.g., [74], it is important to describe and
investigate some of its components to develop an efficient solver.
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The following is a brief summary of some procedures of the branch-and-bound that are studied in
detail in next sections.

1. Upper bound. The upper bound (zub) is obtained by a solution of the relaxed max-k-cut
problems. It is important to have a method that gives a good trade-off between the time
to obtain relaxed solution and the quality of its bound. The SDP and LP formulations are
considered, but we focus on the latter, especially the strengthened LP formulation introduced
in [77].

2. Feasible solution or lower bound. Fast feasible solutions (zlb) that have a value close to the
optimal can speed up the branch-and-bound method. Section 6.3.2 presents four different
heuristics to obtain feasible solutions:

• an iterative clustering heuristic (ICH) [31] ,

• a multiple operator heuristic (MOH) [56],

• a variable neighborhood search (VNS) [38, 62], and

• a greedy randomized adaptive search procedure (GRASP) [23].

3. Splitting problem. In [26], the authors pointed out that an important decision that impacts
the effectiveness of the branch-and-bound and branch-and-cut methods is the strategy used
to partition the feasible region. We investigate the branching for a vertex or for an edge of
the graph. Hence, two types of splitting are studied:

• Dichotomic, where the branching variables correspond to an edge (i, j) ∈ E of the
graph where each node is split into two children: in the first, the edge (i, j) is cut, and
in the second, it is non-cut, and

• Polychotomic or k-chotomic branching. In this strategy, a vertex i ∈ V is set to a dif-
ferent partition in each subproblem. Max-k-cut problems can have at most k partitions.
Hence, each node can generate k children.

4. Branching rule. Commonly, in the branch-and-bound algorithm, a variable that has a frac-
tional value is selected to be branched. A relaxed solution can have several non-integral
variables and some of them may impact most the next bounds. Thus, it is appropriate to use
some techniques for choosing good variables to be branched. Section 6.4.2 investigates five
different techniques (rules).

5. Node selection. At each branch-and-bound iteration, a node is selected from a set of active

(unexplored) nodes using a selection strategy. This procedure is also known as the explo-
ration tree strategy. The following strategies are studied in Section 6.4.3:
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• the best-first search strategy (BeFS),

• the depth-first search (DFS), and

• the breadth-first search (BrFS).

The generic branch-and-bound for max-k-cut can be summarized in the scheme described in Algo-
rithm 4.

input : Graph G = (V,E)
output : An optimal solution x∗

initialize:
P0 = Initial problem ;
x∗ = Lower-bound(P0) ; /* Feasible Solution */
z∗lb = Evaluate-solution(x∗);
L = {(P0,∞)} (problem List) ;

while L 6= ∅ do
Select: P ∈ L ; /* select node */
Remove: L = L\{P} ;
Compute:

xk = Lower-bound(P) ;
zlk = Evaluate-solution(xk);
zub = Upper-bound(P) ; /* Upper bound */

if zlk > z∗lb then
Update: z∗lb = zlk and x∗ = xk ;
Remove all the problems (P, zub) from L with zub ≤ z∗lb;

end
if zub > zlb∗ then

Select variable for branch in P ; /* Branching rule */
Generate subProblems from P ; /* Splitting Problem */
foreach subproblem Pi do

L = L ∪ (Pi, zub)
end

end
end

Algorithm 4: Generic branch-and-bound algorithm for max-k-cut.

In Algorithm 4, the initial problem (P0) is a relaxed formulation of the max-k-cut. The CPA
presented in [77], also discussed in Section 6.3.1, is used to strengthen this first relaxation in the
root node.

The Lower-bound() function returns a feasible heuristic solution of a problem (see Section 6.3.2)
that can be computed at each iteration or occasionally. In order to reduce the total running time of
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the branch-and-bound framework, the Lower-bound() function is executed at each 15th iteration
or when the node is a leaf node, i.e., a node where all the edges and vertices are assigned.

Results are shown and discussed simultaneously with the description of each component of the
branch-and-bound algorithm and the procedures that impact the most are presented first. Therefore,
the bound procedure is investigated in the next section.

6.3 Bounding procedures in the branch-and-bound framework

This section presents the methods used in our branch-and-bound framework for calculating the up-
per and lower bounds of the max-k-cut. Section 6.3.1 presents two formulations used to obtain the
upper bound. Section 6.3.2 investigates four heuristic methods used to generate feasible solutions.

6.3.1 Computing upper bounds

This section presents and discusses the SDP and LP formulations of the max-k-cut. It also presents
the CPA used to incorporate valid inequalities to strengthen these formulations.

Formulations

The SDP and LP formulations have been extensively studied in the literature for graph partitioning
problems (see [9, 21] ).

The SDP formulation. The vertex based formulation of max-k-cut induces an SDP relaxation [25]:

(SDP ) max
X

(k − 1)
k

∑
i,j∈V,i<j

wij(1−Xij) (6.1)

s.t. Xii = 1 ∀i ∈ V , (6.2)

Xij ≥
−1
k − 1 ∀i, j ∈ V, i < j, (6.3)

X � 0. (6.4)

where the variable X = (Xij) for each i, j ∈ V is equal to −1
k−1 if vertices i and j are in different

partitions of the k-cut of G and Xij = 1 otherwise. Computational results in [77] show that the
bound Constraint (6.3) should be separated in the CPA.

One of the advantages of using the SDP relaxation for max-k-cut it that some “hypermetric in-
equalities” are implicit in the SDP formulation [19]. Therefore, it produces stronger bounds than
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linear formulations.

The LP formulation. In the edge-only formulation that is presented in [10], the variable xij ,
for each i, j ∈ V , is equal to 0 when the edge (i, j) is cut, and 1 otherwise. The strengthened
formulation, with SDP-based constraints, proposed in [77] is:

(LP-EIG) max
x

∑
i,j∈V,i<j

wij(1− xij) (6.5)

s.t. xih + xhj − xij ≤ 1 ∀i, j, h ∈ V , (6.6)∑
i,j∈Q,i<j

xij ≥ 1 ∀Q ⊆ V with |Q| = k + 1, (6.7)

∑
i,j∈V,i<j

µijxij ≥
1
k

∑
i,j∈V,i<j

µij −
k − 1

2k
∑
i∈V

µii ∀µ ∈ Rn, (6.8)

0 ≤ xij ≤ 1 ∀i, j ∈ V . (6.9)

where typically the Euclidean norm of µ is one. The Constraint (6.8) has an infinite number of rows,
in consequence, a separation routine based on eigenvalues is introduced in [77]. The triangle (6.6)
and clique (6.7) inequalities are also separated in the CPA.

One advantage of linear methods in the branch-and-bound framework is that the optimal solution
x∗ of an LP relaxation can easily be used for fixing variables. Let e ∈ E be an edge, and zlb be
the value of the best known feasible solution, and de be the reduced cost of e, and v∗ the value
of relaxed solution x∗. Hence, if x∗e = 0 and v∗ − de < zlb, then the variable xe has value 0 at
optimality, in consequence, xe can be fixed to 0. Similarly, if x∗e = 1 and v∗ + de < zlb the variable
xe can be fixed to 1.

Another advantage of using the linear formulation in the branch-and-bound algorithm is that the
simplex method is well suited for exploiting an advanced starting basis [57]. In the branch-and-
bound tree, only a few constraints are different from one node to another. Therefore, solvers (e.g.
mosek [5]) can use the solution of a previous node to reduce computing time of the current node.

Cutting plane algorithm and valid inequalities

An integer programming (IP) formulation can be tightened, without removing any feasible solu-
tion, by the addition of cutting planes (also called valid inequalities). A CPA is a method that,
at each iteration, execute the following tasks: it solves a relaxation of an IP, searches for violated
inequalities in the current solution, it adds some of them to the relaxation and restarts the process.
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A branch-and-bound algorithm with a CPA was introduced in [69] for the traveling salesman prob-
lem to develop the so-called branch-and-cut method where a CPA is deployed at every subproblem
in the search tree. Before comparing the performance of the branch-and-bound with the branch-
and-cut method, some valid inequalities applied in the CPA are presented.

Valid Inequalities. Some valid and facet-inducing inequalities for the max-k-cut have been pro-
posed in [10], and the relevance of triangle, clique, general clique, wheel and bicycle wheel
is studied in [76], where some heuristic and exact methods are introduced to separate violated in-
equalities in a relaxed solution. The separation of these combinatorial constraints for LP-EIG and
SDP is also deployed in [77] together with the separation of bound Constraint (6.3) for SDP and
SDP-based Inequalities (6.8) for LP-EIG. We apply the same separation routines introduced in [76]
and [77].

Next section compares the performance of branch-and-bound with CPA in the root node only (also
called cut-and-branch) with branch-and-cut where the CPA is executed at every node of the search
tree.

Implementation details: cut-and-branch versus branch-and-cut

A CPA with the early-termination method of an interior point method is used in [77]. Computa-
tional results show that this procedure improves the solutions of both SDP and LP-EIG methods.
In [77], the CPA is stopped after 1 hour and we notice that some instances require more than
100 seconds to be solved. In order to apply the same CPA in our branch-and-bound algorithm,
two others stopping criteria are incorporated: iteration time (it_time) and iteration improvement

(it_impr).

The time to solve a subproblem is limited to 10 seconds (it_time = 10s). Therefore, if a CPA
iteration costs more than it_time the method is stopped and we collect the last bound obtained.
The second stopping criterion is based on an empirical observation of the CPA. We noticed that the
largest improvements of CPA occur in the first iteration of the method. Thus, if the CPA is stopped
when the improvement is close to a small ε ≥ 0 (stop the CPA if it_time < ε) so it can avoid
expensive and non-important rounds of the algorithm. Let zi be the value of the solution at iteration
i. The improvement, it_impr, is calculated as:

it_impr = zi−1 − zi
zi

This work uses ε = 10−4 . This way, the bounds in our branch-and-bound will not be as strong
as the one presented in [77], but it is possible to explore more nodes. In the branch-and-bound
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framework, the CPA is always deployed on the root node because the LP and SDP formulations
can have an exponential number of constraints.

Parameters of branch-and-bound. In order to provide a fair comparison, the following param-
eters are fixed for both methods:

• feasible solution: the best solution is set as the initial feasible solution. Hence, there is no
need of using heuristic methods,

• branching rule: the rule R4 is used to select variable in a solution (see Section 6.4.2),
• selecting node: the BeFS is fixed as the separation strategy (see Section 6.4.3),
• splitting problem: we use the k-chotomic strategy (see Section 6.4.1), and
• time: the branch-and-bound is stopped after one hour.

Computational results: cut-and-branch versus branch-and-cut

Table 6.1 shows the performance of the cut-and-branch (C&B) and branch-and-cut (B&C) methods.
First columns of Table 6.1 define the instances, and it is shown the time in seconds (time(s)) and
the number of visited nodes (#nodes) for each method.

Table 6.1 Results for cut-and-branch and branch-and-cut for k ∈ {3, 5}.

Instance cut-and-branch branch-and-cut
name k |V | dens. time(s) #nodes time(s) #nodes

data_random 3 30 1.0 - - 718.3 3319
data_clique 3 40 1.0 111.6 1192 15.6 83
data_clique 3 60 1.0 878.1 657 112.7 65
random 3 25 0.5 563.9 628744 42.4 296
data_3g 3 64 0.1 8.5 726 22.1 244
random 3 70 0.1 - - 883.9 900
data_random 5 30 1.0 - - - -
data_clique 5 40 1.0 2726.7 51139 20.6 102
random 5 25 0.5 1.1 1927 73.7 8757
data_3pm 5 60 0.1 1.0 0 1.0 0
data_3g 5 64 0.1 106.7 9504 188.6 2350
random 5 70 0.1 10.5 750 240.8 600

Table 6.1 shows that in general the branch-and-cut outperforms the cut-and-branch for k = 3. For
example, C&B could not solve in one hour a problem of family data_random with only 30 vertices.
The C&B is better than the B&C when instances are very sparse and for k = 5.
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6.3.2 Lower bound

In a branch-and-bound algorithm, feasible solutions (incumbent solutions) are used to prune sub-
problems, and it can still be returned as a solution if the method stop before optimality.

Heuristic and meta-heuristic methods are normally used to find initial feasible solutions and to
improve the existing incumbent. For the max-cut (k = 2) problem, many heuristics have been
proposed (see [89, 48]). For the max-k-cut, there are much fewer methods. This section surveys
and investigate some heuristics and approximation methods.

In [33], the authors present the 0.878-approximation algorithm for the max-cut problem. Their
main idea is to solve an SDP formulation and select a random hyperplane that passes through the
origin, and partition the vertices vi ∈ V according to which side of the hyperplane they fall. This
procedure is called randomized rounding. In [25] and [47] an extension of [33] is proposed to the
max-k-cut problem.

In the SBC algorithm [31], the authors propose the iterative clustering heuristic (ICH) that finds
feasible solutions based on the SDP solution. Computational tests show that the ICH provides
better feasible solutions than those obtained by [33] (for k = 2) and by [25] (for k ≥ 3). The ICH
method aggregates information from an SDP solution (X∗). In summary, the ICH sums the X∗ij
values on the edges between three vertices, then, if the sum is greater than a constant (α), they set
these three vertices in the same partition.

In [90], a multistart-type algorithm called dynamic convexized (DC) method is proposed. In the
DC a local search algorithm is applied to a dynamically updated auxiliary function. Computational
results demonstrate that the proposed algorithm is efficient to find feasible solutions.

In [56], the authors present a multiple operator heuristic (MOH) for the max-k-cut problem. MOH
is an iterative method that applies five operators organized in three search phases. The first phase is
called the descent-based improvement phase that finds a local optimum solution with two intensifi-
cation oriented operators. After that, the solution is diversified in the improvement phase where the
tabu search method [32] is applied with two operators. Finally, in the last phase, a random pertur-
bation is applied to change the incumbent solution. Computational tests show that MOH provides
better bounds in less time than the DC method in 90% of their tested instances.

The variable neighborhood search (VNS) [62] and the greedy randomized adaptive search proce-
dure (GRASP) [23] are also used to find a feasible solution for max-k-cut in our branch-and-bound
algorithm. VNS and GRASP are applied with success on the max-cut problem in [24].

The VNS heuristic is a iterative method that explores a distant neighborhood of the current incum-
bent solution and jumps from this solution to a new one if there is an improvement. In addition, a
local search is applied to find a new local optimum.
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The GRASP is also an iterative method that is divided in three phases: construction, local search
and solution analysis. In the construction phase it generates a solution using a random greedy
algorithm, then it applies a local search, and it saves the best solution found.

Implementation details of all the methods tested are described below with computational tests in
several instances.

Implementation details: lower bounds

This section presents the implementation details of the four heuristics: ICH, MOH, VNS, and
GRASP. Some parameters are different from the ones proposed in the literature to obtain a good
trade-off between the quality and the CPU time of each method.

We consider that the solutions x and y are neighbors if the distance between these two solutions is
one (d(x, y) = 1), i.e., if only one vertex of x is assigned to a different partition than y. A local
search with simple-transfer moves, at each iteration, to a neighbor with a better solution. If any
neighbor has a better solution, then we are in a local maximum. In double-transfer we consider
the best neighbor with distance equal to 2. The following describes the parameters and details of
implementation of each heuristic.

1. ICH. For the ICH, we impose the parameter α = 2.6, and when the re-optimization is called
for solving a derivate subgraph, the total time of CPA is limited to 20 seconds.

2. MOH. In the improvement phase (second phase), only the local search with simple-transfer
(called O3 in [56]) is considered because the fourth operator (O4) is quite expensive. In
addition, it is imposed:

• tabu tenure is equal to 10,

• number of iterations is 50, and

• the perturbation strength that measure the perturbation allowed in third phase of the
method is fixed in 50%.

3. VNS. As defined before, the VNS explores a distant neighborhood, from a local maximum
x∗. Our VNS considers y as a neighbor solution of x∗ if their distance is inferior to dmax
(1 ≤ d(x∗, y) ≤ dmax). For VNS it is imposed:

• dmax = 12 if number of vertex of graph is inferior than 300 (|V | ≤ 300) and dmax = 8
otherwise, and

• number of iterations is 10.
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4. GRASP. The local search uses single and double-transfer moves to find the best neighbor so-
lutions of a random solutions constructed in the construction phase of the method. Moreover,
the maximum number of iterations is set to 50.

Computational results: lower bounds

The Table 6.2 shows the results of the four heuristic methods for k ∈ {3, 7}. Each row of this table
plots the average of 5 rounds of tests. In Table 6.2, the name, k, dimension |V | and density (dens.)
of each instance is shown in the first columns. Then, for each method, the average solution (lbavg)
and the time of execution in seconds (time(s)) are presented.

Table 6.2 Results of four heuristic methods for finding feasible solutions.

Instance ICH MOH VNS GRASP
name k |V | dens. lbavg time(s) lbavg time(s) lbavg time(s) lbavg time(s)
bqp 3 50 0.1 3271 0.2 3252 0.1 3266 0.1 3244 0.1
rand 3 100 0.9 222056 0.7 241249 0.4 243986 0.4 240241 0.3
be 3 150 0.8 19682 2.9 20547 1.3 20500 0.9 20425 0.9
ising2 3 250 0.9 813412 6.6 808650 3.6 814786 2.8 799392 1.9
rand 3 300 0.2 52943 9.7 53963 5.4 54467 4.7 53656 4.2
bqp 7 50 0.1 3259 0.2 3352 0.1 3356 0.1 3315 0.1
rand 7 100 0.9 241500 0.3 248469 0.7 249808 0.5 248717 0.4
be 7 150 0.8 21086 3.2 21085 1.5 21330 1.1 21073 1.0
ising2 7 250 0.9 820979 6.6 815249 4.6 820424 4.7 809997 2.2
rand 7 300 0.2 52724 9.6 55128 6.1 56812 5.9 55679 4.7

Table 6.2 shows that the VSN heuristic gives, for almost all the tests, the best bound with competi-
tive CPU time.

6.4 Selection and branching strategies

The three algorithmic components (e.g., split, branching and search strategies) play a very impor-
tant role in the performance of the branch-and-bound algorithm. This section aims to present and
discuss results of these components.

6.4.1 Splitting problem

The branch-and-bound algorithm converges if the size of each subproblem is smaller than the orig-
inal problem and if the original problem has finite solutions. Typically, the subproblems generated
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are disjoint thereby avoiding the occurrence of the same solution in different subspaces. The prob-
lem can be split into two (dichotomic branching) or more parts (polychotomic branching).

Dichotomic split. For the max-cut problem (k = 2) the split is usually performed by choosing
a vertex i ∈ V not yet assigned at the original node (see e.g. [74]), hence, for each subproblem
generated the vertex is designated to a different partition. However, for the max-k-cut, all the exact
methods proposed in the literature apply the split on an edge x̂ij , so they impose x̂ij = bx̂ijc to one
subproblem and x̂ij = dx̂ije to the other.

The dichotomic branching has the advantage of being easily implementable. However, this branch-
ing for the max-k-cut has the drawback of generating subproblems that can violate some valid
inequalities. Therefore, the branch-and-bound can spend time by storing and evaluating a node that
is not feasible.

k-chotomic split. In order to avoid infeasible subproblems, a vertex branching (similar to the
split applied in the max-cut problem) is introduced for the max-k-cut. For each subproblem i, a
selected vertex v ∈ V is fixed in a different partition Pi ∈ {P1, P, . . . , Pk} . Thus, a problem (node)
of the branch-and-bound tree is split into k subproblems (children). This polychotomic branching
is called k-chotomic split.

A drawback of applying the k-chotomic branching is that the number of unexplored nodes in the
branch-and-bound tree can grows much faster than the dichotomic strategy and it can cause memory
issues. Although, a combination of this strategy with depth-first search (see Section 6.4.3) can
mitigate this drawback.

The next two sections computationally compare both types of splits.

Implementation details: splitting

This section discusses some implementation details for applying the k-chotomic and the dichotomic
split on our branch-and-bound framework.

Fixing extra variables. For both strategies, in the LP formulation, the reduced cost of the bound
solution is used to fix variables. Moreover, for the dichotomic split, when a variable is selected it is
possible to fix more variables by analyzing the Triangle Inequalities (6.6). For example, if an edge
xih was already fixed (in a related node), and the chosen variable in the current iterate is xhj , then
xij is fixed if:
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xih = 1 & xhj = 1 ⇒ xij = 1, (6.10)

xih = 1 & xhj = 0 ⇒ xij = 0, (6.11)

xih = 0 & xhj = 1 ⇒ xij = 0. (6.12)

For avoiding infeasible solutions in the dichotomic split, it is necessary to certificate that all clique
Inequalities (6.7) are also satisfied at each subproblem. However, as it was pointed out in [76], it is
computationally very expensive to enumerate all the cliques even for small instances.

Note that for k-chotomic strategy in max-k-cut problem a vertex can initially be fixed to the first
partition (P1) because all the vertex should be in a partition and all the partitions are similar. Then,
in this work, the vertex v ∈ V chosen to always be in P1 is the one with the largest sum of incident
weight edges in the input graph (v ∈ argmaxv∈V

∑n
j=1 wvj).

Parameters of branch-and-bound. In order to provide a fair comparison, the following param-
eters are fixed for both strategies:

• feasible solution: the best solution is set as the initial feasible solution. Hence, there is no
need of using heuristic methods,

• branching rule: the rule R4 is used to find variable (see Section 6.4.2),
• selecting node: the BeFS is fixed as the separation strategy (see Section 6.4.3),
• the branch-and-cut algorithm is used to solve the problems, and
• time: the algorithms is stopped after one hour.

Computational results: splitting

Table 6.3 shows results of the dichotomic and k-chotomic strategies. The first columns of Table 6.3
identify the instances, and for each strategy it is shown the time in seconds (time(s)) and the number
of visited nodes (#nodes).

Table 6.3 shows that the k-chotomic strategy has better results for almost all the problems. More-
over, from six out of all the twelve problems, the dichotomic strategy did not find the optimal
solution before one hour of computation.

6.4.2 Branching Rules

As it is pointed out in [55], the variable and node selections are both critical decisions that impact
the performance of branch-and-bound methods. For example, branching on a variable that does
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Table 6.3 Results for dichotomic and k-chotomic strategies in the branch-and-bound framework for
k ∈ {3, 5}.

Instance dichotomic k-chotomic
name k |V | dens. time(s) #nodes time(s) #nodes

data_random 3 30 1.0 - - 718.3 3319
data_clique 3 40 1.0 20.4 92 15.6 83
random 3 25 0.5 24.4 76 42.4 296
data_3pm 3 60 0.1 - - 100.1 1226
data_3g 3 64 0.1 449.1 128 22.1 244
random 3 70 0.1 - - 715.69 750.0
data_random 5 30 1.0 - - - -
data_clique 5 40 1.0 40.5 145 20.6 102
random 5 25 0.5 - - 73.7 8757
data_3pm 5 60 0.1 0.0 0 0.0 0
data_3g 5 64 0.1 - - 106.7 9504
random 5 70 0.1 75.6 8200 10.5 750

not give any serious improvement on any of the children nodes can lead to an extremely large and
expensive search tree. The branching procedure aims to decide on which variable to branch to
create children nodes.

Many researchers have investigated the branching in the branch-and-bound framework, see e.g. [1].
In particular, the strong branching strategy (e.g. [27, 53]) tests all the fractional candidates to
find the one that gives the best improvement. Another very popular branching is the pseudo-cost

branching [7] that uses historical information of previous changes to choose the variable. In [1], the
authors present the reliability branching as a generalization of strong and pseudo-cost branching
strategies for branch-and-bound algorithms. Their computational results show that this rule is better
than the strong and pseudo-cost branching.

In [4], four branching rules proposed in [42] are investigated for the BundleBC method. In the
first rule, the variable selected is the most decided, i.e, the edge that is the closest to 0 or to 1. The
second rule is more elaborated, it selects the edge of vertices i′ and j′ such that:

i′ ∈ argmin
i∈V

n∑
r 6=i,r=1

(0.5− |x∗ir − 0.5|)2, (6.13)

j′ ∈ argmin
j∈V,j 6=i′

n∑
r 6=j,r=1

(0.5− |x∗jr − 0.5|)2. (6.14)

In the third rule, the variable chosen is the edge least decided. The fourth rule is similar to second
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but for the vertex j′ the argmin is replaced for argmax. Computational results show that the second
rule provides the best results and the first rule gives the worse.

In the k-chotomic split strategy, we state that a vertex v ∈ V is already fixed in a node Q if v was
previously assigned to one of the partitions v ∈ {P1, P2, . . . , Pk} in a related node of the search
tree. Base on previous results presented in the literature, the following rules are investigated:

• R1. In this rule, the variable chosen is the most decided variable. For the LP formulation
that has solution x̂, it will branch on the variable x̂ij that is the closest to 0 or to 1 for all
edge (i, j) ∈ E. For the k-chotomic split, the vertex j of x̂ij must be already assigned to a
partition.

• R2. This rule is similar to the third rule of [4], then it consists of choosing the edge that is the
least decided. Similarly to R1, while applying this rule in the k-chotomic split, we impose
that one of the vertices is fixed in a partition.

• R3. This rule is similar to the best rule of [4]. For the k-chotomic split, we impose the vertex
j′ ∈ V to be already fixed and the selected variable i′ ∈ V comes from Argument (6.13).

• R4. In this rule, the selected variable is the edge with the largest weight. For the k-chotomic
split, the vertex with the largest sum of incident edges is selected.

• R5. The last rule is an adaptation of the reliability branching of [1]. This rule uses the
pseudo-cost score of a variable x̂ij . The pseudo-cost is estimated by summing all the im-
provements of previous branches when the variable was selected, and if the number of times
that the variable x̂ij was selected is inferior to a reliability constant (η = 4), it uses the strong
branching strategy that tests the improvement of a variable by simulating a branching.

The next section shows the performance of each branching rule in our method.

Computational results: branching rules

Table 6.4 shows the result of five branching rules. The first columns of the table identify the
instances and for each rule, the time in seconds (time(s)) and the number of visited nodes (#nodes).

In Table 6.4, the results of all the rules are quite similar. However, the rule R4 has the best values.
For example, for k = 5 and |V | = 25, the rule R4 finds the optimal solution in 77 seconds while
the others need at least 400 seconds.
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Table 6.4 Comparative results for five branching rules in the branch-and-bound framework.

Instance R1 R2 R3 R4 R5
k |V | dens. time(s) #nodes time(s) #nodes time(s) #nodes time(s) #nodes time(s) #nodes
3 30 1.0 472 2254 635 3011 625 3267 640 3319 384 1612
3 40 1.0 17 122 25 185 15 98 16 83 44 110
3 25 0.5 30 35 32 103 30 32 31 119 34 20
3 64 0.1 29 100 27 50 24 50 11 50 30 100
3 60 0.1 305 3650 274 3578 1132 15986 100 1226 268 3614
3 70 0.1 1844 4067 676 716 - - 750 701 - -
5 30 1.0 - - - - - - - - - -
5 40 1.0 16 82 25 140 18 100 21 102 71 89
5 25 0.5 409 33880 464 38007 - - 77 7209 400 32952
5 64 0.1 468 2600 293 1750 - - 220 1753 511 5164
5 60 0.1 0 0 0 0 0 0 0 0 0 0
5 70 0.1 - - 254 1100 711 6889 193 2000 766 4450

6.4.3 Node selection

Node selection is the classical task of deciding how to explore the branch-and-bound tree by using
some strategies for selecting an unexplored node to be analyzed. Depending on the strategy one
of the following issues is favored: the number of explored nodes in the search tree or the memory
capacity of the computer.

The best-first, the depth-first, and the breadth-first are among the most commonly used strategies in
existing optimization codes. Other variants of these strategies are studied in the literature see e.g.
the surveys [55, 64].

The following three strategies to select active nodes on the branch-and-bound algorithm are studied:

• Best-First Search (BeFS). This strategy selects the best node not yet explored. The BeFS
selects a node with the largest upper bound, so with the greatest potential improvement of
the objective value. Usually, BeFS explores fewer nodes than other strategies but it maintains
a larger tree in terms of memory.

• Depth-First Search (DFS). The DFS strategy uses the data structure of last-in, last-out to
select a node. Therefore, the method goes deep in the search tree and only starts backtracking
if a node is pruned. This strategy is easily implementable, the memory requirements are low
and it finds feasible solutions faster than other strategies. A disadvantage is that this method
is very sensitive to the branching rule of the first nodes in the branch-and-bound tree.

• Breadth-First Search (BrFS). The BrFS is the opposite of the DFS strategy since it is imple-
mented with a first-in, first-out data structure. The BrFS operates well on unbalanced search
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trees and finds solutions that are close to the root node. However, like BeFS, the memory re-
quirements to store the unexplored nodes are quite high and they depend on heuristic methods
for finding feasible solutions.

Computational results: node selection

Table 6.5 shows the results of the three strategies. The first columns identify the instances, and
other columns show the time in seconds (time(s)) and the number of visited nodes (#nodes) in the
branch-and-bound tree of each strategy.

Table 6.5 Comparative results of node selection strategies: BeFS, BrFS and DFS.

Instance BeFS BrFS DFS
name k |V | dens. time(s) #nodes time(s) #nodes time(s) #nodes

data_random 3 30 1.0 640.1 3319 637.7 3319 633.0 3319
data_clique 3 40 1.0 15.6 83 14.7 83 14.2 83
random 3 25 0.5 29.4 94 28.0 94 38.3 188
data_3pm 3 60 0.1 100.1 1226 78.9 1205 102.96 1586
data_3g 3 64 0.1 10.8 50 10.8 50 19.3 75
random 3 70 0.1 750.0 701 546.37 779 382.9 980
data_random 5 30 1.0 - - - - - -
data_clique 5 40 1.0 20.6 102 19.7 102 19.4 102
random 5 25 0.5 76.7 7209 76.4 7209 76.5 7209
data_3pm 5 60 0.1 0.0 0 0.0 0 0.0 0
data_3g 5 64 0.1 220.18 1753 311.1 2180 242.2 1993
random 5 70 0.1 193.4 2000 298.9 2965 138.3 1844

Table 6.5 shows that the results of these strategies are very similar. For the most difficult instances,
where the time of solutions is superior to 300 seconds, the DFS strategy was the best, but for
“easy” problems the BrFS was the best.

6.5 Computational environment and instances

Tests are performed on a Linux PC with two Intel(R) Xeon(R) 3.07 GHz processors. The mosek
solver [5] is used for solving the SDP and LP formulations.

Our branch-and-bound is tested in some of the most difficult instances from the literature, especially
from the BundleBC [4]. We also generate some instances as it is describe bellow:

• Random: these instances were generated using rudy graph generator [75]. The density
varies between 10% to 100%.
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• Data: we also consider instances from [4] for our numerical experiments. Some of the in-
stances are from applications in statical physics and other were generated also using rudy.
The name of these instances starts with the keyword “data”.

• In order to test larger instances in the lower bound test (see Section 6.3.2), we also use some
instances from [77]. They are bqp, ising2, be, rand.

6.6 Computational results

This section presents the computational tests. Section 6.6.1 highlights the importance of the
changes in LP from [76] and [77]. In Section 6.6.2, results of the SDP and LP-EIG formulations in
the branch-and-bound algorithm are plotted in Table 6.7.

6.6.1 Comparison of the linear formulations in the branch-and-bound framework

Most of the exact methods proposed in the literature for the linear formulation of the max-k-cut
problem use triangle and clique inequalities to strength the LP bound (see e.g. [85, 60]). How-
ever, computational tests in [76] show that the use of wheel, bicycle wheel, and general clique
inequalities can improve even more the bounds of max-k-cut.

The following linear methods are investigated in order to highlight the relevance of the inequalities
studied in [76] and the SDP-based Inequalities (6.8) in the branch-and-bound framework:

• LP-tc: in this method, the linear relaxation solved in the bounding procedure of the branch-
and-bound framework activates only triangle and clique inequalities.

• LP-comb: in this method, the following five constraints are activated: triangle, clique,
wheel, bicycle wheel and general clique. Those are the combinatorial inequalities in-
vestigated in [76].

• LP-EIG: this method includes, in addition to the five combinatorial inequalities, the SDP-
based Inequalities (6.8) in the LP relaxations.

Table 6.6 shows the time in second (time(s)) and the number of visited nodes (#nodes) for the three
linear formulations in a branch-and-cut framework. The first columns of this table show the name,
k, dimension |V | and density (dens.) of each instance. The branch-and-cut method is stopped after
two hours and we report the results of instances that have a certificate of optimality, i.e,. the optimal
solution is found. Otherwise, we insert the signal “-”.

Table 6.6 demonstrates that, in general, the LP-EIG method explores fewer nodes in the branch-
and-bound tree. For k = 3, the LP-comb is most of the time better than LP-tc and sometimes this
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Table 6.6 Comparison of the linear formulations in the branch-and-bound framework.

Instance LP-tc LP-comb LP-EIG
name k |V | dens. time(s) #nodes time(s) #nodes time(s) #nodes

data_2g_7_491 3 30 0.1 9.2 420 4.1 140 2.5 0
data_2g_8_648 3 64 0.1 833.7 22549 191.9 2938 181.0 2576
data_2g_9_9211 3 81 0.1 1955.4 46725 591.9 8400 591.4 7200
data_3g_444_444 3 81 0.1 196.1 2695 3728.5 52962 - -
data_3pm_345_345 3 81 0.1 870.3 12552 77.9 1165 86.7 960
data_clique_40 3 40 1.0 20.0 26 8.1 8 2.5 0
data_clique_50 3 50 1.0 108.8 197 25.1 23 48.5 35
data_clique_60 3 60 1.0 203.9 146 113.3 20 28.7 12
random 3 40 0.3 714.7 6665 46.4 219 40.4 95
random 3 30 0.5 135.5 586 47.1 160 66.2 35
random 3 40 0.5 - - 893.1 168 357.8 25
random 3 30 1.0 807.0 807 81.6 136 102.3 80
random 3 40 1.0 571.9 435 455.2 152 104.5 83
data_2g_7_491 5 30 0.1 1.0 0 1.0 0 1.0 0
data_2g_8_648 5 64 0.1 140.0 605 4.0 60 3.8 20
data_2g_9_9211 5 81 0.1 - - - - 89.6 920
data_3g_444_444 5 81 0.1 264.1 4302 - - - -
data_3pm_345_345 5 81 0.1 69.2 741 152.2 1262 25.4 115
data_clique_40 5 40 1.0 - - - - 1.0 0
data_clique_50 5 50 1.0 - - - - 2.8 0
data_clique_60 5 60 1.0 - - - - 21.3 0
random 5 40 0.3 271.8 3958 625.4 4733 240.7 1613
random 5 50 0.3 - - 2463.1 8106 2263.9 856
random 5 30 0.5 67.7 385 97.4 150 42.6 54
random 5 40 0.5 - - 3334.3 4486 2012.5 1073
random 5 30 1.0 159.5 525 142.7 476 130.1 233
random 5 40 1.0 698.6 520 743.1 465 562.5 337

method is better than LP-EIG. However, usually, the LP-EIG gives best values, for example, for
four instances, only the LP-EIG method was capable of finding the optimal solution.

6.6.2 Comparison of LP-EIG versus SDP

Table 6.7 displays the results of branch-and-bound with LP-EIG and with the SDP formulations.
It shows the time in second (time(s)) and the number of visited nodes (#nodes) for both methods
and for the BundleBC solver. The first columns of this table give the name, k, dimension |V | and
density (dens.) of each instance.

The branch-and-cut method of LP-EIG and SDP is stopped after two hours and Table 6.7 exhibit
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only the results that have a certificate of optimality, i.e,. the optimal solution is found. Otherwise
the symbol “-” is reported.

Table 6.7 Results of the LP-EIG and SDP formulations in the branch-and-bound framework.

Instance BundleBC [4] SDP LP-EIG
name k |V | time(s) #nodes time(s) #nodes time(s) #nodes

data_random_40_k=3 3 40 29.0 145 47.7 31 - -
data_3pm_344_344 3 48 102.0 21 4.3 2 7.0 2
data_2g_7_491 3 49 5.0 3 41.3 60 2.5 0
data_random_50_k=3 3 50 3963.0 10741 3391.7 1794 - -
data_clique_60 3 60 3.0 3 32.4 0 28.7 12
data_2g_8_37 3 64 111.0 9 2029.0 1093 149.1 1786
data_2pm_8_888 3 64 116.0 7 63.1 21 2.0 20
data_3g_444_444 3 64 198.0 7 174.3 69 - -
data_clique_70 3 70 36.0 11 161.5 8 68.5 16
data_2g_9_9211 3 81 169.0 5 - - 801.0 50233
data_2pm_9_999 3 81 576.0 21 - - 29.3 223
data_2g_10_1001 3 100 106.0 5 - - 46.8 1357
data_random_40_k=3 5 40 7925.0 18243 1998.7 674 - -
data_3pm_344_344 5 48 1618.0 205 1008.2 420 35.2 5788
data_2g_7_491 5 49 5724.0 3623 4.8 1 1.0 0
data_random_50_k=3 5 50 - - - - - -
data_clique_60 5 60 7.0 3 95.0 4 21.3 0
data_2g_8_37 5 64 1979.0 261 345.4 300 7.1 96
data_2pm_8_888 5 64 245.0 11 5.7 2 0.7 0
data_3g_444_444 5 64 979.0 37 3689.2 595 - -
data_clique_70 5 70 17.0 3 2036.0 54 41.0 0
data_2g_9_9211 5 81 523.0 13 - - 89.6 920
data_2pm_9_999 5 81 2507.0 51 55.8 160 3.4 35
data_2g_10_1001 5 100 - - - - 94.2 3580
data_random_40_k=3 7 40 - - - - - -
data_3pm_344_344 7 48 1240.0 191 1126.8 438 25.1 3524
data_2g_7_491 7 49 - - 3.6 0 1.4 1
data_random_50_k=3 7 50 - - - - - -
data_clique_60 7 60 79.0 29 - - 61.4 1120
data_2g_8_37 7 64 30370.0 6703 978.5 200 11.2 911
data_2pm_8_888 7 64 13.0 309 55.1 31 0.7 0
data_3g_444_444 7 64 868.0 29 947.4 77 - -
data_clique_70 7 70 152.0 31 - - 20.6 0
data_2g_9_9211 7 81 2418.0 65 - - 363.9 19600
data_2pm_9_999 7 81 963.0 23 217.7 41 2.4 100
data_2g_10_1001 7 100 - - - - 508.8 6200

Table 6.7 demonstrates that, in general, the SDP visits fewer subproblems than LP-EIG. For dense
instances, when k = 3 the SDP outperforms LP-EIG. The LP-EIG outperforms SDP for the other
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cases, especially for sparse problems. In 67% of the instances tested the SDP or LP-EIG are better
than BundleBC especially for k ≥ 5. Moreover, the LP-EIG has uncovered the solution of 3
problems.

In general, the LP-EIG outperforms the other methods for sparse instances and for large values of
k.

6.6.3 Summary of the computational tests

The following are a summary of all the results presented in this chapter :

1. cut-and-branch versus branch-and-cut. In Section 6.3.1 shows that the branch-and-cut method
outperforms the cut-and-branch method in 6 out of 11 tests. However, the cut-and-branch is
better for sparse instances and k = 5.

2. Lower bound. Computational tests in Section 6.3.2 demonstrates that the VNS obtains the
best results.

3. Splitting problem. Section 6.4.1 shows a huge difference between the results of the di-
chotomic and the k-chotomic strategies. The k-chotomic is the best strategy in almost all
instances. Moreover, the dichotomic strategy could not solve five instances that k-chotomic
solved in less than 30 minutes.

4. Branching rules. There is not a lot of difference between the results of the five rules tested.

5. Node selection. Our tests are not conclusive because all the three strategies have similar
results. However, the DFS has been the best strategy for the most difficult instances.

6. LP comparison. Our tests show the relevance of combinatorial inequalities {triangle, clique,
general clique, wheel and bicycle wheel } and especially the relevance of the proposed
SDP-based Inequality 6.8 on max-k-cut.

7. LP versus SDP. Our last tests compared the performance of LP-EIG with SDP. LP-EIG out-
performs the SDP based branch-and-bound in most of the problems, especially for sparse and
for k ≥ 5.

From a practical point of view, the best arrangements are: lower-bound = VNS, splitting = k-
chotomic, branching rule=R4 (Node with the largest incident weight), node selection=BrFS or
DFS.
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6.7 Discussion

This work investigates the branch-and-bound method to solve the max-k-cut problem where we
computationally study all its features to design an efficient method.

In the upper bound procedure, we study the SDP and LP relaxation and we also investigated the
inclusion of the CPA in the branch-and-bound framework. For the lower bound, we studied four
heuristic methods: ICH, MOH, VNS, and GRASP.

We also investigate the selection and branching strategies. For the split strategy, we consider two
options: the dichotomic split where each selected node derivate two other subproblems, and the
k-chotomic strategy where each node generates k subproblems. Five rules for choosing the next
variable to be branched is studied in Section 6.4.2. Finally, we study three strategies for the node
selection: BeFS, DFS, and BrFS.

We conclude from our computational tests that the proposed inequalities in [76, 77] are quite rele-
vant in the branch-and-bound scheme for the max-k-cut problem, especially SDP-based inequali-
ties. Moreover, our computational tests show that for many instances our method is faster than the
ones proposed in the literature.
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CHAPTER 7 GENERAL DISCUSSION

This chapter discusses the results of the three following projects of our research: the computational
study of valid inequalities presented in Chapter 4, the improvement of the linear relaxation studied
in Chapter 5, and the branch-and-bound investigated in the previous chapter.

The first objective of this thesis was to study some classes of valid inequalities that are facet-
defining for the max-k-cut problem. We designed and tested several separation routines to find
violations in an iteration of the cutting plane method. For the separation routines, we noticed
that some heuristic methods are more efficient than their associated exact methods proposed in the
literature. For example, for the bicycle wheel inequalities, the exact method spends almost 50%
more CPU time to find violations that are as strong as the ones found by our proposed heuristic.
Computational tests presented in [76] showed that the wheel and bicycle wheel inequalities are
very relevant for strengthening max-k-cut relaxations.

In our second article [77], the main objective was to introduce a formulation of max-k-cut that is
as fast as the linear formulation and as strong as the SDP relaxation. Hence, we investigated the
semi-infinite formulation of SDP that provided a strong class of constraints to the LP relaxation.
This family of constraints was called SDP-based inequalities and our computational results showed
that the new linear relaxation outperforms SDP for problems that have a large number of partitions
(k ≥ 7). Moreover, the LP relaxation with SDP-based inequalities has shown to be convenient for
exact methods because it provides strong and inexpensive bounds.

In Chapter 6, the concepts presented in [76] and [77] are applied in an exact method to find global
solutions of the max-k-cut problem. In order to conceive an efficient solver, we investigated five
components of the branch-and-bound algorithm. We observed that some procedures have a huge
impact on the performance of the branch-and-bound method, for example, the k-tomic strategy
has solved 75% of the problems in less CPU time than the dichotomic strategy for k ∈ {3, 5}.
Computational results showed that the investigation carried out on [76] is very relevant to the
branch-and-bound method, and with the new linear relaxation proposed in [77], we were able to
uncover many optimal solutions.
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

This last chapter summarizes the advancements presented in this thesis, the limits and constraints
of application of our methods and the main recommendations for future research.

8.1 Advancement of knowledge

In summary, in this thesis we made the following advances:

• We investigated the triangle, clique, wheel, bicycle wheel and general clique inequalities.
Moreover, we introduce some efficient separation routines for each family of inequalities.

• We introduce, in our second paper [77], the SDP-based inequalities that have improved the
linear relaxation.

• For the exact method, we investigated carefully the branch-and-bound method.

• We proposed the use of the VNS [62] and the GRASP [23] heuristic to find feasible solutions
of the max-k-cut. Computational results have shown that these methods, mainly the VNS,
provide better solutions than the others heuristics proposed in the literature.

8.2 Limits and constraints

The following are the main limitations and drawbacks of the concepts presented in this thesis:

• The SDP-based inequalities proposed in [77] are very large and dense, in the sense that they
have approximately |E| variables with non-zero coefficients. Therefore, the addition of a
few of these inequalities can make the solution of the linear relaxation very expensive. For
example, in some cases, the LP with SDP-based inequality can be more expensive than the
SDP formulation.

• Based on empirical tests, we fixed many parameters for the cutting plane algorithm and for
the branch-and-bound method. Whereas some problems can behave differently, we do not
change the parameters for each specific problem, and we do not consider the fact that some
parameters may adapt with the evolutions of the methods.

• In order to obtain upper bound we solve our relaxations using mosek solver [82]. This makes
our method very dependent on mosek performance.
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• Although the proposed exact method is able to uncover the optimal solution for some prob-
lems up to 200 nodes we still cannot solve larger and dense instances.

8.3 Recommendations

The following are recommendations for future research concerning methods investigated in this
thesis:

• More compact SDP-based inequalities. In order to overcome the issue of large SDP-based
inequalities, we may use the dual solution of the SDP relaxation instead of the primal, as
it is pointed out in [50]. Because the dual formulation has fewer variables than the primal,
therefore it provides a more compact inequality.

• Optimization of parameters. Applying machine learning techniques [55] for the branch-
and-bound and the CPA may improve even more our results by optimizing some of their
parameters.

• Hybrid branch-and-bound. A branch-and-bound method that uses both SDP and LP relax-
ations can be useful because it may exploit the best qualities of each relaxation in the same
branch-and-bound tree.

• Extension. With a few modifications, the proposed linear relaxation can be extended to solve
general SDP problems. Hereby, introducing a mixed integer programming tool for a generic
SDP problem.
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