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RÉSUMÉ 

La modélisation de choix d'itinéraires, i.e. de la route empruntée par les individus entre une paire 

origine et destination, est probablement l'un des problèmes les plus complexes et laborieux de 

l’analyse des comportements de déplacement. L'objectif principal de cette thèse est d'améliorer la 

compréhension comportementale du choix des itinéraires routiers en observant le processus sous-

jacent de prise de décision des conducteurs. 

Différentes approches ont été adoptées pour modéliser le comportement de choix d'itinéraires par 

les conducteurs, parmi lesquelles l’approche de l’utilité aléatoire et des choix discrets qui a reçu 

une attention considérable. Dans cette approche, chaque alternative est caractérisée par une 

fonction appelée « l’utilité », et les individus sont considérés comme étant des décideurs 

parfaitement rationnels qui maximisent leur utilité. Cette étude est basée sur une approche de 

modélisation en deux étapes avec échantillonnage : la première étape consiste à définir un ensemble 

de choix à partir duquel, en deuxième étape le choix final est fait. L'application de cette approche 

dans la modélisation de choix d’itinéraires routiers suscite un enjeu particulier, c'est-à-dire la 

définition d’ensembles de choix réalistes et représentatifs. Un autre défi de la modélisation de choix 

d’itinéraires est la structure complexe de corrélation entre les alternatives routières. 

Bien que plusieurs approches aient été proposées pour relever les défis mentionnés ci-dessus dans 

la modélisation des choix d'itinéraires, l'un des défis subsistants est la cohérence des approches de 

modélisation proposées avec le processus comportemental sous-jacent des décisions. À cet égard, 

les principales contributions de cette thèse s'articulent autour de trois composantes générales de la 

modélisation du choix d'itinéraires en deux étapes, c'est-à-dire l’approche de modélisation, la 

méthode de collecte de données et l'ensemble des alternatives considérées. Les trois contributions 

principales concernant la première composante de la modélisation du choix d'itinéraires, c’est à 

dire l’approche de modélisation sont les suivantes: 

 Tout d'abord, nous avons suivi l'idée que les conducteurs considèrent une représentation 

hiérarchique de l'espace et que certaines caractéristiques importantes de la route, c'est-à-

dire les points d'ancrage, peuvent affecter leurs décisions. Nous avons étudié l'influence des 

ponts, comme étant des points d'ancrage, sur les choix d’itinéraires des conducteurs entre 

les îles de Montréal et Laval et nous avons adopté une approche de modélisation imbriquée 

pour représenter la hiérarchie spatiale et incorporer les effets des points d'ancrage et les 
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attributs de la route en même temps. De plus, cette approche offre la possibilité de capturer 

les similitudes non observées des itinéraires qui traversent un même point d'ancrage, telles 

que la sécurité routière, le paysage, le confort de conduite, etc. Les résultats montrent que 

l'approche de modélisation proposée correspond mieux aux données et surpasse les 

capacités de prédiction des modèles de choix comparatifs basés exclusivement sur les 

attributs de la route, tels que le « Path-Size Logit », le « Extended Path-Size Logit », et le 

« Independent Availability Logit ». 

 La deuxième contribution de cette thèse repose sur l'idée que les individus ont des 

propensions différentes à choisir parmi les différents itinéraires disponibles entre une 

origine et une destination. Ceci résulte principalement de leurs différences d’attitudes, de 

préférences et d’expériences, et par conséquent, peut former différents types de 

comportements de prise de décision. À cette fin, nous avons étudié un ensemble 

longitudinal de données GPS, en suivant 1 746 chauffeurs de taxi effectuant plus de 22 000 

déplacements sur une période d'un an. En conséquence, quatre catégories de stratégies ont 

été trouvées en fonction des variations observées dans les déplacements effectués pendant 

les jours et les nuits, et entre les déplacements de courte et longue durées. La compréhension 

de ces stratégies opérationnelles permet non seulement de mieux comprendre la dynamique 

de la circulation urbaine, ce qui est très important pour la ville et les planificateurs de 

transports, mais la classification comportementale offre aussi la possibilité d'estimer des 

modèles de choix d’itinéraires plus précis. 

 La troisième contribution tourne autour de l'idée que les choix sont fortement influencés 

par: 1) les traits latents et les variables comportementales qui ne peuvent être directement 

observés et mesurés, comme les attitudes, les perceptions et les préférences de style de vie, 

et 2) l'hétérogénéité latente existante entre les différents segments de la population. Pour 

incorporer correctement l'effet de l'hétérogénéité des segments et faire la distinction entre 

les comportements de choix des différentes classes de la population étudiée, nous avons 

utilisé un modèle de classes latentes, dans lequel nous avons intégré le rôle des variables 

latentes. Nous avons appliqué le modèle proposé pour comparer le comportement de choix 

d’itinéraires des conducteurs fréquents par rapport aux conducteurs occasionnels. Les 

résultats confirment que les différents segments de la population étudiée se comportent 

différemment dans leurs choix d’itinéraires et les résultats de la modélisation démontrent 
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que l'inclusion des traits de comportement dans le modèle de classes latentes améliore 

considérablement son ajustement sur les données. 

Malgré l'attrait des cadres de modélisation comportementale, leurs applications dans les études de 

choix d'itinéraires restent rares, ce qui peut être principalement lié au fait que la collecte de données 

comportementales est laborieuse, couteuse et prend énormément de temps. Une autre contribution 

de cette thèse concerne la conception et la mise en œuvre d'un cadre de collecte de données conçu 

pour les études comportementales de choix d'itinéraire. L'objectif principal du cadre proposé est de 

recueillir des données reflétant la stochasticité des préférences des individus et la nature complexe 

des processus de prise de décision des conducteurs, sans augmenter de manière significative le 

fardeau des répondants. L'enquête recueille des informations sur les caractéristiques 

sociodémographiques et socio-économiques des conducteurs, leurs choix d’itinéraire et leurs 

ensembles d'alternatives considérées, ainsi que leurs perceptions et leurs traits de comportement. 

À la fin de la période de collecte de données (trois mois), 843 personnes ont participé à l'enquête, 

dont 539 (64 %) l'ont terminé, alors que les autres 304 (36 %) l'ont abandonné. La durée moyenne 

de l'enquête était d'environ 16 minutes. Nous avons également examiné diverses paradonnées 

disponibles, telles que le temps de complétion et le taux de décrochage par type de question et de 

section, quelques statistiques sur diverses méthodes de recrutement et le taux de complétion de 

l'enquête par heure de la journée. Ces paradonnées peuvent être utiles pour identifier les problèmes 

de collecte de données, proposer de nouvelles stratégies de collecte de données et déterminer un 

compromis entre la qualité des données, le coût et la période de collecte de données. 

Le dernier domaine de contribution de cette thèse concerne la première étape de la modélisation 

du choix d'itinéraires dans un cadre de modélisation en deux étapes, c'est-à-dire la compréhension 

des ensembles de choix d'itinéraires. Étant donné que ces ensembles sont généralement latents pour 

l'analyste et que les informations concernant les attributs objectifs et subjectifs affectant leurs tailles 

et compositions sont limitées, nous avons adopté le sondage mentionné ci-dessus pour recueillir 

des informations sur les ensembles de choix considérés par les répondants. Nous avons étudié 

988 itinéraires, déclarés par 506 conducteurs résidant et conduisant dans la grande région de 

Montréal. L'effet de six catégories de facteurs sur la taille des ensembles déclarés a été étudié, y 

compris les attributs personnels, les facteurs déclarés, les indicateurs comportementaux, les 

incitatifs, les déterminants de la conscience et les composantes spatiales, temporelles et 

environnementales. En conséquence, quatre groupes différents ont été définis en fonction du 
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nombre d'alternatives considérées et la relation de ces facteurs avec chaque groupe a été étudiée. 

Les résultats de cette étude permettent de mieux saisir la relation entre divers attributs et la taille 

de l'ensemble de choix. Une meilleure compréhension de la taille et de la composition des 

ensembles de choix peut considérablement améliorer les résultats d'estimation et de prévision des 

modèles de choix d'itinéraires en fournissant de l'information sur les préférences des individus. 

Les modèles de choix élaborés incluant les traits et variables de comportement sont plus difficiles 

à estimer et nécessitent des méthodes de collecte de données plus complexes. Cependant, ces 

modèles offrent de meilleures capacités de prédiction, corrigent les biais cognitifs (i.e. erreurs de 

perception, d'évaluation, et d'interprétation logique), vérifient les hypothèses comportementales 

concernant les processus de prise de décision et, par conséquent, fournissent une référence pour 

évaluer la performance des modèles plus parcimonieux. 
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ABSTRACT 

Route choice modelling is probably one of the most complex and challenging problems in travel 

behaviour analysis. It investigates the process of route selection by an individual, making a trip 

between predefined origin-destination pairs. The main objective of this thesis is to enhance the 

behavioural understanding of drivers’ route choice decisions by observing drivers’ underlying 

process of decision-making. 

Various approaches have been adopted to model drivers’ route choice behaviour, among which 

random utility discrete choice models have received considerable attention. In this modelling 

framework, each choice alternative is characterized by a function called utility, and individuals are 

viewed as rational decision makers who maximize their perceived utilities. This work is based on 

a two-stage random utility maximization framework with sampling of alternatives, in which the 

first stage consists of defining a proper consideration set, from which the final choice is made in 

the second stage. The application of the two-stage random utility maximization framework in route 

choice modelling gives rise to a particular challenge, namely the definition of realistic and 

representative choice sets. Another challenge of route choices modelling is the complex correlation 

structure of route alternative. Although several approaches have been proposed to tackle the above-

mentioned issues, one of the remaining challenges is the consistency of the proposed modelling 

approaches with drivers’ underlying behavioural process of decision-making. 

In this regard, the main contributions of this thesis revolve around the three general components of 

the two-stage route choice modelling framework, namely the modelling framework, the data 

collection method, and the consideration set of route alternatives. The three main contributions 

regarding the modelling framework include: 

 First, we followed the idea that drivers follow the hierarchical representation of space and 

that some prominent features of the route, i.e. anchor points, might affect their decisions. 

We studied the influence of bridges as anchor points on drivers’ route choice decisions 

between the two islands of Montreal and Laval, and adopted a nested modelling approach 

to represent the space hierarchy and to incorporate the effects of anchor points and route 

level attributes at the same time. Moreover, this approach also provides the possibility to 

capture the unobserved similarities of routes crossing a same anchor point, such as safety, 

scenery, driving comfort, etc. Results show that the nested modelling approach provides 
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better model fits and outperform the prediction abilities of comparative route-based choice 

models, such as the Path-Size Logit, Extended Path-Size Logit, and Independent 

Availability Logit models. 

 The second contribution of this thesis builds upon the idea that individuals have different 

inclinations towards choosing a route between an origin and destination, which stems from 

having different attitudes, preferences, and experiences, and consequently may form 

different types of decision-making behaviours. For this purpose, we studied a longitudinal 

GPS dataset, tracking 1,746 taxi drivers making more than 22,000 trips over a period of one 

year. Accordingly, four categories of operating strategies have been found based on 

variations in trips made during days and nights, and between short trips and long trips. 

Apart from the fact that understanding of these operating strategies helps to better 

understand urban traffic dynamics, which is very important to the city and transportation 

planners, the behavioural classification provides the possibility of estimating more accurate 

route choice models. 

 The third contribution revolves around the idea that choices are greatly influenced by: 1) 

latent traits and variables that cannot be directly observed, such as attitudes, perceptions, 

and lifestyle preferences, and 2) the latent heterogeneity existing between different 

segments of the population. To properly incorporate the effect of segment heterogeneity 

and to distinguish between choice behaviours of different classes of the sample population 

we used a latent class model, in which we incorporated the role of the underlying attitudinal 

and behavioural traits using an Integrated Choice and Latent Variable model. We applied 

the proposed modelling framework to compare the route choice behaviour of frequent 

versus occasional drivers. Expectedly, major behavioural traits have been observed among 

different segments of the studied population, and modelling results demonstrated that the 

inclusion of behavioural traits in the LC model significantly improves its fit over the data. 

Despite the appeal of behavioural modelling frameworks, their applications in route choice studies 

remain rare, which can be mostly related to the fact that collecting behavioural data is cumbersome, 

costly and time consuming. Another contribution of this thesis is the design and implementation of 

a data collection framework designed for behavioural route choice studies. The main aim of the 

proposed framework is to collect data reflecting the stochasticity of individuals’ preferences and 
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the complex nature of the drivers’ decision-making processes, without significantly increasing the 

respondent burden. The survey collects information on drivers’ sociodemographic and 

socioeconomic characteristics, their revealed route choices and their considered sets of route 

alternatives, as well as their perceptions, and behavioural traits. By the end of the three-month data 

collection period, 843 individuals started the survey from which 539 (64 %) completed it, while 

the remaining 304 (36 %) dropped out at various points of the survey. The average completion time 

of the survey was around 16 minutes. We also looked at various available paradata, such as the 

completion times and dropout rates per question type and section, some statistics on various 

recruitment methods, and survey completion rate per hour of the day. Looking at these paradata 

can be useful in identifying data collection problems, proposing new data collection strategies, and 

determining a trade-off between data quality, cost and time. 

The last contributing area of this thesis concerns the first stage of route choice modelling in a two-

stage modelling framework, namely the understanding of route choice sets. Since actual 

consideration sets of route alternatives are usually latent to the analyst and information concerning 

objective and subjective attributes affecting their size and composition is limited, we adopted the 

proposed survey framework to collect information on respondents considered choice sets. We 

investigated 988 route alternatives, declared by 506 drivers, residing and driving in the Greater 

Montreal Area. The effect of six broad categories of factors on the size of drivers’ consideration 

sets has been studied, including personal attributes, declared factors, behavioural indicators, 

incentives, awareness determinants, and spatial, temporal and environmental components. 

Accordingly, four different clusters were defined based on the number of considered alternatives 

and the relationship of these factors with each cluster was investigated. Results of this study shed 

light on the relationship of various attributes with the size of the choice set. A better understanding 

of drivers’ consideration sets’ size and composition can significantly improve route choice models’ 

estimation and prediction efficiency by providing information about travellers’ preferences. 

Behaviourally elaborated models require customized programs and fast computers for estimation 

and necessitate well-tailored data collection methods. However, these models provide better 

prediction abilities, correct for cognitive biases (i.e. errors of perception, evaluation, and logical 

interpretation), verify behavioural hypotheses regarding the decision-making process, allow for a 

clearer behavioural interpretation than standard choice models, and hence, provide a benchmark to 

evaluate the performance of more parsimonious models.  
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CHAPTER 1 INTRODUCTION 

1.1 Context 

In a transportation network, individuals’ route choices or more generally, travels, are interpreted 

as demand. Travel demand may cause congestion when it exceeds the offered capacity, i.e. the 

supply. More than 84 % of Canadian households owned or leased at least one vehicle in 2007 

(Natural Resources Canada, 2009). Consequently, many trips are made by vehicles, which in turn 

may induce road congestion. Congestion reduces our quality of life, affects our economy and 

degrades our environment by among others, wasting energy and producing air contaminants (Chen, 

2013a; Frejinger, 2008; Hoogendoorn-Lanser, 2005; Sikka, 2012). 

Congestion is a growing problem in Canada as well as in many other countries. Car dependency 

among Canadians is rising, while active transportation (walking or biking) is declining (Turcotte, 

2008). In 2006, Transport Canada studied the annual cost of congestion in nine of the largest cities 

in Canada. The total annual cost has been evaluated to be $3.1 billion, with Montreal being the 

second contributor to this cost after the city of Toronto. Measures such as duration of the peak 

period, percentage of work versus non-work trips, values of time, fuel price, and the unit cost to 

mitigate greenhouse gases were considered in the calculation (The High Cost of Congestion in 

Canadian Cities, 2012). Another study conducted by Metrolinx in 2008, investigated the cost of 

congestion based on the difference between an optimal speed and an actual speed during morning 

and evening rush hours, and concluded that the annual social and economic cost of congestion in 

the Greater Toronto and Hamilton Area (GTHA) was approximately $3.3 billion (Metrolinx, 2008). 

Another study by the Ministry of Transportation of Quebec – MTQ (today known as the ministry 

of transport, sustainable mobility and transport electrification – MTMDET) evaluated the cost of 

congestion in Montreal to be around $1.4 billion per year, considering a traffic speed threshold of 

60 %. Measures such as time, vehicle wear, fuel, pollution and greenhouse gas emissions 

contributed to the estimated cost (Ministère des Transports du Québec, 2009). 

Travel is essential to the social welfare and a healthy economy. To alleviate the adverse effects of 

traffic congestion, it is imperative, first of all, to understand its causes. One of the major causes of 

congestion is the excess of demand over supply. Road demand, which materializes as traffic flow 

patterns, is in turn the result of individuals’ route choice decisions. Therefore, it is of critical 
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importance to understand drivers’ travel and route choice behaviour in order to mitigate the adverse 

effects of congestion. Route choice modelling is very important in transportation planning and is a 

powerful tool to forecast traffic flow patterns, design new transportation infrastructures, and 

investigate new transportation policies. 

1.2 Background 

Route choice models investigate the process of route selection by an individual, making a trip 

between given origin-destination (OD) pairs. There is a large body of literature in microeconomics, 

behavioural science, psychology, and behavioural geography focusing on the improvement of the 

understanding of the underlying process of decision-making. Accordingly, several modelling 

frameworks have been proposed to simulate drivers’ route choice behaviour. For instance, prospect 

theory (Gao, Frejinger, & Ben-Akiva, 2010; Kahneman & Tversky, 1979) and cumulative prospect 

theory (Connors & Sumalee, 2009; Tversky & Kahneman, 1992; Xu, Zhou, & Xu, 2011) have been 

applied by researchers to take into account the limited rationality of drivers in making decisions, 

by incorporating psychological and behavioural aspects. The uncertainty and imprecision of drivers 

in making route choice decisions have been considered in a Fuzzy Logic modelling framework 

(Henn, 2003; Luisa De Maio & Vitetta, 2015; Murat & Uludag, 2008; Quattrone & Vitetta, 2011), 

and artificial neural networks have been used to account for the non-linearity of the decision-

making process by imitating the human conscious structure (Dougherty, 1995; Kim, Sung, 

Namgung, & Jang, 2005). Also, the Random Regret Minimization (RRM) approach has been 

adopted by Prato (2014) in a route choice modelling context, in which choice makers tend to choose 

the alternative that minimizes the regret of not having chosen the other alternatives. 

Among the proposed approaches, random utility discrete choice models are among the most 

frequently used to model, analyze and understand decision-making behaviours (Prato, 2009b; 

Walker, 2001). This approach presumes that decision makers tend to choose the best alternative by 

maximizing a specific perceived utility. In other words, in a random utility maximization approach, 

observed choices are manifestations of decision makers’ preferences, expressed by alternative 

specific utility functions. Choice model estimation results in selection probabilities for each 

alternative, which can then be used to predict decision makers’ choice behaviour (Dhaker, 2012; 

Frejinger, Bierlaire, & Ben-Akiva, 2009; Manski, 1977; Walker, 2001). Since the decision maker 

may not have a perfect knowledge and because the effect of some attributes cannot be directly 
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measured (such as lifestyle and attitudes), an error component has been introduced into the utility 

function to take into account the stochasticity and imprecision caused by decision makers’ 

uncertainty and behavioural randomness (Ben-Akiva & Bierlaire, 2003).  

In this framework, a two-stage modelling process with sampling of alternatives is mostly adopted 

to simulate drivers’ route choices. In the first stage, decision makers form a limited set of route 

alternatives, called the consideration set, from the universal set, i.e. all the possible routes between 

the studied OD pair. Then, they pick their most preferred routes (based on a specified utility 

function) from the consideration set in the second stage (Ben-Akiva & Boccara, 1995; Bovy, 2009; 

Manski, 1977). This thesis is built upon the two-stage random utility maximization framework with 

sampling of alternatives (described in more details in subsection 2.1.1). 

1.3 Motivation 

Route choice modelling is probably one of the most complex and challenging problems in traffic 

assignment. In a two-stage framework, the complexity of modelling route choice decisions is 

mainly attributed to the high density of the road network and the large number of possible 

alternatives between OD pairs.  

In a two stage modelling approach with sampling of alternatives, defining a proper consideration 

set is a serious challenge in route choice modelling. Consideration sets of route alternatives are 

rarely observed and are usually latent to the analyst. Therefore, deterministic and stochastic path 

generation techniques are usually adopted to generate simulated sets of considered alternatives, 

using variations of the shortest path algorithm (Ben-Akiva & Boccara, 1995; Bovy, 2009; Prato, 

Bekhor, & Pronello, 2012). The generated sets should include alternatives that are attractive to the 

driver in a real world choice situation (Hess & Daly, 2010), and the misspecification of their size 

and composition greatly affects model’s estimates and may lead to fallacious predicted demand 

levels (Bliemer & Bovy, 2008; Geda, 2014; Peters, Adamowicz, & Boxall, 1995; Prato & Bekhor, 

2006, 2007b; Schuessler & Axhausen, 2009; Swait & Ben-Akiva, 1987a). 

Another major challenge in route choice modelling is to take into consideration the correlation 

structure (i.e. overlaps) among various routes. Several approaches have been proposed to address 

this issue, either by modifying the deterministic part of the utility function or its stochastic part 

(Dhaker, 2012; Prato, 2009a). These approaches are discussed in detail in Chapter 2. 
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Moreover, the general complexity of choice modelling, which is also extended to route choice 

modelling, is related to factors such as the sophisticated nature of human behaviour, the ambiguity 

of the decision-making process, and the stochasticity of individuals’ preferences. The heterogeneity 

in travellers’ behavioural characteristics, in conjunction with the complex effect of route attributes, 

further increases the inherent complexity of route choice modelling. 

Individuals have different inclinations towards choosing a route between an origin and destination. 

This heterogeneity comes from having different preferences, different experiences, and different 

attitudes. For instance, in terms of preferences, an individual might prefer to choose a route with 

better scenery while another individual seeks the fastest route; in terms of experiences, more 

experienced drivers may be more familiar with the network; and in terms of attitudes, some drivers 

might have better spatial abilities. 

Drivers’ attitudes, perceptions and preferences play a major role in the decision-making process 

(Ben-Akiva et al., 2002; Prato et al., 2012; Walker, 2001). However, the effect of these factors on 

drivers’ route choice decisions is not easy to evaluate using conventional methods of data 

collection. Route choice studies are mostly based on GPS data and revealed preference surveys, 

where there is a notable lack of behavioural and attitudinal information. Moreover, stated 

preference surveys usually avoid attitudinal questions to minimize respondents’ burden and 

maximize surveys’ completion rate. 

1.4 Objectives and Contributions 

Although several approaches have been proposed to tackle the above-mentioned issues in route 

choice modelling, one of the remaining challenges is the consistency of the proposed modelling 

approaches with the drivers’ underlying behavioural process of decision-making. 

By adopting a random utility maximization framework and a two-stage modelling process with 

sampling of alternatives, the main objective of this thesis is to improve the understanding of 

drivers’ route choice behaviour. To fulfill this main objective, more specific goals and 

contributions are defined for this thesis that are summarized below. 
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1.4.1 Space Hierarchy and the Role of Anchor Points 

Objective: It is well established in the literature that individuals orient themselves based on 

distinguished features of the route, called anchor points, and follow a hierarchical planning strategy 

influenced by the hierarchical representation of space. However, route choice models have mostly 

neglected the effect of space hierarchy and anchor points on route choice decisions. The first 

objective of this thesis is to propose a route choice modelling framework in which the effect of 

anchor points is incorporated along with the effect of route level attributes. 

Contribution: The effect of space hierarchy and anchor points on drivers is captured using an 

“anchor-based nested” modelling approach, to promote the behavioural aspect of route choice 

models by considering both anchor points and route-level attributes. First, a Nested Logit (NL) 

structure is adopted, in which upper nests correspond to anchor points and lower nests include route 

alternatives. Second, a nested Logit Kernel (LK) model is estimated to capture the reciprocal effect 

of route level attributes and anchor points on route selection. Moreover, in the former model, the 

nested structure captures the shared unobserved components of the utility function among routes 

crossing the same anchor points, while in the latter, the adopted factor analytic approach accounts 

for the interdependencies and latent similarities. 

1.4.2 Behavioural Classification 

Objective: The classification of travellers’ behaviours (such as pedestrians, bike users, bike-

sharing members, car-sharing members, etc.) has been extensively studied in the literature. 

Although previous studies have shown that different categories of road users are observable, an 

explicit classification of car drivers route choice behaviours, based on their actual route choices, is 

missing from the literature. This research gap defines our next objective and contribution. 

Contribution: This study sheds some light on taxi drivers’ different route choice behaviours based 

on their revealed route choices. Taxi drivers’ actual route choices are studied and classification 

methods are adopted to characterize their different route choice behaviours. 

1.4.3 Specialized Data Collection 

Objective: Route choice studies are rarely based on data collection methods tailored for route 

choice modelling purposes. Existing data collection methods mostly ignore the behavioural and 
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attitudinal factors affecting individuals’ responses. The increasing application of advanced choice 

models, reflecting the stochasticity of individuals’ preferences and the complex nature of human 

decision-making behaviour, requires enhanced data collection methods collecting detailed data 

without significantly increasing respondent burden. This research aims at designing and 

implementing such a survey framework. 

Contribution: A web-based survey is designed to provide a rich dataset, based on which reliable 

behavioural route choice models can be produced. The survey is designed to reveal drivers’ 

consideration set of route alternatives, their final choices, and the latent behavioural traits that affect 

the formation of drivers’ consideration set and influence their final choices. In short, it enables the 

analyst to investigate more closely some major challenges facing route choice modelling, such as 

the definition of route alternatives and how they are perceived by drivers, the characteristics of a 

considered set of route alternatives, and the role of different attributes (observable and latent) in 

route choice decisions. 

1.4.4 Behavioural Traits and Latent Heterogeneity 

Objective: It has been well-established in the literature that latent traits such as attitudes, 

perceptions, and lifestyle preferences affect individuals’ decisions. Moreover, different segments 

of the population, might also have different choice behaviours. These latent factors and taste 

heterogeneity have mostly been ignored in previous route choice studies. Another objective of this 

research is to compare the route choice behavior of frequent versus occasional drivers and to 

provide a comprehensive framework to explicitly incorporate the effect of latent behavioural 

constructs as well as population segments’ taste heterogeneity into the choice modelling process. 

Contribution: To compare route choice behavior of frequent versus occasional drivers and to 

incorporate both the effects of segment heterogeneity and latent variables in their decision-making 

process, the LC-ICLV modelling framework is proposed by considering an Integrated Choice and 

Latent Variable (ICLV) model as the choice component of a Latent Class (LC) model. The ICLV 

model is used to bring in the role of the underlying behavioural constructs, while the LC component 

accounts for the taste heterogeneity across population segments. 
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1.4.5 Consideration Set of Route Alternatives 

Objective: The way individual drivers derive their actual consideration set of route alternatives, 

and factors affecting the size and composition of these choice sets is a complex subject. Individuals’ 

choice sets are dependent on objective constraints, such as route attributes as well as subjective 

criteria, such as individuals’ attitudes, perceptions and experiences. The final objective of this 

thesis is to elaborate on this aspect of route choice modelling by observing drivers’ actual 

consideration sets and analysing factors affecting their sizes. 

Contribution: The relationship of six broad categories of factors on the size of the declared 

consideration sets is studied. Accordingly, factors having an incidence on the size of the considered 

choice sets are identified to illustrate that different sizes of considered choice sets can be associated 

to different types of choice behaviour. 

1.5 Thesis Structure 

This thesis is presented in 10 chapters and includes the contributions in the form of articles 

presented in five chapters (Chapter 4 to Chapter 8).  

 This chapter (Chapter 1) presents a concise background on route choice modelling together 

with motivations, research objectives and contributions of this research. 

 Chapter 2 presents a review of relevant research efforts, focusing on route choice modelling 

approaches, data collection methods, and factors affecting route choice decisions. 

 Chapter 3 focuses on the general methodology and the scope of the presented work. 

 Chapter 4 presents the article entitled “On the Role of Bridges as Anchor Points in Route 

Choice Modelling”, published in “Transportation” journal. 

 Chapter 5 presents the article entitled “Classifying Behavioural Dynamics of Taxi Drivers 

Operating Strategies Using Longitudinal Route Choice Data”, which has been submitted 

for publication in the journal “Transportation Research Part F: Traffic Psychology and 

Behaviour”. 

 Chapter 6 presents the article entitled “An Online Survey to Enhance the Understanding of 

Car Drivers Route Choices”, which has been presented at the 11th International Conference 
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on Transport Survey Methods (ISCTSC) and has been submitted for publication in the 

“Transportation Research Procedia” of the conference. 

 Chapter 7 presents the article entitled “Frequent Versus Occasional Drivers: A Hybrid 

Route Choice Model”, which has been submitted for publication in “Transportation 

Research Part F: Traffic Psychology and Behaviour” journal. 

 Chapter 8 presents the article entitled “Factors Affecting Drivers’ Consideration Set of 

Route Alternatives”, which has been presented at Transportation Research Board 2018 

Annual Meeting. 

 Chapter 9 provides a general discussion on the main findings of this research. 

 Chapter 10 summarises the most important contributions of this thesis and discusses the 

major conclusions, limitations and directions for future research in this area. 
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CHAPTER 2 MODELLING ROUTE CHOICE DECISIONS: A REVIEW 

This section covers the state of the art in modelling route choice decisions in a discrete choice 

modelling framework. First, the discrete choice modelling framework is introduced, and 

approaches with restricted and unrestricted choice sets are described. The second part of this 

section presents a brief review of data collection methods adopted in route choice studies. Third, 

several types of attributes and factors affecting drivers’ route choice decisions are discussed. 

2.1 Route Choice Modelling: A Discrete Choice Framework 

What is random utility discrete choice modelling? It is a modelling framework that stems from the 

consumer theory of microeconomics and is applied to understand and predict decision makers’ 

choices. In this framework, observed choices are considered as discrete events and individuals’ 

preferences are represented by a vector called “utility”, which captures the effect of different 

factors on the final choices. Also, individuals are viewed as rational decision makers who intend 

to maximize their perceived utilities. The utility function consists of two components presented in 

Equation 2.1.  

𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 휀𝑖𝑛 (2.1) 

The deterministic part of the random utility function 𝑉𝑖𝑛, depends on the observed characteristics 

of each decision maker 𝑛. In order to take into account the stochasticity and imprecision caused by 

the lack of information, uncertainty and behavioural randomness of the decision maker, an error 

component is added to the utility vector (Ben-Akiva & Bierlaire, 2003). 

Since every decision maker seeks to maximize his perceived utility, the utility of each alternative 

𝑗 ∈  𝐶𝑛 is evaluated and the probability that a given alternative 𝑖 is chosen by decision maker 𝑛 

from the feasible choice set 𝐶𝑛 is given by Equation 2.2. 

𝑃(𝑖|𝐶𝑛) = 𝑃 [𝑈𝑖𝑛 = max
𝑗∈𝐶𝑛

𝑈𝑗𝑛] (2.2) 

Various types of models have been developed based on specific assumptions on the structure of 

the deterministic component 𝑉𝑖𝑛 or depending on the statistical distribution of the stochastic 

component 휀𝑖𝑛 of the utility function. The Multinomial Logit Model (MNL) is the simplest example 

of these models, which assumes that the error component of the random utility function is 
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independently and identically distributed (i.i.d.) with a Gumbel distribution. The MNL formulation 

is illustrated in Equation 2.3, 

𝑃(𝑖|𝐶𝑛) =
𝑒𝑉𝑖

∑ 𝑒𝑉𝑗𝑗∈𝐶𝑛

 (2.3) 

where 𝑃(𝑖|𝐶𝑛) is the probability of choosing alternative 𝑖 from 𝐶𝑛, 𝐶𝑛 is the choice set of feasible 

routes for individual 𝑛, and 𝑉𝑖 and 𝑉𝑗 are the deterministic components of the utility functions for 

paths 𝑖 and 𝑗, respectively. To model route choice decisions, two major schools of thought exist 

within the realm of discrete choice modelling: i) the two-stage choice modelling approach with 

restricted choice set, and ii) the recursive logit with unrestricted choice set. These approaches are 

discussed subsequently. 

2.1.1 Two Stage Choice Modelling with Restricted Choice Set 

Analysing choices using this approach requires knowledge regarding the set of alternative choices 

available to the decision maker from which the final decision has been made. This set is usually 

called the considered choice set (or consideration set) and contains a finite number of alternatives 

(Ben-Akiva & Bierlaire, 2003). In other words, in a two-stage choice process, decision makers 

reduce the total number of possible alternatives 𝑈 (i.e. the universal choice set), to a smaller set of 

feasible alternatives, called the considered choice set 𝐶𝑛, in the first stage. Then, in the second stage 

they compare every alternative in the latter to find the one that maximizes their perceived utility 

(Ben-Akiva & Boccara, 1995; Bovy, 2009; Manski, 1977). The two stage modelling process can 

be formulated as 

𝑃(𝑖) = ∑ 𝑃(𝑖|𝐶𝑛)𝑃(𝐶𝑛)

𝐶𝑛⊂𝐻𝑛

 (2.4) 

where 𝑃(𝑖) denotes the probability of route 𝑖 being chosen, 𝑃(𝑖|𝐶𝑛) is the probability of choosing 

route 𝑖 given 𝐶𝑛 (the considered choice set of route alternatives for individual 𝑛), 𝑃(𝐶𝑛) denotes 

the probability of choosing the considered set 𝐶𝑛 among all the possible non-empty subsets of route 

alternatives 𝐻𝑛. However, defining a probabilistic choice set of route alternatives (i.e. 𝑃(𝐶𝑛)) is a 

very complex and mathematically intractable problem due to the size of 𝐻𝑛, and has never been 

used in real-world route choice applications. 
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However, the MNL model can be consistently estimated on a subset of alternatives using the 

approach discussed by McFadden (1978), in which the probability of choosing route 𝑖 is conditional 

on the defined consideration set 𝐶𝑛, and an alternative specific correction term is added to correct 

for sampling bias. This conditional probability is calculated as: 

𝑃(𝑖|𝐶𝑛) =
𝑒𝜇𝑉𝑖𝑛+ln𝑞(𝐶𝑛|𝑖)

∑ 𝑒𝜇𝑉𝑗𝑛+ln𝑞(𝐶𝑛|𝑗)𝑗∈𝐶𝑛

 (2.5) 

where ln 𝑞(𝐶𝑛|𝑖) is the alternative specific correction term based on the probability of sampling 𝐶𝑛 

given that route 𝑖 has been chosen. 

The complexity of modelling route choice behaviour in a two-stage modelling approach arises from 

two main challenges: 1) the large number of possible routes connecting a given origin destination 

pair in a real world network, and 2) the complex correlation structure among the overlapping route 

alternatives. Choice set generation methods and advanced choice models have been developed to 

deal with these challenges. An overview of these methods is presented next. 

2.1.1.1 Choice Set Generation 

In route choice modelling, considered sets of alternatives are mostly latent to the analyst and are 

rarely observed (Hoogendoorn-Lanser, van Ness, & Bovy, 2005; Prato et al., 2012). In real world 

road networks, it is computationally very expensive and operationally not feasible to identify the 

universal choice set, i.e. to enumerate all the paths connecting a given OD pair. Hence, 

deterministic and stochastic route generation techniques have been adopted to create a subset of 

alternatives known as the master set, which approximates all the routes that are supposed to be 

known to the decision maker. However, this set may still be very large and may contain implausible 

and unattractive alternatives. Moreover, drivers are assumed to be aware of all of them and 

tirelessly compare their attributes to choose the best one. Due to the limited information processing 

abilities of drivers, spatial and temporal restrictions, and latent traits, such as attitudes and 

preferences, a set of spatiotemporal constraints and screening rules are usually adopted to delimit 

the consideration set, which is supposed to represent the actual set of routes from which drivers 

pick their final one (Ben-Akiva & Boccara, 1995; Bovy, 2009; Prato et al., 2012). 

Since random sampling of alternatives in large universal choice sets is not efficient in terms of 

providing information, an importance sampling method is deemed to be more convenient and 
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favorable to sample more attractive alternatives (Hess & Daly, 2010). Several deterministic and 

stochastic path generation methods, mostly based on repeated shortest path algorithms, have been 

proposed in the literature to form consideration sets. 

Among the deterministic methods are k-shortest path (Papinski & Scott, 2011), link labelling (Ben-

Akiva, Bergman, Daly, & Ramaswamy, 1984), link elimination (Azevedo, Costa, Madeira, & 

Martins, 1993), and link penalty (de la Barra, Perez, & Anez, 1993) methods. The k-shortest path 

algorithm is a generalization of the shortest path algorithm (Dijkstra, 1959), which finds the first 𝑘 

shortest paths connecting two points, based on a specific cost function. In route labelling, the 

analyst generates shortest paths based on different cost functions (i.e. labels), such as scenery, 

travel time, travel distance, number of lights, etc. The link elimination approach finds the next best 

route, based on a generalized cost function, by eliminating one or more links from the previously 

found shortest path. The elimination can be performed randomly or controlled by predefined 

criteria (Dhaker, 2012; Prato & Bekhor, 2007b; Rieser-Schüssler, Balmer, & Axhausen, 2013). 

Link penalty is an iterative approach in which the generalized cost function is gradually increased, 

and a new shortest path is calculated in each step. The iteration is repeated until a predefined 

number of route alternatives are generated (Dhaker, 2012; Rieser-Schüssler et al., 2013). 

Stochastic route generation methods, however, randomly draw link impedances from probability 

distributions to account for individuals’ preferences and perception errors. Then, repeated shortest 

path algorithms are used to select route alternatives based on these random generalized costs 

(Dhaker, 2012; Frejinger, 2008; Prato, 2009b). 

The major downside of using these deterministic and stochastic methods is that they do not provide 

researchers with sampling probabilities of the selected alternatives. Model estimates based on these 

path generation techniques are biased, unless the sampling probability of every alternative in the 

universal set is equal, which is not the case in route choice modelling (Frejinger et al., 2009; Prato, 

2009a). Several alternative approaches have been proposed to deal with this challenge. For 

instance, Manski (1977) proposed a full probabilistic method in which an inclusion probability (or 

sampling probability) is calculated for every possible route alternative. This approach is impractical 

and unmanageable in real world networks where the total number of possible route alternatives is 

very large (Prato, 2009b). Cascetta, Russo, Viola, and Vitetta (2002) adopted a two-stage process, 

where in the first step, a complete set of alternatives is generated for all the observed trips by 
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maximizing a coverage factor between the generated set and the set of routes perceived as available. 

Then, in the second step, a binomial logit model is adopted to estimate the probability of including 

a given route in users’ consideration sets. Frejinger et al. (2009) applied a biased random walk to 

sample a subset of paths and derived a sampling correction factor to estimate unbiased parameters. 

More recently, Flötteröd and Bierlaire (2013) used a Metropolis-Hastings (MH) algorithm to 

generate sample sets based on an arbitrary distribution providing the sampling probability of each 

alternative. This algorithm requires a road network and a definition of path weight as inputs. It uses 

an underlying Markov Chain process to sample alternatives and calculates its sampling probability 

without the need of normalizing it over the full choice set. 

For more details and in-depth comparisons of the discussed methods the reader is referred to (Bovy, 

2009; Frejinger, 2008; Frejinger & Bierlaire, 2010; Prato, 2009b; Rieser-Schüssler et al., 2013). 

2.1.1.2  Route Choice Models 

In the MNL model, which is a powerful tool for modelling choice behaviour, the likelihood of 

choosing alternative 𝐴1 over another alternative 𝐴2 is independent from whether a third alternative 

𝐴3 is present. This feature, called the Independence of Irrelevant Alternatives (IIA), may not hold 

in real world route choice situations, where different alternatives share similar links. Hence, it may 

overestimate the choice probability of routes with common links. 

Therefore, different approaches have been proposed to consider the correlations between route 

alternatives. The first approach is to maintain the logit structure and modify the deterministic part 

of the utility function. Models such as C-Logit (Cascetta, Nuzzolo, Russo, & Vitetta, 1996b), Path-

Size Logit (Ben-Akiva & Bierlaire, 1999a) and Path-Size Correction Logit (Bovy, Bekhor, & Prato, 

2008) models are in this category. The second modelling approach accounts for similarities in the 

stochastic part of the utility function and presents a closed-form expression for the choice 

probability. These models, also known as Multivariate Extreme Value (MEV) models, include 

Paired Combinatorial Logit, Cross Nested Logit and Generalized Nested Logit models. The third 

approach, i.e. the Non-MEV modelling approach, accounts for similarities in the stochastic part of 

the utility function and does not have a closed-form expression for the choice probability. This 

category of model includes Multinomial Probit, Mixed Logit, and Logit Kernel models (Dhaker, 

2012; Prato, 2009a). A brief overview of these approaches follows. 
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2.1.1.2.1 Modifying the Deterministic Component 

This approach maintains the simple structure of logit and adds a correction term to the utility 

function to consider the amount of similarity (or dissimilarity) between alternatives. This model 

takes the general form of: 

𝑃(𝑖|𝐶𝑛) =
𝑒𝑉𝑖+𝛽𝐶𝐹 ∗ 𝐶𝐹𝑖

∑ 𝑒𝑉𝑗+𝛽𝐶𝐹 ∗ 𝐶𝐹𝑗𝑗∈𝐶𝑛

 (2.6) 

where 𝐶𝐹𝑖 and 𝐶𝐹𝑗 are the correction factor associated with path 𝑖 and 𝑗, respectively, and 𝛽𝐶𝐹 is a 

parameter to be estimated. The correction factor is usually designed to increase the probability of 

choosing an independent route over choosing an alternative with overlap. Hence, 𝛽𝐶𝐹 is usually a 

negative value and is expected to reduce the utility of paths with common links. 

Different types of correction factors have been proposed in the literature. For instance, Cascetta, 

Nuzzolo, Russo, and Vitetta (1996a) proposed a correction factor based on the amount of overlap 

and similarity of a route with other route alternatives: 

𝐶𝑖 = 𝛾0𝑙𝑛 ∑ (
𝑑𝑖𝑗

√𝑑𝑖. 𝑑𝑗
)

𝛾1

𝑗∈𝐶𝑛

 (2.7) 

where 𝐶𝑖 is the correction factor known as commonality factor of path 𝑖, 𝑑𝑖𝑗 is the common length 

between path 𝑖 and 𝑗, 𝑑𝑖 and 𝑑𝑗 are the lengths of paths 𝑖 and 𝑗, respectively, and 𝛾0 and 𝛾1 are 

parameters to be estimated. Different formulations have been proposed for the commonality factor 

which can be found in (Cascetta et al., 1996a; Prato, 2009a; Ramming, 2002), however, the form 

of commonality factor to use is not clearly specified. 

Ben-Akiva and Bierlaire (1999b) proposed a correction factor named Path-Size factor, and 

proposed the following formulation: 

𝑃𝑆𝑖 = ∑ (
𝑙𝑎
𝐿𝑖
)

1

∑ 𝛿𝑎𝑗
𝐿𝐶𝑛
∗

𝐿𝑗𝑗∈𝐶𝑛
𝑎∈Γ𝑖

 
(2.8) 

where, 𝑃𝑆𝑖 is the Path-Size factor for route 𝑖, 𝛤𝑖 is the set of links in route 𝑖, 𝑙𝑎 is the length of link 

a, 𝐿𝑖 and 𝐿𝑗 are the length of path 𝑖 and 𝑗, respectively, 𝛿𝑎𝑗 is the link-path incident variable (1 if 

link a is on path 𝑗; 0 otherwise), and 𝐿𝐶𝑛
∗  is the length of the shortest path in the choice set. The first 
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term in these equations correspond to the fraction of impedance imposed from a specific link, and 

the second term reflects the number of paths using the link. The generalized Path-Size factor also 

known as exponential Path-Size factor proposed by Ramming (2002) tends to decrease the 

influence of longer paths on the utility of shortest ones: 

𝑃𝑆𝑖 = ∑ (
𝑙𝑎
𝐿𝑖
)

1

∑ (
𝐿𝑖
𝐿𝑗
)
𝛿𝑃𝑆

𝛿𝑎𝑗𝑗∈𝐶𝑛
𝑎∈Г𝑖

 
(2.9) 

where, 𝛿𝑃𝑆 is a parameter to be estimated. Bovy et al. (2008) proposed a revised version of the 

Path-Size factor, called the Path-Size Correction (𝑃𝑆𝐶) factor that takes the following form: 

𝑃𝑆𝐶𝑖 = −∑ (
𝑙𝑎
𝐿𝑖
𝑙𝑛 ∑ 𝛿𝑎𝑗

𝑗∈𝐶𝑛

)

𝑎∈Г𝑖

 (2.10) 

Frejinger et al. (2009) extended the Path-Size factor to take into account the correlation of each 

alternative with all the possible paths in the true (i.e. universal) choice set. The Extended Path-Size 

(𝐸𝑃𝑆) factor is defined as: 

𝐸𝑃𝑆𝑖𝑛 = ∑
𝐿𝑎
𝐿𝑖

1

∑ 𝛿𝑎𝑗𝜔𝑗𝑛𝑗𝜖𝜑𝑛𝑎∈Γ𝑖

 (2.11) 

where, 𝜔𝑗𝑛 = 
𝑘𝑗𝑛

𝑞𝑗𝑛
 is an extension factor with a value equal to 1 if 𝛿𝑎𝑗 = 1 or 𝑞𝑗𝑛𝑅𝑛 ≥ 1, and 

1/(𝑞𝑗𝑛𝑅𝑛 ) otherwise; where 𝑅𝑛 denotes the total number of paths drawn with replacement from 

the universal choice set, 𝑞𝑗𝑛 is the sampling probability of path 𝑗, and 𝑘𝑗𝑛 is the empirical frequency 

or the actual number of times path 𝑗 is drawn with replacement from the universal choice set, by 

the choice set generation algorithm. 

2.1.1.2.2 Modifying the Stochastic Component 

These models account for the correlation between route alternatives by modifying the stochastic 

component of the utility function. Multivariate Extreme Value (MEV) models account for these 

similarities by maintaining a closed form (e.g. Nested Logit, Cross-Nested Logit, etc.). For 

instance, in the cross-nested logit structure, applied by Vovsha and Bekhor (1998) in a route choice 

context and later adopted by Lai and Bierlaire (2015), the correlation between different route 

alternatives is taken into account by modifying the modelling framework, so that each link of the 
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network constitutes a nest and each route belongs to several nests. Also, to consider taste variation 

or correlation between unobserved factors, non-MEV model structures (such as Multinomial 

Probit, Logit Kernel, etc.) are adopted. 

In this section, we only present the Nested Logit, Cross Nested Logit and the Logit Kernel 

modelling frameworks, which are also relevant to subsequent sections. For more details regarding 

these models, the enthusiastic reader is referred to (Dhaker, 2012; Frejinger, 2008; Prato, 2009b). 

2.1.1.2.2.1 Nested Logit 

The Nested Logit formulation, was proposed by Ben-Akiva (1973) and proved to be consistent 

with the stochastic utility maximization theory by McFadden (1978). It is an extension of the 

Multinomial Logit and captures some of the unobserved similarities among alternatives by dividing 

the choice set into several nests. These nests are considered to be collectively exhaustive and 

mutually exclusive in covering the considered alternatives. Every nest contains a subset of 

alternatives sharing a particular characteristic, independent from other subsets of alternatives in 

other nests. In other words, the probability of choosing an alternative from a nest is considered to 

be independent from alternatives in other nests. The probability of choosing an alternative can be 

expressed as the product of the conditional probability of choosing that alternative given a 

particular nest and the choice probability of that respective nest (Ben-Akiva, 1973; Guevara & 

Ben-Akiva, 2013). Within this framework, the probability of choosing alternative 𝑖 by individual 

𝑛 given the true (i.e. universal) choice set 𝐶𝑛 is  

 
𝑃(𝑖|𝐶𝑛) =  

𝑒𝑉𝑖𝑛𝐺𝑖(𝑒
𝑉1𝑛 , … , 𝑒𝑉𝐽𝑛)

𝐺(𝑒𝑉1𝑛 , … , 𝑒𝑉𝐽𝑛)
 (2.12) 

 
𝐺𝑖(𝑒

𝑉1𝑛 , … , 𝑒𝑉𝐽𝑛) =
𝜕𝐺

𝜕𝑒𝑉𝑖𝑛
(𝑒𝑉1𝑛 , … , 𝑒𝑉𝐽𝑛) (2.13) 

where 𝐺 is a non-negative differentiable MEV generating function, 𝐺𝑖 is its partial derivative with 

respect to 𝑒𝑉𝑖𝑛, 𝑉𝑖𝑛 specifies the systematic part of the utility function, and 𝐽𝑛 is the number of 

alternatives in 𝐶𝑛. The probability of choosing alternative 𝑖 from the true choice set can be written 

as: 

 
𝑃(𝑖|𝐶𝑛) =  

𝑒𝑉𝑖𝑛+ln𝐺𝑖(𝑒
𝑉1𝑛 ,…,𝑒

𝑉𝐽𝑛)

∑ 𝑒𝑉𝑗𝑛+ln𝐺𝑗(𝑒
𝑉1𝑛 ,…,𝑒

𝑉𝐽𝑛 )𝐽𝑛
𝑗=1

 (2.14) 
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The partial derivative of the MEV generating function for Nested Logit 𝐺𝑖 given the true choice 

set 𝐶 is calculated using: 

 𝐺𝑖(𝐶𝑛) = 𝐺𝑖(𝑒
𝑉1𝑛 , … , 𝑒𝑉𝐽𝑛) =  𝜇𝑒𝑉𝑖𝑛(𝜇𝑚−1) (∑𝑒𝜇𝑚𝑉𝑖

𝐽𝑚

𝑖=1

)

𝜇
𝜇𝑚

−1

 (2.15) 

where 𝜇 and 𝜇𝑚 are scale parameters for the model and its nests, respectively, where 𝜇/𝜇𝑚 ≤ 1, 

𝑚 is the nest including alternative 𝑖, and 𝐽𝑚 is the number of alternatives in nest 𝑚. The Nested 

Logit modelling framework and its application in route choice modelling are presented in more 

detail in Chapter 4. 

2.1.1.2.2.2 Cross Nested Logit 

The Cross Nested Logit (CNL) model, also referred to as Link Nested Logit, was first applied in 

the context of route choice by Vovsha and Bekhor (1998). In this model, contrary to the Nested 

Logit model, alternatives can belong to several nests and the overlapping problem of route 

alternatives is handled by nesting parameters. Also, the upper level nests are formed by common 

links and routes from the lower level nests. The probability of alternative 𝑖 being chosen from the 

choice set 𝐶𝑛 and a total of 𝑀 nests is given by 

 

𝑃(𝑖|𝐶𝑛) = ∑ 𝑃(𝐶𝑚𝑛|𝐶𝑛)𝑃𝑛(𝑖|𝐶𝑚𝑛)

𝑀

𝑚=1

 (2.16) 

where 𝑃(𝑖|𝐶𝑚𝑛) is the conditional probability of alternative 𝑖 being chosen in the nest 𝑚, given by 

 
𝑃(𝑖|𝐶𝑚𝑛) =

𝛼𝑚𝑖𝑒
𝑉𝑖𝑛

∑ 𝛼𝑚𝑗𝑒
𝑉𝑗𝑛

𝑗∈𝐶𝑛𝑚

 (2.17) 

where 𝛼𝑚𝑖 is the inclusion weight for each alternative 𝑖 in nest 𝑚 with a value between zero and 

one, representing the degree to which alternative 𝑖 is a member of nest 𝑚 (Ramming, 2002; Vovsha 

& Bekhor, 1998). This coefficient captures the similarity within a nest and has the following 

formulation (Bekhor & Prashker, 2001): 

 
𝛼𝑎𝑖 =

𝑙𝑎
𝐿𝑖
𝛿𝑎𝑖 (2.18) 
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where 𝑙𝑎 and 𝐿𝑖 are the length of link 𝑎 and route 𝑖, respectively, and 𝛿𝑎𝑖 is the link-route incident 

variable which is considered to be 1 when link 𝑎 is part of route 𝑖. The marginal probability of the 

nest 𝐶𝑚𝑛 being chosen is 

 
𝑃(𝐶𝑚𝑛|𝐶𝑛) =

𝑒𝑉𝐶𝑚𝑛+𝜇𝑚𝐼𝐶𝑚𝑛

∑ 𝑒𝑉𝐶𝑙𝑛+𝜇𝑚𝐼𝐶𝑙𝑛𝑀
𝑙=1

 (2.19) 

where 𝜇𝑚 is the nesting coefficient which captures the similarity between nests and is considered 

constant by Vovsha and Bekhor (1998). 𝐼𝐶𝑚𝑛takes the following form : 

 
𝐼𝐶𝑚𝑛 = 𝑙𝑛 ∑ (𝛼𝑚𝑗𝑒

𝑉𝑗𝑛)
1
𝜇𝑚⁄

𝑗∈𝐶𝑚𝑛

 (2.20) 

Replacing the three previous equations in Equation 2.16, the conditional probability of choosing 

alternative 𝑖 from 𝐶𝑛 is given by 

 𝑃𝑛(𝑖|𝐶𝑛) =

∑ (𝛼𝑚𝑖𝑒
𝑉𝑖)

1
𝜇𝑚 (∑ (𝛼𝑚𝑗𝑒

𝑉𝑖)
1
𝜇𝑚

𝑗∈𝐶𝑚𝑛 )

𝜇𝑚−1

𝑀
𝑚=1

∑ (∑ (𝛼𝑚𝑗𝑒𝑉𝑖)
1
𝜇𝑚

𝑗∈𝐶𝑚𝑛 )

𝜇𝑚
𝑀
𝑚=1

 (2.21) 

The application of this model for a real-world network can become very computationally expensive 

because of the nesting structure (Cascetta & Papola, 2001). 

2.1.1.2.2.3 Logit Kernel (LK) 

Logit Kernel, which is a combination of Probit and Logit models, was first proposed by Bolduc 

and Ben-Akiva (1991).The random component of its utility function is composed of a probit-like 

term, which captures the interdependencies among alternatives, and an i.i.d. Gumbel distributed 

random component. The interdependencies between alternatives can be explicitly specified using 

a factor analytic approach, proposed by McFadden (1984). This approach accommodates different 

error structures and reduces the estimation complexity of the model (Bekhor, Ben-Akiva, & 

Ramming, 2002; Bierlaire & Frejinger, 2005). The utility function for individual 𝑛 is defined by: 

 𝑈𝑛 = 𝑋𝑛𝛽 + 𝐹𝑛𝑇휁𝑛 + 𝜈𝑛 ( 2.22 ) 



19 

where 𝑈𝑛 is the utility vector of size (𝐽𝑛 × 1), and 𝐽𝑛 is the number of alternative in the choice set 

𝐶𝑛; 𝑋𝑛 is the matrix of explanatory variables of size (𝐽𝑛 × 𝐾); 𝛽 is the vector of unknown 

parameters of size (𝐾 × 1); 𝐹𝑛 is the factor loading matrix of size (𝐽𝑛 ×𝑀); 𝑇 is a diagonal matrix 

of the standard deviation of each factor of size (𝑀 ×𝑀); 휁𝑛 is the vector of i.i.d. random variables 

with zero mean and unit variance of size (𝑀 × 1); and 𝜈𝑛 is the vector of i.i.d. Gumbel distributed 

random term with zero location of size (𝐽𝑛 × 1), a scale equal to 𝜇, and a variance equal 

to (𝜋2 6𝜇2)⁄ . The LK model can replicate any error structure and approximate any random utility 

model (Ben-Akiva, Bolduc, & Walker, 2001; McFadden & Train, 2000; Walker, Ben-Akiva, & 

Bolduc, 2004). In a Nested Logit analog to the LK model, also known as the nested LK model, 𝐹𝑛 

is defined to be the alternative-nest incident matrix and is obtained by defining a dummy variable 

for each nest that equals 1 if an alternative belongs to that particular nest, and 0 otherwise. 

Moreover, 휁𝑛 is usually assumed to be normally distributed 𝑁(0, 1), and 𝑇 captures the amount of 

correlation between alternatives belonging to the same nest (Walker et al., 2004; Walker, 2001). If 

the factors 휁𝑛 are known, the probability of choice 𝑖 given 휁𝑛 is estimated by: 

 
Λ(𝑖|휁𝑛) =  

𝑒𝜇(𝑋𝑖𝑛𝛽+𝐹𝑖𝑛𝑇 𝑛)

∑ 𝑒𝜇(𝑋𝑗𝑛𝛽+𝐹𝑗𝑛𝑇 𝑛)𝐽𝑛
𝑗=1

 ( 2.23 ) 

Since 휁𝑛 is unknown, the unconditional probability takes the following form: 

 

𝑃(𝑖) = ∫Λ(𝑖|휁𝑛)∏𝜙(

𝑀

𝑚=1

휁𝑚)𝑑휁 ( 2.24 ) 

where 𝜙(휁𝑚) is the standard univariate normal density function, and ∏ 𝜙(𝑀
𝑚=1 휁𝑚) represents the 

joint density function of 휁. Since the probability function does not have a closed form, it is 

approximated through simulation: 

 

�̂�(𝑖) =
1

𝐷
∑Λ(𝑖|휁𝑛

𝑑)

𝐷

𝑑=1

 ( 2.25 ) 

where 𝐷 is the number of simulation draws and 휁𝑑 denotes draw 𝑑 from the distribution of 휁. The 

application of a Logit Kernel model in route choice modelling is presented in more detail in Chapter 

4. 
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2.1.2 Recursive Logit with Unrestricted Choice Set 

Fosgerau, Frejinger, and Karlstrom (2013) presented a recursive logit model which can be 

consistently estimated in a real-world road network without the need of path sampling. The model 

relates a sequential link based route choice model and the finite MNL model, in a dynamic discrete 

choice modelling framework. Also, in order to account for the correlation in path utilities, a link 

additive correction factor, called Link Size, which corrects the utility function in a similar way to 

the Path-Size attribute, is added to the utility function. 

In a further study, Mai, Fosgerau, and Frejinger (2015) extended the recursive logit model, allowing 

path utilities to be correlated in a way similar to the nested logit model, and therefore relaxed the 

IIA property associated to the MNL model by assuming that scale parameters are link specific. In 

a recent study, Mai (2016) formulated a generalized recursive logit model, called the Recursive 

Network MEV (RNMEV) model, which can approximate any additive random utility model (e.g. 

the Nested Logit, or the Cross Nested Logit). Moreover, a recent study by Mai, Bastin, and 

Frejinger (2016) used a decomposition method to reduce the number of linear systems to be solved 

and reduce the computation time required for model estimation. 

For a more in-depth discussion on the formulation, estimation procedure and application results of 

the recursive logit model, the reader is referred to (Fosgerau et al., 2013; Mai, 2016; Mai et al., 

2016; Mai, Bastin, & Frejinger, 2017; Mai et al., 2015; Zimmermann, Mai, & Frejinger, 2017a). 

2.2 Route Choice Data Collection 

In general, data collection methods for choice modelling in transportation studies can be classified 

into three broad categories, namely Revealed Preferences (RP) surveys, Stated Preferences (SP) 

surveys, and passive data. These methods are concisely discussed below. 

2.2.1 Revealed Preferences (RP)  

RP surveys require respondents to describe their actual chosen routes and may require additional 

information on factors affecting their decisions (Koller-Matschke, Belzner, & Glas, 2013; Parkany, 

Du, Aultman-Hall, & Gallagher, 2006b; Ramaekers, Reumers, Wets, & Cools, 2013). Since RP 

route choice surveys mostly focus on a single choice task, they may not provide sufficient 



21 

information regarding drivers’ choices and the relative importance of factors affecting them. 

Hence, they may not be very adequate for prediction purposes (Ortúzar & Willumsen, 2011). 

2.2.2 Stated Preferences (SP)  

SP surveys require respondents to choose between a series of hypothetical options based on their 

preferences and have been widely used in transportation modelling. In SP route choice surveys, 

respondents are usually asked to choose between some hypothetical route alternatives, for which 

some details are provided. The major advantage of SP over RP surveys is that they can capture 

information on alternatives and attribute combinations that do not exist in real life. Moreover, SP 

surveys are the best way to collect responses for policies which are not yet implemented and do 

not exist. SP questions can be asked in a way to reveal the preferences of respondents among 

several hypothetical alternatives with different combinations of attributes, either by asking them to 

choose exactly one of the alternatives, or to rank or rate them (Hensher, 1994). Table 2.1 compares 

few characteristics of SP and RP surveys (Morikawa, 1989; Sanko, 2002). 

Table 2.1: Comparison of RP and SP surveys 

 RP data SP data 

Preference 

information 

Result of actual behaviour Hypothetical scenarios 

Consistent with the behaviour in  

real world 

Possibility of inconsistency with the 

behaviour in real world 

Choice results “Ranking”, “Rating”, “Choice”, and etc. 

Actual chosen alternative Hypothetically chosen alternatives 

Evaluated 

attributes 

Measurement error No measurement error 

Limited range of attributes’ levels Wider range of attributes’ levels 

Uncontrolled collinearity among 

attributes 
Controlled collinearity among attributes 

Choice set Unknown Known 

Choice scenario Usually one per respondents More than one per respondents 

Consistency with 

actual behaviour  
More Less 

Questions that ask to rank and/or rate alternatives are known as Conjoint Analysis questions. Rank-

order questions ask respondents to order alternatives based on their preferences. Rank-order data 

can be translated into choice data by defining each rank as the chosen alternative between a choice 

set including its lower alternatives. It is stated that rank-order data produces less reliable 

information for lower ranks. Rating questions highly increase respondents’ burden, since they have 

to provide both the order and the degree of preference for each question. In this type of questions, 

respondents are asked to rate different alternatives according to a pre-defined rating scale. Stated 



22 

Choice responses, which are identical to first-order ranking responses, are used to identify the 

ultimate choice of a respondent considering all the alternatives (Hensher, 1994). In Contingent 

Valuation technique, which is principally used to assess the Willingness to Pay (WTP), respondents 

have to specify the amount that they are willing to pay for a specific alternative or policy. This 

method can provide valuable information on different aspects of a proposed policy in terms of 

respondents’ WTP (Ortúzar & Willumsen, 2011). 

Although SP data is not the best way to determine demand levels, it can be compared to revealed 

choices and can be used to complement RP data and improve the capability of a prediction model. 

Choice data can be directly used for prediction purposes using discrete choice models. Several 

studies have presented theoretical frameworks to combine RP and SP data so that they can be used 

together to complement each other (Brownstone, Bunch, & Train, 2000; Mark & Swait, 2008; 

Morikawa, 1989; Phaneuf, Taylor, & Braden, 2013; Sanko, 2002). 

2.2.3 Passive data 

Passive data is the third data collection method adopted for route choice modelling purposes and 

includes technologies such as GPS, automatic plate recognition, Bluetooth, and Wi-Fi. In recent 

years, the prevalent use of GPS technology has provided researchers with an abundance of high-

resolution geospatial data. GPS data can be collected using GPS devices or smartphones and has 

been used in several route choice studies (Jan, Horowitz, & Peng, 2000; Li, 2004; Li, Guensler, & 

Ogle, 2005; Papinski, 2010; Papinski & Scott, 2011; Papinski, Scott, & Doherty, 2009; Ramaekers 

et al., 2013). Although GPS traces can also be classified as revealed preferences data, their 

inclusion in the passive data category is mainly due to the different nature of their collection, which 

does not necessarily require a respondent to fill a questionnaire.  

One of the major contributions of GPS data in transportation planning may be its potential to 

complement (and eventually replace) travel surveys. Traditionally, travel surveys use a paper-based 

or computer-based interface to collect daily travel diaries. Several problems are associated with 

travel diaries such as trip underreporting, respondent fatigue, and inaccuracies regarding the time 

frame and location of reported trips.  

Several studies have shown that a considerable amount of trips are underreported in travel diaries 

and that these missing trips are not evenly distributed among the population (McGowen, 2006). 
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Respondents may not remember all the trips they have made or may not be willing to report some 

of them, or some trips (such as short trips) may not seem important to report. Some respondents 

may not be willing to participate in the survey because it is too long. Also, the quality of data 

collected over an extended period may decrease in each successive day, because the respondents 

are fatigued and put less effort in completing the survey. The burden of taking long and detailed 

surveys discourages public participation. Moreover, respondents may have inaccurate perceptions 

of time, speed, or delay, which may introduce uncertainty into the data set. For instance, a 

respondent may have a longer perception of his/her waiting time compared to his/her in-vehicle 

time (Bricka, Zmud, Wolf, & Freedman, 2009; Bricka, Sen, Paleti, & Bhat, 2012; Wolf, 2004). 

GPS data record all trips, reduce respondents’ burden and collect precise coordinates and 

timestamp information. Using GPS datasets in parallel with travel surveys can provide valuable 

information regarding drivers’ route choice behaviour (Jan et al., 2000; Li, 2004; Papinski, 2010). 

Despite all the advantages of using GPS devices, there are numerous difficulties associated to the 

collection and treatment of GPS data as well. For instance, one can forget to recharge the device 

so the battery will fail during the experiment and the complete trajectory will not be available; one 

can forget the device at home; signal loss occurs inside tunnels and urban canyons; it may take 

some time for the device to acquire the position after a cold start; data may be lost during the 

transfer procedure; or data accuracy may be low. Another limitation of GPS, mostly concerning 

route choice studies, is that traffic conditions on other possible route alternatives is unknown and 

that the considered choice sets, from which individuals make their final choices, remain 

unidentified (Tawfik, Rakha, & Miller, 2010a). Readers are referred to (Chen, 2013a; Frejinger, 

2008; McGowen, 2006; Ortúzar & Willumsen, 2011) for more details regarding GPS travel 

surveys. 

2.2.4 Survey Design 

In this section, we concisely discuss the steps that need to be taken into consideration while 

designing a survey. Designing a survey starts with defining the objectives of the survey and the 

information that needs to be acquired. A clear definition of the target question is imperative and 

may be the most important step of the design. Defining an appropriate analytical method, which 

depends on the type and aggregation level of the answer, is equally important. 
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Once the objective is clearly stated, attributes that are considered to play an important role in the 

decision-making process should be identified. For each attribute, we need to determine the type of 

answer that we seek, in order to select a proper form for its corresponding question. Questions 

should be clear, comprehensible and as simple as possible. In SP surveys, respondents are usually 

asked to choose, rank or rate different hypothetical alternatives according to their preferences. 

Rating questions are probably the most demanding type of questions and choice questions are the 

easiest ones to interpret for prediction purposes (Hensher, 1994; Sanko, 2002). 

To create the hypothetical scenarios, analysts have first to specify different levels for each attribute. 

The considered levels should be realistic and believable. Furthermore, their total number should be 

reasonable and pragmatic for the design of the survey. The number of considered levels for a 

specific attribute is related to its importance in the study, linear or non-linear effect on the outcome, 

and its interaction with other attributes (Hensher, 1994; Sanko, 2002). Different statistical methods 

are then used to combine different levels of attributes and create hypothetical scenarios, namely 

orthogonal designs (such as full factorial and fractional factorial designs), and efficient designs 

(such as Bayesian efficient design). Full factorial designs are used where all the possible 

combinations of different attributes are considered in the creation of scenarios. Since it 

exhaustively includes every possible combination, the total number of scenarios can get very large. 

Thus, fractional factorial designs are used to reduce the number of scenarios. Orthogonal designs 

mainly aim at minimizing the correlation in the data for estimation purposes. Orthogonality means 

that there is no collinearity between main attributes as well as their products. In other words, having 

attributes A and B, there would be no correlation between A, B and A*B. However, efficient 

designs aim at minimizing the standard errors of parameter estimates (Hensher, 1994; Metrics, 

2012; Sanko, 2002). 

A further step in survey design is to determine a representative sample of the population. A sample 

can be defined as a subset of instances representing a larger population for which information is 

sought. The sample population can be chosen randomly from the entire population, i.e. simple 

random sampling, or from various strata of the population, i.e. stratified random sampling. Defining 

the sample size is not very straightforward and depends on various determinants such as the 

population size, the variability of the parameters in the population, the accuracy needed, as well as 

time and budget. In the case of internet-based surveys, it is also very important that the selected 

responses represent the actual population. The proper use of oversampling or under-sampling of 
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some strata of the population can account for biases in the studied population (Ortúzar & 

Willumsen, 2011). 

It is also important to choose the best interface for the survey to encourage participants. A survey 

can be directly completed by the respondent himself (self-administered questionnaires) or through 

an interviewer (personal interview surveys), and several mediums can be adopted such as paper, 

phone, computer, and internet (Hensher, 1994; Sanko, 2002). 

Figure 2.1 illustrates a schema of the most important steps of survey design. For more detailed 

discussion on different strategies of data collection, sampling methods, and design of SP surveys, 

the reader is referred to (Hensher, 1994; Metrics, 2012; Ortúzar & Willumsen, 2011; Richardson, 

Ampt, & Meyburg, 1995; Rose & Bliemer, 2008; Sanko, 2002). 

 

Figure 2.1: Steps in designing a Stated Preference (SP) survey. 
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2.3 Factors Affecting Drivers’ Route Choice Decisions 

According to the utility maximization framework, drivers tend to choose their paths between their 

origins and destinations in a way that maximizes their perceived utility. Jan et al. (2000) classified 

factors affecting route choice decisions into four main categories, illustrated in Table 2.2. 

Table 2.2: Factors affecting route choice (Jan et al., 2000) 

Traveller 
Age, sex, life cycle, income level, education, household structure, race, profession, 

number of drivers in household, number of cars in household, etc. 

Route 

Road 

Travel time, travel cost, speed limits, waiting time. 

Type of road, width, length, number of lanes, angularity, 

intersections, bridges, slopes, etc. 

Traffic 

Traffic density, congestion, number of turns, stop signs and traffic 

lights, travel speed, parking, probability of accident, reliability and 

variability in travel time, etc. 

Environment Aesthetics, land use along route, scenery, easy pick-up/drop-off, etc. 

Trip Trip purpose, time budget, time of the departure, mode use, number of travellers 

Circumstances Weather conditions, day/night, accident en route, route and traffic information, etc. 

However, these categories do not include geographical and behavioural factors, which are also 

found to significantly affect drivers’ route choice decisions. Bovy and Stern (1990a) summarized 

factors influencing travel behaviour into four categories, illustrated in Figure 2.2.  

 

Figure 2.2: Factors affecting travel behaviour (Bovy & Stern, 1990a) 

The physical environment component includes network characteristics and travel alternatives. The 

socio-demographic environment component is composed of factors such as household 

characteristics, age, gender, etc. The normative environment component encompasses the set of 

norms and values derived from the society. These three factors along with the personal 

environment, which incorporates the personality and attitudes of the traveller, affect the travel 

behaviour of the decision maker. 
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Another study by Bovy and Stern (1990a) presents a conceptual framework representing travellers’ 

decision-making process (see Figure 2.3), in which the experimental and mental process of route 

choice, presented on the left hand side of the chart, influences the successive series of considered 

alternatives presented on the right hand side of the chart, leading to the final decision. 

Moreover, attitudes and personal preferences are demonstrated to influence route choice decisions. 

These subjective characteristics can also be affected by the acquired knowledge of the road 

network, the level of information, and experience. Each route choice experiment can affect our 

personal preferences by its satisfactory or unsatisfactory outcome. It is argued that the repetition 

of satisfactory results can become a stable preference, and drivers tend to repeat the same choice 

forming a commute pattern (Ben-Akiva, De Palma, & Isam, 1991; Dia, 2002). 

 

Figure 2.3: Conceptual framework of travellers' choice behaviour (Bovy & Stern, 1990a) 

Many factors have been found to have an incidence on route choice decisions. Abdel-Aty and 

Jovanis (1997) argued that in addition to travel time, as the most important factor, travel time 

reliability, directness and congestion are among important factors influencing drivers’ route 



28 

choices. Peeta, Ramos, and Pasupathy (2000) collected stated preferences data on an expressway 

in the region of northwestern Indiana and showed that age and sex were the only socioeconomic 

characteristics that had a significant effect on travellers’ route choices. Also, in a study by Cascetta 

et al. (2002), it was illustrated that network topology, socio-economic factors, and level-of-service 

significantly affect drivers’ route choices. 

Mannering (1989) investigated commuters’ route choices and concluded that both traffic 

conditions and socio-economic characteristics play important roles in route choice decisions and 

the frequency of route changes. It has been found that unmarried people and younger commuters 

tend to change their routes more frequently than their married and older counterparts. Also, it has 

been stated that men change their routes more frequently. In a further study, Mannering, Kim, 

Barfield, and Ng (1994) investigated commuters’ route changing behaviour and found that the 

frequency of route changes augments as the commute time becomes longer. It has been found that 

men are more likely to change route than women, and that individuals with high salary change their 

routes more frequently. Delay acceptance at work and familiarity with the road network were found 

to increase the frequency of route changes. Abdel-Aty (1994) found that high income, high level 

of education and high salary are among socio-demographic factors that increase the likelihood of 

using multiple routes, while commute distance was not found to be a significant factor. Also, men 

were found to change routes more frequently. Another study in Japan showed that more educated 

drivers are less likely to divert from their usual routes (Gan & Chen, 2013), while Jan et al. (2000) 

found that path deviation increases as travel distance increases. Parkany et al. (2006b) used GPS 

data for 125 drivers over a period of 10 days and concluded that men tend to change routes more 

frequently and are more likely to use freeways compared to women. Elderly people were found to 

have a lower tendency to change routes even when they become unexpectedly congested. Also, 

trip purpose was found to have a significant effect on route choice decisions, contrary to the number 

of signals, number of intersections and use of freeway. 

Jou and Yeh (2013) studied the effect of toll rates on drivers’ route choice behaviour. A stated 

preference survey via a questionnaire was conducted and a mixed logit model was developed to 

capture individuals’ preference heterogeneity. Results illustrated that travel time, choice inertia, 

frequency of freeway use, time of freeway use, trip purpose, toll rate, personal income, and travel 

distance are among important factors affecting drivers’ route choices. 
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Ramaekers et al. (2013) found that individuals prefer to drive on primary roads for work trips, in 

contrast to leisure trips. In addition, they found that peak and non-peak time periods do not have 

an influence on route choices. They also illustrated that beside travel time and travel distance, 

socio-demographic variables, personal income, and topography affect drivers’ route choices. 

Cools, Moons, and Wets (2009) studied the effect of weather conditions on daily traffic volume 

and found that bad weather conditions reduce traffic volume, while high temperatures increase it. 

Papinski et al. (2009) explored the observed and planned route choices of thirty-one work 

commuters using GPS data and a questionnaire. They concluded that travel distance, stop signs, 

traffic lights, route directness, familiarity with the network and traffic conditions influence drivers’ 

route choice behaviour.  

Tawfik et al. (2010a) studied drivers’ perceptions and experiences using a driving simulator as well 

as an initial and a final questionnaire. Results showed that drivers perceive travel speed better than 

travel time and these perceptions might affect their choices. Tawfik, Rakha, and Miller (2010b) 

found observable differences in the learning behaviour of drivers and categorized them based on 

their route choice patterns into four different categories. In a further study, Tawfik, Szarka, House, 

and Rakha (2011b) found that demographic characteristics and inertia can significantly affect route 

choice behaviour. The four learning patterns found in their previous studies were also found to 

have significant effects on route choice decisions and were used to develop disaggregated route 

choice models. 

 

Figure 2.4 : Drivers' decision-making process (Ben-Akiva et al., 1991) 
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Another important factor affecting drivers’ route choices is their level of information. Information 

can be acquired through direct observation, pre-trip or on-road information. According to Ben-

Akiva et al. (1991), the fact that each driver chooses a different route can also be attributed to 

different levels of knowledge and information, different capacities to combine these information, 

and different computational and prediction abilities (see Error! Reference source not found.). 

Route choice decisions are influenced by beliefs, which are in turn the outcomes of experiences. 

Experiences may be influenced by information and may in turn affect beliefs formed by previous 

experiences. Information available to drivers may be categorized as: 1) historical information, 

describing traffic conditions within previous time periods, 2) current information, describing the 

current state, and 3) predictive information, describing the expected traffic conditions during the 

travel period (Ben-Akiva et al., 1991). Since drivers are mostly affected by network conditions 

during their travel, the latter is the most profitable type of information, and yet the most difficult 

to obtain. 

Several studies investigated the effect of information on route choice decisions and route changing 

behaviour of drivers. Maio, Vitetta, and Watling (2013) studied the effect of experience and day to 

day information update on route choice models. They argued that the inertia and habit of taking the 

same route prevents users from diverting to a better route when circumstances change. However, 

these habits may change over time because of perception updating due to information and 

experience acquired. They concluded that the learning process from experiments is influenced by 

the availability and type of information provided. Koller-Matschke et al. (2013) used GPS, 

interviews and driving simulator data, and showed that travel time is the main factor influencing 

route choice behaviour, and that travellers stay on the main road because of inertia, unless there is 

a considerable amount of time saving using other alternatives. 

Ben-Elia and Shiftan (2010) investigated the effect of information and the effect of learning from 

experience via a mixed logit model. Socio-economic factors, route attributes, learning, and driving 

experience were among the factors considered in the modelling. Socio-economic characteristics 

were not found to have a significant effect and were excluded from the model. Results showed that 

providing information and the type of information provided affected the choice behaviour. 

Moreover, providing information has been found to be more effective on situations where drivers 

lack experience and are unfamiliar with the traffic conditions. 
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Iida, Uno, and Yamada (1994) investigated the relation between the mechanism and the quality of 

information transmitted and drivers’ route choice behaviour, and found that the quality of 

information affects the willingness of drivers to use the information. Abdel-Aty (1994) investigated 

route changing behaviour based on the level of information. Results showed that individuals who 

listened to pre-trip traffic reports were more likely to change routes. 

Peeta et al. (2000) investigated the relationship between the content of Variable Message Signs 

(VMS) and the frequency of route changes via an on-site SP survey and found that drivers who 

trust the provided information have a higher propensity to divert. A further study on the effect of 

Graphical Route Information Panel (GRIP) in the United States showed that information can have 

significant effects on drivers’ route choices. Also, it has been demonstrated that driver’s age, 

gender, and familiarity with the road network have significant influences on the level of knowledge 

acquired (Aitken, Conway, & Walton, 2012). 

For more details regarding the role of information in route choice decisions the reader is referred 

to (Aitken et al., 2012; Ben-Elia, Erev, & Shiftan, 2008; Ben-Elia & Shiftan, 2010; Chatterjee, 

Hounsell, Firmin, & Bonsall, 2002; Gan & Chen, 2013; Gan, Bai, & Wei, 2013; Iida et al., 1994; 

Jou & Yeh, 2013; Koller-Matschke et al., 2013; Kusakabe, Sharyo, & Asakura, 2012; Levinson, 

2003; Maio et al., 2013; Parvaneh, Arentze, & Timmermans, 2012; Peeta et al., 2000; Tian, Huang, 

& Liu, 2010; Wardman, Bonsall, & Shires, 1997; Yu & Peeta, 2011). 

2.4 Synthesis 

Among the various approaches that have been adopted to model drivers’ route choice decisions, 

Random Utility Maximization (RUM) modelling framework has received considerable attention in 

previous studies. This section reviewed the main components of route choice modelling in a RUM 

modelling framework, namely the modelling approaches, the data collection methods, and 

important factors affecting route choice decisions. Table 2.3 summarizes some of the previous 

studies (in chronological order) and compares them based on the three main components of route 

choice modelling discussed above. Although the table does not encompass all the previous route 

choice studies, this list has been selected to provide a wide spectrum of research covering various 

data collection methods, considered factors, and modelling approaches.
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Table 2.3: Summary of selected route choice studies 

Study 
Data Collection Factors Considered Modelling 

Approach 

Significant 

Attributes * RPa SPb GPS Obsa CCSb Democ Factd Behvre Percpf 

Iida et al. (1994) ☐ ☒ ☐ ☐ ☐ ☐ ☐ ☐ ☐ Linear models 28, 30 

Abdel-Aty and Jovanis (1997) ☒ ☒ ☐ ☒ ☐ ☐ ☒ ☐ ☒ Binary logit  1, 2, 3, 4, 5, 6 

Peeta et al. (2000) ☐ ☒ ☐ ☒ ☐ ☒ ☐ ☒ ☐ Logit  9, 12, 28 

Cascetta et al. (2002) ☒ ☐ ☐ ☒ ☒ ☒ ☐ ☐ ☐ Binomial  1, 12, 17 

Parkany et al. (2006b) ☐ ☐ ☒ ☒ ☐ ☒ ☒ ☒ ☐ Binary logit  3, 9, 10 

Cools et al. (2009) ☒ ☐ ☐ ☒ ☐ ☒ ☐ ☐ ☐ Regression 1, 9, 10, 23 

Papinski et al. (2009) ☐ ☐ ☒ ☒ ☐ ☒ ☒ ☐ ☐ Statistical analysis 1, 3, 4, 6, 21, 22 

Ben-Elia and Shiftan (2010) ☐ ☒ ☐ ☒ ☐ ☒ ☐ ☐ ☐ Mixed logit  14, 15, 25, 29 

Tawfik et al. (2010b) ☒ ☐ ☐ ☒ ☐ ☒ ☐ ☒ ☒ Statistical analysis 1, 6, 9, 15, 24, 25 

Schlaich (2010) ☐ ☐ ☒ ☒ ☐ ☐ ☐ ☐ ☐ Logit model 3, 28 

Prato et al. (2012) ☒ ☐ ☐ ☒ ☒ ☒ ☐ ☒ ☐ Latent variable 1, 5, 6, 7, 9, 13, 27 

Kaplan and Prato (2012) ☒ ☐ ☐ ☒ ☐ ☒ ☐ ☒ ☐ Path-Size logit 1, 5, 6, 7, 9, 13, 27 

Gan and Chen (2013) ☐ ☒ ☐ ☒ ☐ ☒ ☐ ☐ ☐ Binary logit 14, 15, 16 

Jou and Yeh (2013) ☐ ☒ ☐ ☒ ☐ ☒ ☐ ☐ ☐ Mixed logit 1,5,6,8,10,12,18, 19 

Tawfik and Rakha (2013) ☒ ☐ ☐ ☒ ☐ ☐ ☐ ☒ ☒ Latent class 1, 6, 9, 15, 24, 26, 27 

Ramaekers et al. (2013) ☐ ☐ ☒ ☒ ☐ ☒ ☒ ☐ ☐ Multinomial logit 8, 9, 10, 11 

Koller-Matschke et al. (2013) ☒ ☒ ☒ ☒ ☐ ☐ ☐ ☐ ☐ Statistical analysis 1, 18, 28, 29 

Habib, Morency, Trépanier, and Salem 

(2013) 
☒ ☐ ☐ ☒ ☐ ☒ ☐ ☐ ☐ 

Independent 

availability logit 

1, 8, 10, 20 

Vacca and Meloni (2014) ☐ ☐ ☒ ☒ ☐ ☒ ☐ ☐ ☐ Mixed logit 1, 5, 9, 12, 15, 22, 24 

Hess, Quddus, Rieser-Schüssler, and Daly 

(2015) 
☐ ☐ ☒ ☒ ☐ ☐ ☐ ☐ ☐ Path-Size logit 

1, 6, 11, 19 

Manley, Addison, and Cheng (2015b) ☐ ☐ ☒ ☒ ☐ ☐ ☐ ☐ ☐ Statistical analysis 20 

Lai and Bierlaire (2015) ☐ ☐ ☒ ☒ ☐ ☐ ☐ ☐ ☐ Cross-Nested logit 5, 6, 22 

Dalumpines and Scott (2017b) ☐ ☐ ☒ ☒ ☐ ☒ ☐ ☐ ☐ Path-Size logit 1, 5, 6, 7, 11 

Alizadeh, Farooq, Morency, and Saunier 

(2017b) 
☐ ☐ ☒ ☒ ☐ ☐ ☐ ☐ ☐ 

Nested and logit 

kernel 
4, 5, 6, 20 

*Factors affecting route choices 
1- Travel time 7- Number of turns 13- Delay 19- Toll rate / Cost 25- Learning process 

2- Travel time reliability 8- Time of day 14- Network familiarity  20- Anchor points 26- Drivers’ categories 

3- Traffic conditions (level of service) 9- Socio-demographic 15- Driving experience 21- Stop signs 27- Personality traits 

4- Number of segments  10- Trip purpose 16- Education 22- Traffic lights 28- Availability of information 

5- Percentage of highway 11- Road type 17- Topology 23- Holidays 29- Type of information 

6- Travel distance 12- Socio-economic 18- Choice inertia 24- Travel speed 30- Quality of information 
a Observed Choices b Considered Choice Set c Demographics d Revealed Factors e Behavioural traits f Perception 
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CHAPTER 3 METHODOLOGICAL FRAMEWORK 

The main objective of this thesis is to improve the understanding of drivers’ route choices and 

revolves around several areas of improvement, namely modelling considerations, data collection 

framework, and the consideration set of route alternatives. A brief overview of the different 

components of route choice modelling has been presented in Chapter 2.  

A combination of analytical and experimental research was needed to deliver the research 

objectives. This section summarizes some of the research gaps and existing limitations of the 

discussed route choice modelling approaches, which justify the significance of this research and its 

objectives. In the following subsections, the execution of each major part of the research plan along 

with the scope of the conducted research activities are elaborated. 

3.1 Modelling Considerations 

3.1.1 Hierarchy of Space and the Role of Anchor Points 

As presented concisely in section 2.4, most of the proposed route choice models imply that 

individuals choose their routes based on route-level attributes, i.e. attributes concerning the whole 

trajectory, such as the total travel time, the total travel distance, the total number of turns, and the 

average travel speed. 

However, in addition to the important role of route-level attributes, several studies have argued that 

anchor points influence route choice decisions (Couclelis, Golledge, Gale, & Tobler, 1987; 

Golledge, Smith, Pellegrino, Doherty, & Marshall, 1985; Habib et al., 2013; Kaplan & Prato, 2012; 

Lynch, 1960; Prato & Bekhor, 2007a; Prato et al., 2012). In route choice studies, anchor points are 

defined as prominent features along a route, such as major bridges, highways, interchanges, and 

intersections, with applications in cognitive tasks, such as way-finding, distance assessment, and 

direction estimation. It has been suggested that individuals have a hierarchical planning strategy 

following the hierarchical representation of space and its connectivity (Manley, Orr, & Cheng, 

2015; Wiener & Mallot, 2003), which yields an anchor-based navigation in which individuals 

orient themselves based on distinguished features of the route (Foo, Warren, Duchon, & Tarr, 

2005). However, most estimated route-based models do not take into account the effect of anchor-

points and give an exclusive importance to route-level attributes, and existing link-based models 
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allocate the same level of importance to every link regardless of its possible importance in drivers’ 

route choice decisions. This limitation is addressed in the first article, entitled “On the Role of 

Bridges as Anchor Points in Route Choice Modelling” presented in Chapter 4 of this thesis. 

In summary, this study explored the application of a nested structure to improve the behavioural 

aspect of route choice modelling by incorporating the effect of anchor points and space hierarchy 

on drivers’ decision-making process. In the proposed anchor-based nested structure, the effect of 

route level attributes is incorporated in route choice decisions along with the effect of anchor points. 

First, we adopt a classic Nested Logit structure within a utility maximization discrete choice 

framework, in which upper nests correspond to anchor points and lower nests include route 

alternatives. Second, a nested Logit Kernel model is estimated to capture the reciprocal effect of 

route level attributes and anchor points on route selection. In the former model, the nested structure 

captures the shared unobserved components of the utility function among routes crossing the same 

bridge, while in the latter, the adopted factor analytic approach accounts for the interdependencies 

and latent similarities. 

To evaluate the proposed modelling approaches, taxi trips between the islands of Montreal and 

Laval, Canada have been studied. These two cities are separated by a river and are connected 

through several bridges. These bridges are usually prone to become traffic bottlenecks and face 

recurrent congestion. Despite their small share in the whole route, they have a significant impact 

on the total travel time and are influential points in the process of route selection. Moreover, routes 

crossing the same anchor points share unobserved components such as safety, scenery, and driving 

comfort, emerging from the similarities of the road network and geographical characteristics. In 

our application, bridges are considered as anchor points for trips between Montreal and Laval, and 

their effects on route choice decisions have been evaluated in conjunction with route level 

attributes. 

In general, this study illustrates that the proposed nested structures provide better estimates and 

validation performance compared to other route-based models, which clearly underscores the 

importance of considering the effects of anchor points in conjunction with route-level attributes. 

Moreover, the proposed models are easily manageable and practical, even by considering many 

alternatives or multiple anchor points. 
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3.1.2 Behavioural Classification 

As discussed in Chapter 2, the RUM framework assumes that drivers tend to choose their routes in 

a way that maximizes their perceived utilities. Several factors might affect the perceived cost 

function, such as different levels of information, different capacities to process them, different 

computational and prediction abilities, network characteristics, travel possibilities, household 

characteristics, age, gender, and attitudes (Ben-Akiva et al., 1991; Bovy & Stern, 1990b). 

Moreover, satisfactory or unsatisfactory choice experiences can affect drivers’ personal 

preferences towards a particular decision. It is argued that the repetition of satisfactory results can 

become a stable preference and drivers tend to repeat the same choices, forming various commute 

patterns (Ben-Akiva et al., 1991; Dia, 2002).  

Understanding the behavioural heterogeneity in drivers’ route choices is very important for city 

and transportation planners, and the stratification of a studied population according to their 

preferences would improve the effectiveness of transport measures and the efficiency of policy 

implications, since it better captures the heterogeneity across different segments of the population.  

Chapter 5 empirically examines whether this behavioural heterogeneity can be observed in real 

world route choices. It also investigates the possibility of identifying different types of route choice 

behaviours among drivers. Behavioural classifications have been conducted on various segments 

of the population, such as pedestrians (Okamoto et al., 2011), bike users (Damant-Sirois, Grimsrud, 

& El-Geneidy, 2014; Dill & McNeil, 2013; Geller, 2009; Kroesen & Handy, 2014), bike-sharing 

members (Reinoso & Farooq, 2015), and carsharing members (Morency, Trepanier, & Agard, 

2011). Although previous studies have shown that different categories of road users are observable, 

there is a lack of a representative classification of drivers’ route choice behaviours, based on their 

actual choices over a long duration of time. 

A total number of 1,746 taxi drivers’ traces, comprising more than 22,000 trips, originating in 

Montreal with a destination in Laval, have been studied. Studies focusing on driving patterns over 

an extended period of time appear to be few, which might be mostly due to the challenges of data 

collection and analysis. The availability of large and rich datasets from taxi companies that 

maintain detailed GPS trajectories of their fleets for a long duration of time, opens up the possibility 

of such studies. Moreover, understanding taxi drivers’ route choice behaviours helps to better 

comprehend urban traffic dynamics and is very important to the city and transportation planners 
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(Manley, Addison, & Cheng, 2015a). A Principal Component Analysis followed by a Hierarchical 

Agglomerative Clustering method was used to extract behavioural clusters. Four major types of 

route choice behaviour were observed, which showed significant variations based on the time of 

day and the travelled distance. The incorporation of different driver categories can improve the 

estimation and prediction accuracy of route choice models, and can be used in defining different 

functional forms for traffic assignment models (Parkany, Du, Aultman-Hall, & Gallagher, 2006a; 

Ramaekers et al., 2013; Tawfik, Rakha, & Miller, 2010c). 

3.1.3 Behavioural Traits and Latent Heterogeneity 

Following the discussion around factors affecting drivers route choices, these decisions might not 

be exclusively dependent on observable variables (such as traffic conditions, speed limits, number 

of turns, pavement quality, trip purpose, travel time, weather conditions, time of day, and traffic 

information, etc.), but also on latent variables, which cannot be directly observed, and measured, 

such as attitudes, perceptions, and lifestyle preferences and are considered to be intrinsically 

subjective (Gärling, Gillholm, & Gärling, 1998; Hurtubia, Nguyen, Glerum, & Bierlaire, 2014; 

McFadden, 1986, 1999; Raveau, Álvarez-Daziano, Yáñez, Bolduc, & de Dios Ortúzar, 2010). 

Moreover, different segments of the population, characterized by some of these latent constructs, 

might also have different choice behaviours (Hurtubia et al., 2014). 

The explicit incorporation of these amorphous constructs has been mostly neglected in route choice 

models, and the latent behavioural heterogeneity among the population has mostly been ignored 

by assuming that all the individuals in the sample population have similar levels of driving 

experience, spatial knowledge, familiarity with the road network, ability to process information, 

motivation to compare all the considered alternatives, etc. Ignoring these sources of heterogeneity 

could reduce the explanatory power of the model and introduce forecasting errors (Ben-Akiva, 

Bolduc, & Bradley, 1993; Prato et al., 2012; Walker, 2001). 

In Chapter 7, we present and discuss a comprehensive framework to explicitly incorporate latent 

behavioural constructs as well as a probabilistic segmentation of the population based on drivers’ 

perceptions and preferences. In the presented article, we apply the proposed framework to compare 

the route choice behaviour of frequent versus occasional drivers. For this purpose, we evaluate the 

role of the underlying behavioural constructs on drivers’ route choice decisions using the Integrated 

Choice and Latent Variable framework described by Walker (2001) and adapted to route choice 
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studies by Prato et al. (2012). To properly incorporate the effect of segment heterogeneity and to 

distinguish between choice behaviours of the different classes of our sample population, we 

estimate the ICLV model within a Latent Class framework using a full information estimation 

approach (Bierlaire, 2016). 

Data has been collected through a revealed preference web-based survey, conducted in Montreal, 

Canada in 2017. The survey has been designed to identify behavioural and attitudinal factors 

affecting drivers’ route choice decisions. The modelling dataset for this study included 225 drivers 

residing and driving in the Greater Montreal Area (GMA). A thorough description of the data 

collection effort, recruitment methods, participants’ characteristics, response rates, and dropouts is 

presented in Chapter 6. Results of this study confirmed that the inclusion of latent variables and 

latent heterogeneity across population segments significantly improves the explanatory power of 

the choice model.  

3.2 Specialized Data Collection 

As discussed, unobservable variables play a major role in route choice decisions, and various 

approaches have been developed to incorporate them into the modelling framework. Despite the 

attraction of such modelling frameworks, their application in route choice studies remains rare and 

occasional. This is mostly due to the fact that collecting behavioural data is cumbersome and time 

consuming (Sarkar & Mallikarjuna, 2017). Studies using revealed preference data are mostly based 

on either travel surveys or GPS data, where the presence of behavioural and attitudinal data is 

scarce. Moreover, studies based on stated preferences data mostly focus on observable attributes 

and avoid attitudinal questions to minimize respondents’ burden. 

In a two-stage route choice modelling process, defining a proper consideration set is a challenge. 

Usually, the set of route alternatives considered by the driver is not observed and available to the 

analyst. Therefore, the choice set generation algorithms discussed in Chapter 2 are adopted to create 

simulated consideration sets for each observation. It has been well established in the literature that 

the generated set should include alternatives that are attractive to the driver in a real world choice 

situation, and the misspecification of the size and composition of the considered choice set greatly 

affect model’s estimates and may lead to erroneous predicted demand level (Bliemer & Bovy, 

2008; Geda, 2014; Hess & Daly, 2010; Hoogendoorn-Lanser et al., 2005; Peters et al., 1995; Prato 
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& Bekhor, 2006, 2007b; Prato et al., 2012; Schuessler & Axhausen, 2009; Swait & Ben-Akiva, 

1987a). 

Therefore, in order to improve the estimation and prediction abilities of route choice models, it 

might be beneficial to first observe drivers’ revealed preferences in real route choice situations, 

second, to identify behavioural and attitudinal factors as additional sources of heterogeneity 

affecting their decisions, and finally, to get a better grasp of the formation process, size and 

composition of drivers’ considered sets of route alternatives. 

Chapter 6 presents the development and implementation of the proposed revealed preference web-

based survey, designed to observe drivers’ revealed route choices towards their most frequently 

visited destinations, and to identify behavioural and attitudinal factors affecting them. Also, the 

survey aimed at observing drivers’ consideration sets of route alternatives and characterizing them 

based on drivers’ perceptions. Drivers residing and driving in the Greater Montreal Area (GMA), 

covering approximately 9840 square kilometers with a population of roughly 4 million inhabitants 

have been targeted (Transport, 2013). The survey has been prepared in both the French and English 

languages. In order to decrease the respondent burden, mitigate the implementation cost, and 

enhance the data quality, a high performance front-end user interface with an elaborated graphic 

design was adopted. 

First, we collected typical information on sociodemographic and socioeconomic characteristics of 

participants. Then, respondents were asked to specify the destination point to which they drove 

most frequently and all the alternative routes which they considered for the specified trip. They 

were also asked to specify the frequency of the trip on a weekly basis. Additionally, they were 

requested to provide their level of agreement, on a five-point Likert scale, to a list of statements 

designed to reveal drivers’ attitudes, preferences and perceptions towards choosing a route. 

In total, 74 questions were asked and considering a 95th percentile threshold, the average response 

time was found to be around 16 minutes. By the end of the three-month data collection period, 843 

individuals started the survey from which 539 completed it, while the remaining 304 dropped out. 

The data collected in this survey has been used in studies presented in Chapters 7 and 8. 
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3.3 Consideration Set of Route Alternatives 

As previously discussed, considered sets of route alternatives are mostly unknown and unobserved. 

Their formation depends on objective constraints, such as route attributes (e.g. maximum number 

of turns, number of traffic signals, etc.), as well as subjective criteria, such as individuals’ attitudes, 

perceptions and experiences (Ben-Akiva & Boccara, 1995). The way individual drivers derive their 

actual consideration sets of route alternatives, and factors affecting the size and composition of 

these choice sets is a complex and ongoing research issue (Hoogendoorn-Lanser et al., 2005; Prato 

et al., 2012; Schuessler & Axhausen, 2009).  

In the last paper, presented in Chapter 8, we observed drivers’ actual consideration sets of route 

alternatives and analysed the effect of different factors affecting their sizes. We used the data 

collected by the survey presented in Chapter 6, designed to collect detailed information on drivers’ 

revealed consideration set of route alternatives. The data contains information regarding drivers’ 

sociodemographic and socioeconomic characteristics, route specifications, as well as drivers’ 

preferences and attitudes. The studied dataset is composed of 506 respondents residing and 

travelling in the GMA. A total of 988 route alternatives have been declared. 

Studied factors have been classified into six broad categories, namely personal attributes, declared 

factors, behavioural indicators, incentives, awareness determinants, and spatial, temporal and 

environmental components. Four different clusters were defined based on the number of considered 

alternatives and the effect of each factors on each cluster was investigated. These four clusters were 

labelled 1) Determined Cautious Drivers, 2) Biased Habitual Drivers, 3) Middling Impartial 

Drivers, and 4) Swayable Conscious Drivers. The observed choice set may improve model’s 

estimation and prediction efficiency by providing detailed information on travellers’ preferences. 

The next five chapters present the five articles discussing the above-mentioned aspects in more 

details. These articles are published or submitted for publication in scientific journals. Each one 

has an independent structure generally consisting of an abstract, introduction, background, 

methodology and data description, results and discussion, conclusions and references. A general 

discussion and comprehensive conclusions are then presented in Chapters 9 and 10, respectively. 
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Abstract 

This work builds upon the thought that individuals allocate higher levels of importance to some 

particular features of the route, so called anchor points. In this work we argue that the consideration 

of both route-level attributes and anchor points would enhance the behavioural aspect of route 

choice models as well as their estimation and prediction abilities. Global Positioning System (GPS) 

traces have been used to investigate the effect of bridges as anchor points for trips between 

Montreal and its Northern suburb, Laval. A classic Nested Logit and a nested Logit Kernel model 

have been estimated, in which interdependencies among routes crossing the same bridge are 

captured through the nested structure and the adopted factor analytic approach, respectively. A 

Metropolis-Hastings path-sampling algorithm is applied, for the first time, on a large road network 

with more than 40,000 nodes and 19,000 links to provide the consideration choice set. Estimates 

are then compared to three alternate models, representing route-based and anchor-based 

formulations; namely Path-Size Logit, Extended Path-Size Logit, and Independent Availability 

Logit models. Empirical results showed that the proposed nested structures with MH sampling 

provide better estimates and also perform better in the validation step with respect to comparative 

models. Findings underscore the importance of considering anchor points in conjunction with route 

level attributes in route choice decisions. 

Keywords: Route choice, Bridge choice, Anchor points, Discrete choice models, Nested Logit, 

GPS, Metropolis-Hastings 
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4.1  Introduction 

Route choice modelling is probably one of the most complex and challenging problems in traffic 

assignment. It investigates the process of route selection by an individual, making a trip between 

predefined origin and destination (OD) pairs. The heterogeneity in travellers’ behavioural 

characteristics, in conjunction with the complex effect of route attributes, further increases the 

inherent complexity of route choice modelling. Although several approaches have been proposed 

to tackle this problem, one of the remaining challenges in route choice modelling is the consistency 

of the modelling approach with the underlying behavioural process of drivers’ decision making.  

In general, most of the proposed route choice models focus on route related attributes of choice 

alternatives. This implies that in these “route-based” formulations, the route is perceived as an 

entity, and only attributes concerning the whole trajectory are used to characterize each choice 

alternative. From a behavioural perspective, this formulation suggests that the consideration set is 

formed based on route-level characteristics of trajectories and the final choice is made by selecting 

an entire route out of a considered set of alternatives. C-Logit (Cascetta et al., 1996b) and Path-

Size Logit (PSL) (Ben-Akiva & Bierlaire, 1999a) are among the most widely used route-based 

models. In these models, the similarity issue between alternatives has been addressed by adding a 

correction term to the deterministic part of the utility function, which alters the utility of paths1 

based on their similarities. However, the applied correction factors in these models account only 

for similarities between the considered set of paths. To overcome this limitation, Frejinger et al. 

(2009) have proposed the Extended-Path-Size Logit (EPSL) model, which accounts for 

correlations between sampled and non-sampled alternatives.  

An alternate approach offers a “link-based” formulation to deal with the correlation issue among 

alternatives. This approach, firstly proposed by Vovsha and Bekhor (1998) and later applied by Lai 

and Bierlaire (2015), adopts a cross-nested logit structure in which each link of the network 

constitutes a nest and each route belongs to several nests. Another application of the sequential link 

choice method has been applied by Fosgerau et al. (2013) in the context of a recursive logit model, 

which can be consistently estimated without the need of path sampling. Since a real network 

                                                 

1 The terms route and path are used interchangeably in this article.  
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consists of a large number of links, the estimation of these models could be very computationally 

expensive. 

A third approach is the “anchor-based” formulation which gives an exclusive importance to the 

effect of some prominent features of the road network, so-called landmarks or anchor points. This 

approach basically argues that anchor points are decisive points based on which drivers choose 

their paths. It has been pointed out by several researchers that individual’s perception of the road 

network follows a hierarchical representation (Hirtle & Jonides, 1985; Holding, 1994), and anchor 

points play a crucial role in the behavioural nature of route choice decisions (Habib et al., 2013; 

Kazagli & Bierlaire, 2015; Manley, Orr, et al., 2015). The space hierarchy and the role of anchor 

points have also been found to be significant in similar decision making contexts such as location 

choice modelling (Elgar, Farooq, & Miller, 2009; Elgar, Farooq, & Miller, 2015). 

The importance of anchor points is emphasized in riverside cities. In these cities, the two sides, 

separated by the river, are usually connected through several bridges and tunnels. These 

infrastructures are usually prone to become traffic bottlenecks and to face recurrent traffic 

congestion (Habib et al., 2013; Sun, Wu, Ma, & Long, 2014; Woo et al., 2015). The high travel 

time variability of these small segments of the route, which is usually due to the large fluctuation 

of travel demand, turns them into influential points in the process of route selection. Accordingly, 

the choice of anchor points has a major effect on route selection, and routes crossing same anchor 

points share unobserved components such as safety, scenery, driving comfort, etc., emerging from 

the similarities of the road network and geographical characteristics. 

In this work we argue that the three abovementioned formulations, in isolation, may not be 

behaviourally accurate enough to represent the underlying nature of route choice behaviour; rather 

a hybrid approach is needed. Route-based formulations suggest that route selection is mostly based 

on route-level attributes (Manley, Addison, et al., 2015a), and ignore the influence of anchor points. 

Link-based formulations neglect the higher importance of anchor points by allocating the same 

level of importance to every link. Moreover, the anchor-based model proposed by Habib et al. 

(2013) incorporates a full probabilistic choice set generation, which is behaviourally inaccurate, 

and theoretically impractical and unmanageable in large route choice datasets and real world 

networks (Prato, 2009b). 
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We propose a generic “anchor-based nested” structure to promote the behavioural aspect of route 

choice models by incorporating the effect of route level attributes as well as anchor points on 

drivers’ choices. First, we adopt a classic Nested Logit (NL) structure within a discrete choice 

framework, in which upper nests correspond to anchor points and lower nests include route 

alternatives. Second, a nested Logit Kernel (LK) model is estimated to capture the reciprocal effect 

of route level attributes and anchor points on route selection. In the former model, the nested 

structure captures the shared unobserved components of the utility function among routes crossing 

the same bridge, while in the latter, the adopted factor analytic approach accounts for the 

interdependencies and latent similarities.  

Similarly to anchor-based models, these approaches allocate a distinctive importance to the 

selection of anchor points as crucial segments of the route. Moreover, they can handle very large 

datasets and real world networks; considering multiple route alternatives within each bridge is 

easily manageable; and route-level attributes are also considered to be decisive and influential in 

the final route selection.  

To explore the performance of the proposed formulations, GPS traces of taxi trips between the 

islands of Montreal and Laval have been used. The unique aspect of these trips is that drivers have 

to choose among a maximum of nine bridges separating the two regions. The access to these 

bridges face recurrent congestion, and despite their small share in the whole route, they have a 

significant impact on the total travel time and hence on drivers’ route choice decisions. In our 

application, bridges are considered as anchor points for trips between Montreal and Laval, and their 

effects on route choice decisions have been evaluated in conjunction with route level attributes. A 

very large real-world road network, with more than 40,000 nodes and 19000 links, is used for 

choice set generation as well as model estimation. Estimates are then compared to three alternate 

models, representing route-based and anchor-based formulations; namely PSL, EPSL, and 

Independent Availability Logit (IAL) models. Taxi drivers are considered to have a more precise 

knowledge of the road network and its traffic conditions, due to their higher driving experience. In 

order to capture the effect of anchor-points, we have focused on the behaviour of taxi drivers as 

well-informed individuals who are more familiar with travel time variations and congestion periods 

over bridges connecting Montreal to Laval.  
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This work contributes to the existing state-of-the-art through the following aspects: (1) the 

presented formulations capture the effect of anchor points in conjunction with route level attributes 

in route choice modelling, (2) they improve the behavioural aspect of anchor-based formulations 

by capturing shared unobserved components among route alternatives crossing the same anchor 

point, and (3) the MH algorithm has been employed, for the first time, on a large real world route 

network to generate alternative choice sets. 

This paper is organized as follows. First we review earlier approaches to route choice modelling 

and in that context further clarify the contributions of this study. The case study and data are 

presented next. We then discuss in detail the proposed econometric formulations and the estimated 

comparative models, as well as their respective utility function specifications and choice set 

generation algorithms. We then discuss the results, validation process, and comparison between 

models. In the end, we highlight the most significant findings of this study, underscore its 

limitations, and suggest further research directions. 

4.2 State-of-the-Art 

There is a large body of literature in microeconomics, behavioural science, psychology, and 

behavioural geography that focuses on improving the understanding of the underlying process of 

decision making. Accordingly, several modelling frameworks have been proposed to simulate 

drivers’ route choice behaviour. Prospect theory (Gao et al., 2010; Kahneman & Tversky, 1979) 

and cumulative prospect theory (Connors & Sumalee, 2009; Tversky & Kahneman, 1992; Xu et 

al., 2011) have been applied by researchers to take into account the limited rationality of drivers in 

making decisions, by incorporating psychological and behavioural aspects. In some other studies, 

the uncertainty and imprecision of drivers in making route choice decisions have been taken into 

account using Fuzzy Logic (Henn, 2003; Luisa De Maio & Vitetta, 2015; Murat & Uludag, 2008; 

Quattrone & Vitetta, 2011). Artificial neural networks have also been used to take into account the 

non-linearity of the decision making process by imitating the human conscious structure 

(Dougherty, 1995; Kim et al., 2005). Recently, a Random Regret Minimization (RRM) approach 

has been adopted by Prato (2014) to model route choices. This approach argues that choice makers 

tend to choose the alternative that minimizes the regret of not having chosen other alternatives.  
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Among the proposed approaches, Random Utility Maximization (RUM) models have received 

considerable attention. In this approach, individuals’ preferences are represented by a value called 

“utility”, which captures the effect of different factors on the actual choice, and decision makers 

tend to maximize their perceived utilities. Since the decision maker may not have a perfect 

knowledge about these factors, an error component has been introduced to take into account the 

stochasticity and imprecision caused by uncertainty and behavioural randomness (Ben-Akiva & 

Bierlaire, 2003). This paper is built upon the random utility maximization framework. 

In the context of route choice, the perceived utility can be attributed to factors such as travel time, 

distance, congestion, safety, scenery, route complexity, number of traffic signals, trip purpose, fuel 

consumption, toll, road type, anchor points, etc. Behavioural and mental factors such as the inertia 

of taking the same route, memory, spatial abilities, driving experience, and the learning process 

may also play a role and add to the complexity of the modelling process (Prato, 2009b).  

It has been suggested that individuals have a hierarchical planning strategy following the 

hierarchical representation of space and its connectivity (Manley, Orr, et al., 2015; Wiener & 

Mallot, 2003), which yields an anchor-based navigation in which individuals orient themselves 

based on distinguished features of the route (Foo et al., 2005). Anchor points are defined as being 

important focal points and cognitively salient cues with prominent features, with applications in 

cognitive tasks, comprising way-finding, distance assessment, and direction estimation. Major 

route infrastructures, such as bridges, highways, eminent road interchanges, intersections and 

roundabouts, can be considered as anchor points in route choice modelling. 

Several studies have argued that anchor points influence route choice decisions (Couclelis et al., 

1987; Golledge et al., 1985; Habib et al., 2013; Kaplan & Prato, 2012; Lynch, 1960; Prato & 

Bekhor, 2007a; Prato et al., 2012). Manley, Addison, et al. (2015a) studied minicab drivers in 

London, using GIS and statistical analysis, and concluded that their route choice behaviour is 

poorly described by shortest-path algorithms and is improved when the role of anchor points is 

considered. To emphasize the significant role of anchor points, they have also proposed a 

conceptual subjective anchor-based route choice modelling schema. Similarly, Kazagli and 

Bierlaire (2015) argue that drivers describe their routes using a short sequence of Mental 

Representation Items (MRIs) such as anchor points or pieces of infrastructures instead of using a 

link-sequence representation. Moreover, a recent study by Manley, Orr, et al. (2015) confirms that 
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the mental representation of the spatial hierarchy influences route choices. They propose a coarse 

to granular hierarchical representation of space, represented from top to bottom by Regions, Nodes, 

and Roads, where Regions represent clusters of nodes sharing a common characteristic; Nodes 

represent certain road junctions, landmarks, and anchor points; and Roads form the basis of the 

hierarchy, defining the route between consecutive Nodes. In this hierarchical schema, route choice 

is made through the selection of a sequence of regions, nodes across subsequent regions, and 

eventually, roads between successive nodes. 

Despite the undeniable importance of anchor points on drivers’ route choice decisions, relatively 

little attention has been given to anchor-based route choice models. An interesting approach has 

been investigated by Habib et al. (2013) in which the authors applied an Independent Availability 

Logit (IAL) model, originally proposed by Swait and Ben-Akiva (1987b), in a route choice context 

to emphasize the role of bridge choice in route choice decisions; the case study was the Greater 

Montreal Area. The IAL model follows the probabilistic two-stage choice model proposed by 

Manski (1977) in which the selection probability of an alternative depends on the selection 

probability of all subsets of the universal choice set containing that particular alternative. The IAL 

model jointly estimates the final choice and choice sets among all the possible combinations.  

The study by Habib et al. (2013) was based on data collected from the OD survey of Montreal, in 

which the authors had only access to declared chosen bridges. They have considered a shortest path 

algorithm, based on segments’ speed limits, to generate one path per bridge for each OD pair, 

comprising the choice set of route alternatives. A noticeable limitation, pointed out by Prato 

(2009b), of the fully probabilistic choice set generation approach adopted by the IAL approach, is 

its immense calculation burden when the size of the choice set increases. Considering m as the total 

number of possible alternatives, the total number of possible non-empty choice sets (2𝑚 − 1) 

increases exponentially with m, which makes it impractical to apply this model in route choice 

problems, where the considered choice set is large. In Habib et al. (2013), the inability of the IAL 

model in handling large choice sets might be an additional reason to their data limitation issue for 

considering only one alternative per bridge. In behavioural terms, the consideration of a single 

shortest path per bridge scales down the route choice problem to a bridge choice problem. 

Moreover, it is behaviourally unrealistic to assume that decision makers would consider every 

possible subset of the consideration choice set, before making a choice. Also, it is worth mentioning 
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that the problem of shared segments between alternatives is not addressed in this recent application 

of the IAL model. 

4.3 Context and Dataset 

Nowadays, the prevalent use of GPS technology provides researchers with an abundance of high-

resolution geospatial data, which allows obtaining continuous and detailed (link-by-link) 

information on drivers’ travel paths, accompanied by possible additional information such as travel 

direction and speed. A relatively new source of GPS data is recorded by taxi companies around the 

world mainly for operational purposes. 

This study is based on GPS traces of taxi drivers, collected by a taxi company, in the context of the 

metropolitan region of Greater Montreal, depicted in Figure 4.1(a). The data was collected by a 

taxi company that constitutes around 25% of the Montreal Island taxi fleet, and its operation is 

restricted to trips starting or ending in the central part the island. Data has been stored in a 

PostgreSQL database, and the PostGIS spatial extension has been added to support geographical 

datatypes and queries. A direction-based nearest link point-to-curve map matching algorithm has 

been adopted to associate each GPS record to the road network. In point-to-curve map matching 

algorithms, every GPS point is matched onto the closest link in the network. The major 

shortcoming of these algorithms is that they do not produce reliable results in high road density 

networks and specially at intersections due to directional problems (White, Bernstein, & 

Kornhauser, 2000; Zhou & Golledge, 2006). To overcome this issue, we associated each GPS 

record to its nearest link on the network with respect to its azimuth, so that it ensures that GPS 

points are not incorrectly matched to closer links with incorrect directions. A distance-based 

shortest-path algorithm has then been applied between consecutive GPS records to deduce the 

entire path for each trip. 

Montreal is an island city, separated from its suburbs by two rivers. This means that drivers entering 

or exiting Montreal need to cross one of the sixteen bridges connecting Montreal to its suburbs. 

These bridges face recurrent congestion and act as bottlenecks. For trips heading to or exiting 

Montreal, bridge choice can have a significant importance on route choice decisions (Habib et al., 

2013). Considering bridges as anchor points, the geographical context of Montreal allows us to 

study the effect of anchor points in conjunction with route level attributes in route choice decisions. 
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In this study we focus on trips taking place between the Islands of Montreal and Laval, the largest 

suburb of Montreal located on the north of the city. These two islands are directly connected 

through seven bridges; B1 to B7. Since bridges B8 and B9 might also provide convenient 

alternatives for trips between the East of Montreal and Laval, they have been included in this study. 

Figure 4.1(b) depicts the location of these nine bridges and Table 4.1 summarizes some of the 

pertaining properties of these bridges.  Montreal and Laval cover a total surface of 632.3 km2 

containing a population of roughly 2.3 million inhabitants (Communauté métropolitaine de 

montréal, 2012). Their road networks comprise more than 40,000 nodes and 19,000 links. The 

network data has been extracted from OpenStreetMap project in the format of geographical layers. 

  

(a) (b) 

Figure 4.1: Context of the studied region. (a) The metropolitan region of Greater Montreal; (b) 

Locations of bridges connecting Montreal to Laval 

Table 4.1: Description of bridges connecting Montreal to Laval 

ID Name No. of lanes Length* (km) Road type Speed limit Toll 

B1 Pont Louis-Bisson 4 0.535 Highway (13) 100 No 

B2 Pont Lachapelle 3 0.264 Arterial 50 No 

B3 Pont Mederic-Martin 4 0.361 Highway (15) 100 No 

B4 Pont Viau 2 0.658 Arterial 50 No 

B5 Pont Papineau-Leblanc 3 0.425 Highway (19) 100 No 

B6 Pont Pie-IX 3 0.658 Arterial 80 No 

B7 Pont Olivier-Charbonneau 3 1.200 Highway (25) 100 Yes 

B8 Pont Charles-De-Gaulle 3 1.450 Highway (40) 100 No 

B9 Pont Le Gardeur 2 0.500 Arterial 100 No  

  * Bridge lengths have been measured in QGIS software. 
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GPS records for the month of October 2014 have been extracted for this study. The dataset includes 

two tables: a) “GPS” table containing information for every recorded point such as ID, time, 

geographical position, speed, and etc.; b) the “Events” table, including information regarding the 

state of the taxi such as when the passenger has boarded and got off the taxi, etc. These two tables 

are related through a unique trip identifier (“Ride ID”). Table 4.2 shows the schema of the dataset. 

Table 4.2: Internal structure of the database 

GPS Table  Events Table 

 ID 

 Time 

 Object ID 

 Longitude 

 Latitude 

 Status 

 Speed 

 Direction 

 Employer ID 

 Ride ID 

 
 Ride ID 

 Events: 

 Flag 

 Accept 

 Reject 

 Cancel 

 Meter ON/OFF 

 Payment 

 … 

 

Our dataset consists of 4409 GPS records comprising 543 journeys with an average length of 

around 11 km and a standard deviation of 9 km.The dataset comprises weekdays, as well as 

weekends and trips made in peak hours as well as off-peak trips. Eighty percent of the dataset (434 

records) was randomly selected for calibration purposes, while the remainder twenty percent (109 

records) was used for result validation. 

4.4 Methodology 

The principal aim of this research is to provide a behavioural framework, which explicitly takes 

into account the effect of anchor points as well as route-level attributes in route selection. To 

highlight the importance of anchor points in conjunction with route-level attributes, we adopt the 

following nested structures. First, we adopt a classic Nested Logit model in which the effect of 

anchor points is addressed in upper nests while route level decisions are represented in lower nests. 

Then, we adopt a nested Logit Kernel model, which accounts for the interdependencies of route 

alternatives crossing the same anchor point through the specification of its error structure. 

In behavioural terms, our application of these nested structures suggests that individual taxi drivers, 

travelling between Montreal and Laval, consider bridges as crucial elements, along with other route 
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level attributes, which affect their route choices. This section delineates the formulations of the 

abovementioned econometric models, presents the comparative route-based and anchor-based 

models, and describes their respective utility functions and choice set generation algorithms. 

4.4.1 Econometric model formulation 

4.4.1.1 Nested Logit 

The Nested Logit (NL) formulation was proposed by Ben-Akiva (1973) and proved to be consistent 

with stochastic utility maximization theory by McFadden (1978). It is an extension of the 

Multinomial Logit (MNL), and captures some of the unobserved similarities among alternatives 

by dividing the choice set into several nests. These nests are considered to be collectively 

exhaustive and mutually exclusive in covering the considered alternatives. Every nest contains a 

subset of alternatives sharing a particular characteristic, independent from other subsets of 

alternatives in other nests. In other words, the probability of choosing an alternative from a nest is 

considered to be independent from alternatives in other nests, which is known as the Independence 

of Irrelevant Alternatives (IIA) property.Therefore, the probability of choosing an alternative can 

be expressed as the product of the conditional probability of choosing that alternative given a 

particular nest and the choice probability of that respective nest (Ben-Akiva, 1973; Guevara & 

Ben-Akiva, 2013). It is worth mentioning that in our case, the nine considered bridges between 

Montreal and Laval are located relatively far apart from each other, and it is not far-fetched to 

assume that the IIA property holds within each nest of the model. 

NL is a member of the Generalized Extreme Value (GEV) models (McFadden, 1978), also known 

as Multivariate Extreme Value (MEV) models (Guevara & Ben-Akiva, 2013). Within this 

framework, the probability of choosing alternative 𝑖 by individual 𝑛 within the true choice set 𝐶𝑛 

is given by 



51 

 

 
𝑃(𝑖|𝐶𝑛) =  

𝑒𝑉𝑖𝑛𝐺𝑖(𝑒
𝑉1𝑛 , … , 𝑒𝑉𝐽𝑛)

𝐺(𝑒𝑉1𝑛 , … , 𝑒𝑉𝐽𝑛)
 ( 4.1 ) 

 
𝐺𝑖(𝑒

𝑉1𝑛 , … , 𝑒𝑉𝐽𝑛) =
𝜕𝐺

𝜕𝑒𝑉𝑖𝑛
(𝑒𝑉1𝑛 , … , 𝑒𝑉𝐽𝑛) ( 4.1 ) 

where 𝐺 is a non-negative differentiable MEV generating function, 𝐺𝑖 is its partial derivative with 

respect to 𝑒𝑉𝑖𝑛, 𝑉𝑖𝑛 specifies the systematic part of the utility function, and 𝐽𝑛 is the number of 

alternatives in 𝐶𝑛. The probability of choosing alternative 𝑖 from the true choice set is given by: 

 
𝑃(𝑖|𝐶𝑛) =  

𝑒𝑉𝑖𝑛+ln𝐺𝑖(𝑒
𝑉1𝑛 ,…,𝑒

𝑉𝐽𝑛 )

∑ 𝑒𝑉𝑗𝑛+ln𝐺𝑗(𝑒
𝑉1𝑛 ,…,𝑒

𝑉𝐽𝑛 )𝐽𝑛
𝑗=1

 ( 4.2 ) 

where the partial derivative of the MEV generating function for Nested Logit 𝐺𝑖, for the true choice 

set 𝐶, is: 

 𝐺𝑖(𝐶) = 𝐺𝑖(𝑒
𝑉1 , … , 𝑒𝑉𝐽) =  𝜇𝑒𝑉𝑖(𝜇𝑚−1)(∑𝑒𝜇𝑚𝑉𝑖

𝐽𝑚

𝑖=1

)

𝜇
𝜇𝑚

−1

 ( 4.3 ) 

in which 𝜇 and 𝜇𝑚 are scale parameters for the model and its nests, respectively, where 𝜇/𝜇𝑚 ≤ 1, 

and 𝑚 is the nest including alternative 𝑖. Since it is not feasible to enumerate the true choice set, a 

subset 𝐷 has to be sampled which must include the chosen alternative 𝑖. To consistently estimate 

this model on a subset of alternatives, the correction approach proposed by McFadden (1978) can 

be adopted, in which an alternative specific correction term is added to the utility function. 

 
𝑃(𝑖|𝐷) =  

𝑒𝑉𝑖𝑛+𝑙𝑛𝐺𝑖(𝐶)+𝑙𝑛𝜋(𝐷|𝑖)

∑ 𝑒𝑉𝑗𝑛+𝑙𝑛𝐺𝑗(𝐶)+𝑙𝑛𝜋(𝐷|𝑗)𝐽
𝑗=1

 ( 4.4 ) 

𝑙𝑛 𝜋(𝐷|𝑖) is the sampling correction factor, and 𝜋(𝐷|𝑖) is the conditional probability of choosing 

subset 𝐷 given the alternative 𝑖 has been chosen. The approach developed by McFadden (1978) 

has been adopted by Bierlaire et al. (2008) to demonstrate that the maximization of the quasi-log-

likelihood function of Eq. ( 4.4 ) yields consistent parameter estimates. It is worth mentioning that 

in our case, since a finite set of anchor points (bridges B1 to B9, connecting the two regions) is 
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considered for the upper nest level, the application of this correction factor is found to be 

superfluous and unneeded.Although this function leads to the conditional probability of choosing 

alternative 𝑖 given the subset 𝐷, it’s application is not valid with sampling of alternatives because 

ln 𝐺𝑗(𝐶) is still dependent on the true choice set (Guevara & Ben-Akiva, 2013). In order to 

compensate for the loss of information due to sampling in each nest, an expansion factor 𝑤 should 

be considered to approximate the generating function based on the considered sample 𝐷′. 

Moreover, to take into account the physical overlap between routes crossing the same anchor point, 

the Extended Path-Size factor (see Eq. ( 4.16 )) has been added to the deterministic part of the 

utility function, so that: 

 
𝑃(𝑖|𝐷, 𝐷′, 𝑤) =  

𝑒𝑉𝑖+𝑙𝑛𝐸𝑃𝑆𝑖+ln�̂�𝑖(𝐷
′,𝑤)+ln 𝜋(𝐷|𝑖)

∑ 𝑒𝑉𝑗+𝑙𝑛𝐸𝑃𝑆𝑗+ln �̂�𝑗(𝐷
′,𝑤)+ln 𝜋(𝐷|𝑗)𝐽

𝑗=1

 ( 4.5 ) 

The closed form quasi-log-likelihood function has the following structure: 

 

𝑄𝐿𝑀𝐸𝑉,𝐷,𝐷′,𝑤 = ∑ 𝑙𝑛𝑃(𝑖|𝐷, 𝐷′, 𝑤) = 

𝑁

𝑛=1

∑𝑙𝑛
𝑒𝑉𝑖+𝑙𝑛𝐸𝑃𝑆𝑖+ln�̂�𝑖(𝐷

′,𝑤)+ln 𝜋(𝐷|𝑖)

∑ 𝑒𝑉𝑗+𝑙𝑛𝐸𝑃𝑆𝑗+ln �̂�𝑗(𝐷
′,𝑤)+ln 𝜋(𝐷|𝑗)𝐽

𝑗=1

𝑁

𝑛=1

 ( 4.6 ) 

Guevara and Ben-Akiva (2013) demonstrated that in order to achieve unbiasedness and 

consistency, the expansion factor should have the following structure: 

 
𝑤𝑗 =

𝑘𝑗

𝐸[𝑘𝑗]
 ( 4.7 ) 

in which 𝑘𝑖 is the number of times alternative 𝑖 has been sampled, and 𝐸[𝑘𝑗] denotes its expected 

value or its sampling probability. In this study, we adopt the formulation proposed by Lai and 

Bierlaire (2015) to approximate Eq. ( 4.4 ) over the choice set 𝐷′: 

 
𝑤𝑗 =

𝑘𝑗

𝑘𝑠

𝑏(𝑠)

𝑏(𝑗)
 ( 4.8 ) 

where 𝑠 denotes the path that has been sampled the most, 𝑘𝑠 is the number of times alternative 𝑠 

has been sampled (𝑘𝑠 ≥ 𝑘𝑖   ∀ 𝑖 ∈ 𝐷
′), and 𝑏(𝑠) and 𝑏(𝑗) are the theoretical frequencies of the most 

sampled path and path 𝑗, respectively. 
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4.4.1.2 Logit Kernel (LK) 

Logit Kernel, which is a combination of Probit and Logit models, was first proposed by Bolduc 

and Ben-Akiva (1991) .The random component of its utility function is composed of a Probit-like 

term, which captures the interdependencies among alternatives, and an i.i.d. Gumbel distributed 

random component. The interdependencies between alternatives can be explicitly specified using 

a factor analytic approach, proposed by McFadden (1984). This approach accommodates different 

error structures and reduces the estimation complexity of the model (Bekhor et al., 2002; Bierlaire 

& Frejinger, 2005). The utility function for individual 𝑛 is defined as below: 

 𝑈𝑛 = 𝑋𝑛𝛽 + 𝐹𝑛𝑇휁𝑛 + 𝜈𝑛 ( 4.9 ) 

where 𝑈𝑛 - (𝐽𝑛 × 1) is the utility vector, and 𝐽𝑛 is the number of alternative in the choice set 𝐶𝑛; 

𝑋𝑛 - (𝐽𝑛 × 𝐾) is the matrix of explanatory variables; 𝛽 - (𝐾 × 1) is the vector of unknown 

parameters; 𝐹𝑛 - (𝐽𝑛 ×𝑀) is the factor loading matrix; 𝑇 - (𝑀 ×𝑀) is a diagonal matrix of the 

standard deviation of each factor; 휁𝑛 - (𝑀 × 1) is the vector of i.i.d. random variables with zero 

mean and unit variance; and 𝜈𝑛 - (𝐽𝑛 × 1) is the vector of i.i.d. Gumbel distributed random term 

with zero location, a scale equal to 𝜇, and a variance equal to (𝜋2 6𝜇2)⁄ . 

The LK model can replicate any error structure and approximate any random utility model (Ben-

Akiva et al., 2001; McFadden & Train, 2000; Walker et al., 2004). In a Nested Logit analog of the 

LK model, also known as the nested LK model, 𝐹𝑛 is defined to be the alternative-nest incident 

matrix and is obtained by defining a dummy variable for each nest that equals 1 if an alternative 

belongs to that particular nest, and 0 otherwise. Moreover, 휁𝑛 is usually assumed to be normally 

distributed 𝑁(0, 1), and 𝑇 captures the amount of correlation between alternatives belonging to the 

same nest (Train, 2009; Walker et al., 2004). In this study, the correlation related to the physical 

overlap between routes crossing the same bridge is expressed through the Extended Path-Size 

factor (see Eq. ( 4.16 )), which is added to the utility function (𝑙𝑛𝐸𝑃𝑆). If the factors 휁𝑛 are known, 

the probability of choice 𝑖 given 휁𝑛 is estimated using the MNL formulation: 

 
Λ(𝑖|휁𝑛) =  

𝑒𝜇(𝑋𝑖𝑛𝛽+𝑙𝑛𝐸𝑃𝑆𝑖𝑛+𝐹𝑖𝑛𝑇 𝑛)

∑ 𝑒𝜇(𝑋𝑗𝑛𝛽+𝑙𝑛𝐸𝑃𝑆𝑗𝑛+𝐹𝑗𝑛𝑇 𝑛)𝐽𝑛
𝑗=1

 ( 4.10 ) 
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Since 휁𝑛 is unknown, the unconditional probability takes the following form: 

 

𝑃(𝑖) = ∫Λ(𝑖|휁𝑛)∏𝜙(

𝑀

𝑚=1

휁𝑚)𝑑휁 ( 4.11 ) 

where 𝜙(휁𝑚) is the standard univariate normal density function, and ∏ 𝜙(𝑀
𝑚=1 휁𝑚) represents the 

joint density function of 휁. Since the probability function does not have a closed form, it is 

approximated through simulation: 

 

�̂�(𝑖) =
1

𝐷
∑Λ(𝑖|휁𝑛

𝑑)

𝐷

𝑑=1

 ( 4.12 ) 

where 𝐷 is the number of simulation draws and 휁𝑑 denotes draw 𝑑 from the distribution of 휁. In 

this study, the factor analytic specification takes into account the effect of anchor points on route 

choice decisions and corresponds to bridges connecting Montreal to Laval. These factors capture 

the unobserved similarities among routes crossing the same anchor points. Accordingly, the 𝐹𝑛 

matrix is defined to be the route-bridge incident matrix with a dummy variable for each bridge, 

equal to 1 if a route crosses that particular bridge, and 0 otherwise. 

4.4.2 Comparative models specification 

The two presented anchor-based nested formulations are compared with three other models 

representing route-based and anchor-based formulations, namely the PSL, EPSL and IAL models. 

A concise introduction to these models follows. 

4.4.2.1 Path-Size Logit 

First, a PSL model is estimated as an instance of route-based models (Ben-Akiva & Bierlaire, 

1999a; Prato, 2009b). This model uses a correction factor in the deterministic part of the utility 

function to account for the correlation among sampled paths; however, it ignores the correlation 

with non-sampled paths:  

 
𝑃𝑃𝑆𝐿(𝑖|𝐶𝑛) =

𝑒𝜇(𝑉𝑖𝑛+𝑙𝑛𝑃𝑆𝑖𝑛)

∑ 𝑒𝜇(𝑉𝑗𝑛+𝑙𝑛𝑃𝑆𝑗𝑛)𝑗𝜖𝐶𝑛

 ( 4.13 ) 
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where 𝑃𝑃𝑆𝐿(𝑖|𝐶𝑛) is the conditional probability of user 𝑛 choosing alternative 𝑖 from the universal 

choice set 𝐶𝑛, 𝜇 is a scale factor, and 𝑉 is the deterministic part of the utility function. The Path-

Size factor 𝑙𝑛𝑃𝑆 is added in a logarithmic scale to the deterministic part and is calculated as below: 

 𝑃𝑆𝑖𝑛 = ∑
𝐿𝑎
𝐿𝑖

1

∑ 𝛿𝑎𝑗𝑗𝜖𝜑𝑛𝑎∈Γ𝑖

 ( 4.14 ) 

where 𝐿𝑎 and 𝐿𝑖 represent the length of link 𝑎 and path 𝑖, Γ𝑖 is the set of road segments in path 𝑖, 

𝜑𝑛 denotes the considered choice set, and 𝛿𝑎𝑗 is the link-path incident binary variable which is 1 

if link 𝑎 is on path 𝑖, and 0 otherwise. In other words, ∑ 𝛿𝑎𝑗𝑗𝜖𝜑𝑛  indicates the total number of 

alternatives in the choice set sharing link 𝑎, for observation in 𝜑𝑛.  

4.4.2.2 Extended-Path-Size Logit 

Second, an EPSL model (Frejinger et al., 2009) has been estimated which is also an instance of 

route-based models, in which the PS factor has been extended to take into account the correlation 

of each alternative with all the possible paths in the true choice set. However, the structure of the 

conditional probability stays the same: 

 

𝑃𝐸𝑃𝑆𝐿(𝑖|𝐶𝑛) =
𝑒
𝜇(𝑉𝑖𝑛+𝑙𝑛𝐸𝑃𝑆𝑖𝑛)+𝑙𝑛 (

𝑘𝑖𝑛
𝑞(𝑖)

)

∑ 𝑒
𝜇(𝑉𝑗𝑛+𝑙𝑛𝐸𝑃𝑆𝑗𝑛)+𝑙𝑛 (

𝑘𝑗𝑛
𝑞(𝑗)

)
𝑗𝜖𝐶𝑛

 ( 4.15 ) 

 and the EPS factor is defined by 

 
𝐸𝑃𝑆𝑖𝑛 = ∑

𝐿𝑎
𝐿𝑖

1

∑ 𝛿𝑎𝑗𝜔𝑗𝑛𝑗𝜖𝜑𝑛𝑎∈Γ𝑖

 ( 4.16 ) 

where 𝜔𝑗𝑛 is an extension factor with a value equal to 1 if 𝛿𝑎𝑗 = 1 or 𝑞(𝑗)𝑅𝑛 ≥ 1, and 1/(𝑞(𝑗)𝑅𝑛 ) 

otherwise; where 𝑅𝑛 denotes the total number of paths drawn with replacement from the universal 

choice set, 𝑞(𝑗) is the sampling probability of path 𝑗, and 𝑘𝑗𝑛 is the empirical frequency or the 

actual number of times path 𝑗 is drawn.  

4.4.2.3 Independent Availability Logit 

Third, an IAL model (Swait & Ben-Akiva, 1987b) has been estimated to illustrate the performance 

of anchor-based models. In this formulation the choice set is latent and the probability of 
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considering any combinations of alternative as the final choice set is calculated. The conditional 

probability of alternative 𝑖 being chosen is calculated as 

 
𝑃𝑖
𝐼𝐴𝐿 = ∑𝑃𝐷𝑃𝑖|𝐷 =

𝐷⊆Γ

∑
∏ 𝐴𝑖∏ (1 − 𝐴𝑖)𝑖𝜖𝐶−𝐷𝑖𝜖𝐷

1 − ∏ (1 − 𝐴𝑖)𝑖𝜖𝐶
𝐷⊆Γ

(
exp(𝜇𝑉𝑖)

∑ exp(𝜇𝑉𝑗)𝑗𝜖𝐷

) ( 4.17 ) 

where 𝑃𝐷 is the probability of drawing the choice set 𝐷 from a set of all possible non-empty choice 

sets Γ of the universal choice set 𝐶; 𝑃𝑖|𝐷 denotes the probability of choosing alternative 𝑖 from the 

choice set 𝐷; and 𝐴𝑖 = (1 + exp(−𝛼𝑥))
−1, where 𝑥 denotes attributes and 𝛼 refers to parameters 

to be estimated. In order to achieve the proposed formulation for 𝑃𝐷, it is assumed that the IIA 

property holds for alternatives in the considered choice set. 

4.4.3 Utility function specification 

Four attributes are used to specify the systematic part of the utility function: 

 Mtl_Len specifies the portion of trip length made on the island of Montreal, 

 Lvl_Len denotes the portion of trip length made on the island of Laval, 

 Hgw_Len stands for the portion of trip length made on highways, and 

 Seg_Len indicates the average length of road segments2. 

The minimum, maximum, average and median values of these attributes over the whole dataset are 

reported in Table 4.3. 

Table 4.3: Statistics on attributes included in the systematic part of the utility function 

Attributes Min. Max. Avg. Med. 

Mtl_Len (m) 266.6 22846.3 7459.9 6347.6 

Lvl_Len (m) 117.5 23474.8 3729.0 2414.6 

Hgw_Len (m) 0.0 33694.9 7381.6 3956.1 

Seg_Len (m) 89.0 621.3 231.2 195.5 

In estimating NL, LK, PSL, and EPSL models, the utility function for observation 𝑖 is defined by: 

                                                 

2 Road segments are defined to be the portion of a road between two consecutive junctions. 



57 

 

𝑉𝑖 = 𝛽𝑀𝑡𝑙_𝐿𝑒𝑛 ×Mtl_Len𝑖 + 𝛽𝐿𝑣𝑙_𝐿𝑒𝑛 × Lvl_Len𝑖  + 𝛽𝐻𝑔𝑤_𝐿𝑒𝑛 × Hgw_Len𝑖  

+ 𝛽𝑆𝑒𝑔_𝐿𝑒𝑛 × Seg_Len𝑖 
( 4.18 ) 

For the IAL model, the length of the trip made on the island of Montreal, which practically specifies 

the distance from the origin to the bridge, is used in the first part of the model to determine the 

selection probability of each choice sets: 

 𝐴𝑖 = (1 + exp(−𝛽𝑀𝑡𝑙_𝐿𝑒𝑛 ×Mtl_Len𝑖))
−1

 ( 4.19 ) 

The other three variables are used to define the systematic part of the utility function: 

 
𝑉𝑖
𝐼𝐴𝐿 = 𝛽𝐿𝑣𝑙_𝐿𝑒𝑛 × Lvl_Len𝑖  + 𝛽𝐻𝑔𝑤_𝐿𝑒𝑛 × Hgw_Len𝑖  + 𝛽𝑆𝑒𝑔_𝐿𝑒𝑛

× Seg_Len𝑖 
( 4.20 ) 

4.4.4 Choice set generation 

The consideration set should include attractive alternatives. Since random sampling of alternatives 

in large universal choice sets is not efficient in terms of providing information, an importance 

sampling method would be more convenient and favorable (Hess & Daly, 2010). Several 

deterministic and probabilistic path generation methods, which are mostly based on repeated 

shortest path algorithms have been proposed in the literature to form the consideration set. Among 

them are link labelling (Ben-Akiva et al., 1984), link elimination (Azevedo et al., 1993), and link 

penalty (de la Barra et al., 1993). A thorough review of these methods is presented in (Prato, 2009b) 

and (Frejinger & Bierlaire, 2010). The major downside of using these methods is that they do not 

provide researchers with sampling probabilities of the generated alternatives. Model estimates 

based on these path generation methods are biased, unless the sampling probability of every 

alternative in the universal set is equal, which is not the case in route choice modelling.  

Several alternative approaches have been proposed. Cascetta et al. (2002) adopted a two stage 

process, where in the first step, a complete set of alternatives is generated for all the observations 

by maximizing a coverage factor between the generated set and the set of routes perceived as 

available. Then, in the second step, a binomial Logit model is adopted to estimate the probability 

of including a given route in the users’ consideration set. Frejinger et al. (2009) applied a biased 
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random walk to sample a subset of paths and derived a sampling correction to obtain unbiased 

parameter estimates. More recently, Flötteröd and Bierlaire (2013) used a Metropolis-Hastings 

(MH) algorithm to generate sample sets based on an arbitrary distribution providing the sampling 

probability of each alternative. This algorithm requires a road network and a definition of path 

weight as an input. It uses an underlying Markov Chain process to sample alternatives and 

calculates its sampling probability without the need of normalizing it over the full choice set.  

For the NL model estimated in this study, the MH algorithm has been adopted to generate nine 

alternatives per nest. In order to apply this algorithm on the large road network of Montreal and 

Laval, 100 separate input files have been prepared to provide the possibility of parallel calculation. 

Files have been imported into a cluster of 26 computers (2 processors Intel(R) Xeon(R) X5675 @ 

3.07GHz) which took about 104 hours (4 days and 8 hours) to generate the output files. For the 

LK, PSL, and EPSL models, the MH algorithm has been adopted to draw 19 choice alternatives 

from the universal choice set. Similarly, to the NL model, 100 separate input files have been 

prepared to provide the possibility of parallel calculation, which resulted in a calculation time of 

46 hours (1 day and 22 hours). 

For the IAL model, a shortest path algorithm, using segments’ speed limits as travel cost, has been 

adopted. The same algorithm was used in the original application by Habib et al. (2013) and 

provides the possibility of comparison between the outputs. In the IAL formulation, the feasible 

choice set built in the choice generation step is considered to be the equivalent of the universal 

choice set 𝐶. Since the algorithm calculates the choice probability of every non-empty subset of 

the universal choice, the number of considered alternatives should be restricted for computational 

purposes. The chosen alternative and eight shortest-distance paths, crossing the eight alternative 

bridges, comprise the nine feasible alternatives for each observation. Although Habib et al. (2013) 

showed that the IAL performs well in anchor choice prediction, it is very computationally 

expensive for applications involving large choice sets, such as route choice modelling applications. 

In this study, different sizes of choice sets have been generated for practicality reasons. Considering 

larger choice sets would have increased the computational time dramatically; however, similarly 

to Elgar et al. (2009) the estimation gain would have probably been minor. In all the above 

mentioned applications, the chosen alternative has been added to the choice set, where it was not 

generated by the adopted choice set generation algorithm (Arifin, 2012; Dhakar & Srinivasan, 
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2014; Elgar et al., 2009; Frejinger et al., 2009; Habib et al., 2013; Hess et al., 2015; McFadden, 

1978; Prato et al., 2012) 

4.5 Results and discussion 

This section presents, compares and discusses the estimation and prediction abilities of the 

aforementioned models. The BIOGEME software package (Bierlaire, 2003; Bierlaire & Fetiarison, 

2009) has been used for all model estimations. 

4.5.1 Estimation 

Eighty percent of the observations, that is 434 trips, were randomly selected for estimation 

purposes. A heat-map of origin and destination points, presented in Figure 4.2, illustrates higher 

density regions, located mostly around metro stations, airport, downtown Montreal, and 

commercial centers, which have an expectedly higher taxi demand. A heat-map of chosen routes 

between OD pairs is illustrated in Figure 4.3 Around 40 % of the whole network size, considered 

for choice set generation, has been covered by drivers’ route choices. 

 

Figure 4.2: Heat-map of origin and destination points for trips between Montreal and Laval 
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Figure 4.3 : Heat-map of chosen routes between OD pairs for trips between Montreal and Laval 

A detailed description of models’ estimates is provided in Table 4.4. Presented models are fully 

identified according to the smallest singular value approach implemented in BIOGEME (Bierlaire, 

2015). The scale parameter in PSL, EPS and LK models were estimated while they have been fixed 

to 1 in IAL and NL models for identification purposes. Scale factors for nests in the NL model 

have been estimated and 𝜇 ≤ 𝜇𝑚 holds for every nest. Since the composition of the choice set 

differs from a model to another, not much can be inferred from the comparison of their scale factors. 

However, an out-of-sample validation method has been used to properly compare the models’ 

performances, which will be presented and discussed in the subsequent section. 

Intuitively, taxi drivers are apt to minimize their travel distance by choosing a shorter route, and 

their travel time by riding on segments with higher speed limits. This behaviour is confirmed by 

the obtained results from all the estimated models. Coefficients 𝛽𝑀𝑡𝑙_𝐿𝑒𝑛 and 𝛽𝐿𝑣𝑙_𝐿𝑒𝑛 are negative 

while 𝛽𝐻𝑔𝑤_𝐿𝑒𝑛 has a positive sign, meaning that taxi drivers are more willing to take shorter 

alternatives and are more inclined to ride on highways. These findings are in agreement with results 

reported by Duan and Wei (2014) who claimed that most taxi drivers tend to minimize their travel 

time. The effect of the average length of the segment is expectedly positive for PSL, EPSL, LK, 

and NL models, implying that taxi drivers tend to avoid intersections and prefer to take routes with 

a longer average segment length. However, this estimate has a negative sign for the IAL model, 

which might be attributed to the fact that alternatives are assumed to be completely independent 
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from each other and their correlations have been neglected. The positive signs of 𝛽𝑃𝑆 and 𝛽𝐸𝑃𝑆 are 

a negative correction of the utility for overlapping routes, giving a higher chance to less similar 

alternatives to be chosen. Similar findings are reported by (Bierlaire & Frejinger, 2008; Dhakar & 

Srinivasan, 2014; Prato & Bekhor, 2006, 2007a). 

Note that the anchor-based nested models, namely LK and NL models, result in significantly higher 

Rho-square values compared to the route-based and anchor-based models. This emphasizes the 

importance of bringing the concept of anchor points in route choice modelling, so that it becomes 

more in line with the actual behaviour of drivers. The 𝜎 estimates are highly significant (except for 

bridge 6) for the LK model, implying that the factor analytic structure captures a significant 

correlation structure between routes crossing the same bridges. It is also noted that this effect is 

statistically different from the effect captured by the EPS factor. This is consistent with findings in 

Bekhor et al. (2002) and Bierlaire and Frejinger (2005), where the authors presented a LK route 

choice model considering subpath components. The better fit of the LK model with an EPS attribute 

over the PSL and EPSL models is in line with findings reported by Ramming (2002)  and Bierlaire 

and Frejinger (2005). It is worth mentioning that the travel time-based shortest path algorithm, used 

in the choice set generation step of the IAL model, does not provide the researcher with the 

sampling probability of paths in order to correct the sampling effect. The better fit of all other 

models can be partially attributed to the application of MH algorithm, which provides the 

possibility of considering the sampling correction factor.  

The estimation time has also been reported in Table 4.4. All model estimations were conducted on 

a machine with a core i7-4720HQ CPU running at 2.6GHz and a Random Access Memory (RAM) 

of 16.0 GB. Concerning PSL and EPSL models, the computational time was found to be less than 

1 second which is probably due to their simple multinomial logit structure. The small number of 

considered alternatives per observation may be a further reason for the simplicity of their 

calculation. However, there is a large difference in computational costs between these models and 

the IAL model. Although the number of feasible alternatives for the IAL model is limited to 9, the 

high computational cost might be related to the fact that every possible non-empty subset (29 −

1 = 511 subsets) must be considered for every observation. 

Implementing a NL structure reduces the calculation time substantially, compared to the IAL 

model, by providing a more realistic structure to represent drivers’ route choice behaviour. It is 
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behaviourally not realistic and computationally not feasible to assume that drivers consider 511 

non-empty subsets in order to make a choice from a set of 9 nine alternatives. However, the increase 

in computational time compared to the PSL and EPSL models might be explained by the more 

complex structure of NL compared to MNL, and the greater number of alternatives considered for 

the NL model (82 alternatives per observation compared to 20 alternatives for PSL and EPSL 

models). Expectedly, the largest estimation time is recorded for the LK model. The normally 

distributed portion of the disturbance requiring large number of draws in model estimation, leads 

to a computationally demanding model (Ben-Akiva et al., 2001; Walker et al., 2004). 

Table 4.4: Model estimates for taxi trips between Montreal and Laval 

Parameters 
PSL  EPSL 

 

IAL  LK 
 

NL 
Est.a tt.b  Est. tt. 

 

Est. tt.  Est. tt. 
 

Est. tt. 

𝛽𝑀𝑡𝑙_𝐿𝑒𝑛
c -0.0009 -10.9  -0.0048 -4.5 

 

-0.0177 -8.4  -0.0012 -5.7 
 

-0.0016 -9.2 

𝛽𝐿𝑣𝑙_𝐿𝑒𝑛
 c -0.0002 -3.1  -0.0037 -5.1 

 

-0.0006 -8.8  -0.0003 -2.2 
 

-0.0015 -7.0 

𝛽𝐻𝑔𝑤_𝐿𝑒𝑛
 c 0.0003 2.4  0.0028 4.8 

 

0.00776 9.5  0.0005 2.7 
 

0.0008 4.3 

𝛽𝑆𝑒𝑔_𝐿𝑒𝑛
 c 0.1070 6.2  0.1910 6.8 

 

-0.197 -8.3  0.1020 11.6 
 

0.0455 6.2 

𝛽𝑃𝑆 4.1 6.2  
  

 

  
   

 

  

𝛽𝐸𝑃𝑆    3.57 4.5 
 

  
 2.76 11.5 

 

0.887 3.4 

ASC_Brg2    
  

 

33.6 11.2    
 

  
ASC_Brg3    

  
 

4 -    
 

  
ASC_Brg4    

  
 

18.3 13.2    
 

  
ASC_Brg5    

  
 

-18.8 -4.5    
 

  
ASC_Brg6    

  
 

25 -    
 

  
Mu 0.66 7.1  0.38 6.9 

 

1 -  0.65 7.4 
 

1 - 

𝜎𝐵𝑟𝑔1      
 

   0.48 2.7 
 

  

𝜎𝐵𝑟𝑔2      
 

   -1.12 -2.8 
 

  

𝜎𝐵𝑟𝑔3      
 

   -1.81 -4.8 
 

  

𝜎𝐵𝑟𝑔4      
 

   0.96 2.9 
 

  

𝜎𝐵𝑟𝑔5      
 

   4.35 2.3 
 

  

𝜎𝐵𝑟𝑔6      
 

   1.76 1.5 
 

  

Mu_Brg2    
  

 

  
   

 

3.78 17.1 

Mu_Brg3   
 

  
 

  
   

 

1.08 4.9 

Mu_Brg4   
 

  
 

  
   

 

3.73 10.6 

Mu_Brg5   
 

  
 

  
   

 

1.52 6.1 

Mu_Brg6   
 

  
 

  
   

 

1.42 5.1 

Initial LL -2079.8  -2180.6 
 

-1151.2  -5201.0 
 

-2404.7 

Final LL -623.9  -606.7 
 

-341.4  -747.7 
 

-336.8 

Rho-square 0.697  0.719 
 

0.697  0.854 
 

0.855 

Est. Time (s) < 1  < 1 
 

514  2417 
 

123 
a Estimated value 
b Robust t-test 
c Length has been measured in meters 
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4.5.2 Validation 

In order to further compare these models, their ability to predict should also be evaluated in the 

final stage. An out of sample validation has been performed to evaluate the prediction capability 

of the estimated models. Twenty percent of the observations (109 trips), which have not been used 

for model estimation, have been randomly sampled for this purpose. The validation has been 

performed based on models’ abilities to correctly predict: 

i. The chosen bridge, 

ii. The chosen route, and  

iii. The total overlapping percentage with chosen alternatives (coverage rate). 

The aforementioned three indicators have been calculated and results are illustrated in Figure 4.4. 

Part A of Figure 4.4 compares models’ performances in terms of correctly predicting the taken 

route. It clearly shows that LK and NL perform better than the three other models with a prediction 

rate of 72.5 % and 73.4 % compared to 51.4 %, 53.2 % and 55 % for the PSL, EPSL and IAL 

models, respectively. The ability to correctly predict the chosen bridge is compared in part B of 

Figure 4.4. Similarly, LK and NL outperform PSL and IAL with prediction rates of 91.8 and 92.7 % 

compared to 89 % and 55 %, respectively. 

The performance of EPSL is roughly similar to the anchor-based nested formulations with a small 

difference of around 1.0 %, which may be attributed to simulation errors. In order to understand 

how closely each model has predicted the chosen route, we have calculated the length percentage 

that has been correctly predicted by each model. This coverage rate is compared in part C of 

Figure 4.4, and clearly demonstrates the superiority of anchor-based nested formulations. Since 

IAL model is an anchor-based model, it was expected to perform better in bridge choice prediction 

with respect to studied route-based models. The poor performance of this model, in this study, in 

terms of both estimation and prediction might be attributed to the fact that a fixed utility function 

has been used to compare the four models. Using more explanatory variables describing bridge 

characteristics in Eq. ( 4.17 ) might have improved both the model’s fit over data and its prediction 

abilities. 
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Figure 4.4: Comparison of models' prediction abilities 

Based on the abovementioned results, we conclude that the proposed anchor-based nested 

approaches outperform route-based as well as anchor based models. This conclusion is in line with 

findings reported by (Habib et al., 2013; Kazagli & Bierlaire, 2015; Manley, Addison, et al., 2015a; 

Manley, Orr, et al., 2015; Prato & Bekhor, 2007a) who claimed that anchor points have an 

important effect on individuals’ route selection behaviour. However, the important aspect of this 

study, which is the estimation of the comprehensive effect of both route-level attributes and anchor 

points, clearly demonstrates that considering the role of bridges as anchor points in conjunction 

with route-level attributes, for trips between Montreal and Laval, enhances both the estimation and 

prediction abilities of the model. 

4.6 Conclusions 

In this paper we have explored the application of a nested structure to improve the behavioural 

aspect of route choice modelling by incorporating the effect of space hierarchy in drivers’ decision 

making process. The anchor-based nested approaches, proposed in this paper, attempt to improve 

the behavioural aspect of route choice modelling by incorporating the effects of anchor points and 

route level attributes at the same time. As previous studies have shown (Habib et al., 2013; Sun et 

al., 2014; Woo et al., 2015), in riverside cities such as Montreal, route choice decisions are highly 

influenced by their respective bridge choices. Moreover, routes crossing a same bridge share 

unobserved components such as safety, scenery, driving comfort, etc., which is mainly because 

they share the same network and geographical characteristics. In this study, we capture this 

reciprocal effect through a nested structure. GPS data provided by a taxi company in Montreal has 
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been used to study trips made between the island cities of Montreal and Laval. For these trips, 

drivers have to choose between a maximum of nine bridges, providing plausible route alternatives 

between these cities. These bridges face recurrent congestion and play an important role in drivers’ 

route decisions due to their high travel time variability. To address the role of bridges as anchor 

points, a discrete choice utility maximization framework has been adopted. First, a NL formulation 

has been proposed, in which upper nests represent bridges and lower nests consist of route 

alternatives crossing respective bridges. Second, a nested LK with a factor analytic structure is 

specified. The EPS factor has been added to the deterministic part of the utility functions of these 

models to account for physical overlap among routes crossing the same bridge. The unobserved 

similarities among these routes are captured through the nested structure and the factor analytic 

structure in NL and LK models, respectively. 

To evaluate the performance of the proposed anchor-nested formulations, they are compared to the 

recent route- and anchor-based models, namely PSL, EPSL and IAL models. For the sake of 

simplicity in estimation and comparison, four most important variables have been selected to define 

a common utility function between models. Findings revealed that the nested structures provided 

better model fits and underscored the importance of considering the comprehensive effect of anchor 

points and route level attributes in route choice decisions. Results have expectedly illustrated that 

taxi drivers are more likely to drive on highways and tend to decrease their travelled distance. It 

has also been found that they prefer to avoid intersections and tend to drive on routes with a higher 

average segment length. The predictive ability of these models has also been compared by an out-

of-sample validation approach. Three indicators have been used for this purpose, namely the 

number of correctly predicted routes, the number of correctly predicted bridges, and the overlap 

percentage between the predicted and chosen alternatives. The overall results suggest that LK and 

NL outperform the other three models in the validation step. 

In short, incorporating the effects of anchor points in a nested structure has the following 

advantages over the previously studied anchor based model: (1) the nested structure improves the 

behavioural aspect of decision making process. In the conventional anchor based model (IAL), a 

probability is assigned to every subset of the universal choice set, and the conditional probability 

of an alternative being chosen implies that the decision maker has considered every possible 

combinations of alternatives as his final choice set, which is behaviourally unrealistic, (2) LK and 

NL models are easily manageable and practical, even by considering a large number of alternatives 



66 

 

(McFadden, 1978). IAL incorporates a full probabilistic choice set generation approach, which is 

inapplicable in route choice modelling (Prato, 2009b). For instance, considering a small dataset of 

10 alternatives, a selection probability has to be calculated for every 1023 non-empty subsets of 

alternatives, which is very time-consuming and impractical, and (3) the nested structure allows the 

consideration of multiple anchor points and their effects on route choice decisions. Also, the 

inclusion of multiple landmarks and anchor-points, and the consideration of several forms of 

heterogeneity, such as decision makers’ taste variations, are much more manageable and can be 

accommodated more easily in LK than in the NL mode. This is due to the flexible structure of the 

error term, which can approximate almost any desirable error structure (Walker et al., 2004). 

This study contributes to the existing literature in two ways. First, it improves the behavioural, 

theoretical, and practical aspects of anchor-based route choice models by capturing the effects of 

both anchor points and route level attributes within a nested choice model framework, and clearly 

underscores the importance of considering the effects of anchor points in conjunction with route-

level attributes. Second, a large real-world road network, consisting of over 40,000 nodes and 

19,000 links, has been studied and a MH algorithm has been adopted to generate a set of considered 

alternatives. To the best of the authors’ knowledge, the largest network previously tested on this 

algorithm was composed of about 8,000 nodes and 17,000 links (Flötteröd & Bierlaire, 2013). The 

major advantage of MH sampling algorithm over conventional methods (e.g. link labelling, link 

elimination, etc.) is that it provides researchers with path sampling probabilities, so that model 

estimates based on these sets are not biased. It is noted that in route-based models and most of the 

link-based formulations, the consideration set is commonly generated using shortest-path 

algorithms with some pre-defined impedance function, which do not provide path sampling 

probabilities, and hence do not account for the correlation between sampled and non-sampled 

paths, resulting in biased estimates. 

It is worth mentioning that since this paper is based on a dataset covering a fraction of taxi fleets 

operating in Montreal, results may not be directly transferable to other car drivers in Montreal or 

any other similar regions in the world. Additional datasets from different contexts and population 

segments are needed to provide more insights on this subject. However, it reveals the undeniable 

effect of anchor points on the decision of the whole path, and provides valuable insights regarding 

drivers’ route selection behaviour. As the core of traffic assignment methods, a more realistic route 

choice model improves the travel demand assessment on the road network. An application instance 
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of the proposed models would be their utilities in predicting drivers’ behaviour under hypothetical 

situations, and the way drivers react to different policies and changes. For example, the effect of a 

temporary lane closure on one of the bridges can be assessed on other bridges and route segments.  

For future works, it would be interesting to investigate the spatial and temporal transferability of 

the proposed structure for different datasets on similar case studies. Also, more interesting 

structures such as multilevel nested models can be estimated to explore the effects of multiple 

anchor points on route choice decisions. In this work, we have neglected the effect of shared 

segments between routes crossing different bridges (alternatives in different nests), to 

accommodate the IIA property of the NL model. The inclusion of a correction factor accounting 

for this shared similarity might improve estimation results. 

Route choice is also influenced by travel time and congestion. A shortcoming of this study is that 

travel time related attributes have been neglected in this study due to data availability issues. In 

order to improve models’ estimation and prediction abilities, it is recommended to consider travel 

time related attributes on bridges and route segments. Furthermore, including physical 

characteristics of bridges can also be interesting and can provide useful insights on their effects on 

the attractiveness of an alternative. It is expected that the inclusion of these factors will enhance 

models’ estimation and prediction abilities. Another appealing aspect to investigate would be the 

incorporation of some socio-demographic and behavioural factors which were not available in our 

dataset. Also, incorporating the role of dynamic information, knowledge, and level of experience 

would add an interesting aspect to this modelling process. A recent study by Vitetta (2016) explores 

a new realm of route choice models called Quantum Utility Model (QUM), which captures the 

effect of intermediate (during the trip) decisions, where decision makers are uncertain about their 

final choices. A comparison study between the proposed approach in this study and the study by 

Vitetta (2016) might also be interesting as a future expansion of this work. Another interesting area 

would be the comparison of the results with the Recursive Logit (RL) modeling framework. 
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Abstract 

Traditionally, taxi service has provided an important mean of transportation in large cities, acting 

mainly as a temporal and spatial complement to the existing public transport. Taxi drivers are more 

familiar with the road network compared to normal users. Due to their more extensive driving 

experience, they develop various habits and behaviours, which breed different types of operating 

strategies. We aim to classify these strategies based on revealed preference route choice decisions. 

We have studied a longitudinal GPS dataset, tracking 1,746 taxi drivers over one year, and 

performed a Principal Component Analysis followed by a Hierarchical Agglomerative Clustering 

to extract behavioural clusters. Four major types of route choice behaviour are observed. These 

clusters show significant variations based on the time of day and the travelled distance, and are 

labelled: “Short trips night drivers”, “Long trips night drivers”, “Short trips day drivers”, and 

“Long trips day drivers”. The understanding of these patterns is important to transportation 

planners to encourage a shared economy by proposing fair policies for the incumbent of taxi 

industry and other transportation companies. Furthermore, the inclusion of different classes of 

drivers in route choice models would improve their behavioural aspects as well as their estimation 

and prediction abilities. 

Keywords: Taxi, Operating strategies, Route choice behaviour, Longitudinal GPS data, Principal 

component analysis, Hierarchical clustering 
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5.1 Introduction 

Taxi service provides a prompt, rapid, comfortable, convenient, twenty-four seven service, which 

makes it an important mean of transportation in large cities. This alternative transportation service 

acts mainly as a temporal and spatial complement to the existing public transport, i.e. bus, metro, 

etc. (Shaaban & Kim, 2016). Taxi drivers are usually more familiar with the road network and its 

travel time variations, compared to normal users. Due to their extensive driving experience, they 

develop different habits and behaviours, which breed different types of operating strategies (Eagle 

& Pentland, 2009; Kang & Qin, 2016). The understanding of these strategies helps to better 

comprehend urban traffic dynamics and is very important to the city and transportation planners 

(Manley, Addison, et al., 2015a). 

These strategies can be observed and characterized through drivers’ route choices, which form the 

collective behavioural patterns of taxi movement. The complex process of route selection is 

captured through route choice models, which are used to estimate and predict the probability of a 

certain route being chosen between a given OD pair. Route choices are highly dependent on 

individuals’ characteristics such as having different preferences, experiences, information levels, 

and attitudes. Our hypothesis is that these factors are correlated and can be classified to represent 

various types of route choice behaviours, hence, operating strategies. 

In this study, we aim to extend the understanding of taxi drivers’ operating strategies by classifying 

them into separate categories, based on their observed route choice decisions, using a longitudinal 

GPS dataset. Route choice studies have been mostly based on traditional cross-sectional analysis 

of drivers’ behaviour, hence, data for a single day has usually been interpreted to derive the most 

important attributes affecting drivers’ decision-making patterns. In recent years, with the 

dissemination of GPS technologies and the progressive utilization of in-vehicle or on-person GPS 

devices, researchers are supplied with longitudinal choice data over an extended period that 

provides better insights on drivers’ route choice patterns and its inert heterogeneity. 

This research relies on a longitudinal GPS dataset, tracking 1,746 taxi drivers making more than 

22,000 trips over a period of one year. In order to extract behavioural clusters, a Principal 

Component Analysis (PCA) is first used to reduce dataset’s dimensions, by forming uncorrelated 

variables while retaining as much information as possible. Then a Hierarchical Agglomerative 

Clustering (HAC) is performed to classify drivers’ behaviours. 
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This work distinguishes itself from the existing literature based on two original contributions. First, 

to the extent of our knowledge, drivers’ operating strategies have never been stratified using 

drivers’ actual route choices. The incorporation of different driver categories can improve the 

estimation and prediction accuracy of route choice models, and can be used in defining different 

functional forms for traffic assignment models (Parkany et al., 2006a; Ramaekers et al., 2013; 

Tawfik et al., 2010c). Second, route choice preferences have never been looked at through 

longitudinal GPS data over a one-year period. Previous datasets were not large or detailed enough 

to allow this type of stratification. Studies focusing on driving patterns over an extended period 

appear to be minimal, which might be mostly due to the challenges of data collection and analysis. 

The rest of this paper is organized as follows. First, we overview the state-of-the art on road users 

behavioural classification, and factors affecting drivers’ route choice decisions. Second, we present 

our studied regional context and describe our dataset. Then, we discuss the process of deriving 

indicators and our clustering methodology. Finally, we present some descriptive analysis of the 

studied trips, discuss the clustering results and underline the findings of this study. 

5.2 State-of-the-art 

Classification, i.e. clustering, is a machine learning technique of grouping similar observations into 

separate homogeneous groups (clusters), with respect to some predefined measures of similarity 

(Hair, 2009). In transportation related studies, behavioural classifications have been conducted on 

various segments of the population, such as pedestrians (Okamoto et al., 2011), bike users 

(Damant-Sirois et al., 2014; Dill & McNeil, 2013; Geller, 2009; Kroesen & Handy, 2014), bike-

sharing (Reinoso & Farooq, 2015), and carsharing members (Morency et al., 2011). 

Kroesen and Handy (2014) studied the causality relation between non-work-related trips and 

commuters, and classified cyclists into four different clusters, namely Non-cyclists, Non-work 

cyclists, All-around cyclists, and Commuter cyclists. Another major work on cyclists classification 

is the work by Geller (2009), in which bike users are classified into four categories: Strong and 

Fearless, Enthused and Confident, Interested but concerned, and No Way No How. The reader is 

referred to Dill and McNeil (2013) for more reflections on this work. A recent work by Damant-

Sirois et al. (2014) classified Montreal cyclists, based on the intensity of bicycle usage, into four 

groups, namely dedicated, path-using, fair-weather utilitarians, and leisure cyclists. Furthermore, 
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on the bike sharing side, Reinoso and Farooq (2015) found two types of users: Commuters and 

Recreational users. In a study by Morency, Trepanier, and Agard (2011), behaviours of car sharing 

members have been classified, based on two main indicators, namely the number of transactions 

and distance travelled, each resulting in two main clusters. In addition, weekly patterns of 

transactions have been used to estimate the regularity of active weeks of members, showing that 

more than 60 % of members have similar weeks of usage.  

Classification of driving behaviours has been mostly cited in traffic safety studies to distinguish 

between conflict and collision leading behaviours, risk-taking versus safe drivers and experienced 

versus novice drivers (Lucidi et al., 2010; Marengo, Settanni, & Vidotto, 2012; Saunier, Mourji, & 

Agard, 2011; Ulleberg, 2001), as well as in car-following research, to classify drivers according to 

their driving behaviours (Higgs & Abbas, 2013). For instance, a classification of driving patterns 

has been proposed by Jensen (1999), which divides drivers into three categories based on their 

attitudes towards the environment: Passionate, Every day, and Leisure time drivers. 

Drivers’ perceptions and experiences have been studied by Tawfik et al. (2010a), using a driving 

simulator and two initial and final questionnaires. They found observable differences between 

drivers’ route choice behaviours, and categorized drivers based on their learning skills into four 

different categories. Tawfik, Szarka, House, and Rakha (2011a) have demonstrated that the 

inclusion of those learning clusters would improve disaggregated route choice models. In a further 

study by Liu, Andris, and Ratti (2010), trip characteristics and incomes of taxi drivers have been 

studied to classify them into Top Drivers and Ordinary Drivers. They have illustrated that top 

drivers determine their operational zones based on a trade-off between travel demand and traffic 

conditions and prefer to avoid highly congested areas and operate in districts where travel demand 

is higher. On the opposite side, ordinary drivers ignore the effect of traffic conditions and operate 

in the central business district in rush hours, most probably to profit from the higher travel demand. 

They also argue that these two classes of taxi drivers show significant differences with respect to 

trip distances, trip times, and the ratio of observed path lengths and times over the respective time 

and distance based-shortest paths. Taxi drivers have been the subject of another study by Kang and 

Qin (2016), in which their spatial operation behaviours have been studied using digital traces of 

6000 taxis over a period of one month. They adopt a non-negative matrix factorization method to 

better understand patterns of taxi demand-and-supply and uncover self-organized spatial operation 

patterns of taxi drivers. 
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Although these studies, among others, show that different categories of road users are observable, 

an explicit classification of taxi drivers’ operating strategies based on their actual route choices is 

missing from the literature. Due to the availability of very large and rich datasets from taxi 

companies, that have detailed GPS trajectories of their fleets for a long duration of time, it has 

become possible to address this critical research need. 

It has been well established in the existing literature that drivers tend to choose their routes in a 

way that minimizes the incurred cost in a given time period. This cost function is unique for each 

driver and situation, and can be attributed to several factors, such as different levels of information, 

different capacities to process them, and different computational and prediction abilities (Ben-

Akiva et al., 1991). Bovy and Stern (1990b) argued that travel behaviour is influenced by four 

categories of attributes, namely Physical, Socio-demographic, Normative, and Personal attributes. 

Physical components include network characteristics and travel possibilities. Factors such as 

household characteristics, age and gender are part of the Socio-demographic components, and 

Normative attributes encompass norms and values derived from the society surrounding the 

traveller. These three categories along with Personal factors, which are basically the preferences 

and attitudes of the decision maker, affect his/her travel behaviours. Furthermore, they argue that 

the mental process of route choice is influenced by personal preferences, characteristics, and 

attitudes of the decision maker, which are in turn affected by his/her acquired knowledge of the 

network, level of information, and experience.  

Each route choice experiment can affect drivers’ personal preferences by its satisfactory or 

unsatisfactory outcome (Dia, 2002). It is argued that the repetition of satisfactory results can 

become a stable preference and drivers tend to repeat same choices, forming various commute 

patterns (Ben-Akiva et al., 1991). For taxi drivers, these commute patterns can be interpreted as 

their operating strategies. In this study, we aim to classify these strategies based on revealed 

preference route choice decisions. 

5.3 Context and data description 

5.3.1 Regional Context 

This study is performed in the context of Greater Montreal Area, depicted in Figure 5.1(a). This 

Island city is separated from its suburbs by two large rivers; Prairies River and Saint Lawrence 



77 

 

River in the north and south of the city, respectively. In this study, we focus on trips originating in 

Montreal with a destination in Laval, the largest suburb of Montreal located north of the city, across 

the Prairies River. These two islands contain roughly 2.3 million inhabitants, and cover a total 

surface of 632.3 km2 (Communauté métropolitaine de montréal, 2012). Traffic Analysis Zones 

(TAZ), delineated by Quebec’s Ministry of Transport, Sustainable Mobility and Electrification of 

Transport, are used in this study to determine the characteristics of taxi trips’ origin and destination 

points (Figure 5.1(b)). TAZs are geographical areas, which divide the city into smaller similar areas 

based on various factors such as population, demography, socioeconomic information, road 

network, transit access, land use and topography. 

 
 

(a) Greater Montreal. (b) TAZ of Montreal and Laval. 

Figure 5.1: Regional context of the study 

5.3.2 GPS Dataset 

We investigated GPS traces collected over a period of one year (from January 1st to December 31st, 

2015) by a major taxi company operating in Montreal. This taxi company constitutes around 25 % 

of the Montreal’s Island taxi fleet, and its operation is restricted to trips starting or ending in the 

central part of the island (Lacombe & Morency, 2016; Pele & Morency, 2014). Every taxi is 

equipped by a data logger and GPS data are collected continuously for operational purposes. For 

our study, we extracted a subset of the main dataset, consisting of around 750,000 GPS records 

collected from 1,746 taxi drivers making a total of 22,394 trips. Drivers are associated with a unique 
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ID so that we can distinguish between trips made by a same car and different drivers. We should 

mention that personal information on drivers’ demographic and socioeconomic characteristics are 

not available. 

In order to explore factors affecting drivers’ route choices, we first need to process the GPS dataset 

to derive the observed routes. Therefore, every record has to be associated with a link in the 

network, a process called map-matching. This step is crucial, since it determines the accuracy of 

reconstructed trajectories, and accordingly their derived attributes. Data has been stored in a 

PostgreSQL database, and the PostGIS spatial extension has been added to support geographical 

datatypes and queries. To associate GPS records to the road network, a direction-based nearest link 

point-to-curve map matching algorithm has been adopted, in which every record is matched onto 

the closest link in the network with respect to its azimuth. To reconstruct the complete trajectory, 

consecutive GPS points have been connected using a distance-based shortest-path algorithm.  

5.3.3 Network Dataset 

The road network has been extracted from the OpenStreetMap project in the format of geographical 

layers (shapefiles). It contains more than 156,000 nodes and 89,000 links. The network has been 

made routable, through a geospatial extension of PostgreSQL named “pgrouting”, in order to 

enable the calculation of shortest paths. It has also been segmented on an intersection-to-

intersection basis; therefore, links are defined to be road segments between two consecutive 

intersections. 

5.4 Methods 

5.4.1 Process of Deriving Indicators 

The first step towards classifying taxi drivers’ operating strategies is to explore a large range of 

route choices and factors affecting them. These factors include temporal and environmental 

attributes, drivers’ attitudes and preferences, network familiarity, personal demographic and socio-

economic characteristics, and route related attributes among others. Since personal characteristics 

are not observable through GPS traces, the focus of this section is to derive explanatory factors 

from the GPS dataset to thoroughly describe observed trajectories. Factors derived in this study are 
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classified into five broad categories, namely Temporal Indicators, Route Attributes, Driver 

Characteristics, Land Use, and Route Similarities.  

Since temporal variations might affect the chosen route, the timestamp information of the origin 

point of a trip, containing information regarding the date and time of the record, has been used to 

derive Temporal Indicators. Then, in order to characterize each observed route, its physical 

specifications and similarity level with its respective distance-based shortest path alternative has 

been evaluated (Route Attributes). To derive Driver Characteristics, the total number of trips per 

driver and trips made by the same driver between same TAZ pairs have been inspected and several 

attributes, pertinent to the regularity of drivers between these TAZ pairs, have been developed. 

Although GPS data allows us to locate the exact pick up and drop off position of travellers, we 

have no information regarding their exact trip purposes. In this work, we associated GPS points to 

their respective TAZ to obtain information regarding the dominant Land Use of trips’ origin and 

destination points. Land use data was provided by Quebec’s Ministry of Transport, Sustainable 

Mobility and Electrification of Transport. Four categories of land uses are considered in this study, 

namely residential, commercial, work/study, and recreational. 

To evaluate Route Similarities for trips taken by a particular driver between a given pair of TAZ, 

we have used a measure called Path-Size (PS). This measure has been proposed by Ben-Akiva and 

Bierlaire (1999a) to account for similarities between routes in logit based discrete choice models. 

The following formulation has been adopted in this study: 

𝑃𝑆𝑖𝑛 = ∑
𝐿𝑎
𝐿𝑖

1

∑ 𝛿𝑎𝑗𝑗𝜖𝜑𝑛𝑎∈Γ𝑖

 (5.1) 

where  𝑃𝑆𝑖𝑛 denotes the path-size factor for driver 𝑛 and route 𝑖, 𝐿𝑎 and 𝐿𝑖 represent the length of 

link 𝑎 and route 𝑖, Γ𝑖 is the set of road segments in route 𝑖, 𝜑𝑛 denotes the observed routes for driver 

𝑛 between the same pair of TAZ, ∑ 𝛿𝑎𝑗𝑗𝜖𝜑𝑛  indicates the total number of alternatives in  𝜑𝑛 sharing 

link 𝑎 (𝛿𝑎𝑗 is the link-path incident binary variable which is 1 if link 𝑎 is on route 𝑖, and 0 

otherwise). The upper bound value of this formulation is 1, indicating that observed routes are 

completely independent and do not share any links. However, smaller values of PS indicate longer 

overlaps and higher dependencies between trips. Table 5.1 presents a concise description of 

indicators derived in this study. 
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Table 5.1: Description of indicators derived to classify drivers’ operating strategies 

Indicators Descriptions 

Temporal Indicators  

Peak/Off-peak 
Trips starting between 6:00 to 9:00, and 16:00 to 19:00 are considered as 

peak hour trips, while all other trips are regarded as off-peak trips 

Weekday/Weekends  

Day of the Week  

Day/Night 
Day trips consist of trips starting between 6:00 to 21:00 and the rest are 

considered as night trips. 

Season  

Route Specifications  

Length The total travelled distance 

Travel time 
The timestamp information at origins and destinations have been used to 

extract the observed travel time 

% Highway Specifies the length percentage of trips made on highways 

# Turns / km The total number of turns per kilometre 

# Segments / km The total number of road segments per kilometre 

% Shortest path % of overlap with the distance-based shortest path 

Driver Characteristics  

Total trips The total number of trips made by each driver 

Number of TAZ (#TAZ) The total number of unique TAZ pairs travelled by each driver 

Average number of trip per 

TAZ pair (TAZ_avg_trip) 

The total number of trips, divided by the total number of unique TAZ 

pairs, between which a driver has travelled. The lower bound of this 

attribute is one, indicating only one travel per TAZ for a driver. Higher 

values signify higher propensity of travelling between same TAZ pairs. 

TAZ pairs with more than 4 

trips (TAZ_4) 

The total number of TAZ pairs between which the driver has made more 

than four trips (4 trips has been selected based on the distribution of trips 

between same TAZ pairs as an indicator of regularity of drivers). 

Maximum same TAZ trips 

(TAZ_max) 

The maximum number of trips made between a given TAZ pair by the 

same driver. This factor is also interpreted as an indicator of regular trips 

between same TAZ pairs. 

Land Use  

Origin land use Land use of trip’s origin 

Destination land use Land use of trip’s destination 

Route Similarities  

Path-Size (PS) 
The average PS factor calculated for all trips made by the same driver, 

between same TAZ pairs 

5.4.2 Cluster Analysis 

Clustering is an unsupervised categorization technique that aims to segregate multivariate data sets 

into more meaningful clusters, according to their main describing attributes. In transportation 

studies datasets usually have very high dimensions. Multivariate analysis and dimension reduction 

techniques, such as PCA, are adopted to better interpret the data and to improve the quality of 

cluster analysis. PCA is an unsupervised dimension reduction technique, which preserve most of 

the initial information within a smaller numbers of mutually uncorrelated components. 
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In this study, we adopt a two-step procedure in order to classify driver behaviours. First, in order 

to reduce collinearity among attributes, a PCA for mixed data is performed (Pagès, 2004). The 

number of principal components extracted from a PCA analysis depends on the level of correlation 

between attributes and the amount of variance that can be explained by each principal component. 

The total number of components is equal to the number of attributes, but only the first few ones are 

important and are considered in the next step (Poucin, Farooq, & Patterson, 2016). Then, a HAC 

using Ward’s criterion is used to classify drivers’ behaviours. In HAC method, clusters are formed 

hierarchically by merging the two closest clusters at each step. All PCA and clustering analysis are 

performed in TANAGRA statistical package (Rakotomalala, 2005). 

To assess the significance level of attributes in the clustering result, the “Test Value” (TV) criterion 

has been used. Following formulas are used to calculate TV for continuous (𝑡𝑐), and discrete (𝑡𝑑) 

values for each cluster (Lebart, PIRON, Lebart, Morineau, & Piron, 2000): 

𝑡𝑐 = 
𝜇𝑔 − 𝜇

√
𝑛 − 𝑛𝑔
𝑛 − 1

×
𝜎2

𝑛𝑔
)

 

(2) 

𝑡𝑑 =
𝑛𝑗𝑔 −

𝑛𝑔 × 𝑛𝑗
𝑛

√
𝑛 − 𝑛𝑔
𝑛 − 1 × (1 −

𝑛𝑗
𝑛 ) ×

𝑛𝑔 × 𝑛𝑗
𝑛

 (3) 

where 𝜇 and 𝜇𝑔 are attributes’ means in the cluster and group, respectively; 𝑛 and 𝑛𝑔 denote the 

size of the cluster and the group, respectively; 𝜎2 represents the attribute variance in the cluster; 

and 𝑛𝑗𝑔 is the number of observations corresponding to the discrete attribute 𝑗 in cluster 𝑔. 

5.5 Results 

5.5.1 Trip Characteristics 

The spatial distribution of origin and destination points is used to visualize the dispersion of taxi 

demand for trips between Montreal and Laval. As depicted in the heat map of Figure 5.2, taxi trips 

mostly originate from downtown Montreal, the airport, major commercial centers, and around train 

stations. Destination regions with high travel densities are more dispersed in Laval, which is 

probably due to the higher dispersion of commercial centers and overall lower density. Also, 
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considering that Laval is a suburb of Montreal, the higher segregation between its dense residential 

areas contributes to the dispersion of high density destination points. 

 

Figure 5.2: Heat map of origin-destination points for trips between Montreal and Laval 

A detailed comparison of trip frequencies across different days, the proportion of day trips versus 

night trips, and the percentage of trips made in peak hours are presented in Figure 5.3(a). A quick 

look reveals that taxi trips are more frequent during weekends, night trips are more common on 

Fridays and weekends, and peak hour trips are more frequent during weekdays. The same 

comparison is illustrated for trips made in different seasons (Figure 5.3(b)). Slightly higher 

numbers of trips are observed during spring and summer. However, the overall percentage of peak 

hour trips remains around 24 % throughout the whole year. Overall, around 56 % of trips are day 

trips and the remaining 44 % are made during nights. These findings are consistent with those 

reported by Lacombe and Morency (2016), also using data from the most important taxi service 

provider in Montreal. A closer look at the hourly distribution reveals that the peak demand occurs 

around 3 AM, drops significantly early in the morning, augments and stays steady over the day, 

and starts to increase again by the end of the day, around 9 PM (Figure 5.3(c)). The same demand 

pattern holds for both weekdays and weekends; however, the overall weekday demand is much 

higher. These findings are in accordance with findings reported by Pele and Morency (2014) using 

a similar source of data. 
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(a) Daily variations. (b) Seasonal variations. 

  

 

(c) Hourly variations. 

Figure 5.3: Daily, seasonal and hourly variations of taxi trips 

The total travelled distance is around 321,240 kilometres. Around 20 % of taxi trips are shorter 

than 5 km; another 20 % have a length of 5 to 10 km; 35 % consist of trips from 10 to 20 km long; 

and the remaining 25 % are longer than 20 km. The mean, median and standard deviation of trip 

lengths are 14.3, 11.8, and 10.2 km, respectively. Although these values do not show any significant 

differences between trips made on weekdays compared to weekends, night trips and off-peak trips 

are slightly longer than day trips and peak hour trips, respectively. Another notable trend is that 

highway usage is considerably higher for night trips and off-peak trips, which is expected given 

lower congestion during these periods. 

Figure 5.4(a) illustrates the average number of trips per day, classified based on the land use 

specification of the TAZ where the passenger was picked-up and dropped-off. Most trips originate 
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from and/or have a destination in residential areas. It also highlights the high number of residential-

end taxi trips for trips towards Laval. Trips are grouped based on OD land uses and the percentage 

of trips in each group is shown in Figure 5.4(b). Number of trips are represented by the length of 

the bar and labels represent the total share in percentages.  A great majority of trips (around 46 %) 

were residential-based, while around 20 % start from work/study regions. 

 
(a) Average number of trips per weekday/weekend per land use. 

 
(b) Number and percentage of trips based on OD land uses. 

Figure 5.4: Statistics on trips’ land uses 
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5.5.2 Driver Characteristics 

The dataset used in this study includes a subset of 1,746 drivers, comprising 204 night drivers and 

498 day drivers, who only operate during nights and days, respectively. 68 drivers only operate 

during off peak hours, while 551 drivers work exclusively during peak hours. Around 38 % of peak 

hour trips take place during morning peak hours and the remaining 62 % occur during evening 

peak hours. An average of 13 trips and a median of seven trips per year (between the islands of 

Montreal and Laval) are recorded for each driver, and the maximum number is 286. 

Taking a closer look at trips between same TAZ pairs reveals that certain drivers are more frequent 

among certain OD pairs, while others have a higher diversity of travelled TAZ pairs. More than 

77 % of drivers make a single trip, and only around 5 % of them make four or more trips between 

a given TAZ pair. Among these more frequent drivers, 52 drivers make more than four trips 

between more than one pair of TAZ. The maximum number of trips between the same pair of TAZ 

by the same driver is found to be 40 trips. 

5.5.3 Cluster Characteristics  

As discussed in the previous section, a two-step clustering approach is adopted, in which PCA 

analysis precedes the clustering step. To assess the appropriateness of attributes’ interrelationships 

and the usefulness of performing a PCA analysis, two measures have been evaluated: Bartlett’s 

sphericity test (Bartlett, 1950; Bartlett, 1951), and the Kaiser-Meyer-Olkin (KMO) measure of 

sampling adequacy (Kaiser & Rice, 1974). The former measure, tests the hypothesis that the 

correlation matrix comes from an independent population of variables. The rejection of the 

independence hypothesis (p < 0.05) indicates that the data is appropriate for factor analysis (Hair, 

2009). The latter measure, KMO, provides an index between 0 and 1 that measures the existing 

variance among variables. According Kaiser and Rice (1974), datasets with KMO values more than 

0.5 are amenable to factor analysis. In this study, the null hypothesis of Bartlett’s sphericity test 

has been rejected (p < 0.05), implying that the PCA can be efficiently performed on our dataset. In 

addition the KMO value is found to be 0.713 which according to Kaiser and Rice (1974) is 

‘middling’, meaning that applying factor analysis may be beneficial. 

The number of principal components considered in the clustering step, is defined based on four 

criteria. First, the Kaiser-Guttman criterion has been used (Cramer & Howitt, 2004; Guttman, 
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1954). This criterion argues that components with eigenvalues3 greater than 1 should be retained. 

Second, the Karlis – Saporta – Spinaki criterion (Saporta, 2003) has been tested in order to select 

components that have eigenvalues significantly higher than 1, based on dataset characteristics such 

as the number of variables and observations. Third, the scree plot proposed by Cattell (1966) has 

been verified. In this plot, the eigenvalue of each component is plotted in descending order against 

the number of factors to visualize the amount of variance accounted for, by each component. 

Ideally, the last significant drop in eigenvalues divides the most important components from less 

important ones. Factors before the endpoint of this drop, known as the ‘elbow’ of the plot, are 

recommended to be retained (Cattell, 1966; Cramer & Howitt, 2004). Last, we used a parallel 

analysis method proposed by Horn (1965) in which eigenvalues are compared to those obtained 

from uncorrelated random normal variables, through a Monte Carlo simulation process. Factors 

with an eigenvalue bigger than those associated to random variables are considered to be 

significant. This technique is among the most accurate methods to determine the number of 

components (Glorfeld, 1995; Ledesma & Valero-Mora, 2007). 

Based on these four criteria, the first two components have been extracted and used for the cluster 

analysis. These components have eigenvalues of 1.94 and 1.56, which are greater than 1 and 1.11, 

satisfying the Kaiser-Guttman and Karlis – Saporta – Spinaki criteria, respectively. The substantial 

difference between the eigenvalues of the second and third components (1.56 and 0.96, 

respectively), the examination of the scree plot and the parallel analysis also suggest the selection 

of the first two components. These latent components explain more than 60 % of the variation 

between attributes implying that they carry most of the attitudinal information (Fu & Juan, 2016). 

A major challenge in clustering analysis is the selection of an appropriate number of clusters. 

Although visualization may be an effective way to verify results, it is highly difficult to visualize 

data with more than three dimensions. In this study, a series of two to eight clusters have been 

experimented and the optimal number of clusters has been defined by the maximum value of 

Between-group Sum of Squares (BSS ratio) and GAP-statistic (Everitt, Stahl, Leese, & Landau, 

2011), as well as the behavioural interpretation associated with each cluster.Furthermore, the 

dendrogram representing the HAC process, has been inspected to verify the plausibility of results. 

                                                 

3 Here the eigenvalue of a component refers to the amount of variance explained by a component. 
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Considering the two selected principal components, a set of four clusters has been found to provide 

the best results. Results showed significant variations of drivers’ behaviours towards shorter versus 

longer routes, and routes taken during day versus night. Interestingly, attributes such as the exact 

hour of the trip, variation of trip days, seasonal variations, and different OD land uses showed no 

significant impacts on drivers’ route choice behaviours. To measure results’ stability, first, the 

dataset was randomly divided in two halves and the clustering process was separately performed 

on each half for the same parameter settings; and second, observations were randomly permuted in 

our dataset. Since results were not significantly different, it was concluded that the four-cluster 

solution has a high degree of stability and reliability (Mooi & Sarstedt, 2010). 

Some descriptive statistics of attributes, based on which the final clustering has been described, are 

illustrated in Table 5.2. Correlations between these attributes are presented in Table 5.3. Clusters 

are presented in Table 5.4 and characterized through their significant attributes. To assess 

attributes’ level of significance, the Test Value (TV) criterion is evaluated. 

 

Table 5.2: Descriptive analysis of significant factors in the clustering step 

Attribute Mean (SD) Median  SDa Min. Max. 

Day 57.3 60.0  36.5 0.0 100.0 

Weekday 64.4 66.7  27.9 0.0 100.0 

Peak 24.3 20.0  25.5 0.0 100.0 

Length (km) 18.5 18.3  7.3 1.2 65.6 

Travel time (min) 21.4 20.9  7.3 1.2 62.4 

% Highway 54.4 56.7  20.5 0.0 100.0 

Path-Size 1.0 1.0  0.1 0.4 1.0 

# Links/km 5.7 5.6  1.3 2.5 12.3 

# Turns/km 0.6 0.6  0.3 0.0 2.4 

% Shortest path 43.9 43.1  18.2 0.0 99.4 

# TAZ 12.7 8.0  15.3 1.0 154.0 

TAZ_4 0.2 0.0  1.2 0 23 

TAZ_max 1.6 1  2.2 1 40 
a Standard Deviation       
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Table 5.3: Correlation matrix of significant factors in the clustering step 

Attribute 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 Day -             

2 Weekday 0.31 -            

3 Peak 0.61 0.17 -           

4 Length -0.11 -0.03 -0.07 -          

5 Travel time 0.08 0.06 0.08 0.69 -         

6 % Highway -0.08 -0.01 -0.07 0.65 0.19 -        

7 Path-Size -0.06 -0.09 -0.05 0.20 0.25 0.13 -       

8 # Links/km 0.02 -0.05 0.05 -0.58 -0.14 -0.92 -0.08 -      

9 # Turns/km 0.18 0.07 0.15 -0.35 -0.12 -0.61 -0.14 0.66 -     

10 % SP a 0.15 0.08 0.08 -0.39 -0.38 -0.17 -0.12 0.10 -0.05 -    

11 # TAZ -0.03 0.06 -0.01 -0.35 -0.37 -0.20 -0.59 0.15 0.22 0.08 -   

12 TAZ_4 0.00 0.02 0.00 -0.20 -0.20 -0.17 -0.61 0.14 0.11 0.08 0.63 -  
13 TAZ_max 0.03 0.05 0.02 -0.24 -0.27 -0.18 -0.79 0.14 0.15 0.10 0.69 0.84 - 

a Shortest Path 

 

Table 5.4: Clusters specifications 

 Short trip night drivers Long trip night drivers Short trip day drivers Long trip day drivers All 

 
TV a Mean (SDb) TV Mean (SD) TV Mean (SD) TV Mean (SD) Mean (SD) 

Day -22.0 22.5 (20.6) -15.8 32.2 (27.5) 10.9 75.8 (27.6) 24.6 88.4 (16.4) 57.3 (36.5) 

Weekday -12.8 48.9 (26.4) -7.6 55.2 (26.9) 3.5 69.0 (25.2) 15.3 79.2 (22.5) 64.4 (27.9) 

Peak -15.5 7.3 (10.0) -13.9 9.0 (11.1) 6.5 32.0 (24.7) 20.9 42.7 (26.3) 24.3 (25.5) 

Length (km) -6.8 16.4 (3.9) 19.7 24.8 (5.3) -24.6 10.2 (3.3) 9.9 20.1 (6.6) 18.5 (7.3) 

Travel time -4.0 20.2 (5.9) 6.1 23.3 (5.3) -16.4 15.9 (6.1) 12.5 24.5 (7.8) 21.4 (7.3) 

% Highway -7.2 48.0 (13.8) 19.0 71.3 (9.9) -25.6 30.1 (16.2) 11.8 62.7 (15.1) 54.4 (20.5) 

Path-Size -3.9 1.0 (0.04) 6.4 1.0 (0.03) -13.9 0.9 (0.1) 2.8 1.0 (0.1) 1.0 (0.1) 

# Links/km 8.2 6.2 (1.0) -16.6 4.7 (0.7) 22.6 6.1 (1.2) -12.1 5.1 (1.0) 5.7 (1.3) 

# Turns/km 10.4 0.8 (0.2) -12.0 0.5 (0.2) 17.8 0.9 (0.3) -4.3 0.6 (0.2) 0.7 (0.3) 

% SP c 3.2 48 (16.8) -7.9 37.7 (17.3) 10.5 52.8 (17.7) -2.9 38.4 (17.9) 44.0 (18.2) 

# TAZ -1.9 11.5 (9.8) -5.4 9.1 (6.9) 15.3 23.5 (26.0) -6.8 9.1 (9.0) 12.7 (15.3) 

TAZ_4 -3.0 0.1 (0.2) -3.4 0.1 (0.2) 10.3 0.8 (2.5) -3.4 0.1 (0.3) 0.2 (1.2) 

TAZ_max -3.6 1.3 (0.7) -4.9 1.2 (0.5) 13.5 3.0 (4.4) -4.1 1.3 (0.9) 1.6 (2.2) 

# Obs. (%) 408 (23.4 %) 405 (23.2 %) 368 (21.1 %) 565 (32.3 %) 1746 (100 %) 

a Test Value b Standard Deviation c Shortest Path 
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First, a Temporal Stratification is observed, separating drivers working during nights and days. 

Then, an Operational Stratification further divides each group into two separate categories, forming 

four behavioural clusters. These clusters are labelled: Short trips night drivers, Long trips night 

drivers, Short trips day drivers, and Long trips day drivers, and represent 23.4 %, 23.2 %, 21.1 %, 

and 32.3 % of our sample population, respectively. By looking at the Temporal Stratification of 

drivers, it is observed that contrary to day drivers who operate more on weekdays and peak hours, 

night drivers operate more on weekends and off-peak hours. Moreover, highway usage is 

considerably higher for night trips. In other words, night drivers are more likely to use highways 

for both their long and short trips, compared to day drivers. This may be due to higher congestion 

levels on highways, during the day. Trip lengths in night clusters have been found to be greater 

than day clusters, both for short and long trips. However, despite longer trip lengths, travel times 

are slightly shorter for night trips, due to higher congestion during these periods. Furthermore, day 

trips are more similar to their respective distance based shortest path alternatives than night trips. 

This may be due to the fact that, given a lower congestion level at night, drivers might take an 

alternative route that is faster or more familiar. 

Moreover, the operational stratification of observed route choices results in two different types of 

driving behaviour. Drivers who most frequently take shorter trips usually do not use highways and 

prefer to take local routes with higher number of intersections and turns, which accentuate their 

familiarity with the road network and their awareness of traffic conditions. These drivers tend to 

choose similar routes between same OD pairs, which have higher proportions of identical segments 

with the distance-based shortest path. On the other hand, longer trip drivers showed higher 

propensity towards using highways to avoid intersections and turns and to benefit from higher 

speed limits, which is intuitive. These drivers revealed more willingness in taking more diverse 

routes between same OD pairs, which are less similar to the distance-based shortest path than routes 

taken in shorter trips. This might be partly due to the higher number of feasible alternatives between 

distanced OD pairs compared to closer ones. 

Taking a closer look at the dataset demonstrates that regular drivers, i.e. those that have higher 

values of TAZ_4 and TAZ_max (which implies that they travel more between certain OD pairs), 

have a higher tendency towards short trips during the day. Since these drivers have a positive Test 

Value for the total number of unique TAZ pairs travelled (#TAZ), it can also be inferred that they 

have probably a better knowledge of the network. In order to visualize these clusters, the Z-score 
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(cluster mean minus population mean, divided by population standard deviation), has been 

calculated (see Figure 5.5). This value indicates the relative position of a score to the population 

mean. Positive and negative values indicate scores above and below the mean, respectively. 

 

Figure 5.5: Profile plot of the four clusters 

5.6 Conclusions 

Although previous studies have shown that different categories of road users are observable, there 

is a lack of a representative classification of taxi drivers’ operating strategies based on their actual 

route choices over a long duration of time. New possibilities have opened up due to the availability 

of very large and rich datasets from taxi companies that maintain detailed GPS trajectories of their 

fleets for a long duration of time. 

The main objective of this research is to improve the understanding of taxi drivers’ operating 

strategies, by classifying them based on their observed route choices, using longitudinal GPS 
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datasets. In this effort, a dataset comprising more than 22,000 trips, made by 1,746 taxi drivers 

over a period of one year, for trips originating in Montreal with a destination in Laval, has been 

studied. It is worth mentioning that the destination choice is not the focus of this research and this 

specific regional context has been chosen to ensure a wide range of travel distances. 

We first presented important statistical properties of taxi trips. Since various degrees of correlation 

were observed among attributes, a PCA analysis has been performed to improve the efficiency of 

the clustering algorithm and to reduce the probability of the algorithm getting stuck in a local 

optima (Poucin et al., 2016). Then, a HAC algorithm has been performed to classify drivers’ 

behaviours.  

Due to the significant behavioural variations found in trips made during days and nights, and 

between short trips and long trips, these four clusters were labelled “Short trips night drivers”, 

“Long trips night drivers”, “Short trips day drivers”, and “Long trips day drivers”. Intuitively, 

drivers prefer highways for longer trips and local routes with higher number of turns and 

intersections for shorter trips. In addition, results demonstrated that drivers tend to take more 

similar routes between same OD pairs, where the travelled distance is short. It is also perceived 

that routes taken between closer OD pairs are more similar to the distance-based shortest path 

compare to those taken between distanced OD pairs. 

Although it is not possible to encompass all variations of operating strategies based on route choice 

behaviours and GPS traces alone, due to the lack of some other explanatory variables, such as 

demographics and preferences, this study shed some light on the variation of taxi drivers’ operating 

strategies and route choice behaviours and the possibility of classifying them using clustering 

algorithms. 

Understanding the behavioural heterogeneity in drivers’ route choices is very important for city 

and transportation planners. Fu and Juan (2016) concluded that the stratification of a studied 

population according to their preferences would improve the effectiveness of transport measures 

and the efficiency of policy implication, since it better captures the heterogeneity among different 

segments of the population. The recent rise of ride-hailing services has pushed the cities and 

transportation planners to develop new laws and policies for urban mobility. Montreal, like many 

large cities, is experiencing the aggressive market penetration of transportation network companies 

like Uber, very strong resistance from taxi companies, and the rise of new local taxi services. The 
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decision makers are faced with the challenge of developing new policies that are better for the 

residents as users and more sustainable for a free-market where conventional taxis and ride-hailing 

services can co-exist and grow. This study can contribute in proposing fair policies for the 

incumbent of taxi industry and other recent transportation companies, in order to ensure and 

encourage a shared economy. 

Taxi drivers are considered as a well-informed group of drivers who have acquired higher 

knowledge of the road network and its travel time variations. From a policy and planning 

perspective, an improved understanding of taxi drivers’ operating strategies and route choice 

behaviours is important, since taxi, as an important mode of transportation in big cities, provides 

further insights on human mobility patterns, traffic dynamics, and urban structures. Moreover, taxis 

contribute to the road congestion by occupying a considerable share of the limited road capacity 

both when they are vacant and in search for a passenger, and when they are occupied (Yang, Ye, 

Tang, & Wong, 2005). An improved understanding of taxis operating strategies and their route 

choice behaviours can help authorities and planning agencies to propose new policies or impose 

new regulations and restrictions to alleviate congestion in big cities. 

Findings of this research pave the route for several future research directions. A major limitation 

of this work is the lack of personal information such as demographic and socio-economic variables. 

Similar longitudinal datasets including those variables can be used to enrich the findings with more 

personal information. A future direction would include regular car drivers and the validation of the 

four behavioural clusters proposed in this study. Since the experience level of regular car drivers 

varies widely from taxi drivers, different driving patterns may be expected. Another interesting 

elaboration of this study could be the incorporation of these clusters into route choice models in 

order to examine the enhancement of their estimation and prediction abilities. 
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Abstract 

The increasing application of advanced behavioural choice models, reflecting the stochasticity of 

individuals’ preferences and the complex nature of human decision-making process, requires 

enhanced data collection methods to obtain detailed data without significantly increasing the 

respondent burden. In this study, we present the development and deployment of a general data 

collection framework adapted for behavioural route choice studies. The main objectives of the 

proposed framework are to observe drivers’ route choices, and to identify important factors, 

including observable attributes and latent behavioural traits, affecting those decisions. More 

specifically, the survey has been designed to reveal drivers’ consideration set of route alternatives 

from which they pick their final choices. The detailed analysis of survey’s response behaviour will 

help improve the framework to gather travel data even more efficiently.  

 

Keywords: Revealed Preference Survey, Route Choice Modelling, Consideration Sets, Survey 

Response Behaviour 
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6.1 Introduction 

Demand in a road network, i.e. the traffic flow, is the direct result of individuals’ travel and route 

choice decisions. These decisions are captured through route choice models, which are considered 

as an important part of traffic assignment procedures, and play a key role in transportation planning 

to forecast the traffic flow, design new transportation infrastructures, and investigate new policies. 

It is therefore of utmost importance to understand drivers’ route choice behaviours and factors 

affecting them. 

Route choice modelling investigates the process of route selection by an individual, making a trip 

between predefined origin-destination (OD) pairs, and is probably one of the most complex and 

challenging problems in traffic assignment. The complexity of this process is partly due to factors 

such as the sophisticated nature of human behaviour, the ambiguity of the decision-making process, 

and the stochasticity of individuals’ preferences. 

Previous route choice studies have mostly focused on the effects of observable factors on drivers’ 

route choice decisions (Alizadeh, Farooq, et al., 2017b; Dalumpines & Scott, 2017b). Instances of 

these factors include route features (i.e. travel distance, number of turns, etc.) and drivers’ 

characteristics (such as age, gender, etc.), which are tangible and can be directly observed. 

However, numerous studies have shown that latent factors such as attitudinal traits, perceptions 

and lifestyle preferences play a major role in the decision-making process (Ben-Akiva et al., 2002; 

Prato et al., 2012; Walker, 2001). Attitudes can be defined as the tendency of having a favorable 

or unfavorable evaluation towards something (Bradley, 2013). Perception, however, can be thought 

of as a subjective subconscious process of interpretation of events, experiences, and stimuli, which 

can be influenced and shaped by previous occurrences (Bradley, 2013). For instance, in addition 

to the observable factors, drivers’ decisions might also be influenced by factors such as safety 

concerns, driving habits and spatial abilities (Gärling et al., 1998; Kamargianni, Dubey, 

Polydoropoulou, & Bhat, 2015; McFadden, 1999; Muñoz, Monzon, & López, 2016; Sarkar & 

Mallikarjuna, 2017). 

The complexity of route choice modelling is also attributed to the high density of the road network, 

the large number of possible alternatives between OD pairs, and the correlations among these 

alternatives. Since it is not computationally feasible to enumerate all the possible routes connecting 

a given OD pair (i.e. the universal choice set) in a real world road network, nor behaviourally 
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accurate to assume that drivers are aware of all of them, a two stage choice modelling process is 

usually adopted (Manski, 1977). In the first stage of this process, a subset of the universal choice 

set is selected to form the collection of feasible travel alternatives considered by the driver (i.e. the 

considered choice set). Then, in the second stage, drivers make their final route choices from the 

considered set of route alternatives. 

However, defining a proper consideration set is a serious challenge in route choice modelling. The 

consideration set of route alternatives is usually latent to the analyst and alternatives are therefore 

usually generated using variations of the shortest path algorithm (Hoogendoorn-Lanser et al., 2005; 

Prato et al., 2012). The generated set should include alternatives that are attractive to the driver in 

a real world choice situation (Hess & Daly, 2010), and the misspecification of the size and 

composition of the considered choice set greatly affect model’s estimates and may lead to fallacious 

predicted demand levels (Bliemer & Bovy, 2008; Geda, 2014; Peters et al., 1995; Prato & Bekhor, 

2006, 2007b; Schuessler & Axhausen, 2009; Swait & Ben-Akiva, 1987a). 

Considering the abovementioned challenges of route choice modelling, and in order to improve the 

estimation and prediction of drivers’ route choice decisions, it is imperative to first, observe 

drivers’ revealed preferences in real route choice situations, second, to identify behavioural and 

attitudinal factors as additional sources of heterogeneity affecting their decisions, and finally, to 

get a better grasp of the formation process, size and composition of drivers’ considered sets of route 

alternatives. Accordingly, this study proposes a framework of data collection for route choice 

studies, with the objective of satisfying the aforementioned requirements. 

The remainder of the paper is structured as follows. First, we briefly review some of the previous 

route choice studies and their data collection methods, and in that context further clarify the 

contributions of the presented data collection framework. Next, we present the proposed survey 

framework and its implementation. Survey participants, their response behaviours, completion 

rates and dropouts are discussed in the next section. In the end, we highlight the possible 

implications and applications of this survey framework, underscore its limitations, and suggest 

further research directions. 
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6.2 Previous Studies 

Table 6.1 summarizes the data collection methods adopted in some of the previous route choice 

studies and enumerates the attributes that have been found to significantly affect drivers’ decisions. 

Also, it puts into perspective the specifications and characteristics of the proposed framework. 

Although the table does not encompass all the previous route choice studies, this list has been 

selected to provide a wide spectrum of research on that matter. Studies have been compared using 

four criteria, namely Medium, Method, Collected data, and Significant attributes. 

Medium refers to the type of interface that has been used to collect the data. Different types of 

media have been used during the past few decades. Telephone, mail, face-to-face, and web surveys 

are among the typical methods that have been extensively used to collect accurate choice data. In 

order to reduce the respondent burden, computer-assisted self / telephone interviewing have been 

adopted (Papinski, 2011; Srinivasan & Dhakar, 2013). In Table 6.1, four types of interfaces have 

been identified for route choice data collection. Household Travel Survey (HTS) data, as a 

traditional source of data, has been used in few studies. Such diaries are not very effective in 

collecting detailed, long-term or large scale route choice data, due to the excessive respondent 

burden of declaring the exact routes (Chen, 2013b). Therefore, the detailed trajectory is usually not 

available in HTS data, and a shortest path algorithm (based on some generalized cost function) is 

used to simulate the chosen route. Paper-based (PB), computer-based (CB), and web-based (WB) 

route choice surveys are among other types of data collection media adopted in route choice studies. 

Method indicates the methodology to observe and quantify respondents’ preferred choice. Route 

choice surveys are either Revealed Preference (RP), in which respondents reveal their actual 

choices in real route choice situations, or Stated Preference (SP), in which respondents are asked 

to choose between several hypothetical route alternatives based on some provided details on each 

choice. In recent years, the prevalent use of GPS technology has provided researchers with an 

abundance of high-resolution geospatial data. An important advantage of GPS data collection over 

other methods is that it can record travel information for several days without any additional 

respondent burden. However, working with GPS data brings several complexities including the 

large size of the dataset, the absence of data due to signal loss, the challenges in constructing a 

representative sample, and the technological issues such as battery life and record accuracy 

amongst others. Furthermore, studies based on GPS data often lack personal information on the 
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decision maker, his attitudes, experiences, and preferences. Even though GPS traces can be 

considered as RP data, we considered them as a separate method of data collection in Table 6.1, 

due to their completely different nature and data processing requirements, and their prevalence of 

use in route choice studies.  

Regardless of the method used, the main objective of all the above-mentioned data collection 

methods is to record the observed choices (Obs.). The other types of collected data depends to a 

large extent on the objectives of the survey. For instance, to make an in-depth analysis of the effect 

of behavioural traits (Behvr.) on the final choice, attitudinal questions and psychometric indicators 

should be the focus of the survey, while to analyze respondents’ perception bias towards a 

particular choice, questions regarding the perceived values of different attributes (Percp.) is of prior 

importance. It is also a common procedure to ask respondents to reveal the most important factors 

affecting their choices (Fact.). 

The observation of the considered choice set (CCS) of route alternatives, from which drivers make 

their final choices, is not as straightforward, and hence, is not very common in practice. In SP 

surveys, participants make their choices from a series of hypothetical alternatives provided by the 

analyst, while in GPS surveys, the consideration set of route alternatives mostly remains 

unidentified. Moreover, the specification of the considered choice set is usually ignored in RP 

surveys to reduce the response time as well as the respondents’ burden.  

Finally, factors that have been found to significantly affect drivers’ route choice process is 

compared in the last column of Table 6.1 (i.e., Significant attributes). The variety of factors that 

have been found to significantly affect drivers’ route choice behaviour further illustrates the 

importance that survey design should be in line with the objectives of the survey and the expected 

results.
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Table 6.1: Comparison of selected route choice studies and their data collection methods 

Study 
Medium Method Collected data Significant 

Attributes * HTSa PBb CBc WBd RPe SPf GPS Obsg CCSh Demoi Factj Behvrk Percpl 

Iida et al. (1994) ☐ ☐ ☒ ☐ ☐ ☒ ☐ ☒ ☐ ☐ ☐ ☐ ☐ 28, 30 

Abdel-Aty and Jovanis (1997) ☐ ☒ ☒ ☐ ☒ ☒ ☐ ☒ ☐ ☐ ☒ ☐ ☒ 1, 2, 3, 4, 5, 6 

Peeta et al. (2000) ☐ ☒ ☐ ☐ ☐ ☒ ☐ ☒ ☐ ☒ ☐ ☒ ☐ 9, 12, 28 

Cascetta et al. (2002) ☐ ☒ ☐ ☐ ☒ ☐ ☐ ☒ ☒ ☒ ☐ ☐ ☐ 1, 12, 17 

Parkany et al. (2006b) ☐ ☒ ☐ ☐ ☐ ☐ ☒ ☒ ☐ ☒ ☒ ☒ ☐ 3, 9, 10 

Cools et al. (2009) ☒ ☐ ☐ ☐ ☒ ☐ ☐ ☒ ☐ ☒ ☐ ☐ ☐ 1, 9, 10, 23 

Papinski et al. (2009) ☐ ☒ ☒ ☒ ☐ ☐ ☒ ☒ ☐ ☒ ☒ ☐ ☐ 1, 3, 4, 6, 21, 22 

Ben-Elia and Shiftan (2010) ☐ ☐ ☒ ☐ ☐ ☒ ☐ ☒ ☐ ☒ ☐ ☐ ☐ 14, 15, 25, 29 

Tawfik et al. (2010b) ☐ ☒ ☐ ☐ ☒ ☐ ☐ ☒ ☐ ☒ ☐ ☒ ☒ 1, 6, 9, 15, 24, 25 

Schlaich (2010) ☐ ☐ ☐ ☐ ☐ ☐ ☒ ☒ ☐ ☐ ☐ ☐ ☐ 3, 28 

Prato et al. (2012) ☐ ☐ ☐ ☒ ☒ ☐ ☐ ☒ ☒ ☒ ☐ ☒ ☐ 1, 5, 6, 7, 9, 13, 27 

Kaplan and Prato (2012) ☐ ☐ ☐ ☒ ☒ ☐ ☐ ☒ ☐ ☒ ☐ ☒ ☐ 1, 5, 6, 7, 9, 13, 27 

Gan and Chen (2013) ☐ ☐ ☐ ☐ ☐ ☒ ☐ ☒ ☐ ☒ ☐ ☐ ☐ 14, 15, 16 

Jou and Yeh (2013) ☐ ☐ ☐ ☐ ☐ ☒ ☐ ☒ ☐ ☒ ☐ ☐ ☐ 1, 5, 6, 8, 10, 12, 18, 19 

Tawfik and Rakha (2013) ☐ ☒ ☐ ☐ ☒ ☐ ☐ ☒ ☐ ☐ ☐ ☒ ☒ 1, 6, 9, 15, 24, 26, 27 

Ramaekers et al. (2013) ☐ ☒ ☐ ☐ ☐ ☐ ☒ ☒ ☐ ☒ ☒ ☐ ☐ 8, 9, 10, 11 

Koller-Matschke et al. (2013) ☐ ☐ ☐ ☒ ☒ ☒ ☒ ☒ ☐ ☐ ☐ ☐ ☐ 1, 18, 28, 29 

Habib et al. (2013) ☒ ☐ ☐ ☐ ☒ ☐ ☐ ☒ ☐ ☒ ☐ ☐ ☐ 1, 8, 10, 20 

Vacca and Meloni (2014) ☐ ☐ ☐ ☐ ☐ ☐ ☒ ☒ ☐ ☒ ☐ ☐ ☐ 1, 5, 9, 12, 15, 22, 24 

Hess et al. (2015) ☐ ☐ ☐ ☐ ☐ ☐ ☒ ☒ ☐ ☐ ☐ ☐ ☐ 1, 6, 11, 19 

Manley, Addison, et al. (2015b) ☐ ☐ ☐ ☐ ☐ ☐ ☒ ☒ ☐ ☐ ☐ ☐ ☐ 20 

Lai and Bierlaire (2015) ☐ ☐ ☐ ☐ ☐ ☐ ☒ ☒ ☐ ☐ ☐ ☐ ☐ 5, 6, 22 

Dalumpines and Scott (2017b) ☐ ☐ ☐ ☐ ☐ ☐ ☒ ☒ ☐ ☒ ☐ ☐ ☐ 1, 5, 6, 7, 11 

Alizadeh, Farooq, et al. (2017b) ☐ ☐ ☐ ☐ ☐ ☐ ☒ ☒ ☐ ☐ ☐ ☐ ☐ 4, 5, 6, 20 

Proposed Framework ☐ ☐ ☐ ☒ ☒ ☐ ☐ ☒ ☒ ☒ ☒ ☒ ☒ - 
*Factors affecting route choice 

1- Travel time 7- Number of turns 13- Delay 19- Toll rate / Cost 25- Learning process 

2- Travel time reliability 8- Time of day 14- Network familiarity  20- Anchor points 26- Drivers’ categories 

3- Traffic conditions (level of service) 9- Socio-demographic 15- Driving experience 21- Stop signs 27- Personality traits 

4- Number of segments  10- Trip purpose 16- Education 22- Traffic lights 28- Availability of information 

5- Percentage of highway 11- Road type 17- Topology 23- Holidays 29- Type of information 

6- Travel distance 12- Socio-economic 18- Choice inertia 24- Travel speed 30- Quality of information 
a Household Travel Survey b Paper Based c Computer Based d Web based e Revealed Preference f Stated Preference g Observed Choices 
h Considered Choice Set i Demographics j Revealed Factors k Behavioural traits  l Perception  
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6.3 Survey Framework 

In this section, we present the development and implementation of the proposed revealed 

preference web-based survey, designed to observe drivers’ revealed route choices towards their 

most frequently visited destinations, and identify behavioural and attitudinal factors affecting them. 

We also intend to observe drivers’ consideration sets of route alternatives and to characterize them 

based on drivers’ perceptions. 

Drivers residing and driving in the Greater Montreal Area (GMA) have been targeted for this study. 

This area covers approximately 9840 square kilometers and contains a population of roughly 4 

million inhabitants (Transport, 2013). Since it is a bilingual region with both French and English 

speaking populations, the survey was prepared in both languages. In order to decrease the 

respondent burden, mitigate the implementation cost, and enhance the data quality, a high 

performance front-end user interface with an elaborated graphic design has been adopted. For more 

details on the design of the interface, the reader is referred to (Bourbonnais & Morency, 2013).  

To minimize the complexity of questions, where respondents had to specify the origin and 

destination points of their trips and trace the considered routes, geographical map interfaces were 

adopted. Moreover, an internal validation mechanism was designed to maximize the quality and 

completeness of the recorded data, and to minimize the data cleaning effort, by reducing participant 

errors. In this process, several validation criteria were defined for each question, and responses 

were required to comply with all the criteria in order to be approved and stored in the database. It 

should be noted that, to advance to a next section, all the responses in that section should be 

accepted by the internal validation process. In other words, respondents are required to satisfy all 

the validation criteria of a particular section to be able to advance to the next section. A red 

exclamation mark appears beside questions that do not meet the required validation criteria, along 

with a message box explaining the reasons for which the given answers are not acceptable.  

Seven types of questions are used in the design of the survey, namely Dichotomous, Text box, 

Select, Multi-select, Slider, Map-point, and Map-route questions. Table 6.2, describes these 

question types, and provides an illustrative example for each of them.  
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Table 6.2: Question types used in the survey 

Question Type 

(Data type) 
Description Example 

Dichotomous 

(Boolean)  

Provides two options for a statement to 

select from. It is also used as a filter or 

contingency question to determine the 

next question of the survey. 

 

Text box  

(String) 

 

Requires respondents to enter a number, 

a text, or a combination of both. 
 

Select 

(String) 

 

Provides a list of choices, from which 

respondents can select only one of the 

several options.  

  

Multi-select 

(String) 

 

Allows respondents to choose more than 

one option from a list. 

 
Slider 

(Integer) 

Likert scale questions are used to 

measure attitudes, opinions, perceptions, 

and levels of agreement with a statement 

(Likert, 1932). We adopt a Slider with a 

continuous scale to obtain more precise 

recordings of respondents’ views. 

 

Map-point  

(Point 

geometry) 

 

To collect location data (such as origin or 

destination points), respondents need to 

pin-point the location on the map. 

 
Map-route 

(Route + Point 

geometry) 

 

Respondents are required to specify their 

routes by dragging and moving an 

automatically generated route between 

the predefined OD pairs. 
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The whole survey is divided into six separate sections, namely Profile, Home, Trips, Routes, 

Preferences, and End. In the first section, Profile, we collect typical sociodemographic data, such 

as age, gender, educational attainment, type of work, and salary. Collecting these data provides the 

possibility of comparing the sample population with the reference population (Ory & Mokhtarian, 

2005), and to segment the population, based on factors affecting individuals’ route choices. 

Respondents are also asked to specify the duration that they have been living in the GMA and to 

indicate their general familiarity with its road network. 

In the following section, Home, participants are required to provide their home address. A 

geographical map is also provided, which geolocates the specified address. The provided address 

should be precise enough to be automatically pinpointed on the map. Participants can further adjust 

the pinpointed location on the map by moving the marker to the exact location. This section also 

includes questions regarding the household size, the number of cars in the household, the duration 

of living at the same address, and the familiarity with the road network around the specified 

address. It is worth mentioning that the exact home address is required to explore factors such as 

the accessibility to the road network, availability of transit services, and land use specifications. 

The third section, Trips, also consists of a geographical map, on which respondents specify the 

destination point to which they drive most frequently, such as work places, shopping malls, etc. 

They are then required to indicate their familiarity with the road network around the specified 

destination point, and the purpose for making the declared trip. Respondents are also asked to 

specify why they have used their cars to make the declared trip, as well as to select the five most 

important factors affecting their route choices for that particular trip. Moreover, they are asked to 

select from a list, the type of information that they consult prior to their trip and on the way, if any. 

This section ends by asking respondents to provide the number of route alternatives that they 

consider for the declared trip. Table 6.3, provides more details regarding questions in the first three 

sections, and Figure 6.1, demonstrates the web interface for the first two sections. 
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Table 6.3: List of questions in sections Profile, Home, and Trips 

ID Question Type Description 

First Section: Profile 

101 Dichotomous Gender 

102 Text box / Select Age / Age group 

103 Select Educational attainment 

104 Select Main occupation 

105 Text box Age of first driving licence 

106 Dichotomous If question ID 104 equals “Worker”  Whether work on the road regularly 

107 Dichotomous If question ID 104 equals “Worker”  Whether work at home regularly 

108 Dichotomous If question ID 104 equals “Worker” or “Student”  Whether flexible arrival 

time 

109 Select Living time in Montreal 

110 Slider Familiarity with Montreal road network 

   

Second Section: Home 

201 Text box Postal code 

202 Text box  Apartment number (optional) 

203 Text box  Street Address 

204 Text box  City 

205 Map-point Home location 

206 Text box  Household size 

207 Text box  Household vehicle number 

208 Select Living time at the specified address 

209 Slider Familiarity with the road network of the neighborhood they live in 

   

Third Section: Trips 

301 Map-point Specify destination point 

302 Slider Familiarity with the road network around the destination 

303 Dichotomous Is origin home location? 

304 Map-point If question ID 303 equals “No”  Specify origin point (if not home location) 

305 Slider Familiarity with the road network around the specified origin 

306 Select Purpose of the trip 

307 Text box  Frequency of driving to the specified destination by car (per week) 

308 Multi-select Why choose car for this trip? 

309 Multi-select Factors affecting route choice to this destination 
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(a) Section Profile 

 

 
(b) Section Home 

Figure 6.1: The first two sections of the survey: Profile and Home 
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Route alternatives are specified in the fourth section, Routes. First, an automatically generated route 

connecting the predefined origin and destination points appears on a geographical map. Then, 

respondents are required to drag the generated route and adjust it to match their actual considered 

route. Every time respondents drag the route to a new place on the map, a way point is created on 

that new location. A minimum of three way points are required for the route to be validated by the 

internal validation process of the questionnaire. Figure 6.2, demonstrates two alternative routes 

specified for the same OD pair. 

  

Figure 6.2 : Specifying two route alternatives for the same OD pair in the Routes section 

Specified routes are followed by several questions, to gather more details on their main features 

(see Table 6.4). At first, respondents are required to indicate how frequent they use the declared 

alternative, on a five level Likert scale ranging from rarely to frequently. Then they provide 

information regarding the day (i.e. weekdays / week-ends) and the specific time period, during 

which they start the trip. They also indicate the importance of habit and the effect of weather 

conditions on their use of the declared route. Moreover, respondents are asked to pinpoint their 

regular stop (if any) on a map, and specify the amount of toll paid for that particular trip. Finally, 

drivers’ perception regarding the characteristics of the declared alternatives is evaluated based on 

several factors such as travel time and its reliability, safety, traffic conditions, scenery, pavement 

quality, and the number of traffic lights. 
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Table 6.4: List of questions in section Routes 

ID Question Type Description 

401 Map-route Specify considered route 

402 Slider Frequency of using the specified route 

403 Select Weekdays / Weekend 

404 Select Departure time 

405 Text box  Perceived travel time 

406 Multi-select Effect of weather conditions 

407 Dichotomous Use tolled route? 

408 Text box  If question ID 407 equals “Yes”  Amount of toll 

409 Slider Perception of safety 

410 Slider Perception of scenery 

411 Slider Perception of travel time reliability 

412 Slider Perception of pavement quality 

413 Slider Perception of traffic conditions 

414 Select Perception of the number of traffic lights 

415 Slider Effect of habit in choosing the specified route 

416 Dichotomous Have regular stop? 

417 Map-point If question ID 416 equals “Yes”  Specify the location of the regular stop 

The fifth section of the survey, entitled Preferences, focuses on behavioural and attitudinal 

variables affecting drivers’ route choice behaviours. A list of different statements is provided to 

respondents, who were asked to specify their level of agreement with each statement on a five-

point Likert scale ranging from total agreement to total disagreement. These statements are based 

on psychometric indicators and on some behavioural assumptions on drivers’ attitudes, to reveal 

the most important latent variables affecting drivers’ route choice behaviours (Atasoy, Glerum, & 

Bierlaire, 2013; Ory & Mokhtarian, 2005; Vredin Johansson, Heldt, & Johansson, 2006). Table 6.5, 

presents the statements included in this survey, and Figure 6.3, illustrates the first few statements. 

The survey ends with few optional questions in the final section, End (see Table 6.6). First, 

respondents are asked to provide their household’s gross income level. Then, they are asked to 

provide their e-mail address if they desire to participate in other transportation surveys. Finally, 

respondents can provide their comments and opinions regarding the survey in a blank box. 

To evaluate the simplicity and clarity of the questions, to assess the accuracy of the provided 

directions on how to complete the survey, and to detect the weaknesses of the designed interface, 

graduate students of the Transportation Research Group of Polytechnique Montreal took part in a 

pilot test in February 2017. The revised version of the survey was launched in March 2017, and 

data was collected over a period of three months. 
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Table 6.5 : List of statements in the fifth section of the survey, Preferences 

ID Statement 

501 Driving to my destination, I prefer to take freeways, whenever I have access to them. 

502 Driving to my destination, I prefer to take local routes, even when freeways are available. 

503 The pavement quality is an important factor in my route choice. 

504 I always look for shortcuts to minimize the travelled distance. 

505 I do my best to avoid traffic lights. 

506 Minimizing the travel time is my principal goal while choosing my route. 

507 I prefer taking a longer route with a fluid traffic flow rather than being stuck in traffic in a shorter one. 

508 I have the tendency to follow the same route over and over. 

509 I have the tendency to try new routes. 

510 I tend to avoid routes with narrow lanes. 

511 I prefer to take routes with higher speed limits. 

512 I am not comfortable driving next to trucks and I try to avoid them. 

513 I prefer to choose a more beautiful and scenic route, even if it takes longer to get to work. 

514 I prefer to take tolled routes because they are less congested and much faster. 

515 I inform myself about road construction sites to avoid them. 

516 I have the tendency to avoid turns and take the most direct route to get to work. 

517 I have a good sense of direction and I can easily find my way in a road network. 

518 
When I’m informed by radio or variable message signs, of an accident causing traffic jam on my route, I change 

my itinerary and choose an alternative route to avoid the congestion. 

519 I can easily remember a route which I took once. 

520 I use landmarks to remember a route that I took once. 

521 I prefer to choose a route which has a more reliable travel time even if it takes me more time. 

522 I take the route suggested by Google Maps (or other route planners). 
 

 

Figure 6.3: Fifth section of the survey, Preferences 

Table 6.6: List of questions in section End 

ID Question Type Description 

601 Select Household gross income level 

602 Dichotomous Would like to participate in other mobility surveys 

603 Text box  If question ID 602 equals “Yes”  Put e-mail address 

604 Text box  General comments on the interview 
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6.4 Survey Response Behaviour 

By the end of the three-month data collection period, 843 individuals started the survey from which 

539 (64 %) completed it, while the remaining 304 (36 %) dropped out at various points of the 

survey. In this section, we present the survey recruitment methods and the obtained response rates. 

We also investigate participants’ characteristics and their response behaviours. Finally, we explore 

participants who dropped out of the survey before finishing it. 

6.4.1 Recruitment and response rates 

To be eligible to take part in the survey, participants were required to reside in the GMA and drive 

to at least one specific destination in this area. These criteria were clearly outlined in several 

occasions, including the invitation letter, the starting page of the survey, and the informed consent 

form, which was mandatory to read and accept before starting the survey. To disseminate the 

survey, three target groups were identified: i) graduate students, postdocs, faculty members, and 

staff of Polytechnique Montreal, ii) users of social media, such as Facebook, LinkedIn, etc., and 

iii) volunteer participants who previously agreed to participate in surveys conducted by the 

Mobility Chair of Polytechnique Montreal and provided their e-mail addresses. Figure 6.4, 

illustrates the number of completed surveys in each day for the total period of data collection, as 

well as the recruitment methods that have been adopted.  

To reduce the number of simultaneous respondents, and hence, the load on the server hosting the 

web survey, volunteers’ e-mail addresses have been divided into five separate lists with smaller 

numbers of e-mail addresses. A total of 4000 volunteers were contacted on different occasions, and 

a recall e-mail has been sent to those who have received the first invitation letter, few days later. 

The number of e-mails sent, delivered, opened by the receiver, as well as the number of recipients 

who clicked on the survey link (enclosed in the invitation letter) are reported in Table 6.7. Out of 

the 95 % of recipients who received the first invitation letter, 45.1 % opened the e-mail and 12.7 % 

clicked on the survey link. However, for the recall e-mail, these statistics were 98.6 %, 45.3 %, and 

10.1 %, respectively. 
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Figure 6.4: Recruitment method and response rates during the data collection period 

Table 6.7: Invitation letters sent to volunteers’ lists 

Date Time of Day List Name Sent Delivered Opened Clicked 

Invitation E-mail 

11-May 9:00 AM List 1 500 433 (86.6 %) 170 (34.0 %) 35 (7.0 %) 

12-May 9:00 AM List 2 500 478 (95.6 %) 260 (52.0 %) 63 (12.6 %) 

16-May 9:00 AM List 3 1000 959 (95.9 %) 528 (52.8 %) 140 (14.0 %) 

17-May 10:00 AM List 4 1000 952 (95.2 %) 424 (42.4 %) 136 (13.6 %) 

18-May 10:00 AM List 5 1000 955 (95.5 %) 422 (42.2 %) 132 (13.2 %) 

Recall E-mail 

19-May 11:00 AM List 1+ List 2 911 903 (99.2 %) 457 (50.2 %) 100 (11.0 %) 

19-May 11:00 AM List 3 959 952 (99.3 %) 518 (54.1 %) 102 (10.7 %) 

23-May 9:00 AM List 4 952 942 (99.0 %) 369 (38.8 %) 105 (11.1 %) 

23-May 9:00 AM List 5 955 929 (97.3 %) 366 (38.4 %) 98 (10.3 %) 

Figure 6.5, illustrates the percentage of completed surveys per hour of the day. Given that invitation 

e-mails were sent between 9:00 AM and 11:00 AM (see Table 6.7), higher response rates between 

these hours were expected. The completion rate decreases throughout the afternoon, increases 

slightly around 9:00 PM to 10:00 PM, and reaches its minimum overnight. 

Facebook / Linkedin

Polytechnique Montreal 

Mobility Chair Annual Seminar

Polytechnique Montreal

Email (List 1)

Email (List 2)/Facebook/Linkedin

Email (List 3)

Email (List 4)

Email (List 5)

Email (List 1 + List 2 + List 3)

Facebook / Linkedin

Facebook / Linkedin

Email (List 4 + List 5)

0

10

20

30

40

50

60

70

80

N
u

m
b

er
 o

f 
C

o
m

p
le

te
d

 S
u

rv
ey

s



112 

 

 

Figure 6.5: Percentage of completed surveys in each hour of the day for the whole data collection 

period 

6.4.2 Participants Characteristics 

Table 6.8, illustrates sociodemographic and socioeconomic characteristics of the 539 respondents 

who have completed the survey. It should be noted that the sample includes mainly young and 

middle aged full time workers with a university level of education. This may partly be because the 

survey was also disseminated among scholars, faculty members, and staff of Polytechnique 

Montreal. Moreover, the prevalence of young participants explains to some degree the higher 

frequency of smaller households. 
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Table 6.8: Characteristics of the Survey Participants 

Variable    Categories N % Variable      Categories N % 

Gender Household size 

 Male 306 56.7  1 100 18.5 

 Female 234 43.3  2 218 40.4 

Age (years old)  3 101 18.7 

 Young (15 to 39) 306 56.7  4 88 16.3 

 Middle age (40 to 59) 195 36.1  +5 33 6.1 

 Old (more than 60) 39 7.2     

Occupation Income (Thousand CAD per capita) 

 Full time worker 393 72.8  < 30  152 28.2 

 Partial time worker 38 7.0  > 30 and < 60 202 37.4 

 Student 69 12.8  > 60 and < 90 75 13.9 

 Retired 25 4.6  > 90 and < 120 12 2.2 

 House-wife/husband 6 1.1  Not declared 99 18.3 

 Other 9 1.7      

Education Household car number  

 None 0 0.0  0 122 22.6 

 Less than university 62 11.5  1 290 53.7 

 University 472 87.4  2 106 19.6 

 Other 6 1.1  +3 22 4.1 

6.4.3 Response Behaviour 

Usage information showed that 61% of participants used Windows devices to complete the survey, 

while Macs (20 %), IOS (12%), Android (5%), Linux (1%), and Chrome OS (1%) accounted for 

the remaining 39%. Moreover, information on the variety of web browser illustrates that Chrome 

(59%), Firefox (18%), and Safari (15%) account for around 92% of the completed surveys, while 

the remaining 8% have been completed on Internet Explorer, Microsoft Edge, and Opera. These 

statistics emphasize the importance of making the interface friendly and easy to use for a wide 

range of devices and browsers to increase the response rate of a survey. 

Figure 6.6(a), illustrates survey completion times (in minutes) in an increasing order. The 

completion time of the survey is expressed as the summation of the completion time of all the 

sections for each interview. It can also be thought of as the difference between the starting time 

and ending time of the survey excluding the time that respondents had left the survey platform. 

Considering a 95th percentile threshold, the average and maximum completion time of the survey 

are found to be 16.1 and 65.1 minutes, respectively. The distribution of the survey completion time 

is illustrated in Figure 6.6(b).  
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(a) Survey response time (Increasing order) (b)  Survey response time (Distribution) 

 
(c) Question response time 

 
 

(d) Response time for different types of questions (e) Section response time 
  

Figure 6.6: Response times (Vertical bars represent the standard deviation) 

Considering a 95th percentile threshold, the average response time for different questions, question 

types, and sections are illustrated in Figure 6.6(c), Figure 6.6(d), and Figure 6.6(e), respectively. It 
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can be noted that question ID 401 has the highest response time and variation. Given the complexity 

of the question, which involves a geographical map and requires respondents to drag and adjust a 

suggested route, the high response time of this question is not surprising. It is noticed that questions 

involving a geographical map (i.e. Map-route and Map-point types of questions) have longer 

response times, while Dichotomous, Text-box, Select, and Slider questions require shorter response 

times (Figure 6.6(d)). Consequently, sections including more geographical maps (Trips, and 

Routes) have longer response times (Figure 6.6(e)). 

6.4.4 Dropouts 

The number of dropouts per section and question is illustrated in Figure 6.7. Most of the dropouts 

occur in the Trips section (46.1 %). This may mostly be because some respondents started the 

questionnaire without satisfying the required participation criteria, i.e. residing and driving in the 

GMA. In this section, respondents are asked specific questions regarding a destination to which 

they drive frequently (such as questions 301, 302, and 306). It may be at this point of the survey 

that they realize that they are not fit to continue the survey. We received several e-mails, Facebook 

messages, and survey comments supporting the claim that some respondents failed to pay sufficient 

attention to the participation criteria. As mentioned before, these criteria were repeatedly 

mentioned in the invitation letter, survey starting page, as well as the informed consent form. The 

same argument stands for the higher rate of dropouts in question 106 (in section one), in which 

respondents are required to declare the age at which they got their driving licence. 

The second section with the highest dropout rate is the Routes section, in which the first question 

(i.e. specifying the considered route) has the highest dropout rate of the section. Considering that 

detailed instructions were provided on how to specify routes on a geographical map, both in the 

introductory page of the Routes section as well as on top of question 401, the high rate of dropouts 

may be related to the innate complexity of working with geographical maps and the longer response 

time required for this question.  
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Figure 6.7: Percentage of dropouts from the survey per section and question 

Interestingly, we notice that the first question of every section (except for the first and last sections) 

has the highest rate of dropouts in that respective section. This indicates that reducing the number 

of new sections may decrease the total number of dropouts in the survey. 

To compare the dropout rates of different question types, the total number of dropouts for each 

question type is divided by the number of recurrence of that particular question type in the whole 

survey (see Table 6.9). For instance, 20 dropouts occurred within the 8 recurrences of Dichotomous 

questions, resulting a dropout rate of 2.5 (i.e. 20/8). Results demonstrate that Map-route and Map-

point question types induce higher dropouts compared to other types of questions. Moreover, the 

effect of Multi-select questions is found to be more pronounced than Select questions. It can also 

be noted that Slider and Dichotomous questions have the least effects on the number of dropouts. 

Table 6.9: Dropout rates for different types of questions 
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Dichotomous 20 8 2.5 

Text box 47 13 3.6 

Select 30 10 3.0 
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6.4.5 Survey Comments 

Respondents were asked to provide their general comments, in the last question of the survey. It 

should be noted that only respondents who advanced to the sixth section of the survey could leave 

a comment and those who abandoned the survey before that section could not access the comment 

box to leave their comments. A total number of 149 respondents left comments, most of which 

were generally positive and encouraging, commending the objectives, the question design and the 

appearance of the survey. Few respondents, however, criticized the length and complexity of the 

questionnaire and the hardships of specifying a route trajectory on geographical map. They also 

reported some technical issues regarding some browsers and occasional difficulties with phone 

interfaces. We have also received few messages and e-mails from respondents concerned about 

privacy aspects, most of whom left the survey in the second section. Interestingly, a significant 

number of respondents who left comments were not happy about the exclusive focus of the survey 

on drivers’ route choices, and asked for a more comprehensive travel survey, considering other 

modes of transportation such as public transit, walk, and bike. 

6.5 Conclusion 

The increasing application of advanced choice models, reflecting the stochasticity of individuals’ 

preferences and the complex nature of human decision-making behaviour, requires enhanced data 

collection methods collecting detailed data without significantly increasing respondent burden. 

This paper details the development and deployment of a general survey framework for route choice 

studies with three main objectives: i) to observe drivers revealed route choices, ii) to identify 

important factors including behavioural and attitudinal factors affecting them, and iii) to observed 

and characterize drivers’ consideration sets of route alternatives. 

A web-based survey has been designed to provide researchers with a rich dataset, based on which 

they can produce reliable behavioural models. The adopted graphical interface is expected to 

augment response precision and to reduce the burden of declaring all the considered alternatives. 

Moreover, the analyst obtains the exact trajectories considered for each trip and will not face the 

challenges and uncertainties associated with GPS datasets such as trip extraction, map-matching, 

and path inference. In short, the analyst will be able to investigate more closely some major 

challenges facing route choice modelling, such as the definition of an alternative route and how it 
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is perceived by drivers, the characteristics of a considered set of route alternatives, and the role of 

different attributes (observable and latent) in route choice decisions. 

Considering the high number of questions included in the survey (74 questions), the variety of 

question types (7 types), and the spectrum of collected data (i.e. sociodemographic, socioeconomic, 

revealed preference route choices, considered sets of route alternatives, decision maker’s 

perceptions, and behavioural traits), the overall survey completion percentage of 64 % suggest a 

successful implementation of the survey framework. An internal validation system has been 

applied to minimize participants’ errors and maximize the completeness of survey responses. As a 

result, a small number of interviews were discarded (26 out of 539, 4.8 %), which indicate the high 

quality of the collected data. The principal reasons for exclusion were twofold: first, living or 

driving outside the study area, and second, failing to specify a logically sound route between the 

predefined OD pairs. To increase the quality of the final dataset, unusually short or long response 

times can be used as proxy indicators to identify measurement errors (Couper & Kreuter, 2013). 

Despite the successful application of the proposed survey framework, the authors acknowledge its 

limitations and the uncertainties associated with certain responses. For instance, like HTS, in which 

trip under-reporting is an undeniable issue, the possibility of under-reporting the number of 

considered route alternatives for the declared trip is recognized. Moreover, it is not straightforward 

to ensure a representative sample of the population using web-based surveys. For instance, older 

individuals may have limited access to the internet, or may lack the technical knowledge to answer 

to certain types of questions (Bourbonnais & Morency, 2013).Further research could include a 

comparison of the proposed framework with other route choice data collection frameworks, with 

different types of questions and various lengths to better evaluation of the performance and data 

quality of different frameworks. Also, the completion time can be used as an indicator of 

respondent burden (Greaves et al., 2015), and the effect of different completion times can be 

studied on dropout rates. Another possible extension can be the integration of the proposed survey 

framework with smartphones and GPS devices to compare declared with actual route choices. 
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Abstract 

Previous route choice studies have mostly focused on the effect of observable factors, such as route 

attributes and socio-economic characteristics, on individuals’ decisions. However, route choice 

decisions might not be exclusively dependent on these observable variables, but also on latent 

variables, which cannot be directly observed and measured. Also, the latent behavioural 

heterogeneity among the population has mostly been ignored by assuming that all the individuals 

in the sample population have similar attitudes, perceptions, and lifestyles. In this paper, we present 

a comprehensive framework to explicitly incorporate latent behavioural constructs as well as 

segment heterogeneity based on a probabilistic segmentation of the population. We apply the 

proposed framework to compare the route choice behaviour of frequent versus occasional drivers. 

An Integrated Choice and Latent Variable (ICLV) model is used to bring in the role of the 

underlying behavioural constructs, while a Latent Class (LC) model accounts for taste 

heterogeneity across the two segments of our sample population. An Extended Path-Size Logit 

(EPSL) model is adopted as the choice model component and a Metropolis-Hastings (MH) based 

algorithm is used to generate route alternatives. Data is collected through a web-based survey 

designed to collect behavioural data on drivers’ route choices, using psychometric indicators and 

behavioural questions on respondents’ perceptions and attitudes. Results confirmed that the 

inclusion of latent variables and latent heterogeneity across population segments significantly 

improve the explanatory power of the choice model. 
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7.1 Introduction 

How drivers decide upon which route to take? What are the most important factors affecting their 

choices? How would they react if changes were made to the road network? These are among the 

questions that route choice models aim to shed some light on. Such models investigate the process 

of route selection by individuals making a trip between predefined origin and destination (OD) 

pairs, and assign a selection probability to paths connecting them (Bierlaire & Frejinger, 2008; 

Prato, 2009b). They are at the core of traffic assignment models and play a crucial role in 

transportation planning, to forecast the traffic flow, design new transportation infrastructures, and 

investigate new policies. Therefore, it is of utmost importance that we understand drivers’ route 

choice behaviours and factors affecting them (Li, Miwa, Morikawa, & Liu, 2016; Prato, 2009b). 

The complex behaviour of route choice has been studied for decades and different forms of models 

have been developed to properly represent it (e.g., prospect theory (Gao et al., 2010), cumulative 

prospect theory (Xu et al., 2011), neural network (Dougherty, 1995), fuzzy preference (Ridwan, 

2004), etc.). Random utility discrete choice models are among the most frequently used approaches 

to model, analyze and understand these behaviours (Prato, 2009b; Walker, 2001). Following the 

two-stage choice process proposed by Manski (1977), decision makers reduce the universal set of 

possible alternatives to a considered set of route alternatives in the first stage, from which they 

make their final choice in the second stage. These models have roots in the consumer theory of 

microeconomics and assume that individuals, as rational decision makers, choose the most 

preferred alternative amongst a finite set of alternatives. This preference is expressed through a 

specific continuous function, called the utility function, which consists of a deterministic 

component accounting for observable factors (such as route length, travel time, number of turns, 

etc.), and a stochastic component, i.e. random term, accounting for unobservable attributes (such 

as attitudes, preferences, etc.). In other words, observed choices are manifestations of decision 

makers’ preferences, expressed by alternative specific utility functions. Estimation of these models 

results in selection probabilities for each alternative, which can then be used to predict the 

behaviours of decision makers (Frejinger et al., 2009; Manski, 1977; Walker, 2001).  
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Previous route choice studies have mostly focused on the effects of observable factors, such as 

route attributes and socio-economic characteristics (Dalumpines & Scott, 2017a; Jan et al., 2000). 

According to (Jan et al., 2000), factors affecting route choice decisions can be classified into four 

categories including travellers’ attributes (such as age, gender, education, income, etc.), route 

attributes (such as traffic conditions, speed limits, number of turns, pavement quality, etc.), trip 

attributes (such as trip purpose, travel time, etc.), and circumstances (such as weather conditions, 

time of day, traffic information, etc.). However, route choice decisions might not be exclusively 

dependent on these observable variables, but also on latent variables, which cannot be directly 

observed, and measured, such as attitudes, perceptions, and lifestyle preferences (Gärling et al., 

1998; Hurtubia et al., 2014; McFadden, 1986, 1999). Since every decision maker may have a 

different perception of these variables, they are considered to be intrinsically subjective (Raveau 

et al., 2010). The explicit incorporation of these latent constructs in the choice process improves 

the explanatory power of these models (Ben-Akiva et al., 2002; Prato et al., 2012; Walker, 2001).  

Accordingly, different segments of the population, characterized by some of these latent constructs, 

might also have different choice behaviours (Hurtubia et al., 2014). However, the latent 

behavioural heterogeneity among the population has mostly been ignored by assuming that all the 

individuals in the sample population have similar levels of driving experience, spatial knowledge, 

familiarity with the road network, ability to process information, motivation to compare all the 

considered alternatives, etc. Ignoring these sources of heterogeneity could reduce the explanatory 

power of the model and introduce errors in model’s forecasts (Ben-Akiva et al., 1993). 

Traditional discrete choice models neglect the explicit incorporation of these amorphous constructs 

and implicitly capture the behavioural aspect of choice process (Kamargianni et al., 2015; Walker, 

2001). In order to further improve this underlying aspect of choice modelling and their explanatory 

power, the explicit incorporation of latent variables such as attitudes and perceptions into the choice 

model has been proposed (Walker, 2001). Despite the appeal of this framework, its application in 

route choice studies remains rare. This can be mostly related to the fact that collecting behavioural 

data is cumbersome and time consuming (Sarkar & Mallikarjuna, 2017). Route choice studies are 

rarely based on data collected for route choice purposes. Most of the studies using Revealed 

Preference (RP) data are mostly based on either travel surveys or GPS data, where the presence of 

behavioural and attitudinal data is scarce. Moreover, studies based on Stated Preference (SP) data 

mostly focus on observable attributes and avoid attitudinal questions to minimize respondents’ 
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burden. Despite all these challenges, why do we still need to estimate such complex models? 

According to Walker (2001), these models have better prediction abilities, correct for cognitive 

biases, verify behavioural hypotheses regarding the decision making process, and provide a 

benchmark to evaluate the performance of more parsimonious models. 

In this paper, we examine the route choice behaviour of frequent versus occasional drivers by 

presenting a comprehensive framework to explicitly incorporate latent behavioural constructs as 

well as a probabilistic segmentation of the population based on drivers’ perceptions and 

preferences. For this purpose, we evaluate the role of the underlying behavioural constructs on 

drivers’ route choice decisions using the Integrated Choice and Latent Variable (ICLV) framework 

described by Walker (2001) and adapted to route choice studies by Prato et al. (2012). To properly 

incorporate the effect of segment heterogeneity and to distinguish between choice behaviours of 

the different classes of our sample population, we estimate the ICLV model within a Latent Class 

(LC) framework using a full information estimation approach (Bierlaire, 2016). Moreover, we use 

ordinal logit models, suggested by Hurtubia et al. (2014), as measurement equations to relate the 

answers to the psychometric indicators with characteristics of the decision maker in order to 

improve the characterization of latent classes. 

For this purpose, we have designed and implemented a web-based survey to collect behavioural 

data on drivers’ route choices, using behavioural questions on psychometric indicators such as 

perceptions and attitudes. The Extended Path-Size Logit (EPSL) model, proposed by Frejinger et 

al. (2009), is adopted to model individuals route choice behaviour, and the Metropolis-Hastings 

(MH) algorithm presented by Flötteröd and Bierlaire (2013) is used to generate route alternatives 

for the observed choices. 

The rest of this paper is organized as follows. First, we thoroughly present LC and ICLV models 

and discuss in detail the econometric formulation of the LC-ICLV model. Then, the data collection 

effort is described, the model specifications are presented and the choice set generation process is 

discussed. In the end, we highlight the most significant findings of this study, underscore its 

limitations, and suggest further research directions. 
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7.2 Econometric Model Formulation 

In this section, we first present the general framework of Latent Class (LC) models, followed by a 

brief illustration of the Integrated Choice and Latent Variable (ICLV) modelling framework. Then, 

in order to incorporate both the effects of behavioural indicators and taste heterogeneity across 

population segments, these two models are merged to form the proposed LC-ICLV framework. 

7.2.1 Latent Class (LC) discrete choice model 

LC choice models assume that different segments of the population exhibit different choice 

behaviours, due to different lifestyles, preferences and attitudes, which are not directly observed 

by the analyst (Hurtubia et al., 2014; Yazdizadeh, 2016). It improves the standard multinomial logit 

model, which considers the same preference structure across the population, by bringing class-

specific heterogeneity and considering a probabilistic class membership function which usually 

depends on individuals’ characteristics (Wen & Lai, 2010). Therefore, a class-specific utility 

function 𝑈𝑖𝑛
𝑠  and a class-membership function 𝐹𝑛𝑠 are defined to calculate the probability of an 

individual 𝑛 choosing alternative 𝑖 conditional on class 𝑠, 𝑃𝑛(𝑖|𝑠), and the probability of individual 

𝑛 belonging to class 𝑠, 𝑃𝑛(𝑠), respectively. To be consistent with the existing literature, and for the 

sake of simplicity and clarity, we follow the same notation adopted by Hurtubia et al. (2014) to 

discuss the LC formulation. The class-specific utility function is given by: 

𝑈𝑖𝑛
𝑠 = 𝑉𝑠(𝑋𝑖𝑛, 𝑍𝑛, 𝛽

𝑠) + 휀𝑖𝑛
𝑠  (7.1) 

where 𝑉𝑠(𝑋𝑖𝑛, 𝑍𝑛, 𝛽
𝑠) is the deterministic part of the class-specific utility function composed of 

attributes of the alternatives 𝑋𝑖𝑛 and individuals’ characteristics 𝑍𝑛; 𝛽𝑠 is a class-specific vector of 

parameters to be estimated; and 휀𝑖𝑛
𝑠  is an i.i.d Extreme Value distributed random component 

accounting for unobserved characteristics. Accordingly, 𝑃𝑛(𝑖|𝑠) is calculated as a logit model: 

𝑃𝑛(𝑖|𝑠) =
𝑒𝑉

𝑠(𝑋𝑖𝑛,𝑍𝑛,𝛽
𝑠)

∑ 𝑒𝑉
𝑠(𝑋𝑗𝑛,𝑍𝑛,𝛽

𝑠)
𝑗𝜖𝐶𝑠

 (7.2) 

where 𝐶𝑠 is the set of considered alternatives by individuals in class 𝑠. Since individuals cannot be 

deterministically assigned to latent classes, a class-membership probability is calculated through 

the definition of a class-membership function 𝐹𝑛𝑠 as: 
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𝐹𝑛𝑠 =  𝑓(𝑍𝑛, 𝛾
𝑠) + 𝜉𝑖𝑛 (7.3) 

where 𝛾𝑠 is a class-specific vector of parameters to be estimated, and 𝜉𝑖𝑛 is an i.i.d Extreme Value 

distributed random component so that 𝑃𝑛(𝑠) is calculated as a logit model: 

𝑃𝑛(𝑠) =
𝑒𝑓(𝑍𝑛,𝛾

𝑠)

∑ 𝑒𝑓(𝑍𝑛,𝛾
𝑠)

𝑟𝜖𝑆

 (7.4) 

where 𝑆 denotes the set of classes. Scale parameters in equations (7.2) and (7.4) are fixed to 1 for 

identification purposes (Hurtubia et al., 2014). The complete LC choice model is composed of the 

two above-mentioned components, such that: 

𝑃𝑛(𝑖) =∑𝑃𝑛(𝑖|𝑠)𝑃𝑛(𝑠)

𝑠𝜖𝑆

 (7.5) 

7.2.2 Integrated Choice and Latent Variable (ICLV) model  

To incorporate the effect of latent variables in the decision-making process, the framework 

introduced by Walker (2001) and adapted for route choice studies by Prato et al. (2012) is presented 

in this section. For more details on the presented framework, the reader is referred to (Ben-Akiva 

et al., 2002; Prato et al., 2012; Walker & Ben-Akiva, 2002; Walker, 2001). 

This hybrid modelling framework, also known as the Integrated Choice and Latent Variable 

(ICLV) model, incorporates psychometric data as indicators of latent variables in the estimation 

process. Indicators are obtained from drivers responses to behavioural questions of the survey. The 

model consists of two components: a latent variable model and a choice model. Each component 

incorporates structural as well as measurement equations. A measurement equation links an 

unobserved variable to its observable indicators, and a structural equation links observable and 

latent variables to the perceived utility. In the latent variable model, structural equations relate 

latent variables to explanatory variables, and measurement equations link latent variables to 

observable indicators. The choice model consists of structural equations relating observable and 

latent variables to the utility of each route alternative, and measurement equations, which link the 

unobservable utility to drivers’ route choices (Ben-Akiva et al., 2002; Prato et al., 2012). It is worth 

mentioning that observable indicators and drivers route choices are considered as the manifestation 
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of latent variables and the unobservable utility, in the latent variable and choice models, 

respectively (Ben-Akiva et al., 2002; Walker, 2001). 

In the latent variable component of this hybrid framework, the distribution of the latent variables 

given the observed variables 𝑓1(𝑋𝑛
∗|𝑋𝑛; 𝜆, Σ𝜔) is expressed through the following structural 

equation: 

𝑋𝑛
∗ = ℎ(𝑋𝑛; 𝜆) + 𝜔𝑛 and 𝜔𝑛 ∽ 𝐷(0, Σ𝜔) (7.6) 

where 𝑋𝑛
∗ and 𝑋𝑛 are vectors of latent and observed variables, respectively; 𝜆 is a vector of 

parameters to be estimated; ℎ is usually a linear in parameter function; 𝜔𝑛 is the random 

disturbance term with distribution 𝐷 and a covariance matrix specified by Σ𝜔. 

The distribution of the utilities in the choice model 𝑓2(𝑈𝑛|𝑋𝑛, 𝑋𝑛
∗; 𝛽, Σ ) is also specified by a 

structural equation of the following form: 

𝑈𝑛 = 𝑉(𝑋𝑛, 𝑋𝑛
∗; 𝛽) + 휀𝑛 and 휀𝑛 ∽ 𝐷(0, Σ ) (7.7) 

where 𝑈𝑛 is the vector of route utilities for alternatives; 𝑉(𝑋𝑛, 𝑋𝑛
∗ ; 𝛽) is the systematic part of the 

utility, which is usually a linear in parameter function, dependent on both observable and latent 

variables; 𝛽 is a vector of parameters to be estimated; 휀𝑛 is the random disturbance term with 

distribution 𝐷 and a covariance matrix specified by Σ . 

To formulate the distribution of the indicators conditional on the value of latent 

variables 𝑓3(𝐼𝑛|𝑋𝑛, 𝑋𝑛
∗ ; 𝛼, Σ𝜐), measurement equations are expressed as: 

𝐼𝑛 = 𝑚(𝑋𝑛, 𝑋𝑛
∗; 𝛼) + 𝜐𝑛 and 𝜐𝑛 ∽ 𝐷(0, Σ𝜐) (7.8) 

where 𝐼𝑛 is the vector of indicators; 𝛼 is a vector of parameters to be estimated; 𝑚 is usually a 

linear in parameter function; 𝜐𝑛 is the random disturbance term with distribution 𝐷 and a covariance 

matrix specified by Σ𝜐. Assuming utility maximization, the measurement equation of the choice 

model is expressed as a function of the utilities: 

𝑦𝑖𝑛 = {
1, 𝑖𝑓 𝑈𝑖𝑛 ≥ 𝑈𝑗𝑛 ∀ 𝑗 ≠ 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7.9) 



129 

 

where 𝑦𝑖𝑛 indicates whether route 𝑖 is chosen by individual 𝑛 or not. The hybrid model is estimated 

using maximum likelihood techniques. 

Considering the choice probability of selecting a route by taking into account latent variables as 

𝑃(𝑦𝑛|𝑋𝑛, 𝑋𝑛
∗ ; 𝛽, Σ ), and assuming independent error components for structural equations (𝜔𝑛, 휀𝑛), 

the likelihood function is then expressed as the integral of the choice model over the distribution 

of the latent constructs: 

𝑃(𝑦𝑛|𝑋𝑛; 𝛽, Σ𝜔 , Σ ) = ∫𝑃(𝑦𝑛|𝑋𝑛, 𝑋
∗; 𝛽, Σ )

𝑋∗

𝑓1(𝑋
∗|𝑋𝑛; 𝜆, Σ𝜔)𝑑𝑋

∗ (7.10) 

To improve the accuracy of the estimates, psychometric data is used alongside the observed 

preference attributes as indicators of latent psychological factors 𝐼𝑛 (Walker & Ben-Akiva, 

2002).Therefore, to achieve the final likelihood equation of the hybrid model, the density function 

of indicators 𝑓3(𝐼𝑛|𝑋𝑛, 𝑋𝑛
∗; 𝛼, Σ𝜐), should be incorporated into the joint probability function. 

𝑃(𝑦𝑛, 𝐼𝑛|𝑋𝑛; 𝛼, 𝛽, 𝜆, Σ , Σ𝜐, Σ𝜔)

= ∫𝑃(𝑦𝑛|𝑋𝑛, 𝑋
∗; 𝛽, Σ )

𝑋∗

𝑓3(𝐼𝑛|𝑋𝑛, 𝑋
∗; 𝛼, Σ𝜐)𝑓1(𝑋

∗|𝑋𝑛; 𝜆, Σ𝜔)𝑑𝑋
∗ 

(7.11) 

To have a logit form function, we assume that the error terms 휀𝑛 are independently and identically 

Gumbel distributed. However, error terms 𝜔𝑛 and 𝜐𝑛 are assumed to be normally and independently 

distributed yielding orthogonal latent variables. Density functions of latent variables and indicators 

are given as 

𝑓1(𝑋𝑛
∗|𝑋𝑛; 𝜆, σ𝜔) =∏

1

𝜎𝜔𝑙

𝐿

𝑙=1

Φ(
𝑋𝑙𝑛
∗ − ℎ(𝑋𝑛; 𝜆𝑙)

𝜎𝜔𝑙
)  and (7.12) 

𝑓3(𝐼𝑛|𝑋𝑛, 𝑋𝑛
∗ ; 𝛼, σ𝜐) =∏

1

𝜎𝜐𝑟

𝑅

𝑟=1

Φ(
𝐼𝑟𝑛  − 𝑚(𝑋𝑛, 𝑋𝑛

∗ ; 𝛼𝑟)

𝜎𝜐𝑟
) (7.13) 

where Φ is the standard normal density function; σ𝜔 and σ𝜐 are standard deviations of the error 

terms 𝜔𝑛 and 𝜐𝑛, respectively; 𝑅 is the number of indicators; and, 𝐿 is the number of latent 

variables. 
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7.2.3 LC_ICLV choice model 

In order to incorporate both the effects of segment heterogeneity and latent variables in the 

decision-making process, we considered an ICLV model as the choice component, 𝑃𝑛(𝑖|𝑠), of the 

LC model. According to Hurtubia et al. (2014) and Bierlaire (2016), since psychometric indicators 

are collected using a five levels Likert scale, measurement equations should be represented by an 

ordered discrete variable 𝐻 taking values 1 to 5: 

𝐻 =

{
 
 

 
 
1, if 𝐼𝑛 < 𝜏1
2, if 𝜏1  ≤ 𝐼𝑛 < 𝜏2
3, if 𝜏2  ≤ 𝐼𝑛 < 𝜏3
4, if 𝜏3  ≤ 𝐼𝑛 < 𝜏4
5, if 𝜏4  ≤ 𝐼𝑛

 (7.14) 

where 𝐼𝑛 is defined by Equation 7.8, and 𝜏1, … , 𝜏4 are parameters to be estimated, such that: 

𝜏1 ≤ 𝜏2 ≤ 𝜏3 ≤ 𝜏4 (7.15) 

Considering a normal distribution for the error term in 𝐼𝑛, 𝜐, the probability of a given response is 

calculated by an ordered probit model: 

Pr(𝐼𝑖 = 𝑗𝑖) = Pr(𝜏𝑖−1 ≤ 𝐼𝑖 ≤ 𝜏𝑖) =  ℱ𝜐(𝜏𝑖) − ℱ𝜐(𝜏𝑖−1) (7.16) 

where 𝑗𝑖 ∈  {1, 2,3,4,5}, and ℱ𝜐 is the cumulative distribution function of the error term 𝜐. 

To achieve consistent and efficient estimates, a full information estimation method has been 

employed to simultaneously estimate the parameters of the choice model, class-membership, and 

responses to psychometric indicators (Ben-Akiva et al., 2002; Bierlaire, 2016; Cantillo, Arellana, 

& Rolong, 2015; Walker, 2001). 

𝑃𝑛(𝑖)

=∑{(∫𝑃(𝑦𝑛|𝑋𝑛, 𝑋
∗; 𝛽, Σ )

𝑋∗

∏𝑃𝑛(𝐼𝑘|𝑋𝑛, 𝑋
∗; 𝛼, Σ𝜐)

𝑘

𝑓1(𝑋
∗|𝑋𝑛; 𝜆, Σ𝜔)𝑑𝑋

∗)𝑃𝑛(𝑠)}

𝑠𝜖𝑆

 
(7.17) 
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7.3 Empirical Application 

The proposed LC-ICLV framework is used to test the hypothesis of difference between frequent 

versus occasional drivers’ route choice behaviours. For this purpose, we have used revealed 

preference data containing behavioural indicators, collected via a web-based survey. This section 

presents the data, the survey participants, and the model specification. 

7.3.1 Data 

Data has been collected through a revealed preference web-based survey, conducted in Montreal, 

Quebec in 2017, which targets drivers residing and driving in the Greater Montreal Area. The 

survey has been designed to identify behavioural and attitudinal factors affecting drivers’ route 

choice behaviours. 

It first collects typical information on sociodemographic and socioeconomic characteristics of 

participants such as age, gender, educational attainment, type of work, salary, household size, and 

number of cars in the household. Then, respondents are asked to specify on a geographical map, 

the destination point to which they drive most frequently and all the alternative routes which they 

consider for the specified trip. Moreover, they are asked to specify the frequency of the trip on a 

weekly basis. Additionally, they are requested to provide their level of agreement to a list of 

statements designed to reveal drivers’ attitudes, preferences and perceptions towards choosing a 

route (Atasoy et al., 2013; Prato et al., 2012; Walker, 2001). Responses are provided on a five point 

Likert scale ranging from total agreement to total disagreement. In total, 74 questions were asked 

and considering a 95th percentile threshold, the average response time was found to be around 16 

minutes. A thorough description of the data collection effort, recruitment methods, participants’ 

characteristics, response rates, and dropouts are described in (Alizadeh, Bourbonnais, Morency, 

Farooq, & Saunier, 2017).  

In this study, only respondents with a trip origin and destination inside the Island of Montreal and 

declaring a trip frequencies of one time per week (137 observations) or more than five times per 

week (88 observations) have been selected for estimation, adding up to a total of 225 observations. 

Table 7.1 provides comprehensive details on respondents’ sociodemographic and socioeconomic 

characteristics. 
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Table 7.1: Characteristics of the Survey Participants 

Variable categories N % Variable categories N % 

Gender Household size 
 Male 118 52.4  1 54 24.0 

 Female 107 47.6  2 81 36.0 

Age (years old)  3 41 18.3 

 Young (15 to 39) 120 53.3  4 37 16.4 

 Middle age (40 to 59) 85 37.7  +5 12 5.3 

 Old (more than 60) 20 9.0     

Occupation Income (Thousand CAD per capita) 
 Full time worker 169 75.1  Low (Less than 35) 58 25.8 

 Partial time worker 18 8.0  Medium (35 to 75) 88 39.1 

 Student 22 9.8  High (more than 75) 35 15.6 

 Retired 9 4  Not declared 44 19.6 

 House-wife/husband 2 0.9 Household car number 
 Other 5 2.2  0 57 25.3 

Education  1 129 57.3 

 None 0 0  2 32 14.2 

 Less than university 26 11.6  3 6 2.7 

 University 197 87.6  4 0 0.0 

 Other 2 0.8  5 1 0.4 

7.3.2 Model Specification 

The choice model incorporated into the likelihood function is an Extended Path-Size Logit (EPSL) 

model, proposed by Frejinger et al. (2009). This model uses a correction factor in the deterministic 

part of the utility function to take into account the correlation of each alternative with all the 

possible paths in the true choice set. The conditional probability takes the following form: 

𝑃𝐸𝑃𝑆𝐿(𝑖|𝐶𝑛) =
𝑒
(𝑉𝑖𝑛+𝑙𝑛𝐸𝑃𝑆𝑖𝑛)+𝑙𝑛 (

𝑘𝑖𝑛
𝑞(𝑖)

)

∑ 𝑒
(𝑉𝑗𝑛+𝑙𝑛𝐸𝑃𝑆𝑗𝑛)+𝑙𝑛 (

𝑘𝑗𝑛
𝑞(𝑗)

)
𝑗𝜖𝐶𝑛

 (7.18) 

where 𝑃𝐸𝑃𝑆𝐿(𝑖|𝐶𝑛) is the conditional probability of user 𝑛 choosing alternative 𝑖 from the choice 

set 𝐶𝑛,  𝜇 is a scale parameter, 𝑙𝑛 (
𝑘𝑖𝑛

𝑞(𝑖)
) is the sampling correction factor, 𝑞(𝑖) is the sampling 

probability of path 𝑖, and 𝑘𝑖𝑛 is the empirical frequency or the actual number of times path 𝑖 is 

drawn. It is also worth mentioning that the utility is a function of both observable and latent 

variables 𝑉𝑖𝑛 = 𝑉𝑖𝑛(𝑋𝑛, 𝑋𝑛
∗; 𝛽). The EPS factor is defined as: 
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𝐸𝑃𝑆𝑖𝑛 = ∑
𝐿𝑎
𝐿𝑖

1

∑ 𝛿𝑎𝑗𝜔𝑗𝑛𝑗𝜖𝜑𝑛𝑎∈Γ𝑖

 (7.19) 

where 𝐿𝑎 and 𝐿𝑖 denotes the length of link 𝑎 and path 𝑖, Γ𝑖 represents the set of road segments in 

path 𝑖, 𝜑𝑛 denotes the considered choice set, and 𝛿𝑎𝑗 is the link-path incident binary variable, which 

is 1 if link 𝑎 is on path 𝑖, and 0 otherwise(i.e., ∑ 𝛿𝑎𝑗𝑗𝜖𝜑𝑛  indicates the total number of route 

alternatives in the choice set sharing link 𝑎. 𝜔𝑗𝑛 is an extension factor with a value equal to 1 

if 𝛿𝑎𝑗 = 1 or 𝑞(𝑗)𝐵𝑛 ≥ 1, and 1/(𝑞(𝑗)𝐵𝑛 ) otherwise; where 𝐵𝑛 denotes the total number of paths 

drawn with replacement from the universal choice set. Measurement equation for indicator 𝑘 is 

formulated as given by: 

𝐼𝑘 = 𝛾𝑘 + 𝛼𝑘𝑋
∗ + 𝜐𝑘 and 𝜐𝑛 ∽ 𝑁(0, Σ𝜐𝑘) (7.20) 

where 𝐼𝑘 represents the 𝑘th psychometric indicators, 𝑋∗ denotes the latent variable, 𝛾𝑘 and 𝛼𝑘 are 

parameters to be estimated, and 𝜐𝑘 is a normally distributed random term. The structural equation 

of the latent variable component 𝑚 (𝐿𝑉𝑚) of the model is defined to associate latent variables to 

individual characteristics. Since the main purpose of this study is to compare frequent versus 

occasional drivers’ route choice behaviours, the following form is defined: 

𝐿𝑉𝑚𝑛 = 𝜆𝑚1𝐹𝑅𝐸𝑄𝑛 + 𝜆𝑚2𝐶𝐴𝑅𝑛 + 𝜔𝑚𝑛 and 𝜔𝑚𝑛 ∽ 𝑁(0, Σ𝜔) (7.21) 

where 𝐹𝑅𝐸𝑄𝑛 is equal to 1 if the respondent drives more than 5 times per week to the specified 

destination, and equal to 0 when he/she makes the trip once per week, 𝐶𝐴𝑅𝑛 specifies the number 

of car per household, 𝜔𝑚𝑛 is a variable specific normally distributed random term, 𝑎𝑛𝑑  𝜆𝑚1 and 

𝜆𝑚2 are parameters to be estimated. 

Class specific utility functions (structural equations) of the choice model, are specified to associate 

route attributes and behavioural traits to the utility perceived by individual 𝑛 (𝐶1 and 𝐶2 represent 

Class 1 and Class 2, respectively). According to Prato et al. (2012), the effect of latent variables on 

drivers route choice can be captured through an interaction term between latent variables and route 

attributes. Accordingly, the systematic part of the choice model’s structural equations for each class 

is empirically defined by: 



134 

 

𝑉𝑛
𝐶1 = 𝛽𝑅𝑂𝑈𝑇𝐸_𝐿𝐸𝑁

𝐶1 × 𝐶𝑂𝑁𝑛𝑅𝑂𝑈𝑇𝐸_𝐿𝐸𝑁𝑛 + 𝛽𝐻𝐺𝑊_𝑃𝐸𝑅𝐶
𝐶1 × 𝐶𝑂𝑁𝑛𝐻𝐺𝑊_𝑃𝐸𝑅𝐶𝑛

+ 𝛽𝑇𝑈𝑅𝑁_𝐿𝐸𝑁
𝐶1 × 𝐶𝑂𝑁𝑛𝑇𝑈𝑅𝑁_𝐿𝐸𝑁𝑛 + 𝛽𝑅𝐸𝐴𝐿_𝑇𝑇

𝐶1 × 𝐶𝑂𝑁𝑛𝑅𝐸𝐴𝐿_𝑇𝑇𝑛 
(7.22) 

𝑉𝑛
𝐶2 = 𝛽𝑅𝑂𝑈𝑇𝐸_𝐿𝐸𝑁

𝐶2 × 𝐶𝐴𝑈𝑛𝑅𝑂𝑈𝑇𝐸_𝐿𝐸𝑁𝑛 + 𝛽𝐻𝐺𝑊_𝐿𝐸𝑁
𝐶2 × 𝐶𝐴𝑈𝑛𝐻𝐺𝑊_𝐿𝐸𝑁𝑛

+ 𝛽𝑇𝑈𝑅𝑁_𝐿𝐸𝑁
𝐶2 × 𝐶𝐴𝑈𝑛𝑇𝑈𝑅𝑁_𝐿𝐸𝑁𝑛 + 𝛽𝑅𝐸𝐴𝐿_𝑇𝑇

𝐶2 × 𝐶𝐴𝑈𝑛𝑅𝐸𝐴𝐿_𝑇𝑇𝑛 
(7.23) 

where 𝑅𝑂𝑈𝑇𝐸_𝐿𝐸𝑁 is the route length in meters, 𝐻𝐺𝑊_𝑃𝐸𝑅𝐶 signifies the highway portion of 

the route in percentage, 𝑇𝑈𝑅𝑁_𝐿𝐸𝑁 denotes the number of turns per kilometer, and 𝑅𝐸𝐴𝐿_𝑇𝑇 

indicates the estimated real travel time in minutes.  𝐶𝑂𝑁𝑛 and 𝐶𝐴𝑈𝑛 are the two latent variables 

considered in this study and defined in the next section through Equation 7.21. To distinguish 

between the two different classes, the class-membership functions are defined to be a function of 

individuals’ socioeconomic characteristics: 

𝑓(𝑍𝑛, 𝛾
1) = 𝛾𝐼𝑁𝐶_𝐻

1 𝐼𝑁𝐶_𝐻𝑛 + 𝛾𝐹𝐴𝑀_𝐸𝑋𝑃
1 𝐹𝐴𝑀_𝐸𝑋𝑃𝑛 + 𝛾𝐴𝐺𝐸_𝑀𝐼𝐷𝐷𝐿𝐸

1 𝐴𝐺𝐸_𝑀𝐼𝐷𝐷𝐿𝐸𝑛

+ 𝛾𝐿𝐼𝑉𝐸_𝐻𝑂𝑀𝐸
1 𝐿𝐼𝑉𝐸_𝐻𝑂𝑀𝐸𝑛 

(7.24) 

𝑓(𝑍𝑛, 𝛾
2) = 0 (7.25) 

𝐼𝑁𝐶_𝐻 is set to 1 where the income is high and 0 otherwise, 𝐹𝐴𝑀_𝐸𝑋𝑃 denotes the level of 

familiarity with road network of Montreal and the level of individuals’ driving experience, 

𝐴𝐺𝐸_𝑀𝐼𝐷𝐷𝐿𝐸 is 1 where the participant is middle-aged and 0 otherwise, 𝐿𝐼𝑉𝐸_𝐻𝑂𝑀𝐸 specifies 

the duration (in years) that the participant has been living in the same address. 

7.3.3 Choice set generation 

Since it is not possible to enumerate all the possible paths between an OD pair in a real-world road 

network, implicit or explicit path generation techniques are usually used to simulate drivers’ 

considered set of route alternatives. We adopt the Metropolis-Hastings (MH) based route 

generation algorithm, proposed by Flötteröd and Bierlaire (2013), which uses an underlying 

Markov Chain process to sample alternatives. Its major advantage over conventional methods (e.g. 

link labelling, link elimination, etc.) is that it provides researchers with path sampling probabilities, 

so that model estimates based on these sets are not biased. In this study, 19 choice alternatives were 

generated for each observation and the chosen alternative has been added to the choice set, where 
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it was not generated by the MH algorithm (Dhakar & Srinivasan, 2014; Elgar et al., 2009; Frejinger 

et al., 2009; Habib et al., 2013; Hess et al., 2015; McFadden, 1978; Prato et al., 2012). 

7.4 Results and discussion 

A preliminary Principal Factor Analysis (PFA) on psychometric indicators demonstrated the 

distinction of the two prominent components. The first component corresponds to drivers with 

better memory and sense of direction, willing to minimize their travel time by driving on highways, 

avoiding traffic lights, construction sites and congestion, and more open to change their habitual 

route and try new ones. We refer to this factor as the Consciousness (CON) attitude. In the second 

component, entitled the Cautiousness (CAU) attitude, drivers are more inclined towards local and 

scenic routes, and are more prone to avoid trucks and narrow lanes as much as possible. Table 7.2 

presents these latent attitudes, indicators associated to them and their respective factor loadings 

proportions. 

Table 7.2: Description of Indicators and Factor Loading Coefficients 

ID Indicator Description 
Factor loadings 

Consciousness Cautiousness 

1 NRW_LN Avoiding narrow lanes  0.443996 

2 AV_TRK Avoiding routes with high number of trucks  0.508139 

3 SCEN Preferring scenic routes  0.644226 

4 LOCAL More willing to take local routes  0.749473 

5 HGW More willing to take highways 0.429807 -0.590120 

6 PAV Importance of pavement quality 0.477136  

7 SHTC Searching for route shortcuts 0.617959  

8 TLIGHT Avoiding traffic lights 0.677496  

9 TT_MIN Minimizing travel time 0.428299  

10 DRV_STK 
Preferring longer routes rather than being stuck in traffic 

jams on shorter ones 
0.460730  

11 NEW_RT Willingness to try new routes 0.482361  

12 AV_CONST Avoiding construction sites 0.418859  

13 SOD Having a good sense of direction 0.401937  

14 CHANGE_RT Changing route in case of accidents 0.562993  

15 MEM Having a good memory 0.482990  

16 HG_SPD Preferring higher speed limits 0.481988  

17 DIR Preferring more direct routes 0.341694  

18 TT_REL Having more reliable travel time 0.441834  

19 HABIT Taking the same route repeatedly -0.341700  
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For the Cautiousness attitude, indicators 1, 2, 3, and 4 were found to significantly improve the LC-

ICLV model, while for the Consciousness attitude, all the indicators except 6, 11, 16 and 17 were 

included in the model estimation. 

The BIOGEME software package (Bierlaire, 2003; Bierlaire & Fetiarison, 2009) has been used to 

jointly estimate the parameters of the measurement equations, relating indicators to the latent 

components, the class-membership functions and the choice model, using a full estimation 

approach described in detail in (Bierlaire, 2016). An incremental exploratory estimation approach 

has been used to obtain good initial values from simpler model specifications and reduce the 

estimation time of more complex ones (Hurtubia et al., 2014). 

Estimation results are presented in Table 7.3 for measurement equations of the latent variable 

component of the model. One of the parameters in each latent variable is constrained to 1 for 

identification purposes (Ben-Akiva et al., 2002; Walker, 2001). As expected from the preliminary 

factor analysis results, the latent variable Consciousness is positively correlated to the tendency of 

minimizing the travel time, taking shortcuts and highways, avoiding traffic lights, changing route 

in case of accidents and trying new ones, avoiding lights, taking routes with more reliable travel 

times, and having a good memory and sense of direction. Intuitively, it is negatively linked to the 

habit of taking the same route. The correlation of the latent variable Cautiousness is positively 

linked to the willingness of avoiding trucks and narrow lanes and the inclination towards local 

routes and scenic routes. 
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Table 7.3: Estimates of the Measurement Equations of the ICLV Model 

Attribute Parameter Estimate t-Stat Attribute Parameter Estimate t-Stat 

Consciousness    Cautiousness    

 
CHANGE_RT 

𝛼𝐶𝐻𝐴𝑁𝐺𝐸_𝑅𝑇 1 -  
LOCAL 

𝛼𝐿𝑂𝐶𝐴𝐿 1 - 

 𝜎𝐶𝐻𝐴𝑁𝐺𝐸_𝑅𝑇 1 -  𝜎𝐿𝑂𝐶𝐴𝐿  1 - 

 
AV_CONST 

𝛼𝐴𝑉_𝐶𝑂𝑁𝑆𝑇  0.202 2.15  
AV_TRK 

𝛼𝐴𝑉_𝑇𝑅𝐾 0.634 1.76* 

 𝜎𝐴𝑉_𝐶𝑂𝑁𝑆𝑇  1.09 15.14  𝜎𝐴𝑉_𝑇𝑅𝐾 1.23 14.10 

 
DRV_STK 

𝛼𝐷𝑅𝑉_𝑆𝑇𝐾 0.929 9.77  
NRW_LN 

𝛼𝑁𝑅𝑊_𝐿𝑁 1.71 2.96 

 𝜎𝐷𝑅𝑉_𝑆𝑇𝐾 1.10 13.88  𝜎𝑁𝑅𝑊_𝐿𝑁 1.11 13.16 

 
HGW 

𝛼𝐻𝐺𝑊 0.844 7.64  
SCEN 

𝛼𝑆𝐶𝐸𝑁 0.862 3.04 

 𝜎𝐻𝐺𝑊 1.24 15.59  𝜎𝑆𝐶𝐸𝑁 1.08 14.71 

 
HABIT 

𝛼𝐻𝐴𝐵𝐼𝑇  -0.645 -6.87      

 𝜎𝐻𝐴𝐵𝐼𝑇  1.05 14.63      

 
TRF_LGH 

𝛼𝑇𝑅𝐹_𝐿𝐺𝐻 0.103 1.39*      

 𝜎𝑇𝑅𝐹_𝐿𝐺𝐻 0.906 13.98      

 
MEM 

𝛼𝑀𝐸𝑀 1.07 10.23      

 𝜎𝑀𝐸𝑀 1.12 12.67      

 
SOD 

𝛼𝑆𝑂𝐷 1.02 7.53      

 𝜎𝑆𝑂𝐷 1.17 13.19      

 
SHTC 

𝛼𝑆𝐻𝑇𝐶 0.584 6.65      

 𝜎𝑆𝐻𝑇𝐶 1.02 13.86      

 
TT_REL 

𝛼𝑇𝑇_𝑅𝐸𝐿 0.420 5.56      

 𝜎𝑇𝑇_𝑅𝐸𝐿 0.897 16.40      

 
TT_MIN 

𝛼𝑇𝑇_𝑀𝐼𝑁 1.28 9.47      

 𝜎𝑇𝑇_𝑀𝐼𝑁 1.31 13.18      
* Not statistically significant with p < 0.05   

Table 7.4 illustrates the estimates for the structural equations of the latent variable component of 

the model. Results illustrate that being a frequent driver (FREQ) and living in highly motorized 

households (CAR) are associated with the Consciousness type of attitude, and occasional, i.e. less 

frequent, drivers having fewer cars per household seem expectedly to be more related with the 

Cautiousness type of attitude.  

Table 7.4: Estimates of the Structural Equations of the ICLV Model 

Factors 

Latent variables 

Consciousness Cautiousness 

Estimate t-Stat. Estimate t-Stat. 

FREQ 0.487 2.99 -0.605 -2.06 

CAR 1.940 10.35 -0.185 -5.58 

Estimation results for the choice model and the class-membership function is illustrated in 

Table 7.5. A latent class model without the ICLV component has also been estimated as a 
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benchmark to compare the results. The same specification of the utility function and class-

membership equations have been used in both models. It can be concluded that the inclusion of 

behavioural traits in the LC model significantly improves its fit over the data. 

Table 7.5: Estimates of the Choice Model and Class-Membership Functions 

Variables 
LC-ICLV LC 

Estimate t-Stat. Estimate t-Stat. 

Choice Model      

 𝛽𝑅𝑂𝑈𝑇𝐸_𝐿𝐸𝑁
𝐶1  -0.003 -6.57 -0.004 -2.13 

 𝛽𝑅𝑂𝑈𝑇𝐸_𝐿𝐸𝑁
𝐶2  -0.001 -2.09 -0.001 -2.44 

 𝛽𝐻𝐺𝑊_𝑃𝐸𝑅𝐶
𝐶1  0.207 5.81 0.338 2.44 

 𝛽𝐻𝐺𝑊_𝑃𝐸𝑅𝐶
𝐶2  -0.222 -2.83 -0.044 -2.14 

 𝛽𝑇𝑈𝑅𝑁_𝐿𝐸𝑁
𝐶1  -1.130 -3.5 -3.530 -5.02 

 𝛽𝑇𝑈𝑅𝑁_𝐿𝐸𝑁
𝐶2  -0.577 -6.33 -0.290 -1.71* 

 𝛽𝑅𝐸𝐴𝐿_𝑇𝑇
𝐶1  -0.168 -1.91* -0.256 -1.09* 

 𝛽𝑅𝐸𝐴𝐿_𝑇𝑇
𝐶2  0.089 1.47* 0.984 0.88* 

 𝛽𝐸𝑃𝑆
𝐶1  1.50 8.32 0.953 2.94 

 𝛽𝐸𝑃𝑆
𝐶2  1.10 18.95 0.793 12.34 

Latent Class      

 𝛾𝐼𝑁𝐶_𝐻
1  1.24 2.05 1.44 2.29 

 𝛾𝐹𝐴𝑀_𝐸𝑋𝑃
1  0.0148 3.82 0.0371 2.46 

 𝛾𝐴𝐺𝐸_𝑀𝐼𝐷𝐷𝐿𝐸
1  0.698 1.59 0.879 2.15 

 𝛾𝐿𝐼𝑉𝐸_𝐻𝑂𝑀𝐸
1  0.012 3.34 0.0638 2.14 

Number of parameters 44 14 

Initial log-likelihood -9512.9 -2716.7 

Final log-likelihood -4139.73 -1409.9 

Rho-square 0.564 0.481 
* Not statistically significant with p < 0.05   

In the class-membership model, it can be noticed that the probability of belonging to Class 1 

increases with being a middle-age individual (𝐴𝐺𝐸_𝑀𝐼𝐷𝐷𝐿𝐸), having high income (𝐼𝑁𝐶_𝐻), higher 

duration of living in the same home (𝐿𝐼𝑉𝐸_𝐻𝑂𝑀𝐸), and being more experienced in driving and 

more familiar with Montreal’s road network (𝐹𝐴𝑀_𝐸𝑋𝑃). Individuals in this class are mostly 

affected by the Consciousness type of attitude, and show a positive relationship with driving 

frequency and number of cars per household (see Table 7.4). Hence, individuals in Class 1 are 

entitled as “Frequent Drivers” and accordingly, those in Class 2 are considered as “Occasional 

Drivers”. 

A closer look at the parameters of the utility function reveals that travel distance, number of turns, 

and travel time have their expected signs and negatively affect the perceived utility (except for the 
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travel time parameter of Class 2). Intuitively, drivers prefer shorter routes, with lower travel times 

and fewer number of turns.  

Due to the latent segmentation of the population, different sensitivities are noticed regarding these 

attributes. Logically, frequent drivers are more sensitive to travel distance, number of turns, and 

travel time than occasional drivers. The positive sign for the travel time parameter of Class 2 further 

implies that occasional drivers are less sensitive to travel time and may take their habitual route or 

a more scenic route, even if the travel time is longer. Moreover, the sign for highway percentage 

implies that frequent drivers are more willing to use highways, while occasional drivers tend to 

avoid them by taking local routes. This behaviour is consistent with the level of agreement answers 

given to questions related to freeway and local route usages. In other words, drivers associated with 

the consciousness attitude gave more agreement to the question related to freeway usage, while 

drivers related to the cautiousness attitude agreed more with the statement of driving on local 

routes. Moreover, the positive signs of 𝛽𝐸𝑃𝑆
𝐶1  and 𝛽𝐸𝑃𝑆

𝐶2  is a negative correction of the utility of 

overlapping routes, giving a higher chance to less similar alternatives to be chosen. 

7.5 Summary and Conclusions 

Route choice modelling has an indispensable role in transportation planning and simulation. It 

provides insights on drivers’ perceptions of route characteristics and prepare the ground for the 

simulation and forecast of traveller’s behaviour under hypothetical scenarios. Incorporation of 

latent behavioural traits and segment taste heterogeneity improves the behavioural aspect of the 

modelling process, and consequently increase model’s predictions abilities (Walker & Ben-Akiva, 

2002; Walker, 2001). 

Discrete choice models have been extensively used over the past few decades to study route choices 

and factors affecting them. These factors can be classified into two broad categories: observable 

and latent. Observable factors are those that are tangible and can be directly observed, such as 

alternatives’ features and drivers’ characteristics. However, it has been well established that latent 

variables such as attitudes, perceptions and lifestyle preferences play a major role in the decision 

making process (Gärling et al., 1998; Kamargianni et al., 2015; McFadden, 1999; Muñoz et al., 

2016; Sarkar & Mallikarjuna, 2017). For instance, in addition to observable factors such as travel 
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time, travel distance, and number of turns, route choices might also depend on driver’s experience, 

familiarity with the road network, and safety concerns. 

In this paper, we examine the route choice behaviour of frequent versus occasional drivers by 

presenting a comprehensive framework to explicitly incorporate latent behavioural constructs as 

well as a probabilistic segmentation of the population based on drivers’ perceptions and 

preferences. We introduced an ICLV model with an EPSL choice component into a LC model and 

adopted ordinal logit models to express measurements equations of the latent variable component 

of the ICLV model. A MH based route generation method is used to generate the considered choice 

set of each observation (Flötteröd & Bierlaire, 2013). 

Data has been collected through a revealed preference web-based survey, conducted in Montreal, 

Canada in 2017. The survey has been designed to identify behavioural and attitudinal factors 

affecting drivers’ route choice behaviours. The modelling dataset includes 225 drivers residing and 

driving in the Greater Montreal Area. 

Two major behavioural traits have been observed among the drivers, namely Consciousness and 

Cautiousness factors. Drivers related to the Consciousness factor tend to minimize their travel time, 

try shortcuts and highways, avoid traffic lights, change route in case of accidents and try new ones, 

avoid lights, take routes with more reliable travel times, and have a good memory and sense of 

direction. However, the latent factor Cautiousness is positively linked to the willingness of 

avoiding trucks and narrow lanes and the inclination towards local and scenic routes. 

Expectedly, the choice model illustrated that in general, drivers prefer shorter routes, with lower 

travel times and fewer number of turns. However, the comparison between frequent and occasional 

drivers showed that frequent drivers are more sensitive to travel distance, number of turns, and 

travel time than occasional drivers. Moreover, it showed that occasional drivers are not necessarily 

travel time minimizers and prefer to avoid driving on highways. The different signs for the travel 

time parameter and the highway percentage parameter across the two segments further imply the 

necessity of incorporating the effect of segment heterogeneity and to distinguish between choice 

behaviours of the different segment of the population. Finally, results demonstrated that the 

inclusion of behavioural traits in the LC model significantly improves its fit over the data. 

 In order to improve the findings of the presented work, a further research direction could 

be the inclusion of different attitudinal indicators, and more complex specifications of the class-
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membership functions in order to better characterize the compared population segments. A 

complementary research could be to evaluate the prediction power of the proposed model and 

compare it to simpler models such as the LC model. Another interesting area to explore would be 

the extension of the Recursive Logit model (Fosgerau et al., 2013; Zimmermann, Mai, & Frejinger, 

2017b) by including taste heterogeneity in terms of latent variables and latent classes. Finally, the 

proposed framework could be tested on other datasets to compare the choice behaviour of different 

segments of the population. 
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Abstract 

In a two-stage choice modelling process, determining drivers’ consideration set of route 

alternatives is an essential component. The misspecification of the size and composition of the 

considered choice set may lead to biased estimates and fallacious predicted demand levels. 

However, the way individual drivers derive their actual consideration set of route alternatives, and 

factors affecting the size and composition of these choice sets is still unknown. The key role of 

choice set definition and the need to get some insights regarding drivers’ actual consideration set 

has motivated this research. 

Data has been collected through a web-based data collection framework, designed to collect 

information on drivers’ actual consideration set of route alternatives. The survey was conducted in 

the Greater Montreal Area and information on 506 drivers declaring 988 route alternatives was 

collected. Then, the effect of six broad categories of factors on the size of drivers’ consideration 

sets has been studied. These categories include personal attributes, declared factors, behavioural 

indicators, incentives, awareness determinants, and spatial, temporal and environmental 

components. 

Accordingly, four types of behaviour were distinguished with regard to the size of drivers’ 

consideration sets, namely “Determined cautious drivers”, “Biased habitual drivers”, “Middling 

impartial drivers”, and “Swayable conscious drivers”. Important factors and behavioural traits 
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affecting drivers’ choice selection behaviour can be embedded in the non-compensatory choice set 

formation step to generate and select more behaviourally realistic route alternatives. Moreover, the 

observed choice set can improve model’s estimation and prediction efficiency by providing 

detailed information regarding travellers’ preferences. 

Keywords: Consideration choice set, Route choice, Revealed preference data, Web-based survey, 

Choice set generation 

8.1 Introduction 

Modelling route choice behaviour is one of the most intricate and challenging tasks in 

transportation studies. The complexity arises from two main challenges, namely the large number 

of possible routes connecting a given origin destination (OD) pair, and the complex correlation 

structure among the overlapping routes. Accordingly, discrete choice analysis framework and a 

two-stage behavioural process is usually adopted to simulate drivers’ route choices. This 

framework assumes that choice set formation and choice from the considered set of alternatives 

are two distinct mental processes, in which the former precedes the latter (Ben-Akiva & Boccara, 

1995; Bovy, 2009). Assuming a two-stage process for modelling route choice decisions, this paper 

contributes to the line of work addressing the first stage, i.e. the analysis of the considered set of 

route alternatives. 

Choice sets are specified as collections of feasible travel alternatives considered by individual 

travellers. Defining them is a crucial step in modelling and analysing travel choice behaviour. It 

has been well-established in the literature that restricting all possible choices (i.e. the universal 

choice set) to alternatives considered by the decision maker improves the prediction ability of the 

choice model and represents the choice process in a more realistic way (Horowitz & Louviere, 

1995). Previous studies illustrate that parameter estimates change with various definitions of the 

alternative set. They have also argued that the size of the choice set and its variability greatly affect 

models’ estimates and choice probabilities over the set of alternatives (Bliemer & Bovy, 2008; 

Geda, 2014; Peters et al., 1995; Prato & Bekhor, 2006, 2007b; Schuessler & Axhausen, 2009; Swait 

& Ben-Akiva, 1987a). 

In route choice studies and real world road networks, it is not feasible to identify the universal 

choice set, i.e. to enumerate all the paths connecting a given OD pair. Hence, deterministic and 
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stochastic route generation techniques have been adopted to create a subset called master set, which 

approximates all the routes that are supposed to be known to the decision maker. However, this set 

may still be very large and may contain non-feasible and unattractive alternatives. Moreover, 

drivers’ are unrealistically assumed to know all of them and tirelessly compare their attributes to 

choose the best one. Due to the limited information processing abilities of drivers, spatial and 

temporal restrictions, and latent traits, such as attitudes and preferences, a set of spatiotemporal 

constraints and screening rules are adopted to delimit the consideration set, which is supposed to 

represent the actual set of routes from which drivers pick their final choice (Ben-Akiva & Boccara, 

1995; Bovy, 2009; Prato et al., 2012). 

However, the way individual drivers derive their actual consideration set of route alternatives, and 

factors affecting the size and composition of these choice sets is a complex and ongoing research 

issue (Schuessler & Axhausen, 2009). In reality, individuals’ choice sets are dependent on objective 

constraints, such as route attributes (e.g. maximum number of turns, number of traffic signals, etc.), 

as well as subjective criteria, such as individuals’ attitudes, perceptions and experiences (e.g. 

spatial abilities, safety concerns, etc.) (Ben-Akiva & Boccara, 1995). For instance, some drivers 

may prefer scenic routes and the comfort of their car to enjoy their trip, or might prefer to avoid 

local routes and take highways to save time. Consequently, the formation of the consideration 

choice set and the process of choice selection may be very different from one individual to another 

and may depend on a wide range of factors, ranging from route attributes and accessibility to the 

road network to sociodemographic and behavioural factors.  

This research aims to elaborate on this aspect of route choice modelling by observing drivers’ 

actual consideration sets and analysing factors affecting them. The observation of drivers’ 

consideration sets provides detailed information regarding their route selection behaviour and 

factors affecting such process (Bovy, 2009). It is worth mentioning that in this study the total 

number of declared alternatives is considered as the respondents’ revealed consideration set.  

Considered sets of route alternatives are mostly latent to the analyst and are rarely observed 

(Hoogendoorn-Lanser et al., 2005; Prato et al., 2012). This may be mostly due to the fact that 

collecting pertaining information is excessively time-consuming, increases the burden on 

respondents, and decreases response rates. To the authors’ knowledge, a detailed study of drivers’ 

revealed consideration sets has never been performed in the past. We present a web-based survey, 
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designed to collect information on drivers’ revealed consideration set of route alternatives. Then a 

comprehensive descriptive analysis is performed to shed light on factors affecting its size. The data 

contains information regarding drivers’ sociodemographic and socioeconomic characteristics, 

route characteristics, as well as driving preferences and attitudes affecting their choices. The survey 

was conducted in the Greater Montreal Area and information on 506 drivers declaring 988 route 

alternatives was collected. 

The remainder of the paper is structured as follows. First we describe our survey design and data 

collection methodology. Next we present a detailed descriptive analysis of factors affecting the 

size of drivers’ consideration set. Then, we further discuss our findings and distinguish between 

the observed types of behaviour breeding different sizes of consideration sets. Finally, we underline 

the study’s limitations and propose further research directions. 

8.2 Survey 

Data has been collected through a revealed preference web-based survey, designed to address the 

following three main purposes: i) to observe and characterize drivers’ consideration set of route 

alternatives ii) to observe drivers’ revealed route choices and iii) to identify behavioural and 

attitudinal factors affecting their route choice decisions and the formation of their considered 

choice sets. A detailed description of the survey, followed by a thorough review of the 

implementation steps is presented in this section. Then, a concise descriptive analysis of the data 

set clarifies the composition of the studied sample. 

8.2.1 Survey Design 

The employed survey consists of 6 separate sections. In the first and last sections, Profile and End, 

respectively, typical sociodemographic and socioeconomic data, such as age, gender, educational 

attainment, type of work, salary, household size, and number of cars in the household, is collected. 

Although the aim of this study is not to ascertain the representativeness of the sample, collecting 

these data provides the possibility of comparing the sampled population with the reference 

population (Ory & Mokhtarian, 2005). Moreover, this also provides a mean to segment the 

population based on important sociodemographic and socioeconomic factors affecting route 

choices, under the assumption that they differ based on population segments (Alizadeh, Farooq, 

Morency, & Saunier, 2017a). 
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In the second section, Home, participants provide their home addresses or pinpoint its location on 

a geographical map. This section explores factors such as familiarity with the road network around 

home locations, accessibility to the road network, transit services, and land use. 

In the third section, Trips, respondents specify on a geographical map, the destination point to 

which they drive most frequently. Instances of these places can be work place, shopping malls, 

parents’ place, school, etc. This section investigates several aspects of the declared trip, such as its 

purpose, the consulted information before making the trip and on the way, the familiarity with the 

road network around the destination location, and the travel frequency. Respondents are also asked 

to specify factors affecting their route choices as well as the number of route alternatives considered 

for the declared trip. 

The fourth section, Routes, investigates route alternatives considered by respondents for their 

predefined trip. At first, they are asked to specify their considered routes on a geographical map by 

adjusting (dragging) an automatically generated route connecting the predefined origin and 

destination points. Then several questions are asked to better understand and characterize 

respondents’ choices. These questions mostly focus on the effect of different factors on drivers’ 

decisions, such as the amount of toll, time of day, weather conditions, drivers’ perception of travel 

time and its reliability, safety, traffic conditions, scenery, and the number of traffic lights. 

Finally, in order to collect information on behavioural and attitudinal variables affecting drivers’ 

route choices, a list of different statements is provided to drivers in the fifth section, entitled 

Preferences. These statements are based on psychometric indicators chosen to reveal drivers’ 

attitudes and perceptions towards choosing a route (Atasoy et al., 2013; Ory & Mokhtarian, 2005; 

Vredin Johansson et al., 2006). Statements are designed based on some behavioural assumptions 

on drivers’ attitudes, in order to reveal the most important latent behavioural variables affecting 

drivers’ route choices (Bierlaire, 2016). Respondents were asked to specify their level of agreement 

to the statements on a five-point Likert scale (Likert, 1932) ranging from total agreement to total 

disagreement. This section is designed to collect information on indicators, such as drivers’ 

preferences towards riding on freeways or safer roads, willingness to try new routes, and openness 

to change route in case of accident or congestion. These indicators can be used to identify 

behavioural variables affecting drivers’ consideration set of route alternatives (Atasoy et al., 2013; 

Raveau et al., 2010). 
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8.2.2 Survey Implementation 

The survey only targets drivers residing and driving in the Greater Montreal Area, which covers an 

area of around 9840 square kilometers and contains a population of roughly 4 million inhabitants 

(Transport, 2013). It is a bilingual region with both French and English speaking populations; 

hence, the survey was prepared in both languages. 

A web-based interface has been adopted to mitigate the implementation cost and obtain high 

resolution data (Bourbonnais & Morency, 2013). In order to minimize its complexity, geographical 

map interfaces were adopted for questions where respondents had to specify the origin and 

destination points of their trip, as well as their considered route alternatives. Graduate students of 

the Transportation Research Group of Polytechnique Montreal took part in a pilot test in February 

2017, and the revised version of the survey was launched in March 2017.   

To disseminate the survey, three means have been adopted, namely i) graduate students, postdocs, 

faculty members, and staff of Polytechnique Montreal, ii) social media, such as Facebook, 

LinkedIn, etc., and iii) a list of email addresses from volunteer participants who previously agreed 

to participate in surveys conducted by the Mobility Chair of Polytechnique Montreal. 

8.2.3 Survey Participants 

A total number of 532 respondents completed the survey over a period of two months, from which 

26 were discarded due to geographical constraints and validation issues. The remaining 506 

interviews reporting a total number of 988 routes were used for all the analysis reported in this 

paper. Table 8.1 provides comprehensive details regarding the respondents’ sociodemographic and 

socioeconomic characteristics. It should be noted that the sample includes mainly young and 

middle aged full time workers with a university level of education. The skewness of the sample 

may be partly because the survey was disseminated among scholars, faculty members, and staff of 

Polytechnique Montreal. Moreover, the prevalence of young participants explains to some degree 

the higher frequency of smaller households. 
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Table 8.1: Characteristics of the Survey Participants 

Variable categories N % Variable categories N % 

Gender Household size 

 Male 280 55.3  1 89 17.6 

 Female 226 44.7  2 207 40.9 

Age (years old)  3 95 18.8 

 Young (15 to 39) 287 56.7  4 84 16.6 

 Middle age (40 to 59) 181 35.8  +5 31 6.1 

 Old (more than 60) 38 7.5     

Occupation Income (Thousand CAD per capita) 

 Full time worker 368 72.7  Low (Less than 35) 134 26.5 

 Partial time worker 37 7.3  Medium (35 to 75) 197 38.9 

 Student 61 12.1  High (more than 75) 79 15.6 

 Retired 24 4.7  Not declared 96 19 

 House-wife/husband 6 1.2  

 Other 10 2 Household car number 

Education  0 108 21.3 

 None 0 0  1 275 54.3 

 Less than university 61 12.1  2 100 19.8 

 University 438 86.6  +3 23 4.6 

 Other 7 1.4     

8.3 Analysis and Results 

To assess the effect of factors affecting the size of drivers’ consideration set, individuals have been 

classified based on their number of declared alternatives. Pilot study suggested a maximum limit 

of five alternatives to be declared by any participant. Statistical analysis suggested that the 

classification over three clusters provides the best fit over the data. The initial clusters were created 

based on the number of considered alternatives, namely individuals reporting one alternative, two 

alternatives, and three or more alternatives. However, further analysis clarified that two different 

types of behaviours were observed among individuals having declared two alternatives (i.e. second 

cluster); namely, individuals excessively preferring one of the declared alternatives over the other 

one and behaving more similarly to the first cluster, and those behaving more similarly to the third 

cluster by fairly considering both declared alternatives. Therefore, it proved more logical and 

interpretable to further divide the second cluster, based on the usage frequencies of declared 

alternatives, in order to distinguish between their distinct behaviours. The resulting clusters are 

described below: 
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 Cluster 1 consists of 171 individuals considering only one route alternative. 

 Cluster 2 includes 54 individuals declaring two alternatives and having one dominant 

alternative. A dominant alternative is defined as being chosen more than 80 % of the time. 

 Cluster 3 contains 169 observations with two declared and frequently considered 

alternatives (i.e. declared routes are chosen more than 20 % and less than 80 % of the time). 

 Cluster 4 incorporates a total of 112 individuals, considering three or more alternatives. 

These pre-defined clusters are used in all the following analysis. We classified the studied factors 

into six broad categories, and separately assessed the relationship of each category with the size of 

the declared consideration sets. These categories include personal attributes, declared factors, 

behavioural indicators, incentives, awareness determinants, and spatial, temporal and 

environmental components. 

To assess the effect of these attributes on the size of drivers’ consideration choice set, the “Test 

Value” (TV) criterion has been used. The following formulas are used to calculate TV for 

continuous (𝑡𝑐), and discrete (𝑡𝑑) values (Lebart et al., 2000): 

𝑡𝑐 = 
𝜇𝑔 − 𝜇

√
𝑛 − 𝑛𝑔
𝑛 − 1 ×

𝜎2

𝑛𝑔

 

(8.1) 

𝑡𝑑 =
𝑛𝑗𝑔 −

𝑛𝑔 × 𝑛𝑗
𝑛

√
𝑛 − 𝑛𝑔
𝑛 − 1 × (1 −

𝑛𝑗
𝑛 ) ×

𝑛𝑔 × 𝑛𝑗
𝑛

 (8.2) 

where 𝜇 and 𝜇𝑔 are attributes’ means in the cluster and group, respectively; 𝑛 and 𝑛𝑔 denote the 

size of the cluster and the group, respectively; 𝜎2 represents the attribute variance in the cluster; 

and 𝑛𝑗𝑔 is the number of observations corresponding to the discrete attribute 𝑗 in cluster 𝑔. 

Moreover, the variation of TV values across the clusters has been visualized by sparklines in the 

following tables, where green and blue sparklines represent monotonically increasing and 

decreasing effects from cluster one to cluster four, respectively, and yellow sparklines represent 

non-monotonic changes across clusters. 
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8.3.1 Personal Attributes 

The effect of personal attributes on the size of drivers’ consideration set is illustrated in Table 8.2. 

It is noted that almost none of the personal attributes are monotonic across clusters, i.e. either 

increase or decrease from Cluster 1 to Cluster 4. This may partly be due to the fact that the sample 

is skewed towards young workers with a university degree, and older retired individuals, students, 

and less educated segments of the population are underrepresented. However, it can be inferred 

that middle-aged workers with high income, and students with average income tend to consider a 

higher number of alternative routes. Taking into account the higher number of cars per household 

in these clusters, it can be argued that these individuals may be more used to driving and have more 

driving experience. On the contrary, older retired individuals with an average salary and younger 

drivers with low income consider fewer alternatives. Also, the lower number of cars per household 

in these clusters may imply the lower usage of car, hence a lower driving experience. 

Table 8.2: The Effect of Personal Attributes on the Size of Drivers’ Consideration Set 

Attributes 
TV 

Sparkline 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Gender      
 Male 0.26 0.90 -0.85 0.01  
 Female -0.26 -0.90 0.85 -0.01  
Age      
 Young 0.57 -0.18 0.03 -0.54  
 Middle-aged -1.73 -0.66 0.37 2.04  
 Old 2.05 1.53 -0.71 -2.66  
Occupation      
 Full time worker 0.13 -0.41 -0.61 0.85  
 Partial time worker 0.90 -1.08 0.23 -0.49  
 Student -1.33 0.66 0.76 0.16  
 House-wife/husband -0.02 1.81 -0.87 -0.32  
 Retired 1.72 -1.06 -0.01 -1.16  

Income (1000 CAD per capita)     
 Low (less than 35) -0.49 0.88 -0.59 0.57  
 Average (35 to 75) 1.81 -0.69 1.39 -3.12  
 High (more than 75) -0.44 -0.96 -1.40 2.80  
Education      
 Less than university -0.18 0.66 -0.97 0.82  
 University -0.01 -1.16 1.02 -0.30  
Household      
 Size -0.83 1.89 0.56 -1.09  
 Car number -2.77 -0.14 0.23 3.01  
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8.3.2 Declared Factors 

Participants were asked to specify a maximum of five factors affecting their route choices. The 

relationship of these factors with the size of drivers’ consideration set of route alternatives is 

investigated in this section. The number of observations and the level of significance of these 

factors with respect to each cluster is reported in Table 8.3.  

We notice that the level of familiarity, safety, habit, and distance, decrease monotonically from 

Cluster 1 to Cluster 4, whereas the level of congestion, construction sites, traffic lights, and turns, 

increase monotonically. The behavioural interpretation of these monotonic changes is that 

individuals considering fewer alternatives prefer to consider shorter (in terms of distance), safer, 

and routes which they are more accustomed to. Moreover, they are less willing to consider 

alternative routes in order to avoid congestion, construction sites, traffic lights and higher number 

of turns. On the contrary, individuals willing to avoid congestion, construction sites, traffic lights, 

and multiple turns consider more route alternatives, and factors such as familiarity, habit, safety 

and less travel distance play a less important role in their decisions. Furthermore, although their 

effects are not monotonic across clusters, it is observed that scenic routes are more attractive to 

those considering fewer alternatives and travel time reliability is more important to those 

considering a higher number of alternatives. Also, individuals in Cluster 4 are more open to pay 

tolls and more determined to minimize their travel time by considering more alternative routes. 
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Table 8.3: The Relationship of Factors Affecting Drivers’ Route Choices with the Size of Their 

Consideration Set of Route Alternatives 

Attributes N 
TV 

Sparkline 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Higher familiarity 105 3.36 1.34 -2.10 -2.44  

Habit 175 1.94 1.00 -0.48 -2.41 
 

Higher safety 50 2.23 0.32 -1.17 -1.46  

Less distance 199 1.68 1.11 -1.24 -1.32 
 

More parking 56 0.92 -0.91 0.69 -1.16 
 

Higher speed limit 58 0.71 1.27 -1.59 0.05 
 

Less time 421 0.68 0.41 -2.92 2.23  

Better scenery 37 0.54 1.68 -1.21 -0.49 
 

Better pavement quality 37 0.18 1.13 -1.94 1.15  

Less toll 10 -0.26 -0.07 -0.23 0.60 
 

Higher travel time reliability 201 -0.37 -1.31 0.74 0.55 
 

Less turns 23 -1.25 -0.31 0.60 0.98 
 

Less traffic lights 109 -1.56 -0.22 0.59 1.27 
 

Fewer construction sites 87 -4.08 -0.49 1.48 3.33 
 

Less congestion 235 -4.97 -0.02 1.79 3.64 
 

8.3.3 Behavioural Indicators 

Behavioural indicators and their effects on the size of drivers’ consideration choice sets are 

illustrated in Table 8.4. It can be inferred that drivers considering more alternatives are more 

inclined to drive on highways and routes with higher speed limits. They prefer to have a more 

reliable travel time, and avoid traffic lights and construction sites. Also, they have a good sense of 

direction and take advantage of their reliable memories to remember routes they have taken a single 

time. Since they try to minimize their travel time, they would prefer taking longer routes rather 

than remaining stuck in traffic jams on shorter ones, and are consequently more prone to change 

route in case of accident or unexpected congestions. Moreover, these individuals are more likely 

to try new routes and are constantly in search of new shortcuts. Furthermore, it can be noticed that 

factors such as habit of taking the same route, scenery along the route, avoiding trucks and narrow 

lanes, and number of turns do not play a role in the formation of their consideration set. 
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Table 8.4: The Relationship of Behavioural Indicators with the Size of Drivers’ Consideration Set 

of Route Alternatives 

Attributes Description 
TV 

Sparkline 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

HAB Taking the same route repeatedly 5.77 1.87 -1.43 -6.34  
TRK Avoiding routes with high number of trucks 2.49 0.09 0.24 -3.18  
DIR Preferring more direct routes 1.51 0.30 -0.15 -1.78  

SCN Preferring scenic routes 1.29 -0.76 1.24 -2.32  
NR_LN Avoiding narrow lanes 1.18 -0.81 2.42 -3.49  
LOC More willing to take local routes 0.27 0.34 -0.66 0.19  
TOL Willing to pay  0.02 -0.52 0.86 -0.60  
RT_PLN Taking suggested routes by route planners -0.16 0.43 1.03 -1.31  
SPD Preferring higher speed limits -1.39 0.17 0.85 0.49  

LNDMRK Using landmarks to recall new routes -1.21 1.66 0.63 -0.58  

FRW More willing to take freeways -1.42 -0.03 0.67 0.87  

DRV_STCK 
Preferring longer routes rather than being 

stuck in traffic jams on shorter routes 
-1.42 0.42 0.27 1.00  

TT_REL Having more reliable travel time -1.87 0.26 0.64 1.21  
PAV_QLT Importance of pavement quality -1.53 0.07 1.93 -0.50  

SHRTCT Searching for route shortcuts -1.94 -0.27 0.88 1.41 
 

CONST Avoiding construction sites -2.29 -0.31 -0.12 2.98 
 

TT_MIN. Minimizing travel time  -2.60 0.09 0.43 2.40 
 

SOD Having a good sense of direction -2.83 -0.79 1.37 2.26  

LGHT Avoiding traffic lights -3.41 0.45 1.20 2.19  

MEM Having a good memory -3.01 0.10 0.78 2.48  

NEWRT Willingness to try new routes -4.10 -1.67 1.49 4.22 
 

RT_CHNG Changing route in case of accidents -4.92 0.05 2.47 2.75 
 

Since almost all the above-mentioned factors are monotonic across clusters (except for scenery and 

narrow lanes), the behaviour of individuals considering fewer number of route alternatives is 

essentially the opposite of what has been described above. In other words, individuals considering 

fewer number of route alternatives mostly tend to follow their usual routes and are less willing to 

try new ones, find shortcuts, avoid construction sites, or even change route while facing unexpected 

traffic jams or accidents. This may partly be due to their weaker memorizing ability and sense of 

direction. These cautious drivers try to avoid the presence of trucks, routes with narrow lanes, 

multiple turns, and higher speed limits. As a final remark, it can be noted that less determined 

drivers of Clusters 2 and 3 are more frequent users of route planners. 
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8.3.4 Incentives 

In this section, drivers’ trip purpose and their incentives to choose car as their principal 

transportation mean for the declared trip have been investigated. Results are illustrated in Table 8.5. 

Table 8.5: The Relationship of Trip Purpose and Incentives with the Size of Drivers’ Consideration 

Set of Route Alternatives 

Attributes N 
TV 

Sparkline 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Trip purpose       
 Work 204 -1.33 -1.40 0.55 1.93  
 School 33 -0.82 -0.89 0.37 1.17  
 Shopping 91 1.28 0.48 -0.10 -1.71  
 Recreation 127 1.53 1.47 -0.52 -2.25 

 
 Drive someone 34 -1.68 -0.36 0.62 1.48  
 Services 17 0.65 0.95 -1.40 0.14  
Driving purpose       
 Enjoy driving 78 -1.65 -0.92 -0.01 2.59  
 Habit 16 1.93 0.24 -0.72 -1.55  
 Free parking 42 -0.75 0.79 0.33 -0.11  
 TT reliability 112 0.26 0.02 -0.55 0.31  
 Comfort 106 1.65 0.95 -2.17 -0.12 

 
 Time saving 301 -0.33 -0.62 -1.63 2.69  
 Large objects 161 -1.29 0.56 1.26 -0.38  
 Other people 130 -1.70 0.37 0.34 1.28  
 Other activities 193 -0.24 -0.18 -0.09 0.50 

 

It can be noticed that drivers going to work, school, and those driving someone, consider higher 

number of alternative routes, and those driving for shopping and recreational activities are more 

willing to stick to their preferred route and consider fewer number of alternatives. This might be 

related to the fact that work and study trips mostly occur during peak hours and congested periods. 

With respect to driving purposes, on one hand, drivers who enjoy driving, drive to save time and 

spend lesser time on the road, or drive other people are more prone to consider various alternatives. 

On the other hand, drivers who drive out of habit and appreciate the comfort of their cars, consider 

fewer number of route alternatives. 

8.3.5 Awareness Determinants 

Attributes related to driving experience, familiarity with the road network, and consulted 

information are explored as determinants of drivers’ state of awareness. Table 8.6(a) describes 



157 

 

these determinants and Table 8.6(b) presents their relationships with the size of drivers’ 

consideration set. It is noteworthy that eight out of the nine attributes show a monotonic behaviour 

across clusters. Accordingly, frequent drivers who are more experienced and consult traffic 

information, before and during the trip, consider a higher number of alternatives. In general, they 

have resided longer in their current home address and are consequently more familiar with the road 

network around it (their origin point). They also show a higher familiarity with the road network 

around their destination points, and in general with the road network of Montreal. Although the 

duration of residing in Montreal (RES_MTL) does not show a monotonic effect across clusters, it 

can be noticed that individuals in Cluster 4 have lived longer in Montreal, which probably rendered 

them more familiar with Montreal’s road network and consequently more willing to try new routes.  

Table 8.6: The Relationship of Awareness Determinants with the Size of Drivers’ Consideration 

Set of Route Alternatives. 

(a) List of Awareness Determinants 

Attribute Description 
DRV_EXP The percentage of respondents holding a driving license 

TRIP_FREQ Frequency of the declared trip per week 

INF_BFR Traffic information consulted before making the trip (internet, media = 1, none = 0) 

INF_AFT Traffic information consulted on the way (internet, media = 1, none = 0) 

RES_HM Duration that they have been living at the same address 

RES_MTL Duration that they have been residing in Montreal 

ORG_FAM Familiarity with the road network around the origin of the trip 

DEST_FAM Familiarity with the road network around the destination of the trip 

MTL_FAM Familiarity with the road network of Montreal 

(b) Relationship of Awareness Determinants 

Attributes 
TV 

Sparkline 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

DRV_EXP -1.00 -0.38 0.42 0.94 
 

TRIP_FREQ -1.39 -1.09 -0.24 2.67 
 

INF_BFR -2.67 -1.40 -0.22 4.33 
 

INF_AFT -2.86 -1.11 0.57 3.44 
 

RES_HM -1.20 -0.39 0.43 1.16 
 

RES_MTL 0.64 0.08 -3.32 2.98 
 

ORG_FAM -2.12 0.63 0.70 1.15  
DEST_FAM -3.69 1.09 1.14 2.10  

MTL_FAM -2.01 0.07 0.19 2.02 
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8.3.6 Spatial, Temporal and Environmental Components 

In this section, we study the significance of spatial, temporal and environmental variables 

(presented in Table 8.7(a)) on the composition of drivers’ consideration set (see Table 8.7(b)). It 

seems that drivers traveling away from CBD consider more route alternatives than drivers driving 

towards the CBD. It can also be inferred that individuals who have a flexible arrival time at work 

/ school and travel on peak hours consider more route alternatives and are less sensitive to 

meteorological changes. 

Table 8.7: The Relationship of Spatial, Temporal and Environmental Variables with the Size of 

Drivers’ Consideration Set of Route Alternatives. 

(a) List of Variables 

Attribute Description 
LEN The travelled distance  

BRD_LEN The bird fly distance between origin and destination points 

ORG_CBD The bird fly distance between the origin point and the Central Business District 

DEST_CBD The bird fly distance between the destination point and the Central Business District 

TO_CBD The direction of the trip (towards CBD = 1, away from CBD = 0) 

FLX_ARV Flexible arrival time at work or school (Yes = 1, No = 0) 

PH Peak hour (6 a.m. to 9a.m. and 3 p.m. to 7 p.m.) departure time (peak = 1, off-peak =0) 

WTHR The effect of weather on route choice (Yes = 1, No =0) 

 

(b) Relationship of Variables 

Attributes 
TV 

Sparkline 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 

LEN 0.42 0.39 -0.90 0.25  
BRD_LEN 0.76 0.53 -1.35 0.27  
ORG_CBD 1.97 -1.13 -0.44 -0.90  
DEST_CBD 2.12 1.33 -1.22 -2.02  

TO_CBD -1.14 -1.58 1.12 1.20 
 

FLX_ARV -2.15 -0.50 1.28 1.37  
PH -1.40 0.33 0.29 1.01  
WTHR 2.78 -1.62 0.14 -2.11  

8.4 Summary and Conclusions 

In a two-step choice modelling approach, the first stage consists of the formation of individuals’ 

consideration set of alternatives, while the final choice from the considered set is performed in the 

second stage. The importance of delimiting individuals’ consideration choice sets is well supported 
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in the literature. It has been argued that the variability in the size of the choice set greatly affects 

models’ estimation and prediction abilities (Bliemer & Bovy, 2008; Geda, 2014; Peters et al., 1995; 

Prato & Bekhor, 2006, 2007b; Schuessler & Axhausen, 2009; Swait & Ben-Akiva, 1987a). In route 

choice studies, consideration sets, their characteristics and factors affecting their sizes are usually 

unknown. Hence, various deterministic and probabilistic algorithms are used to generate a random 

number of alternatives per observation. Identifying the factors affecting the size and composition 

of drivers’ actual consideration sets, is still an ongoing research problem. This paper reports on an 

empirical investigation of this issue using drivers’ observed consideration sets. 

Data was collected through a web-based survey, designed to collect detailed data on drivers’ 

consideration set of route alternatives and factors affecting their compositions. The studied dataset 

is composed of 506 respondents residing and travelling in the Greater Montreal Area. A total of 

988 route alternatives have been declared. Studied factors have been classified into six broad 

categories, namely personal attributes, declared factors, behavioural indicators, incentives, 

awareness determinants, and spatial, temporal and environmental components. Four clusters were 

defined based on the number of considered alternatives and the relationship of these factors with 

each cluster was studied. The behavioural interpretation of each cluster is concisely presented 

below: 

Cluster 1 – Determined Cautious Drivers 

Individuals in this cluster consider only one alternative for their declared trip. The presence of older 

retired people with an average income and fewer cars per household is highlighted in this cluster. 

People in this cluster seem to rely more on their habits and previous experiences, and prefer to take 

their usual route, to which they are more accustomed. They tend to take safer routes by avoiding 

trucks and routes with narrow lanes, and taking routes with lower speed limits. They more often 

use their cars for shopping and recreational purposes and like to enjoy their trips through the 

comfort of their cars and by taking more scenic routes. They are less interested in minimizing their 

travel times and prefer to take more direct routes with shorter travel distances. They are usually 

less experienced in driving, and less familiar with the road network around their origins, 

destinations, and Montreal in general. They barely consult traffic information, which may be partly 

because they are less affected by construction sites and congestion, and are less willing to change 

their routes to try new ones. 
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Cluster 2 – Biased Habitual Drivers 

Individuals declaring two alternatives and favoring one of them more than 80 % of the time are 

classified in this cluster. It is characterized by a larger share of low income respondents, old 

individuals, and housekeepers. In general, their behaviour is similar to those in cluster one. 

However, compared to Cluster 1, the effect of various factors on their behaviour is mostly lower. 

These drivers are less determined to always use the same route and are more open to try new ones. 

As they become more familiar with the road network (around their origins, destinations, and 

Montreal in general), further experienced and more informed, the effect of habit becomes less 

prominent in their decisions. While they still prefer to use their usual route, they are less tolerant 

towards getting stuck in traffic jams and more prone to choose routes with reliable travel times. 

Cluster 3 – Middling Impartial Drivers  

This cluster includes drivers who consider two alternatives and are not biased towards any of them. 

Middle-aged individuals, students, and respondents with an average income are more represented 

in this cluster. Individuals in this cluster are more open-minded towards considering more route 

alternatives and more willing to explore new routes. Factors such as familiarity, habit and safety 

become less important to them and trying new routes and shortcuts gain importance in their 

decisions. Compared to previous clusters, they are more familiar with the road network and pay 

attention to traffic information more often.  

Cluster 4 – Swayable Conscious Drivers 

Individuals who consider three or more alternatives are classified in this cluster, which is 

highlighted by the presence of middle-aged workers with high income. These experienced drivers 

mostly live in highly motorised households. They usually drive to work and school and are very 

familiar with the road network around their origins, destinations, and Montreal in general. Since 

they drive to save time and spend less time on the road, they often consult traffic information (both 

before their trips and on their way) to identify construction sites and avoid congestion. They also 

seek to minimize their travel times by choosing more reliable routes and avoiding traffic lights. 

They have a keen sense of direction and a sharp memory, which make them more confident to 

explore new routes and try new shortcuts. Moreover, they are not distressed by the presence of 

trucks, higher speed limits and narrow lanes.  
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According to Horowitz and Louviere (1995), the observed consideration set of alternatives can 

improve choice model’s estimation efficiency by providing information about travellers’ 

preferences. Moreover, this information can also be used to improve models’ prediction efficiency. 

Accordingly, the probability distribution of the random component of the utility function, 

conditional on the consideration choice set, can be calculated and used instead of the type I extreme 

value distribution, to calculate the choice probabilities for prediction purposes (Horowitz & 

Louviere, 1995). Although the studied factors and the premeditated clusters may not explain all the 

variations and stochasticity leading to diverse sizes of consideration sets, they shed light on the 

relationship of various attributes with the size and composition of the choice set. 

A complementary study direction could be the study of choice set compositions, regarding 

alternative characteristics such as the overlapping portion between the declared alternatives, or the 

similarity between considered alternatives and generated alternatives using shortest path route 

generation techniques. Moreover, key factors and behavioural traits affecting drivers’ choice 

selection behaviour can be embedded in the non-compensatory choice set formation step to 

generate and select more behaviourally realistic route alternatives. 
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CHAPTER 9 GENERAL DISCUSSION 

 

The main contributions of this thesis are related to the behavioural enrichment of the two-stage 

RUM framework with sampling of alternatives. This first requires the definition of a considered 

choice set from which individuals make their final choices in the second stage. The application of 

the two-stage random utility maximization framework in route choice modelling gives rise to a 

particular challenge, namely the definition of realistic and representative choice sets. Another 

challenge of route choices modelling is to consider the complex correlation structure of route 

alternatives. The main objective of this thesis is to enhance the behavioural understanding of route 

choice decisions using drivers’ underlying behavioural process of decision-making. Behaviourally 

elaborated models require customized programs and fast computers for estimation and necessitate 

well-tailored data collection methods. However, according to Walker (2001) these models provide 

better prediction abilities, correct for cognitive biases, verify behavioural hypotheses regarding the 

decision-making process, allow for a clearer behavioural interpretation than standard choice 

models, and hence, provide a benchmark to evaluate the performance of more parsimonious 

models. 

In this regard, the main contributions of the thesis revolve around the three general components of 

the two-stage route choice modelling framework, also discussed in Chapter 3, namely the 

modelling framework, the data collection method, and the consideration set of route alternatives. 

Behavioral contributions to the modelling framework have been presented in detail in Chapters 4, 

5, and 7. Three main ideas were discussed and studied: 

 In Chapter 4, we followed the idea that drivers follow the hierarchical representation of space 

and that some prominent features of the route, i.e. anchor points, might affect their decisions. 

Although several studies have argued that anchor points influence route choice decisions 

(Couclelis et al., 1987; Golledge et al., 1985; Habib et al., 2013; Kaplan & Prato, 2012; 

Lynch, 1960; Prato & Bekhor, 2007a; Prato et al., 2012), route choice studies have mostly 

ignored their importance by only considering route level attributes, such as the total travel 

time and number of traffic signals. We studied the influence of bridges as anchor points on 

drivers’ route choice decisions between the two islands of Montreal and Laval. We adopted 

a nested modelling approach to represent the space hierarchy and to incorporate the effects 
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of anchor points and route level attributes at the same time. Moreover, considering anchor 

points also provides the possibility to capture the unobserved similarities of routes crossing 

the same anchor points, such as safety, scenery, driving comfort, etc. Results illustrated that 

the proposed nested modelling approach provides better model fits and outperforms the 

prediction abilities of comparative route-based choice models. 

 Chapter 5 elaborates on the idea that individuals have different inclinations towards choosing 

a route between an origin and destination, which may form different types of decision-

making behaviours. It has been discussed that behavioural differences mostly emerge from 

having different attitudes, preferences, and experiences. Since previous studies have shown 

that population stratification is effective in capturing the preference heterogeneity of the 

population, a representative classification of drivers’ route choice decisions based on their 

actual choices has been investigated. In the presented study, it has been illustrated that 

observing taxi drivers’ route choice decisions for a long period of time can shed light on their 

route choice behaviours, and that different types of operational strategies can be observed. 

Although GPS traces lack important explanatory variables, such as demographic attributes, 

attitudes and preferences, this study shed some light on the variation of taxi drivers’ route 

choice behaviours and the possibility of classifying them. 

 The third contribution, discussed in Chapter 7, revolves around the idea that choices are 

greatly influenced by: 1) latent traits and variables that cannot be directly observed and 

measured, such as attitudes, perceptions, and lifestyle preferences, and 2) the latent 

heterogeneity existing between different segments of the population. The study integrates an 

ICLV model into a LC model to explicitly capture the behavioural aspect of the choice 

process. The study implements the modelling framework to improve the understanding of 

frequent versus occasional drivers’ route choice behaviour. The better fit and behavioural 

interpretation of the proposed modelling framework underscored the role of underlying 

behavioural constructs on drivers’ route choice decisions. 

Despite the appeal of behavioural modelling frameworks, their application in route choice studies 

remains rare, which can be mostly related to the fact that collecting behavioural data is cumbersome 

and time consuming. In this thesis, we proposed a data collection framework designed for 

behavioural route choice studies.  
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 The main aim of the proposed framework is to collect data reflecting the heterogeneity of 

individuals’ preferences and the complex nature of drivers’ decision-making process, without 

significantly increasing the respondent burden. Drivers residing and driving in the GMA have 

been targeted. After a three-month data collection period, the final dataset included the 

complete validated responses from 513 participants. 

We also looked at different types of questions, their completion times, and the rate of 

dropouts per question type and section. Statistics on various recruitment methods and survey 

completion percentage per hour of the day are also discussed. These paradata, which were 

available thanks to the adopted web-based interface, provide various potential benefits to 

tackle some of the main challenges facing survey developers, namely increasing the response 

rate, decreasing the risk of non-response bias, increasing response precision and minimizing 

the survey error, increasing the reliability and efficiency of the collected data, and reducing 

the overall cost of the survey. Paradata can be used to identify data collection problems, 

propose new data collection strategies, and determine a trade-off between data quality, cost 

and time (Nicolaas, 2011). 

The last contributing area of this thesis concerns the first stage of route choice modelling in a two-

stage modelling framework, namely the understanding of route choice sets. 

 Since actual consideration sets of route alternatives are usually latent to the analyst and 

information concerning objective and subjective attributes affecting their size and 

composition is limited, we adopted the proposed survey framework to collect information on 

respondents considered choice sets. Although the studied factors in this study may not 

explain all the variations and stochasticity leading to diverse sizes of consideration sets, they 

shed light on the relationship of various attributes with the size of the choice set. The 

identification of key factors and behavioural traits affecting drivers’ choice selection 

behaviour can be embedded in the non-compensatory choice set formation step to generate 

and select more behaviourally realistic route alternatives.  
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CHAPTER 10 CONCLUSION AND RECOMMENDATIONS 

This section includes a summary of the studies presented throughout this thesis, research 

contributions, research limitations, and finally the perspectives for future works. 

10.1 Summary 

The work presented in the thesis revolves around several ways of improving the understanding of 

drivers’ route choice decisions. These research efforts are presented in detail in five chapters. Here 

is a summary of the main points covered in these chapters. 

10.1.1 Hierarchy of Space and the Role of Anchor Points 

In Chapter 4, the effect of anchor points and space hierarchy in drivers’ decision-making process 

has been investigated. Accordingly, the effect of bridges connecting Montreal to its Northern 

suburb, Laval, on taxi drivers’ route choice decisions between these two riverside cities has been 

studied. These bridges face recurrent congestion and significant travel time variations, and even 

though they cover a small portion of the whole trip, they have a major impact on the experienced 

travel time. Therefore, they are considered as important points along the route, which might 

influence drivers’ route choice decisions.  

In order to incorporate the effect of space hierarchy in the drivers’ decision-making process and to 

improve the behavioural aspect of route choice modelling, we have explored the application of a 

nested structure. First, a NL formulation has been proposed, in which upper nests represent bridges 

and lower nests consist of route alternatives crossing the respective bridges. Second, a nested LK 

with a factor analytic structure is specified. The EPS factor has been added to the deterministic part 

of the utility function to account for physical overlaps among routes crossing the same bridges. 

Routes crossing the same anchor point share unobserved components such as safety, scenery, 

driving comfort, etc., which is mainly because they share the same network and geographical 

characteristics. These unobserved similarities are captured through the nested structure and the 

factor analytic structure in NL and LK models, respectively. 

To evaluate the estimation and prediction performance of these models, they have been compared 

to other route-based models, and findings revealed that the nested structures provided better model 
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fits and prediction accuracies. This underscored the importance of considering the effect of anchor 

points in conjunction with route level attributes in route choice decisions. 

10.1.2 Behavioural Classification 

In the research effort, presented in Chapter 5, we studied taxi drivers’ route choices to investigate 

possible types of route choice behaviours. We presumed that since taxi drivers have extensive 

driving experience, they develop different driving habits and behaviours, which breed different 

types of operating strategies. In other words, we hypothesised that factors affecting route choice 

decisions, such as preferences, experiences, information levels, and attitudes, are somehow 

correlated and can be classified to represent various types of route choice behaviours, hence, 

operating strategies. 

For this purpose, we studied a longitudinal GPS dataset, tracking 1,746 taxi drivers making more 

than 22,000 trips over a period of one year. Accordingly, four categories of operating strategies 

have been found based on variations in trips made during days and nights, and between short trips 

and long trips. 

Although it is not possible to encompass all variations of operating strategies based on route choice 

behaviours and GPS traces alone, due to the lack of some other explanatory variables, such as 

demographics and preferences, the main goal of this study was to shed light on the possibility of 

classifying drivers’ decision-making behaviours based on their actual route choices. Apart from 

the fact that the understanding of these operating strategies helps to better comprehend urban traffic 

dynamics, which is very important to the city and transportation planners, the behavioural 

classification provides the possibility of estimating more behaviourally accurate route choice 

models. 

10.1.3 Specialized Data Collection 

In Chapter 6, we present the development and deployment of a general data collection framework 

adapted for behavioural route choice studies. The survey has been developed in six separate 

sections collecting information on drivers’ sociodemographic and socioeconomic characteristics, 

their revealed route choices and their considered sets of route alternatives, as well as their 

perceptions and behavioural traits. Several validation criteria were defined for each question, and 

responses were required to comply with all the criteria in order to be approved and stored in the 
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database. Respondents could advance to the next section only if they had answered all the questions 

in the previous section. By the end of the three-month data collection period, 843 individuals started 

the survey from which 539 (64 %) completed it, while the remaining 304 (36 %) dropped out at 

various points of the survey. The average completion time of the survey was around 16 minutes. 

The overall survey completion percentage of 64 %, and the small number of discarded interviews 

(4.8 %) suggests a successful implementation of the survey framework and the high quality of the 

collected data. 

10.1.4 Behavioural Traits and Latent Heterogeneity 

In Chapter 7, we proposed a route choice modelling framework, which incorporates the effect of 

latent behavioural constructs in conjunction with population segment heterogeneity. We applied 

the proposed modelling framework to compare the route choice behaviour of frequent versus 

occasional drivers. To properly incorporate the effect of segment heterogeneity and to distinguish 

between choice behaviours of the different classes of our sample population we used a LC model, 

in which we incorporated the role of the underlying attitudinal and behavioural traits using an ICLV 

model. Data has been collected through the revealed preference web-based survey described in the 

previous sub-section (see Chapter 6 for a thorough description). The modelling dataset included 

225 drivers residing and driving in the GMA. 

As expected, major behavioural traits have been observed among drivers, which were associated 

to different segments of the studied population, i.e. frequent and occasional drivers, affecting their 

route choice decisions. A latent class model without the ICLV component has also been estimated 

as a benchmark to compare the results. The same specification of the utility function and class-

membership equations have been used in both models. Results demonstrated that the inclusion of 

behavioural traits in the LC model significantly improves its fit over the data. 

10.1.5 Consideration Set of Route Alternatives 

In order to better understand drivers’ choice set formation process, we investigated 988 route 

alternatives, declared by 506 drivers, residing and driving in the Greater Montreal Area. Data has 

been collected through the web-based data collection framework presented in Chapter 6. 

Then, the effect of six broad categories of factors on the size of drivers’ consideration sets has been 

studied, including personal attributes, declared factors, behavioural indicators, incentives, 
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awareness determinants, and spatial, temporal and environmental components. Accordingly, four 

different clusters were defined based on the number of considered alternatives and the relationship 

of these factors with each cluster was investigated. 

Although the studied factors may not explain all the variations and stochasticity leading to diverse 

sizes of consideration sets, they shed light on the relationship of various attributes with the size and 

composition of the choice set. A better understanding of drivers’ consideration sets’ size and 

composition may significantly improve route choice models’ estimation and prediction efficiency 

by providing information about travellers’ preferences. 

10.2 Research Contributions 

The following contributions have been made throughout this thesis: 

10.2.1 Hierarchy of Space and the Role of Anchor Points 

The presented anchor-based nested modelling framework improves the behavioural aspect of route 

choice modelling by capturing the effect of space hierarchy and anchor points in conjunction with 

route level attributes. Moreover, the adopted NL and LK models are easily manageable and 

practical, even by considering many route alternatives crossing each anchor point. Moreover, the 

inclusion of multiple landmarks and anchor points, and the consideration of several forms of 

decision makers’ preference heterogeneity and taste variation is easily manageable using the LK 

model, due to its flexible structure of the error term. 

10.2.2 Behavioural Classification 

This study shed some light on taxi drivers’ different types of driving patterns and route choice 

strategies that are observable through a longitudinal route choice datasets. The incorporation of 

these categories in route choice models generally improves their estimation and prediction 

accuracy, by better capturing the existing heterogeneity among different segments of the 

population. 

10.2.3 Specialized Data Collection 

The data collection method proposed for route choice studies provides a general data collection 

framework to collect data on drivers’ actual route choices, reveal drivers’ consideration set of route 



170 

 

alternatives, and identify important factors, including observable attributes and latent behavioural 

traits, affecting their decisions. The study also shed some light on participants’ response behaviour 

and dropout rate, with respect to various types of questions used in the survey.  

10.2.4 Behavioural Traits and Latent Heterogeneity 

The proposed LC-ICLV modelling framework incorporates the effect of latent behavioural 

constructs in conjunction with population segment heterogeneity. The study also compares 

frequent versus occasional drivers and provides useful insights on that matter. 

10.2.5 Consideration Set of Route Alternatives 

Observing drivers’ consideration set of route alternatives provides important insights on factors 

affecting their sizes and compositions. These influencing factors can be used in choice set 

generation techniques to provide more realistic choice sets, and hence improving choice model’s 

estimation efficiency by providing information about travellers’ preferences. 

10.3 Research Limitations 

Although the results obtained in this research effort have contributed to the existing literature on 

route choice modelling, some limitations are present. In chapters four to eight we have mentioned 

some limitations specific to each study. Some more general limitations are discussed below: 

10.3.1 Data Availability 

In some cases, the lack of necessary data represents major limitations that deserve special attention 

for future developments. For instance, in anchor-based models, including physical characteristics 

of anchor points (such as the travel time associated with them) can also be interesting and can 

provide useful insights on their effects on the attractiveness of an alternative. The inclusion of these 

factors is expected to enhance the models’ estimation and prediction abilities. Moreover, in the 

presented behavioural classification of route choice patterns, a major limitation is the lack of 

personal information such as demographic and socio-economic characteristics of the participants, 

and their behavioural and attitudinal variables. 
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10.3.2 Population Representativeness 

In research studies, it is recommended that the sampled population represents the target population. 

This is mostly to ensure that the sampled population consists of all relevant types of people and 

behavioural preferences, so that the findings from the study can be applied to the target population. 

The data collected through the web-based survey discussed in Chapter 6, has been used in studies 

presented in Chapters 7 and 8. A notable limitation is that it was not practically feasible to ensure 

a representative sample of the population due to lack of time, budget, and research necessities. This 

might have affected the results to be biased towards a particular segment of the population. 

Also, the behavioural classification effort, presented in Chapter 5, is based on taxi drivers’ route 

choice decisions and is not necessarily representative of the entire population of drivers. 

10.4 Directions for Future Research 

Considering the above-mentioned contributions towards enhancing the behavioural aspect of route 

choice modelling, this work has also opened doors to many research areas, some of which are 

presented below. 

10.4.1 Studied Factors 

To improve the findings of the presented work, one research direction could be the inclusion of 

other types of factors that could influence drivers’ route choice behaviours. For instance, the 

inclusion of different attitudinal indicators, and more complex specifications of the class-

membership functions may improve the estimation and prediction accuracy of the LC-ICLV model 

presented in Chapter 7. Moreover, the specification of a more complex utility function, including 

anchor points’ characteristics in Chapter 4 may yield better model fits and prediction accuracies. 

10.4.2 Time and space transferability 

For future works, it would also be interesting to investigate the spatial and temporal transferability 

of the proposed modelling structures and behavioural classifications, presented in this research 

effort, for different datasets on similar case studies in different regions, countries and segments of 

the population. 
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10.4.3 Other Modelling Frameworks 

In this work, we adopted a two-stage RUM framework to model drivers’ route choice decisions, 

which requires the definition of a considered choice set or an alternative sampling procedure. In 

this work we did not analysed the sensitivity of the estimated parameters to the sampling size, 

which can be an extension of this thesis. Many other approaches are available, such as Recursive 

Logit (RL), proposed by (Fosgerau et al., 2013), which does not require the generation of a 

consideration set of route alternative. An interesting venue of research would be to incorporate the 

effects of anchor points and taste heterogeneity in terms of latent variables and latent classes in the 

RL modelling framework and to compare the results with the estimated modelling frameworks in 

this thesis. 

10.4.4 Data Collection 

In this work, we have presented a particular type of data collection framework, containing a specific 

number of questions and question types, using a web-based interface. In order to be able to better 

evaluate the efficiency and data quality of the proposed framework it should be compared with 

other route choice data collection frameworks, using different interfaces, with different lengths and 

types of questions. Another possible extension of this effort can be the integration of the proposed 

survey framework with other data collection mediums, such as smartphones and GPS devices, to 

compare declared and actual route choices. 

10.4.5 Choice Set Composition 

In this work, we studied the relation of various factors with the size of drivers’ consideration sets 

of route alternatives. An extension to this work is the adoption of a more systematic way of 

capturing the effects of the studied factors, such as performing a clustering analysis or applying a 

Latent Class Analysis. Another complementary study direction is the study of choice set 

compositions, regarding alternative characteristics such as the overlapping portion between the 

declared alternatives, or the similarity between considered alternatives and generated alternatives 

using shortest path route generation techniques. 
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