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Wait Analysis of Distributed Systems
Using Kernel Tracing

Francis Giraldeau,Member, IEEE and Michel Dagenais,Member, IEEE

Abstract—We propose a new class of profiler for distributed and heterogeneous systems. In these systems, a task may wait for the

result of another task, either locally or remotely. Such wait dependencies are invisible to instruction profilers. We propose a host-based,

precise method to recover recursively wait causes across machines, using blocking as the fundamental mechanism to detect changes

in the control flow. It relies solely on operating system events, namely scheduling, interrupts and network events. It is therefore capable

of observing kernel threads interactions and achieves user-space runtime independence. Given a task, the algorithm computes its

active path from the trace, which is presented in an interactive viewer for inspection. We validated our new method with workloads

representing major architecture and operating conditions found in distributed programs. We then used our method to analyze the

execution behavior of five different distributed systems. We found that the worst case tracing overhead for a distributed application is 18

percent and that the typical average overhead is about 5 percent. The analysis implementation has linear runtime according to the trace

size.

Index Terms—Performance measurement, operating systems, tracing, reverse engineering

Ç

1 INTRODUCTION

A distributed and heterogeneous system is a set of
threads running on multiple computers, and imple-

mented in various programming languages. The hidden
nature of the processing and the incompatibilities between
runtime environments make the task of performance profil-
ing and debugging more difficult. Our goal is understanding
the elapsed time of a computation in such systems to improve
the response time and to diagnose performance problems.

Popular profilers based on hardware counters sampling
[1], [2], dynamic binary translation [3] and call-graph elapsed
time are useful to identify code hot spots, but are limited
in two ways. Firstly, instruction profilers do not take into
account the time spent waiting. Secondly, they are restricted
to the local host, which limits their use for distributed applica-
tions. Hence, the performance of each component must be
analyzed independently.

Previous work considered instrumentation of libraries
and middleware to monitor performance of specific dis-
tributed systems [4], [5], [6], [7], [8], [9], [10]. The resulting
instrumentation provides straightforward performance
measures, but is domain dependent and tied to a runtime
environment. Considering the large number of languages,
components and frameworks, the cost of instrumenting
each of them is high. System call tracing was proposed as a
less invasive instrumentation technique [11], [12], [13]. The
request processing path of a distributed application is
recovered by recording send and receive operations. These

system calls are not sufficient in general because communi-
cation can occur from any kernel code, such as other system
calls, interrupt contexts, and kernel threads. A technique
based on recording network traffic was proposed to charac-
terize the elapsed time between the client, the server and
the network [14]. However, internal processing of endpoint
machines is not visible using network events only.

Kernel tracing allows to observe wait occurring between
threads. It works with unmodified executables and is sys-
tem-wide, two properties important for actual heterogeneous
distributed systems. By carefully choosing the instrumenta-
tion, low overhead and disturbance can be achieved. This
paper aims to study methods providing meaningful rep-
resentation of a broad range of actual distributed applica-
tions execution using kernel traces. The contributions are
as follows :

� The design of the kernel instrumentation required
for the analysis. The implementation is available as
Linux loadable modules and works with an unmodi-
fied Linux kernel.

� A graph model of the system execution generated
from the trace and the corresponding algorithm to
extract the active path of a given task.

� Experiments on actual software to study the program
behavior with regards to wait, according to host type,
software architecture, and network conditions.

� Evaluation of the analysis cost of the runtime over-
head and the trace processing.

� Two practical optimizations improving the analysis
performance for actual traces.

Note that our goal is not to recover the flow of request in
specific application protocols. This knowledge is outside
the domain of the operating system, and we consider the
data payload in network packets as a black-box. Also,
because the method recovers the active path at the system
level, if the runtime environment process multiple requests
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simultaneously using the same task (such as with user-
space thread), additional user-space instrumentation is
required to identify processing of a specific request. The
next section describes in detail the instrumentation and the
analysis algorithms.

2 ANALYSIS ARCHITECTURE

The analysis is performed according to the following steps :

1) Start tracing on each relevant host;
2) Run the program of interest;
3) Stop tracing;
4) Gather the trace files on one machine;
5) Synchronize the traces;
6) Build the execution graph;
7) Compute the active path of the program of interest;
8) Display the result in the interactive viewer.
The method requires tracing simultaneously each host

involved in the distributed processing to observe. Other-
wise, the result of the active path may be incomplete if
dependencies between events cannot be established.

We first review the essential operating system principles
on which the analysis is based. Then, we discuss the trace
synchronization method we use. Finally, we define and
present the algorithm of the execution graph and the active
path and present their corresponding algorithm.

2.1 Operating System Trace of a Distributed System

For our discussion, we consider that a task (or a thread) on a
computer can be in four canonical states, namely running

on a given CPU, preemptedwhen ready but not executing,
interrupted when an interrupt handler nests over the
application code, and blocked when the task passively
waits for an event and yields the CPU. All states other than
running prevent the program from making progress and
should be reduced whenever possible.

Interrupts can be trivially monitored by recording han-
dler entry and exit. Simple statistics can be computed from
these events, such as frequency and duration. Tracking
interrupts allows to identify if an event is emitted from task
or interrupt context.

Preemption mostly occurs when processors must be
shared between tasks. The scheduler switches the running
task on a given CPU when its quantum expires. The cause
of the preemption can be assigned to the tasks running on
the corresponding CPU because they affect the completion
time of the preempted task. Preemption also occurs between
the time a task becomes ready, after blocking, and the time it
effectively executes.

Unlike other types of waits, blocking changes the con-
trol flow of the program. The behavior depends on the
structure of the application. A task going to the blocked
state is moved from the run queue to the wait queue and
then the scheduler is invoked to yield the CPU. The key
idea is that the event unblocking the task (thereafter
referred as the wake-up event) indicates the cause of the
wait, which is unknown a priori and is non-deterministic in
general. We distinguish two types of blockings, that is when
the wake-up occurs from another task in kernel mode, or
from an interrupt. Task wake-up examples are contention

on a mutex, empty or full pipe conditions, and other inter-
process communication. By improving the performance of
the subtask, the wait of the main task is reduced. In contrast,
when the wake-up comes from interrupt context, the inter-
rupt vector indicates the device after which the task was
waiting, for instance, a timer or a disk. In particular, pro-
grams waiting for an incoming network packet are gener-
ally woken up from a network interrupt. By tracking the
source of the packet related to the interruption, we can iden-
tify the emitter task. The reasoning is that if the network
was faster or the task sent the packet earlier, then the block-
ing time of the receiver would have been reduced.

Consider for example the system call select(), that
returns either because a file descriptor is ready or the speci-
fied timeout occurs. If data is written to the file by a local
task, the wake-up source indicates which thread made the
write. If the wake-up comes instead from the timer interrupt,
it indicates that the timeout occurred. If the wake-up comes
from the network interrupt, it means a remote task sent a
message over a socket. Therefore, this mechanism is inde-
pendent of the system call, its parameters or its return value.

One limitation of this approach is related to active waiting,
such as spinlock and polling used in low-latency applica-
tions. Busy wait in user-space is not visible from the operat-
ing system. For distributed application, the network delays
are usually an order of magnitude greater than the CPU
speed, therefore it is reasonable to assume that most applica-
tions are blocking during the processing for efficiency.

We review briefly the behavior of the Linux operating
system regarding the task states, the interruption context,
and the network exchanges, which are the foundation for
the active path analysis. Packet transmission and reception
always occur in kernel mode, either from a system call
(such as send() or write()), or a deferred interruption
(thereafter referred to as softirq). The reception is done
asynchronously inside softirq, and then any task waiting for
the data is awakened. Packet transmission also occurs from
softirq context. We observed that TCP control packets are
sent immediately after packet reception and that TCP
retransmissions are sent from the timer softirq. To prevent
user-space starvation due to high-frequency softirq, the
processing is deferred to the ksoftirqd kernel thread.

Fig. 1a shows the execution according to time of netcat
transmitting a short string. The elapsed time is adjusted for
proper display. The client establishes a TCP connection to
the server, sends a short string and closes the connection.
Eight messages are exchanged between the client and the
server. The server blocks in accept() for an incoming con-
nection. The client sends the synchronize packet and the
server host acknowledges it directly from the interrupt han-
dler, without the intervention of the server task. The client
blocks in select() for the connection to be established.
The server is then awakened when the handshake is com-
pleted. The client writes the data to the socket, closes the
connection, and waits for the connection termination in
poll(). The server blocks while the data is transmitted in
read(), and finally closes the connection, which unblocks
and terminates the client.

The execution path affecting the completion time is iden-
tified by following backward the source of the wake-up.
The result wrt the netcat client is shown in (b). The last
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poll() is unblocked by the FIN-ACK packet from the
server, sent when the server calls shutdown(). When
reaching the blocking in read(), the SYN-ACK is followed,
and the corresponding write() of the client is attained.
Finally, the blocking in select() is resolved by traversing
the SYN-ACK and SYN packets.

The events required for the analysis and the instrumenta-
tion method are shown in Table 1. The instrumentation is
implemented as loadable kernel modules. We use three
instrumentation methods. The first method consists in add-
ing a probe to an existing static tracepoint in the kernel. All
scheduler and interrupt events are recorded in this way,
except for the wake-up event. To reduce the wake-up
latency, the default tracepoint sched_wakeup is executed
on the destination CPU inside inter-processor interrupt
(IPI). This has the effect of losing the source of the wake-up.
We therefore define the event sched_ttwu using a kprobe
hook to the function try_to_wake_up(). This function is
called before sending the IPI at the actual wake-up call site.
The third mechanism uses netfilter to register a hook for
recording TCP packet headers.

For the prototype implementation on Linux, we use the
Linux Tracing Toolkit next generation (LTTng) as the trac-
ing facility [15]. This tracer provides efficient kernel tracing
using a modern architecture, namely per-CPU trace buffers,
monotonic timestamps with nanosecond precision and
direct write to disk without an intermediate copy. In

addition, its binary format is described using metadata,
which simplifies defining new event types. Technically,
other kernel tracers with precise and monotonic time-
stamps, such as Perf [1], could be used instead. The choice
of LTTng is an implementation detail, and does not reduce
the generality of the approach.

2.2 Trace Synchronization

One challenge of distributed event analysis is the absence
of a global clock. The analysis is sensitive to message inver-
sion and requires partial order on network events, also
called the clock condition. In addition, local interval dura-
tions must be preserved to accurately report the cause of
delays. We detail in this section the rationale for the syn-
chronization method.

The Network Time Protocol (NTP) is used to synchronize
clocks according to a time server [16]. This protocol offers
accuracy in the millisecond range. The synchronization
error should be significantly lower than message latency to
avoid message inversion. Therefore, NTP accuracy is insuf-
ficient to guarantee the clock condition of Ethernet network
events, where the message latency is in the microsecond
range. Furthermore, we do not want to interfere unduly
with the system operation by requiring a specific time syn-
chronization service or hardware support.

The Lamport’s logical clock [17] is a classical method to
order messages based on the happen-before relation. As its
name suggests, the result is a logical clock for relative event
order but does not provide a global, absolute elapsed time,
as required for our analysis. Moreover, sending clock values
with all messages is invasive.

The Controlled Logical Clock is an extension of the logi-
cal clock providing global time [18]. Unlike the logical clock,
it uses existing message timestamps from the trace and is
non-invasive. Inverted messages are shifted according to
the minimum transfer delay. The events near inversion are
also shifted using an amortization function. It can be used
for lengthy traces with non-linear clock drift. The algorithm
requires prior synchronization.

The convex hull synchronization algorithm [19] produces
a linear relation (timestamps transform) between two clocks,
that models the offset and the drift. Handling long traces can

TABLE 1
Kernel Events Required for the Analysis

category event method

scheduler sched_ttwu kprobe
scheduler sched_switch tracepoint
interrupt hrtimer_expire_entry tracepoint
interrupt hrtimer_expire_exit tracepoint
interrupt irq_handler_entry tracepoint
interrupt irq_handler_exit tracepoint
interrupt softirq_entry tracepoint
interrupt softirq_exit tracepoint
network inet_sock_local_in netfilter
network inet_sock_local_out netfilter

Fig. 1. Task state and TCP packet transmission.
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be achieved by dividing in sub-intervals, each modeled
using a linear function. This method was used to synchro-
nize kernel traces with network packets [20]. To synchronize
a group of nodes, the transform for a given clock is composed
relative to a reference host. We chose this method because it
preserves the local timings, it is non-invasive, and the clock
corrections aremore precise thanwith the Controlled Logical
Clock, because the relation is computed over a large number
of send-receive points (forming the convex hull) instead of
locally at each packet reception.

The convex hull algorithm works as follows. For each
pair of hosts, an x-y plane is built with two sets of points,
either incoming and outgoing, wrt a reference host. The con-
vex-hull of these two sets is approximated using minimum
and maximum slopes dividing the two regions. The bisector
of the two slopes is taken as the final approximation. The
minimum convex hull requires at least two points in each
set. The algorithm fails if a slope intersects a convex hull.
This situation can occur for lengthy traces (e.g., longer than
one hour), because of the physical non-linear properties of
crystal clock oscillators, in which case dividing the trace
into sub-intervals solves the problem.

We define the following relations for the linear time-
stamp transformation.

� function : fðtÞ ¼ mtþ b
� inverse : f�1ðtÞ ¼ t=m� b
� compose : fðgðtÞÞ ¼ fðtÞ � gðtÞ ¼ m1m2tþm1b2 þ b1

with fðtÞ ¼ m1tþ b1; gðtÞ ¼ m2tþ b2
� identity : fðf�1ðtÞÞ ¼ IðtÞ ¼ 1tþ 0 ¼ t
When more than two traces are synchronized, there must

be a transitive transform to a reference host. We compute
such transform using a directed graph where vertices repre-
sent hosts and where edges represent timestamp trans-
forms. If the graph is connected, then a global time can be
recovered. The graph is built by adding two edges for each
transform, namely a forward edge representing the com-
puted transform and a reverse edge with the inverse trans-
form. The transitive transform is obtained by composing
transforms for the path from the reference host to the peer
host. A composed transform does not guard from inversion,
and the partial order is not guaranteed. In practice, the com-
posed error margin is lower than the network transmission
and no inversion occurs.

As an example, consider the synchronization of traces
from three computers q0; q1 and q2, where packet exchanges
occurred between ðq0; q1Þ and ðq1; q2Þ and the transform fðtÞ
and gðtÞ respectively for these two pairs of hosts, obtained
using the convex hull method. The resulting graph and
each transform according to the reference computer are
shown in Figs. 2 and 3 respectively.

2.3 Trace Analysis

The recovery of wait causes needs efficient navigation
between related events. We achieve this with a directed
acyclic graph (DAG) built from the synchronized traces.

Then, the wait cause is recovered by traversing the graph
backward.

More formally, we define an execution graph data struc-
ture as a two-dimensional doubly linked list, where hori-
zontal edges are labeled with task states, and where vertical
edges are signals between tasks (either a wake-up or a net-
work packet). A vertex v represents an event and has a time-
stamp t, representing causality, such that every edge v! v0

must satisfy t � t0. The Algorithm 1 details the trace to
graph transformation. For simplicity, error handling is not
shown and a data structure representing the machine state
is implicitly defined per-host.

Algorithm 1. Execution Graph Construction

Input: synchronized trace T  fT1; T2; . . .Tng
Output: execution graph G
1: TASK  finitial tasksg
2: CPU  fp0; p1; . . . png
3: IRQ finterrupt stub tasksg
4: PKT  ;
5: for all event e 2 T do " Main procedure
6: now e.timestamp
7: if e is sched_switch then
8: LINK_HORIZONTAL(prev task, now, running)
9: LINK_HORIZONTAL(next task, now, preempted)
10: set current task on CPU
11: else if e is sched_ttwu then
12: target e.tid
13: source CURRENT_TASK()
14: v1  LINK_HORIZONTAL(target, now blocked)
15: v2  LINK_HORIZONTAL(source, now, running)
16: link_vertical(v1, v2, wake-up)
17: else if e is interrupt_entry then
18: push interrupt
19: LINK_HORIZONTAL(CURRENT_TASK(), none)
20: else if e is interrupt_exit then
21: pop interrupt
22: else if e is inet_sock_local_out then
23: tx LINK_HORIZONTAL(CURRENT_TASK(),
24: now, running)
25: add (packet, tx) to PKT
26: else if e is inet_sock_local_in then
27: if packet match found then
28: (packet, tx) remove match in PKT
29: rx LINK_HORIZONTAL(CURRENT_TASK(),
30: now, running)

Fig. 2. Example of a synchronization graph between three hosts.

Fig. 3. Resulting timestamp transforms according to the reference host
for the synchronization graph example of Fig. 2.
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31: LINK_VERTICAL(tx, rx, network)
32: end if
33: end if
34: end for

35: function CURRENT_TASK() "Utilities
36: cpu smp_processor_id()
37: if in_interrupt(cpu) then
38: return peek interrupt task of cpu
39: else
40: return task of cpu
41: end if
42: end function

43: functionlink_horizontal (task; ts; l )
44: tail last vertex of task from G
45: Create vertex vwith timestamp ts
46: Create edge tail½right� ! v½left�with label l
47: return v
48: end function

49: function LINK_VERTICAL from, to, l
50: Create edge from½up� ! to½down�with label l
51: end function

The algorithm iterates over trace events and processes
them according to their type. The sched_switch event
adds two new edges to the graph, one for the previous task
that was running, and the other for the next task that was
preempted prior to run. The sched_ttwu event adds an
edge to represent the blocking state of the target task and
the task emitting the signal is necessarily running. Notice
that the source may be either a thread or a per-CPU place-
holder thread representing the interrupt context. Finally, a
vertical edge is added from the source to the target with
the wake-up label. The events interrupt_entry and
interrupt_exit are managing the corresponding place-
holder thread stack to account for nested interrupts. The
network events are processed as follows. On transmission,
a new vertex is added to the emitter task. This new vertex
and its packet are added to the unmatched packet set.
When the corresponding packet is found, a new vertex is
created on the receiver, and a vertical edge with the label
network is created from transmission to reception vertices.
The transmit vertex is added immediately to the graph and
before the receive counterpart is seen to ensures linear
complexity. If both vertices were added when a packet
match occurs, it would require a graph seek to insert the
transmission vertex and this would increase the computa-
tional complexity.

We define the active path of execution as the execution
path where all blocking edges are substituted by their cor-
responding subtask. The algorithm is shown in Algo-
rithm 2 and works as follow. The states of the main task
are iterated forward, and visited edges are appended to
the active path. If a blocked state is found, the incoming
wake-up edge is followed, and the backward iteration
starts. In the backward direction, the visited edges
are prepended to a local path. If an incoming packet is
found, the source is followed backward. If a blocking
edge is found while iterating backward, this procedure is
repeated recursively. The backward iteration stops when
the beginning of the blocking interval is reached, the

accumulated path is appended to the result and the for-
ward iteration resumes.

Algorithm 2. Active Path Computation

Input: execution graph G, task T , vs; ve
Output: path P
1: v vs
2: while v is not ve do " Forward iteration
3: E  v:right
4: append PROCESSðEÞ to P
5: v E:to
6: end while
7: function PROCESS (edge)
8: if edge:label is blocking) and
9: edge:to has incoming vertical edge then
10: return RESOLVEðedgeÞ
11: else
12: return E
13: end if
14: end function
15: function RESOLVE (edge)
16: TMP  ;
17: v edge:from " Follow incoming
18: while v:ts > edge:from:ts do " Backward iteration
19: E  v:left
20: if v:down:label is network then
21: prepend RESOLVEðEÞ to TMP
22: else
23: prepend PROCESSðEÞ to TMP
24: end if
25: v E:from
26: end while
27: return TMP
28: end function

It is immediately apparent from the graph construction
algorithm that the runtime complexity is OðnÞ, n being the
number of events in the trace. The same observation applies
to the active path computation, where only the connected
components of the graph are traversed, and only once. We
conclude that the sequential execution of both algorithms is
linear according to the number of events. This property is
verified experimentally using the actual implementation
and is presented in Section 3.5.

3 EVALUATION

We evaluated the system in three steps. First, we studied a
single blocking call according to various operating condi-
tions. We compare the execution on the local host to the exe-
cution in virtual machines and on physical machines. We
show how the result changes according to the level of asyn-
chronous processing of the application. We observe the
effect of network latency and bandwidth on the result.

The second evaluation step focuses on analyzing five dis-
tributed systems under typical operating conditions. Use-
cases were selected to represent the diversity of runtime
environments used in the industry and includes C/C++,
Java, Python, and Erlang.

The last step consists of evaluating the analysis cost. We
measured the worst-case and average runtime overhead.We
also studied the scalability of the analysis implementation.
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For all experiments, the operating system is Ubuntu
14.04, running Linux 3.13 and LTTng 2.4. The machine used
for local and virtual machine experiments is an Intel i7-
4770, with 16 GB of RAM and an 1 TB SSD. The cluster used
to run bare-metal experiments has four nodes, where each
node is a dual-core AMD Opteron 246 processor, with 4 GB
of RAM and 100 GB hard drive, communicating through a
dedicated Gigabit Ethernet subnet. The analyzer is imple-
mented in Java as Eclipse plug-ins. The code to reproduce
the experiments is freely available on GitHub [21].

3.1 Effect of Host Type

We studied the effect of the host type on the analysis
results. We compare three type of hosts configuration: a
single host, two virtual machines, and two distinct com-
puters. We compare the execution of an RPC request for
each host configuration. We implemented wk-rpc, a mini-
mal RPC implementation in C to control precisely the sys-
tem calls performed. The remote procedure computes the
amount of time specified by the client. The client connects
to the server, writes the command and the parameter to
the socket, and then calls read to retrieve the return value
of the command. When the server-side operation is com-
pleted, it sends the return value to the client, which causes
the read call to return.

When the client and the server are running on the same
host, the operating system transmits network packets on the
loopback interface using a softirq. It produces the same
events structure as a physical interface. The synchronization
stage is not necessary because only one clock is involved.

We executed the client and the server processes each in
their own virtual machine running on the same host. We
used Kernel Virtual Machine (KVM) as the hypervisor. In
this case, traces must be synchronized, because each virtual
machine scales the Time Stamp Counter (TSC) to nanosec-
onds independently.

The third experiment consists in executing the client and
the server, each on their own physical computer. Compared
to the virtual machine experiment, the communication is
done through physical network interfaces.

The results of the three experiments are producing the
same structural result as described in Fig. 1. The communi-
cation mechanism on the localhost interface works the same
way as a remote socket for the analysis. We conclude that
the abstraction we propose works for local and remote sock-
ets and is independent of the host type.

We observed a difference between local and remote
executions for large data transfers. When the client and the
server run locally, the client may be preempted inside
sendto() by the server executing recvfrom(). When
run remotely, the client blocks in sendto() instead. The
local preemption is however immediate from the trace.

Another case involves a user-space program detecting if
its peer processes are on the same computer. The program
may use shared memory instead of sockets for efficiency,
which changes the local behavior as compared to the dis-
tributed execution. The OpenMPI library has this capability
and is discussed in Section 3.4.5. If the wait related to
shared memory synchronization is done through blocking
system calls such as futex(), the wait dependencies
between threads is taken into account by the proposed

method, without the need to trace accesses to shared mem-
ory itself.

3.2 Effect of Network Conditions

We used traffic shaper tool tc to increase packet transmis-
sion latency for the wk-rpc synchronous remote procedure
call. The client and the server are running inside virtual
machines, and the traffic shaping is applied to the virtual
network interface on the host operating system. Fig. 4 shows
the three executions for natural latency in (a), a latency of
10 ms in (b) and 100 ms in (c). For each execution, the server
task is above the client.

In the graphical representation, the green intervals indi-
cate CPU processing, the pink intervals are unresolved net-
work wait, and pink edges are matched network packets
between traced hosts. In addition, back edges are used for
local processes wait and clipped intervals. Each execution
begins with two network intervals in pink, representing the
DNS resolution prior to the connection. These intervals are
not resolved because the UDP packets and the DNS server
are not traced. If the data was available, the DNS timing
could be recovered, but it is left as future work. The second
part of the execution shows, as expected, that the proportion
of the network transmission increases according to latency.

We also observed the effect of available bandwidth on
the behavior of a large network transfer. This experiment
involves the apache web server and the wget client, where
traffic shaping is used to limit the bandwidth. We observed
that due to the TCP window and the fact that the processing
time of the server is low, the transmission delay is greater
than the associated blocking window, even when the band-
width is not limited. The analysis accurately reports that
almost all the wait time is caused by the network delay.

3.3 Effect of Asynchronous Processing

Asynchronous processing is a computation occurring simul-
taneously with input and output [22]. We simulate asyn-
chronous processing in the client of wk-rpc using a busy-
loop between sending the command and receiving the
result. The transmission of such a small message does not
block, allowing the busy-loop to proceed. The effect is to
reduce the blocking window of the subsequent read call.

Fig. 5 shows the active path of the client according to
time (server process above client process). Asynchronous
levels are 0, 50 and 100 percent respectively in (a), (b) and
(c). When synchronous processing is used, the blocking

Fig. 4. Active path of wk-rpc according to the network latency. The exe-
cution in (a) has natural network latency, in (b) the latency is set to 10 ms
and in (c), the latency is set to 100 ms.
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window reveals the entire server processing related to the
request. This window is reduced proportionally to the
amount of asynchronous processing, until the point where
the process does not block. In this situation, no change in
the control flow occurs in the active path.

Another type of asynchronous processing consists in an
event loop to keep a single thread responsive, despite long
blocking waits. A typical example of an event loop is shown
in Fig. 5d. The event loop is implemented with the poll()

system call, blocking for a resource to become ready up to a
maximum timeout. The timeout period is set to 16 ms,
corresponding to the screen vertical sync of 60 Hz and simu-
lating the periodic refresh of a graphical user interface.
The execution contains four intervals, where the first three
(blue) are timeouts and where the last one is unblocked by
the server’s reply. The resulting active path associates wait
time to the server only for the last blocking interval of the
event loop. Because a large blocking window is decom-
posed into multiple arbitrary small timeouts, the control
flow of the active path changes only for the blocking win-
dow related to the completion of the background request.
Assuming uniform probability of event inter arrival while
blocking, the resulting blocking window will not reflect the
actual wait for the resource. Better handling of this execu-
tion pattern may be a direction for future work. Nonethe-
less, the analysis shows the cause of the delay at the system
level in the case of a missed deadline.

3.4 Use-Cases

3.4.1 Java RMI

The Java RemoteMethod Invocation (RMI) is a framework to
access objects on different computers over the network. We
traced a classical example of RMI, where a client invokes a
method on a remote server to compute the value of p with a
given decimal place [23]. When the server starts, it registers
the compute engine object to the rmiregistry. The client
contacts the registry and obtains a reference to a proxy to
access the remote object. The active path of the client is
shown in Fig. 6. The client waits two times for the registry
and three times for the compute engine server. The last inter-
val represents the actual computation of p. Java RMI is syn-
chronous by nature, and the method produces accurate
results in this condition.

3.4.2 Network Share

A remote file system is a storage device accessed through
the network. The operating system handles transparently
the I/O for the applications, either on a local drive or on a
remote server. This experiment is about evaluating whether
the wait for the file system is correctly recovered by our
method. The experiment consists of a Samba server, provid-
ing a CIFS network share, and a client mounting and access-
ing files on this share.

Fig. 7 shows the execution of the remote directory listing,
where the processing of the smbd server is visible. The pro-
gram ls waits twice for the file server. The first wait is in
newstat() to get the file attributes and the second is in the
getdents() system call returning the directory entries.
These two system calls are actually sending network pack-
ets, because of the virtual file system implementation.
In other words, even the most trivial program ls can indi-
rectly be a distributed program. The correct active path is
obtained because no assumption is made about which sys-
tem call could send network packets. Another interesting
finding concerning the inner working of the kernel is that
the cifsd daemon receives the answer from the server
and then wakes up the main client for both calls. This obser-
vation is only possible because the tracing is system wide.

3.4.3 Web Application

We observed the result of the analysis for a simple, yet
actual and unmodified web application. We used the Poll
application of the Django project [24], a typical and popular
Web framework written in Python. The user’s vote is simu-
lated with a non-interactive script using the python library
mechanize. The voting process has three steps. First, the
client performs a get request to download the form, then
transmits the data using post, and finally the client is redir-
ected to the poll result page. The application is deployed as
WSGI using Apache HTTP server and PostgreSQL database.

Fig. 5. Active path of wk-rpc according to asynchronous processing
level of 0 percent in (a), 50 percent in (b) and 100 percent in (c), and
asynchronous processing based on event loop in (d).

Fig. 6. Example of Java RMI compute engine execution.

Fig. 7. Example of a CIFS remote directory listing.
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Each tier runs on its own KVM instance and is traced while
the vote occurs.

The result of the post is shown in Fig. 8. The client con-
nects to the HTTP server, sends the POST data, and waits
for the reply. The server immediately dispatches the request
to a worker thread. The control flow changes frequently
between the apache worker thread and the database. Near
the end of the request, the postgres process performs a call
to fdatasync() (purple), blocking until all dirty pages are
flushed to permanent memory and is related to the SQL
update statement.

3.4.4 Erlang Service

We verified that the proposed method works for the Erlang
runtime. We implemented a small echo server and its corre-
sponding client in Erlang. The system was deployed in two
virtual machines. The experiment consists of ten round-
trips between the client and the server. The result is shown
in Fig. 9. The client blocks for the answer from the server
and the active path works for Erlang distributed processes.
In this execution instance, the last round-trip does not
extend to the server, unlike the nine previous ones. This is
due to a smaller blocking window that occurred because the
client was preempted by another task just prior to blocking.

3.4.5 MPI Computation

We tested our method for an MPI program using an imbal-
anced parallel computation. The function MPI_Barrier()

is called at the end of a cycle to force the synchronization
between distributed threads. We found that the OpenMPI
barrier is implemented with a busy wait and appears as
normal processing from the kernel perspective. Busy-wait
reduces the latency by avoiding to invoke the scheduler,
but at the cost of reduced resource efficiency. This design
decision is justified where resources are dedicated and
power consumption is a secondary concern, such as in
scientific computing.

In this experiment, we measured the wait using a user-
space instrumentation to record events before and after the
barrier, in addition to the kernel trace. The instrumentation
semantic is equivalent to the MPI Parallel Environment
(MPE) monitoring library [25], and we verified that we
obtain the same result with the Jumpshot viewer. The
recorded data is displayed as time intervals and serves as an
overlay to highlight the underlying kernel trace correspond-
ing to the wait. Both user-space and kernel traces are using
the same clock and timestamp transform and are therefore
synchronized on a per-host basis. Fig. 10 shows the result for
the execution of the MPI program involving two compute
nodes. It allowed to pinpoint that the MPI barrier repeatedly
performs non-blocking calls to poll() while waiting. We
also studied the runtime parameter mpi_yield_when_i-
dle, indicating to yield the processor when waiting. The
parameter has the effect of adding a call to sched_yield in
the busy loop rather than passivelywait for the event.

Busy-wait is also observed in the implementation of
OpenMP barriers. However, the default behavior can be
modified by setting the environment variable OMP_WAIT_-

POLICY. When it is set to PASSIVE, the program blocks
while waiting. This allows our method to highlight correctly
the imbalance between threads without user-space instru-
mentation. The OpenMPI library could be extended simi-
larly to support passive waiting.

3.5 Analysis Cost

We present the results of the analysis cost, both in terms of
the tracing overhead and the implementation of the analysis
algorithm.

The tracing cost includes the tracepoint instructions in
the code path, and the execution of the trace consumer dae-
mon, which is responsible for writing the event buffers to
disk. This daemon is working as a background thread and
does not increase latency of the workload if no preemption
occurs between them.

The total tracing cost is proportional to the number of
events produced and is about 200 ns per event. However,
the overhead ratio is proportional to the event production
rate. The first part of the experiment attempts to produce
the highest possible frequency for a distributed workload,
in order to measure the upper bound of the overhead. The
second part focuses on the average overhead for a typical
use case. Experiments were performed on the cluster hard-
ware described in Section 3. The scheduler governor was set
to performance instead of ondemand to reduce variations
caused by processor frequency changes.

Fig. 8. Execution of the post HTTP request across the client, the web
server and the database.

Fig. 9. Execution of the echo Erlang example.

Fig. 10. MPI imbalanced computation execution. Below: the user-space
trace displays the running (green) and waiting (red) of each thread.
Above: the kernel trace corresponding to the first MPI thread. The top
interval shows a zoomed in view of the active wait section. The first cycle
of the computation is highlighted.
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The first experiment uses netperf to measures the
effect on network throughput. Messages of size 16 kio are
sent from the client to the server. The throughput measured
is 424 Mbits/s with and without tracing. Tracing has no sig-
nificant impact on the network throughput for this experi-
ment. This result could be explained by the fact that the
probe latency is hidden by the TCP transmission window.

The second experiment uses wk-rpc performing
requests in a tight loop. The objective is to make round-
trip queries at the fastest possible rate. The messages
exchanged are only 32 bytes in size. We measured that
tracing increased request latency by 18.3 percent, from
155:9 to 190:8ms (mean difference in change, 34.9 [95 per-
cent CI, 34.7 to 35.1]; p< 0.01). Ideally, tracing should add
a constant delay to requests. Fig. 11 shows the effect of
tracing on the request delay density. The delay density
without tracing is multi-modal, but its envelope is uni-
modal and nearly normal. The main effect of the tracing is
a nearly constant offset. A slight second mode appears at
about 5ms below the main mode. A hypothesis to explain
this phenomenon may be that different code paths are exe-
cuted depending on runtime conditions. Further analysis is
necessary to verify this hypothesis.

The third experiment uses wkdb, the Django Poll web
application. The test measures the latency for loading and
submitting the voting form. The request latency increased
by 5.1 percent, from 116:3ms to 122:5ms (mean difference
in change, 6.3 [95 percent CI, 4.8 to 7.7]; p< 0.01).

We measured the CPU usage of the tracing daemon to
evaluate its relative impact on the system. We used the
scheduling events from the trace to recover the average
CPU usage for a window of one second during the peak
workload activity. We found that the average CPU usage of
the trace consumer daemon is comprised between 0.8 and
8.2 percent of one CPU, and is proportional to the event pro-
duction rate (R2 ¼ 0.91).

To further categorize the cause of the overhead, we com-
puted the event proportions according to their category,
namely scheduler, network, and interrupt. The results for
the three experiments are shown in Fig. 12. For all experi-
ments, the most frequent events are interrupts. Reducing
the tracing overhead for the active path analysis should
therefore target interrupt events.

We studied the scalability of the Java implementation of
the graph construction and path extraction algorithms. The
input is traces of HTTP requests of the wkdb application,
where the number of requests increases by powers of two,
up to 210 or 1,024. The largest trace has a size of about
500 MB. The measurements are performed with the trace
loaded in the page cache to exclude the I/O time. From
the chart of Fig. 13, we confirm that both algorithms have
linear runtime according to the number of traced requests.
A key question is the proportion of the trace reading n the
graph construction. To establish this proportion, we mea-
sured separately the time to read the trace without event
processing. This experiment indicates that nearly half the
time to build the graph is related to reading the trace.
The graph construction is by far the most expensive step of
the analysis, being two orders of magnitude longer than
the active path extraction. Once the graph is computed, the
active path for the largest trace is returned under 0.5 s,
which is practical to interactively explore the performance
of different tasks.

Fig. 11. Effect of tracing on request latency density for the wk-rpc bench-
mark. Tracing causes the distribution to shift to the right.

Fig. 12. Relative event frequency according to workload. Interrupts are
the most frequent event type for all workloads.

Fig. 13. Above: analysis time according to the number of traced requests
for the different steps, namely the time to read the trace, build the graph
and extract the active path. Below: the active path extraction is shown
separately because of the difference in scale. Both algorithms have lin-
ear scalability and reading the trace accounts for roughly half the cost to
build the graph.
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3.6 Analysis Optimizations

We present two additional contributions improving the effi-
ciency of trace synchronization for actual traces.

We observed a high peak memory consumption when
synchronizing traces, caused by the packet matching algo-
rithm. Packets are added to a hash map and removed once
a match is found. However, traces may be highly skewed
such that, in the worst case, all events from a trace are read
before the other. This has the effect of keeping all packets in
memory. Old unmatched packets cannot be removed
because a match may be found later, and it increases the
memory consumption for the processing. This problem
does not occur if the traces are synchronized because
matches would be found in a continuous manner and
removed from the map.

To resolve this bootstrap problem, we take advantage of
the fact that traces are started almost at the same time. The
procedure starts by shifting traces to the origin of the refer-
ence trace by applying the timestamp transform

fðtÞ ¼ t� ðts � t0Þ;

where ts is the start time of the trace and t0 is the start
time of the reference trace. Then, we perform a coarse
synchronization using the convex hull algorithm on traces
aligned at the origin. The coarse synchronization is
stopped when the graph is connected with timestamp
transform of precision greater than 1 percent. This condi-
tion is evaluated efficiently by using the weighted quick-
union find [26]. When the precision threshold is reached,
then a link between the two hosts is added. The coarse
synchronization ends if the number of partitions equals
one. Finally, the normal synchronization procedure can be
performed.

In the coarse synchronization stage, memory usage is
reduced by removing packets still unmatched after a long
delay. These packets do not contribute to increase the preci-
sion of the synchronization and are discarded by the convex
hull algorithm. There is no upper bound to the expiration
delay, but the memory reduction is greater if the delay is
smaller. The expiration delay of unmatched packets must
be high enough to keep accurate packets. The minimal expi-
ration delay is a function of the network transmission delay
plus the delay to start all traces. The network delays can be
estimated by the upper bound of the confidence interval at
a given confidence level, and the actual delay to start all
traces can be measured.

We evaluated the effect of the two-step synchronization
with packet expiration using a trace of a three-tier web
application. The trace size is 126 MB. For this experiment,
the two-step synchronization peak memory usage was 319
times lower than performing the synchronization in one
pass, while achieving the same precision. This drastic mem-
ory usage reduction is at the expense of reading twice a
small proportion of the trace, which increases slightly the
processing time (mean difference in change, 16.8 percent [95
percent CI, 14.5 to 19.1 percent]; t(10) ¼ 14.1, p< 0.01).

The other enhancement is related to the computation of
the transform. The transform slope is typically close to one
because all timestamps are in nanosecond (the TSC scaling
is already performed by the operating system). The

timestamp in nanosecond from the epoch is in the order of

1018. When multiplying these two numbers using double
precision floating point arithmetic, the rounding produces
non-monotonic timestamps. For this reason, an expensive
128-bit arithmetic is used for all events, specifically Java
BigDecimal.

We designed a fast timestamp transform using integer
arithmetic that guarantees monotonic time without over-
flow. The details are shown in Algorithm 3. It is based on
the following equivalent rewriting of the linear function

fðtÞ ¼ mcðt� t0Þ
c

þ ðmt0 þ bÞ;

where the first term is the dynamic part of the timestamp,
and the second term is constant over a period of time.
The floating point slope is scaled by c ¼ 230 to capture the
nanosecond precision and then converted to an integer.
The effect of the factorization is to reduce the width of
the timestamp to the 32-bit range. The multiplication
result of the scaled slope and time difference fits into
standard 64-bit registers. The division itself is imple-
mented using bit shift for efficiency. Overflow is avoided

by recomputing the constant factor mt0 if t� t0 > 230

using large decimal, but it occurs only once per second of
elapsed time in the trace. As for the offset b, the decimal
part is simply dropped because the number is already in
the nanosecond range, which is the highest precision of
timestamps in the analysis.

Algorithm 3. Fast Timestamp Transform

Input: slopem, offset b, timestamp t
Output: transformed timestamp tx
1: t0  0 " initialization
2: c ð1� 30Þ
3: cst 0
4: mint  ðintÞðm� cÞ
5: bint  ðintÞb
6: function FAST_TRANSFORM t
7: if absðt� t0Þ > c then " Rescale
8: cst t�mþ bint
9: t0  t
10: end if
11: ttmp  ðmint � absðts� t0Þ 	 30 " Transform
12: if ts < start then " Rectify sign
13: ttmp  �ttmp

14: end if
15: return ttmp þ cst
16: end function

We ran a micro-benchmark that computes 225 consecu-
tive timestamps with 200 ns increments, a delay simulating
the highest event frequency. Using the same machine as the
previous test, the baseline transform function took 10:1 s to
complete, compared to 65ms for the fast transform, repre-
senting an average speed-up of 155 times. We performed a
benchmark to evaluate the overall effect of the fast time-
stamp transform on trace reading. Using the same trace as
above, the fast transform reduces trace reading time signifi-
cantly (mean difference in change,�20.8 percent [95 percent
CI, �16.4 to �25.3 percent]; t(10) ¼ 9.2, p< 0.01).
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4 FUTURE WORK

We showed that, in order to reduce the tracing overhead of
the analysis, optimizing the selection of interrupt events to
be traced would yield the greater improvements. Entry and
exit from interrupts are recorded to know if a given event
occurs from interrupt and its vector. Tracing interrupts
could be replaced by a per-event context carrying this infor-
mation. It would reduce the number of events generated,
but on the other hand some event sizes would increase
slightly. Further study is required to determine the net
impact of such optimization.

Concerning the analysis, the current approach has lim-
ited memory scalability. The graph size is proportional to
the number of state changing events. Working in constant
memory is required to handle traces larger than available
memory. One solution would consist in computing a tree of
blocking intervals incrementally in a bottom-up manner,
and deleting unused vertices of the graph once a blocking is
resolved. This method could work because a future event
does not invalidate past computations.

During our experiments, we evaluated the effect of page
cache conditions on the analysis time for traces stored on SSD.
A cache cold run was only 2 percent slower than when the
trace is in the page cache. Because the process is CPU bound,
parallel processing of the tracemay speed-up the analysis.

Another area for improvement concerns the ability to use
the active path and relate it to the source code. The active
path could be annotated using user-space tracing, call stack
sampling and performance counters. Then, the developer
would be able to relate the source code to the underlying
system-level execution.

5 RELATED WORK

User-space and domain dependent instrumentation was
proposed to record request flow and thread interactions in a
distributed system. The techniques differ in the instrumen-
tation method and semantics.

In [10], the critical path of a distributed processing sys-
tem is computed by propagating the CPU usage along the
communication edges between processes. The path using
the most CPU time limits the completion time. This tech-
nique works for CPU bound processing but does not
account for the I/O wait time affecting the completion time.

Panappticon [4] combines user-space and kernel instru-
mentation to monitor the responsiveness of UI on Android.
The execution model recovers asynchronous processing
and I/O activity correctly. Its scope is limited to the client-
side processing.

The tool tcpeval computes the critical path of TCP
transactions [14]. TCP packets between two hosts are
recorded. The relation between sent and received packets is
established to build a packet dependence graph. The critical
path is computed by traversing the graph backward from
the last node to the root. The elapsed delay can be accounted
to the server, the client or the network. The method is intrin-
sically limited to one communication flow between two
hosts. The synchronization method used is NTP and packet
inversion may occur in practice. The actual communicating
tasks cannot be identified solely using a network trace. The
internal processing of endpoints is not available, such that

the elapsed time cannot be characterized between CPU,
timer, I/O and processing in subtasks.

Request tagging [5], [6] consists in assigning a unique
identifier to incoming requests, in order to identify process-
ing related to it. The instrumentation targets server-side
frameworks and is thus transparent to applications using
them. The request flow can be augmented with system state.
The analysis does not extend to the client.

MPE [7] is an interposition library that can trace calls to
MPI. The Jumpshot interactive viewer uses the trace to dis-
play thread states and communications. The user can see
the dynamics of thread execution according to time. The
scope of the analysis is tightly coupled to the MPI domain.

BorderPatrol [11] uses library overloading to intercept
calls to the C standard library functions. This instrumentation
method is ineffective for statically linked programs. A more
robust approach, used in vPath [12], intercepts system calls at
the hypervisor level, but requires theworkload to run in a vir-
tual machine. Kernel tracing [13] has the same benefit with-
out the virtual machine constraint. All methods based on the
system call interface make assumptions regarding the under-
lying communication that do not hold for the general case.

6 CONCLUSION

Kernel tracing is a system-wide method to understand the
actual latency of programs, independently of their runtime
environment. We proposed a method to visualize the execu-
tion of distributed systems using scheduling, network and
interrupt events. Thread blocking indicates a change in the
control flow and the wake-up source identifies the wait
cause. We demonstrated that this principle of operation can
be applied on traces synchronized using the convex hull
algorithm, and that the analysis produces insightful results
for a broad range of distributed systems, with a moderate
impact on the system.
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" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.
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