
Titre:
Title: Hardware-assisted instruction profiling and latency detection

Auteurs:
Authors: Suchakrapani Datt Sharma et Michel R. Dagenais

Date: 2016

Type: Article de revue / Journal article

Référence:
Citation:

Sharma, S. D. & Dagenais, M. R. (2016). Hardware-assisted instruction profiling
and latency detection. The Journal of Engineering, 2016(10), p. 367-376.
doi:10.1049/joe.2016.0127

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/3068/

Version: Version officielle de l'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: CC BY

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title: The Journal of Engineering

Maison d’édition:
Publisher: IET

URL officiel:
Official URL: https://doi.org/10.1049/joe.2016.0127

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213622005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1049/joe.2016.0127
https://publications.polymtl.ca/3068/
https://doi.org/10.1049/joe.2016.0127
http://publications.polymtl.ca/

Hardware-assisted instruction profiling and latency detection
Suchakrapani Datt Sharma, Michel Dagenais

Department of Computer and Software Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada
E-mail: suchakrapani.sharma@polymtl.ca

Published in The Journal of Engineering; Received on 27th April 2016; Accepted on 24th August 2016

Abstract: Debugging and profiling tools can alter the execution flow or timing, can induce heisenbugs and are thus marginally useful for
debugging time critical systems. Software tracing, however advanced it may be, depends on consuming precious computing resources. In
this study, the authors analyse state-of-the-art hardware-tracing support, as provided in modern Intel processors and propose a new technique
which uses the processor hardware for tracing without any code instrumentation or tracepoints. They demonstrate the utility of their approach
with contributions in three areas - syscall latency profiling, instruction profiling and software-tracer impact detection. They present improve-
ments in performance and the granularity of data gathered with hardware-assisted approach, as compared with traditional software only tracing
and profiling. The performance impact on the target system –measured as time overhead – is on average 2–3%, with the worst case being 22%.
They also define a way to measure and quantify the time resolution provided by hardware tracers for trace events, and observe the effect of fine-
tuning hardware tracing for optimum utilisation. As compared with other in-kernel tracers, they observed that hardware-based tracing has a
much reduced overhead, while achieving greater precision. Moreover, the other tracing techniques are ineffective in certain tracing scenarios.
1 Introduction
Modern systems are becoming increasingly complex to debug and
diagnose. One of the main factors is the increasing complexity and
real-time constraints which limit the use of traditional debugging
approaches in such scenarios. Shorter task deadlines mean that
the faithful reproduction of code execution can be very challenging.
It has been estimated that developers spend around 50–75% of their
time debugging applications at a considerable monetary cost [1]. In
many scenarios, heisenbugs [2] become nearly impossible to detect.
Long-running systems can have bugs that display actual conse-
quences much later than expected, either due to tasks being sched-
uled out or hardware interrupts causing delays. Important
parameters that need to be analysed while doing a root cause ana-
lysis for a problem include the identification of costly instructions
during execution, the detection of failures in embedded communi-
cation protocols and the analysis of instruction profiles that give an
accurate representation of which instructions consume the most
central processing unit (CPU) time. Such latent issues can only
be recorded faithfully using tracing techniques. Along with accurate
profiling, tracing provides a much needed respite to developers for
performance analysis in such scenarios.
We focus in this paper on two important common issues in

current systems: the efficient detection/tracking of hardware
latency and the accurate profiling of syscalls and instructions,
with an ability to detect programme control flow more accurately
than with current software approaches. We discuss our new analysis
approach, which utilises conditional hardware tracing in conjunc-
tion with traditional software tracing to accurately profile latency
causes. The trace can be decoded offline to retrieve the accurate
control flow, data even at instruction granularity, without any exter-
nal influence on the control flow. As software tracing can induce
changes in the control flow, with our system we can further
detect the cause of latency induced by the software tracers them-
selves, on the software under observation, to nanosecond range
accuracy.
Pure software profiling and tracing tools consume the already

constrained and much needed resources on production systems.
Over the years, hardware tracing has emerged as a powerful tech-
nique for tracing, as it gives a detailed and accurate view of the
system with almost zero overhead. The IEEE Nexus 5001 standard
[3] defines four classes of tracing and debugging approaches for
embedded systems. Class 1 deals with basic debugging operations
J Eng, 2016, Vol. 2016, Iss. 10, pp. 367–376
doi: 10.1049/joe.2016.0127

This is an open
such as setting breakpoints, stepping instructions and analysing
registers – often directly on target devices connected to hosts
through a joint test action group (JTAG) port. In addition to this,
Class 2 supports capturing and transporting programme control-
flow traces externally to host devices. Class 3 adds data-flow
traces support, in addition to control-flow tracing and Class 4
allows emulated memory and I/O access through external ports.
Hardware-tracing modules for recent microprocessors (Class 2–
Class 4) can either utilise (i) on-chip buffers for tracing, recording
trace data from individual CPUs on the system-on-chip, and send it
for internal processing or storage or (ii) off-chip trace buffers that
allow trace data to flow from on-chip internal buffers to external
devices, with specialised industry standard JTAG ports and to de-
velopment host machines, through high-performance hardware-
trace probes [4, 5]. These hardware-trace probes contain dedicated
trace buffers (as large as 4 GB) and can handle high-speed trace
data. As we observed in our performance tests (Section 4), the
former approach can incur overhead in the range of 0.83–22.9%,
mainly due to strain on memory accesses. We noted that trace
streams can generate data in the range of hundreds to thousands
of MB/s (depending on trace filters, trace packets and packet gener-
ation frequency). Thus, there is a trade-off in choosing either an ex-
ternal analysis device or on-chip buffer recording. The former gives
a better control (less dependency on external hardware which is
crucial for on-site debugging), but incurs a small overhead for the
memory subsystems on the target device. The latter provides a
very low overhead system, but requires external devices and
special software (often proprietary) on development hosts. The gen-
erated trace data is compressed for later decoding with specialised
debug/trace tools [6, 7] that run on host machines, as illustrated
in Fig. 1.

Device memory is limited, thus there are multiple ways to save
tracing data using either of the two approaches discussed above.
Therefore, to achieve maximum performance, recent research
deals with compressing the trace output during the decoding
phase to save transfer bandwidth [1]. Earlier, part of the focus
was on the unification of the traces, which is beneficial for Class
3 devices [8]. This provides a very detailed picture of the execution
at almost no overhead on the target system.

In this paper, we mainly focus on on-chip local recorded traces,
pertaining to Class 2 devices, owing to their low external hardware
dependency and high availability in commonly used architectures
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

Fig. 1 Hardware-tracing overview
such as Intel x86-64. With our proposed approach, using hardware-
trace assistance, we were able to trace and profile short sections of
code. This would ensure that precious input/output (I/O) bandwidth
is saved while maintaining sufficient granularity. We used Intel’s
new Processor Trace (PT) features and were able to gather accurate
instruction profiling data such as syscall latency and instruction
counts for interesting events such as abnormal latency. In profile
mode, we can also selectively isolate sections of code in the oper-
ating system, for instance idling the CPU, taking spinlocks or exe-
cuting floating point unit (FPU) bound instructions, to further
fine-tune the systems under study.

The remainder of this paper is organised as follows. Section 2
gives a general overview of programme-flow tracing, its require-
ments and limitations of the current sampling systems to handle
these. It also introduces the concept of hardware tracing to over-
come such limitations. We discuss state-of-the-art techniques
used in software tracing and finally concentrate on our research
scope. In Section 3, we introduce our hardware and hardware-
assisted software-tracing-based architecture. We then elaborate
our three contributions that introduce an instruction and time-
delta profiling technique to identify interrupt latencies, profiling
syscall latency in short sections of code and identify causes of
latency in software tracers. These contributions utilise our
hardware-assisted approach. In Section 4, as our final contribution,
we start with a detailed experiment, measuring overhead and trace
size, for Intel’s PT hardware-tracing infrastructure as it forms the
core of our hardware-based approach. We have also proposed a
new metric to define the granularity of the temporal and spatial
resolution in a trace. We then show how the hardware-based trace
profiler can help visualise anomalies through histograms.
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
2 Background

In an ideal environment, developers would want to know as much
as possible about the flow of their programmes. There are three im-
portant artefacts that can be gathered during a programme execution
– flow of instructions during programme, their classification and de-
duction of the programme-flow with timing information. Static ana-
lysis of binaries, to understand how the programme runs, allows the
developers to visually analyse how the compiler generates instruc-
tions, estimate how the instructions may execute, and can be used
further for code coverage [9, 10]. Such information is also vital
for debuggers to generate and aid in the breakpoint debugging ap-
proach. Recently, the focus on pure static code analysis tools has
been mostly in the security domain, for analysing malicious or
injected code in binaries [11, 12] or optimising compilers based
on the analysis of generated code [13]. However, the actual execu-
tion profiles can differ from what static tools can anticipate, due to
the complexities of newer computer architectures in terms of pipe-
lines, instruction prefetching, branch prediction and unforeseen
run-time behaviour such as hardware interrupts. Therefore, to
understand the effect of individual instructions or function blocks,
the instructions executed can be profiled at run-time. The use of
counting instructions for blocks of code, at programme execution
time, has been proposed and explored in-depth before [14].
Therefore, the instruction sequence and profile can be recorded
and then replayed later on. However, some of these earlier
approaches dealt with inserting instrumentation code, to profile
instructions and other interesting events. Sampling-based techni-
ques, developed earlier such as digital continuous profiling infra-
structure [15, 16], have also been discussed extensively before,
where authors demonstrated the use of hardware counters provided
by the processor for profiling instructions. Merten et al. [17] have
earlier proposed the use of a branch trace buffer and their hardware
table extension for profiling branches. Custom hardware-based path
profiling has been discussed by Vaswani et al. [18], where they
observe that low overhead with hardware-assisted path profiling
can be achieved. Recent advances, especially in the Linux kernel,
discuss how profiling tools such as Perf can be used to generate exe-
cution profiles, based on data collected from special hardware coun-
ters, hardware blocks that record branches or pure software
controlled sampling [19, 20].
2.1 Programme-flow tracing

Recording instruction flow or branches in a programme can provide
information about how a programme actually executes in compari-
son with how the expected execution. The comparison of an anom-
alous programme-flow trace with that of a previous one can let the
developer know what was the effect of changes on the system. It can
also be used to track regressions during new feature additions. At
lower levels such as instructions flow, bugs that occur in long-
running real-time systems can now be detected with more confi-
dence, as the complete execution details are available. With
recent hardware support from modern processors, this has
become easier than ever. We discuss details about such hardware
support further in Section 2.2. Larus et al. discussed quite early
about using code instrumentation to inject tracing code in function
blocks or control-flow edges to track instructions or deduce the fre-
quency of their execution [14, 21]. They observed overhead of 0.2–
5%, without taking into consideration the effect of the extra over-
head of disk writes (which they observed as 24–57% in those
days). Other more powerful tools, which effectively perform execu-
tion profiling or control-flow tracing, can be built using similar
binary modifying frameworks such as Valgrind [22]. Even
though this framework is more data-flow tracing oriented [23],
some very insightful control-flow tools have been developed such
as Callgrind and Kcachegrind [24]. Programme-flow tracing can
either encompass a very low-level all-instruction trace generation
Commons J Eng, 2016, Vol. 2016, Iss. 10, pp. 367–376
doi: 10.1049/joe.2016.0127

Fig. 2 Odd-even test generates corresponding taken–not-taken packets
scheme or a more lightweight branch-only control-flow trace
scheme.
Instruction tracing: Tracing each and every instruction to deduce
the programme-flow can be quite expensive if instrumentation is
required. Hence, architectures such as advanced RISC machines
(ARM) and PowerPC provide hardware support for such mechan-
isms in the form of NSTrace (PowerPC), EmbeddedICE, embedded
trace macrocell (ETM), programme trace macrocell (now part of
ARM CoreSight) and microprocessor without interlocked pipeline
stages PDTrace [25, 26]. The basic idea is to snoop the bus activity
at a very low-level, record such data and then reconstruct the flow
offline from the bus data. External hardware is usually connected as
bus data sink and special software can then use architecture level
simulators to decode the data. The benefit of a complete instruction
flow trace is that there is highly detailed information about each and
every instruction for accurate profiles, in-depth view of memory
access patterns and, with the support of time-stamped data, a very
accurate overall tracer as well. However, the amount of data gener-
ated is too high if external devices are not used to sink the data.
Indeed, memory buses are usually kept busy with their normal
load, and an attempt to store the tracing data locally incurs bus sat-
uration and additional overhead. An approach to reduce such band-
width and yet keep at least the programme-flow information correct
is to use branch-only traces.
Branch tracing: The issue of memory-related overhead for hard-
ware programme/data-flow traces has been observed earlier as
well [14, 21]. Even though hardware can generate per-instruction
trace data at zero execution overhead, such an additional data-flow
may impact the memory subsystem. Hence, just choosing the
instructions that cause a programme to change its flow greatly
reduces the impact. Such control-flow instructions (such as direct/
indirect jumps, calls, exceptions etc.) can indeed be enough to re-
construct the programme-flow. Dedicated hardware blocks in the
Intel architecture such as last branch record (LBR), branch trace
store (BTS) [27] and more recently Intel PT chooses to only
record branches in the currently executing code on the CPU
cores. By following the branches, it is quite easy to generate the in-
struction flow with the help of additional offline binary disassem-
bly. For example, for each branch instruction encountered in the
flow, a record for the branch taken/not-taken and its target can be
recorded externally. This is then matched with the debug informa-
tion from the binary to reconstruct how the programmewas flowing.
We detail and discuss the branch-tracing approach, as well as in-
struction tracing, in Section 2.2, where we show a state-of-the-art
branch tracing approach using Intel PT as an example.

2.2 Hardware tracing

As discussed previously, the complete instruction and branch
tracing is supported by dedicated hardware in modern multi-core
processors. They provide external hardware recorders and tracing
devices access to the processor data and address buses. ARM’s
early implementation of EmbeddedICE (in-circuit emulator) was
an example of this approach. Eventually, processor chip vendors
formally introduced dedicated and more advanced hardware-tracing
modules such as CoreSight, Intel BTS and Intel PT. In a typical
setup such as shown in Fig. 1, trace data generated from the trace
hardware on the chip can be funnelled to either the internal buffer
for storage or observed externally through an external hardware
buffer/interface to the host development environment, for more
visibility. In both cases, the underlying techniques are the same,
but performance varies according to the need of the user and the
hardware implementation itself.

2.2.1 Tracing primitives: Since an important part of our research
deals with programme-flow tracing, we discuss how hardware-
tracing blocks can be used to implement it. The basic idea is to
record the control-flow instructions along with some timing
J Eng, 2016, Vol. 2016, Iss. 10, pp. 367–376
doi: 10.1049/joe.2016.0127

This is an open
information (if needed) during the execution of the programme.
Different architectures have different approaches for deciding on
the optimum buffer size, trace compression techniques and addition-
al meta-data such as timing information, target and source instruc-
tion pointers (IPs) etc. We explain such techniques along with an
overview of the tracing process in this section. A programme-flow
trace can be broadly broken down into following elements.
Trace configuration: Most of the hardware-trace modules can be
fine-tuned by writing data to certain control registers such as
model specific registers (MSRs) in Intel or the CoreSight ETM/
ETB configuration registers for ARM. For example, writing specific
bits in MSRs can control how big a trace buffer will be or how fine-
grained or accurate the timing data will be generated. An optimum
configuration leads to better trace output – the effect of which is dis-
cussed later in this paper.
Trace packets: A hardware-trace-enabled execution generates all
the hardware-trace data in a compressed form for eventual decod-
ing. This can consist of different distinguishable elements called
trace packets. For example, in the context of Intel PT, these
hardware-trace packets can contain information such as paging
(changed CR3 value), time-stamps, core-to-bus clock ratio and
taken–not-taken (tracking conditional branch directions), record
target IP of branch, exceptions, interrupts, source IP for asynchron-
ous events (exceptions, interrupts). The amount or type of packets
enabled and their frequency of occurrence directly affect the trace
size. In the control-flow trace context, the most important packets
that are typically common to different architectural specifications
of trace hardware are:

Taken–not-taken: For each conditional direct branch instruction
encountered (such as jump on zero and jump on equal), the trace
hardware can decode if that specific branch was taken or not.
This is illustrated with Intel PT’s trace output as an example in
Fig. 2. We can observe that Intel PT efficiently utilises 1 bit per
branch instruction to encode it as a taken or not-taken branch.

The earlier implementations such as Intel BTS used 24 bits per
branch, which caused an overhead between 20 and 100% as the
CPU enters the special debug mode, causing a 20–30 times slow-
down [28, 29]:

Target IP: Indirect unconditional branches (such as register indir-
ect jumps) depend on register or memory contents; they require
more bits to encode the destination IP of the indirect branch. This
can also be the case when the processor encounters interrupts,
exceptions or far branches. Some implementations such as Intel
PT provide other packets for updating control flow such as flow
update packet, which provide source IP for asynchronous events
such as interrupts and exceptions. In other scenarios, the binary ana-
lysis can usually be used to deduce the source IP.

Timing: Apart from deducing the programme-flow, packets can
be timed as well. However, time-stamping each and every instruc-
tion can be expensive in terms of trace size as well as extra overhead
incurred. ARM CoreSight provides support for accurate time-stamp
per-instruction. However, the use-case is mainly aimed at usage of
an external high-speed buffer and interface hardware through a
JTAG port. For on-device tracing such as Intel PT, the packet
size can be kept small by controlling the frequency of time-stamps
being generated and the type of time-stamps. For example, a timing
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)

Fig. 3 Architecture of our proposed hardware-assisted trace/profile frame-
work. Simple PT [32] is used for trace hardware control
packet can either be the lower 7 bytes of the time-stamp counter
(TSC) value as an infrequently recorded TSC packet or can be
just a more frequent 8 bit mini-time-stamp counter (MTC) packet
occurring in between two TSC packets. MTC packets record incre-
mental updates of CoreCrystalClockValue and can be used to in-
crease the timing precision with fewer bits utilised. Trace timing
in some implementations can further be improved by a
cycle-accurate mode, in which the hardware keeps a record of
cycle counts between normal packets.

In the next section, we discuss how we can leverage hardware-
tracing techniques and utilise it for efficient and more accurate pro-
filing and tracing.

3 Trace methodology

To get useful instruction profiling and tracing data for use-cases
such as accurate detection of interrupt latency, we propose a frame-
work that utilises an hardware-assisted software-tracing approach.
The major focus of our work is on post-mortem analysis of produc-
tion systems. Hence, the underlying technologies used aim at
recording raw trace or programme-flow data at run-time, and even-
tually perform an offline merge and analysis, to get in-depth infor-
mation about abnormal latency causes or generate instruction
execution profiles. The data generated in hardware tracing can
reach a range of hundreds of megabytes per second. Various
approaches have been taken to reduce this overhead. Apart from
careful configuration of the trace hardware, various methods such
as varying the length of taken-not-taken (TNT) packets (short/
long), IP compression and indirect transfer return compression
[30] are employed to control precisely the trace size, with the aim
of reducing memory bus bandwidth usage. Previous work often
focused on trace compression and even better development of
tracing blocks itself [1]. In contrast, we chose to leverage the
latest state-of-the-art hardware such as Intel PT and carefully
isolate interesting sections of the executed code to generate short
hardware traces. These short traces can be eventually tied to the cor-
responding software-trace data to generate a more in-depth view of
the system at low cost. This can also be used to generate instruction
execution profiles in those code sections for detecting and pinpoint-
ing anomalous sections of the programme, right down to the exe-
cuted instruction. This gives a unique and better approach as
compared with other techniques of sample-based profiling (such
as Perf) or simulation/translation-based profiling (such as
Valgrind) mainly due to the fact that there is no information loss,
as the inferences are based on the real instruction flow in a pro-
gramme, and the overhead of simulated programme execution is
completely removed. Choosing only specific sections of code, to
trace and profile with hardware, also means that we do not
require external trace hardware and can rely on internal trace
buffers for post-mortem analysis. In this section, we first show
the design of our framework itself and demonstrate how we can
use Intel PT hardware-assisted software tracing. We also explain
our three main contributions, detailing how we could profile inter-
rupts/syscall latency and evaluate the impact of software tracers
themselves. We start with some background on Intel PT, and then
explain the architecture of our technique.

3.1 Intel PT

Intel’s MSR-based LBR and the BTS approach for branch tracing
have been widely explored before [28, 29]. Eventually, the benefits
of the hardware-tracing approach advanced the branch-tracing
framework further, in the form of Intel PT. Branch trace data with
PT can now be efficiently encoded and eventually decoded
offline. The basic idea, as shown in Fig. 2, is to save the branching
information during programme execution, encode and save it. Later
on, the trace data along with run-time information such a process
maps, debug-info and binary disassembly, we can fill in the gaps
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
between the branches and form a complete execution flow of the ap-
plication. During the decoding of the compressed recorded branch
data, whenever a conditional or indirect branch is encountered,
the recorded trace is browsed through to find the branch target.
This can be merged with debug symbols and static analysis of the
binary code to get the intermediary instructions executed between
the branches. Therefore, with Intel PT’s approach, we do not
need to exclusively store each and every instruction executed, but
just track branches – allowing on-device debugging and less
complex implementation of hardware and debugging software.
Apart from that, with the simple MSR-based configuration of the
hardware, we have the ability to set hardware trace start and stop
filters based on an IP range to allow a more concise and efficient
record of trace at run-time. The decoder has been open sourced
by Intel for a rapid adoption in other tools such as Perf [31]. We
incorporated PT in our framework, owing to its low overhead and
versatility as presented later in Section 4.2 where we discuss its per-
formance and overhead.

3.2 Architecture

We developed a framework based on the PT library, for decoding
the hardware trace, and a reference PT driver implementation pro-
vided by Intel to enable, disable and fine-tune trace generation
[32, 33]. An overview of our hardware-assisted trace/profile
system is shown in Fig. 3. The control block is a collection of
scripts to control the PT hardware in CPUs through the
simple-PT module. The control scripts can be used for configuring
the PT hardware for filtering, time-stamp resolution and frequency
control. It can enable/disable traces manually for a given time
period. This is achieved by setting the TRACE_EN bit in the
MSR_IA32_RTIT_CTL control register that activates or
Commons J Eng, 2016, Vol. 2016, Iss. 10, pp. 367–376
doi: 10.1049/joe.2016.0127

Fig. 4 Hardware-delta profiling algorithm generates time-delta and in-
struction count-delta histogram from encoded trace stream
deactivates the trace generation. We use the control scripts for gen-
erating raw instruction and latency profiling data.
Any PT data generated is sent to a ring-buffer, the content of

which is dumped to the disk for offline analysis. Along with the
trace data, run-time information such as process maps, CPU infor-
mation and features are saved as sideband data. This is essential for
trace reconstruction. The trace decoder reconstructs the control flow
based on run-time information, debug information from binary and
per-CPU PT data. The decoding process involves reading the PT
binary byte by byte. Much such as assembly opcodes, packets are
identified by an arrangement of bytes. We go through individual in-
coming bytes from the trace buffer to identify the packet and its
contents. This is merged with the dissembled binary information
to give the packets an execution context. This data is converted
to our intermediate format that is consumed by the instruction pro-
filer and latency profiler modules which can generate visualisations.
Our intermediate format consists of a stream of instructions with
markers identified by function names. This is converted to visual-
isation data by transforming the markers to a callstack with instruc-
tion or time-delta. More about this is explained in subsequent
sections. We now elaborate on our three contributions that cover in-
struction/syscall latency profiling and the performance impact of
software-tracing systems on modern production systems.

3.3 Delta profiling

As seen in Fig. 3, the raw PT data from the processor can be recon-
structed to generate a programme control flow. It is, however, im-
portant to analyse this huge information in a meaningful manner.
Therefore, we present an algorithm to sieve through the data and
generate instruction execution profiles based on patterns of occur-
rence of instructions in the control flow.
These profiles can be used to represent the histograms based on a

time-delta or an instruction count delta. This can work for single
instructions to observe histograms during a simple execution, as
well by just counting the occurrence of a set of instructions. This
approach is significantly different from sample-based profiling, as
it is based on true instruction flow and can pinpoint errors at finer
granularity in short executions. As interrupts are quite significant
in embedded production systems, we choose profile instructions
that are responsible for disabling and enabling interrupts in the
Linux kernel. Thus, we generate two histograms that represent time-
delta and instruction count delta of intervals between interrupt en-
abling and disabling instructions. We observed that interrupt disab-
ling and enabling in Linux on an x86 machine is not just dependent
on two instructions, sti and cli, but also on a pattern of instruc-
tions that use pushf and popf to push and pop the entire
EFLAGS register, thus clearing or setting the interrupt flag in the
process. Thus, to effectively profile the interrupt cycle, we identi-
fied the instruction patterns during decoding and grouped and iden-
tified them as superSTI and superCLI instructions. For
incoming coded hardware-trace streams, we devised an algorithm
as shown in listing Algorithm 1 (see Fig. 4) that is able to generate
these profiles. For example, when we apply this during the trace
decode time, we can obtain the time taken between two consecutive
interrupts enable and disable in the execution or the number of
instructions executed between them. These target super-instructions
pairs (St), which are actually a pseudo-marker in the instruction
stream based on pattern matching, can be given as input to the
profiler. On the basis of the mode, it can either begin instruction
counting or time-stamp generation and stores it in a database. We
then iterate over the database and generate the required
visualisations.
We can extend this technique of identifying patterns in the code

to record more interesting scenarios. For example, in the Linux
kernel, CPU idling through the cpu_relax() function generates
a series of repeating nop instructions. Similarly, the crypto subsys-
tem in the Linux kernel aggressively uses the less-recommended
J Eng, 2016, Vol. 2016, Iss. 10, pp. 367–376
doi: 10.1049/joe.2016.0127

This is an open
FPU. We were able to successfully identify such patterns in the
system based purely on PT, without any active software tracer.

We present an implementation of the algorithm in Section 4.3
where we elaborate more on our delta profiling experiment.
Decoded traces from Intel PT were chosen to demonstrate utility
of this approach.
3.4 Syscall latency profiling

Syscalls affect the time accuracy of systems, especially in critical
sections, as they form a major chunk of code executed from user-
space. For example, filesystem syscalls such as read(), open
(), close() etc. constitute 28.75% of code in critical sections
of Firefox [34]. Profiling syscall counts for a given execution is
easy and can be performed with simple profilers such as Perf or
even through static or dynamic code analysis techniques based on
ptrace(). However, to understand, the extra time incurred in
the syscalls, we can get help from software tracers. As the software
tracers themselves affect the execution of syscalls, an accurate
understanding can only be achieved by an external observer
which does not affect the execution flow. In such scenarios, hard-
ware tracing is a perfect candidate for such an observer. We used
hardware traces and devised a way to visualise syscall stacks in
our proposed technique, after decoding, to compare them between
multiple executions. This gave us a deep and accurate understand-
ing of any extra time incurred in syscalls, right down to individual
instructions. We devised a way such that, post-decoding, the trace
data was converted to our visualisation path format that prepares
a raw callstack. See Fig. 5.
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)

Fig. 5 Sample trace sequence converted to a section of visualisation path
format

Fig. 6 Effect of an external software tracer on the mmap() syscall, obtained
from a near zero overhead hardware trace, is visible in a and b. The rings
represent the callstack and are drawn based on instruction count per call
a Extra layers in callstack as it took a longer syscall path
The function markers in the decoded data are converted to indi-
vidual execution paths in the hierarchy. Each node in the path repre-
sents a function. To each path, we append the instructions that
executed for traversing the path up to its tail. Each line in the
new data contains a single complete path in the callstack. As an
example, Fig. 6a illustrates the effect of an external tracer
(LTTng) on the mmap() syscall with the help of a callstack. The
callstack shown is for a short section of code from the library
mmap call to the start of the syscall in the kernel. We see in this
figure that the highlighted call-path reached the lttng_event_-
write() function from the second ring of the
entry_SYSCALL_64() function in the kernel. The layers repre-
sent calls in a callstack, with the call depth going from the inner-
most to the outermost layers. Here, the path to the
lttng_event_write() function took 9.3% of all instructions
in the recorded callstack. As the code sections are short, and the data
represented is hierarchical in nature, it is easy to visualise them on
sunburst call-graphs [35, 36] for a clear visual comparison.

We can observe such a short callstack from another execution, in
Fig. 6b, where LTTng tracing is disabled, and we note the absence
of extra calls which were added as layers and peaks in Fig. 6a. The
metrics in the sunburst graphs are calculated based on the number of
instructions executed along a particular call-path based on the visu-
alisation path format. The visualisation is interactive and its imple-
mentation is based on the D3 javascript library.
b Shallower callstack as it took a shorter syscall path
3.5 Software-tracer impact

With our hardware-assisted profile, we can observe how much extra
time and instructions any external software tracer added to the
normal execution of the syscall. This can also be used as a basis
for analysing the overhead of known tracers on the test system
itself. For example, we observed that the extra time taken in the
syscall is due to the different paths the syscall has when tracing is
enabled, as compared with when tracing is disabled. A lot of
code in the kernel is untraceable such as C macros and blacklisted
functions built with the __attribute__((no_instru-
ment_function)) attribute that do not allow tracers to trace
them. This is usually a mandatory precaution taken in the kernel
to avoid tracers going in sections of code that would cause dead-
locks. However, our PT-based approach allowed us to get much
finer details than other pure software tracers, as it acts as an external
observer and can even record calls to those functions. We moni-
tored how LTTng changes the flow of seven consecutive syscalls
in a short section of traced code. As an example, for mmap()
calls, we observed that with software tracing and recording
enabled, a total of 917 additional instructions were added to the
normal flow of the syscall, which took an extra 173 ns. For short
tracing sections, an overhead of 579 ns was observed on average
for open() syscalls, with 1366 extra instructions. We observed
that the overhead also varies according to the trace payload for sys-
calls, as LTTng specific functions in the kernel modules copy and
commit the data to trace events. Therefore, with the hardware-trace
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
assisted tool, we can get instruction and time accurate overhead of
the tracer’s impact on the system itself. Such detailed information
about a software tracer’s impact is not possible to obtain by conven-
tional software tracers themselves. Hardware-assisted profiles allow
to study the flow through those unreachable sections of code (as-
sembly, non-traceable functions in the kernel) along with a higher
granularity. We tested this with our PT-based approach. In
Section 4.2, we further compare the overhead of Linux kernel’s
Ftrace tracer with Intel PT to see the impact of hardware traces as
compared with current function tracing facility.
4 Experimentation and results

4.1 Test setup

The test machine has an Intel Skylake i5-6600K processor which
supports Intel PT and runs a patched Linux kernel version 4.4-rc4
on a Fedora 23 operating system. To get minimum jitter in our
tests, we disabled CPU auto-scaling and fixed the operating fre-
quency to 3.9 GHz. This was done to just ensure that synthetic
benchmarks were accurate and reproducible. This would not
affect the result as the ratio of core crystal clock value to TSC fre-
quency is considered during decoding time to make sure the effect
of auto-scaling is accounted for in the time calculations. The system
has 16 GB main memory and a 500 GB solid-state drive.
Commons J Eng, 2016, Vol. 2016, Iss. 10, pp. 367–376
doi: 10.1049/joe.2016.0127

4.2 PT performance analysis

The most important requirement for a performance analysis frame-
work is that it should have minimum impact on the test system
itself. Therefore, before deciding on the trace hardware for our
framework, we characterised PT’s performance. The impact of a
PT-based hardware-assisted tracer on the system has not been thor-
oughly characterised before. As it formed the basis of our other con-
tributions; therefore, as a major part of our work, we developed a
series of benchmarks to test how much overhead the tracing activity
itself causes. We measured four aspects – the execution overhead in
terms of extra time, the trace bandwidth, and the trace size and tem-
poral resolution with varying time accuracy. We also compared the
overhead of our PT-based approach with that of current default soft-
ware tracers in Linux kernel.

4.2.1 Execution overhead: Similar to such synthetic tests done for
measuring the Julia Language performance [37] against C and
Javascript, we added more indirect branch intensive tests such as
TailFact which causes multiple tail-calls for factorial computation
and Fibonacci to illustrate conditional branches. We also tested
an un-optimised and optimised Canny edge detector to check the
effect of jump optimisations in image processing tasks. As condi-
tional branches constitute most of the branch instructions, to get a
precise measurement for a conditional branch, we tested a million
runs of an empty loop (Epsilon) against a loop containing an
un-optimised conditional branch (Omega) Therefore, the TailFact
test gives us the upper limit of overhead for indirect branch instruc-
tions while the Omega test gives us the upper limit for conditional
branches.
Observations: Our test results have been summarised in Table 1.
We can see that excessive TIP packets generated due to tail-calls
from the recursive factorial algorithm cause the maximum overhead
of 22.9%, whereas the optimised random matrix multiplication
(RandMatMul) overhead is 0.83%. The optimisation in the C
version of RandMatMul is evident as it aggressively used vector
instructions (Intel AVX and SSE) from the BLAS library [38]
during a DGEMM, thus generating very few TIP or TNT packets,
as compared with the un-optimised loop-based multiplication in
Javascript, which through the V8’s JIT got translated to conditional
branches. This explains the difference, as seen in the table, where
the overhead for V8 is 11.08%. Same is the case with
RandMatStat, which also generated more TIP packets thus
pushing the overhead to 20%. To observe the TNT packet overhead,
the Omega test generated pure TNT packets. As this includes one
million extra conditional jump overhead from the test loop for
both Epsilon and Omega, we can normalise the overhead and
observe it to be 8.68%.
Table 1 Execution overhead and trace bandwidth of Intel PT under
various workloads. The TailFact and Omega tests define the two upper
limits

Benchmark Bandwidth, MBps Time overhead

C, % V8, %

TailFact 2200 22.91 –
ParseInt 1420 9.65 10.36
Fib 1315 5.86 5.80
RandMatStat 340 2.58 20.00
CannyNoOptimise 303 2.55 –
PiSum 339 2.47 6.20
CannyOptimise 294 2.34 –
Sort 497 1.05 6.06
RandMatMul 186 0.83 11.08
Omega 205 11.78(8.68) –
Epsilon 217 3.10(0.0) –

J Eng, 2016, Vol. 2016, Iss. 10, pp. 367–376
doi: 10.1049/joe.2016.0127

This is an open
4.2.2 Trace bandwidth: The direct correlation between the trace
size, packet frequency and hence the trace bandwidth is quite
evident. To quantify it, we record the trace data generated per
time unit and quantify the trace bandwidth for our
micro-benchmarks in Table 1. To calculate the bandwidth, we
record the size of raw trace data generated and the time taken for
execution of the individual benchmarks.
Observations: We see that the trace bandwidth is quite high for
workloads with high-frequency TIP packets such as TailFact.
Larger TIP packets increase the bandwidth and cause a considerable
load on the memory bus. Overall, for moderate workloads, the
median bandwidth lies between 200 and 400 MBps.

4.2.3 Trace size: Apart from the inherent character of the applica-
tions (more or less branches) that affect the trace size and timing
overhead, Intel PT provides various other mechanisms to fine-tune
the trace size. The basic premise is that the generation and fre-
quency of other packets such as timing and cycle count information
can be configured before tracing begins. To test the effect of varying
such helper packets, we ran the PiSum micro-benchmark from our
overhead experiments, which mimics a more common workload
with userspace-only hardware-trace mode. We first started with
varying the generation of synchronisation packets called PSB,
whereas the cycle-accurate mode (CYC packets) and the MTC
packets were disabled. The PSB frequency can be controlled by
varying how many bytes are to be generated between subsequent
packets. Thus, for a higher number of bytes, those packets will be
less frequent. As PSB packets are accompanied with a TSC
packet, this also means that the granularity of timing varies. The
same was repeated with MTC packets while the PSB packet gener-
ation was kept constant and the CYC mode was disabled. Similar
tests were done with CYC packets, where PSB packet generation
was kept constant and MTC packet generation was disabled.
Figs. 7–9 show the effect of varying the frequency of packets on
the generated trace data size.
Observations: We observe in Figs. 7–9 that, as expected, when the
time period (indicated by number of cycles or number of bytes in-
between) for CYC, MTC or PSB packets is increased, the trace size
decreases. However, it moves toward saturation, as opposed to a
linear decrease. The reason we observed is that, for a given trace
duration, there is a fixed number of packets that are always gener-
ated from the branches in the test application. This sets a
minimum threshold. Furthermore, in Fig. 7, the trace size did not
increase further for time periods <26 cycles, because the
maximum number of CYC packets that can be generated for our
synthetic workload was reached at 26 cycles. The trace data size
Fig. 7 Trace size and resolution while varying valid CPU cycles between
two subsequent CYC packets. Lower TRF value is better

access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)

Fig. 8 Trace size and resolution while varying valid CPU cycles between
two subsequent MTC packets. Lower TRF value is better
can however further increase for other workloads with higher fre-
quency of CYC packets, when kernel tracing is enabled. In our
tests, we found that the lower and upper bounds of trace data
size, based on lowest and highest possible frequencies of all
packets combined, are, respectively, 819 and 3829 KB.
4.2.4 Temporal resolution: In addition to the effect of different
packet frequencies on the trace data size, it is also important to
observe how much timing granularity we lose or gain. This can
help the user decide what would be the trade-off between size,
timing granularity of the trace and the tracing overhead, to better
judge the tracer’s impact on the target software. We therefore
define a temporal resolution factor (TRF). For a given known
section of code, with equidistant branches

TRF = Nf

max(P)−min(P)
× p−min(P)

[]

where

p = DIc Sort[n− 1]

2

()
× DT Sort[n− 1]

2

()
Fig. 9 Trace size and resolution while varying valid bytes of data between
two subsequent PSB packets

This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
and P is the set of all p that represents a median factor in the
observed sets. Here, ΔT and ΔIc are the time and instruction
deltas between subsequent decoded branches and n is the length
of the total decoded branches. The formula calculates the median
of the sorted datasets of ΔT and ΔIc and normalises them with a
factor of Nf for an accurate representation. The value of n,
however, varies according to the frequency of packets. Hence,
with the packets we estimate the averages based on the maximum
we can obtain. This experiment was coupled with the trace size ex-
periment above so that, for the same executions, we could observe
our temporal resolution as a function of the trace size as well. The
choice of equidistant branches is intentional for a more controlled
and repeatable micro-benchmark. The results are presented in
Figs. 7–9 with TRF on the second Y-axis. TRF varies between 0
and 100. Lower TRF values represent better resolutions.
Observations: It is interesting to see a clear trend that the data size is
inversely proportional to TRF. Hence, the larger the trace size, the
better is the temporal resolution in the trace. Another important ob-
servation is the sudden increase in resolution when CYC packets are
introduced. We observed that the highest resolution we obtained for
our tests was 14 ns and 78 instructions between two consecutive
events in the trace (TRF = 4.0 × 10−9). This compares with the
lowest resolution of 910.5 μs and 2.5 million instructions (TRF =
100) between two events with no CYC and far apart PSB
packets. The reason for such a huge variation is that the introduction
of the cycle-accurate mode generates CYC packets before all
CYC-eligible packets (such as TNT and TIP). The CYC packets
contain the number of core clock cycles since the last CYC
packet received, which is further used to improve the time reso-
lution. With a large number of CYC-eligible packets being gener-
ated in quick succession, the trace size as well as the resolution
increases drastically, as compared with MTC and PSB packets.
For CYC observations in Fig. 7, the resolution for <26 cycles is
not shown, as it covers the whole execution in our workload for
which we are interested. Thus, we always get a constant maximal
number of CYC packets and the TRF value saturates. Therefore,
we only included valid cycles >26. This can however vary for
real life use-cases such as kernel tracing where the branches are
not equally spaced and the code section is not linear. However,
the TRF values obtained can be a sufficient indicator of upper
and lower bounds of resolution.

4.2.5 Ftrace and PT analysis: We also compared the hardware
control-flow tracing with the closest current software solutions in
the Linux kernel. An obvious contender in-kernel control-flow
tracing for our Intel PT-based framework is Ftrace [39]. Both can
be used to get the execution flow of the kernel for a given workload
– with our approach providing a much more detailed view than
Ftrace. We therefore used the Sysbench synthetic benchmarks to
gauge the overhead of both approaches for disk I/O and memory
and CPU intensive tests. We configured Ftrace in a mode as close
as possible to Intel PT by outputting raw binary information to a
trace buffer. We also set the per-CPU trace buffer size to 4 MB.
Our findings are presented in Table 2. We can see that, as compared
with PT, FTrace was 63% slower for a Sysbench File I/O workload
with random reads and writes. This generates numerous kernel
events for which Ftrace had to obtain time-stamps at each function
Table 2 Comparison of Intel PT and Ftrace overheads for synthetic loads

Benchmark Baseline With PT With Ftrace Overhead

PT, % Ftrace, %

File I/O, MBps 32.32 31.99 19.76 1.00 63.56
Memory, MBps 5358.25 5355.59 4698.52 0.00 14.04
CPU, s 19.001 19.007 19.121 0.00 0.6

Commons J Eng, 2016, Vol. 2016, Iss. 10, pp. 367–376
doi: 10.1049/joe.2016.0127

Fig. 10 Histogram of instruction count delta for superSTI and superCLI
instructions generated using delta profiling algorithm
entry. In the PT case, the time-stamps are an inherent part of the
trace data generated in parallel through trace hardware. This
explains the huge difference in overhead. A similar difference is
observed in the memory benchmark as well. In the case of the
CPU benchmark, the work was userspace bound and hence the
trace generated was smaller – thus a non-statistically significant
overhead in PT and 0.6% overhead in Ftrace.

4.3 Delta profiling instructions

In these sets of experiments, we show how our Algorithm 1 (Fig. 4)
is able to generate histograms for instruction and time-delta for
superSTI and superCLI instructions groups. To quantify
how much time is spent in a short section where interrupts are dis-
abled, we created a synthetic test module in the kernel that disables
and enables interrupts as our input. We control the module using
ioctl() to cycle the interrupts. We pin the userspace counterpart
of our test module on CPU0 and analyse the hardware trace for
CPU0. Our algorithm is implemented during the trace decoding
phase to generate the instruction delta and time-delta in an inter-
mediate format which we then plot as histograms. This helps to
Fig. 11 Histogram of time-delta for superSTI and SuperCLI instructions
generated using delta profiling algorithm

J Eng, 2016, Vol. 2016, Iss. 10, pp. 367–376
doi: 10.1049/joe.2016.0127

This is an open
pinpoint how many instructions were executed in the interval
between two consecutive interrupts disable and enable. Looking
at Fig. 10, we can see that most of the interrupts disabled intervals
executed around 90–100 instructions. For the same execution, we
observe in Fig. 11 that most of the interrupts disabled intervals
have a duration in the range 40–80 ns. We can then look for the
interrupts disabled intervals of abnormally high duration which
are at the far right in the histogram. Delta profiling of actual instruc-
tion flows therefore allows for an overview of the interrupt cycling
in the kernel for a particular short running task. As discussed in
Section 5, to get more in-depth analysis, we can take snapshots
when abnormal latencies are encountered, to get a more in-depth
view on identifying them from the histogram profiles.

5 Conclusion and future work

New techniques used in hardware tracing are now empowering devel-
opers in the domain of software performance debugging and analysis.
We observe that hardware-assisted tracing and profiling provides a
very fine granularity and accuracy in terms of control flow and
time and presents a trace framework that utilises hardware-assistance
from Intel PT. Our PT-based approach, with a minimal overhead in
the range of 2–5%, was able to provide a highly detailed view of
control flow. We also present a detailed analysis of trace size and
temporal resolution provided by PT, while fine tuning its configur-
ation. With the help of our framework, we were able to generate
detailed targeted callstacks for syscalls and observe differences
between multiple executions. We also demonstrated a way to trace
the software tracers themselves and show how similar kernel control-
flow tracers such as Ftrace cause overheads as high as 63%, while PT
was able to generate similar yet more detailed results with 1% over-
head. Hardware tracing also allowed us to gather traces from parts of
the kernel that are invisible to traditional software tracers. PT-assisted
cycle-accurate profiling was able to provide resolution as high as 14
ns, with timed events only 78 instructions apart. However, our ana-
lysis of Intel PT and the information released by Intel suggests that
many additional features such as using PT in virtual machine
tracing are left yet to be explored.

5.1 Latency snapshots

We hinted how, in addition to syscall latency profiles, more
in-depth analysis on other non-deterministic latencies can be
done. An interesting observation relevant for real-time systems is
also an in-depth analysis of IRQ latency. Newer tracepoints in the
kernel introduced by tracers such as LTTng [40] allow recording
software-trace events when IRQ a latency beyond a certain thresh-
old is reached. We can further refine our idea by recording
hardware-trace snapshots in such conditions, thus obtaining more
detailed control-flow and timing information.

5.2 Virtual machine trace and analysis

Our Intel PT-based hardware-assisted technique can also be used to
detect virtual machine (VM) state transitions, in host or guest only
hardware tracing, for more in-depth analysis of VMs without any
software-tracing support. We observed that PT can also generate
VMCS packets and set the non-root bit in PIP packets when hard-
ware tracing is enabled in VM context [30]. The extra information
in hardware traces allows the decoder to identify VM entry and exit
events and load specific binaries for rebuilding control-flow across
VMs and host. Thus, with no software intrusion and a low over-
head, we can get accurate VM traces, compare and quantify their
performance.

6 Acknowledgments

We are grateful to Ericsson, EfficiOS, NSERC and Prompt for
funding and Francis Giraldeau for his technical advice and comments.
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)

7 References

[1] Tewar A.K., Myers A.R., Milenkovic ́A.: ‘mcfTRaptor: toward unob-
trusive on-the fly control-flow tracing in multicores’, J. Syst. Archit.,
2015, 61, (10), pp. 601–614, doi: 10.1016/j.sysarc.2015.07.005

[2] Ball T., Burckhardt S., Halleux J., ET AL.: ‘Deconstructing concur-
rency heisenbugs’. 31st Int. Conf. on Proc. Software Engineering –
Companion Volume, 2009. ICSE-Companion 2009, 2009, pp.
403–404, doi: 10.1109/ICSE-COMPANION.2009.5071033

[3] IEEE Nexus 5001. Available at http://www.nexus5001.org/, accessed
March 2016

[4] http://www.ds.arm.com/ds-5/debug/dstream/, accessed March 2016
[5] http://www.ghs.com/products/supertraceprobe.html, accessed March

2016
[6] http://www.ds.arm.com/ds-5/, accessed March 2016
[7] http://www.ghs.com/products/timemachine.html, accessed March

2016
[8] Tallam S., Gupta R.: ‘Unified control flow and data dependence

traces’, ACM Trans. Archit. Code Optim., 2007, 4, (3), doi:
10.1145/1275937.1275943

[9] Boogerd C., Moonen L.: ‘On the use of data flow analysis in static
profiling’. 2008 Eighth IEEE Int. Working Conf. on Proc. Source
Code Analysis and Manipulation, 2008, pp. 79–88, doi: 10.1109/
SCAM.2008.18

[10] Wichmann B.A., Canning A.A., Clutterbuck D.L., ET AL.: ‘Industrial
perspective on static analysis’, Softw. Eng. J., 1995, 10, (2), pp.
69–75

[11] Livshits B.: ‘Improving software security with precise static and runtime
analysis’. PhD thesis, Stanford University, Stanford, CA, USA, 2006

[12] Goseva-Popstojanova K., Perhinschi A.: ‘On the capability of static
code analysis to detect security vulnerabilities’, Inf. Softw.
Technol., 2015, 68, (C), pp. 18–33, doi: 10.1016/j.infsof.2015.08.002

[13] Lee J., Shrivastava A.: ‘A compiler optimization to reduce soft errors
in register files’, SIGPLAN Not., 2009, 44, (7), pp. 41–49, doi:
10.1145/1543136.1542459

[14] Ball T., Larus J.R.: ‘Optimally profiling and tracing programs’, ACM
Trans. Program. Lang. Syst., 1994, 16, (4), pp. 1319–1360, doi:
10.1145/183432.183527

[15] Anderson J.M., Berc L.M., Dean J., ET AL.: ‘Continuous profiling:
where have all the cycles gone?’, ACM Trans. Comput. Syst., 1997,
15, (4), pp. 357–390, doi: 10.1145/265924.265925

[16] Dean J., Hicks J.E., Waldspurger C.A., ET AL.: ‘ProfileMe: hardware
support for instruction-level profiling on out-of-order processors’.
Thirtieth Annual IEEE/ACM Int. Symp. on Proc. Microarchitecture,
1997. Proc., 1997, pp. 292–302, doi: 10.1109/MICRO.1997.645821

[17] Merten M.C., Trick A.R., Nystrom E.M., ET AL.: ‘A hardware mech-
anism for dynamic extraction and relayout of program hot spots’,
SIGARCH Comput. Archit. News, 2000, 28, (2), pp. 59–70, doi:
10.1145/342001.339655

[18] Vaswani K., Thazhuthaveetil M.J., Srikant Y.N.: ‘A programmable
hardware path profiler’. Proc. Int. Symp. on Code Generation and
Optimization, CGO ‘05, Washington, DC, USA, 2005, pp.
217–228, doi: 10.1109/CGO.2005.3

[19] Nowak A., Yasin A., Mendelson A., ET AL.: ‘Establishing a base of
trust with performance counters for enterprise workloads’. Proc.
2015 USENIX Annual Technical Conf. (USENIX ATC 15), Santa
Clara, CA, July 2015, pp. 541–548
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
[20] Bitzes G., Nowak A.: ‘The overhead of profiling using PMU hard-
ware counters’. Technical Report, CERN, openlab, 2014

[21] Larus J.R.: ‘Efficient program tracing’, Computer, 1993, 26, (5), pp.
52–61, doi: 10.1109/2.211900

[22] Nethercote N., Seward J.: ‘Valgrind: a framework for heavyweight
dynamic binary instrumentation’, SIGPLAN Not., 2007, 42, (6), pp.
89–100, doi: 10.1145/1273442.1250746

[23] Nethercote N., Mycroft A.: ‘Redux: a dynamic dataflow tracer’,
Electron. Notes Theor. Comput. Sci., 2003, 89, (2), pp. 149–170,
doi: http://www.dx.doi.org/10.1016/S1571-0661(04)81047-8

[24] Weidendorfer J.: ‘Sequential performance analysis with callgrind and
kcachegrind’, in Resch, M., Keller, R., Himmler, V., Krammer, B.,
Schulz, A. (Eds.) ‘Tools for high performance computing’ (Springer,
Berlin Heidelberg, 2008, 1st edn.), pp. 93–113

[25] Sandon P.A., Liao Y.-C., Cook T.E., ET AL.: ‘NStrace: a bus-driven
instruction trace tool for PowerPC microprocessors’, IBM J. Res.
Dev., 1997, 41, (3), pp. 331–344, doi: 10.1147/rd.413.0331

[26] Vermeulen B.: ‘Functional debug techniques for embedded systems’,
IEEE Des. Test Comput., 2008, 25, (3), pp. 208–215, doi: 10.1109/
MDT.2008.66

[27] Vasudevan A., Qu N., Perrig A.: ‘XTRec: secure real-time execution
trace recording on commodity platforms’. 2011 44th Hawaii Int.
Conf. on Proc. System Sciences (HICSS), 2011, pp. 1–10, doi:
10.1109/HICSS.2011.500

[28] Pedersen C., Acampora J.: ‘Intel code execution trace resources’,
Intel Technol. J., 2012, 16, (1), pp. 130–136

[29] Soffa M.L., Walcott K.R., Mars J.: ‘Exploiting hardware advances for
software testing and debugging (NIER track)’. Proc. 33rd Int. Conf.
on Software Engineering, ICSE ‘11, Honolulu, USA, 2011, pp.
888–891, doi: 10.1145/1985793.1985935

[30] Intel: ‘Intel processor trace’ (Intel Press, 2015, 1st edn.), pp.
3578–3644, accessed March 2016

[31] Kleen A.: ‘Adding processor trace support to linux’. Available at http
://www.lwn.net/Articles/648154/, accessed March 2016

[32] https://www.github.com/andikleen/simple-pt, accessed March 2016
[33] https://www.github.com/01org/processor-trace, accessed March

2016, 2015
[34] Baugh L., Zilles C.: ‘An analysis of I/O and syscalls in critical sec-

tions and their implications for transactional memory’. IEEE Int.
Symp. on Proc. Performance Analysis of Systems and Software,
2008. ISPASS 2008, 2008, pp. 54–62, doi: 10.1109/
ISPASS.2008.4510738

[35] Moret P., Binder W., Villazón A., ET AL.: ‘Visualizing and exploring
profiles with calling context ring charts’, Softw. Pract. Exper., 2010,
40, (9), pp. 825–847, doi: 10.1002/spe.v40:9

[36] Adamoli A., Hauswirth M.: ‘Trevis: a context tree visualization &
analysis framework and its use for classifying performance failure
reports’. Proc. Fifth Int. Symp. on Software Visualization,
SOFTVIS ‘10, Salt Lake City, UT, USA, 2010, pp. 73–82, doi:
10.1145/1879211.1879224

[37] http://www.julialang.org/benchmarks/, accessed March 2016
[38] http://www.openblas.net, accessed March 2016
[39] https://www.kernel.org/doc/Documentation/trace/ftrace.txt, accessed

March 2016
[40] http://lists.lttng.org/pipermail/lttng-dev/2015-October/025151.html,

accessed March 2016
Commons J Eng, 2016, Vol. 2016, Iss. 10, pp. 367–376
doi: 10.1049/joe.2016.0127

http://www.nexus5001.org/
http://www.nexus5001.org/
http://www.nexus5001.org/
http://www.nexus5001.org/
http://www.nexus5001.org/
http://www.ds.arm.com/ds-5/debug/dstream/
http://www.ds.arm.com/ds-5/debug/dstream/
http://www.ds.arm.com/ds-5/debug/dstream/
http://www.ds.arm.com/ds-5/debug/dstream/
http://www.ds.arm.com/ds-5/debug/dstream/
http://www.ds.arm.com/ds-5/debug/dstream/
http://www.ghs.com/products/supertraceprobe.html
http://www.ghs.com/products/supertraceprobe.html
http://www.ghs.com/products/supertraceprobe.html
http://www.ghs.com/products/supertraceprobe.html
http://www.ghs.com/products/supertraceprobe.html
http://www.ghs.com/products/supertraceprobe.html
http://www.ds.arm.com/ds-5/
http://www.ds.arm.com/ds-5/
http://www.ds.arm.com/ds-5/
http://www.ds.arm.com/ds-5/
http://www.ds.arm.com/ds-5/
http://www.ds.arm.com/ds-5/
http://www.ghs.com/products/timemachine.html
http://www.ghs.com/products/timemachine.html
http://www.ghs.com/products/timemachine.html
http://www.ghs.com/products/timemachine.html
http://www.ghs.com/products/timemachine.html
http://www.ghs.com/products/timemachine.html
http://www.dx.doi.org/10.1016/S1571-0661(04)81047-8
http://www.dx.doi.org/10.1016/S1571-0661(04)81047-8
http://www.dx.doi.org/10.1016/S1571-0661(04)81047-8
http://www.dx.doi.org/10.1016/S1571-0661(04)81047-8
http://www.dx.doi.org/10.1016/S1571-0661(04)81047-8
http://www.dx.doi.org/10.1016/S1571-0661(04)81047-8
http://www.dx.doi.org/10.1016/S1571-0661(04)81047-8
http://www.lwn.net/Articles/648154/
http://www.lwn.net/Articles/648154/
http://www.lwn.net/Articles/648154/
http://www.lwn.net/Articles/648154/
http://www.lwn.net/Articles/648154/
https://www.github.com/andikleen/simple-pt
https://www.github.com/andikleen/simple-pt
https://www.github.com/andikleen/simple-pt
https://www.github.com/andikleen/simple-pt
https://www.github.com/andikleen/simple-pt
https://www.github.com/01org/processor-trace
https://www.github.com/01org/processor-trace
https://www.github.com/01org/processor-trace
https://www.github.com/01org/processor-trace
https://www.github.com/01org/processor-trace
http://www.julialang.org/benchmarks/
http://www.julialang.org/benchmarks/
http://www.julialang.org/benchmarks/
http://www.julialang.org/benchmarks/
http://www.julialang.org/benchmarks/
http://www.openblas.net
http://www.openblas.net
http://www.openblas.net
http://www.openblas.net
http://www.openblas.net
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://lists.lttng.org/pipermail/lttng-dev/2015-October/025151.html
http://lists.lttng.org/pipermail/lttng-dev/2015-October/025151.html
http://lists.lttng.org/pipermail/lttng-dev/2015-October/025151.html
http://lists.lttng.org/pipermail/lttng-dev/2015-October/025151.html
http://lists.lttng.org/pipermail/lttng-dev/2015-October/025151.html
http://lists.lttng.org/pipermail/lttng-dev/2015-October/025151.html

	2016_Sharma_Hardware-assisted_instruction_profiling_latency_detection
	2016_Sharma_Hardware-assisted_instruction_profiling_latency_detection

