brought to you by .{ CORE

provided by PolyPublie

PCLYPUBLIE L

Polytechnigue Montreal EN PREMIERE CLASSE @

LE GEMIE

o}

Titre: Detection of Common Problems in Real-Time and Multicore Systems
Title: Using Model-Based Constraints

Auteurs:
Authors:

Raphaél Beamonte et Michel R. Dagenais

Date: 2016

Type: Article de revue / Journal article

Référence:

Beamonte, R. & Dagenais, M. R. (2016). Detection of Common Problems in Real-
Time and Multicore Systems Using Model-Based Constraints. Scientific

Citation: programming, 2016, p. 1-18. doi:10.1155/2016/9792462

Document en libre accés dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/3065/

Version:

Version officielle de I'éditeur / Published version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use:

CC BY

[% Document publié chez I’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Scientific Programming

Maison d’édition:
Publisher:

Hindawi

URL officiel:
Official URL:

https://doi.org/10.1155/2016/9792462

Mention légale:
Legal notice:

Ce fichier a été téléchargé a partir de PolyPublie,
le dépot institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca


https://core.ac.uk/display/213621997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hindawi Publishing Corporation
Scientific Programming

Volume 2016, Article ID 9792462, 18 pages
http://dx.doi.org/10.1155/2016/9792462

Hindawi

Research Article

Detection of Common Problems in Real-Time and Multicore
Systems Using Model-Based Constraints

Raphaél Beamonte and Michel R. Dagenais

Computer and Software Engineering Department, Polytechnique Montreal, CP 6079, Station Downtown, Montreal,
QC, Canada H3C 3A7

Correspondence should be addressed to Raphaél Beamonte; raphael.beamonte@polymtl.ca
Received 25 November 2015;Revised 3 March 2016; Accepted 16 March 2016
Academic Editor: Dimitrios S. Nikolopoulos

Copyright © 2016 R. Beamonte and M. R. Dagenais. Thi is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Multicore systems are complex in that multiple processes are running concurrently and can interfere with each other. Real-time
systems add on top of that time constraints, making results invalid as soon as a deadline has been missed. Tracing is often the
most reliable and accurate tool available to study and understand those systems. However, tracing requires that users understand
the kernel events and their meaning. It is therefore not very accessible. Using modeling to generate source code or represent
applications’ workfl w is handy for developers and has emerged as part of the model-driven development methodology. In this
paper, we propose a new approach to system analysis using model-based constraints, on top of userspace and kernel traces. We
introduce the constraints representation and how traces can be used to follow the application’s workfl w and check the constraints
we set on the model. We then present a number of common problems that we encountered in real-time and multicore systems and

describe how our model-based constraints could have helped to save time by automatically identifying the unwanted behavior.

1. Introduction

System analysis tools are necessary to allow developers
to quickly diagnose problems. Tracers provide a lot of
information on what happened in the system, at a specific
moment or interest, and also what leads to these events with
associated timestamps. They thus allow studying the runtime
behavior of a program execution. Each tracer has its own
characteristics, including weight and precision level. Some
tracers only allow tracing kernel events, while others also
provide userspace tracing, allowing correlating the applica-
tion’s behavior to the system’s background tasks. However,
each of these tracers shares the fact that an important human
intervention is required to analyze the information read in
the trace. It is also necessary to understand exactly what the
events read means, to be able to benefit from this information.

Modeling allows technical and nontechnical users to
defin the workfl w of an application and the logical and
quantitative constraints to satisfy. Modeling is also often used
in the real-time community to do formal verific tion [1].
Models and traces could thus be used together to defin

specifications to satisfy and to check these against the real
behavior of our application. This real behavior, reported
in traces, would moreover take into account the influences
of other running applications, the system resources, and
the kernel tasks. Using kernel traces information, we could
therefore extend the set of internal constraints, to add system-
wide constraints to satisfy, such as a minimum or maximum
CPU usage or a limit on the number of system calls our
application can do.

Thi paper describes a new approach for application
modeling using model-based constraints and kernel and
userspace traces to automatically detect unwanted behavior
in applications. It also explains how this approach could
be used on top of some common real-time and multicore
applications to automatically identify the problems that we
encountered and when they occur, thus saving analysis time.

Our main contribution is to set constraints over system-
side metrics such as resource usage, process preemption, and
system calls.

We present the related work in Section 2. We explain
our approach on using model-based constraints and present



some specifi constraints in Section 3. We then detail some
common real-time and multicore application problems, as
part of case studies to evaluate our proposed approach, in
Section 4. Results, computation time, and scalability for
our approach are shown in Section 5. Future work and the
conclusion are in Section 6.

2. Related Work

Thi section presents the related work in the two main areas
relevant for this paper, software tracing with a userspace com-
ponent and analysis of traces using model-based constraints.

2.1. Existing Softw re Userspace Tracers. To extend the spec-
ific tions checking of an application, trace data must be
available at both the application and system levels. We also
need to put emphasis on the precision and low disturbance
of the tracer we would use to acquire these traces. In
this section, we present characteristics of currently available
softw re tracers with a userspace component and kernel
tracing habilities.

Basic implementations of tracers exist that rely on block-
ing system calls and string formatting, such as using printf
or fprintf or even that lock shared resources for concurrent
writers to achieve thread-safety. Tho e tracers are slow and
unscalable and are thus unsuitable for our research on
multicore and real-time systems. They have therefore been
excluded.

Feather-Trace [4] uses very lightweight static events.
It was mainly designed to trace real-time systems and appli-
cations and is thus a low-overhead tracer. Feather-Trace’s
inactive tracepoints only cause the execution of one statement
while active ones execute two. It uses multiprocessor-safe
and wait-free FIFO buff rs and achieves buffer concurrency
safety using atomic operations. Thi tracer achieves low-
overhead by using its own event defin tions of a fi ed size.
Th memory mechanism for these events is based on indexed
tables. However, this design choice limits overhead but makes
Feather-Trace unable to add system context information
to the events, for instance. In its current form, the tracer
also cannot use the standard TRACE_EVENT() macro to
access system events and, even with improvements, would
not be able to take advantage of the different event sizes
and the information it provides. Also, Feather-Trace does
not include a writing mechanism for storing the traces on
permanent storage. Finally, the timestamp source used is
the gettimeofday () system call, limited to microsecond
precision.

Paradyn uses dynamic instrumentation by inserting calls
to tracepoints directly in the binary executables [5]. Although
the instrumentation can be done at runtime [6], Paradyn
uses a patch-based instrumentation to rewrite the binary,
only imposing a low-overhead latency [7]. This method has
been used to monitor and analyze the execution of malicious
code. This tracer however offers limited functionality. It
cannot switch to another buffer when the buffer is full nor can
it store the tracing data to disk while tracing. Furthermore,
it cannot support the defin tion of different event types. It
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thus is not possible to use the Linux kernel static tracepoints
defin d by the standard TRACE_EVENT () macro nor to add
system context information. Also, no assurance can be given
on the tracing condition for multicore systems. In addition,
Paradyn imposes an overhead proportional to the number
of instrumented locations.

Perf [8] is one of the built-in Linux kernel tracers which
was designed to access the performance counters in the
processors. Its use was however later extended to interface
with the TRACE_EVENT () macro and thus access the Linux
kernel tracepoints. Yet, perf is mostly oriented towards
sampling. It is possible to use perf as a regular tracer but it
has not been optimized for this use. If sampling does allow
low-overhead, making it interesting for real-time systems, it
does so by sacrifici g accuracy. Furthermore, the collection
process is based on an interrupt, which is both costly and
invasive. Finally, perf’s multicore scalability is limited [9].

Th Function Tracer, or ftrace, is a set of different tracers
built into the Linux kernel [10]. It was created in order to
follow the relative costs of the functions called in the kernel
to determine the bottlenecks. It has since evolved to include
more comprehensive analysis modules such as latency or
scheduling analysis [11] Ftrace is directly managed through
the debugfs pseudofilesystem and works through the acti-
vation and deactivation of its tracers. It can connect to the
static tracepoints in the kernel through its event tracer
using the TRACE_EVENT () macro [12].1t collects only data
defin d in this macro using the TP_printk macro, to save
analysis time on the tracer side. Thi behavior, however,
comes with the drawback of not being able to add system
context information to trace events. Finally, ftrace can
also connect to userspace applications using UProbes, since
Linux kernel 3.5. This instrumentation is using interruptions
though, which adds unacceptable overhead for most real-
time and high performance applications and systems.

SystemTap [13] is a monitoring system for Linux pri-
marily aimed at the community of system administrators.
It can instrument dynamically the kernel using KProbes
[14] or interface with static instrumentation provided by the
TRACE_EVENT () macro. It can also be used to instrument
userspace applications using UProbes, since Linux kernel 3.8.
Th instrumentation is done in both cases using a special
scripting language that is compiled to a kernel module. The
data analysis is directly bundled inside the instrumentation
and the results can be printed at regular interval on the
console. As far as we know, the analysis being done in-fli ht,
there are no effici  t built-in facilities to write events to stable
storage. Moreover, userspace probes as well as kernel probes,
even if they have been statically compiled in precise places,
incur an interrupt to work. If this interrupt is avoidable on the
kernel side by using only the static instrumentation provided
by TRACE_EVENT (), this is not possible on the userspace side.
Interrupts add overhead that can be problematic for real-time
tracing.

LTTng-UST provides macros for adding statically com-
piled tracepoints to programs. Produced events are con-
sumed using an external process that writes events to disk.
Unlike Feather-Trace, LTTng-UST uses the Common
Trace Format, allowing the use of arbitrary event types [15].
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Th architecture of this tracer is designed to deliver high
performance. It allocates per-CPU ring-buffers to achieve
scalability and wait-free properties for event producers.
Moreover, control variables for the ring-buff r are updated
using atomic operations instead of locking. Also, read-copy
update (RCU) data structures are used to protect important
tracing variables. This avoids cache-line exchanges between
readers that occur with traditional read-write lock schemes
[16, 17]. A similar architecture is available for tracing at
the kernel level. Moreover, kernel and userspace timestamps
use the same clock source, allowing events to be correlated
across layers at the nanosecond scale. This correlation is
really useful to understand the behavior of an application.
Finally, previous work demonstrated LTTng’s ability for
high performance tracing of real-time applications [18].
LTTng is therefore the best candidate to trace real-time and
multicore systems while correlating userspace and kernel
activities.

2.2. Model-Checking Analysis and Data Extraction Tools
for Traces. In this section, we present different approaches
used for model-checking analysis on traces. We also
review interesting tools aiming at extracting data from
traces.

Tango [19, 20] is an automatic generator of backtracking
trace analysis tools. It works using specific tions written
in the Estelle formal description language. It is based
on a modified Estelle-to-C++ compiler. Tango generates
tools that are specific to a given model and that allow
checking the validity of any execution trace against the
specifications, using a number of checking options. How-
ever, Tango can only be used for single-process specifi-
cations and needs a NIST X Windows Dingo Site Server
to do its analysis. Moreover, it was mainly designed to
validate protocol specific tions and therefore does not pro-
vide a way to specify constraints based on the systems
state.

Other algorithms to automatically generate trace checkers
are presented in [21]. These algorithms follow the same idea
as Tango as they use formulas written in a formal quantitative
constraint language, Logic of Constraints, in correlation
with traces. They can thus analyze a traced simulation
for functional and performance constraint violations. Th
specifications file is converted to C++ source, which is then
compiled to generate an executable checker. Using simulation
traces, the executable will produce an evaluation report
mentioning any constraint violation. However, this tool uses
text-format traces and is thus very sensitive to any change in
the trace format.

Scalasca [22] aims to simplify the identific tion of
bottlenecks using execution traces. It offers analysis using
both aggregated statistical runtime summaries and event
traces. The summary report gives an overview of which
process, in which call-path, consumes times and how much.
Th event traces are used for a deep study of the concurrent
behavior of programs. Scalasca analyzes the traces at the
end of the execution to identify wait states and related
performance properties. It then produces a pattern-analysis

report with performance metrics for every function call-path
and system resource. If it allows extracting interesting metrics
from the runtime of an application, Scalasca does not allow
providing our own specific tions.

SETAF [23] is a framework to adapt the system execution
traces and dataflow models to have the required properties for
analysis and validation of the QoS. SETAF works using UNITE,
which describes a method to use system execution traces
in order to validate the distributed system QoS properties
[24]. SETAF acts as an overlay used by UNITE to transform
the traces and provide the missing information. To do so, it
requires the user to first manually analyze the execution trace
to identify what properties need to be added to the datafl w
model and thus provide the correct adaptation pattern. This
adaptation pattern will allow adding information leading to
the creation of a valid execution fl w and new causality
relations between log formats in UNITE but requires the user
to have deep understanding of the trace format and UNITE
requirements.

Trace Compass [25] is a graphical interface in Eclipse
for the LTTng tracing tools. It supports multiple types of trace
formats and provides different views showing specifi analy-
sis of the traces. Amongst these views, Trace Compass pro-
vides analysis for real-time applications [26] and an analysis
of the system-level critical path of applications [27]. The latter
aims to recover segments of execution aff cting the waiting
time of a given computation. Finally, Trace Compass also
allows the creation of state system attribute trees and storing
metrics throughout time in the state history tree database.
Thi database provides effici t queries to the modeled state
of the traced system for any given point in time.

To our knowledge, model analysis is not yet exploiting
all the available information. By combining model analysis
and trace analysis tools, the gap of unused information can
be reduced. Thi would allow the specifie behavior of the
system to be verifi d through its execution trace, during
or aft r running our application. Previous work has also
been done on automatic kernel trace analysis using pattern
matching, through state machines [28]. Thi work shows that
trace events could be used to follow the workfl w on an
application and thus link the states of a state machine to the
states of a running application.

3. Using Model-Based Constraints
to Detect Unwanted Behaviors

When designing a high performance application, the devel-
opers usually know what they expect their application to
do. They know the order of the operations to perform and
different metrics along with their average values. It is in fact
these values that allow the developers to verify that their
application is performing well and doing what they want it
to do.

In this section, we will present our approach, which
uses finite state machine models and constraints over kernel
and userspace traces to detect unwanted behaviors in pro-
grams. The e models will require instrumented applications
to delimit the constraints application. We will first detail the
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Figur e 1:State machine representation that can be used to check metrics using traces.

general representation and then propose some model-based
constraints that could be applied to existing applications.

3.1 General Representation. Whether it is to check a limit in
terms of time or resources used by an application, metrics are
usually taken between two states during the execution. We
first have the start state, appearing before the application’s
work that we want to check. This state serves as a base to
calibrate our metrics. We then have the second state, the end
state for that check, at which point we can validate that we are
within the limits.

Even if, during debugging, these states are usually read
by the developer knowing the application, they can be fixed
in the application workflow using a state machine repre-
sentation. This representation can then be used to analyze
constraints. Events generated from userspace tracepoints can
thus be used to identify the state changes in our application.

3.1.1.Internal Structure. Our representation is based on four
elements: the states, the transitions, the variables, and the
constraints. Th states are here to represent the different states
of our application. The transitions represent the movement
from a state to itself or another. Th state changes in the traced
application can be identifie and replicated in the traced
system model through the events received in the trace.

Th variables are used to get and store the values of the
metrics we need to verify. There are three main categories
of variables: the state system free variables (not based on
the state system such as those used to store timestamps
or values available directly from the received events), the
counter variables (or counters, such as those used to store
the number of system calls throughout time), and the timer
variables (or timers, such as those used to store the time spent
running a process). Th variables are categorized depending
on the number of calls needed to get their value from our state
system.

Our state system is based on the Trace Compass state
attribute tree. We build our own state history tree database
containing the different metrics that we want to keep
accessing later during the analysis. The e metrics and their
evolution are thus saved to a fil during the fi st analysis of
the kernel trace and are thereafter accessible using simple
requests to the state system. The state system free variables,
counter variables, and timer variables are variables that,
respectively, need 0, 1, and 2 calls to our state system to obtain
their values at a given timestamp. This means that state system
free variables can be read directly from the userspace trace,
while counters and timers need a kernel trace to be available.

Counters do not need more than one call to our state
system as their value is considered being the last one encoun-
tered: once a counter is incremented, it will keep this value
until the next incrementation. On the other side, the new
value of a timer is stored in the state system at the end of
the activity, adding up to that timer. This means that when
requesting the value of a timer at a given timestamp, we need
to verify if the timer is currently running. We thus need to get
the last value of the timer and its next value to interpolate the
current running value.

The constraints are used to express specifications of
the expectations for the run of the applications. They are
composed of two operands and one operator. Th operands
are either variables or constant values to be compared. The
operator is one of the standard relational operators, equal
(==), not equal (#), greater (>), greater or equal (>), less (<),
or less or equal (<).

Th ee validation status are available for the constraints:
valid, invalid, and uncertain. The valid status means that the
constraint was satisfi d. Th invalid status means that the
constraint was not satisfi d. In both those cases, we were
able to read the variable and compare it to the requirement.
In some cases, however, when there is missing information,
a constraint cannot be verifie . This is, for instance, the
situation of constraints over counters or timers when there
is no kernel trace available for the analysis and thus no state
system built. In those cases, the constraint validation status is
considered as uncertain.

Th constraints are linked to a transition and will be
checked when this transition is reached. The transition will
thus have a validation status that will be the worst case of
its constraints statuses. Therefore, having at least one invalid
constraint is suffici t to know that the transition did not
satisfy the constraints. If there is no invalid constraint, but
at least one uncertain constraint, we cannot guarantee that all
the requirements were met for that transition, thus making it
uncertain. Finally, a transition will be valid if and only if all
of its linked constraints are valid.

All those elements will allow building our model used
to identify instances of our application in the traces. The
instances are identifi d using their thread id. Th variables
are currently local to an instance of the application and are
thus not shareable.

3.1.2.Models. Figure 1shows a representation of a section of a
state machine for an application where we would like to verify
some metrics. Th states in the figure are named “S” and “S +
1,” respectively, for the start and end states of the zone we
want to check.
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“event (3)”

“event (1)” “event (2)” verifications
N e )

initializations

(a) The verific tions will use initializations that only appears at state “S”

“event (3)”

initializations 1 initializations 2

(b) The verific tions will use both initializations declared at different states

Figur e 2: State machine representation with late verific tion of constraints and a transitional state.

Th “event (1)” string represents the event that would be
used to enter state S of the state machine and the “event (2)”
string would be the one used to move from state S to state
S+ 1

Th “initializations” string represents the diverse vari-
ables’ initializations we would need to do in order to verify
our metrics. The initialization of a variable is represented by
setting this variable to 0. For instance, for a variable v of type
type, we would write “type/v = 0.”

Finally, the “verific tions” string represents the list of
constraints we would verify when passing from state “S” to
state “S + 1,” that is, when reading an event of type “event
(2)”

Both initializations and verific tions are discretionary
for a state or transition, but events are still needed to
follow the application workflow. That allows following a strict
order of events to move forward in the application, without
necessarily having metrics to check at this point.

This also allows us to initialize variables at one state but
to only check them at a later state of our state machine, as
shown in Figure 2(a). Th period of the constraint would then
only be larger than if we used a more recent initialization.
Thi also allows checking multiple constraints at one point,
while the initializations appeared at different states of the
application workfl w, as shown in Figure 2(b). Having larger
check periods would not add up to the verific tion time,
since constraints validations are done in a constant number
of operations for a given category of constraint, as explained
in Section 3.1.1.

It is also possible for a state to have two (or more)
next states. It would still be possible to validate the related
constraints. In such cases, different events would be used for
each of the possibilities, as shown in Figure 3. When an event
is reached while in state “S,” we would automatically know if
that event was of the type “event (2)” or “event (3).” We thus
would be able to move to the right state and thus to read and
execute the related verific tions, if any.

Finally, in our approach, an event can be used at each
junction of the model, but only once per junction. This
removes any uncertainty about the flow to follow, in order
to verify the constraints. Using this and the possibility to
have multiple exits per node, we could, for instance, allow
executing the initializations each time we encounter an event
of type “event (1),” to only verify metrics between the last
event of type “event (1)”and the first event of type “event (2).”
Figure 4 shows a representation of this example. If we want
to implement this specifi example, we would not defin any
constraint in “verifications 1”

“event (2)”
verifications 1

“event (1)

initializations

“event (3)”
verifications 2

Figur e 3: State machine representation with multiple next states for
state “S.”

“event (1)
verifications 1

“event (2)”
verifications 2

initializations

Figur e 4: State machine representation using a loop, to go over the
initializations when reading an event of type “event (1).”

3.2. Specific Constraints on Metrics. Thi section gives an
overview of some constraints that we can specify on different
metrics of the applications or the system. Thi overview
extends the deadline constraint, already present in most
real-time analysis tools based on constraint verific tion, to
our new system-specifi constraints. Qur new constraints
take advantage of the kernel-level information, about kernel
internals and processes, available in our detailed execution
traces.

3.2.1.Deadline Constraint. Real-time is as much about logical
determinism as it is about temporal determinism. In such
applications, we consider that a deadline has to be satisfied
for the result to be correct, and we have to take into account
the maximum allowed time to get that result.

Figure 5 gives a model representation of a constraint
that could be used in that case. State “S” is the state of the
application when starting the time-related task. State “S + 1”
is the state of the application when it finishes that task. The
events of types “event (1)” and “event (2)” are the events
generated by tracepoints in the application when switching
to those states.



“event (2)”

deadline/d = 0

Figur e 5: State machine representation of a constraint validating
whether we spent at most 2 ms between the states “S” and “S + 1.”

“event (2)”

preempt/p = 0

Figur e 6: State machine representation of a constraint validating
that our process has not been preempted between the states “S” and
“‘S+17

When entering the “S” state, a timer must be initialized
to know the time spent before reaching the “S + 1” state. That
initialization is represented with the string “deadline/d =
0” on the model, initializing a deadline variable “d.” Pro-
grammatically, this would be done using the read event that
informs us that we enter this state. In this case, this event was
of type “event (1).” We thus read the event time and set it as
our base.

When entering the “S + 1” state, that timer must be
checked to validate that we spent less than the duration limit.
Th tverific tion is represented with the string “deadline/d <
2ms” on the model. Programmatically, we would use the base
previously set for the “deadline/d” variable as well as the read
event informing us that we enter the “S + 17 state. We would
then compare both those values and verify that the difference
between these times is less than or equal to 2 ms.

We thus would only need userspace traces to check a
constraint of this type. The deadline constraint is using a
system state free variable.

3.2.2. Preemption Constraint. When designing a high per-
formance application, some tasks can be highly sensitive. In
such case, any preemption could be disrupting the application
work. We thus usually design our application to be able to
work without being interrupted by another task, for instance,
by setting a high priority.

Figure 6 gives a model representation of a constraint that
can be used to limit the number of types of preemption that
the process suffers during the given period, delimited by the
“S” and “S + 17 states.

When entering the “S” state, a preemption counter has
to be initialized to know how many types of preemption the
process has experienced when reaching the “S+1” state. In the
figu e, we initialize a preemption counter variable “p” using
the string “preempt/p = 0.” When entering the “S + 17 state,
the preemption counter variable is checked to validate that we
did not have any preemption, using the string “preempt/p ==
0.” We could also have allowed at most one preemption, for
instance, using the string “preempt/p < 1.”

Programmatically, we would use the “sched_switch” ker-
nel events to know when the process is scheduled and
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“event (2)”

cputime/c = 0

Figur e 7: State machine representation of a constraint validating
whether our process used at most 1% of the CPU time between states
“§”and “S+ 1.

unscheduled, using the events of types “event (1)” and
“event (2)” to limit the search zone. For each “sched_switch”
encountered for which we preempt our process (i.e., for which
our process enters in a wait-for-CPU state), we can increment
our initialized preemption counter. All this work is done
directly in our state system. Once we reach the constraint,
we thus only need to get the difference between the value of
the preemption counter at the timestamp when we entered
the “S” state and the value of the preemption counter at the
timestamp when we entered the “S + 17 state. Using that
diff rence, it is then possible to validate or invalidate the
requirement.

Thi constraint is complementary to the deadline con-
straint. Indeed, an application could reach a given deadline
while having been preempted, and in reverse an application
could fail a deadline while not having been preempted. Th y
could thus be used together to enforce a high performance
condition verific tion. In typical cases, the deadline is ulti-
mately the important constraint, but any preemption, even
a short one that does not cause a deadline failure, may be
an indication of the possibility that longer preemption could
happen that would cause a deadline failure.

The preemption constraint is using a counter variable.

3.2.3. Resource Usage Constraint. Whether it is a minimum or
amaximum, it can be useful to limit the usage of the resources
of a system such as the CPU, raw access memory or even disk,
or network input/output. Taking the example of the CPU
usage, we could consider, for instance, that our application is
doing a really simple job and thus should not use more than
1% of the CPU time during a given period delimited by two
states. We could also consider that our application work is so
important during a given period that it should be using 100%
of the CPU time (no preemption or waiting).

Figure 7 gives a model representation of a constraint that
could be used in that later case and could be easily changed
to be used for the former.

When entering the “S” state, a CPU usage timer must
be initialized to know the time spent using the CPU when
reaching the “S + 17 state. That initialization is represented
with the string “cputime/c = 0” on the model, initializing a
CPU usage timer “c.” When entering the “S + 17 state, this
CPU usage timer must be checked to validate that we used at
most 1% of the CPU. That verification is represented with the
string “cputime/c < 1%” on the model.

Programmatically, we use the events of types “event (1)”
and “event (2)” to delimit the time period during which we
look at the CPU usage. Using the kernel traces for the same
time period, we can know which process was running on
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“event (2)”
waitblocked/wb < 15%

waitblocked/wb = 0
waitcpu/we = 0

Figur e 8: State machine representation of constraints validating
whether the process spent at most 10% of the time period between
states “S” and “S+1” waiting for a CPU and at most 15%of this same
period being blocked.

which CPU for how long. With that information, we can
sum the running durations of our process and compare that
information to the total time period duration. Thi value is
actually computed in our state system allowing getting the
actual value at the time of “event (1)”and “event (2)” using
only two state system calls for each. Using both those values,
we can get the difference and compare it to the limit (1% in
our example) to check if our constraint is validated or not.
Th resource usage constraint is using a timer variable.

3.2.4. Wait Status Constraint. Following the CPU usage
constraint, it could be as interesting to limit how much time
a process is spending in “wait-for-CPU” or “wait-blocked”
status. These constraints are thus complementary to the
previous one.

Figure 8 shows a representation of both “wait-for-CPU”
and “blocked” status constraints being used on a model.

On this model, the “wait-for-CPU” status constraint
“wc” is initialized using the string “waitcpu/wc = 07
while the “wait-blocked” status constraint “wb” is initialized
using “waitblocked/wb = 0.” Th y are then checked using
constraints to limit the “wait-for-CPU” status of the process
to at most 10% of the time period between the two states and
the “wait-blocked” status to at most 15% of that same time
period.

Programmatically, the events of types “event (1)” and
“event (2)” would allow delimiting the working time period.
We would then look at the kernel events in that period
to check the status of our process and compute the time
percentage spent in the status we want to check, in the
same way that we computed this information for the CPU
usage constraint, but using the new state of the unscheduled
process to know if it is now waiting for CPU or blocked.
This information is directly computed in our state system; we
can thus access it easily for the given interval and verify our
constraint.

Th wait status constraint is using a timer variable.

3.2.5. System Calls Constraint. High performance applica-
tions are sometimes designed to work only in userspace
during their critical inner loop performing the real-time
task. This helps remove any latency that can be caused by
other processes, the hardware, or other resources in the
system. This is, for instance, the case when a user process
gets the proper permissions to access directly some I/O
addresses, for interacting with external inputs and outputs

“event (2)”

syscalls/s = 0

Figur e 9: State machine representation of a constraint validating
that our process has not done any system call between states “S” and
“S+17

through an FPGA card connected to the PCle bus. In that
case, these input and output operations completely avoid any
interaction through the operating system. Other common
cases of communications that bypass the operating system
are accesses through shared memory buffers, synchronized
by native atomic operations. In such cases, we would want
to verify that the process remained in userspace for all its
scheduled time. Using a system calls constraint could be
useful in such cases.

Figure 9 gives a model representation of a constraint that
can be used to limit the number of system calls issued by the
process during the given period.

When entering the “S” state, a system calls counter
variable is initialized. In the figure, the system calls counter
variable “s” is initialized using the string “syscalls/s = 0.”
When entering the “S + 17 state, we check this counter to
validate that we did not have any system call since the “S”
state. We use the string “syscalls/s == 0” to do so.

Programmatically, we count the number of kernel events
whose name starts by “syscall_entry,” using the events of types
“event (1)”and “event (2)” to limit the search of these events.
For each event encountered that matches our search, we can
increment our system calls counter. We can then compute the
difference for that counter and use that difference to check
against the requirement.

Th system calls constraint is using a counter variable.

4. Case Studies

Thi section presents different case studies of common
problems; each one is extracted from a real industrial problem
that we solved using tracing.

4.1 Occasional Missing of Deadlines

4.1.1. Problem Summary. In real-time systems, we have to
comply with the given deadlines for a task. Th t task can
happen multiple times in a short period of time. In some cases
that we encountered, a task happening up to 1000 times per
second was missing its deadline one or two times per second.
Th t task being a hard real-time one, those missed deadlines
were not acceptable.

4.1.2. Trace Analysis Approach. Kernel and userspace traces
were used to identify the task execution and see what
happened on the kernel side. The e traces lead to see that,
for each task that did not reach its deadline in time, another
process of higher priority was scheduled instead. That process
was not scheduled the rest of the time, letting the other
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173305 240 17:33:05.280

2, prev.state=0, noxt.comm=tk-preempt, naxt.tid=13215, next_pro=-21

cev.comm=tk-praempt, prev.td=13214, prev_pro

(a) Screenshot of Trace Compass showing the preemption

[17:33:05.252828753] (+0.000000748) computer
sched_switch: { cpu_id = 2 }, { vtid =
13214, vpid = 13210 }, { prev_comm = "tk
-preempt", prev_tid = 13214, prev_prio =
-2, prev_state = 0, next_comm = "tk-
preempt", next_tid = 13215, next_prio =
-21 }

(b) Trace event “sched_switch”

happening to do the preemption

Figure 10: Preemption of a process by another higher priority (-2 versus —21; the lower the value, the higher the priority).

tasks—having the same system priority as the ones missing
their deadlines—reach their deadlines.

Figure 10(a) shows a visualization of such situation in
Trace Compass. We can see that the thread of TID 13214
is running uninterrupted while the thread of TID 1315is
in wait-blocked status (yellow on the figu e). As soon as
the thread 13215 exits its wait-blocked status, it is scheduled
on the CPU, instead of thread 13214. The latter is then in
wait-for-CPU status until the former finishes its task and
returns in wait-blocked status. As shown in Figure 10(b), that
preemption was caused because the priority of the thread of
TID 13214 was only of -2 (fiel “prev_prio”) while the one
of the thread of TID 13215 was of —21 (fiel “next_prio”). In
this case, we need to read the priorities in reverse, meaning
that thread 13215 had a higher priority and thus preempted
the other while it was running.

4.1.3. Using Model-Based Constraints. The application could
be represented using our model approach, setting at least two
states, one for the beginning of each task subject to a deadline
and one for its end. We could here use a deadline constraint to
be informed each time we have not finished our task in time,
limiting the search for problems to precise zones.
Depending on what we expect our application to do,
we could also take advantage of other constraints like a
preemption constraint or a CPU usage one to get more infor-
mation as to why we do not follow the expected workflow.
These constraints would, however, need kernel traces to be

“tracekit:end”
deadline/d < 45ms
cputime/c == 100%
preempt/p ==

“tracekit:begin”

deadline/d = 0
cputime/c = 0
preempt/p =0

Figur e 11:State machine representation of tk-preempt’s work
using constraints to check if our process spent at most 45ms
working, used 100% of the CPU time, and was not preempted during
its critical real-time task.

verifie . Figure 11shows the state machine representation of
our example using all three mentioned constraints.

4.2. Priority Inversion

4.2.1. Problem Summary. Some high performance processes
have to be running all the time. In such situations, the
system and process are usually configured to favor that status,
permanently running, by setting a high real-time priority
and affinity to an isolated CPU, for instance. Still, in some
instances, our high performance process is preempted when
it should not.

In previous work [18], we wanted to allow tracing such
applications. We thus created a minimal UST-traced appli-
cation doing only loops and calculating their duration and
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saw that a delay was unfortunately added when tracing. Our
application, even while being the highest priority one in the
system, was unscheduled at some point while being traced.

4.2.2. Trace Analysis Approach. Using kernel traces, it is
possible to see the different processes being scheduled and
compare their priority.

In the LTTng case, kernel and userspace traces were used
to trace the execution of a minimal UST-traced application
doing only loops. The application was instrumented using
three UST tracepoints, generating three different kinds of
events: “start” and “stop” for, respectively, the start and stop
of the application’s run and “loop” for each iteration of
the low-latency internal loop of the application. We thus
could identify the period of time for which we had higher
latencies and look at the kernel traces to see what happened
on the system side. We identifie that our application,
using the LTTng-UST library, was at some point using
sys_rt_sigpending, sys_rt_sigprocmask, and write
system calls. Those calls were allowing the kernel to take
control of the CPU and thus to schedule waiting kernel
workers or tasks that were waiting to be executed, even if their
priority is lower. This scheme is the one that created a priority
inversion in our high performance situation.

Figure 12shows the high duration between the two “loop”
events of the npt application. We can see in Figure 12(a)the
presence of system calls in between the two events. Looking
further at the trace, we can see a number of system calls
running on the scheduled CPU, as listed in Figure 12(b). We
can also see that “npt:loop” events are only 0.48 ys apart when
there is no system call.

4.2.3. Using Model-Based Constraints. With our model
approach, we can use a state identifying that our application is
in aloop and for each event read that informs us we are doing
another iteration of the loop (“npt:loop” in our example), a
constraint would be validated. This constraint could be a CPU
usage constraint, for instance, ensuring that our application
had at least a high share of its CPU. We could otherwise use
a preemption constraint, to limit the number of times that
our application has been preempted during that iteration of
the loop. Finally, if we consider that our application should
only be working in userspace during the given period of time,
a syscall constraint can be used. Figure 13 shows the state
machine representation of our example using both a CPU
usage and a syscall constraint.

4.3. Unefficient Synchronization Method

4.3.1. Problem Summary. Synchronization between the dif-
ferent threads and processes of a multicore application is
often the hardest part of the design. In high performance
applications, we want to be sure that the thread or process
waiting for another will spend only the necessary amount
of time waiting and be able to resume its activity as soon as
possible. For some programs, however, the sleep command
is used as a synchronization method and is thus adding
unusual latencies in a usually effici t workfl w. When

using such programs, that problem is not always obvious as
potentially hidden by other tasks. Moreover, using sleep as
synchronization either is simply unsafe or implies that we
have strict upper bounds on the duration of some portions
of tasks such that the sleep duration is suffici t to finish the
task we are waiting for. Furthermore, this method is based on
the worst duration case and is rarely a good choice.

The application apt is the package manager used in
Debian-based distributions. MongoDB is an open-source
database software. They have in common that they were both,
at some point, using sleep (or equivalent functions usleep
or nanosleep) to do synchronization in their multithreaded
tasks.

4.3.2. Trace Analysis Approach. Using kernel traces, we can
identify the status of a process as wait-blocked status and use
a waiting dependency analysis to identify the origin of the
waiting status of our process.

Th kernel traces were used to identify what apt was
waiting for in its installation process. Indeed, we found, by
tracing an apt installation, that 37% of the time along the
critical path was spent by the program in a wait-blocked
status. This is surprising because if we are waiting for another
process to produce useful results, the other process (and not
the wait) becomes part of the critical path. A wait along
the critical path is caused by events such as timers (sleep)
or external events. Amongst the different processes created
by apt, a long sleep was found along the critical path,
identifi dusingthe perf toolchain as associated with a call to
nanosleep, used to “give [the child process] time to actually
exit and produce its results, avoiding an attempt to read the
results before they were ready.”

Kernel traces also identifi d that the same synchroniza-
tion strategy was used in MongoDB. Knowing that there was
an unusual, infrequent, long latency in the run of batch insert
commands sent to the MongoDB server, we used tracing and
trace comparison to understand what was happening for
those instances. We then found that a s1leep was used to wait
for some delay before trying to obtain a hazard pointer to a
page of data. That delay was inserted to allow another thread
to finish its task, if it was trying to evict that page from the
cache of MongoDB at the same time.

4.3.3. Using Model-Based Constraints. Considering that the
application should normally have well-bounded delays for
its tasks, we could use our model approach to represent the
application normal task and use deadline constraints to verify
that we are not having unduly long latencies. For the MongoDB
situation, this could be set as having 1s to 2 s deadline, since
most commands run in less than 700 s but were exceeding
3s about once every 10 000 commands.

4.4. Wait-Blocked Processes on Multiprocessor Activity

4.4.1. Problem Summary. Processes sometimes expect high
performance for multithreaded tasks on a multicore system.
In these cases, cache access and synchronization are usually
optimized to achieve a good scalability. However, it may
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(a) Screenshot of Trace Compass showing the period between two “npt:loop”
events in the application

[..51386] npt:loop: { cpu_id = 1 }, {

countloop = ..3, .., duration = 0.485246
}

[..51871] npt:loop: { cpu_id = 1 }, {
countloop = ..4, .., duration = 0.484496
}

[..52668] npt:loop: { cpu_id =1 }, {
countloop = ..5, .., duration = 0.485246
}

[..55300] hrtimer_cancel: { cpu_id = 1 },
[..56260] hrtimer_expire_entry: { cpu_id = 1
}

[..58523] softirq_raise: { cpu_id = 1 }, .
[..59168] rcu_utilization: { cpu_id = 1 },
[..59775] softirq_raise: { cpu_id =1 }, .
[..60238] rcu_utilization: { cpu_id = 1 },

[..60810] hrtimer_expire_exit: { cpu_id = 1
}3 ..

[..61303] hrtimer_start: { cpu_id = 1

[..62923] sys_rt_sigpending: { cpu_id

H

[

1 }5
[..64118] exit_syscall: { cpu_id = 1 },

[..65228] sys_rt_sigprocmask: { cpu_id = 1
}

[..66368] exit_syscall: { cpu_id = 1 },
[..67190] sys_write: { cpu_id = 1 },
[..70615] sched_wakeup: { cpu_id = 1 },
[..72728] exit_syscall: { cpu_id = 1 }, ..
[..73547] sys_rt_sigprocmask: { cpu_id = 1
}, ..
[..74773] exit_syscall: { cpu_id = 1 },
[..77392] npt:loop: { cpu_id = 1 }, {
countloop = ..6, .., duration = 24.5571

}

(b) Kernel events traced between the two “npt:loop” events showing kernel tasks
running while the application is waiting to continue its work, causing latency

Figur e 12:Unexpected kernel work while tracing an userspace-only application.
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“npt:loop”
cputime/c == 100%
syscalls/s ==

“npt:start” “npt:stop”

stopping

cputime/c = 0
syscalls/s = 0

Figur e 13:State machine representation of npt’s loop using con-
straints to check if our process used 100% of the CPU time between
each loop iteration.
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Figur e 14: Screenshot of Trace Compass showing the barrier at
which threads are waiting before unmapping operations, after their
calls to munmap [2].

happen that some part of the task misses these optimizations
and does not scale well, causing regressions when using
parallel cores. For high scalability multithreaded processes,
this behavior should be avoided.

An occurrence of that problem was encountered while we
were searching the point at which a heavy I/O highly parallel
application becomes I/O-bound. That application used the
mmap system call in different threads to map different parts
of a file. We were puzzled to measure that when using 64
threads on a 64-core machine, the execution time was 10
times slower than with just one thread, even if the threads
are totally independent from each other.

4.4.2. Trace Analysis Approach. Using only kernel traces
and looking at those with a visualizing tool, the regression
appearing in that last example was identifi d. Th processes
seemed to all be waiting for the last calling thread before
unmapping and ending their respective calls to munmap. This
also appeared (but not as clearly) for the mmap calls.

Thi behavior is normally associated with the use of a
barrier, as seen in Figure 14. We were able to fin in the
Linux kernel source code that Linux uses a global semaphore
protecting the mm_struct data structure. We thus found a
solution to circumvent the problem for our application, using
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a unique thread for memory mapping. Th scalability of the
mmap system call was also analyzed in [29].

4.4.3. Using Model-Based Constraints. If we consider the
application as the one of highest priorities on the system,
a CPU usage constraint could be effici t to know if the
process is really taking advantage of the CPU. This constraint
would show if the CPU usage is not suffici t, compared to
our expectations. We could also use a wait-blocked status
constraint, stating that our application should not spend
more than a given time percentage in wait-blocked status.
With one of those constraints, we would detect that situation.

4.5. Wait-Blocked Processes While Using External Resources

4.5.1. Problem Summary. External resources are necessary
in some cases to perform specifi tasks. For instance, for
some highly parallel computing tasks, GPUs are becoming
more and more interesting, as compared to multicore CPUs.
In such cases, computation or data rendering depends on
another processing unit, different from the one running our
application. In high performance situations, if the CPU work
is highly dependant on the GPU work and if the GPU work
is not optimized, bottlenecks will appear and our process will
be in wait-blocked status.

That problem was encountered while we wanted to know
ifan application running on a CPU and requesting GPU work
was optimized.

4.5.2. Trace Analysis Approach. Kernel and userspace traces
can here be useful while using a visualizing tool. In the
previous example, we added userspace tracepoints in the
API calls to OpenCL to get more information about what
happened in the GPU. We thus were able to use the generated
events to understand the origin of a latency in a given process.

In some situations, the latency was induced by CPU
preemption: the GPU had finish d its work but is unable
to get back to the process, currently unscheduled or already
busy, as shown in Figure 15(a).In some other cases, as we can
see in Figure 15(b) it was linked to GPU sharing: the process
was in wait-blocked status, waiting for the GPU to get back
to it, while the GPU was not working on that task, being
already busy on another one. As a solution for such situations,
the process itself and its GPU tasks can be optimized to
improve their use of the available resources. On the CPU side,
it could be using a higher priority for the process to prevent
preemption. On the GPU side, it could be a better division of
the tasks.

4.5.3. Using Model-Based Constraints. Th CPU preemption
could easily be detected by using our model approach. Before
calling the external resource (the GPU in this case), we could
enter a “external resource call” state and once that resource
answers, we could enter a “external resource answered” state,
for instance. We could then use a preemption constraint or a
wait-blocked status constraint to ensure that our process does
not end up unscheduled from its CPU.
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(b) Unifie CPU-GPU view showing the process waiting for the GPU while
the GPU is still working on another task

Figur e 15:Views showing wait situations while using external resources; these views do not exist in the Trace Compass mainline version yet

[3].

Table 1: Number of events and sizes of the traces used to benchmark
our analysis.

Number of events

Name Size (MiB)
UST Kernel Total

tk-preempt (1) 20015 932778 952793 35.40

tk-preempt (2) 800015 10961881 11761896 508.8

modelbench (3) 102400 13510489 13612889 352.6

Th GPU sharing would however be trickier to detect
with the current resources as LTTng does not implement
shared CPU-GPU traces yet. If we have an idea of the
duration of the GPU task, we could use a wait-blocked
status constraint on our process, stating that if our process
is spending more than a given time in wait-blocked status,
something is probably wrong on the resource side. Having
combined CPU and GPU traces could help to further detect
this kind of problems.

5. Analysis Results and Time

Using the case presented in Section 4.1, the associated
detection constraints, and the model represented in Figure 11
to automatically identify its unwanted behavior, we ran
our analysis and benchmarked the time it took to analyze
different traces detailed in Table 1. Thi case has the ability
to provide interesting results, as we can use for it the three
different categories of variables available in our approach.

5.1. Constraints Validation. Figure 16 gives an overview of
the different outputs of our analysis, depending on the
constraints satisfaction and available data. The e results are
just a section of the full report containing all the instances
of the application, according to our model and their analysis
results. For these examples, we used the trace 1.For all those
results, the first part shows the entry in the work state when
receiving a “tracekit:begin” event and the entry in the wait
state when receiving the “tracekit:end” event. We also have
the timestamp of the read event, and we can see the list of
initialized variables and constraints, if any.

Results presented in Figures 16(a) and 16(b) were com-
puted using both the userspace and kernel traces. In Fig-
ure 16(a), we can see that the requirements were satisfied, and
thus each constraint is in the valid status. In Figure 16(b),

none of the requirements were met, thus setting all con-
straints to the invalid status. We can see in that latter case
that the computed value is shown in the report to understand
why the requirements were not met. The results presented in
Figure 16(c) were computed using only the userspace trace.
We can see that given only the userspace trace, the analysis
was not able to verify if all the constraints were satisfi d and
thus set the CPU usage and preempt constraints to uncertain
status, while the deadline constraint has been analyzed and
is, in this case, invalid as the time spent in the work state was
45.4054 ms while the maximum was 45 ms.

Figure 17 shows some invalid sections, as reported by our
tool for other cases presented in Section 4. Figure 17(a) shows
a section in which even though the application discussed in
Section 4.2 was still scheduled and should have been running
only in userspace, four system calls were executed, making
the section last for more than 49 us. Figure 17(b) shows that
MongoDB, discussed in Section 4.3, took much more time
than expected for running a command. Finally, Figure 17(c)
shows that the application discussed in Section 4.4 spends an
unexpected amount of time in the wait-blocked status.

5.2. Running Time. Switching on and off the different con-
straints put in the model represented in Figure 11,we bench-
marked the running time of our analysis. Our test system
consist of an Intel® Core™ i7-4810MQ CPU at 2.8 GHz, with
16GiB of DDR3 RAM at 1600 MHz. Table 2 shows the results
for trace 1while Table 3 shows the results for trace 2.

Given the different numbers of userspace and kernel
events in each trace, we can see the different baseline times
needed to build the state system and the model and verify
the constraints when no constraint is active (None). We thus
see that having around 12 times more kernel events makes
the state system build time around 10 times longer. On the
userspace side, having around 40 times more events makes
the model build time around 35 times longer.

Amongst the constraints, we can see that for both traces
the deadline constraint is the fastest to compute, followed by
the preemption and fin lly the CPU usage. Thi is coherent
with the fact that state system free constraints do not need
complementary data to be computed, while counters need
two state system calls for the interval and timers four calls.

For each trace, however, we can see in Tables 2 and 3 that
the state system build time is always the same, independently
of the active constraints. It thus only depends on the kernel
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Figur e 16:Results of the analysis using the model-based constraints on userspace and kernel traces.

Received tracekit:begin at 18:27:53.143 850
080
Entering state: work
Variables:
- deadline/d = 0
- cputime/c = 0
- preempt/p = 0
Received tracekit:end at 18:27:53.173 146
432
Entering state: wait
Constraints:
- deadline/d <= 45ms [VALID]
- cputime/c == 100% [VALID]
- preempt/p == 0 [VALID]

(a) Result shown following the analysis of both kernel and userspace traces when
the constraints are satisfied

Received tracekit:begin at 18:27:53.173 147
428
Entering state: work
Variables:
- deadline/d = 0
- cputime/c = 0
- preempt/p = 0
Received tracekit:end at 18:27:53.218 552
778
Entering state: wait
Constraints:
- deadline/d <= 45ms [INVALID] value

45.4054ms

- cputime/c == 100% [INVALID] value:
99.9806%

- preempt/p == 0 [INVALID] value: 1

(b) Result shown following the analysis of both kernel and userspace traces when
the constraints are not satisfied

Received tracekit:begin at 18:27:53.173 147
428
Entering state: work
Variables:
- deadline/d = O
- cputime/c = 0
- preempt/p = 0
Received tracekit:end at 18:27:53.218 552
778
Entering state: wait
Constraints:
- deadline/d <= 45ms [INVALID] value

45.4054ms
- cputime/c == 100% [UNCERTAIN]
- preempt/p == 0 [UNCERTAIN]

(c) Result following the analysis of the userspace trace only to simulate a case where
we would not have any kernel trace, thus making the state system unavailable for
the analysis

13
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Received npt:loop at

Entering state: running
Variables:
- cputime/c = 0
- syscalls/s = 0
[...]
Received npt:loop at 16:53:03.116 405 899
Entering state: running
[...]
Constraints:
- cputime/c == 100% [VALID]
- syscalls/s == 0 [INVALID]

16:53:03.116 356 658

value: 4

(a) Invalid section for the case presented in Section 4.2 when verifying the model
represented in Figure 13, during which four (4) system calls were issued

474

Constraints:

Received mongodb:combegin at 21:31:52.618

207 853
Entering state: command
Variables:
- deadline/d = 0

Received mongodb:comend at 21:31:57.557 893
Entering state:

deadline/d < 1s [INVALID]

wait

value: 4.9397s

(b) Invalid section for the case presented in Section 4.3 when verifying a deadline
constraint of less than one (1) second for a task length, which lasted nearly five (5)

seconds in this case

Instance TID: 41176
Received cache:begin

Variables:

Constraints:

Entering state:
waitblocked/wb
Received cache:end at 13:31:22.231 503 275

Entering state:

waitblocked/wb < 10%

at 13:31:22.023 214 053
mmapping

0
waiting
[

INVALID] value:
15.8541%

(c) Invalid section for the case presented in Section 4.4 when verifying a wait-
blocked constraint of less than ten percent (10%) for a task, which spent more than
fi een percent (13%) of its time being blocked in this case

Figur e 17: Examples of invalid sections as reported by our tool for other cases discussed in Section 4.

trace size. This is because the state system is computed to
acquire all the metrics necessary to set constraints at once,
no matter which ones are actually used. While this behavior
is costly for the first run, the state history tree database built
is saved in stable storage to allow fast access for the following
runs, as shown in Table 4.

5.3. Scalability. Th last validation step of our approach has
been to verify its scalability. As our model-based analysis uses
both traces and models, we needed to validate scalability on
those two different aspects.

In order to measure the scalability relative to trace length,
we generated a number of traces containing events needed
to follow the model presented in Figure 11. Each data point
presented in Figures 18 and 19 is the average elapsed execution
time over twenty runs of our algorithm.

Figure 18 presents the results using the different userspace
traces and our different categories of constraints. We can see
in the figure that, for all categories of constraints used, the
complexity of the approach is proportional to the number of
userspace events. We also observe that it takes about twice
as much time to use timer variables as compared to counter
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Tabl e 2: Average (avg.) and standard deviation (atd. dev.) of the time
taken in seconds by a run of the model-based constraints analysis,

computed using 100 runs of the analysis of the trace tk-preempt (1).
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Tabl e 4: Average (avg.) and standard deviation (std. dev.) of the time
taken in seconds to build the state system during the fi st run versus
to verify if it exists in the subsequent runs, computed using 100 runs
of the analysis of the traces.

Constraints Time (in s) Ti ;
State system Model build & Total Trace ' ime (in s)
build constraint verif. Build Access
Deadline tk-preempt (1)
Avg. 3.8500 0.34352 4.1935 Avg. 3.8457 0.0516
Std. dev. 0.23075 0.024853 0.23532 Std. dev. 0.20404 0.00611
CPU usage tk-preempt (2)
Avg. 3.8592 0.72952 45888 Avg. 29708 0.0539
Std. dev. 0.20432 0.047765 0.21079 Std. dev. 1.0463 0.00764
Preemption
Avg. 3.8271 0.46162 4.2887 0
Std. dev. 0.17792 0.043790 0.18840
All three Z 250 A
Avg, 3.8609 1151 4.9860 < E
Std. dev. 0.22394 0.042746 0.22484 8 g 2001
None 22 150
Avg. 3.8312 0.15789 3.9891 2 e
Std. dev. 0.17902 0.017863 0.17954 Z g 100
£ 50
g
Tabl e 3: Average (avg.) and standard deviation (std. dev.) of the time 0 ¥ ? T T T T T 1
0.0¢0 1.0¢6 2.0¢6 3.0¢6 4.0¢6

taken in seconds by a run of the model-based constraints analysis,
computed using 100 runs of the analysis of the trace tk-preempt (2).

Constraints Time (in s)
State system Model build & Total
build constraint verif.
Deadline
Avg. 29.663 6.9751 36.638
Std. dev. 0.84278 1.635 1.931
CPU usage
Avg. 29.599 41.223 70.821
Std. dev. 1.118 1.0844 1.7550
Preemption
Avg. 29.462 22.220 51.682
Std. dev. 1.0688 0.59945 1.2602
All three
Avg. 29.766 58.855 88.620
Std. dev. 1.175 1.2559 1.820
None
Avg. 30.049 5.2234 35.272
Std. dev. 0.98000 0.91995 1.3683

variables. Both those variables are more expensive than using
a state system free variable.

Figure 19 shows the results using the different kernel
traces. It shows that the time it takes to build the state system
is proportional to the number of kernel events in the trace.

Number of userspace events

—e— Without constraint

—a— With a deadline constraint

—v— With a preemption constraint

—+— With a CPU usage constraint
With the above three constraints

Figur e 18: Time (in s) to build the instances and check their
constraints as a function of the number of userspace events. Lines
represent linear regressions of the data.

Also, the linear regressions in both Figures 18 and 19
show that the proportionality follows a linear pattern for both
kernel and userspace traces.

To analyze the model scalability, we used the trace model-
bench (3) that contains 100 calls to 1024 different tracepoints.
Each data point presented in Figures 20, 21, and 22 is the
average elapsed execution time over twenty runs of our
algorithm.

We used this trace to first consider a model without
constraint and with only one transition per state, to analyze
the scalability according to the number of successive states in
the model, as shown in Figure 20. We see that the time it takes
to build the instances is proportional to the number of states
involved.

We then analyzed a situation in which the number of
states was fixed, but the number of transitions from one state
to the other was variable. Figure 21 shows the results for
this case that does not support any constraint, where the
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60

Time (s)

T T T T 1
0.0e0 5.0e6 1.0e7 1.5e7 2.0e7 2.5e7
Number of kernel events

—=— State system build
Figure 19 Time (in s) to build the state system as a function of the
number of kernel events. The line represents a linear regression of
the data.
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750 - o . S .
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0 200 400 600 800 1000

Number of successive states in the model

Figur e 20: Time (in ms) to build the instances as a function of the
number of successive states in the model.

transitions are each based on a different trace event. These
results illustrate that the number of transitions between two
events does not impact the time it takes to build the instances.

Finally, we studied the constraints scalability by fixi gthe
number of states and transitions and by varying the number
of constraints on that transition. We repeated that test for the
three different categories of constraints and for a case using
one constraint of each category. Figure 22 shows the results
of those tests. We can observe that in each case the time is
linearly proportional to the number of constraints involved.

All those tests allow us to validate that our approach
executes in time linearly proportional to the trace length and
model size. It will thus take more time to analyze a bigger
trace, as it will be longer to follow and check a model with
more nodes and constraints.

6. Conclusion and Future Work

We have presented our approach for application modeling,
using model-based constraints, and kernel and userspace

Scientifi Programming
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Figur e 21: Time (in ms) to build the instances as a function of the
number of transitions between two states.

120 -

100

Instances build and
constraints verific tion time (s)

0 200 400 600 800 1000 1200

n

» With n deadline constraints
v With n preemption constraints
+ With n CPU usage constraints
With 7 of the above three constraints

Figur e 22: Time (in s) to build the instances and check their
constraints, as a function of the number and categories of constraints
between two states.

traces, to automatically detect unwanted behavior in real-
time and multicore applications. We presented how our
models use tracepoints to follow the application workfl w.
We then proposed some constraints, using userspace and
kernel traces information, to validate application behavior.
We detailed multiple cases where tracing has been helpful
to identify an unexpected behavior and explained how our
model approach could have saved time by automatically
identifying those behaviors. Finally, we presented the results
produced by our approach and the associated execution time
as well as its scalability relative to trace length and model
complexity.

We believe that using model-based constraints on top of
userspace and kernel traces has a great potential to automate
performance analysis and problem detection. We intend to
pursue our work to use model-based constraints not only
to detect problems but also to identify their root cause. We
could also use this information to allow our approach to
propose simple solutions to common real-time and multicore
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problems, such as raising the priority of a process if it was
preempted but should not have been.
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