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Multilayer virtualized systems analysis with kernel tracing

Cédric Biancheri, Naser Ezzati-Jivan and Michel R Dagenais

Abstract— This paper studies interactions between virtual
machines and their host through the sharing of resources like
physical CPUs. We present an analysis based on kernel tracing
that erases the bounds between virtual machines and their host
to reduce the multilayer system into a single layer. For this
analysis we developed a view that displays a time line for each
host’s CPU, showing across time which process is running, even
if it is from a virtual machine. By using a system of filters, we
added the possibility to highlight in this view either traced
machines, virtual CPUs or specific processes. This last feature
grants the possibility to precisely see on the host where and
when a virtual machine’s thread is running.

I. INTRODUCTION

Among the advantages of cloud environments we can cite
their flexibility, their lower cost of maintenance, and the
possibility to easily create virtual test environments. Those
are some of the reasons explaining why they are widely
used in industry. However using this technology also brings
its share of challenges in terms of debugging and detecting
performance failures. Indeed it can be more straightforward,
when using the right tools, to detect performance anomalies
while working with a simple layer of virtualization. For
instance, if we have information about all the processes
running on a machine through time, then it is possible
to know for a specific thread which processes interrupted
it. Because virtual machines (VM) are running in a layer
independent of the host they are running on, it becomes more
tedious to detect direct and indirect interactions between
tasks happening inside a VM, on the host, or even on nested
or parallel VMs.

In this study, we focus on a way to analyze information,
coming from a host and multiple VMs, as if all the execution
was only happening on the host. The main objective is to
erase as much as possible the boundaries between a host and
the different virtual environments to help a user visualize in
a clearer way how the processes are interacting with each
other.

To achieve this, we use kernel tracing on both the host
and VMs, synchronize those traces, aggregate them into a
unique structure and finally display the structure inside a
view showing the different layers of the virtual environment
during the tracing period. Considering the set of recorded
traces as a whole system is the core concept of our fused
virtual machines (FVM) analysis presented here.

This paper is structured as follow: Section II exposes
some related work about performance anomalies related to
virtual environments. Section III explains in more details the
multiple steps of the FVM analysis and introduces the view
we created to visualize the whole system. Section IV presents

some use cases for the FVM analysis and view. Section V
concludes this paper.

II. RELATED WORK

Dean et al. [1] created an online performance bug infer-
ence tool for production cloud computing. To accomplish
this, they created an offline function signature extraction
using closed frequent system call episodes. The advantage
of their method is that the signature extraction can be
done outside the production environment, without using a
workload that usually triggers a performance default. By
using their tool, they can identify a deficient function out of
thousands of functions. However, their work is not adapted to
performance anomalies involving multiple virtual machines.

In their work, Shao et al. [2] proposed a scheduling
analyzer for the Xen Virtual Machine Monitor [3]. The
analyzer uses a trace provided by Xen to reconstruct the
scheduling history of each virtual CPU. By doing so, it
is possible to retrieve interesting metrics like the block-to-
wakeup time. However, this approach is limited to Xen and
not directly applicable to other hypervisors. Furthermore, a
trace given by Xen is not enough to identify a process inside
a VM that creates a perturbation across the VMs.

To gain in generality, some work was initiated with the
intention to detect performance anomalies across virtual
machines by using kernel tracing.

With PerfCompass [4], Dean et al. used kernel tracing
on virtual machines and created an online system call trace
analysis, able to extract fault features from the trace. The
advantage of their work is that it is only needed to trace
the virtual machine’s system calls and not the host. Conse-
quently, their solution has a low overhead impact and is able
to distinguish between external and internal faults. However,
it is not possible to see the direct interaction of the VM with
neither the host nor the other VMs.

Another work proposed by Gebai et al. [5] focused more
on the interactions between several machines. The authors
proposed at first an analysis and a view showing for each
virtual CPU when it is preempted. They also created a
way to recover the execution flow of a specific process by
crossing virtual machines boundaries to see which processes
preempted it.

Their work is similar to ours but differs on multiple
points. For instance, in their work, the Virtual Machine view
displays one row for each virtual CPU. This number can
easily grow if numerous VMs are traced. Consequently, the
readability of the view can be altered. Additionally, by doing
so, information about physical CPUs is lost. It is therefore



impossible to track a VM, a virtual CPU or a process on the
host.

No previous work tries to represent the full execution of
a multilayered system as if everything was happening on the
host. Nonetheless, in reality, every process, even in nested
VMs, eventually runs on a physical CPU of the host. Our
study will fulfill this gap.

III. FUSED VIRTUAL MACHINES ANALYSIS

Computerized systems tend to rely on a multilayer ar-
chitecture. Those layers can either be physical, in which
case each layer will be represented by physically separated
resources, or logical, meaning all layers will be contained
inside a unique physical machine. A heavily logically mul-
tilayered system can for instance be simply identified as all
the steps between: user interface, data processing, and data
storage on physical media or transmission via network.

In this paper, a layer will be analogous to an execution
environment that can relate to either a host, or a virtual
machine running on a host. Containers are also described as
a level of virtualization [6]. However, we will not consider
them here since their behavior is quite different from virtual
machines. Figure 1 shows how the different layers can be
organized in practical cases. Systems not using layers of
execution environment have a simple layer which is the host.
Virtual machines add a layer above the host. In some cases,
users can have containers directly running on the host but,
for some security reasons [7], they are most often used on
top of virtual machines.

Fig. 1: Examples of different configurations of layers
of execution environment.

The idea we introduce here is to erase the bounds between
a physical machine and its VMs to simplify the analysis
and the understanding of complex multilayer architectures.
Some methods for detecting performance drops already
exist for single-layer architectures. To reuse some of these
techniques on multilayer architectures, one might remodel
such systems as if all the activity was involving only one
layer.

Architecture
The architecture of this work is described as follows: first

we need to trace the host and the virtual machines, then
because of clocks drift [8] we have to synchronize those
traces. After this phase, we use a data analyzer that will fuse
all the data available from the different traces to put them in

a data model. Finally, we need to provide an efficient tool
to visualize the model that will allow the user to distinguish
easily the different layers and their interactions. Those steps
are summarized in Figure 2.

Fig. 2: Architecture of the fused virtual machines
analysis.

A trace consists of a chronologically ordered list of events
characterized by a name, a time stamp and a payload. The
name is used to identify the type of the event, the payload
provides information relative to the event and the time stamp
will specify the moment when the event occurred.

In this study, we use the Linux Trace Toolkit Next Gen-
eration (LTTng) [9] to trace the machines’ kernel. This low
impact tracing framework suits our needs, although other
tracing methods can also be adopted. By tracing the kernel,
there is no requirement to instrument applications. Therefore,
even a program using proprietary code can be analyzed by
tracing the kernel. However, some events from the hypervisor
administering the VMs are needed for the efficiency of
the fused analysis. The analysis needs to know when the
hypervisor is letting a VM run its own code or when it is
stopped. Since, in our study, we are using KVM [10], merged
in the Linux kernel since version 2.6.20 [11], and because
the required trace points already exist, there is no need for
us to instrument the hypervisor. The event indicating a return
to a VM running mode will be generically called a vmentry,
while the opposite event will be called a vmexit.

Synchronization is an essential part of the analysis. Since
traces are generated on multiple machines by different in-
stances of tracers, we have no guaranty that a time stamp for
an event in a first trace will have any sense in the context of
a second trace. Figure 3 shows that without synchronization
two traces recorded at the same time can seem to be created
at two different times. The right scheduling of events, even
coming from different traces, is crucial because when fusing
the traces of a VM with its host, the events of the VM will



Fig. 3: Traces visualization without synchronization.

have to be exactly between the vmentry and the vmexit that
delimit the beginning and the end of the VM’s execution. An
imperfect synchronization can be the vector of incoherent
observations that would impede the fused analysis.

Because VMs can be seen as nodes spread through a
network, a traces synchronization method for distributed
systems [12] can be adapted. As [5] we use hypercalls from
the VMs to generate events on the host that will be related to
the event recorded on the VM before triggering the hypercall.
With a set of matching events, it is possible to use the fully
incremental convex hull synchronization algorithm [13] to
achieve traces synchronization.

The purpose of the data analyzer is to extract from the
synchronized traces all relevant data and to add them in a
data model. As a result, still being a kernel analysis, the
fused analysis is based on a preexisting kernel analysis used
in Trace Compass, a trace analyzer and visualizer framework.
Therefore, the fused analysis will by default handle events
from the scheduler,the creation, destruction and waking up
of processes, the modification of a thread’s priority, and even
the beginning or the end of system calls.

Unlike in a basic kernel analysis, the fused analysis
will not consider each trace independently but as a whole.
Consequently, the core of our analysis is to consider events
coming from VMs as if they were directly happening on the
host. As shown in Figure 4, the main objective is to construct
one execution flow by fusing those occurring on the host and
its VMs. The result should be a unique structure reviewing
all the executions layers at the same time, replacing what
was seen as the hypervisor’s execution, from the point of
view of the host, by what was really happening inside the
VM.

Data model
The data analysis needs an adapted structure as data

model. This structure needs to satisfy multiple criteria. A
fast access to data is preferred to provide a more pleasant
visualizer, so it should be efficiently accessible by a view to
dynamically display information to users. The structure will
also need to provide a way to store and organize the state
of the whole system, while keeping information relative to
the different layers. For this reason, we need a design that
can store information about diverse aspects of the system.
As seen in Figure 5, the structure will contain information
relating to the state of the different threads but also of the

Fig. 4: Construction of the fused execution flow.

numerous CPUs and VMs. In red is shown the information
specific to a multilayer analysis, like the condition of the
CPU (running a VM or not) or the number of the virtual
CPUs currently running on a physical CPU.

Fig. 5: Structure of the data model.

Finally the data model provides a time dimension aspect,
since the state of each object attribute in the structure is
relevant for a time interval. Those intervals introduce the
need for a scalable model, able to record information valid
from a few nanoseconds to the full trace duration.



In this study, we chose to work with a State History Tree
(SHT) [14]. A SHT is a disk-based data structure designed
to manage large streaming interval data. Furthermore, it
provides an efficient way to retrieve, in logarithmic access
time, intervals stored within this tree organization [15].

Algorithm 1 constructs the SHT by parsing the events
in the traces. If the event was generated by the host, then
the CPU that created the event is directly used to handle
the event. However, if the event was generated by a virtual
machine, we need to find the physical CPU harboring the
virtual CPU that created the event, before handling it.

Algorithm 1 Handling multilayer kernel traces

Input: StateHistoryTree s, List <Event> list
1: for each event in list do
2: // the machine that generated the event
3: machine = event.getMachine();
4: if machine is a VM then
5: // translation between virtual and physical CPU
6: cpu = getPhysicalCPU(machine, cpu);
7: else
8: // the CPU that generated the event
9: cpu = event.getCPU():

10: end if
11: handleEvent(s, event, cpu);
12: end for

Algorithm 2 describes the handling of a vmentry event. In
this case, we query the virtual CPU that is going to run on
the physical CPU. Then, we restore the state of the virtual
CPU in the SHT, while we save the state of the physical
CPU. The exact opposite treatment is done for handling a
vmexit event.

Algorithm 2 Handling vmentry event

Input: StateHistoryTree s, Event e, int cpu
1: if event == vmentry then
2: VirtualCPU vcpu = Query the virtual CPU going to

run on cpu;
3: Save the state of cpu contained in s;
4: Restore the state of vcpu in s;
5: end if

Visualization
After the fused analysis phase, we obtain a structure

containing state information about threads, physical CPUs,
virtual CPUs and VMs through the traces duration. Our
intention at this step is to create a view made especially for
kernel analysis and able to manipulate all the information
about the multiple layers contained inside our SHT. This
view is called the Fused Virtual Machine (FVM) view.

This view shows, in a time graph representation, the state
of the physical CPUs during a tracing session with one
line for each CPU. This state can either be idle, running
in user space, or running in kernel space. Those states are
respectively represented in gray, green and blue. However,

there is technically no restriction on the number of CPU
states if an extension of the view is needed.

The Resources view is a time graph view in Trace
Compass that is also used to analyze a kernel trace. It
normally manages different traces separately and doesn’t
take into account the multiple layers of virtual execution.
Figure 6 shows the difference between the FVM view and
the Resources view displaying respectively a fused analysis
and a kernel analysis coming from the same set of traces.

In this set, servers 1, 2 and 3 are VMs running on the host.
All VMs are trying to take some CPU resources. As should
be, the FVM view shows all the traces as a whole, instead
of creating separate displays as seen in the Resources view.
The first advantage of this configuration is that we only need
to display the physical CPUs rows instead of one row for
each CPU, physical or virtual. With this structure, we gain
in visibility. The multiple layers’ information is condensed
within the rows of the physical CPUs.

To display information about virtual CPUs and VMs
without adding a row for each, the FVM view asks the
data analyzer to extract some information from the SHT.
Consequently, for a given time stamp, it is possible to know
which process was running on a physical CPU, and on which
virtual CPU and VM it was running, if the process was not
directly executed on the host.

We noticed that, in the Resources view, the information
is often too condensed. For instance, if several processes are
using the CPUs it can become tedious to distinguish them.
Therefore, this situation is worse in the FVM view, because
more layers come into play. For this reason, we developed a
new filter system in Trace Compass that allows developers
of time graph views to highlight any part of their view,
depending on information contained in their data model.

Using this filter, it is possible to highlight one or more
physical or virtual machines, some physical or virtual CPUs,
and some specifically selected processes. In particular, this
filter will display what the user doesn’t want to see, as if
it was covered with a semi opaque white band. Selected
areas will appear highlighted in contrast. Consequently, it
is possible to see the execution of a specific machine, CPU
or process directly in that view.

Figure 7 shows the real execution location of a virtual
machine on its host. With this filter, we can distinctively see
when the CPU was used by another machine, instead of the
highlighted one.

IV. USE CASES AND EVALUATION

Use cases
The concept of fusing kernel traces can have very inter-

esting applications. In this section, we expose two different
use cases.

Our first use case is selecting a specific process running
on a virtual machine in order to observe with the FVM view
when and where the process was running.

Figure 8 shows that from the point of view of the VM, the
process vm forks was running without interruption according
to the Control Flow view. The Control Flow view is a view



Fig. 6: Comparison between FVM view and Resources view.

Fig. 7: VM server1 real execution on the host.

listing all the threads that were running during the tracing
session, giving the state of those threads (running, waiting for
cpu, blocked. . . ). However, when we highlight the process in
the FVM view, we clearly see that the selected process was
preempted. If we magnify the view, we can even directly
see which process from which machine is preempting our
highlighted process, and when the process migrated to an
other CPU.

These observations are a direct result of both creating an
analysis that considers a set of traces as a whole and creating
a view that takes into account the existence of the different
layers.

Our second use case benefits from the fact that, by erasing
the bounds between a virtual machine and its host, this

analysis and view provide a tool to better understand the
execution of an hypervisor. With the FVM view, it is possible
to precisely see the interactions between the hypervisor
and the host, depending on the instrumentation used. For
instance, we can observe how an interruption is handled
inside a VM.

Figure 9 shows what occurred during an I/O interruption
happening in a VM running on physical CPU 1. We high-
lighted the execution of the VM to see when the hypervisor
is involved. The hypervisor stopped the VM, meaning that
the thread went out of guest mode, returned to kernel mode,
then to user mode to handle the I/O interruption, then back
to kernel mode and finally let the VM run by switching back

Fig. 8: Highlighted process in the FVM view.



Fig. 9: Handling of an ata piix I/O interruption by the hypervisor on the physical CPU 1.

to guest mode. This behavior is completely consistent with
what is expected in [10].

Evaluation

If we compare the time needed to complete a fused
analysis for a set of traces and the one needed to complete
a simple kernel analysis for the same set, we come to the
conclusion that the simple kernel analysis is faster. Let Ti be
the time needed to analyze trace i. Since the simple kernel
analysis doesn’t consider the set of traces as a whole but each
trace independently, the analysis of the set can be done in
parallel, each core dedicated to one trace. If we suppose that
we have more cores than traces, then the elapsed time during
the analysis will be max1≤i≤nTi where n is the number of
traces.

If the set is considered as a whole, then it is difficult to
process the traces in parallel. The elapsed time during the
fused analysis will consequently be

∑n
1≤i Ti.

Figure 10 shows experimentally the time needed for the
fused analysis and a simple kernel analysis to build SHTs
for different sizes of sets of traces. We see that the build
time for the fused analysis is directly related to the size of
the set of traces.

Fig. 10: Comparison of construction time between
FusedVM Analysis and Kernel Analysis.

However, we need to realize that the traces of the set
are correlated. All the events generated on a physical CPU
between two consecutive vmentry and vmexit events are
coming from the same virtual CPU. This observation means
that, in reality, the fused analysis is as fast as a simple
kernel analysis where all the events are coming from the
host. It also means that there are as many events treated as
if the processes in the VMs were directly running on the

host. Consequently, if a method to analyze a kernel trace
in parallel is developed, it will be directly applicable to the
fused analysis.

V. CONCLUSION AND FUTURE WORK
In this paper, we presented a new concept of kernel traces

analysis adapted to cloud computing and virtualization that
can help the development of those technologies. This concept
is independent of the kernel tracer and hypervisor used. By
creating a new view in Trace Compass, we showed that
fusing multilayer traces allows us to reuse existing tools
targeted to single layer architectures. Finally, by adding a
new filter feature to the FVM view, we showed how it is
possible to observe the real execution on the host of a virtual
machine, one of its virtual CPUs or its processes. In the
future, we can expect more tools being reused to support a
fused kernel analysis. We could also use the same principle
to analyze more thoroughly systems using applications and
programs in virtual execution environments, such as Java,
Python or even containers. Finally, we can also extend our
work to be able to visualize VMs’ interactions between nodes
to better understand the internal activity of cloud systems.
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