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Abstract—Execution traces are frequently used to study system
run-time behaviour and to detect problems. However, the huge
amount of data in an execution trace may complexify its analysis.
Moreover, users are not usually interested in all events of a
trace, hence the need for a proper filtering approach. Filtering
is used to generate an enhanced trace, with a reduced size and
complexity, that is easier to analyse. The approach described in
this paper allows to define custom filtering patterns, declaratively
in XML, to concentrate the analysis on the most important and
interesting events. The filtering scenarios include syntaxes to
describe various analysis patterns using finite state machines.
The patterns range from very simple event filtering to complex
multi-level event abstraction, covering various types of synthetic
behaviours that can be captured from execution trace data. The
paper provides the details on this data-driven filtering approach
and some interesting use cases for the trace events generated by
the LTTng Linux kernel tracer.

I. INTRODUCTION

”the most commonly adopted approach for observing and
analyzing the behaviour of distributed systems has been event-
driven monitoring[...]. System behaviour is monitored in terms
of a set of primitive events representing the lowest observable
system activity, Users specify composite events using compo-
sition operators relating to event sequences which may span
events from several processes and temporal constraints. For
example a composite event can be defined s event e1 followed
by event e2 within a window of 5 seconds. A composite event
is detected w hen the specified pattern of events is recognized
but the variable event delays make detection of distributed
composite events particularly challenging- how to detect a
composite event which is not invalidated as a result of a late-
arriving event to which it refers. Current systems either do not
address this problem or provide limited flexibility to deal with
it.” ”another issue that needs more attention is the changing
monitoring requirements. As the system evolves there may be
a need to dynamically change the patterns of activity which
is monitored without having to bring the operation of the
system to a halt so there is a need to dynamically change
event specifications. For efficiency purposes it would be best
to perform monitoring activities as close to the source of event
reports as possible. This stipulates a dynamic and distributed
event monitoring service.

GEM allows the programmer to specify arbitrarily complex
(composite) events and guards in the LHS of the rules. ”

With the increasing core count and sophistication of today’s
complex computer systems, it becomes difficult to find and
locate flaws because they are usually running distributed
applications and cannot be stopped for debugging, or because
the suspected problems occur rarely. Tracing is hence a good
way to collect information about system run-time behaviour,
since it is collected on live systems but can be analyzed later
by developers and administrators, in order to understand the
system’s behaviour and finally detect and resolve its problems.
The tracing of the Linux kernel using the Linux Trace Toolkit
next generation (LTTng) [1] is a mature process that records
the complete interaction of the different kernel modules in an
events log.

However, there can be a huge log of trace data, even for
a small system execution duration, but with only a small
subset of events that are significant to the users, complicating
the analysis. Thus, it becomes necessary to reduce the size
and complexity of the trace. One proper solution to this
problem is trace abstraction [2], [3], which generally consists
of grouping raw trace data and generating synthetic and high-
level events that could replace the raw data in the trace.
Another solution is events filtering which allows to only
analyze an interesting sequence of events from a trace. Trace
filtering actually eliminates outlier trace events and noise, and
highlights a selected set of trace data based on either the type
of events, timestamps, process name, event arguments or even
the priority or importance of an event [4], [5].

Both trace abstraction and trace filtering techniques may
need to match some patterns within the trace to be fully helpful
and effective. There are many techniques in the literature
that use pattern based techniques to abstract or filter out
the trace data [6], [7], [8]. However, they usually use a
constant set of patterns, mostly hard-coded in the system,
which reduces the flexibility of the approach. Users are only
limited to the predefined patterns of abstraction scenarios. Our
solution solves this problem by allowing users to define their
analysis patterns using a XML-based language and import
them dynamically during the analysis time, which can enhance
the flexibility and usability of the approach.

The remainder of the paper is organized as follows: after
discussing the related work, the architecture of the approach
and the syntax of our XML-based language is presented. Then
are discussed some use-cases, the strengths and weaknesses of



the approach, and finally an outlook of future work.

II. RELATED WORK

Research and development in the area of event filtering
has already been addressed in prior work. Various papers
have expressed opinions and findings on pattern description
languages in the past filteringmalony, filteringsudanshu, fadel,
wahab-correlation, ezzati. In [6], [8], the authors divided
these description languages into several categories and give
examples for each category. Their solutions, in general, are
not a stateful approach, which would preserve the common
and recent status of the analyzer and would avoid recalculating
and regenerating this status frequently [3], [9]. Our solution
solves this problem by providing a model database, to store the
common and recent states of the pattern matching processes,
to extract the recent data at any given point, and also to share
the common data between the different processes, to increase
the overall performance of the approach.

Steven Eckmann et al. [10] presented an automata-based
language, called STATL, to describe scenarios for intrusion
detection. They provide details on the syntax of the language
before giving use-cases of attacks. Gabriel Matni et al. explain
in [6] the interest of choosing a state machine approach to
describe patterns. They express the benefits of this choice
based on the ”simplicity and expressiveness” of the state-
transition language ([6]), the domain independence advantage
and the ease to generate synthetic events. Wasseem Fadel in
[7] and also Naser Ezzati et al. in [3] generate synthetic events
to realize trace abstraction, using state machines to describe
patterns. The patterns are then stored in a library that will help
to simplify the analysis and reduce the trace size.

Most of the patterns and scenario description languages pre-
sented in the above literature are application-specific, and the
semantics used sometimes hinders the extension and addition
of new types of patterns. For example, the STATL language
[10] is designed specially for intrusion detection, or the kernel
trace analysis proposed in [8] is specific to fault identification.
Our approach is somewhat generic. It supports different trace
types and different filtering methods and does not force users
to a specific usage or a specific type of detection.

Our solution can be used to filter out different types of
trace data based on different criteria, including trace event
names, timestamps, synthetic events, state of a system (or
state of a system module), etc, which are defined and provided
though an XML syntax. Our approach is somewhat similar to
STATL [10]. However, we describe scenarios using an XML
automated-based architecture, which makes the definition of
patterns generic.

III. ARCHITECTURE

As mentioned earlier, the most advanced trace tools do
support some sort of trace abstraction and filtering. However,
one limitation of those tools is that they are only available for
a specific trace format and analysis. They usually provide a
few predefined filtering and analysis methods, so that users
are forced to use only those available features.

The goal of this work is, however, to provide a generic trace
filtering method, allowing users to define their own custom
analysis patterns and views using a proposed XML-based
language. In this data-driven approach, users can define their
patterns and scenarios to abstract and filter information out of
the trace data (at different granularity levels) and output the
only interesting (aggregated) part of the trace data.

Fig. 1. Data processing in the filter analyzer

The architecture of the new system is displayed in Figure 1.
This generic data-driven trace filtering method works in two
main steps:
• Model creation, to create a model from the given user-

defined XML pattern: users can define their filter patterns
using the proposed XML pattern description language.
Then the event handler, inside the analyzer, parses the
XML file and creates models from that. The analyzer
transforms all the FSMs, transitions and actions in the
XML file into JAVA models. These JAVA models are used
in the second step in order to parse and filter the data.

• Event filtering, to use the generated models to scan and
analyze the trace events and generate the desired outputs:
the Filter analyzer is the module designed to use the
input XML patterns to filter out the data in the trace.
It is a JAVA module implemented as a plug-in for the
Trace Compass project 1. The main section of this filter
analyzer, as shown in Figure 1, is the event handler that
applies the filtering patterns against the incoming events.
The event handler receives the events one by one. The
incoming event is passed to the FSMs. Each FSM has a
list of running scenarios. It gives the receiving events
to each of the running scenarios. Then, the scenarios
process the filters and execute the needed actions before
examining the next event.

A. XML language structure

In the following, we present the proposed XML language.
It explains how the patterns are defined and modeled. First,
the motivation for selecting XML to describe the scenarios is
explained:
• Simplicity: Pattern descriptions are accessible since the

XML syntax is fairly easy to understand. Users can define

1https://projects.eclipse.org/proposals/trace-compass



their own scenario. Adding new patterns is then easy to
do.

• Flexible patterns: Since the XML language is extensible,
we design our own tags in a way such that possible
scenarios are not limited to some specific application,
such as attack detection or kernel interactions, etc.

Our state machine operates through three main entities that
are directly defined in the XML file by the users: FSM (Finite
State Machine), Transition Inputs, and Actions. The example
shown in Figure 2 is used to describe these different entities.
This sample pattern is used to extract the ”current running
thread for each CPU” at any given time of the execution.

Fig. 2. XML description to handle the CPU scheduling event

1) FSM: A FSM is a Finite State Machine to indicate the
patterns to match. It has an ID and an attribute called ’multiple’
which is a boolean that tells if several instances of this state
machine are allowed to run concurrently on the same event
sequence. A FSM contains a state table that defines all the
states in the scenario. The state table contains one or more
state definitions. A FSM also supports pre-conditions and pre-
actions in its description. An XML file can have more than
one FSM described within it. This allows to process more than
one independent scenario at the same time, or even scenarios
that depend on one another. It is then necessary to specify in
the file which FSM should start running at the beginning.

State definition: A state definition is to define different
states of a state machine and its possible transitions and
actions. Each state definition has a mandatory unique name
to label the state.

Transition: The transitions describe how to switch between
the states. It contains an input attribute which is the ID of the
transition input that will trigger this transition and an action
to execute when the input is validated. The transition allows
to know what is the next step in the state machine.

2) Transition Input: A transition input is the input of a
transition in a state definition. It actually shows who can trig-
ger a state transition. In general, the input can be any (group
of) raw trace event(s), or any (group of) synthetic event(s),
which may have resulted from another filtering pattern.

The input can also be based on conditions over the trace
events. It is the validation of these conditions that will in fact
trigger the corresponding transition(s) within the states. We

distinguish two types of conditions: conditions on the event
data and conditions on the time values. The conditions based
on event data can validate the name of the event and/or some
fields of the current event. On the other hand, conditions based
on the time are valid if the received event happened within a
range of time from a starting point of that event, or if the
received event happened between two specific timestamps.

Both condition types support basic boolean operations: and,
or, not. The transition inputs used by the transitions are listed
at the beginning of the XML file, so they can be used by all
FSMs described in the file.

3) Action: An action is the operation that is executed when
a pattern is matched (i.e., when a transition is valid). We define
4 types of actions:
• State changes: they are used to store data in the state

system (which will be explained shortly). It allows to
modify or add values in the state system. These values
can be used in other states to validate conditions or to
add information about the state of the system.

• Synthetic event creation: It is possible to generate a
synthetic event within the execution of the state machine.
They can then be used either to realize abstraction and
reduce the size and complexity of the trace, or also as
conditions for transition’s inputs for later analysis.

• Starting of another FSM: A new instance of a state
machine can be generated by an action. The ID of the
FSM must be specified.

• UI action: A UI action may be defined in the XML
file. For example, we can select a range of events in the
analysis. It is possible to select, either all the events from
the start of the scenario until the current state or to only
select the events that have triggered state changes. It is
also possible to aggregate several actions either in the
action tag and/or in the transition. The actions will then
been executed in the order of their appearance.

B. Data Structure: State system

The reader may have noticed the existence of different
notions of ”state” in the XML sample shown in Figure 2.
There actually exists two main notions of ”states” here. One
is used as part of any normal state machine, as widely used
in the related literature. Another definition of ”state” is the
one that is used here in the ”¡state change¿” (i.e., part of
the ¡Action¿). The meaning of ”state” in ”state change” is
somewhat different. It refers to a generic data model called
”State System” [11] that was used to store a model of the
state of the traced system, built from the information in the
events, as they are processed.

The state system is a set of data structures that acts like
a temporal database [12]. It is actually a generic container
in which users store their own custom-defined models. As
mentioned earlier, in our design, there is no limitation on
how users can define their models. They define their custom
models using the aforementioned XML structure and then,
while processing events, build and store the model into this
generic model container which is called ”state system” . The



models stored in the state system are used later to retrieve,
analyze and also visualize the information [9].

The state system uses an interval tree to store the state
intervals [11] providing a complete description of the state
history of the modeled system. This data structure is very
convenient since it enables querying the stored values by
time. It is then possible to access the stored data to use
with transition’s inputs or at the analysis level. We create a
”state value” for each value that we want to save in the state
system. The state system produces state changes to store each
state value and ”each attribute value, between two changes,
represents a state interval” [13]. The state system uses a state
provider to build the state from the trace events. Thus, our
pattern matching system proceeds with the analysis of the trace
using a state provider. The use of the state system reinforces
the generic side of the proposed XML approach.

We use the state system to store both the ”internal data” that
give information about the state machine during its execution,
and the ”external data” defined by the users. This makes the
FSM state visible in order to easily verify and understand their
operation and correct eventual errors in their definitions. The
information saved in the ”state system” can be timestamps,
status, number of matches, fields, etc. that will be useful for
the analysis or debugging of the state machines.

It is also possible to specify at the top of the XML file a list
of fields that we want to automatically save in the state system
each time we see them in an event. Then, we can activate in
the state definitions the transitions upon which we want to
save these ”special fields”.

C. Visualization

filter view

A few visualization views are designed to display the output
of the filtering patterns. The filter view is a tabular view to
display the matched patterns. It shows those patterns that are
matched during the analysis. For each matched pattern, it gives
the timestamps of the matching duration, the number of events
included, the pattern name and some other information. Figure
3 displays this view.

Fig. 3. A filter table view to display the matched patterns.

Synthetic events view

Another view is to display the synthetic events that are
generated during the trace analysis. As explained earlier, the
filtering module may generate some synthetic events to show

high level aspects of the trace or to use as an input in the
future filtering phases. Figure 4 depicts the synthetic events
view.

Fig. 4. A synthetic table view to display the resulting abstract events.

Filter status (Debug) view

Another interesting view is the filter status view (or debug
view) used to debug the pattern matching process. It enables
users to go back and forth in the trace and display the different
internal states of the pattern matching processes. It can be
used to follow and dig into a pattern to see how and why it
is matched (or not matched). Figure 5 depicts this filter status
(debug) view.

The view shown in Figure 5 displays the status of the
matched pattern (i.e., process cloned) for the given time (i.e.,
state 0). Users can go back and forth to follow other possible
states of this pattern.

IV. ILLUSTRATIVE EXAMPLE AND DISCUSSION

In this section, we provide an example of our approach:
a fault detection scenario that can be performed using our
proposed system. The ”SYN flood” 2 is a well-known attack in
computer network security. A system is under attack when the
number of half-open TCP [14] connections reaches a certain
threshold. A half-open TCP connection is globally an attempt
at a connection that fails at the last step of the TCP three-way
handshake. Instead of receiving an ACK response from the
client, the server reaches a timeout event, meaning that the
client never answered. It is a kind of denial-of-service attack
which aims at making the server unavailable by flooding it
with queries. For this scenario, we use 2 FSMs: One FSM
to match or detect the half-open TCP connections pattern in
the trace and another one to match the threshold of synthetic
events of half-open TCP connections generated by the first
FSM.

The steps for an half-open TCP connection are:
• The client sends a request for connection. The SYN flag

of the TCP header is then set to 1.
• The server responds with a SYN and ACK in the TCP

header flags. The acknowledgment sequence number of
the server is equal to the sequence number of the client
plus 1.

• The pattern is matched when a timeout is generated
because the client never answers to the server with an

2http://en.wikipedia.org/wiki/SYN flood



Fig. 5. A synthetic table view to display the resulting abstract events.

ACK, or if the client tries to reset the connection with
the server by setting the RST flag to 1 and using the
acknowledgment sequence number of the server in the
previous step as its sequence number.

We used the flags and the value of the sequence numbers
to define the conditions for transition inputs in the XML
description of the scenario. We generated a synthetic event
for each half-open TCP connection we found. Then, when the
number of half-open TCP connections reaches a predefined
threshold, we generate a ”SYN flood attack” synthetic event.
For our testing, we used a timeout of 3 seconds and a threshold
of 100 attempts. The main part of this filtering pattern is shown
in Figure 6.

Fig. 6. Pattern for detecting syn-flood attack.

The hping3 tool3 is used to simulate a SYN flood attack on
the system. We used LTTng version 2.4.0 to record information
about the network connections by enabling the ’inet’ events

3http://www.hping.org/hping3.html

and all the kernel events. We sent requests to an Apache server
running on Ubuntu SPM 14.10 (running kernel version 3.13.0-
43). We instrumented an Intel core i7 with 8 GB of RAM. We
traced the system for a small duration, but long enough to have
a lot of half-open TCP connections. The whole XML file that
describes this scenario is accessible from our public web page
4. Our described pattern has 2 coexisting FSMs. Our pattern
has generated 569 half-open TCP synthetic events and 1 SYN
flood synthetic event 5

1) Discussion:
Generic-ness: The proposed solution uses an XML based

language to define filtering patterns. Using these patterns,
users can define and generate their own custom trace analysis
models to extract and visualize their desired outputs. Although
we have tested it using kernel traces, since there is no
limitation on the models that users can define, using a generic
container called ”state system”, the proposed method can be
used for other types of trace data. In this system, users can
define their patterns based on their custom trace events (as
we did for kernel trace events as an example) and can define
the custom structure of their internal model (to be stored in
the ”state system”). As explained, there is no constraint on
the the format of the traces supported by this solution. It can
be used for any trace data including the trace events of the
LTTng (kernel/user space) Tracer, DTrace, Event Tracing for
Windows (ETW) or any other trace formats.

Performance: First of all, we compare our method when
it uses hard-coded patterns versus the case where it imports
patterns from an XML file. As mentioned in the Architecture
section, and as shown in Figure 1, the proposed method
works by importing the XML pattern and converting it to
a Java-driven model. Then for processing the trace (which
can be the time-consuming phase) the Java-based model is
used. Thus, the only performance difference between this data-
driven approach, and a similar approach that uses hard-coded
patterns, is the time required to convert the XML patterns to

4http://secretaire.dorsal.polymtl.ca/ jckouame/xml files/
5A full video demo of this work can be found here:

https://www.youtube.com/watch?v=ghBHqhq8LXI.



the java-based model. Since it is a one-time process, it can be
negligible as compared to the magnitude of the whole trace
analysis time. Table I, an experimental comparison of the two
methods, clearly illustrates our claim.

150 MB Trace XML JAVA
Average Time (second) 70.092 67.663
Min 66.902 65.891
Max 73.724 73.358

TABLE I
MODEL CONSTRUCTION TIME FOR A 150 MB KERNEL TRACE.

However, since the method is still under further develop-
ment, it might be difficult to give a comprehensive perfor-
mance evaluation. However, we can discuss the criteria that
affect the performance and suggest potential optimizations.
In a similar previous work [6], mentioned in the literature,
Gabriel Matni et al. [6] discussed the performance of their
solutions. The criteria they listed are similar to ours. First, the
performance of our solution is directly related to the number
of instances of scenarios running at the same time. In our SYN
flood example, we have 569 instances of the half-open TCP
scenarios running at the same time, if we remove the timeout
condition and wait directly for the reset flag. For a received
event, each of the 569 instances of scenarios will attempt to
validate its corresponding transition, which means that with
an average of 3 transitions per state. Our analyzer will thus
process 1707 conditions per event. This number increases with
the number of coexisting scenarios and is even worse with
a trace full of irrelevant events. A solution to that issue, as
describe in [6], could be to only activate the relevant events.

Filter events, provided only by a specific thread, could
reduce the data computation. We can achieve this by defining
a precondition for the thread in the FSM definition in XML,
in the same way that we could define preconditions in order
to only analyze events that may change the state of the
scenario. In addition, the complexity of the conditions could
be a bottleneck since the conditions can be complex and
have several subconditions. Users should optimize their state
machines and reduce conditions as much as they can. This will
help to reduce the analysis time. Moreover, longer conditions,
and complex scenarios, even if they may be easy to write,
become difficult to understand and to debug.

V. CONCLUSION AND FURTHER WORK

In this paper, we presented a data-driven approach to match
generic filtering patterns within the trace. The difficulties
related to the amount of information were then reduced. This
work will complete previous research from [6], [7], [3], [8].
It provides a pattern description language and user-friendly
analysis that reflects the matched patterns. We use the state
system to store scenario’s temporary data. It is easy to use and
the data backup is already managed. An analyzer creates mod-
els from the XML file and uses them in order to process and
filter the trace data. The simplicity of the XML language eases

both the description and the understanding of the patterns.
Our proposed language runs with some simple key concepts
that users should use. Patterns for several applications can be
created. Synthetic events can be generated and are used to
locate the patterns in the analysis, and can provide details
about the matched scenarios.

This research is still in progress. We have yet to describe
more patterns with this language in order to refine our pro-
posed XML-based language. Also, more optimization will
further improve the effectiveness and performance of our
solution.
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