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ABSTRACT

Execution trace logs are used to analyze system run-time
behaviour and detect problems. Trace analysis tools usually
read the input logs and gather either a detailed or brief sum-
mary of them to later process and inspect in the analysis steps.
However, continuous and lengthy trace streams contained in
the live tracing mode make it difficult to indefinitely record
all events or even a detailed summary of the whole stream.
This situation is further complicated when the system aims to
compare different parts of the trace and provide a multilevel
and multidimensional analysis.

This paper presents an architecture with corresponding
data structures and algorithms to process stream events, gen-
erate an adequate summary -detailed enough for recent data
and succinct enough for old data- and organize them to enable
an efficient multilevel and multidimensional analysis, simi-
lar to OLAP analyses in the database applications. The pro-
posed solution arranges data in a compact manner using in-
terval forms and enables the range queries for any arbitrary
time durations. Since this feature makes it possible to com-
pare of different system parameters in different time areas it
significantly influences the systems ability to provide a com-
prehensive trace analysis. Although the Linux operating sys-
tem trace logs are used to evaluate the solution, we propose a
generic architecture which can be used to summarize various
types of stream data.

Index Terms— stream processing, multilevel analysis,
OLAP analysis, trace abstraction, Linux kernel.

1. INTRODUCTION

Many applications such as network monitoring, web log anal-
ysis and stock exchange analysis tools provide different statis-
tics over data streams [1, 2, 3]. In these applications, a system
administrator or an automated program monitors the statistics
of different system parameters (e.g., the usage of different
system resources) to detect any possible problems, patterns

or attacks. For instance, monitoring and counting the number
of half-open connections in a short duration and comparing
it to a predefined threshold (or to the number of completed
connections) may help to detect a denial of service attack.

In a previous work [4], we presented a framework to store
a history of (offline) trace summary in the trace reading phase
to compute and provide the different statistics of system pa-
rameters in the analysis phase. However, since the trace stream
size, despite the offline trace, is considered unlimited, it is
not possible to store a complete history of the stream. Thus,
heuristics are needed to select and store only the parts of the
input data that are enough to provide accurate statistics. In
other words, a trade-off between the size of the summary and
the accuracy of the query responses is necessary. But in gen-
eral, to guarantee the scalability of the solution the size of
data structures should be small, somewhat independent of the
length of the input trace stream or at most poly-logarithmic to
that.

The query response time is also an important factor in the
aforementioned stream data analysis applications. The sys-
tem should provide a fast response time, facilitate the inter-
active use of the system and satisfy the real-time constraints
of the streaming applications. The other factor is the process-
ing time of the input stream. Since a new event may arrive
at any arbitrary time, per event data processing rate should
be efficient so that the analysis system can operate without
congestion or having to drop input events.

Another challenge is providing a multidimensional and
multilevel analysis. Analysts usually wish to perform the
multidimensional analysis of the input trace stream on an ex-
pressive abstract level, including some multilevel exploration
operations like drill down or roll up to get more or less de-
tailed information [3]. Trace events are multidimensional in
nature and usually represent interactions of different dimen-
sions. For instance, a ”file read” trace event may contain
information from the running process, the file that has been
read, the current scheduled CPU for this operation and the
return value (i.e., the number of bytes read by the operation).



In this paper, we contribute data structures and correspond-
ing algorithms to construct stream cubes and provide OLAP
1 analyses over stream trace data. The solution incrementally
constructs a compact and scalable data store from the input
data, records it in the main memory (and possibly in the disk)
and provides an efficient query mechanism for any flat or hier-
archical queries over a system parameter or a group of them.
Using this approach, users will be able to compute statistics
of multiple system parameters, at different granularity levels,
and for any arbitrary time ranges of the system execution.

Another contribution is that the proposed solution sup-
ports efficient range queries over the time dimension. Other
approaches that support range queries usually work by stor-
ing a solid value of the data and counting or summing up the
values for the queried range. However, this method could be
a time-consuming task, especially when the selected range is
relatively large. By storing the summary data as intervals, our
solution provides an efficient query response time for range
queries, regardless of the size and position of the given range.

The rest of the paper is organized as follows: first, after
looking at the related work we present the architecture of the
solution, the data structures and the techniques used. Second,
we describe the different query types that the system supports.
Then, we discuss the evaluation and experimental results of
the proposed method. Finally, we conclude by outlining spe-
cific areas of investigation for future enhancements.

2. RELATED WORK

Stream analysis has many applications in network monitor-
ing, web logs and click stream analysis, call records analy-
sis, stock exchange and bank transaction analysis, medical
records monitoring, weather monitoring, etc [1, 5]. Several
research studies have been conducted in the literature on the
stream data management [6, 5], OLAP analysis over stream
data [3, 7, 8] and data mining [9, 10]. These studies present
interesting ideas and results on stream data analysis to extract
changes, trends and detect problems.

Several data structures have been proposed to store a his-
tory of stream data. Using a modified version of H-Tree, a
stream cube [3] is proposed to perform a multidimensional
and multilevel OLAP analysis over data streams. They use
different time granularities for recent and decent information
and a tilted time frame [11] to compress the data over the
time dimension. They avoid recording information of all lev-
els and only store the information along the critical paths.
With this technique, the information that is not stored directly
requires on-the-fly processing to be extracted. Even though
our method uses a time frame similar to the presented tilted
time frame, it uses different data structures and organizations
to manage the stream cube. In our method, all items of the
same time points can be extracted synchronously with a sin-
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gle query. Moreover, in our method the range query over the
time dimension is supported directly and efficiently.

Patroumpas et al. [12] propose a stream management ap-
proach that uses different window sizes. In their technique,
different windows are filled simultaneously. The problem
with this solution is that they duplicate data in the different
windows for the same time. In our approach, however, we
avoid duplicating data at different windows while we support
different windows and time granularities. Users can retrieve
information for the last n milliseconds, seconds, minutes or
even for any coarser granularities.

The fixed and moving sliding window methods are used
in the literature to analyze the stream data [1, 13, 12, 2]. In
these techniques, a recent window of items is kept, processed
and used for extracting the desired statistics. The fixed sliding
method refers to the case where a window (fixed or variable
size) is kept or monitored for fixed durations in the past (e.g.,
each 1 second, starting from 2:00 PM yesterday), while the
moving window refers to non-fixed start and end points that
move with the time and is measured using the current time
(e.g., every last 10 seconds) [1]. In our approach, we sup-
port both the variable-size fixed and moving sliding window
queries over the stream cube. At each point, user can ex-
tract multidimensional statistics for the last n time units or
can compute statistics for a fixed window in the past.

3. PROBLEM STATEMENT

In this section, we describe formal notations and definitions
required to present the problem.

3.1. Preliminary Definitions

A dimension schema D is a tuple ≺ Name,LD,�� where:
Name represents a unique name for the schema, LD denotes
a set of levels, representing the multiple granularity levels of a
dimension, and� represents a partial order between elements
of LD that is a graph or a hierarchy of dimension member
items. Each level contains a set of members. A dimension
instance di is defined as a set of members dm from all lev-
els. Figure 1 shows an example of four dimension schemas:
Operation, Machine, Process and File.

In the example shown in Figure 1, the dimension instance
Process is defined as {(System � Process Group), (Process
Group � Process Name), (Process Name � Process ID)}.
Process Group 1, Apache, Firefox, etc. are also member items
of the Process dimension, shown in Figure 2.

A trace stream is defined as a sequence of timestamped
events . . . , ei, . . . ,en, in which, en is considered the most
recent event. Each event e = (dm1, ..., dmk, r1, ..., rm) repre-
sents an interaction between a set of dimensions (dm1, ..., dmk,
i.e., a set of system resources such as CPU, process ID, file-
name, disk block number that results in one or more return
numbers, r1, ..., rm. For instance, a file open event (open,



Fig. 1: Examples of dimension schemas.

Fig. 2: An instance of the Process dimension schema.

CPU1, process2, file0, 3) represents a file open operation that
is performed by a process process2 run by CPU CPU1 to open
a file file0. The result, number 3, shows the output of the op-
eration: the assigned file descriptor value.

One mandatory member of each multidimensional event
is the timestamp field ti ∈ T that is used to order the events.
T, the time dimension, is the set of Natural numbers: T=
{t|t ∈ N}. In this domain, a time interval [t1, t2] is defined
as {t ∈ T |t1 ≤ t ≤ t2}. We also assume that the timestamp
values are distinct and any two events ei, ei have different val-
ues, ti 6= tj . Figure 5 represents a set of trace stream events
gathered by the LTTng kernel tracer. LTTng [14] is a low-
impact and lightweight open source Linux tracing tool, and
provides detailed execution logs of operating system and user
space applications.

We define the term trace stream cube as a collection of
cuboids constructed over a trace data stream. Each cuboid
represents a possible group-by of a measure over a set of di-
mensions. The most specific cuboid, the base cuboid, con-
tains items from all dimensions. It can be used to gather the
statistics for any dimension combinations,e.g., return the IO

throughput for a particular process over a text file in a given
virtual machine. The most generalized cuboid that is also
called an Apex cuboid, contains the total value of a measure
for all dimensions, e.g., whole CPU utilization of the system.
Exploring downward from the apex cuboid to the base cuboid
is called drilling down and the opposite operation, going up-
ward from the base cuboids to the apex cuboid is called rolling
up.

Example. Having three dimensions D1, D2, D3 and a
measure M, the apex cuboid is (*, *, *, M), while the base
cuboid is (D1, D2, D3, M). The combination of all possible
cuboid forms a cube: (*, *, *, M), (D1, *, *, M),(*, D2, *,
M),(*, *, D3, M),(D1, D2, *, M),(D1, *, D3, M),(*, D2, D3,
M),(D1, D2, D3, M).

The term metrics is used to represent quantities to com-
pute, monitor, compare or evaluate the usage or performance
of the different system parameters at different levels of ab-
stractions. For instance, CPU utilization and network through-
put are examples of these metrics. We refer to these quantities
using both the terms ”metrics” and ”measures” in the remain-
der of this text.

Having defined these terms, we seek to perform a multi-
dimensional analysis: we will efficiently extract and compute
the different system statistics from the input trace stream for
not only the different single time points but also for any ar-
bitrary time ranges at the different levels of granularity. For
example, one might require the input/output (IO) throughput
of the whole system, a specific virtual machine, process or a
file, for a specific exact time, e.g., at 3:36’. or for the last 30
minutes.

3.2. Statistics to Monitor

Different types of statistics are supported in our approach:
1- Statistics such as sum, count and average are supported

for any combination of the defined dimensions. Typical ex-
amples are the IO throughput of all files in a particular folder,
the count of specific event types, or the average usage of a
specific CPU. Using these queries, it is possible to provide
frequency counting, or top-k elements, for any time range.
One obvious application of frequency counting is to detect
whether the statistics values exceed the predefined threshold
values. Similarly, top-k queries can be used to identify the
users, processes or applications that consume the majority of
the system resources.

2- Range queries (for the time dimension) are supported
for different time points and periods. The selected time range
could be a time duration completely in the past, e.g., retrieve
the desired statistics between 2 PM on February 3 to 3 AM on
February 4, or a range between a time in the past and now [t−
τ, t], e.g., retrieve the desired statistics for the last 30 minutes.
In other words, moving sliding windows [1] are supported,
in addition to the fixed sliding window where the user seeks
statistics per fixed time units, e.g., each 5 minutes.



3- Different time scales are supported in this method. The
selected time range could vary from milliseconds to days,
weeks or even months. For instance, users may ask queries
like ”return the desired statistics for the last n milliseconds,
seconds, minutes or any coarser granularity”. However, for
the earlier times we use a larger time granularity to extract
the finer grain statistics. In other words, for the most recent
time, any time range from the millisecond scale is supported,
while for time periods in the past, the precision is decreased
and coarser grain times are supported (i.e., hours or days in-
stead of seconds and minutes). This consideration is normal
in many applications [11], as users usually seek highly pre-
cise data for the more recent times and possibly coarser time
ranges for the more distant times. In short, the proposed solu-
tion guarantees that different time scales (larger than the base
time granularity) are supported and users can extract the de-
sired statistics for different time scales and ranges.

4- Hierarchical operations like drill down, roll up, slice
and dice are supported in this design, similar to the offline
OLAP systems. Users may query the system to get a higher
level aggregate value or may ask for more detailed statistics
values. For example, having total IO throughput of a virtual
machine, one may wish to access the detailed throughput of
its processes separately, or having the network traffic of each
IP address separately, one might see the aggregated traffic for
a range of network addresses in the past days.

For all of the above problems, the compactness of the data
structures and the construction and query performance of the
method are considered the main requirements.

4. ARCHITECTURE

A high-level view of the architecture is shown in Figure 3. In
this architecture, the trace reader reads and processes the input
data, extracts the required summary and records in a data store
named cube data model. Cube data model, in turn, contains
different structures to organize and manage the data summary.
Query engine is responsible to handle and respond queries
received from the users. These modules will be explained in
detail separately in the following sections.

Fig. 3: A high-level view of the architecture.

4.1. Trace Reader

The first step in trace analysis is to extract the required data
from the input trace events. Trace events usually describe the
system in a very low-level form (Figure 5), and useful and

synthetic information (e.g., the statistics data we are looking
for) are usually hidden behind these low-level events. Some
data analysis steps are required to extract the desired high-
level information from the original trace data. To do so, for
each statistic metric, a set of events is registered and moni-
tored. For instance, socket-based events like socket connect,
socket send, socket receive, etc. are registered and monitored
to collect statistics about the network traffic. When one of the
registered events arrives from the input stream, it is analyzed
and the desired information is extracted and stored for future
use.

Since the observed trace events are too low-level, some
high-level statistics measures are not obviously recognizable
and may require a more sophisticated analysis of the input
stream. For instance, calculating the number of file down-
loads (as a high-level measure) is not obvious, as it is nec-
essary to integrate firstly some specific low-level events [15]
to generate the higher-level data to be able to compute their
high-level statistics.

Fig. 4: Circular buffer to read and process the stream events.

One issue in the stream events data extraction is that the
distance of consecutive events could be less than the time re-
quired to process them. Indeed, this may happen when the
events are too low-level (as shown in Figure 5) and must be
abstracted out to higher levels before extracting the statistics
information. In our implementation, we use a separate thread,
rather than the thread used to read the stream, to process the
incoming events. To do so, a circular buffer is initialized and
preliminary information gathered from the events are copied
into that buffer (as shown in Figure 4). The processing thread
then operates on the buffer, gathers the statistics information,
and stores it in the history data store.

However, for the time periods in which too many events
are received, e.g., when the system is too busy and the tracer
module generates many events, the buffer may overflow due
to the slow computation. In this case, two following solutions
may solve the problem. First, by increasing the gaps between
the processing and database updating steps, the statistics can



1 k e r n e l . s y s c a l l e n t r y : 509 .147214537 ( k e r n e l 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , s y s c a l l { 0 x7f0b0eb96cbd , 0 [
s y s c a l l 0 ] }

2 k e r n e l . s c h e d s c h e d u l e : 509 .147214752 ( k e r n e l 7 ) , 0 , 0 , swapper , 0 , 0x0 , s y s c a l l { 48 , 0 , 1 }
3 f s . r e a d : 509 .147220219 ( f s 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , s y s c a l l { 8176 , 21 }
4 k e r n e l . s y s c a l l e x i t : 509 .147220604 ( k e r n e l 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , use r mode { 241 }
5 f s . w r i t e : 509 .147227093 ( f s 5 ) , 568 , 538 , r s : main Q: Reg , 1 , 0x0 , s y s c a l l { 66 , 4 }
6 k e r n e l . s y s c a l l e x i t : 509 .147227571 ( k e r n e l 5 ) , 568 , 538 , r s : main Q: Reg , 1 , 0x0 , use r mode { 66 }
7 k e r n e l . s y s c a l l e n t r y : 509 .147234027 ( k e r n e l 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , s y s c a l l { 0 x7f0b0eb96cbd , 0 [

s y s c a l l 0 ] }
8 k e r n e l . s y s c a l l e n t r y : 509 .147235150 ( k e r n e l 5 ) , 568 , 538 , r s : main Q: Reg , 1 , 0x0 , s y s c a l l { 0 x7fcb30146c5d

, 1 [ s y s c a l l 1 ] }
9 n e t . s o c k e t r e c v m s g : 509 .147236434 ( n e t 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , s y s c a l l { 0 x f f f f 8 8 0 1 8 8 c 9 0 5 8 0 , 0

x f f f f 8 8 0 1 9 9 f e 1 d 7 0 , 4096 , 64 ,
10 f s . r e a d : 509 .147237217 ( f s 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , s y s c a l l { 4096 , 3 }
11 k e r n e l . s y s c a l l e x i t : 509 .147237564 ( k e r n e l 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , use r mode { −11 }
12 k e r n e l . s y s c a l l e n t r y : 513 .772101451 ( k e r n e l 4 ) , 2334 , 2334 , / o p t / g o o g l e / chrome / chrome−sandbox , 2037 , 0x0 ,

s y s c a l l { 0 x7fccc73b0007 , 2 [ s y s o p e n +0x0 / 0 x30 ] }
13 f s . open : 513 .772106530 ( f s 4 ) , 2334 , 2334 , / o p t / g oo g l e / chrome / chrome−sandbox , 2037 , 0x0 , s y s c a l l { 3 , ” /

e t c / l d . so . cache ” }
14 k e r n e l . s y s c a l l e x i t : 513 .772107125 ( k e r n e l 4 ) , 2334 , 2334 , / o p t / g o o g l e / chrome / chrome−sandbox , 2037 , 0x0 ,

use r mode { 3 }

Fig. 5: LTTng trace events for common files accesses.

be computed and the database updated less frequently (e.g.,
update the database every 10 seconds instead of every 1 sec-
ond). The other solution is to disregard the extra events and
not process them until the system returns to its normal state.
In the experimental results section, we discuss an evaluation
of the distance between the incoming events and the time re-
quired to process them. However, it is outside the scope of
this research to discuss all possible cases and the detailed so-
lutions for each. We focus here on the data structures and
the way we manage the processed data in a long, continuous
stream data.

4.2. Cube Data Model

The proposed method works by extracting the preliminary
and punctual statistics from trace events and storing them in a
disk-based data structure. It incrementally builds an efficient
history of data, so as to be readily retrieved when needed. The
overall view of the cube data model is shown in Figure 6.

As shown in Figure 6, the cube data model contains two
main structures: dimension tree and history data store. Di-
mension tree models the different system dimensions and pa-
rameters and acts as a set of key references for the history
data store. History data store is the real storage of the data in
which the summary of input trace is stored. This history data
store contains different cubes for different time frames (Fig-
ure 6). The cubes in turn are implemented by tree structures.
In other words, each cube corresponds to a time frame (range)
and contains an interval tree that stores the information of that
time frame. Each interval has a key from the dimension tree,
a value that is gathered from trace, a start time and an end
time. More details will be provided for each structure in the
following subsections.

Fig. 6: Two internal structures of the cube data model.

h contains different parts that are explained in this section.

Dimension Modeling

One may wish to gather statistics about several types of sys-
tem resources (e.g. memories, processes, files, devices, etc).
In our model, each resource (i.e., dimension) is structured as
a hierarchy and the metrics of interest are defined between
these hierarchies. Figure 7 shows two dimensions -Process
and File- and the IO usage metrics that are defined between
these two resources.

In this organization, that is called dimension (metrics) tree,
it is possible to define the metrics between any set of resources
at any granularity. For example, as shown in Figure 7, one
may define the metrics node between the process and file di-
mensions to compute the IO throughput of a particular file/-
folder performed by a specific process, e.g., to place the de-
sired metrics between the Chrome and /Home nodes to com-
pute the number of bytes read or written for all files in the



Fig. 7: Dimension hierarchies and metrics.

/Home directory by the ”Chrome” process.
As explained, an important feature of this tree is its ability

to define the metrics at any granularity levels. For instance,
some users may only be interested in a specific high level
granularity (e.g. the IO throughput of a whole virtual ma-
chine, and not their containing processes), thus the system
can avoid storing finer or coarser values, thus saving a signifi-
cant amount of storage. We will further study the gains of this
design in the Experimental Results.

In the aforementioned dimension (metrics) tree, the met-
ric nodes (indicated by dotted rectangles) comprise a link to
the corresponding value records in the history data store. They
also keep track of pointers to the first and last occurrences of
the metrics value in the stream, representing the operational
scope of the metrics. These pointers increase the speed of
queries for the points that are beyond the operational scope.

History Data Store

For any predefined metric, we keep a history of its values dur-
ing its whole trace lifetime. To do so, when a registered event
arrives and the corresponding statistic value is changed, we
create and store a summary of that change in the history data
store. We model this change as an interval record and store
an interval instead of two single records. For each interval,
the bounding points (start time and end time), a key and a
value are all stored. The key is a combination of a set of di-
mensions and a measure referring to the metric nodes (dotted
rectangles) in the dimension (metrics) tree. The value rep-
resents the statistics value for the chosen metric in this time
interval. For example, suppose a ”file read” event is regis-
tered in advance for the IO throughput metric. Then when a
file read event (e.g., process p1 read 400 bytes of file f1 in
time t2.) is arrive, and changes the value of a corresponding
metric (i.e., the IO throughput), we create and store an inter-
val record for this change: {IO throughput of process p1 and

file f1, 400 bytes, t1, t2}. This record actually shows that the
IO throughput of process p1 that is read/written from/on file
f1 between time t1 and time t2 is 400 bytes. Here the time t2
is the current event timestamp and t1 is a time that a previous
registered event (read event or write event or etc.) is seen and
processed.

Using the above technique, we store statistic summary
as interval values instead of single values which enables the
range queries. Hence, to store the interval values, any interval
container, such as an R-tree [16], the SLOG2 file format [17]
or a State History Tree [18] can be used.

Significant space is required to store the summary of a
stream in this way, which means after a short while, both the
main memory, and finally the disk will be filled. To solve the
problem, we use some heuristics to solve this problem. One
heuristic uses a proper granularity degree (GD) [4], and stores
a cumulative interval instead of each single interval. To do so,
for any k (i.e., the GD value) consecutive intervals, we store
a single record representing the statistics value between the
time ranges of those intervals. In the example shown in Figure
8, for each 7 operations, only one data interval is created and
stored (instead of 7 separate interval records). A small GD
value increases the history storage space while a larger GD
value reduces the precision of the statistics. Thus, a careful
consideration of the proper GD value is important and can be
achieved through balancing the importance of the metrics and
the available storage space.

Another heuristic that can be used to alleviate this prob-
lem is using the so-called Tilted Time Frame technique [11]
to compress the time dimension. The idea is to use a coarser
granularity degree (GD) for the older history, yet a finer value
for the most recent history.

Fig. 8: Efficient updating the history data store.

Time Frame

In the trace analysis applications, the most recent history is
more interesting than older history [3]. Thus, for the long
term history, we can use coarser granularity degrees. For ex-
ample, as shown in Figure 9, for the last 5 minutes of the trace
a minimal granularity degree (e.g., 1 second) is used, and for
the last 24 hours range, a larger granularity degree (e.g., 5
minutes) is used. With this method, after reading any 5 min-
utes of the input stream, aggregate statistics of the last 5 min-



utes are calculated and passed through the cube in the other
level. After 60 minutes, another aggregation is calculated and
stored in another cube level.

A high-level view of the time frame is shown in Figure
(10). In this method, for the duration of each time unit, a sep-
arate stream cube is constructed and materialized. The cube is
actually implemented using the dimension (metrics) tree and
the history data store. In other words, to manage and store
the cuboids we do not use any external database applications,
as is common in the OLAP applications, but instead we im-
plement each cube using two tree-based structures, the one is
used to mange the dimensions (dimension tree) and the inter-
val tree that contains the real data for the current time frame
(history data store) (Figures 6, 14).

Each cube is used to answer the queries inside the cor-
responding time duration. After passing this time yet before
dropping the cube, an aggregate of this cube is computed and
stored in the cube at one step coarser.

Using this method, one can store a history of the statistics
values for a long time and utilize a small amount of storage
space. We will now explore the storage space this method
requires to keep track of the intervals.

Fig. 9: Different granularity degrees for different time dura-
tions.

Let us assume there exist n metric nodes in the dimension
(metrics) tree. We also assume that all metrics have changed
each second and a new interval must be created for each met-
ric and each second. For the recent 5 minutes, 5 × 60 × n =
300n record spaces are required to store all the interval val-
ues for these n metrics. In the same way, the other 24 hours
require: (24 ∗ 60) ÷ 5 × n ≈ 300n. Similarly, for two
weeks and 2.5 months, (14 ∗ 24) ÷ (1 × n) ≈ 300n and
(75 ∗ 24)÷ (6× n) ≈ 300n respectively are required. Thus,
for a 2.5-month period, 300n+ 300n+ 300n = 900n record
spaces are required which is 1/10000 of the case that uses a
uniform time frame (i.e., 900n ÷ (75 ∗ 24 ∗ 60 ∗ 60 ∗ n ≈
6480000n) ≈ 1/10000).

Cubes Construction

Using the tilted time frame, different trees (cubes) correspond
to different time units and one must pass a set of aggregated
values to a granular tree (cube) when the time unit is changed.
In other words, after crossing the first tf1 time units (e.g., the
first 5 minutes), this method aggregates the statistics and in-
serts these aggregated values into the tree of another time unit,
such as tf2 (Figure 11). This also occurs after crossing any

Fig. 10: A separate sub-cube for each time unit.

other tf1 time units (e.g., each 5 minutes). In the same way,
after crossing tf2 time units (e.g., 24 hours), one must per-
form another aggregation of the values of tf2 time units and
insert into the coarser time unit tree. This process is repeated
after each time unit changes.

As shown in Figure 11, a separate cube corresponds to
each time unit, one for the area with minimum time scale
tf0, one for the area with the minimum time scale tf1 and
so on. After passing the first tf1 time, an aggregation pro-
cess is called and the aggregated records are inserted into the
other level tree. This process is repeated when it passes the
tf2 time. Let us now explore the costs of these aggregate up-
dates.

Fig. 11: Moving the aggregated values from one tree to an-
other.

Again, let us assume that there are n metrics in the met-
rics tree and the statistics values for all metrics are changing
at each time unit. After crossing the tf1 time, we must ag-
gregate all values of the tf1 time period and insert them into



the cube corresponding to the tf2 period (Figure 11). Since
there are n metrics in total, each metric requires one record;
thus, n records all metrics together. Each record shows the
statistics value of the corresponding metric in the completed
time range. Thus, at each step any time unit change requires
n aggregate updates into the higher-level cube. Therefore, us-
ing the parameters shown in Figure 11, formula 1 can be used
to calculate the number of updates from one tree to another.

ψall =
(tf2 ÷ tf1)× n+
(tf3 ÷ tf2)× n+
· · ·+
(tfn ÷ tfn−1)× n.

(1)

The above formula calculates the required number of ag-
gregate updates from one tree to a coarser level tree. The
resulting value is a very small portion of all whole tree inser-
tions:

Let us calculate the total number of insertion operations in
all trees and compare that to the number of aggregate update
operations. Suppose that for each tf0 duration (the smallest
time unit in the proposed time frame for which values can be
gathered directly from the input trace events), the values of all
metrics are changed. Thus, we will have n updates for each
tf0 duration. For the larger level, tf1 duration, the number of
insertion and update operations in the history will be:

Φtf1 = (tf1 ÷ tf0)× n. (2)

Similarly, the number of insertions for each tf2 duration:

V alAB = V alB − V alA = x1 + x2 + x3
Φtf2 = [(tf2 ÷ tf1)× ((tf1 ÷ tf0)× n)]
= (tf2 ÷ tf0)× n.

(3)

And:

Φtfm = [(tfm ÷ tfm−1)× ((tfm−1 ÷ tf0)× n)]
= (tfm ÷ tf0)× n. (4)

Totally:

Φall = Φtf1 + Φtf2 + ...+ Φtfm

= (tf1 ÷ tf0)× n+ (tf2 ÷ tf0)× n+ . . .
+(tfm ÷ tf0)× n

=

∑i=m
i=1 tfi × n
tf0

.

(5)

Therefore, the fraction of the aggregate updates with respect
to all insertion and update operations equals:

Portion =
ψall

Φall + ψall
. (6)

For the example shown in Figure 9, this proportion is
0.00006 = 0.006 %. In other words, the aggregate update

cost is a very small proportion of all operations and is not an
issue. The challenging issue is the time required for the tree
construction, which will be investigated in the Experimental
Results section.

We use another heuristic to reduce the number of tree in-
sertions: when a metrics value is unchanged in two or more
consecutive time units, no update is required in the tree. To
do so, we store the current value of the metric in a temporary
structure and wait for a change. After the first change, a node
is inserted in the tree representing the value of the metrics
for all unchanged time durations. This technique reduces the
number of insertions in the history data store.

Sliding Window

One use-case of this research is to support the sliding win-
dow queries, both the fixed and moving sliding windows. In
this subsection we propose a technique to support the sliding
window queries.

As explained, at regularly defined time points, the algo-
rithm aggregates the values of the current tree and inserts
them into a coarse tree, belongs to a larger time frame.The
fixed sliding window is obviously supported, because the val-
ues of any previous time ranges are available in the data struc-
tures. But to support the moving sliding window one ineffi-
cient way is to update the history for all new trace events. In
other words the algorithm should update all trees at any gran-
ularity levels for each new event, after passing the first tf0
time (e.g., a second). However, it would be too costly to up-
date the tree structures, remove the old entries and insert a
new one, for each new time unit tf0 (e.g., a second).

The way we support the moving sliding window is by de-
laying the aggregate moving from one tree to another tree. In
other words, we do not immediately move the aggregate value
to another tree, but wait for another tf1 time and then aggre-
gate the tree and move to the coarser tree. Figure 12 depicts
this technique (with respect to Figure 11).

Fig. 12: Supporting the moving sliding window by delaying
the aggregate updates.

To illustrate this point, we use the values shown in Fig-
ure 9. Instead of aggregating the tree for the last 5 minutes
and discarding the detailed tree, we keep these details in the
memory and continue for another 5 minutes. At the end of the
second 5 minutes, we simply aggregate the first tree, (the tree



from the first 5 minutes), move it to a coarser level tree, and
discard that tree from the memory. At the query time, when
users ask for the last k, say 7, minutes, we can easily use these
two trees (the trees of the first and second 5 minutes) to an-
swer the query. As shown in Figure 12, the duplication and
delay in aggregate propagation are used in all time frames,
enabling the extraction of the desired statistics values for any
arbitrary k time units with a varying time precision.

5. QUERY

The proposed method, as explained in the previous sections,
reads the input trace events and extracts the statistics from the
data. Then, the statistics data is stored in a tree-based history
data store. In this history, the more details are stored for re-
cent data and less for older data. Using this configuration, it
is possible to reduce the details from the older history, while
still satisfying the queries for recent history with a higher pre-
cision. In general, different types of queries are supported.
We first look at the range queries and subsequently address
the other types of queries.

5.1. Range Queries

The records in the history data store, collected from the trace
events, represent the cumulative statistics values for the spec-
ified metrics and the corresponding time range between the
start and end points. Thus, to retrieve the statistics value at
any point, one can simply find and explore the correspond-
ing tree and find a node that contains the required point. The
extracted value represents a cumulative statistic between that
query point and a base time point. In the same way, to extract
the statistics values for a time range, one may perform two
stabbing queries and subtract the results to yield the desired
statistics value. Figure 13 shows an example of a range query.

Fig. 13: Performing range query in the stream history.

As shown in Figure 13, to extract the statistics values in
any time range, say [t1, t6], two stabbing queries are required,

one for t1 and another for t6. These two stabbing queries re-
turn two cumulative values with respect to a fixed start point.
Then, the subtraction of the two values will provide the re-
quired statistics value (the increment within the interval).

Example: Suppose we have three records in the history:
([0,2), metrics1, 0), ([2,6), metrics1, 20), ([6,10), metrics1,
30). Each record contains a time interval, a key and a value.
For instance, the first record shows that the value for metrics1
between times 0, 2 is zero. These records show that we have
value changes in times 2, 6 and 10, since we create a new
interval record only when a value changes, (here the GD value
is 1). Using this history, the metrics1 statistics value between
any time range in [0,10), say [3,9], will be the subtraction of
the statistics value at 9 and 3 = 30 - 20 = 10, because time
point 3 crosses the second interval record and time point 9
crosses the third record.

The stabbing query -finding the intervals that contain a
given query point- is shown in Algorithm 1. Since our pro-
posed solution does not force using the interval tree container,
Algorithm 1 shows a general stabbing query for any typical
interval trees. The maximum number of items in the result list
L will be n, the number of metrics. Sometimes it is possible to
have less than n intervals in the result list L. This means that
some metrics do not have values for the given point, meaning
that the corresponding resources were not active at that point,
e.g., looking for the IO throughput of a process in a time prior
to its starting time.

After performing a stabbing query, the result set L will
contain statistic values of all metrics. Thus, one must filter
out the result list L to find the value of the desired metrics.

Algorithm 1 Stabbing query.

Require: an interval tree v and a query point t.
1: if root node r contains the point t then
2: add r to the result list L.
3: end if
4: if there is any children for node r then
5: for any children of v like c(v) do
6: call the algorithm for c(v) , t.
7: end for
8: end if
9: return list L as result;

As explained earlier, we have different trees for different
time points: more details for recent times and less for older
times. The proposed stabbing and range queries work for all
cases, for a time range within a single tree or several trees.
For all cases, we can find the statistic values for the desired
time range, by using two stabbing queries for the boundary
points of each interval.

The last point in this section relates to calculating the ag-
gregate values of a tree and moving that to a coarser tree.
To calculate the aggregated values of all metrics for any time
range, one must perform two stabbing queries, one at the start



and one at the end point of that time range. Each stabbing
query returns the values for all n metrics together, so it is not
necessary to repeat this algorithm for each metric separately.
Therefore, calculating the aggregate values of a tree is not
costly. It simply requires two stabbing queries for the start
and end points of the tree.

Top-K Queries

Sometimes it is important to detect when the values exceed
a predefined threshold, or find virtual machines or processes
which integrate more system resources than others. To sup-
port these query types, the system should be able to answer
top-k queries, for any arbitrary k. To do so, we first use the
mentioned range queries to extract the statistics values of all
metrics, and then use an optimal sorting algorithm to find the
top-k values from a maximum of n values.

The cost of this algorithm is O(logm1 + logm2 + n ×
logn), where m is the number of nodes in the history tree and
n is the number of metrics. In this equation, logm1 is the
time required to perform the stabbing query for the history
tree at the start point of the given query interval, logm2 is
used to extract the statistics value at the end point of the query
interval, and n × logn is used to sort the n items, the output
of the stabbing queries. The cost is obviously dependent on
the count of metrics, n, and the depth of the tree, as one or the
other may be more dominant depending on the situation.

5.2. Sliding Window Queries

This solution supports both the fixed and moving sliding win-
dow queries. As outlined earlier, the techniques used enable
us to extract the statistics values for the last k time units for
the fixed or moving values of k. An example of a fixed slid-
ing window is reporting the statistics values after each k time
units. In this case, after finishing the predefined k time units,
say 1 second or 1 minute, the algorithm aggregates and re-
turns the values for the desired time range. For instance, one
may wish to retrieve a minute by minute report of the CPU
usage. To do so, after finishing each minute, the program ag-
gregates and reports the CPU usage for the preceding minute
by summing up the values of small-scale chunks (e.g., by
summing up the CPU usages of all 60 seconds of that whole
minute).

Sometimes users wish to obtain values for a moving or
sliding value of k, by taking into account the precision of the
time unit. Suppose that we are in the 6th minute of the trace
and the user asks for the CPU usage for the last 3 minutes. If
we had aggregated the tree at the 5th minute, we would not be
able to answer this query, since we need 2 more minutes from
the history. However, we would not have the requested values
with the desired precision if these values were already aggre-
gated for that 5-minute interval. To solve this problem, the
algorithm delays moving the aggregated values to a coarser

unit tree for another time unit (e.g., another 5 minutes). For
example, using the tree shown in 12, it is possible to provide
values for any previous time range (less than the current time
unit) e.g., last 3 minutes, last 58 minutes, last 11 hours, etc.

5.3. Multilevel Queries

Since in many applications, users may wish to perform some
operations like group by, drill down or roll up, we investigate
this type of queries here.

Due to the required storage space and processing time, it
is not possible to generate and store all possible cuboids along
the stream. To support multilevel queries, we propose two
general solutions: minimal and partial cube materialization.

The first solution, minimal materialization, defines all met-
rics in the finer level - for the leaf nodes of the dimensions-
and only stores the base cuboids (the history values for the
leaf nodes of the metrics tree). Any other high-level met-
rics (none-base cuboids including apex cuboid) are computed
on the fly using these low-level metrics. For instance, in the
above example, it is possible to compute the IO throughput
of virtual machines by performing aggregate functions (i.e.,
sum) over the low level history values, i.e, by summing up
the IO throughput of all processes belonging to each virtual
machine. Figure 14-1 shows a view of this solution.

Partial materialization [3], the second approach, is used
when the high-level nodes, for which the analytical data will
be queried, are predictable. Therefore, the solution creates
metrics for these high-level nodes and keeps track of history
values for them as well. For instance, in Figure 7, suppose
the system is notified in advance that users wish to retrieve
the IO throughput for all virtual machines together in addi-
tion to each process separately. In this case, a metric node
representing the desired granular level is created in the met-
rics tree and a history is kept within the history data store.
Figure 14-2 depicts a view of this solution.

Depending on the number of high-level nodes, the par-
tial materialization solution may require more storage than
the minimal materialization solution to store the data for the
coarser or finer granularity scales. However, the later may
require more processing time to aggregate and compute the
desired high-level statistics on the fly using the low-level in-
formation.

A tradeoff between the processing/response time, the stor-
age space and the user and application requirements is gener-
ally required to determine which strategy should be used. In
some applications, a small number of high-level nodes may be
critical to users and therefore data should be kept to directly
and quickly retrieve answers. In this case, a partial cube ma-
terialization method is used to only materialize the important
high-level nodes in addition to all leaf-level nodes.

To extract the high-level statistics (rolling up) for a given
time point, when the requested value is not directly in the his-
tory, one must perform a stabbing query at the given point,



Fig. 14: Hierarchical queries. 1) Minimal cube materializa-
tion, using aggregate functions to compute hierarchical val-
ues, 2) Partial cube materialization, storing data at the multi-
ple levels.

extract the values of all low-level nodes of the queried dimen-
sions and finally aggregate the results (sum up, count or so
on.). Since a single stabbing query will return all values for
the given point, the rolling up query requires the same time
as low-level queries, except for the extra time required to per-
form the aggregation over extracted values. For instance, to
compute the IO throughput of a folder, one must aggregate the
IO throughput of the files inside that particular folder, which
can be obtained directly with a single stabbing query.

6. EXPERIMENTAL RESULTS

The experiments were performed on a Core i7 2.80 GHz sys-
tem with 6GB of main memory, running Linux kernel version
2.6.38.6 instrumented with the LTTng tracer. The algorithms
were programmed in Java using the Eclipse plug-in for Java
and will eventually be contributed to the free software TMF
(Tracing and Monitoring Framework)2. The tests were per-
formed with real trace logs gathered from the LTTng kernel
tracer. Since the original logs are too low-level, techniques
are adopted from [15, 4] to abstract out the raw data to higher
level and extract the desired statistics data. We also use the
locally developed State History Tree [18] as the interval con-

2http://lttng.org/eclipse

tainer for the interval values. With respect to the other ap-
proaches in the literature, this format works better for cases in
which the input data arrives sporadically (in an unpredictable
manner) and cases in which the tree is constructed incremen-
tally. To generate the trace logs, system activity is generated
using recursive operations like grep -r, wget -r -l, ls -R, etc.

The experiments will be discussed in three sections: pro-
cessing time, memory usage and query response time.

6.1. Processing Time

In the first experiment, we aim to investigate the efficiency
of the proposed trace analysis module, and whether a trace
stream can be processed in real time (events are analyzed in
less time than their rate of occurrence).
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Fig. 15: Delay between trace events and processing time for
one event (average over a batch of 10000 events).

Figure 15 shows the average delay between trace events
in different areas of a trace. Each delay is calculated as the
average time for 10000 subsequent events. Similarly, the pro-
cessing time to analyze the trace is computed as the average
over 10000 events. The analysis time per event does not vary
much. The average delay between events varies significantly
depending on how busy the traced system is. In our tests, the
processing time remains much lower so that the average delay
and the analysis is thus efficient enough to accept a streaming
trace in real time. In extreme cases, where events are much
closer to each another, buffering the events and performing
a delayed processing, or even dropping some events, will be
required. We may investigate these techniques in more detail
in future work.

Figure 16 shows the different times required for reading
and processing the trace stream. The first case only reads
the trace without processing any data. The other curve shows
both the trace reading and simple processing of the events:
reading the trace stream, extracting the statistics values and
aggregating each base time unit (e.g., 1 second). However,
it does not include the time needed to store this data in the



data structure. Other cases show the time required to store
the processed data to the different cubes in the history data
store. In each case, the time frame is set so that the requested
level cube is constructed. For example, in the case with only
the first time unit, one cube is materialized, while in the case
with two time units, the first and second levels are materi-
alized and so on. Figure 16 shows that the first cube level
requires the longest processing time. This is not surprising
since the first cube level is updated for each base time unit
(e.g., 1 second), while the others are called at granular time
units (e.g., 5 minutes) and require less time.
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Fig. 16: Processing time for different stream processing steps.
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Fig. 17: Processing time for parallel cube updating

Figure 17 shows the same processing steps while perform-
ing a parallel analysis, in which a separate thread is assigned
to each single cube update. The parallel cube update is pos-
sible since different cubes correspond to different areas and
the data gathered from unique trace portions can be written to
the different cubes simultaneously. In this method, after per-
forming a preliminary analysis over the trace and extracting
the statistics data, a separate thread is assigned to each cube

and, as a result, updates are done separately yet parallel to
each other.

It is important to note that in all the above experiments,
1000 measures are used. As explained earlier, each metric
is considered as a measure between two or more dimensions.
For instance, the metric CPU usage is defined between the
virtual machine, process and CPU dimensions and could also
be shown as (virtual machine, process id, CPU number, CPU
usage).

6.2. Memory Usage

One of the important aspects of any useful stream process-
ing method is the ability to use as little memory as possible.
In this section, we show the memory usage for our proposed
method. The history data store, which records the temporary
and intermediate values, stores the data on disk rather than
in memory, enabling it to store a longer period of abstract
streaming data.

As explained earlier, there are three cube materialization
methods: full, partial and minimal. In all experiments below,
the partial materialization stores 10% of higher-level cuboids
in addition to the lowest level cuboids.
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Fig. 18: Memory usage for different trace areas.

Figure 18 shows the memory usage for different areas of
the trace stream. Different trace areas may have more or less
events depending on how busy the underlying system is. In
Figure 18, the curve shown with Trace 1 belongs to a busy
area of the trace (where the number of events per second is
higher than in other places). The data used for drawing the
curve shown with Trace 3 belong to a less active area of the
trace, with fewer events. In all three cases, the number of
metrics used is again 1000. Additionally, the time units are
from Figure 9. In other words, the memory is used to store
three levels of cubes: the first level for the last 5 minutes,
the second for the last 24 hours and the third for the last 12
days. However, we have used a one-day trace duration to test
all three cube levels. The results show that the configuration



used is desirable and readily usable. The maximum required
memory is approximately 35 MB, which can easily reside in
the main memory. However, as will be discussed shortly, the
required memory may increase depending on the number of
metrics or time units. This low memory usage is achieved
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Fig. 19: Memory usages comparison for tilted and non-tilted
time units.

at the cost of removing the more detailed history from the
most distant time periods. It is obviously not feasible to store
all information at the most detailed level for the whole trace
duration, unlike for relatively small traces in offline tracing
mode [4]. Figure 19 compares a comparison of the memory
usage of two methods: storing all history for the whole tracing
duration, and removing the old history from the data store
(please note that a logarithmic scale is used for the y axis).
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Fig. 20: Memory usages for different number of measures.

Another experiment was performed to see the effect of the
number of metrics. It is possible to define different measures
in different levels between the existing dimensions. For ex-
ample, IO throughput can be defined between a file or folder
in one hand,and a process or a group of processes in other

hand. It is also possible to add a virtual machine to this mea-
sure, making it a threefold measure. Figure 20 shows the
memory usage for different numbers of measures. In fact,
the memory usage depends on both the type and number of
measures. Indeed, the count and frequency of the events re-
quired to compute the values of a measure is the key factor
to compute the memory required to store statistic values of
that measure. The number of accesses to a specific web site
requires events of type http that connect to the specified web
site and can rarely be observed in the events. However, the IO
throughput measure is based on the type of events (i.e., read
or write events), which occur very often in any system exe-
cution, and thus require more storage space. The same met-
ric, IO throughput, defined between three dimensions, (virtual
machine, process and file), is used to gather the results in Fig-
ure 20. To increase the number of measures, for instance from
1000 to 3000, we have added new tuples (virtual machines,
files and processes) to the existing tuple list. The results show
that increasing the number of measures has a direct (but not
linear) effect on the memory usage.
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Fig. 21: Memory usages for different cube materialization
strategies.

The final experiment was conducted to investigate the dif-
ferent materialization methods. To do so, three modes are de-
fined for 1000 measures: Minimal cubing, in which all mea-
sures are defined in the leaf nodes of the metrics tree (dimen-
sion tree); Full cubing, in which measures are defined in all
levels and the history data is stored for all levels; and Partial
cubing, which is something in-between, defining all but 10 %
in the leaf nodes. These 10% extra measures which are de-
fined in the non-leaf nodes, can be considered as measures
frequently requested by users, thus being less desirable to
compute on-the-fly. Figure 21 shows the difference in mem-
ory usage for these three methods. Full cubing method de-
mands more memory (three times or more to store the history
in each and every level), while the partial and minimal cubing
methods act very similar.



The above memory usage experimental results demon-
strate that the size of the data store is relatively stable and
independent of the stream data size. Indeed, the design is such
that it stores only minimal data for the distant history, and the
memory usage therefore increases very slowly (logarithmic)
with the size of the stream. This is a very important feature of
the proposed data store that makes the solution scalable and
usable for any size of input stream data.

6.3. Query Response Time

A proper response time is an important factor for most stream
processing applications. Indeed, these tools may be used in-
teractively to monitor the system runtime behaviour and track
problems. We have performed different analysis tests to mea-
sure the response time for different configurations.

In the first experiment, the single point query is exam-
ined using 1000 measures and for all three materialization
strategies. To obtain a comparable result, the same points are
queried in all three cube materialization modes. The results
show that the base case is the minimal cubing mode, since in
that case the history size is smaller than with the two others.
Figure 22 depicts the comparisons of these three methods.
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Fig. 22: Response time for single point queries.

A similar comparison is undertaken for the range queries.
As explained earlier, one of the continuations of this work
is to support the range queries without having to count and
aggregate the values for the whole range. In our solution,
this is achieved by performing a few queries for the start and
end points of the range and subtracting the values. Figure 23
shows this comparison. To obtain the comparison results, dif-
ferent time periods are examined within the last n minutes of
the test. For instance, the values in time point 5, are obtained
by testing time ranges within the last 5 minutes. Similarly, the
results for point 25 are obtained by using random time points
within the last 25 minutes. Since the time units are chosen
randomly, they could occur in one or more time units. Fur-
ther, the same ranges are used for all three cases. The results
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Fig. 23: Response time for range queries.

show that the time required to perform the range queries is re-
lated to the number of measures and materialization strategy,
not the time interval duration.
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Figure 24 shows the response time for roll-up queries, to
extract a high-level value given the low-level values. In the
minimal case, to compute any higher level measure, the val-
ues from the leaf level (lowest level) should be extracted from
the history data store and then aggregated on-the-fly. For the
full cubing, all the values already exist in the history and sim-
ply need to be extracted. The partial cubing is somewhere
in-between: some non-leaf measures have their own values
in the history data store and some must be treated like the
minimum cubing. We separate these two cases and consider
them separately. Due to the values shown in Figure 24, the
best query time belongs to the partial cubing with the 10%
measures that data are stored. The minimal cubing method
is similar but requires slightly more processing time. The re-
sults show that carefully choosing the non-leaf measures is
an important factor, and can affect the response time. In this



comparison, the same time points are used for all four cases
and the results are computed for the single point queries.

In summary, partial cubing with carefully chosen non-leaf
measures is considered the best solution. The memory usage
for this method is almost equal to the minimal cubing, but the
partial cubing has the best response time. However, select-
ing the potential measures to keep in non-leaf nodes is not an
easy task. They can be chosen statically by a system expert
or dynamically based on the users’ feedback and experience.
The memory requirements for the metrics (depending on the
associated events) or usage statistics could be two important
factors in dynamically selecting the non-leaf measures to ma-
terialize.

7. CONCLUSION AND FUTURE WORK

In this paper, a multilevel architecture, and corresponding
data structures and algorithms are proposed to construct a
cube storage for very large, theoretically unlimited, trace streams
to enable different multilevel trace analyses. Reasonable mem-
ory usage, efficient response time and support of different
query types (single point, range queries, drill-down and roll-
up, sliding window queries) are important features of the pro-
posed approach. A customized form of a so-called tilted time
frame is used to compress the time dimension. In this con-
figuration, a separate cube is constructed for each time frame,
where the cubes for the most recent times are kept more de-
tailed, while the cubes for older times are kept less detailed.

Each cube stores the statistics values in the interval forms
(it stores the value and also the time range that value is valid)
instead of storing the single values. Storing the data in in-
terval forms enables the time range queries, not only within
a cube, but also between the different cubes. This feature
supports querying the system for any given time range of the
input stream.

We have tested the proposed solution by using a stream of
execution trace events gathered by the LTTng kernel tracer.
The results show the possibility and efficiency of of perform-
ing OLAP-based multilevel multidimensional analysis over a
live trace stream. Having this possibility, this technique may
be extended to monitor the system runtime behaviour and de-
tect different host and network based problems and attacks.

Several experimental results indicate the memory usage
and response times of the proposed method for different cases
and configurations. The results generally show that the mem-
ory and speed of the proposed method is reasonable and ef-
ficient. Indeed, for the range queries of any arbitrary length
time ranges, the results show that the response time is unre-
lated to the size of the range. This achievement is important as
the proposed solution enables us to efficiently perform long-
lived historical (time-based) queries.

We defined the partial cubing using statically defined met-
rics. However, a possible future work will be to dynami-
cally choose the non-leaf cuboids to be materialized, or to

dynamically switch between two solutions (minimal and par-
tial) based on the users’ feedback or the defined queries. Ex-
tending the proposed solution to detect system problems and
conduct complex analyses with data mining techniques is an-
other possible future work.
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