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Abstract—Excessive memory usage in software applications
has become a frequent issue. A high degree of parallelism and the
monitoring difficulty for the developer can quickly lead to mem-
ory shortage, or can increase the duration of garbage collection
cycles. There are several solutions introduced to monitor memory
usage in software. However they are neither efficient nor scalable.
In this paper, we propose a dynamic tracing-based sampling
algorithm to collect and analyse run time information and metrics
for memory usage. It is implemented as a kernel module which
gathers memory usage data from operating system structures
only when a predefined condition is set or a threshold is passed.
The thresholds and conditions are preset but can be changed
dynamically, based on the application behavior. We tested our
solutions to monitor several applications and our evaluation
results show that the proposed method generates compact trace
data and reduces the time needed for the analysis, without loosing
precision.

I. INTRODUCTION
Analysing software systems is becoming exceedingly diffi-

cult and complex because of the large-scale parallelism and
multiple abstraction layers. Newer systems include multiple
nodes in parallel, each containing a large number of cores as
well as parallel co-processors for graphics, signal processing
and networking. Virtualisation, at the machine and network
level, further complicates observability and performance de-
bugging.

Dynamic analysis through execution tracing is a solution
for the detailed run time analysis of such systems. Tracing
works by hooking into the different layers and locations
of the software and by collecting runtime data while the
software is running. It gathers valuable information about
system execution and can be used in software comprehension
and for finding problems and misbehaviors.

Although tracing in general is a great solution to analyse
runtime behavior of systems, it may present some challenges:
the trace size may be huge (in the gigabytes for only a few
seconds of tracing). The large tracing data size impacts the
storage space required, the analysis time, and may hinder
opportunities for the timely detection of sensitive problems.

Our goal is to analyse system memory usage from the kernel
point of view, since this is where actual physical resources
are eventually consumed. Many state-of-the-art tools perform
virtual memory monitoring from userspace [10], [3]. Their
methods mostly require the instrumentation of the memory
allocator of the programming language, or use a pre-loaded
library that overrides the original memory allocation functions.

Those solutions are not portable and can only target a specific
runtime environment.

We propose a generic trace-based architecture to monitor
and analyse the memory usage of any application, possibly
involving multiple processes and programming languages. The
challenges we face and aim to solve in this trace-based
dynamic memory usage analysis method are as follows:

• The high frequency of memory operations makes for huge
trace files.

• It is not usually possible to reduce the trace size by
just targeting a single process, using basic trace filtering
techniques, since the actual physical memory release is
done out of the process context.

• Tracing can itself contribute to the memory pressure.

This paper presents a dynamic sampling technique to reduce
the amount of trace data generated. The technique works by
hooking on some memory related functions (i.e., using existing
tracepoints) in the operating system kernel and listen to the
events. Then, instead of generating events for each occurrence
of the function, it only collects samples when a predefined
condition is true, (e.g., a predefined but changeable threshold is
passed or a particular time duration has elapsed). The proposed
method:

• instruments the Kernel to get the required information;
• provides filtering and aggregation mechanisms based on

some thresholds to reduce the frequency of events;
• generates metrics and visualizations from the trace file.

This can lead to greater efficiency when used to trace
high frequency operations like memory allocations. In some
applications, memory related functions are called at a very
high frequency, (e.g., more than 10,000 times per millisecond),
generating huge trace files. As we will see later in the paper,
the new approach reduces the size of trace data and the
analysis time, while providing the same analysis output and
precision.

The contribution of the paper lies in the proposal of an effi-
cient architecture for in-kernel trace sampling and aggregation.
The solution was tested to track high frequency kernel memory
allocation functions, and the efficiency and usefulness of the
method were confirmed.

In the remainder of the paper, we first review the related
work. Then, after exposing the motivation for this work, we



propose our new architecture and conclude with use cases and
evaluations.

II. RELATED WORK

Tracing is a dynamic analysis method that collects trace
logs for the execution of a software system. A trace log
entry can represent a function call, a system call, a signal,
a network packet, etc. Unlike debugging, which is a step by
step procedure going through the program execution to get
its current state, or discover a problem, tracing is a more
background process. Tracing collects runtime data during the
execution and stores it on a local or remote disk for later
analysis [9]. The tracing impact must be as low as possible to
preserve the normal software behavior.

LTTng [6] is a low impact open source Linux tracing tool
developed in the DORSAL Lab1 to provide tracing capabilities
for the Linux kernel and user-space applications. Kernel trac-
ing can be performed dynamically using Kprobes, or statically
using the TRACE EVENT macro. Traces generated by LTTng
can be used to analyse the run-time behavior of systems.
For instance, trace-driven tools are proposed in the literature
for disk block analysis [5], virtual machine analysis [1], [2],
userspace level applications (e.g., Chromium browser) [15],
[12], web applications [4] and live stream analysis [8]. Since
LTTng is a low-impact tracer [7], and provides data at multiple
system levels, it has been used in this paper to collect the
tracing data about memory usage.

Griswold et al. [10] instrumented memory allocation and
liberation operations of the Icon programming language. The
instrumentation was done using macros, which was not op-
timized for multi-threaded applications. The trace generated
was used to present the memory usage as a 2D graph where
each object allocated is shown as a rectangle, proportional to
the size of the allocation.

GCspy [14] is a memory monitoring framework developed
by Printezis et al. This tool follows a client-server architecture:
the collection of data is done on the server side and the
visualization on the client side. The data collection requires
using an instrumented memory allocator. The authors started
by instrumenting the Java Virtual Machine (JVM) to track
memory allocations in the Java programming language.

Cheadle et al. [3] extended GCspy to support dlmalloc,
the C memory allocator used by the Glibc library. They
also proposed different optimization to GCspy to reduce the
communication frequency between the client and the server, as
well as an automatic problem detector. GCspy uses animated
images to show the state of the heap memory throughout time.
This visualization is not appropriate with some applications,
since the refresh rate of the animation cannot handle high
frequency memory events.

Jurenz et al. [11] extended VampirTrace, a performance
analysis tool, to provide a detailed memory analysis based
on execution traces. Instrumentation is done using shared

1Distributed open reliable systems analysis lab (DORSAL)
http://www.dorsal.polymtl.ca

library pre-loading. Original memory manipulation symbols
like malloc, free, calloc, etc. are overridden with new functions
that contain the required tracepoints. The limitation of this
method is that it targets only the processes that are started with
the pre-loaded library. There is no way to trace an already
running program, or to trace all the programs running on
the system at the same time. TraceCompass2 also provides a
memory analysis view that uses library pre-loading to collect
LTTng-UST traces.

Massif is a heap memory profiler provided with Val-
grind [13]. It hooks into the application loading code using
LD PRELOAD and shows its heap memory usage. It can be
used to optimize and reduce the memory usage of programs.
Although Massif is a useful tool to monitor memory usage, it
easily doubles the execution time of the application.

III. MOTIVATION

Tracking memory usage is important to know which pro-
cesses are consuming more memory resources and therefore
to detect performance problems. The operating system uses
complex mechanisms to manage the physical memory. When
a process allocates memory, a new virtual memory space is
created and assigned to the process. The real physical memory
allocation is done afterward, when the memory is actually
accessed by the process. The opposite operation is even more
tricky. When a process asks the kernel to release (free) the
memory, the kernel releases it from its virtual memory space.
However, the physical release only happens when another
process needs to get more physical memory.

Many tools use sampling to track the memory usage of
processes using the /proc filesystem. Most of those tools use
a sampling frequency of 1 Hz, which gives a low precision
result. Using a fixed sampling frequency is not a good solution,
since the rate of memory operations varies considerably from
one process to another and through time.

Tracing is another way to get information from the kernel.
If we trace memory operations like allocations and liberations,
we can track in a very precise way the memory usage of
processes. The problem is that those are high frequency events
with the potential of overwhelming the tracing subsystem,
causing lost events, which prevent precise computations. Even
if we were able to collect all events using big tracing buffers,
the trace file would be huge and very difficult to read and
analyse.

One idea to limit the trace size is to filter the tracing events
to include just one process, but this solution is not possible
because, as mentioned earlier, the physical memory liberation
does not always occur in the context of the target process. It
may happen in the context of kernel threads or in the context
of another process that reclaims the memory.

In this paper, we combine the benefits of both approaches,
tracing and sampling, by proposing a dynamic trace-based
sampling method. The sampling rate is defined based on the
frequency of the related trace events.

2http://www.tracecompass.org



Fig. 1. Sampling

IV. ARCHITECTURE

Memory management of modern operating systems is now
much more complex. Each process has a contiguous virtual
address space in which it allocates the required memory
objects. A physical memory page is associated to a virtual
one, by the page fault handler, only when the process actually
accesses it.

In this paper, we provide a tool to monitor virtual and
physical memory usage using a combination of tracing and
sampling techniques. The proposed architecture is shown in
Figure 2.

Fig. 2. Architecture

A. Virtual memory monitoring

The method tracks the virtual memory usage from the kernel
space. It traces the different system calls related to memory
allocation and release, and uses them as triggers for the Kernel
Counters Reader.

Memory-related functions like malloc(), calloc(), realloc(),
and free() use system calls to interact with the operating sys-
tem modules where the memory management is accomplished.
Table I shows the mapping between library functions and
system calls.

The behavior of the allocator differs depending on the size
of the allocation. Small allocations are achieved using sbrk
system calls, which increase the size of an existing virtual
space region. In this case, releasing the memory allocated
doesn’t automatically reduce the size of the virtual space. In
contrast, big allocations are done using mmap and released
right away by munmap after the memory is freed by the
applications (Figure 3)

TABLE I
MAPPING BETWEEN MEMORY FUNCTIONS AND SYSTEM CALLS

size <= MMAP THRESHOLD size >MMAP THRESHOLD

Malloc
calloc
realloc

sbrk mmap

free
None, or sbrk(negative)
depending on
M TRIM THRESHOLD

munmap

Fig. 3. Virtual memory growth after allocation and release operations

The virtual memory of a specific process also grows when a
shared library is loaded or when a shared segment is mapped
into the address space using shmat.

The system calls cited in Table I are used as triggers for the
Kernel Counter Reader which reads the exact value of virtual
memory usage from the mm struct of the concerned process
and generates an LTTng trace event.

B. Physical memory monitoring: Dynamic sampling algorithm

Physical memory monitoring presents a big challenge com-
pared to virtual memory: the memory manager of the operating
system generates a huge number of events, and recording them
all in a trace file is almost impossible.

Sampling can be a good solution for this case, but choosing
a sampling rate is not an easy task. Some processes demand
and access the memory very frequently during the execution,
while others access it less frequently. A low sampling rate
gives a bad precision but, on the other hand, a high sampling
rate generates a huge amount of useless data for inactive
processes.

In Algorithm 1, the method that dynamically changes the
sampling rate, depending on processes activity, is presented.

It is a 2D sampling algorithm that uses the time and
the memory variability to chose the appropriate time to get
memory usage information from the Kernel data structures.
An event is generated if the timer finishes, or before that if the
memory variability of a process exceeds a certain threshold,
as shown in Figure 4. The blue points represent timer events,
and the red points are the events caused by the threshold.

Memory variability is computed by hooking on
kmem mm page alloc and kmem mm page free events,
which occur when a physical page is allocated or released.
The Kernel keeps information about physical memory usage



Input:
Sampling rate
Variability threshold

//Main thread
startTimer(rate)
if Timer tick then

processes ←− ListSystemProcesses()
for process in processes do

trace memory(process)
variability[process] ←− 0

end
restartTimer()

end

//Kprobe hook
if memory page allocated/released then

process ←− getCurrentProcess()
variability[process]+ = PAGE SIZE ∗ direction
if variability[process] exceeds the threshold then

trace memory(process)
end

end
Algorithm 1: Dynamic sampling Algorithm

Fig. 4. (Time, Space) Sampling

in the mm struct data structure (RSS: Resident set size) This
counter is adjusted each time a physical page is inserted or
removed from the page table of the process.

The proposed algorithm is implemented as a Kernel module
and is configurable through the proc file system (sampling rate,
variability threshold).

Lock-free data structures are used to provide a good scala-
bility:

• RCU Hashmap is used to hold process information
• Memory variability is defined as atomic long to avoid

using heavy synchronization mechanisms.

V. EVALUATION

In this section, we evaluate the performance and the useful-
ness of our tool. Benchmarking was performed with a synthetic

workload and then with real applications. We compared our
method with Massif, another state-of-the-art tool, to confirm
the correctness of our analysis.

A. Performance

The performance tests are executed on an Intel i7-4790 CPU
@ 3.60GHz with 6 GB of main memory and an Intel SSD 530
Series 240 GB hard disk, running Linux Kernel version 4.4.
The traces are collected using LTTng 2.8.

The following cases are used for benchmarking:
• No tracing: the program runs without any tracing mech-

anism.
• Dynamic sampling: We used our dynamic sampling mod-

ule with a sampling period of 10 ms and a memory
variability threshold of 10 MB.

• LTTng all memory events: We traced all memory al-
location and release events. We used the tracepoints
kmem mm page alloc and kmem mm page free.

• Massif: We used Massif, a widely used memory moni-
toring tool.

A program was developed to generate a memory access
workload. It allocates, accesses and frees a memory buffer of
a certain size, and repeats the operation until it reaches 20GB
of workload. The execution time of this program with the
different configurations is presented in Table II and Figure 5.
The same benchmark is also performed with real applications:
Firefox, a widely-used web browser, and Totem, the default
movie player of the GNOME desktop. The results are reported
in Table III.

Fig. 5. Tracing impact on execution time

The results show that the overhead of Massif is very high, as
compared to other cases. It is 5x slower with the benchmarking
program, 3x slower with Totem and 20x slower with Firefox.
In contrast, the overhead of the two other cases is almost
negligible. It doesn’t exceed 1% in all cases.

It is expected that the Dynamic sampling algorithm and
LTTng all memory events are similar in terms of execution
time because we are tracing the same kernel functions in both
cases, the difference is in the number of events generated.
Table IV shows that with a sampling period of 10 ms and a
memory variability threshold of 10 MB, we can reduce the



TABLE II
EXECUTION TIME IN SECONDS AS A FUNCTION OF THE MALLOC BUFFER SIZE, WITH DIFFERENT TRACING MECHANISMS

Malloc Buffer Size / Tracing Mechanism Massif Dynamic Sampling LTTng (All memory events) No tracing

100 MB 11.03 2.24 2.34 2.239
250 MB 10.86 2.19 2.26 2.183
500 MB 11.2 2.13 2.2 2.134
1G 11.2 2.203 2.18 2.126
2 GB 11.96 2.15 2.16 2.097

TABLE III
EXECUTION TIME IN SECONDS FOR SOME APPLICATIONS WITH DIFFERENT TRACING MECHANISMS

Application / Tracing Mechanism Massif Dynamic Sampling LTTng (All memory events) No tracing

Firefox 51 2.509 2.59 2.51
Totem (10 seconds video) 28 10.641 10.645 10.752
Benchmark application (Buffer size = 500 MB) 11.2 2.13 2.2 2.134

size of the trace by a factor between 3 and 7 for a normal
workload.

An interesting phenomenon happens when the buffer size is
more than 4 GB. The operating system goes into a thrashing
state. Memory pages start to be moved between the main
memory and the swap space, which creates a huge memory
activity. Tracing all memory activity at this point is very
inefficient, and somehow impossible since the number of
events is very high. The Dynamic Sampling Mechanism is
able to handle this case by filtering the unnecessary events on
the kernel side.

B. Correctness

In this section, we use our tool to monitor the virtual and
the physical memory usage of different applications and we
use Massif, the Valgind memory profiler, to validate that the
results are the same with both tools.

At first, We traced our program using the dynamic bench-
marking mechanism and we used TraceCompass to show
the results graphically. The output of our tool (Figure 6)
corresponds perfectly to logic behind the code. The program
allocates 500 MB, access the allocated memory and the frees
it.

We can see that the virtual memory, shown in red, is allo-
cated when malloc() is called. The physical memory, shown
in blue, is allocated when the memory pages are accessed
using memset(). The virtual and physical memory are released
during the free() function call.

Fig. 6. Virtual and physical memory usage monitoring

Figures 8 and 7 show that both tools give similar memory
usage graphs for Firefox. Totem memory usage is also plotted
by both tools in Figures 9 and 10 which displays the same
output for both approaches.

Fig. 7. Firefox memory usage at startup using LTTng

Fig. 8. Firefox memory usage at startup using Massif

Our tools bring other important advantages when compared
to Massif. Physical memory usage is shown and the analysis
covers all the processes running on the system at the same
time, not only one targeted process.



TABLE IV
NUMBERS OF EVENTS IN THE TRACE FILE GENERATED BY LTTNG (ALL MEMORY EVENTS) AND THE DYNAMIC SAMPLING MECHANISM

malloc size / tracing mechanism LTTng (All memory events) Dynamic Sampling Reduction factor

5 GB 8508992 142984 59.51
4 GB 3636861 52771 68.92
2 GB 102387 29686 3.45
1G 101200 28317 3.57
500 MB 124644 28425 4.39
250 MB 173558 32834 5.29
100 Mb 300623 40635 7.4

Fig. 9. Totem memory usage to play a video using LTTng

+

Fig. 10. Totem memory usage to play a video using Massif

VI. CONCLUSION

In this paper, a framework to collect memory usage infor-
mation for enterprise applications is proposed. It includes a
dynamic sampling algorithm to gather runtime information
from the operating system kernel. The method checks if a
certain time has elapsed or if a threshold was reached and
then gathers information from the kernel data structures and
generates trace events to be processed and analysed later.
The thresholds are dynamic and can be updated based on the
application behavior and memory usage pattern (e.g., the rate
of memory allocation calls).

We have tested our method against some real world ap-
plications like Firefox and the Totem video player, and the
results demonstrate that the performance cost of the proposed
approach is negligible while the precision is preserved.

The proposed solution was used to analyse memory usage.
However, the architecture is generic enough to be used for
any other resource usage metric. It can actually be used

for other high frequency tracing events within the operating
system kernel, like network usage, disk I/O, etc. Extending the
proposed method to support other kinds of metrics, and using
other high frequency events, will be investigated as a future
work.
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