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Automated Performance Deviation Detection Across
Software Versions Releases

Abderrahmane Benbachir∗, Isnaldo Francisco De Melo jr†, Michel Dagenais‡ and Bram Adams§
Department of Computer and Software Engineering, Polytechnique Montreal, Quebec, Canada

Email: {∗abderrahmane.benbachir, †isnaldo-francisco.de-melo-junior, ‡michel.dagenais, §bram.adams}@polymtl.ca

Abstract—Performance is an important aspect and critical
requirement in multi-process software architecture systems such
as Google Chrome. While interacting closely with members of
the Google Chrome engineering team, we observed that they
face a major challenge in detecting performance deviations
between releases, because of their very high release frequency and
therefore limited amount of data on each. This paper describes a
deep analysis on the data distributions followed by a comparative
approach using median based confidence interval for software
evaluation. This technique is capable of detecting performance
related deviations. It is substantially different from the standard
confidence interval, in that it can be used in the presence of
outliers and random external influences since the median is less
influenced by them. We conducted a bottom-up analysis, using
stack traces in a very large pool of releases. The results show that
our approach can accurately localize performance deviations at
a function-level granularity, using a very small number of trace
samples, nearby 5 runs.

I. INTRODUCTION

One of the prevailing metrics for software product quality

evaluation is repeatability and accuracy of subsequent exe-

cutions. As the complexity of software increases, along with

user expectations and features, it is evermore necessary to

reduce the perceivable performance issues. From an end user’s

perspective, performance is tightly related to the software

correctness and interactive responsiveness. Failing on either of

those fronts may lead the customers to opt for a competitor’s

better-performing product. Also, on more critical systems, a

slow response from the software can result in taking incorrect

decisions, for instance during a critical medical operation.

A multi-process software such as the Chromium browser

(the open-source web browser upon which Google Chrome

is built), has a large and increasing number of community-

contributed code. To insure the high quality of such modern

software systems, code review with testing and debugging

remain the most commonly used techniques. Chromium uses

an open source Python-based continuous integration testing

framework known as Buildbot. Against every build, Chromium

runs a series of performance tests, monitored by the Perf

Sheriff tool for regression purposes. However, given a limited

set of resources and time before each software release, in-

house testing and debugging becomes insufficient to ensure

high quality. In development environments, testing typically

covers only a fraction of the use cases being defined by

developers within the testing frameworks [1].

In Google Chromium, performance is an important aspect

and a critical requirement. Therefore, many tools have been

developed for diagnosing performance problems. However, it

still is a very hard task even for highly experienced developers.

Performance bugs are very different and require considerable

attention; it may involve changes to a large portion of the code,

which might result in adding more artifacts to the software.

Tracing tools provide the ability to record events while

the software executes normally on the system. Those events

will have three main characteristics: a timestamp, a type and

a payload. Therefore, tracing tools are appropriate for the

accurate detection of performance problems. Any undesirable

influence of the tracer on the system under test is called over-

head. Modern tracers are now able to achieve low overhead,

and hence, can be used on real production systems to track

sporadic bugs.

The Trace Event Profiling Tool is the userspace tracing

framework provided by the Chromium Project. It allows

recording activity in Chrome’s processes. Tracing is achieved

by recording the C++ or JavaScript methods signatures in a de-

tailed chronological view. Nevertheless, the recorded process

generates a large amount of information, which can be used,

through a mining process, to track performance bottlenecks,

as well as slow executions.

While interacting closely with members of the Google

Chrome engineering team, we discovered that their interest

is not just in detecting performance degradation between

releases, but also in detecting performance improvements

induced through micro-optimizations. In this work, we propose

a median-based confidence interval technique, which is an

enhancement of the traditional statistical technique known as

the confidence interval (CI). It was applied for performance

deviation detection across many releases. As a consequence,

the finding raises the possibility of using the comparative

confidence interval metrics as a regression technique. Please

note that we use in this paper the acronym CI to refer to the

Confidence Interval, not Continuous Integration as is often the

case in the DevOps community.

The issues discussed above form a base for the followings

questions to be answered in this work;

• RQ 1: Can our approach detect performance deviations?

• RQ 2: How much tracing data is required for the detec-

tion?

The remainder of this paper is organized as follows. Section II

discusses related work. Section III describes the approach em-

ployed collecting execution traces and detecting performance

deviations using the confidence interval technique. Section IV

describes the evaluation steps applied on Chromium Browser.

Section V summarizes the results of this study and answers the



research questions. Section VI introduces a short discussion

about our findings and outlines threats to validity. Finally,

Section VII concludes the paper with future directions.

II. RELATED WORK

There are many related studies which intend to detect and

diagnose performance variations by comparing two different

executions. This paper presents a methodology for localizing

performance deviations across large groups of releases without

relying on comparisons techniques. Most of the work in the

area of regression detection focuses on performance anomalies

in load tests.

Nguyen et al. [2] carried out a series of researches on per-

formance regressions. They recommend to leverage statistical

control strategies, for example control graphs, to distinguish

performance regressions. They create a control graph for each

performance counter and analyze the infringement proportion

of a similar performance counter in the target software version.

The work of Nguyen et al. is similar to ours, we both use a

dynamic analysis approach for software evaluation, and we use

statistical techniques for detecting performance regressions.

Despite that, Nguyen et al. performed regression tests to

collect performance counters; such an approach is limited

because it cannot guarantee the full test coverage of the source

code. The main difference in the statistical approach used by

Nguyen and our approach is the detection scaling. Control

chart techniques are limited to detect regressions between only

two versions at a time, our work uses a confidence interval

technique that can indefinitely scale to detect regressions on a

very large group of versions.

Heger et al. [3] present an approach to integrate performance

regression root cause analysis into development environments.

Developers are provided with visual graphics that help them

identify methods causing the regression. The approach con-

ducts unit tests to collect performance measurements and con-

sequently provides no feedback on the performance expected

in realistic environments.

There are also other approaches to detect variations during

performance monitoring of production systems. Doray et al.

[4] propose a new tool, TraceCompare, that facilitates perfor-

mance variation detection between multiple executions of the

same task. They used the Enhanced Calling Tree (ECCT) as

a data structure to store trace executions and to represent the

performance characteristics of task executions. Doray’s work

allows effective comparisons between groups of executions of

the same task. However, such work has not yet been extended

for comparing between different task versions.

III. APPROACH

In this section, we present our approach for detecting

performance deviations between consecutive releases. Every

subsection relates to a stage in our approach, as shown in

Figure 1. This section gives a complete overview of the trace

collection approach and the statistical technique used during

the detection process.

A. Trace Collection

The Chromium trace framework provides several trac-

ing mechanisms such as: Function Tracing, Asynchronous

Events and Counters. Function tracing is widely used by

Chromium developers and it provides C++ macros arranged

as TRACE EVENT to record begin and end of function calls.

However, this technique has a disadvantage, since developers

have to manually instrument the desired functions.

The engineering team at Google Chrome intends to implement

a Dynamic Race Detector, which is a tool for compile-

time instrumentation that has been integrated into the LLVM

compiler [5]. This compiler-based instrumentation will pro-

vide the ability to enable dynamic tracing everywhere inside

Chromium.

In our work, we focused on trace events emitted by Function

Tracing trace-points, and as a result we got hierarchical stack

traces of function calls. These function calls represent the main

tasks occurring inside the browser.

B. Preprocess Traces

The Trace Event Format is the trace data representation

that is created by Chromium while tracing is enabled. It’s a

JSON format that contains a list of different event types such

as: Duration Events, Complete Events, Async Events, Flow

Events and Counter Events. [6]

Catapult is an open-source project and home for several

performance tools that span gathering, displaying and

analyzing performance data for the Chromium project. To

import traces from the JSON format into call stacks objects,

we used the Trace-Viewer importer module based in the

Catapult project. Given the very large size of data traces, we

filter call stacks and keep only those within the main thread

responsible for rendering web pages. This thread is known as

CrRendererMain, from the Renderer process.

Figure 2: Processing call stacks for self-time metric

The performance counters collected and used for deviation

detection are CPU profiles. CPU profiles show where the

execution time is spent within the instrumented function, and

functions within children; this information is extracted as self-

time and total-time, as shown in Figure 2.

The Self-time is defined as the amount of time spent in a

specific program unit. For instance, the self-time for a source
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Figure 1: An Overview of Our Approach.

line indicates the time spent on this specific source line by

the application. The Self-time offers a considerable level of

insight into the effect that a function has on the program.

Examining the effect of a single unit is otherwise called

bottom-up analysis.

The Total-time refers to the aggregated time incurred by a

program unit. For functions, the total-time involves the self-

time of the function itself and the self-time of the entire

dynamic call tree of functions that were called from that

function. The total-time also empowers an advanced level of

comprehension on the utilization of time in the application.

Examining the effect of this metric is otherwise called top-

down analysis [7].

As part of this work, we will mainly focus on the self-

time metric to detect performance deviations at function-level

granularity.

C. Compute Interval Estimation

The motivation behind taking a random sample from a

group or population, and computing statistical parameters

such as mean from the data, is to approximate the mean of

the population.

In statistics, estimating the underlying population value is

always an issue. An Interval Estimation addresses this issue

by providing a range of values which act as good estimates

of the population parameter of interest.

A Confidence Interval (CI) delivers a move from a solitary

value estimate, (for example, the sample mean, variation

between sample mean and so on) to a scope of qualities that

are thought to be acceptable for the population. The width

of a confidence interval in light of a sample measurement

is substantially dependent on its Standard Error (SE), and

consequently on both the sample estimate and the standard

deviation. It likewise relies upon the level of ”confidence” that

we need to connect with the subsequent interval [8].

In this step, we compute the confidence interval (confidence

level of 95%) using the self-time of each function retrieved

from collected stack traces.

Before computing confidence intervals, we must check the

distribution properties within the data-set.

In the software system that we study, only 8% of the studied

runs have unimodal distribution, with one clear peak. In

fact, we affirm that these runs are normal as confirmed by

Shapiro-Wilk tests (p >0.05). However, in the 92% of the

remaining data, as shown in Figure 3, we discern three types

of recurring distributions that are most present. Each color is

related to a specific Chromium release, see Appendix A for

more details.

This low level of normality in our data-set was expected,

especially when dealing with real world experiments which

contain non-deterministic events.

In the multimodal distribution, we noticed that it contains

alternately tall and short waves. This often results from a

faulty measurement, a rounding error or a version of the

plateau distribution. For example, a time duration rounded

off to the nearest 0.3 ms would show a multimodal shape

if the bar width for the histogram was 0.2 ms. We analysed

most of the multimodal runs from the data-set. We found

that they all have small measurement values, the smallest

precision measurement that we can get is 1 microsecond. We

explored the Chromium source code; we found out that all

event timestamps emitted by the Chromium tracer framework

are effectively limited to microsecond granularity [9].

The right-skewed distribution is similar to a normal

distribution but asymmetrical. The distributions peak is off

center toward the limit, and a tail stretches away from it

toward the right.

The majority of the runs in our data-set have skewed and

bi-modal distribution, the bi-modal distribution is similar to

the middle chart in Figure 3.

Bi-modal runs have two different modes; they appear

as distinct peaks, the local high points of the chart. This

distribution exposes the existence of two different populations,

both of them can be represented as uni-modal distributions.

When dealing with such cases, using the median over the

mean estimator produces more accurate results.

Given the different shapes of the distributions, no single

estimator is always optimal. While the mean is optimal for

low skew data since the distribution is normal, the median is

clearly preferable for bi-modal and skewed data. With overly

erroneous or generally difficult data, the median might be a

favorable choice, instead of the mean, as an estimation of

central tendency, and used with nonparametric procedures for

evaluation.

David Olive [10] in the Department of Mathematics at

Southern Illinois University, proposed an alternative approach

for computing CI using the median metric.

Confidence Interval for the median. As Olive states in

his literature [10], a benefit of his confidence interval for the

median is the fact that it gives a straight forward, numerical

means of distinguishing circumstances where the data val-

ues require painstaking, graphical evaluation. Specifically, he

supports comparing the conventional confidence interval for

the mean against his confidence interval for the median, if

these intervals are markedly different, it is worth investigating

to understand why. The main concept here is that under the

”standard” working assumptions (i.e., distributional symmetry
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and estimated normality) the mean and the median ought to

be almost identical. In the event that they differ, it presumably

implies a tampering of the working assumptions, because

of exceptions in the data, declared distributional asymmetry,

or different less frequently occurring instances like strongly

multimodal data distributions or coarse quantization.

The reliability is an important aspect of using median

instead of mean, even in the presence of outliers or non-

deterministic events that might bias the data. While it is

impossible to predict the perturbing events, it is possible to

avoid them by using median-based analysis.

D. Detect Deviations

In Figure 6, we can easily localize the deviation happening

at version 56.0.2910.0, because it is visually possible to make

this distinction when such large deviations happen.

In the increasingly common case where we have a lot of

numerical variables to consider, it may be undesirable or

infeasible to examine them all graphically. Statistical tests to

measure the difference between two confidence intervals, like

the one described by [11] may be automated and used to point

us to specific deviations.

Figure 4: Statistical significance between two confidence in-

tervals.

In order to automatically compute theses deviations, two

requirement are essentials :

• The two medians are significantly different (α = 0.05)

when the CI for the difference between the two group

medians does not contain zero.

• The two medians do not have overlapping confidence

intervals if the lower bound of the CI for the greater

median is greater than the upper bound of the CI for the

smaller median.

If a CI overlap is present, it is not possible to determine a

difference with certainty. Since there is no CI gap, a significant

difference can be tracked as explained in Figure 4.

Figure 5: Comparing two confidence intervals

In order to compare two confidence intervals, we must con-

sider two aspects: statistical significance and calculated over-

lap. Figure 5 shows two cases, comparing two CI, overlap and

gap.

IV. EVALUATION

The data-set used in the work has been extracted using the

chromium-browser-snapshots repository. With the repository

API, we fetched all the builds meta-data and we stored them

locally for offline processing. Each build entry contains five

fields: build-number, version-number, date, git-commit-id, and

media-link.

We filter the data-set to select only builds within the year

2016, we removed some builds that had the same version

number and we only kept the latest ones. After this step, the

data-set is reduced to 300 builds. From this data-set, we narrow

it for only the latest 100 releases distributed in the last four

months, consult Appendix A for more details about releases.

After downloading all building binaries the from Chromium

repository, we started by running a basic workload on each

release. This workload consists of rendering a regular web

page 1. The scenario takes about two seconds to complete.

When the workload is completed, we killed all chromium

processes before running the next experiment.

Ahead of running the workloads on each release, we removed

cache and configurations files that were stored by the previous

1https://lttng.org



release; we also didn’t trace the first run (cold-run), consider-

ing chromium would need to do an initialization procedure

before running the first workload, to avoid noise that this

behavior could possibly introduce.

On each run, we enabled Chromium userspace tracing using

the flag trace-startup. By the end of the experiment, a JSON

file was created containing the execution trace of the workload.

To prevent any disturbance, we avoided any activity while

running the experiments.

For each release, we executed 50 times the same workload.

As a result, we collected up to 50 Gigabytes of trace data.

V. RESULTS

This section explains the study results for the function tasks:

Paint, V8.ScriptCompiler and GetRenderStyleForStrike. Due

to space limitation, deviation detection findings of only some

functions will be discussed. However, the reader is welcome

to access the online repository [12] for more results related to

other functions. This section also reveals the findings of the

research questions investigated in the study.

RQ 1: Can our approach detect performance deviations ?

Our first research question is to find whether our approach

is suitable to localize performance deviations across a large

number of releases. We address this question by presenting

some use cases, the first two cases identify many deviation

types, where the last one exposes a case where median-based

CI performed better than mean-based CI due to presence of

non-deterministic events.

In the Paint task, as seen in Figure 6, we can clearly notice

that a deviation happened between version 56.0.2909.0 and

56.0.2910.0, the duration difference is around 0.18 ms, which

is a significant gap. We obtained 0.18 ms when computing

the median difference between the first median 0.25 ms

(56.0.2909.0) and the second one 0.07 ms (56.0.2910.0).
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Figure 6: Paint confidence intervals

In the V8.ScriptCompiler task, as seen in Figure 7,

three deviations happened at 56.0.2904.0, 57.0.2927.0 and

57.0.2946.0. The first two deviations were negative deviations,

because each one of them migrated to a higher value. Those

kinds of deviations can be classified as regressions. When

analyzing the third deviation, without taking into consideration

the previous regressions, we might miss an important event.

The third deviation has a fallback at the same level as

before the first regression. This temporary deviation from the

main line happened only for a certain period of time. This

phenomena can be classified as a digression. Figure 8 is
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Figure 8: GetRenderStyleForStrike confidence intervals

able to demonstrate a comparison of using mean and median

based analysis. It is possible to verify that on mean-based

analysis there is a deviation between releases 57.0.2939.0 and

57.0.2940.0, while it is not present on median-based curve.

Instead, on mean-based analysis, there is a deviation between

57.0.2937.0 and 57.0.2938.0 releases which is not present on

median-based curve.

In some cases. it is very difficult to detect deviations by

only relying on visual analysis. In such cases, we need an

automated mechanism to get a precise result.

Automation can be reached by using the statistical tests and

techniques discussed in section Approach Detect Deviations,

which we computed between each consecutive intervals. For

the interval comparison, we considered two essential condi-



tions: if a statistical test is significant and no overlap is found,

there is a deviation.

To summarize our results, we built a Deviation matrix

shown in Figure 9.

The Deviation matrix is a visual tool that explains deviation

types, since it visually emphasises them according to their

properties. We can show several properties of the deviations

on this matrix.

The deviations are represented as triangles with two directions.

A negative deviation (regression) is represented as a standard

triangle, and a positive deviation (improvement) is represented

as a upside down triangle.

Also, in the Deviation matrix, the size of the shapes is

related to the interval’s gap, a bigger gap results into a bigger

shape. The squares represent non significant overlaps, and

finally the dots represent significant overlaps.

The comparison takes in consideration two different aspects:

statistical significance and calculated overlap. The triangles,

therefore, are the cases for which the two essential conditions

are fulfilled: statistical significance and clear Confidence In-

terval gap.

RQ 2: How much tracing data is required for the detection ?

Our second research question is to find how much trace data

is needed for performance deviation detection. We address this

question by presenting four different collected runs: 5, 10, 20

and 50 runs being collected. In Figure 10, we notice that after

5 trace runs, there is a tendency for the deviation to become

more important, and intervals width becomes thinner as more

runs are aggregated.

VI. DISCUSSION AND THREATS TO VALIDITY

In this section, the results are discussed in details in relation

to the research questions.

A. The Research Questions Revisited

To better localize where the deviation happened in Figure

6 in release 56.0.2910.0, we did a source diff [13] between

56.0.2910.0 and the previous release which is 56.0.2909.0.

We have found 363 commits, 63 of these commits have

triggered 63 continuous integration builds, on which we

applied our approach and we detected the deviation at build

429808 as presented in Figure 11.
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Figure 11: Paint confidence intervals between continuous

integration builds

In order to list the changes happening between 429800

and 429808, we applied a source diff [14] between commits

that triggered theses builds. As a result, we found 8 commits

summarized in Table I.

Table I: Changes that caused deviation in 429808

Commit Id Comment
0913b86 Add virtual tests for XHR with mojo-loading
d99d907 [DevTools] Remove handlers = browser from protocol def
4c2b05e preserve color space when copy nv12 textures is true
57d2116 [Extensions + Blink] Account for user gesture in v8 func
5516863 Enable compositing opaque fixed position elements
65426ee Remove stl utilś deletion function use from storage
c1d8671 [Devtools] Moved new timeline canvas context menu to
c48291b cc/blimp: Add synchronization for scroll/scale state

We analysed the eight commits to find which one is

responsible for the deviation, none of them did specific

changes on the studied task (Paint). On the other hand, we

could build each commit and run the experiments on theses

builds. However, it would be a time consuming task, and it

would not disclose which specific code change generated the

deviation. Mainly because the functions changed on those

commits were not instrumented, it would be hard to mine

the source code to extract the involved nested function calls

in this deviation. Consequently, expert input from Google

developers is almost unavoidable.

The v8.ScriptCompiler has an interesting behaviour

showing three deviations A closer examination on the

Deviation Matrix shows a temporary deviation on the

performance of this task. This deviation can be challenging

to interpret precisely. This temporary regression could be

explained by two possible causes. First, a change was added

that lead to a performance degradation, this later was fixed.

Secondly, a code change was introduced and then later

reverted to the previous state.

The two sides of both curves on figure 8 corroborate for a

non presence of deviations. However, the behavior of the cen-

ter (between 57.0.2938.0 and 57.0.2945.0) differ completely.

The mean curve reveals an abrupt behavior, with smaller

confidence intervals and mean values which are approaching

median values in the median curve.

Although mean and median are similar in terms of under-

standing a tendency, in figure 8 they reveal opposite properties

within their curves. The mean is not robust considering it has

a disadvantage of being influenced by any single abnormal

value, this can be verified by its curve, which has two drastic

deviations at 57.0.2938.0 and 57.0.2945.0. The median is

appropriated to distribution to our data-set and as consequence,

its curve demonstrates strong stability toward outliers.

By analyzing Figures 6 and 7, we notice that the median-

based intervals are small compared to mean-based intervals.

Also, the Figure 8 shows mean-based sensitivity in the pres-

ence of outliers, those results reveal the stability of using the

median over the mean approach.



●

●FrameView::synchronizedPaint

FrameView::updatePaintProperties

GetRenderStyleForStrike

Paint

v8.callFunction

v8.compile

v8.run

V8.ScriptCompiler

56
.0.

29
00

.0
56

.0.
29

01
.0

56
.0.

29
04

.0
56

.0.
29

05
.0

56
.0.

29
06

.0
56

.0.
29

07
.0

56
.0.

29
09

.0
56

.0.
29

10
.0

56
.0.

29
11

.0
56

.0.
29

12
.0

56
.0.

29
13

.0
56

.0.
29

14
.0

56
.0.

29
15

.0
56

.0.
29

16
.0

56
.0.

29
17

.0
56

.0.
29

18
.0

56
.0.

29
19

.0
56

.0.
29

20
.0

56
.0.

29
21

.0
56

.0.
29

22
.0

56
.0.

29
24

.0
57

.0.
29

25
.0

57
.0.

29
26

.0
57

.0.
29

27
.0

57
.0.

29
29

.0
57

.0.
29

30
.0

57
.0.

29
32

.0
57

.0.
29

33
.0

57
.0.

29
34

.0
57

.0.
29

35
.0

57
.0.

29
36

.0
57

.0.
29

37
.0

57
.0.

29
38

.0
57

.0.
29

39
.0

57
.0.

29
40

.0
57

.0.
29

41
.0

57
.0.

29
42

.0
57

.0.
29

43
.0

57
.0.

29
44

.0
57

.0.
29

45
.0

57
.0.

29
46

.0
57

.0.
29

47
.0

Releases

Deviation size
●

●

●

●
●

0.00

0.05

0.10

0.15

0.20

●

Gap (Regression)

Gap (Improvement)

Not Signifi Overlap

Significant Overlap

Figure 9: Deviation matrix : automatic deviation detection for studied functions and their relatives

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●● ●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●●

● ●●

05 runs 10 runs

20 runs 50 runs

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

56.0.2898.0

56.0.2899.0

56.0.2900.0

56.0.2901.0

56.0.2904.0

56.0.2905.0

56.0.2906.0

56.0.2907.0

56.0.2909.0

56.0.2910.0

56.0.2911.0

56.0.2912.0

56.0.2913.0

56.0.2914.0

56.0.2915.0

56.0.2916.0

56.0.2917.0

56.0.2918.0

56.0.2919.0

56.0.2920.0

56.0.2921.0

56.0.2922.0

56.0.2898.0

56.0.2899.0

56.0.2900.0

56.0.2901.0

56.0.2904.0

56.0.2905.0

56.0.2906.0

56.0.2907.0

56.0.2909.0

56.0.2910.0

56.0.2911.0

56.0.2912.0

56.0.2913.0

56.0.2914.0

56.0.2915.0

56.0.2916.0

56.0.2917.0

56.0.2918.0

56.0.2919.0

56.0.2920.0

56.0.2921.0

56.0.2922.0

Releases

S
el

f t
im

e 
(m

s)

Figure 10: Median-based Confidence Intervals with different runs for Paint



To define the statistically relevant deviations we still

need help from experts. In order to allow an expert to use

our current automation approach, a tuning phase for the

detection is required. The main reason for this procedure is

to determine the threshold between statistical significance

and the practical significance. Due to the sample size effect,

statistically significant differences can appear even with

very small differences. This is in contrast to the practical

significance, which is related to a specific domain. Hence, a

professional practitioner direction for the system tests is still

required [15].

The results observed in Figure 10 corroborate the Central

Limit Theorem (CLT). This theorem asserts that the more we

collect trace data, the more we get accurate results. Although,

the more tracing data collected the more overhead it was

added, consequently the overhead is directly proportional to

the amount of data traced. Moreover, from Figure 10, the

number of traces to keep the effectiveness of our method was

five while keeping the overhead negligible, similar approach

was also explored for logging in [16].

B. Threats to Validity

During the experiments, we used a Linux-based operating

system machine with 4 GHz CPU speed and 32GB of RAM,

which is not a common configuration used among most users.

The use of confidence intervals on multi-modal distributions

may lead to some inaccuracy in our results.

Since the confidence Interval is an estimation, there is an

approximation error which can lead to misleading performance

deviations. Consequently, the performance detection has some

restrictions for an accurate application. In this context though,

since we don’t rely on just one estimation for deducing the

performance behaviour, the approximations do not lead to a

misinterpretation.

VII. CONCLUSION

A bottom-up analysis has been performed on collected stack

traces, which led to the conclusion that interval estimation pro-

vides a clear detection of performance deviations among many

versions, even with limited data on each version. Furthermore,

we used an improved confidence interval that leads to more

accurate results with very little tracing data. The previous work

(specifically on performance debugging) typically focused on

binary comparisons, limited between two versions. Our work

extends beyond those previous limits and provides a graphical

view, called Deviation matrix, that helps performance analysts

effectively detect performance variations among many versions

at the same time.

In the future, we plan to expand our investigation by

analyzing deviations with different workloads and understand

the factors causing regressions cases. In this work, we mostly

focused on internal deviations caused by a change between

different software versions. As future work, we also intend to

analyze external deviations that might be caused by varying

hardware properties, while keeping the same software version.
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APPENDIX
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