
Titre:
Title:

HALO : a multi-feature two-pass analysis to identify framework API
evolution

Auteurs:
Authors: Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol et Miryung Kim

Date: 2013

Type: Rapport / Report

Référence:
Citation:

Wu, W., Guéhéneuc, Y.-G., Antoniol, G. & Kim, M. (2013). HALO : a multi-feature
two-pass analysis to identify framework API evolution (Rapport technique n°
EPM-RT-2013-05).

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/2967/

Version: Version officielle de l'éditeur / Published version
Non révisé par les pairs / Unrefereed

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Maison d’édition:
Publisher: École Polytechnique de Montréal

URL officiel:
Official URL: https://publications.polymtl.ca/2967/

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

https://publications.polymtl.ca/2967/
https://publications.polymtl.ca/2967/
http://publications.polymtl.ca/

EPM–RT–2013-05

HALO : A MULTI-FEATURE TWO-PASS ANALYSIS TO

IDENTIFY FRAMEWORK API EVOLUTION

Wei Wu, Yann-Gaël Ghéhéneuc, Giuliano Antoniol,
Miryung Kim

Département de Génie informatique et génie logiciel
École Polytechnique de Montréal

Mai 2013

EPM-RT-2013-05

HALO: A MULTI-FEATURE TWO-PASS ANALYSIS
TO IDENTIFY FRAMEWORK API EVOLUTION

Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, Miryung Kim*
Département de génie informatique et génie logiciel

École Polytechnique de Montréal
The University of Texas at Austin*

Mai 2013

2013
Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol,
Miryung Kim
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2010
Bibliothèque nationale du Canada, 2010

EPM-RT-2013-5
HALO : A Multi-Feature Two-Pass Analysis to Identify Framework API Evolution
par : Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, Miryung Kim
Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique : biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue.htm

http://www.polymtl.ca/biblio/catalogue.htm

APRIL 2013 1

HALO: A Multi-Feature Two-Pass Analysis to
Identify Framework API Evolution

Wei Wu, Member, IEEE, Yann-Gaël Guéhéneuc, Member, IEEE, Giuliano Antoniol, Member, IEEE,
and Miryung Kim, Member, IEEE

Abstract—Software frameworks and libraries are indispensable to today’s software systems. Because of the fast development of
open-source software in recent years, frameworks and libraries have became much versatile as any open-source system or part
thereof can be used as a framework (or a library). Developer can reuse frameworks in innovative ways that are not expected by the
providers of frameworks. Many frameworks are not well documented and very few owners provide specific documents to describe
the changes between different releases of their frameworks. When they evolve, it is often time-consuming for developers to keep
their dependent code up-to-date. Approaches have been proposed to lessen the impact of framework evolution on developers by
identifying API evolution or change rules between two releases of a framework. However, the precision and recall of the change
rules generated by these approaches depend on the features that they use, such as call-dependency relations or text similarity. If
these features do not provide enough information, the approaches can miss correct change rules and compromise the precision
and recall. For example, if a method in the old release of a framework is not called by other methods, we cannot find its change
rule using call-dependency relations alone. Considering more features can overcome this limitation. Yet, because many features
may also give contradictory information, integrating them is not straightforward. We thus introduce Halo, a novel hybrid approach
that uses multiple features, including call dependency relations, method documentations, inheritance relations, and text similarity.
Halo implements a two-pass analysis inspired by pattern classification problem. We implement Halo in Java and compare it with
four state-of-the-art approaches. The comparison shows that, on average, the recall and the precision of Halo are 43% and 5%
higher than that of other approaches.

Index Terms—Software evolution, call dependency analysis, text similarity analysis, inheritance relation analysis, empirical study

F

1 INTRODUCTION

Software frameworks and libraries are widely used for
cost reduction. Without loss of generality, we use the
term “framework” to represent frameworks, libraries
in this article. When these framework evolve to fix
bugs, patch security vulnerabilities, and meet new
requirements, in theory, the Application Programming
Interface (API) of the new release of a framework
should be backward-compatible with its previous re-
leases, so that programs linked to the framework
continue to work with the new release [1]. In prac-
tice, the API syntax and semantics change [2], [3],
[4]. For example, from JHotDraw 5.2 to 5.3, method
CH.ifa.draw.figures.LineConnection.end()
was replaced by LineConnection.getEndConnec
tor(). Such a change may have direct consequences
on a program using the JHotDraw framework, in-
cluding compiling errors, runtime errors if the deleted
method is invoked using reflection.

In theory, changes to private or internal APIs should

• Wei Wu, Yann-Gaël Guéhéneuc, and Giuliano Antoniol are with
the Department of Computer engineering and Software engineering
at École Polytechnique de Montréal, Canada. E-mail: {wei.wu,yann-
gael.gueheneuc}@polymtl.ca,antoniol@ieee.org

• Miryung Kim is with the department of Electrical and Com-
puter Engineering at University of Texas at Austin. E-mail:
miryung@ece.utexas.edu

not impact legit client programs; but they do in prac-
tice for three reasons. First, visibility mechanisms of
most programming languages are limited and force
developers to promote the visibility of methods to
“public”, which should otherwise be hidden. This
limit is typically encountered when developing frame-
works in Java. Classes in the “internal” packages of
the framework must be “public” so that they are
visible to other framework classes. Being “public”
make them also wrongly visible to clients of the
framework. A means to work around such limitation
is to use frameworks with more fine-grain visibility
mechanisms, such as OSGi. Second, the official public
API can change, with some public methods becoming
hidden and some private methods becoming public.
Third, with open-source frameworks, developers can
promote any method to the status of public API by
changing its visibility and recompiling the necessary
classes. Consequently, we consider that any method
could be part of the API of a framework and, in
the following, will use the term API to designate
any method. (Considering any method as part of
the potential API of a framework also allows us to
discover more interesting change rules, which can be
subsequently filtered to show only rules pertaining to
public methods.)

To prevent backward-compatibility problems, de-
velopers may delay or avoid using a new release. Yet,

APRIL 2013 2

if they want to benefit from new features or security
patches, they must evolve their programs. However,
many frameworks are not sufficiently documented,
especially when it comes to the changes between
two releases and the rules to adapt programs from
an older release to a new one. For example, Google
releases Android API difference reports1 regularly,
but the Android API difference reports are rarely
sufficient, as we describe in Section 5.1. Generally
speaking, upgrading to new releases of frameworks
requires significant developers’ effort due to changes
in APIs. Developers must dig into the documents and
the source code of the new and previous releases of
the frameworks to understand their differences and
to make their programs compatible with the new
releases. The longer they delay the upgrading, the
more time consuming it is, because there will be more
changes to adapt.

Furthermore, different from the code-scavenging
described by Krueger [5], which is the practice of cop-
ing/pasting/understanding/modifying small pieces
of code fragments, many frameworks, such as those
built by the Eclipse Foundation2 and Apache Software
Foundation3, are large and complex. Developers may
use them without fully understanding them. Also,
because these frameworks are open source, develop-
ers can reuse these frameworks in innovative ways
that are not anticipated by their providers. A recent
example is Amazon, which developed Kindle Fire
based on Android to compete with Google and is free
to modify Android as it sees fit. These two practices
of using frameworks make upgrading to the new
releases of frameworks difficult.

Consequently, many approaches have been devel-
oped to ease the framework API evolution process
and reduce the developers’ effort of adapting their
programs to new releases of frameworks. Some ap-
proaches require that the framework developers do
additional work, such as providing explicit change
rules with annotations [6], or that they record API
updates to the framework [7], [8], [9]. However,
framework developers may not be able or willing to
build change rules manually or use specific tools.

To avoid the extra work for framework developers,
some approaches automatically identify API evolu-
tion or change rules that describe a matching between
target methods, i.e., methods existing in the old release
but not in the new one and replacement methods in the
new release, such as [10], [11], [12], [13]. Target and
replacement methods are described in terms of their
signatures: return type, declaring module, method
name, and formal parameters.

Besides changes to the public API, these approaches
also report change rules pertaining to internal APIs

1. http://developer.android.com/sdk/api diff/8/changes.html
2. http://www.eclipse.org/
3. http://www.apache.org/

that are often used by both maintainers and external
users of frameworks. Maintainers can face internal
API evolution problem with their own frameworks.
For example, when maintainers are newcomers or
must maintain code written by others. Internal APIs
are used by the external users of frameworks as well.
For example, Businge et al. investigated 1,873 versions
of 512 Eclipse third-party plug-ins and discovered
that 44% of them use internal APIs [14]. In their
survey of the use of Eclipse internal APIs, 70% of the
developers declared using Eclipse internal APIs and
only 3.3% of the developers always followed Eclipse
Provisional API Guidelines [15]. Moreover, Robillard
and DeLine [16] showed that understanding internal
APIs help developers to know better how to use the
public APIs. Furthermore, internal APIs usually are
less or non-documented. Thus, including internal API
change rules can help developers.

However, the precision and recall of the change
rules generated by these approaches depend on the
features that they use, such as call-dependency rela-
tions or text similarity. If these features do not provide
enough information, the approaches can miss correct
change rules and report wrong ones, which compro-
mises their precision and recall. For example, if a
method in the old release of a framework is not called
by other methods, we cannot find the related change
rule using call-dependency relations. Intuitively, con-
sidering more features can overcome this limitation,
but it is complicated to integrate them because dif-
ferent features may give contradictory information.
For one target method, call-dependency analysis and
text similarity analysis could suggest different re-
placement methods. This contradictory information
might offset the possible improvement brought by
integrating multiple features.

While studying the state of the art on framework
API evolution, we observed that this problem is an
instance of binary pattern classification problem [17].
Indeed, solving this problem requires classifying the
methods in the new release as the replacement of
a target method in the old release, according to the
patterns described by various features of the target
methods. Therefore, we can use existing pattern clas-
sification approaches to improve the precision and
recall of generated change rules.

In this paper, we propose a novel approach Halo
that uses call dependency relations, method docu-
mentations, inheritance relations, and text similarities
as features. Halo also automatically generates feed-
back data to further improve the precision and recall.
Similar techniques are used to solve general pattern
classification problems [18], [19] and other software
engineering problems [20], [21].

Thus, the main contributions of this work are:
1) Bring pattern classification vocabulary/tech-

niques to framework API evolution.
2) Show that consideration of multiple features

APRIL 2013 3

yields higher precision and recall.
3) Analyze the impact of different sub-components

of Halo on its overall precision.
The differences between Halo and our previous

approach AURA [13] are that:
1) Halo considers four features: call dependency

relations, method signature text-similarities,
method documentations, and inheritance rela-
tions, while AURA uses the first two only.

2) Halo implements a two-pass analysis approach
using feedback to improve precision, while
AURA has only one pass.

3) We also expand our original evaluation with the
Android SDK data set in this paper.

Using a detailed manual evaluation on five open-
source systems written in Java: JEdit, JHotDraw,
JFreeChart, Struts, and Android SDK, we find that
Halo improves, on average, recall by 43% and pre-
cision by 5% in comparison to three previous ap-
proaches: M. Kim et al.’s [11], Schäfer et al.’s [12]
approaches, and AURA [13].

We present the effect sizes of the improvements
of Halo in precision and recall in comparison to the
three previous approaches with Cliff’s d [22]. The
results show that, for recall, the improvements of Halo
are large in comparison to M. Kim et al.’s, Schäfer
et al.’s approaches and AURA; for precision, Halo
has a large improvement in comparison to Schäfer
et al.’s approach and AURA, and a small decrease
in comparison to M. Kim et al.’s approach. Cliff’s d
values confirm that the average recall and precision of
Halo are better than those of the previous approaches.

We also study the influences of the new components
of Halo on the precision and recall of the generated
change rules. The detailed results are presented and
discussed in Section 5.5.

To verify the scalability of Halo, we apply Halo
on two Eclipse subsystems (JDT core and JDT UI)
between releases 3.1 and 3.3. The numbers of methods
of the two releases of JDT core and JDT UI are 35,439
and 47,237 respectively, larger than the number of all
the methods in the five medium size systems that we
evaluated. The analysis takes five hours on CentOS
5.5 with Intel Xeon 16-Core 2.4GHz and 48GB RAM.

We also compare the results on Eclipse JDT core
and JDT UI with those of SemDiff [10] and AURA
[13]. Because of the large sizes of the two Eclipse
subsystems, it is impractical to manually evaluate all
the change rules of the two systems. We compare Halo
with SemDiff and AURA on the sample set of target
methods used by [10]. We describe the comparison
results in Section 4. The results show that the approx-
imated precision of Halo is 100% same as SemDiff and
that of AURA is 92.86%. However, SemDiff is, un-
like Halo, semi-automatic and thus developers must
choose the correct replacement methods from a list
that SemDiff generates.

In the remainder of this paper, Section 2 presents a
motivating scenario. Section 3 describes our approach.
Section 4 evaluates it on five real-world systems.
Section 5 discusses open issues. Section 6 presents
related work, and Section 7 concludes this paper with
future work.

2 HALO – USAGE SCENARIO

A typical scenario of using Halo to help framework
API evolution identification is as follows. Steve is a
Java developer and he uses two frameworks, Summer
1.5 and, Autumn 2.0, in one of his program, Season.
He finds out that there is an important bug fix in
Summer 1.6 and a new feature that he likes in Autumn
3.0. He thus decides to upgrade Season to use the
new releases of the two frameworks. When he com-
piles Season with the two new releases, he observes
that there are 18 compilation errors. All of them are
due to some methods in the old releases not existing
in the new one, eight in Summer and ten in Autumn.

On the one hand, Steve checks the web site of the
providers of the two frameworks and notices that the
development team of Summer generated change rules
between v1.5 and v1.6 with Halo, verified them, and
put the list of the change rules on their web site. Steve
then searches the list and obtains their replacements
in a couple minutes.

On the other hand, the team of Autumn provides
neither change rules between v2.0 and v3.0 nor docu-
mentation. Steve knows Halo and analyses the source
code of the two releases with it. Then, he checks the
replacement methods suggested by the change rules
related to the compilation errors and observes that
eight change rules are correct and two are wrong.
Yet, he can fix the eight compilation errors using the
correct change rules right away and explores the two
remaining compilation errors in the source code of
v2.0 and v3.0.

Consequently, it takes more time for Steve to up-
grade Autumn than Summer with Halo, yet he does
not have to solve all compilation errors by digging
into the source code manually. Thus, Halo saves his
time. In the following, we describe the inner-working
of Halo and concrete examples from six open-source
systems that demonstrate the advantage of Halo in
Section 5.

3 HALO – APPROACH

We observed that the framework API evolution iden-
tification problem is a binary pattern classification
problem. Given a target method in the old release
of a framework, we want to classify the methods in
the new release as being its replacement or not. We
use the features of the target method, such as call-
dependency relations, text similarities, etc., for the
classification. In the scope of Halo, target methods
are the methods existing in the old release but not

APRIL 2013 4

in the new one in terms of their signatures: return
type, declaring module, method name, and formal
parameters.

Based on the assumption made by Dagenais and
Robilliard [10]: that a target method is simply deleted
or replaced by one or more methods in the new
release, we describe the framework API evolution
identification problem formally as follows.

3.1 Formulation
Let V1, . . . VN be the evolution history of a framework
where Vi is its i-th release. Given two framework
releases Vi and Vj with j > i, the goal of our approach
is to model and resolve the problem of identifying API
change rules between releases i and j.

A release Vi is modeled as a set of methods
Vi = {m1,i, ... , mn,i} where mr,i represents the
method mr in release Vi and n is the number of
methods in that release. A method mr,i is defined
as mr,i =< IDmr,i

, F (mr,i) >, where IDmr,i
is the

method identity (a unique identifier) of the method
mr,i and F (mr,i) is a set of features describing mr,i. In
Java programs, the method identity IDmr,i can be the
fully qualified name of a method. The set of features
F (mr,i) may contain call dependencies, inheritance re-
lations, method signatures, method documentations,
and so on.

Between Vi and Vj , methods are added, deleted,
and modified. We must identify replacement methods
for those methods in Vi but no longer in Vj in terms
of their signatures including return value, declaring
module, method name, and formal parameters. Let us
assume that the function S(mr,i) returns the signature
of method mr,i and we choose S(mr,i) as the IDmr,i

in our work. Then, the target methods set T is:

T = {mr,i|@ms,j ∈ Vj : S(mr,i) = S(ms,j)} (1)

By definition, methods in T do not have any coun-
terpart in Vj with identical feature sets. They must
have different signatures at least.

The problem can thus be presented as binary clas-
sification of the elements in T × Vj into subsets. Each
method t in T is replaced by the methods in a subset
of Vj or φ. Indeed, it is possible that some methods
in Vj do not replace any method in T .

To classify the elements in T × Vj into subsets, we
compare the similarity of the features between meth-
ods in Vj and methods in T . We define F (m) ∼ F (t)
to mean that m is similar to t considering the feature
set. For any given method t in T , we compute the
replacement subset R(t):

R(t) = {ms,j |ms,j ∈ Vj : F (ms,j) ∼ F (t)} (2)

It is also possible that there is no method to replace
t, therefore |R(t)| ≥ 0

Besides the feature set F (ms,j), we also use some
feedback data, FD, to make the similarity computa-
tion more accurate. For example, if Class B is already

known as the replacement of Class A, this information
can be provided as feedback to calculate the similar-
ities between the methods in A and B. The feedback
data are optional and can be generated automatically
or provided by developers.

Based on the formulation above, we extended our
previous work AURA [13] to further improve the
precision and recall of the generated change rules. We
name the new approach Halo. In the following pre-
sentation of each component (Figure 2 and Figure 3),
we first give a general introduction of the components
and then describe its details formally.

3.2 Software Artifacts and Features

Halo takes the source code of two releases of a
framework as inputs. We do not use binary code
(such as Java bytecode) because we also leverage
method documentations in source code. If method
documentations are not available, our approach still
can generate change rules but, possibly, with reduced
precision and recall. As with previous work by Da-
genais and Robillard [10] and Schäfer et al. [12], our
approach naturally considers instantiation code (test
cases or client programs) if they are provided with
some release of the framework source code.

To balance accuracy and performance, we assume
that all replacement methods are taken from all the
methods existing in the new release of the framework
to be analyzed or belonging to other frameworks pro-
vided by the same vendor. We do not consider meth-
ods from the frameworks of different vendors. For ex-
ample, when we analyze org.eclipse.jdt.core,
the methods from other Eclipse plug-ins, such as
org.eclipse.jface, belong to the candidate re-
placement method set, but those from the Java Foun-
dation Classes (JFC) do not. We include the methods
from the frameworks provided by the same vendor
only, because developers may move methods between
these frameworks.

Besides call-dependency relations and method sig-
nature text-similarities, which are used in AURA,
we also use method documentations and inheritance
relations.

The set F (t) of Halo is made by four features:
• call dependencies or CD(t)
• method signatures or S(t)
• method documentations or C(t)
• inheritance relations or I(t)

In a nutshell, we model methods with a 4-
dimensional tuple, where each element is a structured
feature (e.g., an inheritance tree).

3.3 Method Similarity

To compute the similarities between a method in the
new release and a target method, we first compute

APRIL 2013 5

their call-dependency similarity, method documenta-
tion similarity, inheritance similarity, and method sig-
nature similarity and combine method signature, in-
heritance, and method documentation similarity into
method definition text similarity (defined later in this
section). Then, we use the algorithm presented in
Section 3.4 to rank all the methods in the new release
according to the similarities.

We now formally explain how the features F (x)
of a method x in a new release Vj extracted from
the framework source code are used to compute the
similarity between x and a target method t in T .
To instantiate the concept of ∼, we define σ(x, t) to
denote the similarity between method x and t. Thus:

F (x) ∼ F (t)|x ∈ Vj ,@y ∈ Vj , σ(y, t) > σ(x, t)

With respect to the four features considered in Halo,
we define the specific similarities σCD(x, t), σD(x, t),
σC(x, t), and σI(x, t). Method similarity σ(x, t) is a
function of the four specific similarities:

σ(x, t) = ψ(x, t)

= ψ(σCD(x, t), σD(x, t), σC(x, t), σI(x, t))

Strict Anchor Set As: Before presenting our con-
crete implementations of the elements of σ(x, t), we
introduce the concept of Strict Anchor Set As. As
consists of the known method pairs between two
releases of a framework Vi and Vj , i.e., the stable parts
when the framework evolves from Vi to Vj .
As is important to our algorithm to compute the

call-dependency similarity σCD(x, t). If As does not
change, Halo completes the call-dependency analysis
and starts using other features to detect the other
change rules. Our algorithm is presented in detail in
Section 3.4.

To compute As, we first define an anchor a as
either (1) a pair of methods with the same signature
(including return type, declaring module, name, and
parameter lists) that exist in both the old and new
releases or (2) a pair of methods already identified as
target and replacement methods. The set of anchors
A is defined as:

a = < ai, aj > ∧ j > i

A = {a | (ai ∈ Vi
∧ aj ∈ Vj ∧ S(ai) = S(aj)) ∪ known < ai, aj >}

As is initialized by A, as in AURA. Then, we
use a stricter criteria to refine A to As in Halo. If
the implementations of two methods in an anchor
are dramatically changed, regular call-dependency
analysis will more likely generate incorrect change
rules because the call relations are churned in the
new release. To avoid such incorrect change rules,
we compute the difference of the implementations
between the two methods in an anchor as the number
of methods that they call. Thus, numai and numaj are
the numbers of methods called by the old (ai) and the

new releases (aj) of Anchor a respectively. Only if the
minimum value of numai and numaj is greater than
the difference between numai and numaj , we add a
to As. The set of strict anchors As is defined as:

As = {a | a ∈ A
∧ |numai − numaj | < min(numai , numaj)}

Although simplistic, this condition on anchors works
well in practice as discussed in Section 5. Then,
in a way similar to the fixed point algorithm [23],
Halo incrementally updates As while discovering new
change rules, until the As set does not change.

Call Dependency Similarity σCD(x, t): Call depen-
dency analysis discovers the calls between framework
APIs and the methods using them. These calls reflect
the behavior of frameworks more accurately than text
similarity.

There are different implementations of call-
dependency analyses and ours is based on association
rule mining [24] which uses Confidence Value (CV) to
measure the connections between the target methods
and their possible replacements. SemDiff [10] and
Schäfer et al.’s approach [12] are also based on a
similar idea.

Based on As, we compute the CV for a given target
method t and its candidate replacement method x as:

CV(x, t) =
A(t, x)

A(t)
, with:

A(t) = |{ a | a ∈ As ∧ ai → t }|
A(t, x) = |{ a | a ∈ As ∧ ai → t ∧ aj → x }|

where ai → t represents method ai calls method t.
Then, we use CV to represent the call-dependency
similarity between x and t:

σCD(x, t) = CV (x, t) (3)

Method Documentation Similarity σC(x, t): We
also measure the similarity of the method documen-
tations of two methods. First, we tokenize the method
documentations as proposed by Lawrie et al. [25] by
splitting them at upper-case letters and other charac-
ters, such underscore, space, punctuation. Then, we
use the Longest Common Subsequence (LCS) to mea-
sure their similarity. Let |S| represent the tokenized
length of a string S, our implementation of method
documentation similarity is defined as:

σC(x, t) =
LCS(C(x), C(t))

|C(t)|
(4)

Inheritance Relation Similarity σI(x, t): To com-
pute the similarity of the inheritance trees, we first
convert the whole inheritance tree of each method
into a string by traversing both inheritance trees and
implementation trees in lexicographic order. Using
an Java example in Figure 1, if a method m be-
longs to a class C, the parent class tree of C is

APRIL 2013 6

Figure 1. Inheritance Tree Example

java.lang.Object, p1.P1, and p2.P2. C also imple-
ments two interfaces p1.I1 and p2.I2 whose parent
interfaces are p1.P I1 and p2.P I2 respectively. Then
the string representing the inheritance tree of C is
p1.P1.p2.P2.p1.P I1.p1.I1.p2.P I2.p2.I2. (In this exam-
ple, we do not take java.lang.Object into account,
because it is the root of all Java classes and adding
it has no influence on the result). Then, we use LCS
between the two strings representing the inheritance
trees of the classes in which the two methods are
defined to measure the similarity of their inheritance
relations:

σI(x, t) =
LCS(I(x), I(t))

|I(t)|
(5)

Method Definition Text Similarity σD(x, t): Be-
sides method documentation and inheritance rela-
tion similarities, we also use three additional mea-
surements to describe method definition similarity
σD(x, t):

1. Method-level similarity MLS(x, t): we define
functions R(x), D(x), N(x), P (x) to get the signatures
of the return type, declaring module, name, and for-
mal parameters of method x respectively. The method
level similarity between x and a target method t is:

Ex = {R(x), D(x), N(x), P (x)}

di(x, t) =

{
0 if Ex(i) 6= Et(i)
1 if Ex(i) = Et(i)

MLS(x, t) =
1

4

4∑
i=1

di(x, t)

where Ex(i) return R(x), D(x), N(x), P (x) respec-
tively while i = 1, ..., 4. MLS(x, t) returns how many

of the four elements (return types, declaring modules,
names, and parameter list) of the signature of x are
identical to those of t. Method-level similarity reflects
coarse-grain similarity between two methods’ signa-
tures.

2. Levenshtein Distance LD(S(x), S(t)) and
Longest Common Subsequence LCS(S(x), S(t)): we
combine LD and LCS to compare the text-similarity
between two method signatures because LD and LCS
pertain to two different aspects of string comparison.
LD [26] is concerned with the difference between
strings but not with what they have in common, while
LCS [27] focuses on their common parts but cannot
tell how different they are. For example, let us assume
that we want to identify the string most similar to ab
between a, abc, and abcd. Both a and abc have the
same LD and both abc and abcd have the same LCS.
So, if we only use one of these measures, we obtain
two methods with the same similarity value. Thus,
first using LD, we narrow the candidate set to a and
abc, then comparing them with LCS, we can identify
that abc is most similar to ab.

Before computing the LD and the LCS of method
documentations, inheritance relations, and method
signatures, we also tokenize them as proposed by
Lawrie et al. [25].

Using MLS(x, t), LD(S(x), S(t)), LCS(S(x), S(t)),
σI(x, t), and σC(x, t), our multi-stage text-similarity
comparison algorithm (presented in the next para-
graph) sorts the methods in Vj in descending sim-
ilarity order. Thus, the implementation of method
definition text similarity in Halo is:

σD(x, t) = 1− POSD(x, t)

|Vj |
(6)

Here, POSD(x, t) is the position of method x in
the sorted Vj using our multi-stage text similarity
comparison algorithm regarding to t.

Multi-stage Text-similarity Comparison: Our
multi-stage text-similarity comparison algorithm
decides which one between two methods x and y is
more similar to a target method t using the following
steps:

1) If their method level similarities to t are dif-
ferent (MLS(x, t) 6= MLS(y, t)), the one with
max(MLS(x, t),MLS(y, t)) is more similar to t.

2) If MLS(x, t) = MLS(y, t)) and only one method
is in the same declaring modules of t (D(x) =
D(t) or D(y) = D(t)), that one is more similar
to t.

3) If D(x) = D(y) = D(t) or D(x) 6= D(t) ∧
D(y) 6= D(t) and there is only one method with
the same method name as t (N(x) = N(t) or
N(y) = N(t))), then Halo choose this method as
being more similar to t.

4) If N(x) = N(y) = N(t) or N(x) 6= N(t)∧N(y) 6=
N(t) and there is only one method with the same
parameter list as t (P (x) = P (t) or P (y) = P (t)),

APRIL 2013 7

then Halo choose this method as being more
similar to t.

5) If P (x) = P (y) = P (t) or P (x) 6= P (t) ∧
P (y) 6= P (t) and the inheritance relation sim-
ilarities of x and y in comparison to that of t
are different (σI(x, t) 6= σI(y, t)), the one with
max(σI(x, t), σI(y, t)) is more similar to t.

6) If σI(x, t) = σI(x, t) and the LDs of the signa-
tures of x and y in comparison to that of t are
different (LD(S(x), S(t)) 6= LD(S(y), S(t))), the
one with min(LD(S(x), S(t)), LD(S(y), S(t))) is
more similar to t.

7) If LD(S(x), S(t)) = LD(S(y), S(t)) and
the LCS of the signatures of x and y
in comparison to that of t are different
(LCS(S(x), S(t)) 6= LCS(S(y), S(t))), the one
with max(LCS(S(x), S(t)), LCS(S(y), S(t))) is
more similar to t.

8) If LCS(S(x), S(t)) = LCS(S(y), S(t)) and the
method documentation similarities of x and y in
comparison to that of t are different (σC(x, t) 6=
σC(y, t), the one with max(σC(x, t), σC(y, t)) is
more similar to t.

9) If σC(x, t) = σC(y, t), choose y is more similar to
t arbitrarily.

Method Similarity σ(x, t): We use the call-
dependency, method-definition, method documen-
tation, and inheritance-relation similarities defined
above to compute the method similarity σ(x, t) that
gives the final classification results. Given a target
method t, we sort the methods in release Vj in
descending similarity order. The method similarity
between method x in Vj and a target method t is
defined as:

σ(x, t) = ψ(x, t) = 1− POS(x, t)

|Vj |
POS(x, t) is the position of method x in the sorted Vj
regarding to t.

Halo implements the sorting algorithm in a binary
classifier (presented in Section 3.4) to decide if F (x) ∼
F (t) holds true or if it is F (x) 6∼ F (t) for a target
method t in T and for any method x of Vj .

3.4 Classifier
To compute σ(x, t) as described above, we build a
two-pass algorithm. The processes of the two passes
are the same. The second pass uses the feedback data
FD generated by the first pass as additional input to
improve the precision and recall of the change rules
as shown in Figure 3.

In any pattern classification problem, it is possible
that some features are missing [17]. In our approach,
we can always obtain signature similarity and in-
heritance relations for any method, but we may not
have call-dependency relations and method documen-
tations. Thus, these two features can be missing for
some methods.

To handle missing features, the classification algo-
rithm works in several steps. We first classify the tar-
get methods into four categories: (1) called by anchors
and with method documentations, (2) called by an-
chors and without method documentations, (3) with
method documentations but not called by anchors,
and (4) neither called by anchors nor with method
documentations. Then, it processes these categories
separately. In a similar way to the fix-point algorithm
used by data-flow analyses [23], if the change rules
of the target methods in categories 1 to 3 satisfy the
condition for strict anchor, we add them to As. In
the next iteration, we recompute σCD(x, t) for the
remaining target methods to detect more change rules
by call-dependency analysis. We now present the
algorithm of a single pass and discuss later the use of
feedback data FD in the second pass. The flowchart
diagram of the algorithm of a single pass is shown in
Figure 2. The components with dark background are
the classification steps.

Step 1 - Called by Anchors: We measure the call-
dependency relations between a method x in Vj and
a target method t with σCD(x, t) that is implemented
by confidence value CV (x, t).

Step 1.1. For each target method t, which has only
one method x in Vj with 100% confidence value or
|{x|σCD(x, t) = 100% ∧ x ∈ Vj}| = 1, we choose that
the method as the replacement method of t and put
it to R(t). After processing all ts that have only one
method with 100% confidence values and updated As,
we recompute the confidence values of the methods in
Vj to the remaining target methods in T to see if there
are new target methods that have only one method in
Vj with 100% confidence values. If yes, we repeat this
step. Otherwise, we go to Step 1.2.

Step 1.2. For each target method t that has a set
of method X with 100% confidence values, i.e., X =
{x|σCD(x, t) = 100% ∧ x ∈ Vj} and |X| > 1. First,
we check if there is a method in X with an identical
method documentation as that of the target method,
i.e., σC(x, t) = 1. If there is only one method x with
σC(x, t) = 1, x is the replacement method of t. If there
are more than one or none, we choose the most similar
method using the multi-stage text-similarity described
in Section 3.3 as the replacement method. In this step,
we also generate one-replaced-by-many rules using
the same algorithm as AURA.

Step 1.3. For each target method t that has a set
of method X with not 100% confidence values, i.e.,
X = {x|σCD(x, t) < 100% ∧ x ∈ Vj}, we choose
the replacement method using our multi-stage text-
similarity as the replacement method.

Step 2 - With Method Documentations but Not
Called by Anchors: For each target method t not
called by anchors, we check if there is a method set
X in Vj with the method documentation identical to
that of t, i.e., X = {x|σC(x, t) = 100% ∧ x ∈ Vj}. If
|X| = 1, we choose the method as the replacement

APRIL 2013 8

Figure 2. Halo Classifier Single Pass

method of t. If |X| > 1, we choose the most similar
method in X using our multi-stage text-similarity as
the replacement method. If this target–replacement
pair satisfies the condition for strict anchor, we add
them to As. After this step, if As changed, we recom-
pute the confidence values for the remaining target
methods and go back to Step 1. If the anchor set is
not changed after this step, we continue to step 3.

Step 3 - Neither Called by Anchors nor With
Method Documentations: For the rest of the target
methods, we use our multi-stage text similarity com-
parison algorithm to find their replacement methods
with the highest method definition similarity from Vj .
Because not all the target methods have replacement
methods, we examine the change rules generated
in this step to detect simply-deleted methods. If a
replacement method z for a target method t satisfy
this condition:

∃z ∈ Vj | ∀x ∈ Vj : σ(z, t) > σ(x, t)

∧ S(z) 6= S(x) ∧ ∃y ∈ Vi : S(z) = S(y)

then our algorithm considers t a simply-deleted
method: a target method with no replacement method
in the new release. We only identify simply-deleted
method rules in the last step by this heuristic: if a
target methods left for this step have never been called
by anchors, they do not have identical method doc-
umentations of another methods, their most similar
methods by their definitions are methods existing in
the old release, we classify these target methods as
simply-deleted.

3.5 Feedback Data

Halo uses a two-pass analysis algorithm, which uses
feedback data FD generated in the first pass as an
input of the second pass. The observation behind this
two-pass analysis algorithm is that methods in object-
oriented program are contained in classes, which are
themselves contained in packages. The intuition is
that knowing that certain methods in a class (respec-
tively, certain classes in a package) are more likely
to be replaced by the methods in another class (re-
spectively, the classes in another package), we can
promote those methods in the already matched classes
to possibly improve the precision of the change rules.

Before generating FD, we filter out the change rules
with lower signature similarity in the output of the
first pass. We apply a threshold γ to filter set of the
change rules R(t). We keep only the change rules with
the LCS of the signatures between the replacement
and target methods above γ, the filtered replacement
sets R(t)s is denoted as Rγ(t)s:

Rγ(t) = {m|m ∈ R(t) : t ∈ T

∧ LCS(S(m), S(t))

|S(t)|
> γ}

where T is the target method set.
Previous approaches [10], [11], [12], [28] showed

that using thresholds can improve precision but com-
promise recall. Because we only use a threshold to
generate the feedback data FD, this threshold does
not have a negative impact on the recall of change
rules generated in the second pass.

APRIL 2013 9

We abstract the Rγ(t) following M. Kim et al.’s
algorithm [11] to summarize the method-level change
rules into first-order relation logical rules, like “all
the methods in class A are moved to class B except
method m1 and m2”. This format describes the high-
level changes between two releases of a framework
and we use it as our feedback data. FD is defined
formally as:

TCi
= {t|t ∈ T : t ∈ Ci}

RγCiCj
= {m|m ∈ Rγ(t) : t ∈ TCi

∧m ∈ Cj}
FD = {< Ci, Cj > |Ci ∈ Vi, Cj ∈ Vj :

@ Ck ∈ Vj , |RγCiCk
| > |RγCiCj

|}

where Ci is a class from Vi and Cj , Ck are classes in
Vj , m ∈ C describes that method m belongs to class
C.

For example, after the first pass, we can have
change rules stating that six methods in class A are
replaced by five methods in class B and one is re-
placed by a method in class C in the Rγ(t). The high-
level changes in the feedback data will be < A,B >,
which means that “methods in A are more likely
to be replaced by methods in B”. We do not treat
the change rule involving A and C as a wrong rule,
because it is possible that methods in one class are
replaced by methods in two or more classes in the
new release. The feedback data just tells the classifier
that the methods in one class are more likely to be
replaced by the methods in another class in the new
release and thus to promote change rules in which
these methods are involved. When Halo computes the
method definition text similarity σD(x, t), it treats the
two classes as the same class instead of computing
the real text similarity between the names of the two
classes. Therefore, the methods in the classes included
in FD are promoted to the same level of the methods
in the class of the target method in our multi-stage
text similarity comparisons but final matching also
depends on the other features used by the comparison
algorithm.

Figure 3 shows the flowchart diagram of the two-
pass analysis. The two passes have the same classifier.
The differences between them are: (1) the first pass
uses a threshold to keep the change rules with high
LCS and derives the training data FD from them and
(2) the second pass uses the high-precision change
rules and the feedback data FD as other inputs
besides the feature sets to improve the precision of
the method similarity σ(x, t) and then generate the
final change rules incrementally. More specifically, the
high-precision change rules will be a part of the final
change rules and some of them can be added to the
strict anchor set As if they meet the selection criteria.
The feedback data are used while computing method
definition text similarity σD(x, t).

3.6 Implementation

We implement our approach as a command-line Java
program. This program takes the source code of two
releases of a framework as input and outputs a set
of change rules in plain text and XML format (see
Figure 4). The former is readable by developers while
the latter is useful for automated post-processing.

The feature extractor is based on Eclipse JDT parser,
which we use to extract the information related to the
features used in our approach, i.e., call-dependency re-
lations, inheritance relations, method documentations,
and method signatures.

Call-dependency relations include all the methods
defined in the two releases of the framework to
be analyzed and the methods called by them. As
discussed in Section 3.2, to balance accuracy and
performance, we do not extract the methods from
third-party libraries.

Inheritance relations are the full inheritance trees
of the classes of the methods in call-dependency re-
lations. For frameworks written in Java, they include
both extends trees and implements trees.

Method documentations extracted from the source
code are linked the the methods containing them.
In the current implementation, we only extract the
textual part (excluding annotations) of Javadoc be-
cause they are connected with methods by the Java
compiler. Extending to other formats of method doc-
umentations is future work.

Before computing the similarities, the method sig-
natures, method documentations, class, and package
names are tokenized in the way proposed by Lawrie
et al. [25]. They are split at upper-case letters and
other legal characters, except lower case letters and
numbers.

For a target method t, Halo first computes σ(x, t)
for each method x in the newer release Vj . Then,
Halo generates the replacement set R(t) using the
classification algorithm described in Section 3.4 to
decide if a method x in Vj replaces a target method t
in T t or not according to σ(x, t).

In our implementation, we set the threshold γ =
0.75 to generate the feedback data in the first pass.
It means that, in the feedback data, the target and
replacement methods must have, at least, 75% tokens
in common. We choose this value because M. Kim
et al. [11] showed that a threshold between 0.65-0.70
gives good balance between precision and recall and
the average precision is above 90%. We use a higher
value (75%) to have more precise feedback data. Our
implementation of Halo is available on-line4.

4 EVALUATION

We now evaluate and compare Halo with other pre-
vious approaches on several target systems.

4. http://www.ptidej.net/downloads/experiments/tse13a

APRIL 2013 10

Figure 3. Halo Two-pass Classifier

// Text format
void CH.ifa.draw.standard.StandardDrawingView.selectionChanged()

Replacement
--- void

CH.ifa.draw.standard.StandardDrawingView.fireSelectionChanged()

// XML format
<targetMethod>

<owner>
<qualifingName>

<headToken>C</headToken>
<tailToken>H</tailToken>

</qualifingName>
<qualifingName>

<headToken>ifa</headToken>
</qualifingName>
<qualifingName>

<headToken>draw</headToken>
</qualifingName>
<qualifingName>

<headToken>standard</headToken>
</qualifingName>
<elementName>

<headToken>Standard</headToken>
<tailToken>Drawing</tailToken>
<tailToken>View</tailToken>

</elementName>
<isArray>false</isArray>

</owner>
<returnType>

<elementName>
<headToken>void</headToken>

</elementName>
<isArray>false</isArray>

</returnType>
<methodName>

<headToken>selection</headToken>
<tailToken>Changed</tailToken>

</methodName>
</targetMethod>
<replacementMethods>

<verified>false</verified>
<replacementMethod>

<owner>
...

</owner>
<returnType>

<elementName>
<headToken>void</headToken>

</elementName>
<isArray>false</isArray>

</returnType>
<methodName>

<headToken>fire</headToken>
<tailToken>Selection</tailToken>
<tailToken>Changed</tailToken>

</methodName>
</replacementMethod>

</replacementMethods>

Figure 4. Example of Halo Outputs

APRIL 2013 11

4.1 Design
We compared the precision and recall values on
Android SDK, JFreeChart, JHotDraw, JEdit, and
Struts to compare Halo with AURA, the approaches
of M. Kim et al. [11] and Schäfer et al. [12].
We use the large system (org.eclipse.jdt.core
and org.eclipse.jdt.ui) to compare Halo with
AURA and SemDiff [10]. Table 1 summarizes the six
subject systems.

Android is written in several programming lan-
guages but its SDK is in Java. We analyzed Android
SDK releases 2.1 r2.1p2 and 2.2.3 r2 with Halo. They
are the latest versions of two releases of Android:
Eclair (API Level 7) and Froyo (API Level 8). First, we
downloaded all the source code of the two versions
of Android from its software repository. Then, we
compiled the two versions to obtain their complete
source code, because some parts of Android SDK
are written in AIDL (Android Interface Definition
Language)5, which is used to generate Java code.

We reused the results of the three approaches pro-
vided by their authors because it is impractical to
reanalyze all the target systems and also to avoid the
experimenter’s bias.

To verify the change rules generated by Halo, we
read the source code of the target systems and related
documents to decide if the change rules are correct
or not. For each target system, at least two of the
authors inspected the output of Halo and discussed
their assessment before agreeing on the evaluation of
the results. A third author was called when the two
authors could not agree.

Among the five subject systems that we manually
analyzed, the results of three of them took more time
to evaluate than the others. The first is Android SDK
because it is the largest one. The other two are JEdit
and JFreeChart. JEdit changed dramatically between
releases 4.1 and 4.2, especially the implementations
of some anchor methods. The changes lowered the
precision of call-dependency analysis and also im-
peded the inspection. In JFreeChart, there are many
methods with similar signatures. We spent a lot time
to distinguish them to make sure that the change rules
were correct or not.

4.2 Hypothesis and Performance Indicators
Our hypothesis is that Halo will find more relevant
change rules than the previous approaches with com-
parable or better precision, i.e. it will have a better
recall than and at least a similar precision to those of
the previous approaches.

We can use precision but not recall [29], to directly
compare the performance of Halo and that of the
previous approaches because the set relevant rules is
a prior unknown in:

5. http://developer.android.com/guide/developing/tools/aidl.
html

Precision =
|{relevant rules}

⋂
{retrieved rules}|

|{retrieved rules}|

Recall =
|{relevant rules}

⋂
{retrieved rules}|

|{relevant rules}|

Therefore, to eliminate the influence of this un-
known set, we define the set {correct rules}, which
can be obtained by manually inspecting the set
{retrieved rules} as:

{correct rules} = {relevant rules}⋂
{retrieved rules}.

We introduce the differences in precision, ∆P, and
recall, ∆R, as two functions of the change rules de-
tected by two different approaches, A and B:

∆P(A,B) =
PrecisionA − PrecisionB

PrecisionB

=
|{correct rules}A| × |{retrieved rules}B |
|{retrieved rules}A| × |{correct rules}B |
−1

∆R(A,B) =
RecallA − RecallB

RecallB

=
|{correct rules}A| − |{correct rules}B |

|{correct rules}B |

Using ∆P(A,B) and ∆R(A,B), we can compare the
precision and recall of two approaches and avoid the
influence of the unknown set {relevant rules}. We
compute {correct rules} for Halo on five medium-size
systems, Android SDK, JFreeChart, JHotDraw, JEdit,
and Struts by manual inspection. For the previous
approaches, we use the data provided by the corre-
sponding authors.

Besides ∆P and ∆R, we also use Cliff’s d [22] to
show the effect sizes between the precision and recall
of Halo and those of previous approaches. Cliff’s d
is a non-parametric effect size that does not require
any pre-knowledge of the distribution of the data.
The difference is trivial when 0.0 ≤ |d| < 0.147,
small when 0.147 ≤ |d| < 0.33, moderate when
0.33 ≤ |d| < 0.474, and large when 0.474 ≤ |d|. |d|
is the absolute value of d. A positive (negative) d
means an increase (decrease) of the precision or the
number of correct rules between Halo and those of
previous approaches. The Cliff’s d values of precision
(dp) and of the approximate recall (dr′) defined below
are computed according to the following equations:

d =
#(xi > yj)−#(xi < yj)

nx × ny
where #(xi > yj) is the number of times that xi > yj
is true and nx and ny are the sizes of the two data
sets respectively.

We compute the Cliff’s d of an approximate recall
dr′ instead of the Cliff’s d of the true recall because the

APRIL 2013 12

Table 1
Subject Systems

Subject Systems Releases # Methods Analysed By

Android SDK
2.1 r2.1p2 20516 Kim et al. [11]

AURA [13]
Halo2.2.3 r2 21214

JFreeChart
0.9.11 4,751 Kim et al. [11]

AURA [13]
Halo0.9.12 5,197

JHotDraw
5.2 1,486 Kim et al. [11]

Schäfer et al. [12]
AURA [13]
Halo

5.3 2,265

JEdit
4.1 2,773 Kim et al. [11]

AURA [13]
Halo4.2 3,547

Struts
1.1 5,973 Schäfer et al. [12]

AURA [13]
Halo1.2.4 6,111

org.eclipse.jdt.core 3.1 35,439 SemDiff [10]
AURA [13]
Haloorg.eclipse.jdt.ui 3.3 47,237

unknown set {relevant rules} prevents us to compute
the latter, but we use the total number of methods
that do not exist, called Mdeleted, in the new release
of a framework as |{relevant rules}| to compute an
approximation of the recall r′. We believe that using
Mdeleted to represent the number of relevant rules is
reasonable for two reasons: first, this number is actu-
ally greater or equal to the number of the change rules
generated by previous approaches and Halo; second,
the use of this number impacts the computation of
the recall of all approaches equally: if it favors one, it
favors all the others.

For the two Eclipse plug-ins, org.eclipse.jdt.
core and org.eclipse.jdt.ui, from 3.1 to 3.3,
Halo generates more than 4,500 change rules. Thus, it
is impractical to validate all these rules manually. We
follow Dagenais and Robillard’s evaluation method
[10]: we choose the same three client programs of
these plug-ins, i.e., org.eclipse.jdt.debug.ui,
Mylyn, and JBossIDE; compile them with Eclipse 3.3;
use the change rules found by our approach to solve
the compile errors in scope, i.e., compile errors caused
by methods not existing anymore in release 3.3; and,
compute the precision of the change rules that cover
these compile errors.

4.3 Comparison on the Medium-size Systems

In Table 2, we present the ∆P and ∆R in column 5
and 6 of each subject system between Halo and M.
Kim et al.’s [11], Schäfer et al.’s [12] approaches, and
AURA [13]. In the last three rows, we present the
total average values of Halo compared to the three
approaches: ∆R is 38% with a precision of 92%, while
∆P is 5%. In Table 7, we also report the complete

Figure 5. Visibility distribution of the results on
medium-size systems with simply-deleted change
rules

comparison data, including the average values of ∆P,
∆R, dr′ , and dp for each approach in columns 7 to 10.
Figure 5 shows that most of the change rules are on
public methods.

Comparison with M. Kim et al.’s approach: M. Kim
et al. [11] present their results in two formats: first-
order relational logic rules, for example “all methods
in class A, replaced by the same name methods in
class B, except methods a() and b()”, and matches,
for example < A.c(), B.d() >. The latter format
corresponds to the change rules of Halo. Therefore,
we use the number of matches from [11] to compare
their results with ours.

On average, ∆P is -0.3% while ∆R is 80%. We gain
in recall and also catch up in precision. The values of
dr′ and dp also confirm that the improvement of the

APRIL 2013 13

Table 2
Summary of the results on medium-size systems with simply-deleted change rules

Systems Indicators Halo M. Kim et al.
[11] ∆R ∆P

JHotDraw # Correct rule 102 81 26% -3%5.2-5.3 Precision 96% 99%
JEdit # Correct rule 386 217 4

78% -9%4.1-4.2 Precision 85% 93%
JFreeChart # Correct rule 169 88 92% 12%0.9.11-0.9.12 Precision 88% 78%

Android SDK # Correct rule 1739 772 125% -2%2.1 r2.1p2 - 2.2.3 r2 Precision 91% 93%

Systems Indicators Halo Schäfer et al.
[12] ∆R ∆P

JHotDraw # Correct rule 102 88 16% 9%5.2-5.3 Precision 96% 88%
Struts # Correct rule 133 66 102% 15%1.1-1.2.4 Precision 99% 86%

Systems Indicators Halo AURA
[13] ∆R ∆P

JHotDraw # Correct rule 102 97 5% 4%5.2-5.3 Precision 96% 92%
JEdit # Correct rule 386 360 8% 6%4.1-4.2 Precision 85% 80%

JFreeChart # Correct rule 169 155 9% 8%0.9.11-0.9.12 Precision 88% 81%
Struts # Correct rule 133 129 4% 5%1.1-1.2.4 Precision 99% 96%

Android SDK # Correct rule 1739 1608 8% 8%2.1 r2.1p2 - 2.2.3 r2 Precision 91% 85%
Total Precision of Halo 92%

Average ∆R 43%
∆P 5%

number of correct rules is large and the decrease of
precision is small.

On JHotDraw from 5.2 to 5.3, JFreeChart from
0.9.11 to 0.9.12, and Android SDK from 2.1 r2.1p2
to 2.2.3 r2, the ∆Rs are 26%, 92% and 125% while
the ∆Ps are -3%, 12% and -2%, respectively. A slight
decrease of precision (-3% and -2%) is acceptable
because the recall increases satisfactorily (26% and
125%).

On JEdit from 4.1 to 4.2, the ∆R is 78% while ∆P
is -9%. Two aspects cause this decrease. First, call-
dependency analysis is more sensitive to structural
changes than text similarity analysis. In JEdit 4.2, the
API remained quite stable but the implementation of
the methods changed radically. The feedback data set
is not effective when call-dependency analysis gives
the wrong methods to choose.

Comparison with Schäfer et al.’s approach: On
average, ∆P is 12% while ∆R is 59%. Both dr′ and
dp indicate large improvement in precision and recall.
Halo has positive ∆R and ∆P both on JHotDraw from
5.2 to 5.3 and Struts from 1.1 to 1.2.4 in comparison
to Schäfer et al.’s [12]. On JHotDraw from 5.2 to 5.3,
the ∆R and ∆P are 16% and 9%, while they are 102%
and 15% on Struts from 1.1 to 1.2.4.

Comparison with AURA: As an extension of
AURA, the results of Halo are also better than those
of AURA in our experiments, especially in precision.
On average, ∆P is 6% while ∆R is 7%. The values of
dr′ and dp showed large improvement in recall and

moderate increase in precision.
Halo has positive ∆R and ∆P on all the four

systems. These results show that considering more
features and two-pass analysis improve both recall
and precision. We also analyze the contributions of
each features to the precision of the change rules
generated by Halo. More detailed discussions are in
Section 5.

4.4 Comparison on a Large-size System

In Table 3, we present the results of Halo, AURA
and SemDiff [10] to solve the compile errors of three
Eclipse 3.1 plug-ins when compiling them against
Eclipse 3.3.

The precision of Halo is 100% and that of AURA is
92.86% only with one wrong change rules in Mylyn
from V0.5 to V2.0.

In SemDiff [10], correct rules are defined as re-
placement methods that can be found in the top
three recommendations provided by SemDiff. It is
easy for developers to choose the right replacement
from these three. In our approach, we provide only
one recommendation per target method. Therefore, to
compare the results of Halo with those of SemDiff, we

3. Halo only analyzed the packages org.gjt.sp.* and compared its
results with those of M. Kim et al. [11]. These packages contain
the code for JEdit main functions and are large enough for manual
analysis (456 target methods).

4. Confirmed by Dagenais, it is 1.5-2.0

APRIL 2013 14

Table 3
Evaluation of a sample of change rules on the large system

Systems Halo AURA SemDiff [10]
org.eclipse. # Errors in Scope 4
jdt.debug.ui # Found Rules 4 4 4

3.1 - 3.3 # Correct Rules 4 4 4
Mylyn # Errors in Scope 2
0.5-2.0 # Found Rules 2 2 2

Correct Rules 2 1 2
JBossIDE # Errors in Scope 8
1.5-2.0 5 # Found Rules 8 8 8

Correct Rules 8 8 8
Precision 100% 92.86% ≤ 100.00%

Figure 6. Visibility distribution of the results on
medium-size systems without simply-deleted change
rules

must account for this discrepancy in the way correct
rules are counted.

If every correct rule was the first recommendation
of the top three rules reported by SemDiff, then
SemDiff would have a precision of 100.00%. However,
it is also possible that the correct rule was the second
or third recommendation, SemDiff would have less
than 100% precision, thus Halo is competitive with
SemDiff.

4.5 Comparison without Simply-deleted Methods
Some previous approaches, such as [11], [12], do
not explicitly report simply-deleted change rules in
their results while AURA and Halo report them. We
remove the simply-deleted change rules from the
results of Halo on the four medium-size systems and
compare them again with the results of the previous
approaches to assess their influence on precision and
recall.

As shown in Table 4, ∆P and ∆R are equal or
lower than those with simply-deleted method rules
(4% vs. 5% and 14% vs. 43%, respectively). So, the
results of Halo with and without simply-deleted rules
have similar precision and the former has lower recall
because many target methods are actually simply
deleted. Table 8, reports the complete comparison

data, including the average values of ∆P, ∆R, dr′ ,
and dp, for each approach without simply-deleted
methods in columns 7 to 10. Most of the non-simply-
deleted change rules are also on public methods as
showed in Figure 6.

The results shows that Halo also performs better
than previous approaches on no-simply-deleted rules.

4.6 Performance
The analyses of Halo and of the previous approaches
were conducted on different hardware and software
platforms, the reported performance data are only
descriptive and we will not compare them.

The analysis of the four medium-size systems with
Halo takes less than ten minutes on Windows XP
SP3 with Intel Core Duo 1.5GHz and 4GB RAM.
Analyzing Android SDK 2.1 and 2.2, Eclipse JDT core
and UI 3.1–3.3 with Halo takes two and five hours
respectively on CentOS 5.5 with Intel Xeon 16-Core
2.4GHz and 48GB RAM.

4.7 Threats to Validity
We now discuss the threats to validity of our evalua-
tion following the guidelines provided for case study
research [30].

Construct validity threats concern the relation be-
tween theory and observation. First, we made sure
that we rigorously implement the approach described
in previous sections, through careful peer-reviews of
the code and the results. In our context, we want to
see if Halo generate more accurate change rules than
previous approaches. We use different approaches as
treatments and we observe the precision and recall of
their outputs. In Halo, we assume that all replacement
methods are taken from all the methods existing in
the new release of the framework to be analyzed or
belonging to other frameworks provided by the same
vendor. However, it is possible that developers replace
target methods with methods from the frameworks
of other vendors. After analyzing the results of the
subject systems, we found that such replacement oc-
curs in less than 1% of all replacement methods. Thus,
we believe that this threat does not compromise the
construct validity.

APRIL 2013 15

Table 4
Summary of the results on medium-size systems without simply-deleted change rules

Systems Indicators Halo M. Kim et al.
[11] ∆R ∆P

JHotDraw # Correct rule 99 81 22% -3%5.2-5.3 Precision 96% 99%
JEdit # Correct rule 289 217 4

33% -13%4.1-4.2 Precision 81% 93%
JFreeChart # Correct rule 113 88 28% 15%0.9.11-0.9.12 Precision 90% 78%

Android SDK # Correct rule 914 772 18% -6%2.1 r2.1p2 - 2.2.3 r2 Precision 87% 93%

Systems Indicators Halo Schäfer et al.
[12] ∆R ∆P

JHotDraw # Correct rule 99 88 13% 9%5.2-5.3 Precision 96% 88%
Struts # Correct rule 58 66 -12% 13%1.1-1.2.4 Precision 97% 86%

Systems Indicators Halo AURA
[13] ∆R ∆P

JHotDraw # Correct rule 99 96 3% 0%5.2-5.3 Precision 96% 96%
JEdit # Correct rule 289 247 17% 5%4.1-4.2 Precision 81% 77%

JFreeChart # Correct rule 113 95 19% 10%0.9.11-0.9.12 Precision 90% 82%
Struts # Correct rule 58 56 4% 5%1.1-1.2.4 Precision 97% 92%

Android SDK # Correct rule 914 826 11% 8%2.1 r2.1p2 - 2.2.3 r2 Precision 87% 81%
Precision of Halo 90%

Total ∆R 14%
Average ∆P 4%

Internal validity verifies if the outcome is really
caused by the treatment. In the multi-stage text sim-
ilarity comparison algorithm of Halo, there is an
arbitrary selection of candidates in the last step that
could introduce randomness in the results. However,
only 0.71% of the comparisons between the candidates
in our experiments are decided by this arbitrary se-
lection. Thus, the influence of this arbitrary selection
is negligible. In our implementation, we only extract
Javadoc, which do not cover all the method documen-
tations. In the subject systems that we analyzed, more
than 90% of method documentations are in Javadoc.
We believe that the influence of Javadoc is not sig-
nificant. We inspected the change rules generated by
Halo manually. We cannot rule out human error in
validating results. Because we read the source code
of the subject systems carefully and at least two of
the authors evaluated and agreed on the results of
each system, we believe that this threat does not
compromise the internal validity.

Conclusion validity threats concern the relation be-
tween the treatment and the outcome. We used un-
biased systematic measures and the data provided
by the authors of previous approaches without any
changes. We did provide all data on-line for further
independent validation2.

Reliability validity threats concern the possibility of
replicating this study. We attempted here to provide
all the necessary details to re-implement Halo and

replicate its evaluation and comparison. Moreover,
all studied systems and data from the previous ap-
proaches are publicly available or available upon
request to their authors. The raw data on which our
study is based are available on-line2.

Threats to external validity concern the possibility to
generalize our findings. We studied five systems of
different sizes, belonging to different domains, and
evaluated by the previous approaches. However, we
only analyzed Java code; therefore it is possible that
Halo would perform differently on other program-
ming languages, like C] or C++. Further validation
on a larger set of systems and comparison with other
approaches are desirable. Future work also includes
an empirical study to investigate the usability of
change rules generated by the tools on framework API
evolution.

5 DISCUSSION

This section discusses the scope of API changes
and the differences between Halo and previous ap-
proaches.

5.1 Android API Difference Reports
The meta-data of the Web pages of Android API
difference reports show that they are generated by
JDiff6. JDiff reports packages, classes, methods, and

6. http://www.jdiff.org

APRIL 2013 16

fields that are removed, added, or changed (including
changes to their documentation), at configurable API
level. JDiff does not report API change rules. For
added and removed methods, JDiff does not report if
an added method replaces a method in the old release
or if a removed method is replaced by a method in the
new release. The changes of methods reported by JDiff
include deprecation and changes in thrown exceptions
but not on method signatures.

Therefore, the Android API difference reports really
describe API differences, not the relations among the
changed APIs, such as the mapping between removed
methods and their replacements. The usefulness of
such reports is limited to developers because a list of
new added methods without additional information
does not help them to know how to adapt their
client code. A list of removed methods cannot help
developers find their replacements. Developers can
still use methods annotated as @deprecated without
any error. Changes in thrown exceptions can be fixed
in Eclipse by one mouse click without consulting the
reports.

Contrary to JDiff, Halo, and other similar ap-
proaches, reports change rules consisting of the re-
placement methods of target methods that existed in
the old release of a framework, e.g., Android SDK, but
not in its new release (in terms of their signatures).
The missing methods in the new release would cause
compilation errors. Halo shows developers what are
the replacements of the target methods and saves
them the time to search in the new release to find their
replacements. Such change rules are not in Android
API difference reports currently.

For example, the Android API difference report
between v2.1 and v2.2 includes 246 methods: 206
methods are marked as added, three methods are
marked as removed, and 37 methods are marked
as changed. The 206 added methods are listed in
the report without any further information, neither
if they replace some old methods nor if they provide
new features. Among the 40 removed and changed
methods, two are JDK methods (java.net.Data
gramSocketImpl.getOption(int) and set
Option(int, Object)), which are not defined in
the Android SDK source code. JDiff reports another
20 methods because their documentation changed by
adding the @deprecated annotation. The remaining 18
are changed in the thrown exceptions.

None of these 40 methods reported in the An-
droid API difference report between v2.1 and v2.2
are in the scope of Halo, because either they are
not a part of Android SDK v2.2 source code or
their definitions still exist in v2.2. Many changes,
like class android.pim.vcard.ContactStruct
in Android API v2.1 that was replaced by class
android.pim.vcard.VCardEntry in v2.2, are ab-
sent from the Android API difference report, but are
detected by Halo. In total, Halo detected 1,739 correct

change rules between Android SDK v2.1 and V2.2, of
which 914 are not simply-deleted rules.

5.2 Multi-Features
In AURA [13], we use call-dependency relations and
text-similarities as features, which boost recall with
similar precision compared with previous approaches
that only use one of the two features. According
to Duda et al. [17], considering multi-feature is a
way to improve pattern classification. Therefore, we
added another two features: inheritance relations and
method documentations. Our experimental results
(discussed in Section 5.5) show that they contribute to
the improvement of precision. Here are two examples
to show the contributions of the two features:

Method Documentation: The replacement method
of boolean org.eclipse.jdt.internal.ui.
text.correction.ConvertIterableLoopPropo
sal.isApplicable() from Eclipse JDT UI 3.1 is
org.eclipse.core.runtime.IStatus
org.eclipse.jdt.internal.corext.fix.Con
vertIterableLoopOperation.satisfiesPre
conditions() in its 3.3 release. Because of the dra-
matic changes in their return values, package names,
class names, and method names, this change rule
cannot be detected by text similarity analysis alone.
These two methods are not called by any anchor, so
call dependency analysis does not apply either.

Using method documentations, Halo detects the
correct change rule because the target and the replace-
ment methods have an identical method documenta-
tion (shown in Figure 7). The benefit of considering
method documentations is not only to detect change
rules, but also to improve the computation time. Halo
indexes all methods by their method documentations.
Thus, it can detect change rules using method docu-
mentation analysis much more efficiently than those
using text-similarity analysis.

Inheritance: To find the replacement method of
org.jfree.data.DefaultBoxAndWhisker
Dataset.getMedianValue(int, int) from
JFreeChart 0.9.11 in its 0.9.12 release, the methods
DefaultBoxAndWhiskerCategoryDataset.get
MedianValue(int, int) and DefaultBoxAnd
WhiskerXYDataset.getMedianValue(int,int)
can be identified using text-similarity as two
candidates for the replacement method. It is
difficult to decide which one is correct because
of the high similarity between them. Halo
uses inheritance relations to clearly distinguish
DefaultBoxAndWhiskerXYDataset.getMedian
Value(int, int) from the other because the
class of the former implements the same interface
XYDataset as DefaultBoxAndWhiskerDataset,
while the class of the latter implements another
interface CategoryDataset (shown in Figure 8).

We could use other measurements of inheritance
tree similarity, such as [31], [32]. Research on choosing

APRIL 2013 17

// Version 3.1
/**
* Is this proposal applicable

*/
boolean org.eclipse.jdt.internal.ui.text.correction.ConvertIterableLoopProposal.isApplicable()

// Version 3.3
/**
* Is this proposal applicable

*/
org.eclipse.core.runtime.IStatus

org.eclipse.jdt.internal.corext.fix.ConvertIterableLoopOperation.satisfiesPreconditions()

Figure 7. Change rule detected by method documentations

// Version 0.9.11
class DefaultBoxAndWhiskerDataset implements BoxAndWhiskerDataset {...}
interface BoxAndWhiskerDataset extends XYDataset {...}

// Version 0.9.12
class DefaultBoxAndWhiskerXYDataset implements BoxAndWhiskerXYDataset {...}
interface BoxAndWhiskerXYDataset extends XYDataset {...}

class DefaultBoxAndWhiskerCategoryDataset implements BoxAndWhiskerCategoryDataset, RangeInfo {...}
interface BoxAndWhiskerCategoryDataset extends CategoryDataset {...}

Figure 8. Change rule detected by inheritance relations

different features or different measurements of the
same features to develop better approaches is one of
our future approaches.

5.3 Multi-pass Analysis and Feedback Data

Halo is a two-pass analysis approach. The first pass
generates feedback data and derives the high-level
change rules, such as “methods in class A will be
replaced by methods in class B”. The second pass
promotes the rankings of the methods covered by the
high-level change rules. Using feedback data, we can
give priority to certain methods without ruling out
the possibility that the target methods can also be
replaced by other methods.

The replacement method of void android.pim.
vcard.ContactStruct.setPosition(java.
lang.String) from Android SDK 2.1 is void
android.pim.vcard.VCardEntry.handle
TitleValue(java.lang.String) in its 2.2 re-
lease. In v2.1, method ContactStruct.setPosi
tion handles the hierarchical position of an individ-
ual in an organization. In v2.2, this function is moved
to VCardEntry.handleTitleValue. Because both
their class names and method names are completely
changed, this change rule cannot be detected by
AURA (shown in Figure 9).

With Halo, we find that 19 other methods
in android.pim.vcard.ContactStruct are
replaced by the methods in android.pim.vcard.
VCardEntry in the feedback data generated
by the first pass. Thus, we promote
android.pim.vcard.VCardEntry as being
the same class as android.pim.vcard.Contact
Struct when we compute the text similarity
between the signatures of the two methods and
correctly discover this change rule.

5.4 Strict Anchor

If the signatures of two methods in an anchor are
the same but their implementations are dramatically
changed, the call-dependency analyses used by pre-
vious approaches will most likely generate wrong
change rules because the call relations are churned in
the new release of the framework. If numo and numn

are the numbers of methods called by the old and
the new releases in a method pair respectively, when
|numo − numn| < min(numo, numn), Halo accepts
the method pair as an anchor; otherwise, it does not.
This criteria for anchors excludes method pairs with
too different implementations. The intuition in using
strict anchor is to reduce the number of wrong change
rules generated by the call dependency analysis and
to give our approach a chance to detect the change
rules using other features correctly.

For example, the method org.eclipse.jdt.ui.
JavaElementSorter.getClassPathIndex(...)
is called by the method org.eclipse.jdt.ui.
JavaElementSorter.compare(...) in Eclipse
JDT UI 3.1 as well as by 12 other methods. In Eclipse
JDT UI 3.3, the method org.eclipse.jdt.ui.
JavaElementSorter.compare(...) only calls
one method org.eclipse.jdt.ui.JavaElement
Comparator.compare(...). Without strict
anchor, our previous approach would treat
org.eclipse.jdt.ui.JavaElementComparator.
compare(...) as the replacement of org.eclipse
.jdt.ui.JavaElementSorter.getClassPath
Index(...) because the former has 100% confidence
value to the latter.

Because of the different numbers of methods called
by the two versions of org.eclipse.jdt.ui.
JavaElementSorter.compare(...) (13:1), it is
not a strict anchor. So, the correct replacement method
org.eclipse.jdt.ui.JavaElementComparator.

APRIL 2013 18

// Version 2.1
void android.pim.vcard.ContactStruct.setPosition(java.lang.String)

// Version 2.2
void android.pim.vcard.VCardEntry.handleTitleValue(java.lang.String)

Figure 9. Change rule detected with the help of feedback data

getClassPathIndex(...) can be detected later
by text similarity analysis in Halo.

Using other techniques, such as clone detection
techniques (summarized in [33]) to discover accurate
anchors, is an interesting topic for future work.

5.5 Contributions of the New Components of Halo

Halo uses four new components to improve its results
with respect to previous approaches: a feedback data
set, method documentations, inheritance relations,
and stricter anchors. We conduct a series of experi-
ments to analyze the influences of each component
on the overall results. In each experiment, we disable
one component in Halo and called it Halo−. Then,
we compare the precision of Halo− with that of Halo
and report the differences. Because Halo− and Halo
generate the same number of change rules, the trend
between their differences in recall will be the same as
that in precision. So, we only report the differences
in precision. Table 5 and Table 6 show the results of
these experiments. The data in the former table are
the results on all change rules; the latter only for no-
simply deleted change rules.

First, we see that the influences of the components
are different from system to system. For JHotDraw,
there is not much differences on precision, if we re-
move one component from Halo. jEdit is the contrary:
it is sensitive to all the components. The other systems
are between them. We explain these observations as
follows: JHotDraw is a system developed by Gamma
et al. to demonstrate the application of design pat-
terns [34]. It is elegantly designed and consistently
coded. When removing one component, the other
components can provide enough information to allow
Halo to correctly detect the relevant change rules.
The changes between jEdit 4.1 an 4.2 are dramatic.
Especially, there are many methods in the two re-
leases with the same signatures but different imple-
mentations. It confuses call-dependency analysis and
compromises its precision. Thus, Halo needs all the
components to work together to have accurate results
for jEdit.

Second, the use of feedback data has more in-
fluence on the systems with lower precision while
using AURA. The lower precision on these systems
is mainly caused by the dramatic changes between
the two releases. High-quality feedback data helps
to improve the precision. If the precision is already
relatively high, the improvement is less obvious.

5.6 Thresholds
Using thresholds is a common tools in software en-
gineering to trade recall for precision [35], [11], [12].
Our previous work, AURA [13], completely eliminates
thresholds to boost recall with precision similar to
that previous approaches. In Halo, we use a threshold
γ = 75% to automatically select feedback data to in-
crease precision without compromising recall. Future
work includes using different values of this threshold.

5.7 Limitations
In Halo, our classifier prioritizes different features:
call dependency similarity is the highest and method
definition text similarity is the lowest. The irrelevant
change rules generated by high-priority features in
the early steps can be propagated and amplified in
later steps. It is difficult to correct them even if low-
priority features tell something different, because we
do not know which feature we should trust more. As
future work, we will investigate a new methodology
to overcome this limitation.

Halo only generates change rules for methods. Dur-
ing the evaluation of Halo, we found that some getters
are replaced by direct field accesses. Future work
includes modifying the definition of change rules to
take fields into account.

6 RELATED WORK

We now briefly introduce previous approaches solv-
ing on framework API evolution identification and
other relevant work that shares matching techniques
with them.

6.1 Approaches Solving the Framework API Evo-
lution Identification
Several approaches help developers evolve their pro-
grams when the frameworks that they use change.
We now discuss the differences between these ap-
proaches and ours according to the common aspects
in the formulation presented in this paper. We do not
discuss other aspects that do not apply to previous
approaches, such as feedback loop.

Inputs: Existing approaches of capturing API-level
changes require the framework developers to manu-
ally enter the change rules or to use a particular IDE to
automatically record the changes. Chow and Notkin
[6] presented a method that requires the framework
developers to provide change rules with the new
releases. CatchUP! [8] and JBuilder [9] record the

APRIL 2013 19

Table 5
The Influences of the components on Halo precision

Difference To Android JEdit JFreeChart JHotDraw Struts AverageOriginal Halo
No Feedback Data -1.8% -4.8% -1.6% 0.0% -1.5% -1.9%

No Method Documentation -1.0% -5.3% -1.6% -0.9% -2.2% -2.2%
No Inheritance -1.0% -5.5% -3.1% -1.9% -2.2% -2.7%

No Strict Anchor -0.5% -7.7% -2.1% -1.9% -4.4% -3.3%

Table 6
The Influences of the components on Halo precision of no-simply deleted change rules

Difference To Android JEdit JFreeChart JHotDraw Struts AverageOriginal Halo
No Feedback Data -1.2% -8.9% -8.5% 0.0% -3.1% -4.4%

No Method Documentation 0.0% -1.8% -1.5% -0.0% -0.0% -0.1%
No Inheritance -1.5% -1.6% -5.9% -1.0% -3.1% -2.7%

No Strict Anchor -0.8% -3.0% -0.7% -1.9% -4.6% -1.9%

refactoring operations in one release and replay them
in another. MolhadoRef [7] also employs a record-and-
replay technique for handling API-level changes in
merging program releases. These approaches can pro-
vide accurate change rules because of the framework
developers’ involvement, which might not always be
available.

Dagenais and Robillard’s SemDiff [10] and HiMa
of Meng et al. [36] use software repository commits.
Diff-CatchUp, developed by Xing and Stroulia [28],
uses the models of logical design of two releases of
a system as input. Others approaches [37], [35], [11],
[12], [13] and Halo take the source code of evolved
frameworks as input. Schäfer et al. [12]’s approach also
uses the client code as a part of its input.

Features: The features used by the approaches of
capturing API-level changes [6], [8], [9], [7] are dif-
ferent presentations of the change rules manually
added or automatically captured. These approaches
have a specific model for each target method and its
replacement.

Godfrey and Zou’s [37] and S. Kim et al.’s [35]
approaches use text similarity, software metrics, and
call dependency relations to describe target methods
and their replacements. Xing and Stroulia [28] extract
the differences between two releases of the logical
design models using lexical and structural similarity,
including text similarity, inheritance relations, usage
dependencies, and association relations. M. Kim et
al.’s [11] compute LCS of the target methods and
its replacement to measure the difference between
them. SemDiff [10], Schäfer et al. [12], and AURA [13]
use call-dependency relations measured by confidence
value and various presentations of text similarity.
HiMa [36] uses call-dependency relations and natural-
language-analysis-filtered method documentations of
consecutive commits. Halo considers call-dependency
relations, text similarity, method documentations and
inheritance relations as its features.

Classifiers: The approaches of capturing API-level
changes only need simple classifiers to match the
change rules that they have to the target methods, but

the developers’ involvement that they require might
not be available.

The classifiers of Godfrey and Zou’s [37] and S. Kim
et al.’s [35] approaches are based on origin analysis
techniques. The former is semi-automatic while the
latter is automatic. Diff-CatchUp [28] defines three
sets of heuristics for class, method, and fields, re-
spectively to order the possible possible replacement
methods. SemDiff [10] and Schäfer et al. [12] first use
confidence values to preselect the possible replace-
ment methods, then use text similarity to rank them.
The difference between them is that the former fo-
cuses on how frameworks adapt to their own changes
while the latter discovers the usage changes from
client code. M. Kim et al.’s [11] classifier leverages
systematic renaming patterns using text similarity to
match old APIs to new APIs. AURA [13] uses an ad
hoc algorithm, similar to a binary classifier. HiMa’s
[36] classifier generates initial change rules using pro-
cessed revision method comments, then expands and
refines them using call-dependency analysis. Halo
implements a two-pass analysis classifier. First, it gen-
erates feedback data automatically, then feeds them to
the second pass to improve precision.

6.2 Other Relevant Work
Kim and Notkin surveyed program element matching
techniques for multi-version program analyses [38].
They grouped matching techniques into eight cate-
gories: entity name matching; string matching; syntax-
tree matching; control-flow graph matching; program-
dependence graph matching; binary-code matching;
clone detection; and origin analysis. These techniques
can be applied to solve the framework API evolution
identification and to many other tasks in software
engineering as follows:

Framework Evolution between Different Frame-
works: Nita and Notkin used Twinning [39] to adapt
different Java frameworks with similar functionali-
ties. Twinning can describe two kinds of mapping
between APIs A and B that perform resembling tasks:
(1) directly mapping A to B or vice versa, and (2)

APRIL 2013 20

generating an abstract encapsulation C of A and B,
then user can use C uniformly by Twinning. Zhong
et al. presented MAN [40] to map APIs between Java
and C#. They used a graph-based technique to analyze
the API usages of some programs in Java and C# and
derived the mapping between the APIs of the two
languages.

API Analysis: Exemplar developed by Grechanik
et al. [41] analyzed API calls to improve the precision
of searching programs with similar functions over the
Internet. Kawrykow and Robillard’s approach [42] de-
tects the reimplementation of APIs of existing libraries
in client programs. McMillan et al. created a code-
search system, Portfolio [43], to search and visualize
relevant functions and their usages from an internal
database. Nguyen et al. [44] presented LibSync to help
developers learn complex API usage change patterns
from the clients that have been already upgraded to
new releases of frameworks. Cossette and Walker [45]
manually analysed the public API incompatibilities
of several versions of Struts, Log4j, and jDom. They
classified public API incompatibilities into 14 cate-
gories and discovered that the current framework API
evolution approaches only cover 20% of these cases
because many API changes, such as replacing meth-
ods by configuration files or third-party libraries, are
not in the scope of current framework API evolution
approaches. Their work pointed directions of future
framework API evolution research.

Software Evolution Comprehension: Fluri et al.
presented Change Distilling [46], a tree differencing
algorithm to rebuild change road-maps between two
releases of some program elements. LSdiff developed
by Kim and Notkin [47] summarizes the changes
in method signatures, method bodies and fields be-
tween two releases of frameworks into systematic
structural differences and presents anomalies in them.
Ref-Finder of Kim et al. [48] automatically detects
the 63 types of refactoring classified by Fowler et et
al. [49] using template logic queries. Kpodjedo et al.
[50] developed an approach that uses Error Tolerant
Graph Matching algorithm to match evolving pro-
gram elements and identify their stable parts, i.e., the
classes with stable relations (association, inheritance,
and aggregation) across releases of an object-oriented
program.

7 CONCLUSIONS

We presented Halo, a two-pass analysis approach
considering call-dependency, text-similarity, method
documentations, and inheritance relations to provide
developers with change rules when adapting their
systems from one release of a framework to the next.

The main contributions of Halo are:

1) Bring pattern classification vocabulary/tech-
niques to framework API evolution.

2) Show that consideration of multiple features
yields higher precision and recall.

3) Analyze the impact of different sub-components
of Halo on its overall precision.

The results of the evaluation of Halo on five
medium-size systems and its comparison to previous
approaches showed that (1) the two-pass analysis
inspired by binary pattern classification and (2) the
use of call-dependency, text-similarity, method docu-
mentation, and inheritance-relation similarities do im-
prove recall by 43% and precision by 5% on average.
We also applied Halo on Eclipse and compared its
results with those of SemDiff [10] and we showed that
the approximated precision of both Halo and SemDiff
is 100%. However, SemDiff needs users’ inputs and is
not fully automated.

In future work, we plan to extend our approach in
several directions: investigate a new methodology to
resolve the conflicting results between different fea-
tures; analyze target systems in other programming
languages than Java; consider other types of method
documentations besides Javadoc; add heuristics that
generate change rules for types and fields; consider
other name splitting approaches; present Halo results
in first-order relational logic rules, as introduced by
M. Kim et al. [11]; applying more sophisticated pattern
classification techniques.

ACKNOWLEDGMENT

We thank Barthélémy Dagenais and Martin P. Robil-
lard for providing advice and their data and conduct-
ing analysis with the latest version of their approach.
We are also grateful to Thorsten Schäfer for his ex-
perimental results. This work has been partly funded
by the NSERC Research Chairs in Software Change
and Evolution and in Software Patterns and Patterns
of Software.

REFERENCES

[1] D. M. German and A. E. Hassan, “License integration pat-
terns: Addressing license mismatches in component-based
development,” in ICSE ’09: Proceedings of the 2009 IEEE 31st
International Conference on Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 188–198.

[2] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class
library migration,” in OOPSLA ’05: Proceedings of the 20th an-
nual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. New York, NY, USA: ACM,
2005, pp. 265–279.

[3] D. Dig and R. Johnson, “How do apis evolve - a story of
refactoring: Research articles,” J. Softw. Maint. Evol., vol. 18,
no. 2, pp. 83–107, 2006.

[4] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt, “Reuse con-
tracts: managing the evolution of reusable assets,” SIGPLAN
Not., vol. 31, no. 10, pp. 268–285, 1996.

[5] C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 24,
no. 2, pp. 131–183, Jun. 1992.

[6] K. Chow and D. Notkin, “Semi-automatic update of appli-
cations in response to library changes,” in : Proceedings of the
1996 International Conference on Software Maintenance, ser. ICSM
1996. Washington, DC, USA: IEEE Computer Society, 1996,
p. 359.

APRIL 2013 21

[7] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen,
“Refactoring-aware configuration management for object-
oriented programs,” in ICSE ’07: Proceedings of the 29th inter-
national conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 427–436.

[8] J. Henkel and A. Diwan, “Catchup!: capturing and replaying
refactorings to support api evolution,” in ICSE ’05: Proceedings
of the 27th international conference on Software engineering. New
York, NY, USA: ACM, 2005, pp. 274–283.

[9] C. Kemper and C. Overbeck, “What’s new with jbuilder,” in
JavaOne Sun’s 2005 Worldwide Java Developer Conference, 2005.

[10] B. Dagenais and M. P. Robillard, “Recommending adaptive
changes for framework evolution,” ACM Transactions on Soft-
ware Engineering and Methodology, vol. 20, no. 4, pp. 19:1–19:35,
Sep. 2011.

[11] M. Kim, D. Notkin, and D. Grossman, “Automatic inference
of structural changes for matching across program versions,”
in ICSE ’07: Proceedings of the 29th international conference on
Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 333–343.

[12] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage
changes from instantiation code,” in ICSE ’08: Proceedings of
the 30th international conference on Software engineering. New
York, NY, USA: ACM, May 2008, pp. 471–480.

[13] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura:
a hybrid approach to identify framework evolution,” in
Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 325–334. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806848

[14] J. Businge, A. Serebrenik, and M. van den Brand, “Eclipse api
usage: the good and the bad,” in SQM, 2012, pp. 54–62.

[15] ——, “Analyzing the eclipse api usage: Putting the developer
in the loop,” in CSMR, 2013, pp. 37–46.

[16] M. P. Robillard and R. DeLine, “A field study of api learning
obstacles,” Empirical Software Engineering, vol. 16, no. 6, pp.
703–732, 2011.

[17] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification
2nd Edition. Wiley-Interscience, 2004.

[18] T. Joachims, “A probabilistic analysis of the rocchio algorithm
with tfidf for text categorization,” in Proceedings of the Four-
teenth International Conference on Machine Learning, ser. ICML
’97. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1997, pp. 143–151.

[19] A. Maiga, N. Ali, N. Bhattacharya, A. Saban, Y.-G. Guéhéneuc,
and E. Aimeur, “Smurf: A svm-based incremental anti-pattern
detection approach,” in WCRE ’12: Proceedings of the 19th
Working Conference on Reverse Engineering, 2012.

[20] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, and S. Howard,
“Helping analysts trace requirements: An objective look,”
in Proceedings of the Requirements Engineering Conference, 12th
IEEE International, ser. RE ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 249–259.

[21] Y. Shin and J. Cleland-Huang, “A comparative evaluation of
two user feedback techniques for requirements trace retrieval,”
in Proceedings of the 27th Annual ACM Symposium on Applied
Computing, ser. SAC ’12. New York, NY, USA: ACM, 2012,
pp. 1069–1074.

[22] R. Grissom and J. Kim, Effect sizes for research: a broad practical
approach. Lawrence Erlbaum Associates, 2005.

[23] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, & Tools 2nd Edition. Addison Wesley,
2007.

[24] R. Agrawal, T. Imieliński, and A. Swami, “Mining association
rules between sets of items in large databases,” in SIGMOD
’93: Proceedings of the 1993 ACM SIGMOD international confer-
ence on Management of data. New York, NY, USA: ACM, 1993,
pp. 207–216.

[25] D. Lawrie, H. Feild, and D. Binkley, “Syntactic identifier con-
ciseness and consistency,” in Sixth IEEE International Workshop
on Source Code Analysis and Manipulation., Sept. 2006, pp. 139–
148.

[26] V. I. Levenshtein, “Binary codes capable of correcting dele-
tions, insertions and reversals,” Soviet Physics Doklady, vol. 10,
p. 707, 1966.

[27] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge University
Press, 1997.

[28] Z. Xing and E. Stroulia, “API-evolution support with diff-
CatchUp,” IEEE Trans. Softw. Eng., vol. 33, no. 12, pp. 818 –
836, December 2007.

[29] J. Cohen, Statistical Power Analysis for the Behavioral Sciences.
Lawrence Erlbaum Associates, 1988.

[30] R. K. Yin, Case Study Research: Design and Methods - Third
Edition, 3rd ed. SAGE Publications, 2002.

[31] H. Bunke, “On a relation between graph edit distance and
maximum common subgraph,” Pattern Recogn. Lett., vol. 18,
no. 9, pp. 689–694, Aug. 1997.

[32] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees,” in Proceedings of
the International Conference on Software Maintenance, ser. ICSM
’98. Washington, DC, USA: IEEE Computer Society, 1998.

[33] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and evaluation of clone detection tools,” IEEE
Trans. Softw. Eng., vol. 33, no. 9, pp. 577–591, Sep. 2007.

[34] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[35] S. Kim, K. Pan, and E. J. Whitehead, Jr., “When functions
change their names: Automatic detection of origin relation-
ships,” in WCRE ’05: Proceedings of the 12th Working Conference
on Reverse Engineering. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 143–152.

[36] S. Meng, X. Wang, L. Zhang, and H. Mei, “A history-based
matching approach to identification of framework evolution,”
in Proceedings of 34th International Conference on Software Engi-
neering, ser. ICSE 2012, 2012, pp. 353–363.

[37] M. W. Godfrey and L. Zou, “Using origin analysis to detect
merging and splitting of source code entities,” IEEE Trans.
Softw. Eng., vol. 31, no. 2, pp. 166–181, 2005.

[38] M. Kim and D. Notkin, “Program element matching for multi-
version program analyses,” in Proceedings of the 2006 interna-
tional workshop on Mining software repositories, ser. MSR ’06.
New York, NY, USA: ACM, 2006, pp. 58–64.

[39] M. Nita and D. Notkin, “Using twinning to adapt programs
to alternative apis,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 205–214.

[40] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang,
“Mining api mapping for language migration,” in Proceedings
of the 32nd ACM/IEEE International Conference on Software Engi-
neering - Volume 1, ser. ICSE ’10. New York, NY, USA: ACM,
2010, pp. 195–204.

[41] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk,
and C. Cumby, “A search engine for finding highly relevant
applications,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ser. ICSE ’10.
New York, NY, USA: ACM, 2010, pp. 475–484.

[42] D. Kawrykow and M. P. Robillard, “Improving api usage
through automatic detection of redundant code,” in Proceed-
ings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 111–122.

[43] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and
C. Fu, “Portfolio: finding relevant functions and their usage,”
in Proceeding of the 33rd international conference on Software
engineering, ser. ICSE ’11. New York, NY, USA: ACM, 2011,
pp. 111–120.

[44] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen,
M. Kim, and T. N. Nguyen, “A graph-based approach to
api usage adaptation,” in Proceedings of the ACM international
conference on Object oriented programming systems languages and
applications, ser. OOPSLA ’10. New York, NY, USA: ACM,
2010, pp. 302–321.

[45] B. E. Cossette and R. J. Walker, “Seeking the ground truth: a
retroactive study on the evolution and migration of software
libraries,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ser. FSE
’12. New York, NY, USA: ACM, 2012, pp. 55:1–55:11.

[46] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change dis-
tilling: Tree differencing for fine-grained source code change

APRIL 2013 22

extraction,” IEEE Trans. Softw. Eng., vol. 33, pp. 725–743,
November 2007.

[47] M. Kim and D. Notkin, “Discovering and representing sys-
tematic code changes,” in Proceedings of the 31st International
Conference on Software Engineering, ser. ICSE ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 309–319.

[48] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “Ref-
finder: a refactoring reconstruction tool based on logic query
templates,” in Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering,
ser. FSE ’10. New York, NY, USA: ACM, 2010, pp. 371–
372. [Online]. Available: http://doi.acm.org/10.1145/1882291.
1882353

[49] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[50] S. Kpodjedo, F. Ricca, P. Galinier, Y.-G. Guéhéneuc, and G. An-
toniol, “Design evolution metrics for defect prediction in object
oriented systems,” Empirical Software Engineering, vol. 16, no. 1,
pp. 141–175, February 2011.

APPENDIX: COMPLETE COMPARISON DATA

APRIL 2013 23

Ta
bl

e
7

C
om

pa
ris

on
of

th
e

re
su

lts
on

m
ed

iu
m

-s
iz

e
sy

st
em

s
w

ith
si

m
pl

y-
de

le
te

d
ch

an
ge

ru
le

s

Sy
st

em
s

In
di

ca
to

rs
H

al
o

M
.

K
im

et
al

.
[1

1]
∆

R
∆

P
A

ve
ra

ge
s

∆
R

∆
P

d
r
′

d
p

JH
ot

D
ra

w
#

C
or

re
ct

ru
le

10
2

81
26

%
-3

%

80
%

-0
.3

%
La

rg
e

1.
00

Sm
al

l
-0

.2
5

5.
2-

5.
3

Pr
ec

is
io

n
96

%
99

%
JE

di
t

#
C

or
re

ct
ru

le
38

6
21

7
4

78
%

-9
%

4.
1-

4.
2

Pr
ec

is
io

n
85

%
93

%
JF

re
eC

ha
rt

#
C

or
re

ct
ru

le
16

9
88

92
%

12
%

0.
9.

11
-0

.9
.1

2
Pr

ec
is

io
n

88
%

78
%

A
nd

ro
id

SD
K

#
C

or
re

ct
ru

le
17

39
77

2
12

5%
-2

%
2.

1
r2

.1
p2

-
2.

2.
3

r2
Pr

ec
is

io
n

91
%

93
%

Sy
st

em
s

In
di

ca
to

rs
H

al
o

Sc
hä

fe
r

et
al

.
[1

2]
∆

R
∆

P
A

ve
ra

ge
s

∆
R

∆
P

d
r
′

d
p

JH
ot

D
ra

w
#

C
or

re
ct

ru
le

10
2

88
16

%
9%

59
%

12
%

La
rg

e
1.

00
La

rg
e

1.
00

5.
2-

5.
3

Pr
ec

is
io

n
96

%
88

%
St

ru
ts

#
C

or
re

ct
ru

le
13

3
66

10
2%

15
%

1.
1-

1.
2.

4
Pr

ec
is

io
n

99
%

86
%

Sy
st

em
s

In
di

ca
to

rs
H

al
o

A
U

R
A

[1
3]

∆
R

∆
P

A
ve

ra
ge

s
∆

R
∆

P
d
r
′

d
p

JH
ot

D
ra

w
#

C
or

re
ct

ru
le

10
2

97
5%

4%

7%
6%

La
rg

e
0.

48
La

rg
e

0.
48

5.
2-

5.
3

Pr
ec

is
io

n
96

%
92

%
JE

di
t

#
C

or
re

ct
ru

le
38

6
36

0
8%

6%
4.

1-
4.

2
Pr

ec
is

io
n

85
%

80
%

JF
re

eC
ha

rt
#

C
or

re
ct

ru
le

16
9

15
5

9%
8%

0.
9.

11
-0

.9
.1

2
Pr

ec
is

io
n

88
%

81
%

St
ru

ts
#

C
or

re
ct

ru
le

13
3

12
9

4%
5%

1.
1-

1.
2.

4
Pr

ec
is

io
n

99
%

96
%

A
nd

ro
id

SD
K

#
C

or
re

ct
ru

le
17

39
16

08
8%

8%
2.

1
r2

.1
p2

-
2.

2.
3

r2
Pr

ec
is

io
n

91
%

85
%

To
ta

l
Pr

ec
is

io
n

of
H

al
o

92
%

A
ve

ra
ge

∆
R

43
%

∆
P

5%

APRIL 2013 24

Ta
bl

e
8

C
om

pa
ris

on
of

th
e

re
su

lts
on

m
ed

iu
m

-s
iz

e
sy

st
em

s
w

ith
ou

ts
im

pl
y-

de
le

te
d

ch
an

ge
ru

le
s

Sy
st

em
s

In
di

ca
to

rs
H

al
o

M
.

K
im

et
al

.
[1

1]
∆

R
∆

P
A

ve
ra

ge
s

∆
R

∆
P

d
r
′

d
p

JH
ot

D
ra

w
#

C
or

re
ct

ru
le

99
81

22
%

-3
%

25
%

-1
.7

%
La

rg
e

0.
75

Sm
al

l
-0

.2
5

5.
2-

5.
3

Pr
ec

is
io

n
96

%
99

%
JE

di
t

#
C

or
re

ct
ru

le
28

9
21

7
4

33
%

-1
3%

4.
1-

4.
2

Pr
ec

is
io

n
81

%
93

%
JF

re
eC

ha
rt

#
C

or
re

ct
ru

le
11

3
88

28
%

15
%

0.
9.

11
-0

.9
.1

2
Pr

ec
is

io
n

90
%

78
%

A
nd

ro
id

SD
K

#
C

or
re

ct
ru

le
91

4
77

2
18

%
-6

%
2.

1
r2

.1
p2

-
2.

2.
3

r2
Pr

ec
is

io
n

87
%

93
%

Sy
st

em
s

In
di

ca
to

rs
H

al
o

Sc
hä

fe
r

et
al

.
[1

2]
∆

R
∆

P
A

ve
ra

ge
s

∆
R

∆
P

d
r
′

d
p

JH
ot

D
ra

w
#

C
or

re
ct

ru
le

99
88

13
%

9%
0.

2%
11

%
N

on
e

0.
00

La
rg

e
1.

0
5.

2-
5.

3
Pr

ec
is

io
n

96
%

88
%

St
ru

ts
#

C
or

re
ct

ru
le

58
66

-1
2%

13
%

1.
1-

1.
2.

4
Pr

ec
is

io
n

97
%

86
%

Sy
st

em
s

In
di

ca
to

rs
H

al
o

A
U

R
A

[1
3]

∆
R

∆
P

A
ve

ra
ge

s
∆

R
∆

P
d
r
′

d
p

JH
ot

D
ra

w
#

C
or

re
ct

ru
le

99
96

3%
0%

7%
6%

M
od

er
at

e
0.

36
M

od
er

at
e

0.
36

5.
2-

5.
3

Pr
ec

is
io

n
96

%
96

%
JE

di
t

#
C

or
re

ct
ru

le
28

9
24

7
17

%
5%

4.
1-

4.
2

Pr
ec

is
io

n
81

%
77

%
JF

re
eC

ha
rt

#
C

or
re

ct
ru

le
11

3
95

19
%

10
%

0.
9.

11
-0

.9
.1

2
Pr

ec
is

io
n

90
%

82
%

St
ru

ts
#

C
or

re
ct

ru
le

58
56

4%
5%

1.
1-

1.
2.

4
Pr

ec
is

io
n

97
%

92
%

A
nd

ro
id

SD
K

#
C

or
re

ct
ru

le
91

4
82

6
11

%
8%

2.
1

r2
.1

p2
-

2.
2.

3
r2

Pr
ec

is
io

n
87

%
81

%
Pr

ec
is

io
n

of
H

al
o

90
%

To
ta

l
∆

R
14

%
A

ve
ra

ge
∆

P
4%

	EPM-RT-2013-05_Wu

