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Abstract

In present study, a hybrid finite element method is applied to investigate the free vibration of
spherical shell filled with fluid. The structural model is based on a combination of thin shell theory and
the classical finite element method. It is assumed that the fluid is incompressible and has no free-surface
effect. Fluid is considered as a velocity potential variable at each node of the shell element where its
motion is expressed in terms of nodal elastic displacement at the fluid-structure interface. Numerical
simulation is done and vibration frequencies for different filling ratios are obtained and compared with
existing experimental and theoretical results. The dynamic behavior for different shell geometries, filling
ratios and boundary conditions with different radius to thickness ratios is summarized. This proposed
hybrid finite element method can be used efficiently for analyzing the dynamic behavior of aerospace

structures at less computational cost than other commercial FEM software.

1. Introduction

Shells of revolution, particularly spherical shells are one of the primary structural elements in high
speed aircraft. Their applications include the propellant tank or gas-deployed skirt of space crafts. Space
shuttles need a large thrust within a short time interval; thus a large propellant tank is required. Dynamic
behavior in the lightweight, thin-walled tank is an important aspect in its design. These liquid propelled
space launch vehicles experience a significant longitudinal disturbance during thrust build up and also
due to the effect of launch mechanism. Dynamic analysis of such a problem in the presence of fluid-
structure interaction is one of the challenging subjects in aerospace engineering. Great care must be taken
during the design of spacecraft vehicles to prevent dynamic instability.

Free vibration of spherical shell containing a fluid has been investigated by numerous researchers
experimentally and analytically.

Rayleigh [1] solved the problem of axisymmetric vibrations of a fluid in a rigid spherical shell.
The solution for vibrations of the fluid-filled spherical membrane appears in the work of Morse and
Feshbach [2].

The fluid movement on the surface of fluid (sloshing) in non-deformable spherical shell has been
investigated by many researchers as Budiansky [3], Stofan and Armsted [4], Chu[5], Karamanos et al.[6].
The oscillations of the fluid masses result from the lateral displacement or angular rotation of the

spherical shell. Others researchers have studied particular cases like the case of a sphere filled with fluid.
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Rand and Dimaggio[7] considered the free vibrations for axisymmetric, extensional, non-torsional of
fluid-filled elastic spherical shells. Motivated by the fact that human head can be represented as a
spherical shell filled by fluid, Engin and Liu[8] considered the free vibration of a thin homogenous
spherical shell containing an inviscid irrotational fluid. Advani and Lee [9] investigated the vibration of
the fluid-filled shell using higher-order shell theory including transverse shear and rotational inertia.
Guarino and Elger [11] have looked at the frequency spectra of a fluid-filled sphere, both with and
without a central solid sphere, in order to explore the use of auscultatory percussion as a clinical
diagnostic tool. Free vibration of a thin spherical shell filled with a compressible fluid is
investigated by Bai and Wu [12].The general non-axisymmetric free vibration of a spherically isotropic
elastic spherical shell filled with a compressible fluid medium has been investigated by Chen and Ding
[13]. Young [14] studied the free vibration of spheres composed of inviscid compressible liquid cores
surrounded by spherical layers of linear elastic, homogeneous and isotropic materials.

The case of hemispherical shells filled with fluid was studied experimentally by Samoilov and
Pavlov[15]. Hwang[16] investigated the case of the longitudinal sloshing of liquid in a flexible
hemispherical tank supported along the edge, Chung and Rush[17] presented a rigorous and consistent
formulation of dynamically coupled problems dealing with motion of a surface-fluid-shell system. A
numerical example of a hemispherical bulkhead filled with fluid is modeled.

Komatsu [18][19] used a hybrid method with a fluid mass coefficient added to his system of
equations. He also validated his model with experiments on hemispherical shells partially filled with fluid
under two boundary conditions: a clamped  boundary condition and a free boundary condition.

Recently, Ventsel et al. [20] used a combined formulation of the boundary elements method and
finite elements method to study the free vibration of an isotropic simply supported hemispherical shell
with different circumferential mode numbers.

For a spherical shell that is partially liquid-filled, if one wishes to  consider the hydroelastic
vibration developed as consequence of interaction between hydrodynamic pressure of liquid and elastic
deformation of the shell, this is a complex problem. Numerical method such as the finite element method
(FEM) are therefore used since they are powerful tools that can adequately describe the dynamic
behavior of such system which contains complex structures, boundary conditions, materials and loadings.
Some powerful commercial FEM software exists, such as ANSYS, ABAQUS and NASTRAN. When
using these tools to model such a complex FSI problem, a large numbers of elements are required in
order to get good convergence. The hybrid approach presented in this study provides very fast and

precise convergence with less numerical cost compared to these commercial software packages.



In this work a combined formulation of shell theory and the standard finite element method
(FEM) is applied to model the shell structure. Nodal displacements are found from exact solution of shell
theory. This hybrid FEM has been applied to produce efficient and robust models during analysis of both
cylindrical and conical shells. A spherical shell which has been filled partially with incompressible and
inviscid is modeled in this study. The fluid is characterized as a velocity potential variable at each node
of the shell finite element mesh; then fluid and structures are coupled through the linearized Bernoulli’s
equation and impermeable boundary condition at the fluid-structure interface. Dynamic analysis of the

structure under various geometries, boundary conditions and filling ratios is analyzed



2. Finite element formulation

2.1 Structural modeling

In this study the structure is modeled using hybrid finite element method which is a combination
of spherical shell theory and classical finite element method. In this hybrid finite element method, the
displacement functions are found from exact solution of spherical shell theory rather approximated by
polynomial functions done in classical finite element method. In the spherical coordinate
system(R,0,0) shown in Fig. 1, five out of the six equations of equilibrium derived in reference for

spherical shells under external load are written as follows :
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Where Ny, No, Ngp are membrane stress resultants; My, Mg, Mye the bending stress resultants and Qy,
Qo the shear forces (Fig. 2). The sixth equation, which is an identity equation for spherical shells, is not

presented here.

Strain and displacements for three displacements in axialU , radial /¥ and circumferential U, are related

as follows:
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DisplacementsU , W and V' in the global cartesian coordinate system are related to displacementsU,,,

W, and U, indicated in Fig 3. by:

U sing —cos¢, 0]||U,
Wi=|cosg sing 0 W, 3)
V 0 0 11U,

The stress vector {o'} is expressed as function of strain {£} by

(o} =[Pl{e) “@

Where [P] is the elasticity matrix for an anisotropic shell given by

R, B, 0 B, B 0
By Py 0 By By 0
[P]:o 0O B, 0 0 0 )
B, Py 0 Py Py 0
B, P, 0 Py Py 0
(0 0 B 0 0 B

Upon substitution of equations (2), (4) and (5) into equations (1), a system of equilibrium equations can

be obtained as a function of displacements:

L(U,.w.U,,P,)=0
L,(U,,W,U,,P,)=0 (6)
L,(U,,W.U,,P,)=0



These three linear partial differentials operators L, L, and L, are given in the Appendix, and P, are

elements of the elasticity matrix which, for an isotopic thin shell with thickness /4 is given by:

D vD 0 0 0 0 ]
vD D 0 0 0 0
(1 - v)D
0 0 — 0 o0 0
Pl= 7
[ ] 0 0 0 K vK 0 M
0 0 0 vK K 0
1-v)K
0 0 0 o o UV
L 2
Et . . EX . .
Where D = > 1s the membrane stiffness and K = ——— is the bending stiffness.
1-v 12(1-v%)

The element is a circumferential spherical frustum shown in Fig. 3. It has two nodal circles with four
degrees of freedom; axial, radial, circumferential and rotation at each node. This element type makes it
possible to use thin shell equations easily to find the exact solution of displacement functions rather than
an approximation with polynomial functions as done in classical finite element method. For motions

associated with the nth circumferential wave number we may write:

U,(4.0) cosnd 0 0 u,, (4) u,, (4)
w(s,0)r=| 0 cosnf 0 w,(¢)r=[T]3 w,(0) (8)
U, (¢,49) 0 0 sinnd | |u,, (¢5) Uy, (¢)

The transversal displacement w, (¢) can be expressed as:

(@)= D! ©)

Where
W' = AP, (cos@)+BQ, (cosg) (10)



3. Spherical frustum element

Fig



And where P, (cos¢),0,, (cos¢) are the associated Legendre functions of the first and second kinds

respectively of order n and degree y..
The expression of the axial displacement uy, (¢) is:

dwn 2

u¢" :ZE’ dg/; 251n¢ (¢)

i=1

Where the coefficient £; is given by:

A+ k(+v)=(1-v)
T (1+k)(4-14V)

The auxiliary function /is given by the expression:

w(¢)=AR" (cosp)+B,0 (cosg)

Finally the circumferential displacement ug, (¢) can be expressed as:

3

an (¢):_n 1 Eim)in +—=

= sin ¢

ndy
2d¢

The degree . is obtained from the expression

1/2
1 1
==+ a | =2
ﬂl (4 lj 2

Where 4, is one the roots of the cubic equation:

A —hA+hA—h =0

Where
h =4
h, :4+(1+k)(1—v2)
h, :2(1+k)(1—v2)
2
With k—12:—

(11)

(12)

(13)

(14)

(15)

(16)

(17)

The above equation has three roots with one root is real and two other are complex conjugate roots.

. -1 -1 .
The Legendre functions £, , F,~,0, andQ, " are areal functions whereas P, ,

7

(i =2, 3) are complex functions so we can put:

10

-1 -1
. »Q,andg,



P, =Re(B, )+iIm(P,)
' =Re(P)—iIm(P))
0,, =Re(Q, ) +i1Im(Q, )
0, =Re(Q;, )—iIm(Q; )
P =Re(Pr ) +ilm(P!) (18)
Py =Re(P, ) —iIm(P;™)
0, =Re(Q, ) +ilm(Q;,")
0, =Re(P, ) -ilm(Q; ")

Setting
(n—p —1)(n+,u1)=6’1
(n_/uz_l)(n"',uz):cz"'w} (19)
(n— 14 _1)(”"',“3):02 —icy

E =¢
E, =e, —ie, (20)
E, =e, +ie,

Substituting equations (18), (19) and (20) in equations (9), (11) and (14) we have:

u,(4)= (—neI cot¢P, +ec, P, )A]
+| —ne, cotgRe(P, ) — ne, cot g Im(P, ) + (e,¢, +e;¢y) Re(P”'l) +(e,c, —e,05) IIn(P”_1 )] (4, +4,)
+| neycotgRe(P, ) —ne, cotpIm(P, ) —(e;c, —e,¢5)Re(F, N+ (e, +ecy) Im(F,” 1)]i(A2 -4,)

[-
[
{ 2sm¢Pn}
3

+

ne, cot 90, +e,¢,0,” )B1
+| ~ne, cotpRe(Q}, ) ~ ne; cot pIm(Q;, ) + (ec, +e,¢,)Re(Q;, ) + (e, —e,¢;) Im(Q; )](B2 +B,)

+| neycotgRe(Q, ) —ne, cotpIm(Q, ) (e;c, — ezc3)Re(QZ;1) +(eyc, + e3c3)Im(Q/’jz"l)}i(B2 -B,)

-
+| - " |B
i 2sin¢Ql !
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W, (¢) = P;Z A1 + Re(P:z )(Az + A3) + Im(P:Z )i(Az - A3) + QZI B1 + Re(sz )(Bz + B3) + Im(sz )i(Bz N B3)

1
=- P" 4
uni? (¢) nel 51n¢

1 | 1 1
—| ne ——Re(P")+ne, —Im(P") [(4, + 4,) +| ne, —Re(P")—ne ——Im(P") |i(4, - A4
{ ) sm¢ ( /12) 351n¢ ( #2):|( 2 3) { 3Sln¢ ( /12) ) Sln¢ ( y2)i| ( 2 3)

2
{—”—cotqﬁp" Z(n=2)(n+1)B" I}A
2 2
e, —5, 1)

{ L Re(0 ) +ne, ——Im(Q )}(Bﬁ&){ne}#lze@" )-ne ——Im(Q; )}(BZ—B»
> ging sing " sing ‘sing

J{——cot(le 2 (n-2)(n+1)Q" }34

In deriving the above relation we used the recursive relations:

dP’

=—ncotpP, +(n—p, ~)(n+ )P, (22)

n

d—;’ =—ncotgQ, +(n—u,—D(n+u)Q,"

Using matrix formulation, the displacement functions can be expressed as follows:

U,(¢.0) y, (4)
w(9.0)  =[T]3w,(¢)  =[T][R]{C}
U, (4.9) g, (9) (23)

The vector {C} is given by the expression:
(C}' ={4 A,+4, i(4,-4) 4, B B,+B, i(B,-B,) B,} (24)

The elements of matrix [R] are given in the Appendix.
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In the finite element method, the vector C is eliminated in favor of displacements at elements nodes. At
each finite element node, the three displacements (axial, transversal and circumferential) and the rotation

are applied. The displacement of node i are defined by the vector:

. T
) . dw Y )
é‘l- = uln W’ll - ulﬂ
o} { ’ ( dxj ’ } (25)

The element in Fig. 3 with two nodal lines (i and ;) and eight degrees of freedom will have the following

nodal displacement vector:
5 dw, ) aY |
S e A O
s, de d¢ (26)

=(~ncotgP; +c,P ™) 4 +| ~ncotgRe(P) ) +c, Re(Py ) —c, Im(Py™) | (4, + 4,)

With
dw,

+

[-ncot$Im(PL) +c,Re(Py ) +c, Im(Py ) [i(4, - 4))+(-ncot 0, +¢,0) ") B,
+[-ncot gRe(Q] ) +¢, Re(Q ) —c, Im(Q)) |(B, + B,)

+[-notgIm(Q; )+, Re(Q) )+, Im(Q;) B, - B, e

The terms of matrix [A] are obtained from the values of matrix [R] and% are given in the appendix.
X

Now, pre-multiplying by [A]_1 equation (26) one obtains the matrix of the constant C; as a function of

the degree of freedom:

(28)

Finally, one substitutes the vector {C } into equation and obtains the displacement functions as follows:

vieo SUCERMEUIN

Us (9.6) | (29)

13



The strain vector {5} can be determined from the displacement functions U, U,,W and the deformation

—displacement as:

o] o[ o 1))

Where matrix [Q] is given in the appendix.

This relation can be used to find the stress vector, equation (4), in terms of the nodal degrees of freedom

vector:

lo}= [P][B]{?} (31)

J

Based on the finite element formulation, the local stiffness and mass matrices are:

(£, = ﬂ (8] [P][B]dA

m), =ph j j N] dA
(32)

Where p the density and # is the thickness of shell.

The surface element of the shell wall is d4 = R’ sin pd¢d & . After integrating over @, the preceding

equations become

], (4T [nR 0T [7llo) smqwj[ J=[4'T[6][4"]

=T 18] R [ - LTI .

In the global system the element stiffness and mass matrices are
[K]=[26] [ ] [G][47][L6]
— T —
[m]=ph[LG] [4™] [S][ 4 ][LG] 34)

Where

14



[sing, —cosg 0 0 0 0 00

cosg sing 0 O O 0 0 0
0 0 1 0 O 0 0 0
0 0 0 1 0 0 0 0

[LG]= _

0 0 0 0 sing, —cosg, 0 0
0 0 0 0 cosg, sing, 0 0
0 0 00 0 0 1 0

.0 0 00 0 0 0 1] (35)

From these equations, one can assemble the mass and stiffness matrix for each element to obtain the mass

and stiffness matrices for the whole shell: [M ] and[K ] . Each elementary matrix is 8x8, therefore the

final dimensions of [M ] and [K ] will be 4(N+1) where N is the number of elements of the shell.

2.2 Fluid modeling
The Laplace equation satisfied by velocity potential for inviscid, incompressible and irrotational
fluid in the spherical system is written as:

2
Vzco:izg(rza_q)}r—zl- 2 ling 22 |72 _g (36)
r°or or ) rosing o0¢ 0¢ ) r’sin’¢ 00

Where the velocity components are:
o =Ust L0 V.= 9 Vo = 1 9o
r 0¢ or rsing 060

(37)

Using the Bernouilli equation, hydrodynamic pressure in terms of velocity potentiel ¢ and fluid density
p, 1s found as :

U,
42100

o) (3%)

op
P =-p, (5

The impermeability condition, which ensures contact between the shell surface and the peripheral fluid is

written as:
U,
. 8_(0 w U ow 39
=R o, o r 8¢
With
3
W= Z(A P (cos¢)+ B0, (cos ¢))cosm9e"“” (40)

J=1

Method of separation of variables for the velocity potential solution can be done as follows :

15



¢J(¢,r,0)=ZR_/(F)Sj(¢,t9,t)

Placing this relation into the impermeability condition (39), we can find the function S;(¢,6,7) in term of

radial displacement:

U
S,(6.0,1)=— fW+JﬁWJ (1)
' R(R)\ ot r 04 )
Hence the equation becomes

SR () (ow U, ow

o(¢.r,0)=D ——— — L= (42)
SR\ o r 0f
- r=R

With substitution of the above equation into Laplace equation (36), the following second order equation

in terms of R, (r) is obtained

R}’(r)+zR}(r)—Lg+l)Ri(r) =0 (43)
. o . :

Solution of the above differential equation yields the following:

Hy B J
R.(r)=Ar" + T (44)
For internal flow B, =0
Finally, the hydrodynamic pressure in terms of radial displacement is written:
3R . u, . U
P =- —| W +2—Lw +—Lw’ 45
S Py ; K, J R ' R ( )
We put :
R
—=7
H
R :
—=f-1f (46)
H,
R .
== f+if
Hs
And the pressure loading in terms of nodal degrees of freedom is written as:
0 5 U ) U; S
LR AR L P R 1% R e v R
0 J J J

Where matrix [le :| is given by :

16



0 0 0 0 0 0 0 0
[R/]=|P; Re(P)) Im(P}) 0 O, Re(Q)) Im(Q,) 0|[F] (48)
0 0 0 0 0 0 0 0
Where [F ] is expressed as:
0 0 0 0 0 0 0]
0 f, =/, 00 0 0 0
0 f, f, 00 0 0 0
00 0 00 0 0 0
[F]= 0 (49)
00 0 0 f 0 0 0
00 0 0 0 f, —f, 0
00 0 00 f, f, O
00 0 00 0 0 0
The matrix [sz } is given by :
0 0 0 0 0 0 0 0
[R] |=-ncotg| P, Re(P)) Im(P)) 0 Q. Re(@) Im(Q) 0|F]
0 0 0 0 0 0 0 0
(50)
0 0 0 0 0 0 0 0
+| P Re(P ) Im(P) 0 Q. Re(Q) ) Im(Q,") 0|[F][C]
0 0 0 0 0 0 0 0
Where matrix [C ] is given by:
(¢, 0 0 0 0 0 0 O]
0 ¢, ¢¢ 00 0 0 0
0 —¢, ¢, 00 0 00
0 0 000 O 0 O
[C]= (51)
0 0 00¢ 0O 00
0 0 000 ¢ ¢ O
0 0 000 — ¢ O
00 000 0 0 0

The matrix [R{] is given by :

17



| 0 0 0 0 0 0 0 0
(R ]=n|— +ncot2¢j P, Re(P)) Im(P)) 0 O, Re©Q,) Im(Q,) 0|[F]

sin” ¢
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
+| P} Re(P)) Im(P.) 0 Q. Re(@,) Im(@Q,) 0|F]C] (52)
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
—cotg| P, Re(P ) Im(P.) 0 Q. Re(Q, ) Im(Q,") 0|[F][C]

0 0 0 0 0 0 0 0

The general force vector due the fluid pressure loading is given by:

= LI[N]T {P}dA (53)

After substituting for pressure field vector and matrix [N ] in the above equation, the local matrix [m f]

can be found from the following:

] == [ | U [0 T [ ], [T [, e
The local damping matrix is given by:

o] =20, S0 | [ [ Yo [ T2, ST [0,

(35)

Finally the local stiffness matrix is given by:

K7 ] =~ % [A {”R .[ [R{]Sin¢d¢J[A_I] =_pfl;_j2%[‘4_] ]T (G ][47]

(56)
In the global system the element stiffness and mass matrices are

':mf] =Py [LG]T [A_l ]T [Sf][A_]:I[LG]
[, ]=-2p fﬂ LG]'[4"] [p,][4"][LG] (57)
[k )=, 16T 47T [6, [ 4" [26)

From these equations, one can assemble the mass and stiffness matrix for each element to obtain the mass
and stiffness matrices for the whole shell: [M f] and [K J .

The governing equation which accounts for fluid-shell interaction in the presence of axial internal
pressure is derived as:

18



(o0, I3 T 3 oL )] o

Where subscripts s and frefer to shells in vacuum and fluid respectively.

3. Results and discussion

In this section numerical results are presented and compared with existing experimental,
analytical and numerical data.
3.1 Validation and comparison

The main advantages of this proposed hybrid is its fast and precise convergence; 12 elements
were required for the convergence of the frequency for a clamped spherical shell.
For the cases investigated in the present paper, the predicted dimensionless frequencies are expressed by

the following relation:

N | —

Q=0)R(§) (58)

Where:
@ 1s the natural angular frequency.
R is the radius of the reference surface.
p 1s the density.
E is the modulus of elasticity.
Results for different filling ratios and modes numbers compared to experimental, theoretical and

numerical analyses are presented.

3.2 case of a spherical shell with ¢, =60°

The case considered here is a simply supported spherical shell with ¢, =60° with the following
characteristics and studied by Komatsu [18]: the material density =~ p= 2270 kg/m’, the Poisson
coefficient v=0.3, Young modulus of elasticity : E=70 GPa, the radius to thickness ratio R/h=243

The figure 5 shows that when the shell is partially filled, the dimensionless frequency initially drops
sharply, Then as the shell becomes fuller, the frequency drops less quickly. Free-surface effects of the
liquid surface and sloshing of the fluid are not taken into account in this study. This assumption relies on
the fact that the sloshing frequencies have a period of vibration that is much longer than the period of

vibration of the spherical shell. As can be seen, there is perfect agreement between both methods.
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The comparatively good accuracy of our method can be explained by that fact that the formulation used
is a combination of the finite element method and classical shell theory where the displacement functions
are derived from exact solutions of shell equations. On the other hand, integrations of all matrices (solid
and fluid) are calculated numerically over the solid—fluid element. This numerical model can easily be
used to study partially filled spherical shells by imposing a null density of fluid for the circumferential
finite elements which are not submerged.

The third study we carried out is on the effect of radius to thickness ratio R/h on the natural frequencies
in both the case where the shell is empty or full. Figure 6 shows as the mass of shell is greater when the
shell is thick, the effect of fluid is less important in a thick shell than for a thin shell. The same figure
shows that ratio of natural frequencies of an empty shell and full shell is of order 10 for R/h=1000 . But
this ratio was 3 for R/h=243.
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Fig. 5. Dimensionless frequency as function of liquid depth in
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Fig. 6. Dimensionless frequency as function of radius to thickness ratio R/h

in simply supported spherical shell of with ¢, =60°
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3.2 case of a hemispherical shell

This case was investigated by many authors. The problem of a hemispherical shell completely filled with
water was investigated by Ventsel et Al [20]. The solution of the problem of hydroelastic vibrations has
been obtained using the methods of the boundary element (BEM) and the finite element (FEM). Thes
data are obtained by applying the simply supported condition which is an adequate condition for liquid
storage tanks. The hemispherical shell is considered empty or filled with fluid and having the following
parameters: the shell radius R=5.08m, the thickness h=0.0254m, the modulus of elasticity E=70GPa,
Poisson ratio v=0.3, the material density p= 2270 kg/m’, the fluid density pr= 1000 kg/m’. Very good
agreement can be seen. The ratio of empty shell frequency and completely filled shell frequency is 4.5 for

the first axial mode.

Ventsel et al[20] Present theory
(n, m) H/R =0 H/R=1 H/R=0 H/R=1
2,1 0.8987 0.2004 0.9057 0.2134
2,2 0.9611 0.2579 0.9658 0.2604
2,3 0.9838 0.3020 0.9901 0.3102

Table 1. Dimensionless frequencies for a simply supported hemispherical shell

The case of a hemispherical shell completely filled with water clamped along equator was
investigated experimentally by Samoilov and Pavlov. The characteristics of the shell were as follows:
the shell radius R=0.133m, the thickness h=0.0007m, the modulus of elasticity E=4.016GPa, Poisson
ratio v=0.4, the material density p= 1180kg/m’

The table 2 shows the dimensionless frequencies obtained by these authors and compared to the

frequencies obtained by our model.
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Samoilov and Pavlov[15]

Present Theory

0.0978 0.1038
0.1382 0.1451
0.1676 0.1789

Table 2. Dimensionless frequencies for a clamped hemispherical shell completely filled with fluid

Data resulting from experiments conducted by Kana and Nagy [10] on a clamped hemispherical shell
filled with water are shown in table 3. The shell has a density of 2.59 10™ 1b-s*/in* and has a radius 5 in

and a thickness of 0.03 in. The elastic modulus is 10’ Ib/in? and the Poisson coefficient is 0.3.

Kana and Nagy[10] Present Theory
0.1199 0.1239
0.1919 0.2036
0.2398 0.2436

Table 3. Dimensionless frequencies for a clamped hemispherical shell completely filled with fluid

The fourth example is the case of a clamped hemispherical shell that was studied experimentally by
Hwang [16]. The shell is made of aluminum with density of 2.59 10* 1b-s*/in* and has a radius 200 in
and a thickness of 0.1 in. The elastic modulus is 10’ Ib/in” and the Poisson coefficient is 0.3. The fluid
inside the shell is liquid oxygen with a density of 1.06 10™* 1b- s%in*. This example of a hemispherical
bulkhead filled with liquid oxygen was modeled by Chung and Rush [17] and investigated numerically.
The same study was conducted by Komatsu and Matsuhima [19] experimentally. The results are

presented in table 4.
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Present model Hwang[14] Chung and Rush Komatsu [17]
[15]
0.066 0.0689 0.0625 0.065

Table 4. Dimensionless frequencies for a clamped hemispherical shell completely filled with liquid

oxygen

4. Conclusion

The problem of free vibration of a partially liquid-filled spherical shell under different shell
geometries, filling ratios and boundary conditions with different radius to thickness ratios is
investigated. An efficient hybrid finite element method is presented to analyze the dynamic behavior of
liquid- filled spherical shell. Shell theory of spherical shell is coupled Laplace equation of an inviscid
fluid to account for hydrodynamic pressure of an internal fluid. This theoretical approach is much more
precise than usual finite element methods because the displacement functions are derived from exact
solutions of shell equilibrium equations for spherical shells. The mass and stiffness matrices are
determined by numerical integration. The velocity potential and Bernoulli’s equation are adopted to
express the fluid pressure acting on the structure which yields three forces (inertial, centrifugal Coriolis)
in the case of flowing fluid.

The results obtained for conical shells with various geometric configurations and different
boundary conditions are compared with results available in the literature. Very good agreement was
found. This approach resulted in a very precise element that leads to fast convergence and less numerical
difficulties from the computational point of view.

To the best of the authors’ knowledge, this paper reports the first comparison made between works which
deal with spherical shells subjected to internal fluid effects. The proposed hybrid finite element method
provides the capability to analyze cases involving application of different complex boundaries and

loading patterns for spherical shell
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