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Diagnosing Performance Variations by
Comparing Multi-Level Execution Traces

François Doray Student Member, IEEE and Michel Dagenais, Senior Member, IEEE

F

Abstract—Tracing allows the analysis of task interactions with each
other and with the operating system. Locating performance problems
in a trace is not trivial because of their large size. Furthermore, deep
knowledge of all components of the observed system is required to
decide whether observed behavior is normal.

We introduce TraceCompare, a framework that automatically iden-
tifies differences between groups of executions of the same task at
the userspace and kernel levels. Many performance problems manifest
themselves as variations that are easily identified by our framework.
Our comparison algorithm takes into account all threads that affect
the completion time of analyzed executions. Differences are correlated
with application code to facilitate the correction of identified problems.
Performance characteristics of task executions are represented by a
new data structure called enhanced calling context tree (ECCT).

We demonstrate the efficiency of our approach by presenting four
case studies in which TraceCompare was used to uncover serious per-
formance problems in enterprise and open source applications, without
any prior knowledge of their codebase. We also show that the overhead
of our tracing solution is between 0.2% and 9% depending on the type
of application.

Index Terms—Performance analysis, Tracing, Software visualization,
Concurrency, Operating systems.

1 INTRODUCTION

P ERFORMANCE is a critical requirement for many appli-
cations. Long delays are among the main sources of user

frustration [1] and have a significant impact on revenue [2].
Despite that, it is often difficult for a single developer to
understand all the factors that influence the performance of
an application. This is mainly due to the multiple levels of
abstraction that are supposed to ease software development:
frameworks, operating systems and virtualization. Further-
more, diagnosing performance problems is hard because
they don’t necessarily trigger error conditions and often
can’t be easily reproduced.

Tracing is a technique that consists of recording events
during the execution of a system. Events have a timestamp,
a type and a payload. Tracing is well suited to analyze
performance problems. Popular tracers achieve low over-
head, which allows them to be enabled on production
systems to capture bugs that occur infrequently. Tracing

F. Doray (francois.pierre-doray@polymtl.ca) and M. Dagenais
(michel.dagenais@polymtl.ca) are with the Computer and Software
Engineering Department, Ecole Polytechnique de Montreal.
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provides detailed chronological information, unlike profil-
ing that only provides global statistics for a given time
range. A trace can, for example, reveal what happened on
the whole system during a long system call issued by a
process of interest. However, unless userspace applications
are carefully instrumented, it is hard to relate the low-level
events of a trace to the higher-level logic. Also, it is hard to
locate abnormal behavior in the overwhelming amount of
information contained in a trace, without deep knowledge
of the observed system.

Our objective was to build a tool that automatically
highlights differences between two sets of executions of
the same task. The comparison must take into account all
factors that have an impact on performance, including off-
CPU wait time and interferences between processes. Also, it
must relate any difference found with the relevant source
code, a requirement that is crucial to ease the diagnosis
and correction of problems [3]. Our tool should allow a
developer that doesn’t have a full knowledge of a system
to discover and fix performance variations caused by fac-
tors such as configuration changes, programming errors or
sporadic competition between tasks.

This paper introduces TraceCompare, a trace comparison
tool and underlying algorithms that achieve all these goals.
After reviewing relevant existing work, we describe a data
model to summarize performance characteristics of task
executions. We then explain how to record detailed multi-
level events during an execution and how to process them to
generate a database of executions based on our data model.
We introduce a GUI that facilitates the identification of dif-
ferences between groups of executions. We describe four real
performance problems found in enterprise and open-source
applications and explain how they were diagnosed using
TraceCompare. Finally, we measure the overhead incurred
by each component of our solution and show that it is low
enough for use on production systems.

2 RELATED WORK

2.1 Analyzing Execution Traces
Our group proposed using a state history to simplify and
accelerate the analysis of large traces [4]. A state history
is built incrementally while a trace is read. It keeps track
of various attributes such as the current running thread on
each CPU or the total number of bytes read from the disk
since the beginning of the trace. An efficient data structure

mailto:francois.pierre-doray@polymtl.ca
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has been designed to allow fast queries about the value
of an attribute at a given time within a state history that
exceeds the size of the main memory. TraceCompass1 relies
on this data structure for its interactive views. State histories
allow the computation of system metrics for any given time
interval in logarithmic time [5].

2.2 Extracting Task Executions from a Trace
Our group developed a critical path algorithm to efficiently
retrieve all execution segments that contribute to the latency
of a task [6]. It uses the sched_wakeup event of the Linux
kernel to identify dependencies between multiple threads
on the same host, and TCP packets matching to identify
dependencies between threads that span multiple hosts. The
analysis works well with any kind of application because it
requires no userspace instrumentation. While this tool indi-
cates in which threads time is spent, it does not relate this
information to userspace functions, which makes it difficult
to use for fixing application code. Also, the interactive view
shows only one execution at a time, which is impractical
to compare latency among a great number of executions.
Perfscope provides a heuristic to find userspace functions
associated with events from a kernel trace [7]. However, the
results are not always accurate.

A portion of the requests received by Google are traced
by Dapper [8]. The tool reconstructs the flow of individual
requests using events generated by the company’s commu-
nication libraries. Developers can access summary statistics
or inspect individual requests through a Web interface.
Filters help them find executions that contain abnormal
latencies. Dapper relies on the fact that all communications
go through a Google’s library and isn’t designed for hetero-
geneous environments.

2.3 Comparing Task Executions
The "Frames" mode of Chrome developer tools presents the
processing time of frames using bar charts [9]. Slow frames
are shown as tall bars. Colors within each bar indicate in
which states time was spent (JavaScript, rendering, GC...).
Developers can determine why a frame took more time
than others by comparing the distribution of time per state
between different frames. The scope of this tool is limited
to the browser. It doesn’t take into account interactions be-
tween processes. A similar view was developed to compare
the states in which real-time tasks spend their time from a
kernel point of view [10].

A differential flame graph is a visualization tool to com-
pare two CPU profiles [11]. It shows stack frames as super-
posed rectangles. The width of a rectangle is proportional
to the time spent in a stack frame within the second profile.
The color shows the difference between the time spent in
a stack frame in the two profiles. Because a profile only
provides total counts for a given period, this tool cannot
reveal the cause of infrequent latencies. Flame graphs have
been adapted to show different metrics, but they have never
presented all the work done on the critical path of a task.

Comparisons of CPU profiles have been used to diag-
nose performance variations between multiple versions of

1. http://projects.eclipse.org/projects/tools.tracecompass

the same application [12], evaluate the impact of configura-
tion changes [13] and assess the scalability on an application
with respect to the size of its input [14].

TraceDiff is a visualization tool to compare two function
call traces [15]. A function call trace contains an event for
every function entry and exit. TraceDiff displays two such
traces simultaneously as mirrored icicle plots. Correspond-
ing function calls are connected by hierarchical edge bun-
dles. This facilitates the identification of individual function
calls that didn’t take the same time or weren’t executed in
the same order in the two traces. However, it doesn’t al-
low simultaneous comparison of many executions to reveal
trends. Also, generating function call traces is costly. Other
researchers have developed a heuristic to get an approxi-
mate function call trace with low overhead [16]. Efficient
algorithms to compute the optimal alignment between two
function call traces have also been developed [17].

Comparison of system call traces recorded on different
operating systems has been used to detect intrusions [18].
Since some variations are inherent to the use of different op-
erating systems, the authors transform low-level events into
higher-level concepts to allow a meaningful comparison.
Their algorithm computes a correlation score for two traces,
but doesn’t show individual differences. Also, it doesn’t take
timing into account.

2.4 Statistical CPU Profiling

A statistical CPU profiler is a tool that can record the full call
stack of a program at regular intervals. This reveals which
functions use more CPU time, with minimal overhead.
While statistical profilers don’t provide the chronological
order of events, which is required to analyze interactions
between multiple tasks, some of these techniques could be
reused to get insight into the logic of userspace programs,
without requiring manual instrumentation.

The CPU profiler of Google Perftools is a dynamic li-
brary, to link with programs to analyze [19]. In its initializa-
tion phase, it registers a SIGPROF signal handler and starts
an ITIMER_PROF timer. The timer is decremented when-
ever a thread of the process consumes CPU time. When
a thread reaches the expiration of the timer, the SIGPROF
signal handler is invoked and captures the thread’s call
stack. Alternatively, perf leverages support from the Linux
operating system to profile program [20].

Capturing the call stack of a program, when compiled
with the frame pointer, is just a matter of following a linked
list formed by base pointers pushed on the stack. However,
in order to keep the ebp register available for computation,
GCC does not preserve the frame pointer for x86-64 binaries,
since version 4.6.02. The .eh_frame sections of these
Executable and Linkable Format (ELF) binaries provide
rules to restore the register values of the previous (oldest)
stack frame from any instruction [21]. A call stack can be
captured by applying these rules to retrieve the value of
the instruction pointer at each stack frame. The .eh_frame
section is present, even when debugging information is
stripped, because it is required to handle exceptions.

2. https://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/
Optimize-Options.html
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The libuwind library implements the logic to capture
call stacks using rules from the .eh_frame section. For
good performance, it recognizes stack frames that use a
standard layout, and caches that information to handle them
with an optimized algorithm when they are encountered
again [22]. Google Perftools relies on libunwind to cap-
ture call stacks online. Instead, perf records two pages of
memory and runs libunwind offline [23]. This reduces the
computation overhead, but leads to huge profile files.

A CPU profile can be represented using a calling context
tree (CCT); a data structure introduced by [24] and reused
by [3], [25]. In a CCT, each node represents a call stack. The
children of a node associated with a call stack C of size n are
associated with call stacks of size n+1 prefixed with C . The
root of the CCT represents the empty call stack. Each node
is annotated with the time spent in its associated call stack.
Unlike a call tree which contains a distinct node for each
individual function call, a CCT combines all calls associated
with the same call stack into a single node. A CCT does not
show interactions between different threads.

3 SOLUTION

In this section, we present the design and implementation
of TraceCompare. First, we describe a data model to store
performance characteristics of task executions in a database.
Second, we explain how to efficiently record the information
required to build this database through tracing. Third, we
explain algorithms used to build the database from traces.
Finally, we present the user interface that highlights dif-
ferences between groups of task executions. The general
architecture of the tool is summarized in Fig. 1.

Database

Trace

Trace

Comparison

ViewBuilder

Fig. 1. Architecture of TraceCompare

3.1 Data Model
We introduce a new data structure called enhanced calling
context tree (ECCT) to represent the performance character-
istics of task executions. An ECCT can describe any kind of
latency that occurs during a task execution as well as the
detailed context of each latency. Our database of executions
and the algorithms that power our GUI rely on this data
structure.

For executions that spend all their time on the CPU and
involve a single thread, the structure of the ECCT is identical
to that of a CCT. We annotate each node with the time spent
in the associated call stack during the analyzed execution.
Optionally, more annotations such as the number of page
faults or amount of memory allocated in the call stack can
be added.

For executions that contain off-CPU wait times or that
involve multiple threads (possibly distributed on multiple
hosts), the CCT is enhanced so that all factors that contribute

to the total time of an execution are taken into account.
First, for any off-CPU wait time, an artificial function named
after the wait reason (timer, block device, network, preemp-
tion...) is pushed on the stack. Second, whenever a thread
is waiting for another thread, the stack of the second thread
is concatenated to that of the first thread. This rule can be
applied recursively as many time as required when there is
a chain of dependencies between threads. The dependencies
can be either direct (a thread is waiting for another thread to
compute a result or perform an action) or indirect (a thread
is waiting for another thread to release a resource such a the
CPU or a mutex).

One might be concerned about the case where indirect
dependencies between two different task executions lead
to the concatenation of their ECCT. A safeguard could be
added to stop the recursion in such a case. However, in our
experience, it was rather useful to be able to see which parts
of an execution could block other executions. Programs that
use a limited number of worker threads have ECCTs of
reasonable size, even when a lot of requests are queued.

Fig. 2 shows the expected ECCT for a sample sequence
of events.

Time Thread 1 Thread 2
1 Call A
2 Call B
3

Wait thread 2

Call X
4 Return X
5 Call X
6 Wait block device
7 Return X
8 Return B
9 Call X
10 Return X
11 Return A

A
t = 11− 1 = 10

B
t = 8 − 2 = 6

T
t = 8 − 3 = 5

X
t = (4 − 3) +
(7 − 5) = 3

B
t = 7 − 6 = 1

X
t = 10− 9 = 1

(Wait thread 2)

(Wait block device)

Fig. 2. ECCT for a Sample Sequence of Events

3.2 Tracing Task Executions
We now describe the techniques used to gather the informa-
tion required to build the data model that we just described.
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The Linux Trace Toolkit Next Generation (LTTng)3 tracer
can record events from the Linux kernel and from userspace
applications into a single trace [26]. It is also designed to
have a minimal overhead on traced systems. It is therefore
well suited to our goal of collecting all the factors that
contribute to the execution time of tasks in production
environment.

3.2.1 Execution Delimiters Events
A single trace usually contains events belonging to multiple
executions that occured in series or in parallel. To allow a
comparison between different executions, it is necessary to
demultiplex these events. To do so, the trace must provide
a way to identify the start and end points of each execution.
Sometimes, existing events of the Linux kernel can be used
for this purpose. For example, the syscall_exit_accept
event (generated when a connection is accepted on a
socket) and the syscall_entry_shutdown event (gen-
erated when a connection is closed) correctly delimit re-
quests received by an Apache server. An advantage of
using existing events is that no access to the source code
is required. When no existing events can act as delimiters,
LTTng-UST probes must be inserted statically in the source
code. Different probe types can be used to delimit different
execution types. That way, our analysis tool is able to tag
executions when they are inserted in the database so that
the GUI only allows comparison of executions of the same
type.

3.2.2 Critical Path Events
When an execution involves a single thread running 100%
of the time on a CPU, it is trivial to retrieve its events
from the trace: we simply look for events between the
start and end points on the execution’s thread. However,
in parallel systems, most executions require collaboration
between multiple threads. TraceCompare relies on the crit-
ical path algorithm proposed by our group and introduced
in section 2.2 to find all thread segments that contribute to
the total time of an execution. This algorithm requires a few
events of the Linux kernel to work properly.

The sched_switch event indicates that a new thread
starts running on a CPU. Its payload gives the tid of
the new thread and tells whether the previous thread
was preempted or blocked. The sched_wakeup events
is emitted when a blocked thread becomes ready to
run. The reason why the thread was blocked can be
deduced from the context in which the sched_wakeup
event is emitted. For example, if the event is emitted
from a block device related interrupt, it means that
the waked up thread was waiting for a block device
request. The irq_handler_entry, irq_handler_exit,
hrtimer_expire_entry, hrtimer_expire_exit,
softirq_entry and softirq_exit events allow
to keep track of interrupts handled on each CPU in
order to correctly interpret sched_wakeup events. The
inet_sock_local_in and inet_sock_local_out
events provide the sequence number and flags of TCP
packets. Using these fields, incoming and outgoing packets
can be matched to uncover dependencies between threads
that communicate through TCP.

3. https://lttng.org

3.2.3 Call Stacks Events
TraceCompare must make it easy to relate performance
variations, between multiple executions of the same task,
to erroneous logic in userspace applications. LTTng allows
developers to insert custom tracepoints in their code to
correlate kernel events with the logic of userspace appli-
cations. This is, however, not suited to the requirements
of TraceCompare. Indeed, we want to build a solution that
developers can use on systems that they don’t fully under-
stand. Requiring to create tracepoints would represent a ma-
jor maintenance burden and developers would inevitably
forget to instrument important parts of their applications.
Requiring instrumentation of third-party libraries would be
even harder.

TraceCompare gets insight into userspace applications
without any manual instrumentation by capturing their call
stack in two different contexts. The first context in which
the stack is captured is at the expiration of a timer that is
decremented when a thread is running, a technique already
used by statistical profilers. However, that doesn’t provide
information about call stacks that block the thread. An
interesting observation is that most blockings occur within
system calls. For example, a thread can block while it waits
for a mutex to be available (futex()) or for data to be read
from a file (read()). Therefore, also capturing the call stack
on system calls gives a complete portrait of the contexts in
which a thread spends its time.

Statistical CPU profilers can keep track of the number
of captured samples per call stack using an hash table. This
is sufficient to generate summary statistics for the full ana-
lyzed period. However, our goal is to provide per-execution
statistics and we don’t know beforehand to which execution
a thread segment belongs to. Furthermore, during our of-
fline analysis, we need to be able to correlate kernel events
to userspace stacks and to combine multiple userspace
stacks occuring simultaneously on different threads. For that
reason, a timestamped LTTng-UST event is emitted every
time a stack is captured. Stacks captured while userspace
code is running produce a cpu_stack event while stacks
captured during system calls produce a syscall_stack
event.

To get the stacks of a process captured, the
lttng-profile dynamic library must be preloaded into it.
The library uses the same technique as Google Perftools to
generate a SIGPROF signal at regular intervals, from which
cpu_stack events are generated.

The SIGPROF signal must also be sent to capture the
userspace stacks associated with system calls. Unfortu-
nately, experimentations show that handling a signal can
take longer than the duration of some fast system calls.
Therefore, sending a signal and capturing the stack for each
system call can add a prohibitive overhead to programs
making a lot of short system calls. The problem is that,
unlike statistical CPU profiling, which generates a fixed
number of events per time unit and per thread, the over-
head of this instrumentation is proportional to the number
of system calls. To solve that, we decided to capture the
userspace stack only for system calls with a duration above
a threshold. This effectively sets a reasonable upper limit
on the rate of events generated by each thread. Because
performance is generally not affected by very short system

https://lttng.org


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2015 5

calls, this doesn’t undermine the accuracy of our analysis.
We found that a 100 µs threshold was a good compromise
between precision of the analysis and low overhead.

The duration of system calls is tracked by a kernel
module. When it is loaded, the lttng-profile library
registers the process with the kernel module through an
ioctl interface. The kernel module uses the TRACE_EVENT
mecanism [27] to register callbacks that are executed at
the entry and exit of system calls. On system call entry,
the kernel module checks whether the issuing process is
registered. If so, the current timestamp is saved in a read-
copy update (RCU) hash table with the source thread id as
the key. On system call exit, the duration of the system call
is computed, if the start time is available in the hash table.
If the duration is higher than a threshold, a SIGPROF signal
is sent to the source thread. lttng-profile catches the
signal and captures the call stack, as soon as the control
goes back to userspace.

The first time that a thread does a system call, an entry
is added to the hash table and it is reused until the thread
exits. Therefore, most of the time, tracking the duration of a
system call simply requires one update and one lookup in
the hash table, two very efficient operations.

Our SIGPROF signal handler uses libunwind to cap-
ture call stacks. This library is the state of the art to capture
call stacks when the frame pointer is absent. We contributed
two important optimizations to libunwind in order to
accelerate the backtrace operation even more. First, we
removed system calls that blocked signals while shared data
structures were accessed. This was necessary to guarantee
the reentrancy of libunwind. However, since we always
invoke the library within SIGPROF signal handlers, and
since Linux doesn’t allow nested signals of the same type,
it is valid to remove that protection in our case. Second, we
replaced a loop that restored the value of all registers by
more efficient code that restores only the registers that are
really needed.

The call stack events generated by our library contain
sequences of addresses, instead or human-readable function
prototypes. This reduces the tracing overhead and the size of
the trace. However, for analysis purposes, full symbols are
required. Therefore, we record events that provide the base
address of dynamic libraries. Those allow us to transform
captured addresses into library offsets. Then, we parse ELF
binaries offline, to retrieve function prototypes.

3.3 Building a Task Executions Database
We described how the data required by our analysis can be
collected through tracing. We now explain how to process
this data to build a database of task executions. The ECCT
data structure introduced in section 3.1 is used to represent
the performance characteristics of each task execution in the
database.

The TraceCompare builder reads the events of a trace in
chronological order. When it encounters an event associated
with the beginning of an execution, the current timestamp
and current thread are saved in a list of pending executions.
Then, when the event marking the end of the execution is
encountered, the following steps are performed:

1) Compute the critical path of the execution.

2) Generate an ECCT for the execution.
3) Compute global execution metrics.
4) Insert the execution’s ECCT and metrics in a

database.

3.3.1 Critical Path
TraceCompare computes the critical path of an execu-
tion using the algorithm proposed by our group. The
inputs of the algorithm are start and end points, both
(thread id, timestamp) pairs, and a graph of dependencies
between threads. The output is a list of segments belonging
to the critical path of the execution, each characterized by
a thread id, a thread status, a start timestamp and an end
timestamp. The thread status takes one of the following val-
ues: running, preempted, interrupted, waiting for another
thread or waiting for the operating system (block device,
network, timer or user input).

The graph of dependencies between threads is built
incrementally while the trace is read. Only nodes generated
by events that occured during an execution are required
to compute its critical path. Therefore, the critical path of
an execution can be computed as soon as its end event is
encountered (before the full trace has been read).

3.3.2 ECCT
The next step of the analysis is to generate the ECCT of the
execution from the stacks that appear on each segment of
its critical path. Backtracking to reread events of the trace,
every time the end of an execution is encountered, would
be highly inefficient. Instead of that, we generate a state
history while we read the trace. Efficient State History Trees
were proposed by our group and described in section 2.2.
Using them for comparison of executions is an original
contribution. When the time comes to generate the ECCT
of an execution, the required information is obtained by
querying the state history. The evolution of the following
attributes is tracked in our state history:

• threads/[tid]/cpu: The CPU on which the
thread tid is running.

• threads/[tid]/stack: The call stack of the
thread tid.

• cpus/[cpuid]/thread: The thread running on the
CPU cpuid.

• blockdevice/threads: Threads waiting for a
block device.

The algorithm presented in Fig. 3 generates the ECCT of
an execution from its critical path and a state history.

3.3.3 Execution Metrics
It is convenient to be able to filter executions based on
a wide range of metrics when performing a comparison.
For example, we might want to compare executions that
generated a lot of page faults against those that generated
a few, or executions that allocated a lot of memory against
those that allocated a few.

Depending on the events that are present in the source
trace, we can keep track of the evolution of different metrics
in the state history. Then, when we process an execution,
we compute metrics for each segment of its critical path.
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Input: critical path C, state history H , stack of threads T , ECCT E
. T and E are empty in the first recursive call to this function.

1: for all e ∈ C do
2: UPDATETHREADSTACK(H , T , e.tid, e.start)
3: if e.status = running then
4: stacks← Query H for stacks of thread tid in

time range [e.start, e.end].
5: for all s ∈ stacks do
6: if T.SIZE > 2 then
7: s.val← CONCATENATE( T [−2].stack, thread, s.val)
8: end if
9: E.INSERT(s.val, s.duration)

10: end for
11: else if e.status = preempted then
12: cpuId← Query H for CPU of thread tid at time e.start.
13: threads← Query H for threads running on CPU cpuId in

time range [e.start, e.end].
14: for all t ∈ threads do
15: epreempt ← (t.val, running, t.start, t.end)
16: GENERATEECCT({epreempt}, H , T , E)
17: end for
18: else if e.status = blockdevice then
19: threads← Query H for threads using a block device in

time range [e.start, e.end].
20: for all t ∈ threads do
21: s← Query H for stack of thread t.val at time t.start.
22: s← CONCATENATE(T [−1].stack, block device, s)
23: E.INSERT(s, e.duration/threads.size)
24: end for
25: else
26: s← CONCATENATE(T [−1].stack, e.status)
27: E.INSERT(s, e.duration)
28: end if
29: UPDATETHREADSTACK(H , T , e.tid, e.end)
30: end for

Fig. 3. Function GENERATEECCT Generates the ECCT of an execution.

Input: state history H , stack of threads T , tid, ts
1: for i← 0 to T.SIZE − 1 do
2: if T [i].tid = tid then
3: T.RESIZE(i)
4: end if
5: end for
6: s← Query H for stack of thread tid at time ts.
7: if T.SIZE > 0 then
8: s.val← CONCATENATE(threads[−1].stack, thread, s.val)
9: end if

10: T.PUSH((tid, s.val))

Fig. 4. Function UPDATETHREADSTACK: Puts the enhanced stack of a
thread at the top of a stack of threads.

The values of each segment are then combined into a global
metric, on which filters can be applied in our comparison
view.

3.3.4 Database

Once the ECCT and the global metrics of an execution have
been computed, they are added to the executions database.
An interesting observation is that there is no need to dupli-
cate the structure of the ECCT for each execution. A generic
ECCT can be formed by the union of all the other ECCTs. Its
structure along with the function prototype of each node are
stored once in the database. Each execution record can then
refer to the nodes of the generic ECCT to specify metrics.
Because the ECCTs issued from different executions of the
same task normally have a similar structure, this original
technique greatly reduces the size of the database.

3.3.5 Garbage collection
Two data structures are built incrementally while the trace
is read: a graph of dependencies between threads and a
state history tree. The size of both these data structures is
proportional to the number of events read. For huge traces,
storage of all this data might be a concern. Fortunately, the
nodes added to the graph of dependencies, before the first
event of an execution is read, are not needed to compute
its critical path. Similarly, the intervals of the state history
tree, that end before the begininnig of an execution, are not
needed to compute its ECCT or global metrics. Therefore,
whenever the available memory is getting low, it is possible
to discard the parts of the data structures that won’t be
needed to process the pending executions. In addition to
reducing memory usage, this strategy improves the time
complexity of queries in both data structures. They become
logarithmic with respect to the average size of an execution,
instead of logarithmic with respect to the size of the ana-
lyzed trace.

3.4 Comparing Task Executions
The database of executions is used to populate a web-based
view that allows interactive comparisons between groups of
executions. The view is divided in three parts: the filters,
the flame graph and the list of executions. An obvious
benefit of providing a web-based view is that it facilitates
collaboration. Anybody can easily share a link to its findings
in a bug report, to help others fix the problem quickly. This
is much more convenient than sharing huge trace files, let
alone asking others to reproduce a complex bug themselves.

3.4.1 Filters
The aim of the filters is to allow the user to define two
groups of executions to compare. They are presented as
two columns of histograms. Each column is associated with
a group of executions and each row is associated with a
metric. Hence, each histogram shows the distribution of
a metric within a given group. Initially, both columns are
identical because all executions are included in both groups.

To filter the executions of a group, the user selects a
region on an histogram 4. For example, in Fig. 5, the left
group contains executions with a total duration under 20
ms while the right group contains executions with a total
duration above 50 ms. It is possible to set as many filters as
desired.

Whenever a filter is added to a metric, the histograms
of the other metrics are updated to only take into account
the executions that belong to their group. This can reveal
interesting correlations between metrics. For example, Fig. 5
shows a case where the CPU time of an execution is not
correlated with its total duration, but is correlated with the
number of bytes read from the disk.

3.4.2 Flame Graph
Differential flame graphs were introduced in section 2.3 as
a way to compare two CPU profiles. The second part of
our comparion view reuses this visualization tool, but with
some adaptations.

4. The implementation is inspired from http://square.github.io/
crossfilter/.

http://square.github.io/crossfilter/
http://square.github.io/crossfilter/


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH 2015 7

Total Duration (µs)

Running Duration (µs)

Data Read from Disk (bytes)

Fig. 5. Comparison Filters

First, our differential flame graphs are built from ECCTs
instead of from CPU profiles. Fig. 6 shows that they can
reveal latencies caused by chains of blocked threads and
long disk requests. This is impossible with a simple CPU
profile.

Second, our differential flame graphs are used to com-
pare two groups of executions instead of two individual
executions. The width of a box is proportional to the mean
time spent in a calling context for executions of the right
group. The hue of a box is computed from the number of
standard deviations between mean times spent in a calling
context in the two compared groups. This technique pre-
vents colors to be applied to boxes in the presence of normal
variations, which is a limitation of the original differential
flame graphs.

Our differential flame graph is dynamically updated
when filters are applied in the top part of the view.

main

HandleRequest(int)

FunctionA() FunctionB()

FunctionC()

FunctionD()

[wait thread]

OtherThread()

sys:read

[wait disk]Transition between

threads

Fig. 6. Differential Flame Graph

3.4.3 List of executions

The bottom of the view presents two tables with the source
trace and timestamp of a few executions sampled from the
two compared groups. This data enables the user to find ex-
ecutions of interest in another viewer such as TraceCompass
to analyze the precise ordering of events.

3.4.4 Filtering algorithm

TraceCompare uses a map-reduce algorithm to update his-
tograms when filters are modified. "Map" functions are
applied to all executions that are either added to or removed
from a group following a filter modification. The functions

determine in which bucket, of each histogram, affected exe-
cutions belong. "Reduce" functions compute the new value
of each histogram bucket.

A sorted index is kept for all metrics on which filters can
be applied. Also, a filter is always specified as a range of
accepted values for a given metric. Therefore, to update a
filter, we simply find the first affected execution in the index
and we traverse subsequent executions until we find the last
affected one. This operation is performed in O(logN +M)
time, where N is the total number of executions and M the
number of affected executions.

The user updates filters by dragging a handle on a
histogram. Therefore, M is typically small at each mouse
event and the views are updated quickly. The update takes
a little bit more time when a lot of executions have a similar
value for the filtered metric and are affected simultaneously.
To keep the views responsive in that case, we could precom-
pute the result of the reduction for segments of fixed size on
each dimension.

TraceCompare uses the Crossfilter5 implementation of
this map-reduce algorithm. The algorithm has already been
used to analyze multi-dimensional data sets of payment,
meteorological and transportation data, but never to com-
pare software performance metrics.

4 CASE STUDIES

This section presents four performance problems, encoun-
tered in real applications, along with a description of how
TraceCompare can diagnose them. The first two case studies
were made on test applications that we built to closely
reproduce problems found in enterprise software. The two
subsequent case studies show how TraceCompare was used
to find real performance problems in MongoDB6, an open-
source database software.

4.1 CPU Contention in a Real-Time Application

4.1.1 Problem Summary
A realtime task is scheduled to be executed at a frequency
of 100 Hz. Another task of higher priority (set with nice)
is scheduled to be executed at a frequency of 30 Hz on the
same CPU. At regular interval, the deadline of the second
task occurs while the first task is running, increasing its
execution time. Unfortunately, the developers are not aware
of the existence of the second task.

4.1.2 Diagnosis
TraceCompare was used to compare slow executions of
the first task against fast ones. The flame graph, partially
reproduced in Fig. 7, immediatly revealed that the first task
was preempted by the second during the slow executions.
More interestingly, it showed call stacks from the second
task. With these call stacks, it was clear where to look in
the code to fix the problem. Without call stack events, the
analysis tool could only have shown the name of the task
that stole the CPU from the first task. Since threads are
named after their parent, unless efforts are made to give

5. https://github.com/square/crossfilter
6. https://www.mongodb.org

https://github.com/square/crossfilter
https://www.mongodb.org
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them meaningful names, further investigation would have
been needed to find out what was the purpose of the second
task.

[thread]

[wait cpu]

[thread]

start_thread

ImportantWork()start_thread

AnnoyingWork()Stack of

second task

(preempting) Stack of

first task

(preempted)Preemption

{
{ }...

...

Fig. 7. Differential Flame Graph Showing CPU Contention in a Real-
Time Application

The histogram showing the "timestamp" metric of slow
executions also provides useful information: it reveals that
the problem is occurring at regular intervals.

4.2 Disk Contention in a Server Application
4.2.1 Problem Summary
A server has to read data from the disk to fulfill requests.
At regular intervals, a request is about 5 times slower than
usual.

4.2.2 Diagnosis
TraceCompare revealed that the additional latency found
in the slow requests came from abnormaly long read()
system calls. With a tool whose scope is limited to a single
process, it would have been hard to pursue the analysis
further. Fortunately, TraceCompare was able to leverage
the information from a trace of the whole system to show
precisely which other threads used the disk during these
long system calls and what were their call stacks.

TraceCompare highlighted a single thread that always
used the disk during the slow executions, but never dur-
ing the fast executions. That thread was performing an
fsync() system call after having written to a log file. With
this information, fixing the problem was straightforward.

4.3 Lock Contention in MongoDB
4.3.1 Problem Summary
A client application generates data and inserts it into a
MongoDB database (version 2.5.4). Most of the time, the
whole operation takes around 10 ms. However, a fraction
of the time, the operation takes more than 100 ms. Data is
generated at less than 1 MB/s.

4.3.2 Diagnosis
The database insertions were performed serially, so it was
unlikely that the performance variation was due to CPU or
lock contention. Also, the MongoDB’s documentation states
that insert operations don’t wait for data to be committed
on disk before returning (a dedicated command is available
to wait for that). Therefore, we didn’t expect disk latency to
affect the performance of our application. Note that if our
application had produced data at a higher rate, it would
have been understandable that MongoDB throttled new
insertions to flush its memory buffers.

The differential flame graph of TraceCompare, partially
reproduced in Fig. 8, revealed that slow executions had

waited for a mutex protecting access to a list of pending
changes. During these wait times, the mutex was held by a
journalization thread. This information alone doesn’t lead to
an obvious fix and could have been found by lock analysis
with a tool such as Intel® VTune™7. However, TraceCom-
pare sets itself apart from other tools by also revealing a
function running on the journalization thread for almost all
of the wait time. We analyzed the code of this function and
discovered that it was not using the list protected by the
mutex. Therefore, we wrote a simple patch to release the
mutex before calling the costly function. We verified that the
patch correctly fixed the serious performance problem that
we had uncovered and we submitted it to the MongoDB
developers. All this was done without any prior knowledge
of the MongoDB codebase.

main

InsertInDatabase(BSONObjBuilder&, DBClientConnect..

mongo::DBClientBase::insert(std::string const&, BSONObj, int..

mongo::Socket::_recv(char*, int)

sys:recvfrom

[thread]

mongo::PortMessageServer::handleIncomingMsg(void*)

mongo::dur::ThreadLocalIntents::unspool()

__pthread_mutex_lock

sys:futex

[thread]

mongo::dur::WRITETOJOURNAL(dur::JSectHeader, Ali..

sys:fdatasync

[wait disk]

...

...

...

...

...

}
}
}
}
}
}

Client app.

MongoDB's

client library.

Network

dependency.

MongoDB's

request thread.

Mutex

dependency.

Slow operation

that shouldn't

require the

mutex.

Fig. 8. Differential Flame Graph Showing a Lock Contention in MongoDB

This diagnosis was made with an unmodified MongoDB
binary. We only inserted probes in our client application
to delimit the task to analyze. To track the latency, from
our client application to the journalization thread of Mon-
goDB, TraceCompare had to match TCP packets exchanged
between both applications, and to analyze wake-up events
within the Linux kernel.

4.4 Sleep in MongoDB
4.4.1 Problem Summary
Batch insert commands are sent to a MongoDB server (ver-
sion 3.0.0 rc 10, WiredTiger storage engine). The commands
are run in less than 700 µs most of the time. However, about
1 in 10 000 commands takes between 3 and 5 seconds to
complete.

4.4.2 Diagnosis
TraceCompare made it easy to compare a group of fast exe-
cutions against a group of slow executions. The comparison
revealed that there was in fact two distinct sources of latency
in our test scenario. Some executions were waiting for the

7. https://software.intel.com/intel-vtune-amplifier-xe

https://software.intel.com/intel-vtune-amplifier-xe
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disk within pwrite64() system calls while other were
blocked by a timer. Since disk contention can be expected
when a lot of data is inserted in a database, we decided to
create a second filter to focus on the more suspicious timer
contention.

The flame graph showed that the timer contention was
caused by a sleep within a function responsible to obtain
a hazard pointer to a page of data. We located the sleep
call in the source code. It was accompagnied by a comment
explaining that if another thread was trying to evict the page
from the cache at the same time, it was necessary to wait a
while before retrying to obtain the pointer.

TraceCompare didn’t show any dependant work being
done during the long sleeps. In fact, we were able to confirm
that both the CPU and disk activity were very low during
the sleeps, by using the information provided in the tables
at the bottom of the view to locate the slow executions in
another trace analysis tool. At that point, we were confident
that we had found a synchronization bug in MongoDB,
along with a precise diagnostic.

Despite the fact that the sleeps caused huge delays,
they didn’t account for a significant proportion of the trace.
They wouldn’t have caught our attention if we had used
a profiler, which only shows global statistics. Having the
ability to create groups of executions using multiple custom
filters was a key feature to diagnose this problem. Also,
having a trace of timestamped events allowed us to obtain
resource usage statistics for specific time ranges.

5 PERFORMANCE ANALYSIS

We conducted experiments to evaluate the tracing overhead
of our solution as well as the time required to analyze a
trace in order to build a database of executions. It is crucial
to be able to record all the events required by TraceCompare
with low overhead. Indeed, it is unlikely that our solution
would be used on production systems if it decreased perfor-
mance noticeably. Rare bugs that occur under very specific
conditions would therefore be out of its reach. Also, having
a low overhead ensures that the behavior captured in the
trace is similar to that of the uninstrumented system. On the
other hand, a fast analysis time helps system administrators
respond to problems quickly.

5.1 Environment
All experiments were run on a computer with a quad-core
Intel® Core™ i7-3770 CPU running at 3.4 GHz, 16 GB of
DDR3 memory and a 7200 RPM hard drive. The frequency
scaling governor of the CPU was set to “performance” to
ensure that it always runs at its maximum frequency. The
Linux kernel version was 3.13.0-49 while the LTTng version
was 2.6.0.

5.2 Cost of Tracing
We wanted to measure the overhead incurred by each step
of the generation of our new syscall_stack event. To
do so, we first created a microbenchmark that invokes the
getpid() system call 100 million times and we timed its
completion time when different parts of our kernel mod-
ule were enabled. We repeated each experiment 20 times

and always got a standard deviation of less than 0.5%.
The getpid() system call was chosen because of the low
variability of its duration.

Registering empty probes to tracepoints located at the
entry and exit of system calls incurs a cost of 96 ns per
system call. This is because the Linux kernel has to go
through a slow path whenever there are probes registered
to system call tracepoints. Adding our code to detect long
system calls in the probes brings an additionnal cost of 42 ns.
These costs apply to all system calls, even those that turn
out to be faster than the threshold for long system calls.
When a long system call is detected, a signal is sent to
the application so that it captures its call stack. Sending the
signal and executing an empty signal handler takes 1.2 µs.

Next, we microbenchmarked the operations executed
within the signal handler. We used microbenchmarks that
repeat the measured operation 100 million times. We re-
peated each experiment 20 times and always got a standard
deviation of less than 2%.

The total time to unwind the stack depends on the
number of frames currently on the stack. If it’s the first time
that a stack frame is encountered, it takes 326 ns to process it.
This is 20% faster than without our custom optimizations.
Because decoded unwinding rules are cached, subsequent
processing of the same stack frame takes only 7 ns. There
is also a base cost between 30 ns and 700 ns, depending on
whether all stack frames are handled by cached rules. Once
a stack has been captured, it is written in an LTTng buffer,
an operation that requires 175 ns.

cpu_stack events are generated from a signal sent at
the expiration of a timer. Enabling the timer has a negligible
overhead. The execution of the signal handler takes the
same time as for syscall_stack events.

Finally, we wanted to determine how our instrumenta-
tion affects typical applications. Table 1 shows the time re-
quired to run 4 programs under different tracing scenarios.
The overhead in percentage is reported in Table 2. Each test
case was run 100 times.

The "Traditional tracing of system calls" scenario is a
baseline to compare with the "Tracing stack events" scenario.
Indeed, our custom syscall_stack event reveals long
system calls with a significatively lower cost than the tra-
ditionnal system call events. TraceCompare requires a trace
recorded under the "Tracing stack and critical path events"
scenario.

prime is an application that computes a list of prime
numbers up to 10 000. It does no system calls, so the
overhead is mostly due to the statistical CPU profiling.
babeltrace is a single-threaded program that reads CTF
traces. It does a lot of system calls to open trace files and
output results, but few of them are long enough to trigger
the generation of a stack event. The 1% overhead is mostly
due to the kernel module tracking the duration of each
system call. find is a command-line tool that searches files
recursively in the file system. It spends most of its time
blocked on block device requests. Each request generates
interrupts and context switches, which contribute to the 5%
overhead of tracing critical path events. mongod is an open-
source database server. It was tested using the client ap-
plication presented in section 4.3. The interactions between
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TABLE 1
Execution Time of Test Programs (in seconds)

prime babeltrace find mongod
Mean Dev. Mean Dev. Mean Dev. Mean Dev.

Base 9.11 0.00 17.57 0.17 14.39 0.18 9.91 0.28
Traditionnal tracing of system calls 9.11 0.00 17.81 0.14 14.99 0.28 10.72 0.06

Tracing stack events 9.12 0.00 17.74 0.15 14.67 0.35 10.09 0.20
Tracing stack and critical path events 9.13 0.00 17.76 0.15 15.08 0.30 10.76 0.05

TABLE 2
Overhead of Tracing

Overhead (%)
prime babeltrace find mongod

Traditionnal tracing of system calls 0.0 1.4 4.1 8.2
Tracing stack events 0.1 1.0 1.9 1.8

Tracing stack and critical path events 0.2 1.1 4.8 8.6

multiple threads through synchronization primitives and
TCP packets explain the 9% overhead.

5.3 Cost of the Analysis
The time required to build the database of executions for
each of the case studies presented earlier is reported in
Table 3. This metric is correlated with the size of the trace
rather than its duration. It is always less than 3 times the
time required to read the trace with babeltrace8 (a tool
that just decodes the events of a trace).

The table also shows that the size of the generated
database is on average 10% of the size of the source trace.
Yet, it contained enough information to perform the precise
diagnosis that we presented earlier. By keeping a database
of executions rather than voluminous traces, system ad-
ministrators could save storage space without sacrificing
the convenience of being able to analyze the behavior of
a system over a long period of time.

TABLE 3
Cost of the Analysis

Trace Database
Recording Time Size (MB) Build Time Size (MB)

4.1 13 min 26 s 52 17 s 7
4.2 22 min 42 s 86 20 s 7
4.3 2 min 38 s 31 7 s 3
4.4 5 min 11 s 129 32 s 13

6 FUTURE WORK

Our comparison tool has hard-coded rules to identify la-
tencies caused by dependencies between threads, (provided
that they use OS level synchronization), or by CPU or disk
contention. Its scope could be widened by adding logic to
account for GPU contention, CPU contention across virtual
machines, or userspace synchronization through standard
libraries. It is however impossible to handle out of the box
the specificities of each application (e.g. custom task queues,

8. http://git.efficios.com/?p=babeltrace.git

custom IPC through shared memory). The declarative lan-
guage used for trace analysis in [28] could be extended to
allow the expression of these specificities.

We used TraceCompare to analyze performance regres-
sions between multiple versions of the same program. Re-
named functions can easily be dealt with by allowing the
user to provide a file, mapping old function names to new
names. However, the biggest challenge comes from major
code refactoring, during which functions can be splitted or
merged. Static analysis techniques exist to identify cloned
syntactic blocks between multiple source files [29]. Tech-
niques also exist to retrieve a mixed stack of function calls
and syntactic blocks for a thread [30]. These techniques
could be combined to allow a meaningful comparison be-
tween traces recorded on different versions of the same
program, even after a major refactoring.

Our userspace tracing library can only capture the stack
for ELF binaries. It should be extended to properly handle
programs written in a dynamic language and JIT compiled.

It would also be useful to allow userspace processes to
associate metrics with the current execution (e.g. number
of returned results). Filters on these metrics could then be
used to specify the execution groups to compare with more
granularity.

7 CONCLUSION

In this paper, we presented a new tool that facilitates the
detection and diagnosis of performance variations between
multiple executions of the same task. A novel technique
was proposed to capture the userspace stack of programs at
key moments. The stacks were recorded along with kernel
events using the LTTng tracer. We showed how to combine
all these events to generate a database of ECCTs, a new data
structure to describe latency that occurs at multiple levels
during task executions. Then, we introduced an intuitive
GUI that allows a user to specify groups of executions, using
custom filters, in order to visualize their differences. An
efficient map-reduce algorithm makes the views responsive,
and userspace stacks make it easy to find the source code
associated with identified differences. We detailed how our
tool was able to discover performance bugs commonly

http://git.efficios.com/?p=babeltrace.git
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found in enterprise software and in MongoDB, a popular
open-source software. Finally, we showed that the overhead
of tracing the events, required by our comparison analysis,
is always under 9%, which means that our solution can be
used on production systems.
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