
Titre:
Title:

A framework to compute statistics of system parameters from very
large trace files

Auteurs:
Authors: Naser Ezzati-Jivan et Michel R. Dagenais

Date: 2013

Type: Article de revue / Journal article

Référence:
Citation:

Ezzati-Jivan, N. & Dagenais, M. R. (2013). A framework to compute statistics of
system parameters from very large trace files. ACM SIGOPS Operating Systems
Review, 47(1), p. 43-54. doi:10.1145/2433140.2433151

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/2954/

Version: Version finale avant publication / Accepted version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title: ACM SIGOPS Operating Systems Review (vol. 47, no 1)

Maison d’édition:
Publisher: ACM

URL officiel:
Official URL: https://doi.org/10.1145/2433140.2433151

Mention légale:
Legal notice:

© 2013. This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in ACM
SIGOPS Operating Systems Review, https://doi.org/10.1145/2433140.2433151."

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213621803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2433140.2433151
https://publications.polymtl.ca/2954/
https://doi.org/10.1145/2433140.2433151
https://doi.org/10.1145/2433140.2433151
http://publications.polymtl.ca/

A FRAMEWORK TO COMPUTE STATISTICS OF SYSTEM PARAMETERS FROM VERY
LARGE TRACE FILES

Naser Ezzati-Jivan

n.ezzati@polymtl.ca

Michel R. Dagenais

michel.dagenais@polymtl.ca

Department of Computer and Software Engineering
Ecole Polytechnique de Montreal

Montreal, Canada

ABSTRACT

In this paper, we present a framework to compute, store and
retrieve statistics of various system metrics from large traces
in an efficient way. The proposed framework allows for rapid
interactive queries about system metrics values for any given
time interval. In the proposed framework, efficient data struc-
tures and algorithms are designed to achieve a reasonable query
time while utilizing less disk space. A parameter termed gran-
ularity degree (GD) is defined to determine the threshold of
how often it is required to store the precomputed statistics on
disk. The solution supports the hierarchy of system resources
and also different granularities of time ranges. We explain the
architecture of the framework and show how it can be used
to efficiently compute and extract the CPU usage and other
system metrics. The importance of the framework and its dif-
ferent applications are shown and evaluated in this paper.

Index Terms— trace, statistics, system metrics, trace ab-
straction, Linux kernel

1. INTRODUCTION AND PROBLEM STATEMENT

The use of execution traces is increasing among system ad-
ministrators and analysts to recognize and detect problems
that are difficult to reproduce. In a real system, containing
a large number of running processes, cores and memory mod-
ules, when a runtime problem occurs(e.g. a performance degra-
dation), it may be difficult to detect the problem and discover
its root causes. In such a case, by instrumenting the operat-
ing system and applications, tracer tools can provide valuable
clues for diagnosing these failures.

Although trace information provides specifics on the sys-
tem’s runtime behavior, its size can quickly grow to a large
number of events, which makes analysis difficult. Thus, to
facilitate analysis, the size of large traces must somehow be
reduced, and high level behavior representation must be ex-
tracted. Trace abstraction techniques [1, 2, 3] are used to re-
duce the size of large traces by combining and replacing the

raw trace events with high level compound events. By us-
ing trace abstraction, it is possible to create a hierarchy of
high level events, in which the highest level reveals general
behaviors, whereas the lowest level reveals more detailed in-
formation. The highest level can start with the statistics view.
This statistics view can be used to generate measurements of
various system metrics, and create the general overview of
a system execution in the form of histograms or aggregated
counts. It is also possible to use other mechanisms (e.g. navi-
gation and linking) to focus on a selected area, go deeper, and
obtain more details and information.

Statistics play a significant role in every field of system
analysis, especially in fault and attack detections. The overview
of different system parameters, such as the CPU load, num-
ber of interrupts, IO throughput, failed and successful net-
work connections, and number of attack attempts can be used
in various applications that range from optimization, resource
utilization, bottleneck, fault and attack detection to even bench-
marking and system comparisons. In short, inspecting the
statistics of several system metrics may be used in the earlier
steps of any trace based system analysis.

Since the statistics computation may be used interactively
and frequently for large traces, it is worth having efficient data
structures and algorithms to compute system metrics statistics
and parameters. These data structures and algorithms must
be optimized in terms of construction time, access time and
required storage space.

The simplistic solution for providing the required statis-
tics is to take a trace, read the events of the given interval,
and compute the desired statistics. However, it is not recom-
mended to have the trace events read each time, especially
when the trace size is large, as reading trace events of large
intervals is inefficient, and may waste valuable analysis time.
The problem of statistics computation in general faces two
main challenges: first, the difficulty of efficiently computing
the system metrics statistics without having to reread the trace
events; and second, finding a way to support large traces. In
other words, on one hand, the challenge lies in finding a way

to compute -in a constant time- the statistics of various sys-
tem metrics for any arbitrary time interval, without rereading
the events of that interval (e.g. computing the system metrics
statistics of a 20 GB interval in a 100 GB trace short of reread-
ing that particular 20 GB of the trace). On the other hand, the
next challenge then becomes providing a scalable architec-
ture to support different trace sizes (from a few megabytes to
over a terabyte of trace events), and at the same time, different
types of statistics and hierarchical operations.

In this paper, we propose a framework for incrementally
building a scalable metrics history database to store and man-
age the precomputed system metrics values, used to rapidly
compute the statistics values of any arbitrary intervals.

The framework is designed according to the following cri-
teria:

1. performance, in terms of efficiency in statistics compu-
tation and query answering algorithms,

2. compactness, in terms of space efficiency of the data
structures and finally,

3. flexibility, in terms of supporting different system met-
rics (e.g. IO throughput, CPU utilization, etc.), and hi-
erarchy operations for different time scales (i.e. mil-
lisecond, second, minute and hour) and system resources
(e.g. a process, a group of processes, a virtual machine,
or the whole system).

To test the proposed data structures and algorithms, we
use kernel traces generated by Linux Trace Toolkit next gen-
eration (LTTng) [4]. LTTng is a low impact, precise and
open source Linux tracing tool that provides detailed exe-
cution tracing of operating system operations, system calls,
and user space applications [4]. By evaluating the resulting
trace events, this method automatically draws an overview
of the underlying system execution, based on a set of prede-
fined metrics (e.g. number of bytes read and written), which
can then be used to detect system problems and misbehaviors
caused by program errors, an application’s misconfiguration
or even attacks. Further investigations may lead to oppor-
tunity to apply some administrative responses to solve those
detected problems [5].

The remainder of the paper is organized as follows: first,
we present the architecture of the statistics framework, and
the details of its different modules. Secondly, we present an
example highlighting the use of the proposed framework, and
subsequent data structures and algorithms. Then, we discuss
our experiences and evaluation of the proposed method. Fi-
nally, we conclude by outlining specific areas of investigation
for future enhancements.

2. RELATED WORK

Bligh et al. [6] use kernel trace data to debug and discover in-
termittent system problems and bugs. They discuss the meth-

ods involved in debugging the Linux kernel bugs to find real
system problems like inefficient cache utilization and poor la-
tency problems. The interesting part is that for almost all in-
vestigated problems, inspecting the statistics of system met-
rics is the starting point of their analysis. Using trace data
to detect and analyze the system problems also mentioned in
[7, 8, 9]. Xu et al. [7] believe that system level performance
indicators can denote high level application problems. To ad-
dress such problems, Cohen et al. [9] first established a large
number of metrics such as CPU utilization, I/O requests, aver-
age response times and application layer metrics. They then
related this metrics to the problematic durations (e.g. dura-
tions with a high average response time) to find a list of met-
rics, indicative of these problems. The relations that Cohen et
al. discovered can be used to describe each problem type in
terms of a set of metrics statistics [8]. They denoted how to
use statistics of system metrics to diagnose system problems.
However, they do not consider scalability issues, where the
traces are too large and where the storing and retrieving of
statistics are key challenges.

Some research uses the checkpoint or periodic snapshot
method to collect and manage the system statistics [10, 11].
This method splits the input trace into equal parts (e.g. a
checkpoint for each 100 K events), and stores the aggregated
information from each checkpoint in a memory based database.
After reading a trace and creating the checkpoint database, for
computing statistics of any given time point, the method ac-
cesses the previous checkpoint, rereads and reruns the trace
from the previous checkpoint up to the given point, and com-
putes the desired statistics. Kandula et al. [10] store snap-
shots of the system configurations in order to analyze how
each component depends on the network system, and to de-
termine the main cause of each system fault. LTTV (a LTTng
viewer) and TMF (Tracing and Monitoring Framework) 1 use
the checkpoint method for extracting system state values at
any given time point.

Although the checkpoint method is considered a useful
solution for managing the statistics, it requires rereading the
trace and does not support the direct computation of statistics
found between two checkpoints. Moreover, different metrics
with varying incident frequencies (e.g. number of events vs
number of multi step attacks) are treated in the same way. In
other words, since the method uses equal size checkpoints for
the metrics that have trifle value changes during a system ex-
ecution, loading a checkpoint and rereading the trace to com-
pute its statistics at different points may waste time, and not
produce any values. In the same way, metrics with large in-
cidents, demand more effort to recompute the required statis-
tics. In this paper, we will show that creating variable length
checkpoints for different metrics leads to better construction
and access performance.

The checkpoint method uses memory-based data struc-
tures to store the checkpoint values. However, using a memory-

1http://lttng.org/eclipse

based database imposes a strict limit on the trace size that can
be supported. The same problem exists for other interval man-
agement data structures like the Tree-Based Statistics Access
Method (TBSAM) [12], segment-tree, interval-tree, Hb-tree,
R-tree (and its variants R+-tree and R*-tree), etc. [13]. Seg-
ment tree and interval tree work properly for static data sets,
but do not work well for incrementally built intervals, because
they lead to performance degradation. Likewise, the R-tree
and its extensions do not work well for managing interval se-
quences that have long durations, and are highly overlapped,
as indicated in [14]. Furthermore, the splitting and merging
(rebalancing) of the nodes drive many changes in the pointers,
inducing severe performance degradation.

In the DORSAL lab 2, co-workers Montplaisir et al. [15]
introduced an external memory-based history tree for storing
the intervals of system state values. In their history tree, sys-
tem state values are modeled as intervals. Each interval in
this tree contains a key, a value, a start and an end time. The
key represents a system attribute whose state value is stored
in this interval. The start and end times represent the start-
ing and ending points of the given state value. In this tree
each node corresponds to a time range and contains a bucket
of intervals lying within the node’s time range. Since they
use a disk-based data structure to store the state information,
the solution is scalable, and successfully tested for traces up
to 1 TB, yet is optimized for interval queries, and has a fast
query time. It takes O(log(n)) time (i.e. n equals the number
of nodes) to perform a stabbing query to locate and extract a
state value from the data store. The tree is created incremen-
tally in one pass of the trace reading. The nodes have a pre-
defined fixed size in the disk. Whenever a node becomes full,
it is marked as ”closed”, and a new node is created. For that
reason, it does not require readjustment as seen in the R-tree
and its variants. Montplaisir et al. reported that they could
achieve a much better query performance than the LTTV3,
TMF, R-tree and PostgreSQL database system [15].

They have designed that solution to store and manage the
modeled state, but have not studied and optimized it for the
statistics. Although the history tree, as they report, is an ef-
ficient solution for managing the state values, it can not be
used directly in the statistics framework, as if it stores met-
rics as state, every increment will become a state change in
an interval tree, which wastes much storage space. Our ex-
periment shows that in this case the size of the interval tree is
comparable to the original trace size, which is not reasonable.
Although their partial history tree approach [15] works like
a checkpoint mechanism, and solves the storage problems,
the query time remains a problem, since it must access the
original traces to reread and recompute the statistics for the
points lying between two checkpoints; that could be a time-
consuming task for large checkpoints. Despite the same idea
of handling the value changes as intervals behind both the

2http://www.dorsal.polymtl.ca/
3http://lttng.org/lttv

history tree and the proposed framework, there are major dif-
ferences that are explained in the following:

1. Granularity degree (GD) is introduced to make the data
structure as compact as possible,

2. Different organization of the system resources and met-
rics is used to avoid duplication in the interval tree struc-
ture.

3. Rereading and reprocessing the the trace events is avoided.
Instead, the interpolation technique is used to calculate
the half-way values.

3. GENERAL OVERVIEW OF THE SOLUTION

Kernel tracing provides low-level information from the op-
erating system execution that can be used to analyze system
runtime behavior, and debug the execution faults and errors
that occur in a productive environment. Some system run-
time statistics can be extracted using system tools like prstat,
vmtree, top and ps, however, these tools are not usually able
to extract all the important information, necessary for a com-
plete system analysis. For instance, they do not contain the
operation timestamps, nor always the owning process infor-
mation (e.g. which process has generated a packet), both of
which are important in most system analysis. This informa-
tion can be extracted from a kernel trace. Kernel traces usu-
ally contain information about [16]:

• CPU states and scheduling events, can be used to cal-
culate the CPU utilization;

• File operations like open, read, write, seek and close,
can be used to reason about file system operations and
extract IO throughput;

• Running processes, their execution names, IDs, parent
and children;

• Disk level operations, can be used to gather statistics of
disk access latencies;

• Network operations and the details of network packets,
can be used to reason about network IO throughput and
network faults and attacks;

• Memory management information like allocating or re-
leasing a memory page, can be used to obtain and ana-
lyze the memory usages.

Since the kernel trace contains valuable information about
the underlying system execution, having a mechanism to ex-
tract and render statistics of various system metrics, based on
system resources and time data, can be helpful in finding sys-
tem runtime problems and bugs. By providing such a statis-
tics view, the trace analysis can start with an overview of the

system, and continue by zooming in on the strange and abnor-
mal behaviors (e.g. spikes in a histogram view) to gain more
information and insight.

By processing the trace events, one can compute impor-
tant system metrics statistics, and aggregate them per ma-
chine, user, process, or CPU for a whole trace or for a specific
time range (e.g. for each second). The following are exam-
ples of statistics that can be extracted from a kernel trace:

• CPU time used by each process, proportion of busy or
idle state of a process.

• Number of bytes read or written for each/all file and
network operation(s), number of different accesses to a
file.

• Number of fork operations done by each process, which
application/user/process uses more resources.

• Which (area of a) disk is mostly used, what is the la-
tency of disk operations, and what is the distribution of
seek distances.

• What is the network IO throughput, what is the number
of failed connections.

• What is the memory usage of a process, which number
of (proportion of) memory pages are (mostly) used.

Although each trace contains a wealth of information, it is
not always easy to extract and use it. The first problem is size
of the trace. A large trace usually complicates the scalable
reading and analysis. Another problem is that the statistics
information is also not clearly displayed, and is hidden be-
hind millions of events. This means the trace events have to
be analyzed deeply to extract the desired statistics. Moreover,
since the statistics computation will be used widely during
system analysis, it must be fast and efficient enough to extract
the desired analysis on demand. Therefore, tools and algo-
rithms must be developed to deal with these problems.

In this paper, we propose a framework that efficiently pro-
vides statistical information to analysts. The framework works
by incrementally building a tree-based metric data store in one
pass of trace reading. The data store is then used at analysis
time to extract and compute any system metrics statistics for
any time points and intervals. Using a tree-based data store
enables the extraction and computation of statistics values for
of any time range directly, without going through the relevant
parts in the original trace. Such a data store also provides an
efficient way to generate statistics values from a trace, even
if it encompasses billions of events. The architecture, algo-
rithms and experimental results will be explained in the fol-
lowing sections.

This framework also supports hierarchical operations (e.g.
drill down and roll up) among system resources (i.e. CPU,
process, disk, file, etc.). It enables gathering statistics for a

Fig. 1: General architecture of the framework.

resource, and at the same time, for a group of resources (e.g.
IO throughput for a specific process, for a group of processes,
or for all processes). Furthermore, it supports different time
scales, and it is possible to zoom in on the time axis to retrieve
statistics for any time interval of interest.

The framework we propose also supports both online and
offline tracing. In both cases, upon opening a trace, the frame-
work starts to read and scan the trace events, precompute the
predefined metric values, and store in the aforementioned in-
terval history data store. Whenever an analysis is needed, it
queries the data store, extracts the desired values and com-
putes the statistics. With this system, users can go back to
retrieve the statistics from any previous points of system exe-
cution.

4. ARCHITECTURE

In this section, we propose the architecture of a framework for
the live statistics computation of system metrics. The solution
is based on incrementally building a metrics history database
to be used for computing the statistics values of any arbitrary
intervals in constant time. Constant time here means the in-
dependence of the computation time on the length of the in-
terval. It works by reading trace events gathered by the LT-
Tng kernel tracer and precalculating and storing values of the
prespecified system metrics at different points in a tree-based
data structure. Using tree-based data structures enables an
efficient access time for large traces. Figure 1 depicts a gen-
eral view of the framework architecture, covering its different
modules.

As shown in Figure 1, this architecture contains differ-
ent modules such as trace abstraction, data store and statistics
generation, which are explained in the following sections:

Kernel Tracer: LTTng
We use the LTTng [4] kernel tracer to trace operating system
execution. LTTng is a powerful, low impact and lightweight
[17] open source Linux tracing tool, and provides precise and
detailed information of underlying kernel and user space ex-
ecutions. LTTng contains different trace points in various
modules of the operating system kernel, and once a prede-
fined trace point is touched, it generates an event containing
a time-stamp, CPU number and other information about the
running process. Finally, it adds the event to an in-memory
buffer to be stored later on disk [4].

Trace Abstractor
The trace size is usually very large that makes difficult to an-
alyze and understand the system execution. Most of the time
another analysis tool is required to abstract out the raw events
and represent them with higher-level events, reducing the data
to analysis. Trace abstraction is typically required to com-
pute statistics of complex system metrics that are not directly
computable from the raw trace events. For instance, to com-
pute synthetic metrics statistics like ”number of HTTP con-
nections”, ”CPU usage”, and ”number of different types of
system and network attacks”, raw events must be aggregated
to generate high-level events; then, the desired statistics must
be extracted and computed. The details of the trace abstrac-
tion tool we use to generate such high level meaningful events
from raw events, may be found in [2]. In the remainder of this
text, the term event is used to refer to both raw and abstract
events.

State System
The state system is a database used for managing the state val-
ues of a system at different points. Examples of state values
are: execution status of a process (running, blocked, waiting),
mode of a CPU (idle, busy), status of a file descriptor (opened,
read, closed), disks, memory, locks, etc.

State values are extracted from trace events based on a
predefined mapping table. In this table, there is an entry spec-
ifying how an event can affect the value of a resource state.
For example, the state of a process (whether it is running or
blocked) can be extracted using CPU scheduling events.

In the DORSAL lab 4, Montplaisir et al. [15] introduced
a tree-based data structure, called state history tree, which
stores and retrieves the system state values. In their history
tree, system state values are modeled as intervals and each in-
terval contains complete information about a state value change.
For instance, when the state of a process is changing from
ready to running, an interval is created in the history tree,
specifying start and end points of the change, the process
name and the state value.

4http://www.dorsal.polymtl.ca/

The state system proposed in [15] uses two mechanisms
for managing the state values:

• partial history tree, that makes use of a method simi-
lar to the checkpoint method, to store and manage the
state values. In this system, for extracting state of any
halfway points laying between two checkpoints, it is
required to access the trace events to reread, rerun and
extract the state value. However, another access and
reread the trace, may waste time. In our method, we
read the trace once and will not refer to it again.

• complete history tree, that stores every change of state
values and extracts directly any required state value.
Although it extracts the state values directly without
rereading the trace, the method needs lots of storage
space. Experiment results show that in some occasions,
related to the number of active system resources, it needs
a storage space larger than the original trace size. How-
ever, since the statistics may be used widely in the sys-
tem, we need a compact data store, and at the same
time, a faster access time.

Managing the statistics values of different system metrics
can be implemented using the same mechanism as what is
used for managing the states. Although the history tree intro-
duced in [15] is an efficient solution for managing the state
changes, it still needs some modifications to be used here in
the statistics framework. In Montplaisir et al.’s work, any
value change of the system state is stored in a separate in-
terval. However, storing all statistics value changes in the
interval tree will waste much storage space. As explained,
our experiment shows that the size of the interval tree, in this
case, will be comparable to the original trace size. Although
using their partial history tree [15] that works like checkpoint
mechanism, solves the storage problems, the query time re-
mains a problem. What we look for here is a compact data
store and efficient algorithms to directly compute the system
metrics statistics, without having to reread and rerun the trace
events.

5. STATISTICS GENERATOR

The statistics generator, the main module of the framework, is
responsible for computing, storing and retrieving the statistics
values. Since in the kernel traces all data comes in the form
of trace events, a mapping table is needed to extract quanti-
tative values from the events. Similar to the event-state map-
ping, the statistics module uses an event-statistics mapping
table that identifies how to compute statistics values from the
trace events. In this table, there exists an entry that speci-
fies which event types, and their subsequent payload are re-
quired for extracting metric statistics. For instance, for com-
puting the number of ”disk IO throughput”, file read and write
events are registered. In the same way, the ”HTTP connec-
tion” abstract events are counted to compute the number of

Fig. 2: Database updates for granularity degree = 1.

failed/successful HTTP connections. The former is an exam-
ple of a basic metric, computed using the raw events directly.
However, the latter is an example of a synthetic metric, com-
puted using outputs of the abstracter module.

In this framework, we store the statistics values in interval
form. To do so, in the trace reading phase the duration of any
value change in a system metric is considered an interval, and
is stored in the data store. The time-stamp of the first event
(registered to provide values of the metric) is considered the
starting point of the interval. In the same way, the time-stamp
of the next value change is considered the end point of that
interval. Similarly, any other value change is kept in an other
interval.

The parameter ”granularity degree” (GD) is defined to de-
termine how often the computed statistics of a metric should
be stored in the database. It does not however affect the com-
putation frequency of a metric. Computation is accomplished
any time a relevant event occurs, and is independent of the
granularity degree. The granularity degree can be determined
using the following different units:

• Counts of events (e.g. each 100 events).

• Counts of a specific event type (e.g. all scheduling
events);

• Time interval (e.g. each second).

For instance, when one assigns a granularity degree , say k,
to a metric he or she has already specified the frequency of
updates in the database. In this case, for each k changes in
the statistics value, an update will be accomplished in the
database. There is a default value for the granularity degree
but it can be adjusted separately for each metric. Figure 2
shows updates for a case in which the granularity degree is
one, while Figure 3 shows the number of updates for a larger
granularity degree.

Using the notion of granularity degree leads to a faster
trace analysis, data store construction, and also a better query
answering performance. The efficiency increases because with
a large granularity degree, less information will be written to
disk.

Fig. 3: Database updates for granularity degree = 5.

Fig. 4: Using linear interpolation to find a halfway value.

Although defining a proper granularity degree leads to a
better construction and access time, it may require additional
processing to answer queries for the halfway points, lead-
ing to search performance degradation, particularly when the
granularity degree is coarser than the query interval range. In
this case there are two solutions to compute the desired statis-
tics: rereading the trace or using the interpolation technique.

The first solution is similar to the checkpoint method, which
rereads the trace to computes the desired statistics. This tech-
nique is also used in the partial history tree proposed by Mont-
plaisir et al. [15]. Although this solution works well for small
traces, it is not a great idea to reread the trace and reextract
the values, each time users query the system. Especially when
the trace size is large, checkpoint distances are large, and the
system load is high.

The second solution is to use the interpolation technique.
Using linear interpolation, as shown in Figure 4, makes pos-
sible to find any halfway values within two extremes of the
granularity checkpoints, without rereading the trace events.

Figure 5 shows an example of statistics computation using
both the interpolation technique and the granularity degree
parameter. In this example, the goal is to find the statistics of
a particular metric between two points A, B in the trace. The
bold points show the borders of the GD durations and there is
one data structure update for each point.

V alAB = V alB − V alA = x1 + x2 + x3 (1)

The value of x2 can be computed using the subtraction of the
two values in t2 and t3. However, since the x1 and x2 are
half values between two updates (inside a GD), they can be
computed using the interpolation technique, as denoted in the
Formula 2. One last point is that the values V alt1, V alt2

Fig. 5: Example of using linear interpolation and granularity
degree parameter.

and V alt3 can be extracted directly from the interval tree data
structure using stabbing queries (as will be explained in the
next section).

x1 = V alt1 + (A− t1)
(V alt2 − V alt1)

(t2− t1)
x2 = V alt3 − V alt2

x3 = V alt3 + (B − t3)
(V alt4 − V alt3)

(t4− t3)

(2)

Although the interpolation technique returns an estima-
tion of the real value, there may be doubts about its preci-
sion. The precision of the result actually depends on the size
of granularity degree. In other words, by carefully adjusting
the granularity degrees for different metrics according to their
importance, it is possible to estimate a fairly accurate results.
For instance, by determining small numbers for less precise
metrics (e.g. CPU utilization for evaluating the affinity of a
scheduling algorithm) and relatively large values for less pre-
cise metrics (e.g. number of trace events), one can achieve
better results.

We will continue explaining the architecture with an ex-
ample in the next section.

Illustrative Example

In this section, we investigate an example to show how to use
the proposed method for computing the statistics of system
metrics in a large trace. The example shows how to compute
the CPU utilization for different running processes, separately
or in a group, during any arbitrary time intervals of the under-
lying system execution.

The first step is to specify how the statistics values are ex-
tracted from the kernel trace events. We use trace scheduling
events to extract the CPU utilization. The scheduling event ar-
guments show the CPU number, the process id that acquires
the CPU as well as the process that releases the CPU. Utiliza-
tion is computed by summing up the length of the durations
that a CPU is used by a running process. Figure 6 shows a
possible case of CPU scheduling for two processors and four
processes. In the example shown in Figure 6:

Fig. 6: An example of the CPU scheduling.

CPU1 utilization of running process P1 :
U(P1)CPU1 = (t3 − t2) + (t5 − t4)

(3)

Utilization of CPU1 :

U(CPU1) =

∑i=2
i=1 U(Pi)CPU1

t8 − t0

(4)

And in general:

CPUk utilization of each running process Pi :

U(Pi)CPUk
=

∑m,n=te
m,n=ts

(tm − tn)
(5)

Utilization of CPUk :

U(CPUk) =

∑i=n
i=0 U(Pi)CPUk

te − ts

=

∑
i

∑m,n=te
m,n=ts

(tm − tn)i

te − ts

(6)

As explained earlier, one of the features of this framework
is being able to perform hierarchical queries. To do this, we
build a tree called the ”metric tree” containing a hierarchy
of resources and metrics. The construction of such a hierar-
chy makes it possible to drill down and roll up between the
resources, and to aggregate the statistics values for different
granularities (e.g. for a process, group of processes, a virtual
machine or even for whole system). Figure 7 models a typical
organization of the metric tree.

As shown in Figure 7, there are hierarchies of system re-
sources and metrics separately. In this tree the system re-
sources (e.g. processes, files, cpus, network ports, etc.) are
organized in the separate branches of the tree. Then, the met-
rics nodes that could be a tree as well, connect the resources
together. For example, the metric ”cpu usage” connects two
nodes, a process and a cpu, representing the cpu usage of that
process. Each metric node is assigned a unique number that
is used as a multivalue key for future references to the cor-
responding statistics values in the interval tree. Metric nodes
can be used to connect different resources together, individu-
ally or in a group. For instance, a IO usage metric may con-
nect a process to a particular file or to the files of a folder
or even to all files, showing respectively the bytes of this file
read or written by that process, the bytes read or written in
the files of a folder, or the whole IO of that process. For

Fig. 7: A general view of the metric tree.

each resource, there is a path from the root node. For each
metric node, there is at least one path from the root node as
well, representing which resources this metric belongs to. In
this tree the metrics and the resource hierarchies are known
in advance, however, the tree is built dynamically. Organiz-
ing the resources and metrics in such a metric tree enables
us to answer hierarchical queries like ”what is the CPU us-
age (a specific CPU or all of them) of a process (or a group
of them)?”, and ”what is the IO throughput of a system, or a
group of running processes?”.

This hierarchy of resources facilitates the computing of
the hierarchy statistics. For any resources or group of re-
sources for which statistics values should be kept, a metric
node is created and connects them to the other resource (or
group of resources) using a proper key value. For example,
when cpu usage of a specific core of a specific process is im-
portant, we consider a cpu usage metric node between these
two resources and assign a unique key value to that. As an-
other example, in addition to the IO usage of the different
processes, someone may be interested in monitoring the IO
usage of an important file like /etc/passwd since it is accessi-
ble by all processes. In this case, it is just required to make
a IO usage node, connect that node to that particular file and
to the ”Processes node” in the tree, and assign another unique
key value to that. This key value is used as a reference to the
different statistics values in the interval tree.

The solution is based on reading trace events, extracting
the statistics from them, and storing them in the correspond-
ing interval database nodes, according to the corresponding
granularity degrees.

After creating a hierarchy of resources and metrics, it is
then time to decide how to store and manage the statistics
values. As explained earlier, we model the statistics values

Fig. 8: A view of the intervals and the corresponding nodes.

in intervals and store them in a tree-based interval data store.
In this data store, data is stored in both the leaf and non-leaf
nodes. Each node of the tree contains a bucket of interval
entries lying within the range of its time boundaries. A view
of this tree and corresponding intervals are shown in Figure
8.

Each interval contains a start time, end time, key and value.
The key refers to a metric node in the metric tree. The value
shows a cumulative value, from the starting time of the trace
to that point. Based on the start and end times, intervals are
organized into the minimum containing tree nodes.

The created metric and statistics trees are used to extract
the desired statistics in the analysis phase. In other words,
computing the statistics of a metric is accomplished by per-
forming a stabbing query at any given query point. The stab-
bing query returns all the tree nodes intersecting a given time
point [18]. The query result is the statistics value of the metric
at that given point. In the same way, computing the statis-
tics of an interval of interest, instead of a single point, is
answered by performing two stabbing queries: one for ex-
tracting the aggregated value of the interval start point of the
interval, and one for the end point. For each metric, it is rea-
sonable to retrieve at most one result per each stabbing query,
as only one value for each point or interval has been stored
during the event reading time. After performing the stabbing
queries for the start and end point of a given interval, the de-
sired result is the difference between these two query results.
The algorithm is shown in Listing 1. The algorithm takes
2*O(log(n)) time to compute the statistics values of a metric
and time range (log(n) for each stabbing query, n is the num-
ber of tree nodes). Detailed experiment results will be shown
in the next chapter. For each stabbing query, a search is started
from the root downward, exploring only the branch and nodes

Algorithm 1 Complete interval query.

Require: a time range [t1 - t2] and v a set of metric keys.
1: set upperBoundV alue = 0;
2: find all nodes of the tree that intersect t2 (stabbing query);

3: search within nodes’ intervals and find all entries that
contain at least one of the metric keys;

4: if found any then
5: for each entry do
6: set upperBoundV alue = upperBoundV alue +

entry.value;
7: end for
8: end if
9: set lowerBoundV alue = 0;

10: find all nodes of the tree that intersect t1 (stabbing query);

11: search within nodes’ intervals and find all entries that
contain at least one of the metric keys;

12: if found any then
13: for each entry do
14: set lowerBoundV alue = lowerBoundV alue +

entry.value;
15: end for
16: end if
17: return upperBoundV alue - lowerBoundV alue;

that possibly contain the given point. Within each node, it it-
erates through all the intervals and returns only the entry in-
tersecting the given point. Since the intervals are disjoint, the
stabbing query will return at most one value. However, it is
possible to not find any stabbing interval for the given time
point, which means there is no metric value for the given time
point, and it will be considered zero.

To traverse the tree, the algorithm performs a binary search
on the tree, and copies the resulting branch to the main mem-
ory. It then searches the nodes and its containing interval en-
tries to find the statistics value of the given metric. In other
words, by doing a stabbing query, statistics values of the other
metrics which intersect the query point, will also be in the
main memory. We call this data set ”current statistics values”.
The current statistics values can then be used for computing
and extracting the statistics of other system metrics for the
same query point. The important point here is that, since the
current statistics values data set is in main memory rather than
the external disk, performing subsequent queries to compute
other metrics statistics for the same query point will be much
faster than the base stabbing query.

Hierarchy Operations

As mentioned earlier, the framework supports hierarchical queries
between resources. For example, it is possible to compute the
CPU utilization of one process, at the same time as a group of

Algorithm 2 Stabbing query.

Require: time point t and the metric name.

search all intervals in the root node to see whether exists
any containing interval for the given time point t.
if found then

return the entry value
else {if not found and the node is not a leaf}

find the corresponding child node regarding to the chil-
dren intervals and given time point t.

end if
if exists any node then

Perform a query in the subtree that this node is its root.
else

return zero
end if

processes, or for the whole system.
To support these queries, there are two general approaches

in the proposed framework. The first and obvious solution is
to separately compute and store the temporary statistics val-
ues of each resource (e.g. process, file, CPU, etc.), and all
possible groups of resources from the trace events. For in-
stance, the count of CPU time for any group of processes, and
for the whole system are accumulated separately when rele-
vant trace events are received. The problem of this solution
is that all groups of processes that will be queried later by an
analyst must be known in advance. However, it is not always
possible to predict which group of processes an analyst may
be interested in. Also, the solution requires much space to
store the duplicate values of all resource combinations. More-
over, at analysis time, all statistics computations must be an-
swered by querying the external interval tree, which is too
time consuming.

The second and better solution is to compute the hierarchy
statistics values by summing up the children resource statis-
tics. For instance, the count of CPU time for any group of
processes is extracted by summing up the total CPU time of
the group’s children processes. Unlike the previous approach,
it is not necessary to know in advance or even to predict the re-
source groups that will be inspected by analysts. In this solu-
tion, we use the aforementioned current statistics values data
set to answer the hierarchical queries. Since all of intersect-
ing nodes and intervals will be brought to the main memory
upon performing a stabbing query, it is possible to integrate
and sum up the statistics values of any system resources to
quickly compute the statistics value of a group of resources.
Since the current statistics values data set is in main memory,
hierarchical queries can be performed quickly.

Using the second approach, for performing a hierarchi-
cal query it first find the values of children nodes using the
aforementioned stabbing queries, and then, aggregate results
to find a value of the desired high level node. Equations 5, 6,

and 7 show relations between a high level statistics value and
its containing nodes:

Utilization of all processors :

U(All CPUs) =
∑j=n

j=0 U(CPUj)

And totally :

=
∑j=n

j=0

∑i=m
i=0 U(Pi)CPUj

te − ts

(7)

The CPU utilization of the whole system can be computed
by summing up the CPU utilization of each processor sepa-
rately, which can be acquired in turn by computing the utiliza-
tion of each process by doing two stabbing queries over the
disk based interval tree, and consecutively a memory based
linear search. In the same way, the same solution can be used
for other metrics and resource hierarchies.

The above example shows the addition aggregate func-
tion. It is however possible to apply other aggregation func-
tions as well, such as minimum, maximum, etc. Using these
functions, makes possible to find special (e.g, abnormal) char-
acteristics of a system execution: high throughput connection,
most CPU (or other resources) consuming virtual machines,
operations or processes, and average duration of read opera-
tions (for checking the cache utilization).

The required query time for computing the statistics value
of a resource metric is O(log n) (i.e. n is the number of nodes
in the interval tree). This query brings the current statistics
values from the disk to the main memory. Other queries, for
the same time point, will be answered by iterating through this
data set rather than extracting the data from disk. For instance,
the IO throughput of a system is computed by summing up
the IO throughput of all running processes at that given time
point. For the aforementioned reasons, the IO throughput of
all running processes for the query time point will be available
in the current statistics values data set, and can be easily used
by going through its entries.

Altogether, the required processing time for summing up
these values, and computing the statistics value for a group
of resources (or any hierarchy of resources) is O(Log n + K).
The time (Log n) specifies the query time to bring up the data
from the disk resident interval tree, and fill the current statis-
tics values data set. The time K shows the required time for
iterating through and summing up the values of containing
resource statistics in the current statistics data set. Since the
external interval tree is usually large, and querying a disk-
based data structure maybe a time consuming task, time (Log
n) is generally considered to be larger than K. However, in a
very busy system, or in busy parts of a system execution, with
lots of running processes and IO operations, K may dominate
(Log n), especially when the tree is fat and short (each tree
node, encompasses many interval entries). The results of the
hierarchy operation experiment using both solutions will be
discussed in the Experiments section.

6. EXPERIMENTS

We have prototyped the proposed framework in Java on the
Linux operating system. Linux kernel version 2.6.38.6 is in-
strumented using LTTng, and the tests are performed on a 2.8
GHz machine with 6 GB RAM, using different trace sizes.
This prototype will be contributed to TMF (Tracing and Mon-
itoring Framework)5. In the prototype, the defined metrics
are: CPU usage, IO throughout, number of network connec-
tions (for both the incoming and outgoing HTTP, FTP, DNS
connections), and also counts of different types of events.
Figure 9 shows the memory used by the framework to store

 10

 100

 1000

 10000

 50000

 500000

 0 10 20 30 40

D
is

k
 S

iz
e
 (

M
B

)

Trace Size (GB)

GD = 1
GD = 100
GD = 500
GD = 1000
Checkpoint (for each 20K)

Fig. 9: Disk size of the interval tree data structure.

the interval information. The graph shows different on-disk
sizes for the different trace files. The trace files vary from 1
GB to 40 GB. The size of the resulting interval data store,
where the granularity degree equals 1, is about 2.5 to 4.5
times the original trace size. As explained earlier, this is
not a reasonable storage size. To solve this problem, larger
granularity degrees (i.e. 100, 500, 1000) are used. Figure 9
depicts a comparison of the proposed method and the check-
point method. Since the range of values for the case where the
granularity degree is 1 is much higher than those with larger
granularity degrees, the logarithmic scale is used for the Y
axis.

A comparison of the tree construction time analysis be-
tween different solutions (i.e. the checkpoint method, the his-
tory tree, and the proposed method) is shown in Figure 10.
The figure shows that the time used for tree construction con-
siderably depends on the number of updates to the interval
data store, and that the time decreases when less information
is written to disk, thus underlining the importance of selecting
coarse granularity degrees.

The query time analysis is shown in Figure 11. For each
graph, we have tested 20 runs, in which we have used the
aforementioned complete interval query (two stabbing queries
for each request) for 100 randomly selected time intervals. As

5http://lttng.org/eclipse

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
)

Trace Size (GB)

GD = 1
GD = 100
GD = 500
GD = 1000
Checkpoint (for each 20K)

Fig. 10: Construction time for different trace sizes.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40

Q
u
e
ry

 T
im

e
 (

M
ill

is
e
c
o
n
d
)

Trace Size (GB)

GD = 1
GD = 100
GD = 500
GD = 1000
Checkpoint (for each 20K)

Fig. 11: Query time for different trace sizes.

shown in Figure 11, the best case is the tree with a granular-
ity degree of 1000. In this case (and the cases with a gran-
ularity degree of larger than 1), we have used linear interpo-
lation to approximate the real values when querying a time
within a checkpoint duration. With the checkpoint method,
we reread the trace and regenerate the values inside the check-
points. Since this method reopens and rereads the trace for
each query, the query time is longer.

A comparison of the two aforementioned approaches for
performing the hierarchical operations is shown in Figure 12.
In this graph, the X axis shows the different points in the
trace, and the Y axis shows the query time for computing
the IO throughput of a process separately, a process and the
whole system together using the first and second aforemen-
tioned approaches. As explained earlier, computing the hier-
archical statistics values, by summing up the containing val-
ues, is faster than storing them separately in the interval tree,
and querying them by reading the disk data structure for each
query. As shown in the figure, summing up the values of
containing resources in the busy areas of the system execu-
tion (points 4,5) takes much more time than in the other trace

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6

Q
u
e
ry

 T
im

e
 (

M
ill

is
e
c
o
n
d
)

Different Trace Areas

Query timy for a single level query
Query timy by stroing the values of only the leaf nodes
Query time by duplicating the values of all levels separately

Fig. 12: Comparison of different approaches for supporting
the hierarchical operations.

points (points 1,2,6), in which the system is not too busy and
encompasses less IO operations. The trace size 10 GB and
granularity degree 100 are used for this comparison.

The analyzing of the above results shows that one can
achieve better efficiency (both in disk size, construction time
and query time) by using larger granularity degrees. However,
this is not always true. The granularity degree is somehow re-
lated to the precision of a metric. Larger degrees may lead
to less precision, and longer query times for the points lying
within an interval. Thus, a trade-off is required between the
precision, granularity degree and the context of evaluation.
However, more investigation is necessary to find proper val-
ues for the granularity degrees of different metrics, as will be
studied in a future work.

7. CONCLUSION AND FUTURE WORK

Early steps in most analysis methods start by looking at the
general overview of a given trace. The analysis can be con-
tinued by narrowing the current view and digging into it to
obtain more details and insight. The several previous studies
that provide such a view are examined in the literature review.
However, they are not able to compute system statistics in a
relatively constant time for any given interval. We proposed
a framework architecture to analyze large traces and generate
and provide such a view. We also presented the performance
results of this method.

The main effort was on creating a compact data structure
that has reduced overhead, and a reasonable access and query
time. The details of the proposed data structures and algo-
rithms, with their subsequent evaluations for different cases
have been analyzed. The framework models the system re-
sources in a hierarchy to support hierarchical operations be-
tween different resources. To avoid a size explosion of pre-
computed statistics, a proper granularity degree should be cho-
sen for each metric. Then, intermediate points are computed

using linear interpolation. Granularity can be expressed in
count of events or time units. We evaluated the proposed
framework by assigning different granularity degrees for dif-
ferent metrics. The results denote that one can achieve a better
efficiency and performance by determining proper granularity
degrees for metrics. Constant access time (with respect to the
time interval) for statistics computation is achieved by com-
puting the final result from two values, at the start and end of
the interval.

Possible future work is to analyze the effects of using the
interpolation technique, as well as developing a formula to
link the granularity degrees to metrics and trace sizes. We
have prototyped the framework for LTTng Linux kernel tracer.
Other future work includes extending the framework and re-
lated data structures to support other tracing systems as well
as connecting the proposed framework to kernel-based fault
and attack detection systems.

Although the proposed method can be used for online
tracing as well, this was not investigated during this phase
of research. The online construction of the interval tree will
probably lead to new challenges and will be experimented as
a future work.

8. REFERENCES

[1] W. Fadel, “Techniques for the abstraction of system call
traces,” Master’s thesis, Concordia University, 2010.

[2] N. Ezzati-Jivan and M. R. Dagenais, “A stateful
approach to generate synthetic events from kernel
traces,” Advances in Software Engineering, vol. 2012,
April 2012.

[3] H. Waly, “A complete framework for kernel trace
analysis,” Master’s thesis, Laval University, 2011.

[4] M. Desnoyers and M. R. Dagenais, “The lttng tracer: A
low impact performance and behavior monitor for
gnu/linux,” in OLS (Ottawa Linux Symposium) 2006,
pp. 209–224, 2006.

[5] A. Shameli-Sendi, N. Ezzati-Jivan, M. Jabbarifar, and
M. Dagenais, “Intrusion response systems: Survey and
taxonomy,” SIGMOD Rec., vol. 12, pp. 1–14, January
2012.

[6] M. Bligh, M. Desnoyers, and R. Schultz, “Linux kernel
debugging on google-sized clusters,” in OLS (Ottawa
Linux Symposium) 2007, pp. 29–40, 2007.

[7] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan,
“Online system problem detection by mining patterns
of console logs,” in Proceedings of the 2009 Ninth
IEEE International Conference on Data Mining, ICDM
09, (Washington, DC, USA), pp. 588–597, IEEE
Computer Society, 2009.

[8] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons,
T. Kelly, and A. Fox, “Capturing, indexing, clustering,
and retrieving system history,” SIGOPS Operating
Systems Review, vol. 39, pp. 105–118, October 2005.

[9] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S.
Chase, “Correlating instrumentation data to system
states: a building block for automated diagnosis and
control,” in Proceedings of the 6th conference on
Symposium on Operating Systems Design
Implementation -Volume 6, (Berkeley, CA, USA),
pp. 16–16, USENIX Association, 2004.

[10] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal,
J. Padhye, and P. Bahl, “Detailed diagnosis in enterprise
networks,” SIGCOMM - Computer Communication
Review, vol. 39, pp. 243–254, August 2009.

[11] J. Desfossez, “Rsolution de problme par suivi de
mtriques dans les systmes virtualiss,” Master’s thesis,
Ecole Polytechnique de Montreal, 2011.

[12] J. Srivastava and V. Y. Lum, “A tree based access
method (tbsam) for fast processing of aggregate
queries,” in Proceedings of the Fourth International
Conference on Data Engineering, pp. 504–510, IEEE
Computer Society, 1988.

[13] V. Gaede and O. Gunther, “Multidimensional access
methods,” ACM Computing Surveys, vol. 30,
pp. 170–231, June 1998.

[14] M. Renz, Enhanced Query Processing on Complex
Spatial and Temporal Data. PhD thesis, 2006.

[15] A. Montplaisir, “Stockage sur disque pour accs rapide
dattributs avec intervalles de temps,” Master’s thesis,
Ecole polytechnique de Montreal, 2011.

[16] F. Giraldeau, J. Desfossez, D. Goulet, M. R. Dagenais,
and M. Desnoyers, “Recovering system metrics from
kernel trace,” in OLS (Ottawa Linux Symposium) 2011,
pp. 109–116, June 2011.

[17] N. Sivakumar and S. S. Rajan, “Effectiveness of tracing
in a multicore environment,” Master’s thesis,
Malardalen University, 2010.

[18] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars, Computational Geometry Algorithms
and Applications 3rd edition. Springer-Verlag, 2008.

	2013_Ezzati-Jivan_Framework_compute_statistics_system_parameters
	 Introduction and Problem Statement
	 Related Work
	 General overview of the solution
	 Architecture
	 Statistics Generator
	 Experiments
	 Conclusion and Future Work
	 References

