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RÉSUMÉ

Dans de nombreux problèmes d’analyse de données, les données sont exprimées dans une
matrice avec les sujets en ligne et les attributs en colonne. Les méthodes de segmentations
traditionnelles visent à regrouper les sujets (lignes), selon des critères de similitude entre ces
sujets. Le but est de constituer des groupes de sujets (lignes) qui partagent un certain degré
de ressemblance. Les groupes obtenus permettent de garantir que les sujets partagent des
similitudes dans leurs attributs (colonnes), il n’y a cependant aucune garantie sur ce qui se
passe au niveau des attributs (les colonnes). Dans certaines applications, un regroupement
simultané des lignes et des colonnes appelé biclustering de la matrice de données peut être
souhaité. Pour cela, nous concevons et développons un nouveau cadre appelé Forestogram,
qui permet le calcul de ce regroupement simultané des lignes et des colonnes (biclusters)
dans un mode hiérarchique. Le regroupement simultané des lignes et des colonnes de manière
hiérarchique peut aider les praticiens à mieux comprendre comment les groupes évoluent
avec des propriétés théoriques intéressantes. Forestogram, le nouvel outil de calcul et de
visualisation proposé, pourrait être considéré comme une extension 3D du dendrogramme,
avec une fusion orthogonale étendue. Chaque bicluster est constitué d’un groupe de lignes (ou
de sujets) qui déplie un schéma fortement corrélé avec le groupe de colonnes (ou attributs)
correspondantes. Cependant, au lieu d’effectuer un clustering bidirectionnel indépendamment
de chaque côté, nous proposons un algorithme de biclustering hiérarchique qui prend les lignes
et les colonnes en même temps pour déterminer les biclusters. De plus, nous développons un
critère d’information basé sur un modèle qui fournit un nombre estimé de biclusters à travers
un ensemble de configurations hiérarchiques au sein du forestogramme sous des hypothèses
légères. Nous étudions le cadre suggéré dans deux perspectives appliquées différentes, l’une
dans le domaine du transport en commun, l’autre dans le domaine de la bioinformatique.

En premier lieu, nous étudions le comportement des usagers dans le transport en commun
à partir de deux informations distinctes, les données temporelles et les coordonnées spatiales
recueillies à partir des données de transaction de la carte à puce des usagers. Dans de nom-
breuses villes, les sociétés de transport en commun du monde entier utilisent un système de
carte à puce pour gérer la perception des tarifs. L’analyse de cette information fournit un
aperçu complet de l’influence de l’utilisateur dans le réseau de transport en commun interac-
tif. À cet égard, l’analyse des données temporelles, décrivant l’heure d’entrée dans le réseau
de transport en commun est considérée comme la composante la plus importante des don-
nées recueillies à partir des cartes à puce. Les techniques classiques de segmentation, basées
sur la distance, ne sont pas appropriées pour analyser les données temporelles. Une nouvelle
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projection intuitive est suggérée pour conserver le modèle de données horodatées. Ceci est
introduit dans la méthode suggérée pour découvrir le modèle temporel comportemental des
utilisateurs. Cette projection conserve la distance temporelle entre toute paire arbitraire de
données horodatées avec une visualisation significative. Par conséquent, cette information est
introduite dans un algorithme de classification hiérarchique en tant que méthode de segmen-
tation de données pour découvrir le modèle des utilisateurs. Ensuite, l’heure d’utilisation est
prise en compte comme une variable latente pour rendre la métrique euclidienne appropriée
dans l’extraction du motif spatial à travers notre forestogramme.

Comme deuxième application, le forestogramme est testé sur un ensemble de données
multiomiques combinées à partir de différentes mesures biologiques pour étudier comment
l’état de santé des patientes et les modalités biologiques correspondantes évoluent hiérarchi-
quement au cours du terme de la grossesse, dans chaque bicluster. Le maintien de la grossesse
repose sur un équilibre finement équilibré entre la tolérance à l’allogreffe fœtale et la protec-
tion mécanismes contre les agents pathogènes envahissants. Malgré l’impact bien établi du
développement pendant les premiers mois de la grossesse sur les résultats à long terme, les in-
teractions entre les divers mécanismes biologiques qui régissent la progression de la grossesse
n’ont pas été étudiées en détail. Démontrer la chronologie de ces adaptations à la grossesse
à terme fournit le cadre pour de futures études examinant les déviations impliquées dans les
pathologies liées à la grossesse, y compris la naissance prématurée et la prééclampsie. Nous
effectuons une analyse multi-physique de 51 échantillons de 17 femmes enceintes, livrant à
terme. Les ensembles de données comprennent des mesures de l’immunome, du transcrip-
tome, du microbiome, du protéome et du métabolome d’échantillons obtenus simultanément
chez les mêmes patients. La modélisation prédictive multivariée utilisant l’algorithme Elas-
tic Net est utilisée pour mesurer la capacité de chaque ensemble de données à prédire l’âge
gestationnel. En utilisant la généralisation empilée, ces ensembles de données sont combinés
en un seul modèle. Ce modèle augmente non seulement significativement le pouvoir prédictif
en combinant tous les ensembles de données, mais révèle également de nouvelles interactions
entre différentes modalités biologiques. En outre, notre forestogramme suggéré est une autre
ligne directrice avec l’âge gestationnel au moment de l’échantillonnage qui fournit un mo-
dèle non supervisé pour montrer combien d’informations supervisées sont nécessaires pour
chaque trimestre pour caractériser les changements induits par la grossesse dans Microbiome,
Transcriptome, Génome, Exposome et Immunome réponses efficacement.
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ABSTRACT

In many statistical modeling problems data are expressed in a matrix with subjects in row
and attributes in column. In this regard, simultaneous grouping of rows and columns known
as biclustering of the data matrix is desired. We design and develop a new framework called
Forestogram, with the aim of fast computational and hierarchical illustration of biclusters.
Often in practical data analysis, we deal with a two-dimensional object known as the data
matrix, where observations are expressed as samples (or subjects) in rows, and attributes
(or features) in columns. Thus, simultaneous grouping of rows and columns in a hierarchical
manner helps practitioners better understanding how clusters evolve. Forestogram, a novel
computational and visualization tool, could be thought of as a 3D expansion of dendrogram,
with extended orthogonal merge. Each bicluster consists of group of rows (or samples) that
unfolds a highly-correlated schema with their corresponding group of columns (or attributes).
However, instead of performing two-way clustering independently on each side, we propose
a hierarchical biclustering algorithm which takes rows and columns at the same time to
determine the biclusters. Furthermore, we develop a model-based information criterion which
provides an estimated number of biclusters through a set of hierarchical configurations within
the forestogram under mild assumptions. We study the suggested framework in two different
applied perspectives, one in public transit domain, another one in bioinformatics field.

First, we investigate the users’ behavior in public transit based on two distinct infor-
mation, temporal data and spatial coordinates gathered from smart card. In many cities,
worldwide public transit companies use smart card system to manage fare collection. Analy-
sis of this information provides a comprehensive insight of user’s influence in the interactive
public transit network. In this regard, analysis of temporal data, describing the time of enter-
ing to the public transit network is considered as the most substantial component of the data
gathered from the smart cards. Classical distance-based techniques are not always suitable
to analyze this time series data. A novel projection with intuitive visual map from higher
dimension into a three-dimensional clock-like space is suggested to reveal the underlying tem-
poral pattern of public transit users. This projection retains the temporal distance between
any arbitrary pair of time-stamped data with meaningful visualization. Consequently, this
information is fed into a hierarchical clustering algorithm as a method of data segmentation
to discover the pattern of users. Then, the time of the usage is taken as a latent variable into
account to make the Euclidean metric appropriate for extracting the spatial pattern through
our forestogram.

As a second application, forestogram is tested on a multiomics dataset combined from dif-
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ferent biological measurements to study how patients and corresponding biological modalities
evolve hierarchically in each bicluster over the term of pregnancy. The maintenance of preg-
nancy relies on a finely-tuned balance between tolerance to the fetal allograft and protective
mechanisms against invading pathogens. Despite the well-established impact of development
during the early months of pregnancy on long-term outcomes, the interactions between vari-
ous biological mechanisms that govern the progression of pregnancy have not been studied in
details. Demonstrating the chronology of these adaptations to term pregnancy provides the
framework for future studies examining deviations implicated in pregnancy-related patholo-
gies including preterm birth and preeclampsia. We perform a multiomics analysis of 51
samples from 17 pregnant women, delivering at term. The datasets include measurements
from the immunome, transcriptome, microbiome, proteome, and metabolome of samples ob-
tained simultaneously from the same patients. Multivariate predictive modeling using the
Elastic Net algorithm is used to measure the ability of each dataset to predict gestational age.
Using stacked generalization, these datasets are combined into a single model. This model
not only significantly increases the predictive power by combining all datasets, but also re-
veals novel interactions between different biological modalities. Furthermore, our suggested
forestogram is another guideline along with the gestational age at time of sampling that
provides an unsupervised model to show how much supervised information is necessary for
each trimester to characterize the pregnancy-induced changes in Microbiome, Transcriptome,
Genome, Exposome, and Immunome responses effectively.
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ȳ(.) mean of cluster
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CHAPTER 1 INTRODUCTION

The rapid growth of data according to the progress of sensors and storage technologies
has been emerging in several different areas (Jain, 2010). Various sources can generate these
data, from the Internet search, digital videos, imaging and biological sequences to smart card
data used in public transit. Therefore many researchers and scientists from miscellaneous
fields such as mathematics, statistics, computer science, urban computing and planning, ma-
nagement, business, civil engineering, industrial engineering, Geographic Information System
(GIS), and biology have encouraged to concentrate on finding methods for grouping a set
of data (Jain, 2010; Everitt et al., 2011). The main purpose of extracting similar groups of
data without label information is to discover knowledge and interpret the high volume data
before deep analyzing the fine-grained components that are hidden in the underlying data.
In the most simplest way, clustering aims to ensure giving a coherent and complementary
big picture of a complex dataset to figure out what one can do with the data where every-
thing is intricate. In marketing, similar group of customers with similar commercial habits
or demographic can be found by clustering (Murray et al., 2017; Huang et al., 2007; Punj
and Stewart, 1983). In biology, grouping similar diseases, genes or phenotypes according to
the different level of measurements is easily carried out by clustering (Nugent and Meila,
2010; Ben-Dor et al., 1999; Eisen et al., 1998; Eren et al., 2013). In public transport and city
planning, clustering is used to identify similar users, passengers profiling, station grouping,
and infrastructure development (Pelletier et al., 2011; Carel and Alquier, 2017; Nin et al.,
2013; Galba et al., 2013; Vos and Witlox, 2013). Clustering has many other interesting ap-
plications in digital domain, such as document retrieval, image segmentation, recommender
systems, search engine, social networks, etc. (Orzechowski and Boryczko, 2016; Zamir and
Etzioni, 1998; Huang, 2008; Pal and Pal, 1993). The formation of coherent data as a unit
of cluster together could be carried out according to a measure of similarity which reflects
the relationships among the data. Thus the increase of data generation, in both capacity and
diversity, demands fundamental improvement in methodological and algorithmic methods
toward spontaneously realizing, processing and extracting the patterns underlying the data.

One of the most important and challenging tasks in machine learning, statistics and gene-
rally data analysis is grouping similar objects together (Kleinberg, 2003; von Luxburg et al.,
2012). In recent years, this task known as clustering, has arisen as a progressively impor-
tant research topic both in theory and application such as pattern recognition, data mining,
bioinformatics, computer vision, social network, etc. (Eisen et al., 1998; Madeira and Oli-
veira, 2004; Orzechowski and Boryczko, 2016; Tu and Honavar, 2008; Jain, 2010). Clustering
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analysis, due to the absence of the label information, is called unsupervised learning. Unlike
the other existing problems in this field, such as, classification or regression, in the study
of clustering analysis, there is no a priori knowledge available to identify the category label
information for the given data.

Unlike confirmatory methods that deal with validating the given assumptions of the mo-
del to the data, the purpose of exploratory methods, is to discover and extract groups of
data, known as data clusters, into interpretable and meaningful information to the specia-
lists (von Luxburg et al., 2012). Clustering is an exceptionally tough combinatorial problem
that belongs to the NP-hard class of computational complexity problems (Ackerman and
Ben-david, 2009). Indeed, it was shown that there is no clustering algorithm that is able to
preserve certain properties for data clustering (Kleinberg, 2003). In this regime, clustering is
more likely considered as an art rather than science (von Luxburg et al., 2012). To cope with
this difficulty, quite many different techniques were already suggested in plenty of contexts by
numerous researchers which demonstrate the broad necessity and appeal to the exploratory
data analysis problem (Jain, 2010).

Usually, there is no right or wrong clusters. Because evaluating a clustering algorithm
depends on why user does clustering and how the result of clustering can be used (von
Luxburg et al., 2012). In the case of low-dimensional data (ideally less than 4) by plotting
the data, we can distinguish the clusters in the data visually. However, recently, the advent
of high-dimensional data demonstrates the need for devising new algorithms to reveal the
clusters by exploring the data. Therefore, appropriate clustering criterion can be deployed
to extract suitable clustering assignment from the data to meet users’ demand. Clustering
algorithms are categorized into two groups: hierarchical and partitional (Jain, 2010). In the
former category, hierarchical methods try to find nested clusters recursively, while in parti-
tional approaches data are split into a non-overlapping division of subsets without any nested
procedure. Hierarchical methods are being used widely in applied projects, especially for pu-
blic transit (Patnaik et al., 2016; Wang and Yu, 2010) and bioinformatics (Pontes et al., 2015;
Madeira and Oliveira, 2004). In order to address these applications successfully, one of the
concerning questions that should be answered significantly is the estimation for the number of
clusters. Consequently, the cutting point on the dendrogram at certain height to illustrate a
set of major clusters existing in the hierarchical configuration has been a well-known problem
for decades. The majority of algorithms for this regard can be divided into distance-based
or model-based methods (Stahl and Sallis, 2012; Oh and Raftery, 2007; Farrar, 2006; Tan
et al., 2006; Izenman, 2008). Distance-based techniques are easy to understand and simple to
implement. On the contrary, model-based approaches are flexible and adapt to data pattern,
but are counter intuitive to implement. However some methods are developed for distance-
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based methods using cross validation (Tibshirani et al., 2001), or for model-based methods
using statistical asymptotic (Claeskens and Hjort, 2008). Our suggestion is to apply a simple
Bayesian hierarchical model that allows to apply the ratio of posterior predictive (Kass and
Raftery, 1995), as the standard model selection criteria. Hence, we develop a Model-based
Clustering that assumes a statistical model for clustering the data based on hierarchical
settings with promising results in real world applications (McLachlan et al., 2004).

Hierarchical clustering is a breakthrough in clustering, because of producing a visual
guide in the form of a binary tree, known as dendrogram. In addition, it requires little prior
knowledge, except for a dissimilarity measure (Johnson, 1967; Sokal and Sneath, 1963). The
dissimilarity measure is a positive semi-definite symmetric mapping of pairs of groups onto
the set of real numbers (Murtagh and Legendre, 2014). This measure, however, may not sa-
tisfy the triangle inequality unlike the distance (Murtagh and Legendre, 2014). Hierarchical
algorithms require a dissimilarity measure to merge clusters in order to build a nested struc-
ture of clusters. The common dissimilarities include single linkage (or nearest neighbors),
complete linkage (or farthest neighbors), average linkage, and centroid linkage (Murtagh and
Legendre, 2014) among others. There are two variants of hierarchical clustering methods de-
pending on the direction of the construction of the nested groups. Agglomerative clustering
starts with every observation as a singleton and consequently merges the closest clusters to
end up with all data in one cluster (Johnson, 1967). Divisive algorithms, on the contrary,
starts with all data in one cluster and splits the clusters until finishing with all singletons
(Everitt et al., 2011).

Clustering could be applied on public transit domain where everyday, thousands of people
travel (de Oña and de Oña, 2015; Ghasemzadeh et al., 2014; Hasan et al., 2012; Fuse et al.,
2012). Each time a smart card is tapped on the card reader, plenty of information is gathered
that possibly could lead analysts, engineers, managers and strategists to excavate, design,
decide, and plan more effectively based on the users behavior in this network (Dou et al., 2015;
Park et al., 2008; Kurauchi and Schmöcker, 2017; Pelletier et al., 2011). Investigating users
behavior according to the data is a nontrivial task. It requires sophisticated mathematical,
statistical, data mining and machine learning techniques to exploit the hidden patterns of the
stored data. Such data is dynamic and rigorously increasing because of population growth
and development of infrastructure. Moreover, affordable cost of public transit in comparison
to private car, especially, in the large cities, metropolitan areas and their suburb increases
the daily usage of this network. In this regard, we propose new methods of spatial-temporal
data analysis to investigate patterns of user’s behavior in public transit.

The importance of the public transportation and its influence in the real life of many
people in large cities around the world rises a new family of problems that is not confined
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into a particular branch of science (Weisbrod and Reno, 2009). Hence, usage of the smart
card data creates the opportunity for several different researchers from diverse disciplines
e.g. data mining, machine learning, urban computing and planning, management, business,
civil engineering, industrial engineering, statistics, mathematical engineering, GIS, etc. to
outreach and extend their methods to analyze the data for the public transport authorities
(Weisbrod and Reno, 2009; Gallotti and Barthelemy, 2015; Fuse et al., 2012; Ortega-Tong,
2013; Lathia et al., 2010).

Despite extensive researches have been done on public transportation domain, various
obstacles have been arisen for specific purposes which require particular approaches to address
them. In this study, a recent problem of clustering the similar users is introducing according
to the spatial-temporal data gathered from smart cards to analyze the user’s behavior in the
public transport network.

Smart card data, contains worthwhile digital information of daily locations visited at
certain period of a large number of individuals. The wealth of collected data down to a
single time, and location resolution creates fundamental challenges that require a mix of
analytical, algorithmic, and statistical techniques (Pelletier et al., 2011). Beside other sources
of information such as mobile phone, GPS tracker vehicle, e.g. bike, car, motorcycle, credit
card transactions, social network, and many other sources of information gathering, smart
card data is the best promising source of users digital information (Hasan et al., 2012). Thus
this helpful information could be utilized to characterize and model urban mobility patterns
(Hasan et al., 2012). Other useful information such as travel time and number of passengers
for the sake of congestion analysis and planning improvement, could be possibly extracted
as well (Fuse et al., 2012).

From a different perspective, high-throughput technologies such as cell-free RNA, plasma
luminex, serum luminex, immune system, metabolomics, and plasma somalogic have been
recently studied for different biological researches e.g. aging, recovering from surgery, stroke,
pregnancy, cancer, etc. in order to provide statistical predictive models for diagnosis, prog-
nosis and therapy (Clarke et al., 2008; Yau et al., 2016; Dey et al., 2017; Ji and Liu, 2010).
Every single biological dataset consists of hundreds or thousands of highly correlated mea-
surements for each sample so that extracting meaningful biological information from these
high-dimensional datasets through statistical techniques delivers tremendous insights for bio-
logical investigators (Schwenk et al., 2010; Bendall et al., 2011; Kang et al., 2008; Sreekumar
et al., 2009; Miyagi et al., 2010; Katz et al., 2016; Romero et al., 2017; Clarke et al., 2008).
Devising, designing and implementing statistical data analysis methods make the biologists
better comprehending the role of certain group of genes, proteins, and many other biological
measurements intuitively to address the critical questions in drug development, treatment
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strategy, gene signaling pathway, etc (Miller et al., 2008). Toward the goal of making the
sense of data for biologists, visualization plays a central role especially for displaying hierar-
chical structures. Hierarchical clustering and its applications are familiar to many biologists
so that pairwise relationships between data points are represented by a rooted binary tree.
This kind of clustering is widely used for evolutionary analysis of sequence history e.g. phylo-
genetic sequencing, gene expression patterns, DNA microarray expression, etc. (Eisen et al.,
1998; Clarke et al., 2008; Miller et al., 2008; Xu and Wunsch, 2005). Intuitive illustration of
groups without complicated assumptions about the intrinsic of the data distribution, along
with the effective computational complexity make the hierarchical approach the first choice
for analyzing biological data (Eisen et al., 1998).

The main goal of this thesis is the development of forestogram framework for hierarchical
biclustering with the applications in public transit and bioinformatics. In practical applica-
tions, a method that is easy to understand by people is desirable. Hierarchical clustering is
an intuitive method of clustering for many people in industrial engineering and bioinforma-
tics. Additionally, binary tree representation known as dendrogram is easy to elaborate the
result such that the result interpretation is easy enough to provide a descriptive summary
of the data. In public transit domain, we often deal with two types of distinct information,
temporal and spatial. For the temporal data that are similar to time series data, the hie-
rarchical clustering techniques are not suitable because off-the-shelf distance metrics are not
designed for binary vectors. To this end, we first suggest a projection technique to map a long
binary vector of temporal usage into three dimensional space which retains the proximity of
pairwise similarity. For the next step, we take the temporal information as a latent variable
to extract the spatial-temporal patterns from the data such that Euclidean metric becomes
feasible because of geodesic property of GPS location history. In the context of multiomics
analysis of gestational age prediction, we suggest to analyze each dataset separately to show
how each biological measurement is influencing the term of pregnancy. For the integrative
model, we suggest the stacked generalization and forestogram approaches for supervised and
unsupervised integrative data analysis.

In Chapter 4, we address the biclustering problem in general and as an extension to
the idea of model-based hierarchical clustering in particular where we have a matrix that
consists of rows and columns such that grouping of both sides is the case of interest. This is
a variant of normal grouping of data but instead of only similar groups of samples, a block
of submatrix with subjects that are highly correlated with features forms the biclusters.
Analogous to the conventional linkages for hierarchical clustering, we suggest a bilinkage
dissimilarity measure for constructing a hierarchical setting for these biclusters. Consequently,
we also develop forestogram visualization technique similar to dendrogram with one extra
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dimension to emphasize the direction of the merge when switches from row to column or
vice-versa. Then we elaborate how to find the number of representative biclusters on the
forestogram by making a subtle connection from hierarchical fashion to the model based
setting. This way, Bayesian viewpoint helps us estimating this number by deploying FORIC
that is a kind of information criterion trick motivated by Bayesian Information Criterion
(BIC). Then this framework is tested on synthesized, plus real world instances such as public
transit, and biological datasets. Promising results from simulation and empirical studies turn
out that forestogram outperforms almost all rival techniques comparing with histogram and
a number of similar methods.

In Chapter 5, first we introduce a temporal projection that maps a high-dimensional
binary vector corresponding to the hourly usage of public transit into a space of three di-
mension with a semi-circle shape. This ad-hoc projection is exclusively designed to mimic the
clock as a clue for temporal data with a number of interesting mathematical properties that
retains the similar users close by. Despite many metrics defined for computing the distance
between an arbitrary pair of data, such as Euclidean, Manhattan, Hamming, etc. none of
them satisfies the relations for temporal binary vectors. To this end, our suggested projection
meets certain properties that are suitable for analyzing the temporal public transit data. One
of the most interesting advantages is the visualization scheme so that makes it easy for trans-
port analysts to better understand how a hierarchical clustering model works on top of this
projection. Furthermore, adding the spatial data which represents the geographical location
history for associated time-points, enables the modified version of forestogram to specify the
spatial-temporal user behavior through the standard Euclidean metric. These methodologies
are inspired by the Société de transport de l’Outaouais data with successful results that are
present in the experiment section.

Chapter 6, is devoted to the integrative clock of human pregnancy in three trimesters
before delivery and postpartum with seven multiomics measurements to investigate the level
of changes in these datasets over the term of pregnancy. The goal of this study is to find si-
gnificant features that are correlated with gestational age in three trimesters before delivery.
We develop an algorithm which determines the significant correlated features leading the
gestational age on each dataset apart at first step, then an integrative step is implemented
in two different levels, features pool and predictions stack. In the feature level, all datasets
together make a holistic model for all patients, while the stack generalization outlook takes
the independent predictions from each single dataset as a new feature to predict the gesta-
tional age. Moreover, due to the ethnicity and particular specifications of women, different
features could affect certain patients toward predicting the gestational age. We compare the
performance of forestogram as an unsupervised biclustering technique with the elastic net
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(Zou and Hastie, 2005) as a supervised variable selection regression method to figure out how
much supervised information is necessary toward predicting the trimesters of gestational age
in addition to the important features that are correlated with the clock of pregnancy.
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CHAPTER 2 LITERATURE REVIEW

2.1 Hierarchical Clustering

The number of ways for partitioning a set to examine all possible clustering increases ex-
ponentially in terms of the number of data points and grouping. In this regard, hierarchical
clustering algorithms are designed to discover the underlying clusters in a given dataset effi-
ciently. Looking for a reasonable setting of clusters without refining all possible combinatorial
assignments is made possible through hierarchical algorithms (Rencher, 1998).

Agglomerative hierarchical clustering consists of a bottom-up sequential process so that
the number of clusters shrinks by starting from all singleton clusters whereas the volume
of clusters grows gradually by ending up in one cluster surrounding all. In contrast, top-
down divisive approach is the opposite viewpoint where a single cluster contains all data
points in the beginning then splits into two groups in the next step. The end result of
the divisive method is exactly the same as the start point of the agglomerative algorithm
(Everitt et al., 2011). For better understanding the mechanism of constructing a dendrogram
as a visualization technique for hierarchical clustering, an example is shown in Figure 2.2
where two separable classes of univariate data are given in Figure 2.1.

Figure 2.1 A univariate example of 5 data points.

In Figure 2.2 a simple example is shown where in the beginning, we have 5 clusters such
that every single data point constitutes the finest clusters (each data point is a singleton
cluster) see Figure 2.2(a). As it could be seen in Figure 2.2(b), data A and B are the most
proximate pair of data that are agglomeratively combined together to create a new cluster at
this step. Then, data point C joins the newly formed cluster, i.e. (A,B) as the closest cluster
among the remaining ones in Figure 2.2(c). In the next step in Figure 2.2(d), (D,E) pair
are merged together to form a new cluster. Then eventually, after combination of (D,E) to
((A,B), C) we get the coarsest cluster to the given set (all data points in one cluster).

Bottom-up approach is easy to form the hierarchy of clusters based on a dissimilarity
measure in comparison to top-down method which requires a priori knowledge about the
structure and shape of clusters. Having little prior knowledge, except for the dissimilarity
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(a) (b)

(c) (d)

Figure 2.2 Step by step demonstration of agglomerative hierarchical clustering.

measure is one of the advantages of hierarchical clustering algorithms. The dissimilarity
measure is a positive semi-definite symmetric mapping of pairs of groups onto the set of
real numbers. This measure, however, may not satisfy the triangle inequality unlike the
distance. The common dissimilarity measures include, single linkage or nearest neighbours
(Florek et al., 1951; Sneath, 1957; Johnson, 1967), complete linkage or farthest neighbours
(Sørensen, 1948), average linkage (Sokal, 1958), centroid linkage (Eisen et al., 1998), median
linkage, and Ward’s linkage or minimum variance (Murtagh and Legendre, 2014).

In Chapter 4 we extend the definition of dissimilarity measure in the form of bilinkage
such that the hierarchical biclustering can be constructed to illustrate the nested structure
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of block-clusters by the associated forestogram. Apart from a pair of biclusters with dissimi-
larity measure that should be merged together, direction of the merge is also necessary for
forestogram to show how a pair of block-clusters is correlated.

Here we briefly introduce the existing linkages for hierarchical clustering so that bilinkage
can be define respectively. In the following notation, yi ∈ Rp represents a data point belonging
to a certain cluster, d(yi,yj) is the Euclidean distance, then the squared Euclidean distance
using norm ||.|| can be defined as d2(yi,yj) = ||yi−yj||2 = ∑p

k=1(yik−yjk)2, and ||Ci|| refers
to the number of data points in the cluster Ci. Figure 2.3 elaborates the role of each linkage
on a random dataset.

2.1.1 Single Linkage

Early single linkage, also known as the nearest neighbor clustering, is one of the oldest and
most famous of the hierarchical techniques that is developed by (Florek et al., 1951; Sneath,
1957; Johnson, 1967) which assumes no cluster shape to produce more dense, and chain-like
clusters. Single linkage tends to merge close data points or singleton clusters together due
to the early merge of two partitions ; this undesired property is known as chaining effect see
Figure 2.3(a). In other words, a chain of singleton clusters can be extended for long distances
against the general form of the cluster. In the single linkage, the distance between two disjoint
clusters C1 and C2 is defined as,

Dsingle(C1, C2) = min
yi∈C1,yj∈C2

d(yi,yj)

2.1.2 Complete Linkage

Complete linkage, also known as furthest neighbor or maximum method, is initiated
by Sørensen (1948) that roughly produces clusters with almost equal diameters. Complete
linkage suffers from the opposite drawback of single linkage problem. If data contains outliers
the complete linkage may not combine two proximate clusters in the appropriate order of
merge in the hierarchical path see Figure 2.3(b). In the complete linkage, the distance between
two disjoint clusters C1 and C2 is defined as,

Dcomplete(C1, C2) = max
yi∈C1,yj∈C2

d(yi,yj)

2.1.3 Average Linkage

Average linkage, also called the weighted pair-group method, is suggested as a trivial
compromise between the single linkage and the complete linkage in Sokal (1958). Average
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linkage prefers combining clusters with small variances that can be figured out as clusters with
the same variance (Sokal, 1958). In the average linkage, the distance between two disjoint
clusters C1 and C2 is defined as,

Daverage(C1, C2) = 1
|C1| |C2|

∑
yi∈C1

∑
yj∈C2

d(yi,yj)

2.1.4 Ward Linkage

Ward’s linkage minimizes the total within-cluster variance by a weighted squared distance
between cluster centers. Ward’s method merges clusters to maximize the likelihood at each
iteration where spherical covariance matrices is deemed see Figure 2.3(d). Merging pair of
clusters with few samples is what preferred by Ward’s method to generate balanced size
clusters (Milligan, 1980). In the Ward’s linkage, the distance between two disjoint clusters
C1 and C2 is defined as,

DWard(C1, C2) =
∑

yi∈C1∪C2

||yi − ȳ(C1 ∪ C2)||2 −
∑

yi∈C1

||yi − ȳ(C1)||2 −
∑

yi∈C2

||yi − ȳ(C2)||2

= |C1| |C2|
|C1|+ |C2|

||ȳ(C1)− ȳ(C2)||2

where ȳ(C1) and ȳ(C2) are the mean vectors of clusters C1 and C2, respectively.

2.1.5 Centroid Linkage

Centroid linkage, also referred to as the unweighted pair-group centroid method, simply
minimizes the squared Euclidean distance between cluster means and is less sensitive to
outliers in comparison to the other linkages (Milligan, 1980). In the centroid linkage, the
distance between two disjoint clusters C1 and C2 is defined as,

Dcentroid(C1, C2) = ||ȳ(C1)− ȳ(C2)||2

2.1.6 Median Linkage

Median linkage, also called the weighted pair-group centroid method, is a variation on
centroid linkage which defines the distance between two clusters as the weighted distance
between their centroids. This weight is corresponding in size to the number of samples in
each cluster. This method is only used with Euclidean distance. This linkage can be used
for downweighting the effect of outliers by using the median instead of the mean see Figure
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2.3(c). In the median linkage, the distance between two disjoint clusters C1 and C2 is defined
as,

Dmedian(C1, C2) = ||ỹ(C1)− ỹ(C2)||2

where ỹ(C1) and ỹ(C2) are the medians of clusters C1 and C2, respectively.
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(a) Single linkage
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(b) Complete linkage.
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(c) Median linkage.
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(d) Ward’s linkage.

Figure 2.3 Dendrograms corresponding to the four different linkages in hierarchical clustering
applied to random data. As it is shown in Figure 2.3(c) monotonicity property is not satisfied
for all linkages.
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2.1.7 Properties of hierarchical algorithms

Properties of hierarchical algorithms are usually expressed as (i) Lance-Williams, (ii) Mo-
notonicity, and (iii) Space Distortion (conserving, contraction, or dilating) (Rencher, 1998).
Lance-Williams property is discussed with more details in Chapter 4 with its extension for
forestogram framework.

Monotonicity property of clustering states that a cluster is not allowed to get merged with
another cluster at a height that is less than the height of the previously combined clusters.
This also is referred to as ultrametric which inspires the separability assumption for our
developed forestogram in the context of extended hierarchical algorithms for biclustering.
In Figure 2.3(c) median linkage as an example of nonmonotonic is shown, similarly with a
counter example one can demonstrate centroid is not monotonic either.

Properties of the space of distances can change after creation of clusters. Clustering al-
gorithm is space-conserving if the spatial properties always stay intact, otherwise the space
can be either contract or dilate in the sense of changes occur to the distances between any
arbitrary pair of data points. The tendency of a singleton clusters to join the newly crea-
ted cluster is called contraction, while the opposite behavior is known as dilating. In space
contracting algorithms, larger clusters frequently appear after each merge, so that singletons
eventually combine with non-singleton large clusters. For the space-dilating algorithms we
expect to have more new clusters rather chaining property (Rencher, 1998). In this fashion,
singleton clusters are more likely to join the other singleton clusters rather than with non-
singleton ones. Let’s consider three clusters, Ci, i ∈ {1, 2, 3}, where the pairwise distances are
defined as,

D(C1, C2) < D(C1, C3) < D(C2, C3) (2.1)

If the equation in (2.1) is not held, the clustering algorithm is space-contracting. Space-
conserving algorithm does meet the conditions in equation (2.2).

D(C1, C3) < D(C{1,2}, C3) < D(C2, C3) (2.2)

And space-dilating algorithm does not satisfy the equation (2.2).
The hierarchical algorithm with single linkage is prone to space-contracting tendency be-

cause of violating the first inequality D(C{1,2}, C3) = min {D(C1, C3), D(C2, C3)} = D(C1, C3),
therefore single linkage is not preferred in many fields see Figure 2.3(a). On the other hand,
complete linkage is in the class of space-dilating algorithms because of violation of the second
inequality D(C{1,2}, C3) = max {D(C1, C3), D(C2, C3)} = D(C2, C3) correspondingly new clus-
ters are more likely to be seen at each iteration see Figure 2.3(b). Other hierarchical linkages
are often somewhere in between single linkage and complete linkage, e.g. centroid linkage and
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average linkage algorithms are more biased to space-conserving, however Ward’s linkage is in
favor of space-contracting see Figure 2.3(d) (Rencher, 1998). The mentioned space properties
provide a clue for considering how likely a dendrogram one can expect in terms of balanced
or unbalanced group of homogeneous data.

Furthermore, stability and convergence of hierarchical clustering algorithms are discussed
in Carlsson and Mémoli (2010). Hartigan consistency is reviewed in Eldridge et al. (2015)
as a framework for analysing the hierarchical clustering. Then merge distortion metric is
suggested in order to alleviate the over-segmentation and improper nesting with two limited
properties, separation and minimality (Eldridge et al., 2015).

2.1.8 Model-based cluster estimation

The majority of clustering algorithms can be divided into distance-based methods or
model-based methods. Distance-based techniques are easy to understand and simple to im-
plement. On the contrary, model-based approaches are flexible and adapt to complex data
patterns, but are counter intuitive to implement. In model-based clustering a family of sta-
tistical models is considered for data. Estimating the number of clusters in both approaches
is a complex problem. However, some methods are developed for distance-based methods
using cross validation (Tibshirani et al., 2001), or often asymptotic model selection criteria
is used (Claeskens and Hjort, 2008). Estimating the number of clusters through cutting the
dendrogram at certain height, is equivalent to find a tangible gap on the height of the dendro-
gram for a natural grouping. An approximate model selection criteria such as AIC (Akaike,
1973) or BIC (Schwarz, 1978) can be applied to cut the dendrogram if a statistical model
is used to produce the nested clusters (Heller and Ghahramani, 2005; Heard et al., 2006).
We further extend the idea of model-based cluster estimation in Chapter 4, for finding the
number of biclusters on our suggested forestogram. We suggest a model selection method
which finds the cutting point of the forestogram automatically. In order to achieve this goal,
suppose that θ is the associated parameter of the clusters. It turns out that f(y|θ) is the
likelihood of the data if θ was known exactly. As far as, θ has not yet known, and grouping
of the data is our main concern rather than the value of θ, the predictive distribution of the
data can contribute to find the optimal cluster assignments. The solution of this predictive
distribution is computed by marginalizing the likelihood of the data multiplied by prior dis-
tribution of θ over the clustering parameter, i.e. p(y) =

∫
f(y|θ)f(θ)dθ. This resembles a

BIC criterion whose optimal number of clusters is found by computing it over all levels of the
tree on a given forestogram. The marginal provides a measure of a merge that is supported
by the model if increases for that merge. This way forestogram can decide how to cut the
forestogram.
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2.1.9 Biclustering

One of the desired goals in data analysis for an arbitrary multivariate dataset is to find
barycentric relations for the hidden structure among subjects and their corresponding attri-
butes (Govaert and Nadif, 2013). Finding the partitions of rows and columns at the same
time is known as biclustering, however, in the literature is also referred to as two-mode clus-
tering, coclustering, simultaneous clustering, two-way clustering, or two-side clustering, block
clustering (Govaert and Nadif, 2013). Since the late 90s, biclustering has been the term most
widely used in bioinformatics (Govaert and Nadif, 2013). The simple and easiest way for bi-
clustering is to perform a clustering algorithm to both sides, rows and columns independently
to find the relevant blocks. Since for multivariate data analysis, columns of the matrix are
generated from the samples located on the rows, independent clustering of rows and columns
is not statistically significant for real world problems. After unfolding the relations among
the correlated rows and columns, visualizing the simultaneous partitions is the next issue
that should be addressed for biclustering problem. Heatmap is a conventional visualization
method to display a matrix in terms of biclustering. Although heatmap applies hierarchical
clustering on rows and columns independently, but it provides a good visualization scheme
that is easy to understand. Independent dendrograms on row and column demonstrate a
biclustering visualization where the intersection of row clusters in conjunction with that of
column illustrates the structure of blocks underlying the data.

Despite the complicated nature of biclustering, this viewpoint to unsupervised partitio-
ning has been arisen in many applied fields such as topic modeling in natural language
processing whose goal is to extract the topics from the corpus of documents (Rugeles et al.,
2017; Orzechowski and Boryczko, 2016), web mining to reveal the web pages that are vie-
wed by certain group of people (Rathipriya and Thangavel, 2014), recommender system and
marketing as a general class of problems where a shared behavior among group of people
is the case of interest (Wang et al., 2015; Alqadah et al., 2015), bioinformatics to gene ex-
pression profiling for molecular, cell or tissue in biological measurements (Eisen et al., 1998;
Eren et al., 2013), manufacturing systems to show how the processing time and available
machines as resources are interacting together (Boutsinas, 2013; Liiv, 2010), public transport
for evaluating the most important roads in the network (Freiria et al., 2015; Owens, 2009) etc.
Toward the meaningful biclustering viewpoint that aims at finding a block of correlated rows
and columns, pairwise distance known as dissimilarity matrix plays a central role in classical
approaches. The modern methods can be divided into three categories: (i) Bayesian approach:
this perspective assumes a prior distribution over the statistical parameters of model (Gu
and Liu, 2008; Martella et al., 2008; Zhang, 2010) ; (ii) Frequentist aspect: in this view the
statistical model underlies fixed unknown parameters, such as mixture models (Lazzeroni and
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Owen, 2002) ; and (iii) Matrix approximation view: this approach reconstructs the original
matrix by multiplying two low-rank matrices where the first multiplicand and the second one
reflect the cluster assignment of subjects and attributes, respectively (Donoho and Stodden,
2004; Ding et al., 2005; Arora et al., 2012; Wang and Zhang, 2013; Gillis, 2011; Klingenberg
et al., 2009; Cai et al., 2008; Lee and Seung, 2000).

Most of the biclustering algorithms are developed based on fixed number of biclusters
that ask the user to manually gives this information to the algorithm. In many applications,
determining the number of biclusters is another issue that needs to be handled by the algo-
rithm itself. The pattern that biclustering algorithm is seeking to find falls into three main
categories namely, constant, additive and multiplicative. The pattern of equal values consti-
tutes the constant model. If the rows and columns share an additive factor then the pattern
is denoted by additive term, while the multiplicative model requires multiplicative factors to
represent the bicluster pattern. Similarly, it is not hard to imagine a pattern that integrates
these three different models to define the bicluster notion. From the statistical point of view,
a pattern consisting of the correlation between rows and columns is preferred (Madeira and
Oliveira, 2004). Since there is no concrete choice for defining a bicluster, the criterion for
identifying a submatrix as a bicluster is problem dependent. In this regard, there is no al-
gorithm that is able to detect all variations, thus for a particular problem or certain type of
data, we need to design a new procedure to account for the required specifications. To this
end, we design the forestogram framework for computing and visualizing the hierarchical bi-
clustering introduced in Chapter 4 with successful results in two major fields (Ghaemi et al.,
2017c). In the following, we go through the definition, specification, and goals of biclustering
and related research works in public transport and bioinformatics.

2.2 Application

In a number of complex systems such as public transit network, biological sequencing
and in general time series observations, similar groups are expressed in a nested hierarchical
structure (Tumminello et al., 2010; Aghabozorgi et al., 2015). According to the intrinsic
seasonal trend that repeats itself systematically over time, subclusters of homogeneous entities
can be found in the underlying data up to a certain level. Moreover, often, in real world
time series clustering analysis, determining the number of exact similar groups is a tough
issue. For this reason, hierarchical approaches are one of the common choices for time series
clustering in addition to the strength of visualization power in terms of binary dendrogram
tree (Aghabozorgi et al., 2015; Van Wijk and Van Selow, 1999; chung Fu, 2011).
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2.2.1 Public Transport

The importance of the public transportation and its influence in the real life of many
people in large cities around the world, rises a new family of problems that is not confined into
a particular branch of science. Hence, usage of the smart card data creates the opportunity for
several different researchers from diverse disciplines e.g. data mining, machine learning, urban
computing and planning, management, business, civil engineering, industrial engineering,
statistics, mathematical engineering, geographic information system (GIS), etc. to outreach
and extend their methods to analyze the data for the public transport authorities. Figure
5.14 shows a typical public transit network including users, buses, and subway lines.

Bus
stop

Subway 
station

Figure 2.4 A typical public transit network.

Despite extensive researches have been done on public transportation domain, various
obstacles have been arisen for specific purposes which require particular approaches to address
them. Here we review a recent concerning problem of clustering the transit users according to
the spatial-temporal data gathered from smart cards to analyze their behavior in the public
transit network.

Smart card data, contains worthwhile digital information of daily locations visited at
certain period of a large number of individuals (Pelletier et al., 2011). Beside other sources of
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information such as mobile phone, GPS tracker vehicle, e.g. bike, car, motorcycle, credit card
transactions, social network, and many other sources of information gathering, smart card
data is a promising source of users digital information. Thus, this helpful information could
be utilized to characterize and model urban mobility patterns (Hasan et al., 2012). Other
useful information such as travel time and number of passengers for the sake of congestion
analysis and planning improvement, could be possibly extracted as well (Fuse et al., 2012).

Smart card data, usually provides two distinct information ; spatial and temporal (Pel-
letier et al., 2011). Spatial data consists of coordinates of the bus stop e.g. latitude and
longitude that could be GPS data or relative values. Temporal data describes the time each
trip is taken, this information could be encoded in a 0 − 1 vector, where start of the trip is
indicated by 1. According to these information, analyzing users behavior is divided into three
categories, 1) Spatial patterns, 2) Temporal patterns and 3) Spatial-Temporal patterns.

1. In the first case, methods of analyzing spatial pattern, are taking the bus/subway
stop’s information into account. It turns out measure of behavioral pattern only de-
pends on the location of stops, taken by the users rather than having known the
starting hour of their trip.

2. The second methods seek the information pertinent to the temporal data associated
to the public transport usage. Consequently, computing user similarity score is carried
out regardless of geographical information. The indices of 1 occurrences in the encoded
vector, are playing the central role in this approach.

3. The third scenario, is a mixture of the spatial and the temporal data, called spatial-
temporal data analysis to investigate users’ behavior. It could be viewed as a combina-
tion of the last two steps or an independent approach to recognize the spatial-temporal
behavioral pattern in the public transport domain.

Hierarchical algorithms have been used as an unprecedented clustering method on spatial-
temporal public transit data, such as shared bicycle policy analysis (Lathia et al., 2012), traffic
mining (Froehlich and Krumm, 2008), spatial-temporal clustering for congestion patterns
detection in urban road network (Anbaroglu et al., 2014), rush hour motorcycle flow data
analysis in Taipei City, Taiwan (Feng et al., 2014). Shirui (2016) uses hierarchical clustering
for visual analysis of the spatial-temporal traffic flow patterns generated from transport hubs
in Shanghai. Divisive analysis clustering is suggested for classification of large amount of
speed data collected from GPS receiver in India (Patnaik et al., 2016). Hierarchical methods
show successful result in extracting the temporal patterns from the trip data through the
Beijing subway system to characterize individual passenger movement patterns (Xu et al.,
2016).
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2.2.2 Bioinformatics

Nowadays, according to the emerge of promising technologies such as genomic and pro-
teomic, and metagenomic developing modern tools and powerful algorithms is extremely
necessary (Clarke et al., 2008; Huber et al., 2015; Tyanova et al., 2016). Therefore, extrac-
ting the knowledge from these multiomics biological dataset, can help improving the level of
human health (Conesa et al., 2016; Norris et al., 2017; Ritchie et al., 2015). There are three
main approaches to address this issue in order to analyze the biologically relevant knowledge,
supervised, unsupervised and semi-supervised (Serra et al., 2015; Maetschke et al., 2013).
For supervised viewpoint, we have to spend fairly huge amount of financial budget to asso-
ciate a label to each sample with respect to certain disease or health related problems (Zhao
et al., 2008). However, from the unsupervised perspective regardless of the case study, we
can provide a general knowledge about the interaction of certain biological measurement and
patients for studying the racial, epidemiological, environmental, sociodemographic, etc. fac-
tors that may have causal effect or correlation with a number of common diseases or medical
conditions. Moreover, unsupervised preprocessing the data can affect the future supervised
analysis by adjusting the noise level or removing the outliers (Huang et al., 2017). Additio-
nally, semi-supervised methods that are considered as a combination of formerly introduced
approaches can be used effectively in the case of scarcity of the labels (Hassanzadeh et al.,
2016). In this work, we aim to analyze the pregnancy across diverse multiomics profiling
technologies according to supervised information expressed as gestational age and unsuper-
vised way to investigate the biological relations between the multiomic measurements and
patients that are sampled in three different trimesters of pregnancy. In this regard we choose
the generalized linear model via penalized maximum likelihood as a method of supervised
variable selection to predict the gestational age. Furthermore, we investigate the performance
of forestogram for biclustering task where unsupervised selected variables correlated with pa-
tients can show how much supervised information contributes to the prediction of pregnancy
trimesters.
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CHAPTER 3 RESEARCH APPROACH AND STRATEGY

In this chapter, we review the main goals of the forestogram framework for hierarchical
biclustering to outline how the suggested methodological development can be investigated
through the applied projects as the contributions of this research. Then this research metho-
dology and its application are justified by presenting a big picture of two applied projects in
public transit and bioinformatics in addition to a general purpose methodology with publi-
shed and submitted journal articles.

Finding a tractable solution for NP-hard problems with reasonable approximation is a
fundamental question in theoretical development of a new methodology. While collecting su-
pervised information for a dataset potentially incurs fairly huge overload of budget to any
research project, devising new techniques for analyzing the data becomes viable through un-
supervised learning. Grouping similar patterns for a given dataset without human knowledge
is considered as a big advantage toward smart data analysis. In this regard, clustering is
the first choice that exists for knowledge discovery from the data without label information.
However, clustering is an optimization problem which falls into the NP-hard class of algo-
rithms that requires a good approximation to solve the problem efficiently. Among the two
approaches for clustering, we propose the hierarchical methods as an informative outlook for
experts to consider for unsupervised grouping of data that provides a general perspective of
formation of the clusters incrementally. Despite appealing visualization guide for clustering
that hierarchical algorithms deliver to the users, determining the number of clusters according
to this abstraction of groups is not trivial. Moreover, for many applied projects only grouping
of samples is not enough. For high dimensional datasets, grouping of the attributes is another
important question that is already addressed in terms of supervised learning such as feature
extraction, sparsifications, dimension reduction and variable selection. These questions, e.g.,
grouping of observations, selecting the variables, number of groupings and visualization of
the result can be addressed separately in the context of independent projects. Since, each
question eventually has an estimated solution, the overall solution as a sequence of diverse
algorithms is highly prone to diverge from the optimal solution. Therefore, designing a unified
framework based on concrete foundation reduces the risk of approximation error while makes
it easy to analyze the algorithm and the mathematical properties to describe the problem.

Research Questions
The main objective of this research is to develop a general purpose methodology for

biclustering with hierarchical aspects. In Figure 3.1, a big picture is given to show how
we define two applications with relevant links to our developed forestogram framework for
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biclustering. In the following, we answer a number of research questions from methodological
and applied viewpoints,

RQ1: Why do we suggest hierarchical clustering approach for the applied
projects ?

In practical applications, a method that is easy to understand by people of the field that
are already familiar with is hierarchical clustering. For many people in industrial engineering
and bioinformatics, hierarchical methods are easy to understand because of the greedy ag-
glomerative nature of the algorithm and its visualization power. This way, expert people can
feel more comfortable to use the algorithm because they understand the mechanism which
produces the result in the background. Additionally, the binary tree known as dendrogram
elaborates the result such that interpreting the result is easy enough to provide a descriptive
summary of the data.

RQ2: How can we figure out the number of clusters for a given data ?
This is a major question in hierarchical clustering. Basically, dendrogram demonstrates

a good overview of the shape and relation of the clusters through a hierarchical abstraction
where the height of each merge denotes the dissimilarity of the newly formed clusters. Howe-
ver, for complex data with high dimension this is not the best solution. Moreover, for some
scenarios there would be more than one apparent cut on the tree so that determination of the
estimated height to cut the tree is necessary. We introduce an information criterion measure
to determine the significant number of groups in the hierarchical setting called FORIC to
help data analysts finding a relevant point for cutting the dendrogram or forestogram.

RQ3: How can we illustrate the result of clustering ?
Dendrogram is a conventional mode to expose the hierarchical structure of the clusters

in terms of binary rooted tree. However, dendrogram is capable of presenting the result for
grouping of samples. If one is interested to explore the relation of samples and attributes
simultaneously, we suggest to add an extra orthogonal merge to the tree to represent the
merge between two different groupings coming from observations and corresponding features.
The advantage of this visualization is to conform the notion of dendrogram in the augmented
space.

RQ4: What is the best way to aggregate both clustering and variable selec-
tion ?

Traditionally, after variables are selected by preprocessing the data, clustering algorithms
are performed on the altered data. Theoretically, analysis of this two step procedure is not
well understood since variable selection and clustering methods are not coherently developed
from the same principals. We suggest to group samples and features with the same algorithm
so that comprehension of the algorithm is still easy to understand yet provides a unified
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framework to study the properties of the method for explaining the extracted biclusters.
RQ5: Why is model based clustering the best approach for biclustering ?
We are seeking a unified framework to perform the biclustering so that inference could be

done meaningfully. We prefer model-based clustering so that the uncertainty of the method
is quantifiable. Moreover, a model provides a link to connect sample clustering to feature
clustering. In addition, the model has enough flexibility to answer more questions such as the
number of clusters, importance of clusters and modularity of the data by simple inference on
the model. For instance, to determine the number of clusters, we marginalize the clustering
parameter defined in the model to derive the predictive distribution. Therefore, we can iden-
tify the cutting point on the dendrogram or forestogram by computing the optimal posterior
empirically through the data. This way, the model allows the data to lead the algorithm to
answer any question pertinent to the clustering problem.

RQ6: How can we use hierarchical clustering in the public transit domain ?
For hierarchical algorithms, we need to define a dissimilarity measure as the input para-

meter. However, in public transit data, we often deal with two types of distinct information,
temporal and spatial. For the temporal data that are similar to time series data, the nor-
mal hierarchical clustering techniques are not suitable because off-the-shelf distance metrics
are not designed for binary vectors. To this end, we first suggest a projection technique to
map a long binary vector of temporal usage into three dimensional space which retains the
proximity of pairwise similarity. Additionally, this projection helps better understanding the
temporal patterns visually on a semi-circle trajectory. For the next step, we take the tempo-
ral information as a latent variable to extract the spatial-temporal patterns from the data
such that Euclidean metric becomes feasible because of geodesic property of GPS location
history. By the temporal projection and modification of spatial-temporal distance, we can
use the designed forestogram to find the similar group of public transit subscribers with the
underlying spatial and temporal patterns. It is worth to mention that, with the suggested
FORIC, we can also identify the number of similar groups of people in the transit network
as well as the number of existing patterns.

RQ7: How can we integrate multiomics datasets for pregnancy ?
First of all, we address the issue of pregnancy in terms of seven independent multiomics

dataset. We analyze each dataset separately to show how each biological measurement is
influencing the term of pregnancy. For the integrative model, we suggest the stacked genera-
lization and forestogram approaches for supervised and unsupervised integrative data ana-
lysis. According to our experiments, the first two trimesters of pregnancy need supervision
information for accurate prediction by a classifier algorithm, while forestogram is empowe-
red to uncover the third trimester in pregnancy. The main advantage of forestogram is that
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the visualization comes with the method which provides a profound insight for biologists to
investigate the interaction of different omics with three terms of pregnancy. We perform a
multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The data-
sets include measurements from the immunome, transcriptome, microbiome, proteome, and
metabolome of samples obtained simultaneously from the same patients. Pregnant women
presenting to the obstetrics clinics of the Lucile Packard Children’s Hospital at Stanford Uni-
versity for prenatal care were invited to participate in a cohort study to prospectively examine
environmental and biological factors associated with normal and pathological pregnancies.
Women were eligible if they were at least 18 years of age and in their first trimester of sin-
gleton pregnancy. Samples were obtained during the first (7−−14 weeks), second (15−−20
weeks), and third (24−−32 weeks) trimesters of pregnancy, and 6 weeks post-partum.

The contribution of this thesis is mainly based on the hierarchical biclustering frame-
work with forestogram visualization as it is shown in Figure 3.1. In this regard, we introduce
the problem of hierarchical biclustering in Chapter 4, by elucidating how hierarchical model
generation is connected to Bayesian viewpoint. This new approach helps us applying the
statistical inference to study the properties of the model, such as model selection with FO-
RIC to provide a clue for determining the number of biclusters in the data. Then we show
under what conditions on the data the existing separable biclusters can be found effectively
through the model. Then with Lance-William trick it is easy to reduce the computational
time complexity of the algorithm so that one can simply run this algorithm on a personal
computer for a fairly medium size data matrix with our efficient implementation. Eventually,
with forestogram 3D visualization, this algorithm demonstrates the interrelations among the
rows and columns of the data matrix expressed in the form of biclusters intuitively with more
explanation for the end users. The first manuscript is submitted in Ghaemi et al. (2017a), and
additionally the beta version of R package is available in Ghaemi et al. (2017c). In addition
to the simulation study and yeast galactose example in Chapter 4, two other applications from
different field of applied science are considered in this thesis to investigate the performance of
the suggested data analysis toolbox for unsupervised data exploration. Public transportation
data is the first inspiration of this algorithm to use the hierarchical biclustering for revealing
the hidden spatial-temporal pattern underlying the smart card data. The temporal analysis
is carried out by a novel semi-circle projection to map the high-dimensional data onto the
3D space of time with clock-like behavior for the temporal part of the data. This work is
published in Ghaemi et al. (2017b). In the next step, hourly usage acts as a latent variable
to link the conventional Euclidean measure of distance to the geodesic spatial information
in order to use the forestogram for analyzing the spatial-temporal properties of smart card
data in Chapter 5. The second application deals with the gestational age prediction in the
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Chapter 5 Chapter 6

Chapter 4

Figure 3.1 Thesis contribution.

bioinformatics area. Seven different multiomic datasets constitute the input data to predict
the gestational weeks. Typically, this integrative data analysis requires supervised response
variable to make the prediction with. However, selecting the features across seven datasets
is also needed to describe the model through biological pathways for clinical studies. We use
the forestogram along with elastic net to peruse an integrative biological model for predicting
the gestational age and presenting the influential features that affect the patients during the
term of pregnancy. This work is available in Chapter 6.
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CHAPTER 4 ARTICLE 1: FORESTOGRAM: A VISUALIZATION
FRAMEWORK FOR HIERARCHICAL BICLUSTERING

4.1 Abstract

Many biological datasets such as microarrays, metabolomics, and proteomics involve ob-
servations (or subjects) in rows, and attributes (or genes, metabolites, proteins) in columns.
Often simultaneous grouping of rows and columns, i.e. biclustering, is desired. Each bicluster
consists of a group of observations highly correlated in a group of attributes. Despite great
efforts on developing biclustering algorithms, a proper visualization seems to be lacking in
the literature. A visualization tool helps practitioners understanding how biclusters evolve.
Here we provide this tool using forestogram. Forestogram combines rows or columns itera-
tively towards constructing a forest over a collection of dendrograms with a common root.
We develop a simple strategy for extracting natural biclusters by cutting the forest using a
simple information criterion. The effectiveness of our technique is tested on simulated data,
and on real data. 1

Keywords Biclustering, dendrogram, hierarchical clustering, linkage

4.2 Introduction

Clustering, or data grouping, is a challenging problem. Clustering is NP-hard, i.e. the
number of different ways to group data grows exponentially with the sample size. Clustering
algorithms can be categorized into two categories: hierarchical, and partitional. Hierarchi-
cal methods find the nested clusters recursively, while partitional approaches provide only
a single grouping. Partitional algorithms require the number of clusters to be set a priori.
Hierarchical approaches, on the contrary, starts from each item as a singleton and builds
clusters until all data fall in a single cluster. A clustering algorithm that assumes a statistical
model for clustering data, is called model-based clustering (McLachlan et al., 2004). Prac-
titioners often prefer hierarchical clustering, because of the visual guide produced through
dendrogram. Clustering linkage, also known as dissimilarity, plays a central role in building
the dendrogram.

Biclustering, also known as coclustering, and joint clustering is a general class of methods
that aims to partition a data matrix. Unlike clustering that groups observations, or attri-
butes, biclustering searches a grouping on observations and attributes at the same time. The

1. MS. Ghaemi, B. Agard, V. Partovi Nia. “Forestogram: A visualization framework for hierarchical bi-
clustering”, Statistical Analysis and Data Mining, submitted.
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advent of high-dimensional data calls for devising new algorithms to exploit the clusters more
effectively.

Biclustering attracted researchers from various fields because of its modern applications
(Zhang, 2010). Biclustering is used to cluster documents and words in text mining (Orze-
chowski and Boryczko, 2016), genes and experimental conditions in bioinformatics (Eren
et al., 2013), tokens and contexts in natural language processing (Tu and Honavar, 2008),
users and movies in recommender systems (Xu et al., 2012), etc. The first joint clustering me-
thod appeared in statistics literature in Hartigan (1972), but implemented after few decades
(Cheng and Church, 2000). Like clustering, biclustering involves two cultures i) statistical
approach that assumes a probabilitic distribution (Sheng et al., 2003; Gan et al., 2008; van
Uitert et al., 2008; Lazzeroni and Owen, 2002; Sheng et al., 2003; Gan et al., 2008) ; and (ii)
the algorithmic approach that minimizes a dissimilarity (Hartigan, 1972; Hochreiter et al.,
2010; Martella et al., 2008), for a comprehensive review see Busygin et al. (2008).

Most of the biclustering techniques are partitional and the number of blocks is the input
of the algorithm. However, in a number of applications hierarchical approach is very common,
because of two main advantages: i) having little assumption on data and number of groups
ii) providing a visualization diagram through the dendrogram.

A simple hierarchical biclustering method is known as heatmap, which produces two in-
dependent dendrograms, one on rows and another on columns. This representation is loose
due to the independent construction of row and column groupings. However, an interesting
visualization tool for biclustering is proposed using convex reformulation of the biclustering
problem in Chen et al. (2015), but it lacks the conventional dendrogram representation that
practitioners are used to see. An agglomerative method using a complex Bayesian model is
suggested in Fowler and Heard (2012). Smith et al. (2008) argues that complex models may
lead to junk clusters if agglomerative method is used.

We propose i) a natural extension of biclustering method using common linkages, ii)
produce forestogram, a conventional graphical tool that extends dendrogram, iii) benefit
a simple hierarchical model to develop a criterion as a reference for cutting forestogram. It
turns out that our criterion is the natural biclustering extension of the well-known information
criteria, such as the AIC (Akaike, 1973) and BIC (Schwarz, 1978).

The paper is structured as follows. Section 4.3 describes our proposed methodology and fo-
restogram. Section 4.4 studies the computational complexity of the forestogram construction.
Section 4.5 compares forestogram with some common biclustering methods, and Section 4.6
shows the application of forestogram on the yeast galactose data.
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4.3 Hierarchical Biclustering

Hierarchical biclustering is a natural extension of hierarchical clustering for grid matrices.
Section 4.3.1 generalizes common linkages for biclustering. Section 4.3.2 explains how to build
the forestogram using the generalized linkage. Section 4.3.3 develops an information criterion
to provide a statistically meaningful suggestion for the forestogram cut, and Section 4.3.4
explores the relationship between biclustering and forestogram.

4.3.1 Bilinkage

Hierarchical biclustering algorithms require a dissimilarity measure to merge block of clus-
ters and build nested groups. The dissimilarity measure is a positive semi-definite symmetric
mapping of pair of groups, onto real numbers. Dissimilarity, however, may not satisfy the
triangle inequality unlike the distance. The common linkages include single linkage or nearest
neighbors, complete linkage or farthest neighbors, average linkage, centroid linkage, median
linkage, and Ward’s linkage, see (Sørensen, 1948; Sokal, 1958; Eisen et al., 1998; Murtagh
and Legendre, 2014) for more details.

The linkage is defined using a distance, often the Euclidean distance, but may be defined
on metrics such as Manhattan, Chebyshev, or Mahalanobis distance.

We suppose grid biclusters, and use I to index row clusters, and J to index column
clusters. The first step in building the hierarchical biclustering is to generalize the linkage to
a bilinkage to measure the dissimilarity between matrix blocks. Any merge, however, cannot
be visualized by a nested tree. Therefore, a convenient bilinkage must be defined over a pair
of biclusters, using row and column directions. Suppose C1 and C2 are disjoint rectangular
biclusters,

Bilinkage(C1, C2) = min
I 6=I′,J 6=J ′

{
D(Crow

I1 , Crow
I′2 ), D(Ccol

1J , Ccol
2J ′)

}
(4.1)

where Crow
I1 is the Ith row-cluster of bicluster C1, Ccol

1J is the Jth column-cluster of bicluster C1,
and D is a clustering linkage. Table 4.1 gives the definition of the commonly used linkages.
The minimum in (4.1) is taken once over a pair of row-clusters, and once over a pair of column-
clusters. This minimum defines the direction of the merge, a row merge, or a column merge.
We suppose that data are standardized, so that row and column blocks are comparable.

4.3.2 Forestogram

Forestogram is a collection of binary trees that consists of multiple hierarchical den-
drograms. Construction of the forestogram is bottom-up, such that a pair of row-wise or
column-wise clusters is combined together at each level by starting from singleton clusters.
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Table 4.1 A list of common linkages for hierarchical clustering, defined using the Euclidean
distance, where ȳ denotes the mean, and ỹ denotes the median.

Linkage Definition
Single min

yi∈C1,yj∈C2
‖yi − yj‖

Complete max
yi∈C1,yj∈C2

‖yi − yj‖

Average 1
|C1||C2|

∑
yi∈C1

∑
yj∈C2
‖yi − yj‖

Ward |C1||C2|
|C1|+|C2|‖ȳ(C1)− ȳ(C2)‖

Centroid ‖ȳ(C1)− ȳ(C2)‖
Median ‖ỹ(C1)− ỹ(C2)‖

Forestogram merges a block of rows or a block of columns in each step, depending on the
direction that minimizes the bilinkage (4.1). After each merge, the dissimilarity measure is
recomputed to identify the next merge direction. This approach, gives a new block of data
on the forestogram. A grouping is extracted if the forestogram is cut at a certain height, see
Figure 4.1.

Forestogram has a number of interesting advantages to interpret the block-clusters of
data as follows. Each bicluster reflects the order of rows and columns that shares a similar
pattern. The merge path gives a visual representation on the evolution of the biclusters.
Forestogram gives a visual guide on the interaction between row and column groupings. A
row dendrogram and a column dendrogram can be extracted by projecting the forest over
rows and columns, see Figure 4.2. The last property is attractive for practitioners who are
familiar with heatmap graphics.

4.3.3 Number of Biclusters

Estimating the number of biclusters through cutting the forestogram at a certain height, is
equivalent to finding a tangible gap on the height of the forestogram for a natural grouping.
We propose to cut the forest when biclusters have the tendency of concentration about a
center.

Assume a grid bicluster C = Crow × Ccol and therefore Yn×p | C is clustered into several
row and column clusters. Obviously, the total number of biclusters is |C| = |Crow||Ccol|. Index
biclusters using YIJ = [yIiJj], where the I denotes the row cluster and J denotes the column
cluster, I =, 1 . . . , |Crow|, J = 1, . . . , |Ccol|, and i and j index the rows and columns of YIJ ,
i = 1, . . . , nI , and j = 1, . . . , pJ , respectively. Note that nI is the number of rows in cluster
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Figure 4.1 Forestogram building steps on a hypothetical 3× 3 matrix. Left to right: the data
matrix, merging a pair of columns, merging a pair of rows, and the completed forestogram.

Figure 4.2 A hypothetical 9× 9 matrix clustered into three row blocks and 3 column blocks
after cutting the forestogram by a plane. Forestogram projection on rows and on columns
provides two marginal dendrograms. Forestogram side view (left panel), above view (middle
panel), projection of the forestogram on rows and columns resembling a heatmap graphics
(right panel) ; the dotted horizontal and vertical lines is the projection of the cutting plane.

I, and pJ is the number of columns in cluster J ,

n =
|Crow|∑
I=1

nI , p =
|Ccol|∑
J=1

pJ .

In hierarchical clustering using a linkage, closer data have the tendency to merge together.
So, it is reasonable to cut the agglomerative tree using some concentration measure. Assume
the mean of data is subtracted such that the data are centered around zero. The following
statistical model looks meaningful to express the concentration of bicluster IJ around a
center

yIiJj | θIJ
i.i.d∼ N (θIJ , σ2), (4.2)

θIJ ∼ N (0, φσ2),
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where σ2 can be estimated by the common within variance, and φ is the between-variance
to within-variance ratio. We propose to cut the forestogram where this Gaussian model fits
appropriately. It turns out that (4.2) yields a simple and interesting cutting strategy.

Define the within cluster variance,

s2
IJ = 1

nIpJ

nI∑
i=1

pJ∑
j=1

(yIiJj − ȳIJ)2

and the pooled variance,

s2 = 1
np

|Crow|∑
I=1

|Ccol|∑
J=1

nIpJs
2
IJ .

The optimal number of clusters using (4.2) is found by minimizing the forest information
criterion (FORIC). FORIC is a sort of penalized variance,

np(1 + log 2πs2) +
|Crow|∑
I=1

|Ccol|∑
J=1

log(nIpJφ+ 1). (4.3)

We suggest to fix φ = 1 and estimate the pooled variance s2 in each level of the foresto-
gram. The following theorem shows how FORIC is derived.

Theorem 1 If biclusters are generated from (4.2),

− 2 log f(Y) = 1
σ2

|Crow|∑
I=1

|Ccol|∑
J=1

nIpJs
2
IJ +

|Crow|∑
I=1

|Ccol|∑
J=1

log(nIpJφ+ 1). (4.4)

Suppose the biclustering C is given. Following the analysis of variance notation, the Gaus-
sian model (4.2) can be re-written in terms of a linear model, by putting the data matrix Yn×p

in a long vector ynp×1. The binary design matrix Xnp×|C| consists of bicluster membership
indicators, and θ|C|×1 = [θIJ ]

y | θ ∼MN (Xθ,Σ),

θ ∼MN (τ ,Ω),

where τ = θ̂ that is the maximum likelihood estimator of θ, Ω = φJ−1
1 , andMN denotes

the multivariate normal distribution. The conditional density is

f(y | θ) = 1√
|2πΣ|

exp
{
−1

2(y−Xθ)>Σ−1(y−Xθ)
}
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log f(y|θ) = log f(y|θ)|θ=θ̂ + ∂ log f(y|θ)
∂θ

∣∣∣∣∣
θ=θ̂

(θ− θ̂) + 1
2(θ− θ̂)> ∂

2 log f(y|θ)
∂θ∂θ>

∣∣∣∣∣
θ=θ̂

(θ− θ̂)

∂ log f(y|θ)
∂θ

is equal to zero at θ̂ the maximum likelihood estimator of θ.

∂ log f(y|θ)
∂θ

=
∂ 1√

|2πΣ|
exp−1

2(y−Xθ)>Σ−1(y−Xθ)

∂θ
= X>Σ−1(y−Xθ)

∂2 log f(y|θ)
∂θ∂θ>

= ∂X>Σ−1(y−Xθ)
∂θ

= −X>Σ−1X

and the prior distribution on θ is

f(θ) = 1√
|2πΩ|

exp
{
−1

2(θ − τ )>Ω−1(θ − τ )
}
.

The predictive distribution can be derived by integrating out θ with respect to its prior

f(y) =
∫
f(y | θ)f(θ)dθ

=
∫

exp {log f(y | θ)} f(θ)dθ

=
∫
f(y | θ̂) exp

{1
2(θ − θ̂)>

(
−X>Σ−1X

)
(θ − θ̂)

}
f(θ)dθ

= f(y | θ̂)√
|2πΩ|

∫
exp

{1
2(θ − θ̂)>

(
−X>Σ−1X

)
(θ − θ̂)

}
exp

{
−1

2(θ − τ )>Ω−1(θ − τ )
}
dθ

(4.5)

By taking τ = θ̂ and the predictive distribution simplifies to

f(y) = f(y | θ̂)√
|2πΩ|

∫
exp

{
−1

2(θ − θ̂)>
(
X>Σ−1X + Ω−1

)
(θ − θ̂)

}
dθ

= f(y | θ̂)√
|2πΩ|

√
|2π

(
X>Σ−1X + Ω−1

)−1
|

(4.6)

Suppose I is the identity matrix and J is the Fisher information. In this case the Fisher
information is a diagonal matrix with elements nIpJ , J = diag{nIpJ}.

Model (4.2) implies Σ = σ2I, and Ω = φJ−1
1 , where J−1

1 = σ2I is the Fisher information
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of a single observation. This setting simplifies the predictive distribution further and gives

f(y) = f(y|θ̂)√
|2πσ2φI|

√√√√∣∣∣∣∣2πdiag
{

σ2φ

nIpJφ+ 1

}∣∣∣∣∣
= f(y | θ̂)√

|Crow|∏
I=1

|Ccol|∏
J=1

(nIpJφ+ 1)
.

Thus

− 2 log f(y) = −2 log f(y|θ̂) +
|Crow|∑
I=1

|Ccol|∑
J=1

log(nIpJφ+ 1). (4.7)

But f(y | θ) is a Gaussian likelihood so deriving (4.4) is straightforward. Substituting σ2

with its empirical estimator s2 simplifies (4.7) even further and gives (4.3).
Note that (4.4) is exact, but AIC and BIC are asymptotic approximations. Using the

asymptotic argument similar to BIC, we can define an extended version of FORIC,

− 2 log f(Y) ≈ −2 log f(Y | θ̂) +
|Crow|∑
I=1

|Ccol|∑
J=1

log(nIpJφ+ 1). (4.8)

FORIC is the adaptation of the AIC (Akaike, 1973) and BIC (Schwarz, 1978) for biclustering.
Suppose biclusters are balanced and each bicluster contains nI = n0 rows, and pJ = p0

columns. The extended version (4.8) coincides with the AIC if φ = e2−1
n0p0

, and coincides with
the BIC if φ = n0p0−1

n0p0
.

4.3.4 Separable Biclusters

Hierarchical clustering algorithms are prone to converge to a sub-optimal grouping, due
to their intrinsic greedy behavior. Here we show that a separable bicluster will appear always
on the forestogram. This property holds for all linkages. Before defining a separable bicluster,
we need to define the diameter and the margin concepts.

Take the submatrix Y̌ ⊂ Yn×p. Denote the row and column extension of Y̌ using Y̌row

and Y̌col respectively, such that Y̌row ∩ Y̌col = Y̌, see Figure 4.3. Let yi be the ith row of
Y and yj be the jth column of Y. Likewise, let y̌row

i be the ith row of Y̌row and y̌col
j is the

jth column of Y̌col. The row margin of Y̌ measures the pessimistic row-wise distance of Y̌row
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Y̌col︷ ︸︸ ︷
Y̌row

{
Y̌

Figure 4.3 Visual illustration of submatrix Y̌ ⊂ Y, extended on rows Y̌row, and on columns
Y̌col.

from Y, similarly the column margin measures the column-wise distance of Y̌col from Y,

Mrow = min
i 6=i′
‖y̌row

i − yi′‖2,

Mcol = min
j 6=j′
‖y̌col

j − yj′‖2.

Definition 1 : Margin of bicluster Y̌ is the minimum of row and column margins,

M(Y̌) = min
{
Mrow,Mcol

}
.

Define the diameter of Y̌ using row diameter and column diameter

Drow = max
i 6=i′
‖y̌row

i − y̌row
i′ ‖2,

Dcol = max
j 6=j′
‖y̌col

j − y̌col
j′ ‖2,

Definition 2 : Diameter of bicluster Y̌ is the maximum of row and column diameters

D = max
{
Drow,Dcol

}
.

Separability of a bicluster is defined by putting a condition on its margin and diameter.

Definition 3 : Bicluster Y̌ is separable if M > D.
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In the following theorem we study the relationship between separability and forestogram.

Theorem 2 Separable submatrix Y̌ always appear on the forestogram, regardless of the cho-
sen linkage.

The proof is by contradiction. Here we only concentrate on rows i.e. supposing D = Drow

and M = Mrow, and only focus on the complete bilinkage, but the argument is equally valid
for other cases.

Y
Y̌

Y̌1 Y̌2

Y1

Figure 4.4 Notation for a separable bicluster Y̌ ⊂ Y.

Suppose bicluster Y̌ ⊂ Y is separable, Figure 4.4 helps to follow the notation. From the
separability we know M > D. Now assume Y1 ⊂ Y is merged with Y̌1 ⊂ Y̌, at a certain
step, before (Y̌1, Y̌2) merge together, Y1 ∩ Y̌ = ∅, and Y̌1 ∪ Y̌2 = Y̌. Suppose y1i denotes
the rows of Y1, y̌1i denotes the rows of Y̌row, and ˇ̌y2i denotes the rows of ˇ̌Yrow

2 , for some
ˇ̌Y2 ⊂ Y̌2. By the definition of complete linkage, merging Y1 with Y̌1 means

max
i 6=i′
‖y1i − y̌1i′‖ < max

i 6=i′
‖ˇ̌y2i − y̌1i′‖, (4.9)

and by definition of diameter
max
i 6=i′
‖ˇ̌y2i − y̌1i′‖ < D. (4.10)

From (4.9) and (4.10)
max
i 6=i′
‖y1i − y̌1i′‖ < D,

which turns out to be a contradiction, because by separability of Y̌

min
i 6=i′
‖y1i − y̌1i′‖ > D.
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Theorem 2 states that separable biclusters are kept intact during the hierarchical agglo-
meration. Such biclusters are recovered by cutting the forestogram at a specific level.

4.4 Computational Complexity

A brute-force implementation of forestogram is of time complexity order O(n3 +p3). This
price is expensive for moderate matrices, and restricts the algorithm applicability on omics
data. We provide computational tricks to improve the time complexity of the algorithm.

Hierarchical clustering algorithms use a dissimilarity matrix to store the result of compu-
tation in an n×n matrix where n is the number of rows. The algorithm takes the advantage
of avoiding process of the pairwise dissimilarities repeatedly, by augmenting the stored data.
One may prefer to compute the dissimilarities on fly to avoid storing the dissimilarity matrix.
However, on-fly computation saves the storage, with the price of increasing the computation.
In the following we adapt the Lance-Williams property (Lance and Williams, 1966) into
hierarchical biclustering implementation to accelerate the computations.

4.4.1 Lance-Williams Speed-up

For each merge at each level of hierarchical clustering, a dissimilarity matrix for each pair
of clusters is required. After each merge, the dissimilarity for newly merged clusters must be
updated. Lance and Williams (1966) developed a concise formula to use the previous distance
information, to update the dissimilarity matrix.

Suppose the merging cluster is denoted by C1 ∪C2, and C denotes another disjoint cluster
in the same level of hierarchy

D(C1 ∪ C2, C) = δ1D(C1, C) + δ2D(C2, C) + δ3D(C1, C2) + δ4|D(C1, C)−D(C2, C)|.

Table 4.2 gives more details about the coefficients δi, i = 1, . . . , 4.

4.4.2 Time Complexity

The implementation of hierarchical biclustering requires identifying the closest two clus-
ters. The search algorithm looks up n times on the row dissimilarity matrix and p times
on the column dissimilarity matrix. However, the dissimilarity matrix is shrunken after each
merge, thus the overall computational complexity is ∑n

i=1 i
2 + ∑p

j=1 j
2 which is of order

O(n3 + p3). A proper implementation of the Lance-Williams technique speeds up the algo-
rithm to O(n2 + p2).
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Table 4.2 Lance-Williams coefficient merge updates for different linkages, if the Euclidean
distance defines the linkage.

Linkage δ1 δ2 δ3 δ4
Single 1

2
1
2 0 −1

2
Complete 1

2
1
2 0 1

2
Average 1

2
1
2 0 0

Centroid ||C1||
||C1||+||C2||

||C2||
||C1||+||C2|| − ||C1|| ||C2||

(||C1||+||C2||)2 0
Ward ||C1||+||C1∪C2||

||C1||+||C2||+||C1∪C2||
||C2||+||C1∪C2||

||C1||+||C2||+||C1∪C2|| −
||C1∪C2||

||C1||+||C2||+||C1∪C2|| 0
Median 1

2
1
2 −1

4 0

4.4.3 Space Complexity

The amount of memory required to run the algorithm is another important factor. If
an n × p data matrix fits in the computer memory, the algorithm must reserve extra space
for computation and storing the dissimilarity matrices. Hierarchical biclustering uses two
dissimilarity matrices, and stores all pairwise dissimilarities for rows and columns. Therefore,
in early steps of the algorithm, all pairwise distances are computed and initiated in two
different matrices, an n × n matrix for row dissimilarity and an p × p matrix for column
dissimilarity. Using the Lance-William property, only a row group and a column group will
be altered at each iteration of the algorithm. This implies O(n2 + p2) for the space.

In the following, we investigate our efficient implementation on a synthetic matrix of data
by fixing the number of columns to 10, and varying the number of rows. In a similar setting
rows are fixed to 10 and the number of columns is varied. Figure 4.5 confirms the quadratic
complexity in term of rows and columns. This speed up implementation is available in the
beta version of the R package released in Ghaemi et al. (2017c).
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Figure 4.5 Time required to build the forestogram as the number of rows n increase (top
panels), and as the number of columns p increase (bottom panels). The top right panel
confirms that the algorithm is quadratic in n, the bottom right panel confirms that the
algorithm is quadratic in p ; the solid line is y = β0 + 2x.

4.4.4 Parallel computing for dissimilarity measure

Euclidean Distance Matrix (EDM), is an important measure in several diverse research
fields such as bioinformatics, machine learning, statistics, industrial engineering, etc. and also
it has a close connection to semi-definite matrices that attracts more attention because of
the applicability and other theoretical aspects. Here, we revisit the mathematical definition
of EDM with extending the relation to the matrix operation directly. Then, by mapping the
computation to the matrix notation, we can simply scale the overload of computing to the
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standard matrix toolboxes that support parallel computing especially for general purpose
Graphical Processing Unit (GPU) such as Compute Unified Device Architecture (CUDA)
and Open Computing Language (OpenCL).

A Euclidean distance matrix, an EDM in Rn×n
+ is an exhaustive table of distance-square

dij between points taken by pair from a list of n points {xi, i = 1, . . . , n} in Rn ; the squared
metric, the measure of distance-square,

dij = ||xi − xj||22 = (xi − xj)T (xi − xj) = ||xi||2 + ||xj||2 − 2xTi xj

For i, j = 1...n, distance between points xi and xj must satisfy the definition of any metric
space for Euclidean metric in Rn as following,

— Nonnegativity
√

dij ≥ 0, i 6= j

— Self-distance
√

dij = 0, ⇐⇒ xi = xj
— Symmetry

√
dij =

√
dji

— Triangle inequality
√

dij ≤
√

dik +
√

dkj, i 6= j 6= k

Consequently, all elements of EDM must be symmetric, nonnegative, with zero diagonal
entries, where the fourth property provides upper and lower bounds for each element to
conform the metric space.

Furthermore, suppose the matrix Y = XTX = (xTi xj), known as the Gram matrix of the
points xi, . . .xN , then, for any ∀i, j ∈ {1, . . . n}, we have,

dij = ||xi − xj||22 = ||xi||2 + ||xj||2 − 2xTi xj = yii + yjj − 2yij

This can be further extended in the full matrix operation to rewrite the EDM by,

D = diag(Y)eT + ediag(Y)T − 2Y

where e ∈ Rn is the vector of all ones.
This parallel representation of computing the dissimilarity measure is the bottleneck

of computing when Lance-Williams speed-up is not feasible. For example minimax linkage
cannot be written in the form of Lance-Williams formula (Bien and Tibshirani, 2011). Or
in the case of big data, if the dissimilarity matrix does not fit the memory the pairwise
similarity has to recomputed at each iteration. Thus, in the light of parallel computation of
dissimilarity measure, one can use the EDM algorithm for accelerating the computing.
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4.4.5 R-package

The forestogram implementation for computational visualized framework is available in
the context of R package shown in Figure 4.6. This package consists of two components, the
engine is implemented in C, and the interface is developed in R based on the RGL library. The
engine computes the hbiclust object with fairly efficient performance that is now available on
R-Forge, http://hbiclust.r-forge.r-project.org, which can also be installed by the following R
command,

install.packages("hbiclust", repos="http://R-Forge.R-project.org")
The interface is capable of illustrating the 3D representation of forestogram and its 2D

plot counterpart after invoking the engine who is responsible for building the hbiclust object.

C

Centroid
Cluster

Impact

RGL-wrapper

Figure 4.6 R-package architecture consists of two components, the engine is implemented in
C, and the interface is developed in R based on the RGL library.

— cutforest, splits a hierarchical biclustering object, e.g., as resulting from hbiclust,
into several row-wise groups and column-wise groups either by specifying the desired
number of biclusters or the cut height.
— hb, hierarchical biclustering object constructed by hb function.

http://hbiclust.r-forge.r-project.org
install.packages("hbiclust", repos="http://R-Forge.R-project.org")
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— k, an integer scalar with the desired number of biclusters.
— h, a numeric scalar with height where the forest should be cut, e.g., hb$hcut.

— hbiclust, this function biclusters a data matrix into a set of blocks of row-column
clusters in a bottom-up hierarchical manner. The Bayesian model viewpoint that is
mapped on this structure provides an automatic cutting point to reveal the number of
blocks with the corresponding label assignment using the cutforest function. The hie-
rarchical block-clusters can be visualized in 2D or 3D space by calling hbiclust.plot
and forestogram functions.
— x, a numeric matrix, with clustering individuals on row and variables on column.
— method, a string variable consisting of popular hierarchical clustering linkages, such

as, "average", "centroid", "complete", "median", "single", and "ward". If nothing is
declared the function sets "ward" as the default linkage, that is equivalent to the
Bayesian model based biclustering where the automatic cutting point is statistically
meaningful.

— forestogram, hierarchical biclustering produces a 3D multi-tree object called,
forestogram that is very similar to dendrogram with an augmented orthogonal merge
representing the direction of merge. This extra information is useful to illustrate the or-
der of rows and columns merges that a specific bicluster is evolved from. forestogram
function demonstrates this 3D object that is formed hierarchically from the merge of
biclusters constructed from hbiclust function.
— hb, a hierarchical biclustering object constructed by hbiclust function.
— cut_height, the height where the forestogram should be cut to reveal the biclus-

ters. The hbiclust function computes this height approximately with FORIC trick
available in hb$hcut to provide a guess for the number of biclusters.

— draw_cut, a binary variable to show the cut surface on the forestogram correspon-
ding to the biclusters at the given height.

— draw_side_tree, a binary variable to show the 2D dendrograms on row and co-
lumn side of the forestogram.

— hbiclust.plot, this function projects the 3D image of forestogram onto the 2D space
where corresponding row and column merges are attached as dendrograms on row and
column of the matrix, respectively. This function draws a graph similar to heatmap
except the correlation colors that are replaced by bicluster’s color at cutting height.
— hb, a hierarchical biclustering object constructed by hbiclust function.
— cut_height, the height where the forestogram should be cut to reveal the biclus-

ters. The hbiclust function computes this height approximately with FORIC trick
available in hb$hcut to provide a guess for the number of biclusters.
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4.5 Simulation

In order to compare hierarchical method with other common biclustering techniques we
generate a square 30 × 30 matrix, and a rectangular 150 × 30 matrix, divided into three
clusters on rows and three clusters on columns. Both simulations consist of 10 columns in
their column clusters.

In the square setup, each row cluster includes 10 rows see Figure 4.7, but in the rectan-
gular simulation each row cluster simulation includes 50 rows. Each of the three biclusters is
generated from uniform distribution of range 1 and varying mean (−∆, 0,∆). The parameter
∆ ∈ {0.5, 1.0} reflects the separability of biclusters. The larger the ∆ is, the more separable
biclusters are.

10︷︸︸︷ 10︷︸︸︷ 10︷︸︸︷
−∆ 0 ∆ }10
∆ −∆ 0 }10
0 ∆ −∆ }10

Figure 4.7 Symmetric simulation data consist of a matrix of size 30 × 30 with 9 biclusters.
Each bicluster contains 100 data from uniform distribution with 10 rows in row cluster and
10 columns in column clusters. The parameter ∆ controls the separability of biclusters.

The joint clustering of Lazzeroni and Owen (2002) and Cheng and Church (2000) are
often used as standard biclustering methods. We found Cheng and Church (2000) performed
poorly, so we report the plaid model of Lazzeroni and Owen (2002) only. The codes for
Lazzeroni and Owen (2002) and Cheng and Church (2000) are available in the R package
biclust R package (Kaiser et al., 2013). Our results are based on the implementation of
Lazzeroni and Owen (2002) developed by Turner et al. (2005).

There are few methods that combine biclustering with a visual guide. Practitioners often
use the heatmap to produce a visualization of joint clusters. The heatmap produces a visua-
lization using independent row and column dendrograms. Convex biclustering (Chen et al.,
2015) implmented in the R package cvxclustr is a new technique with a visualization similar
to dendrogram, produced by shrinking the mean of biclusters towards a common mean. Our
method is released as a beta version in Ghaemi et al. (2017c) on R-forge.

We created three version of forestogram by varying the linkages. All linkages are defined
using the Euclidean distance. The linkages include single, average, and Ward. Other linkages
behavior was similar to the average linkage, and therefore not reported. A fully automatic
version of forestogram is produced by cutting the forestogram by minimizing FORIC. The
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number of biclusters for all methods is set to 9. Note that, even after fixing the number of
clusters the grouping may be different. Default parameters in the R package is used for the
competing methods.

Table 4.3 summarizes the performance of all techniques using the adjusted Rand index
of Hubert and Arabie (1985) implemented in the R package mclust (Fraley and Raftery,
1999). The adjusted Rand index is bounded from below by 0, and from above by 1. It gets
the upper bound if the estimated biclustering matches the true clustering. We generated 100
replications of randomly generated data sets, and run different biclustering techniques. The
average of the adjusted Rand index is reported. The maximum standard error is 0.1, so all
reported digits are significant.

Table 4.3 admits by increasing the separation parameter ∆ the performance of all methods
can be improved. Changing the matrix from square to rectangle increases the number of rows
from 10 to 50. This change in data size, improves the clustering performance over column
clusters, for all methods except for convex, and for heatmap single linkage.

It turns out the single linkage in heatmap implementation is an inefficient method, but the
performance improves significantly after being implemented as a bilinkage. The automatic
cut using FORIC on forestogram is the best for forests built using the Ward bilinkage. Plaid
model appears to be the least favorable technique.

Table 4.3 The performance of different biclustering techniques using the average adjusted
Rand index ×100. The larger the adjusted Rand index is, the better the performance will
be.

Dimension 30× 30 150× 30
Separation ∆ = 0.5 ∆ = 1 ∆ = 0.5 ∆ = 1
Side row col row col row col row col

Forestogram

Auto Single 55 55 55 55 56 100 56 100
Auto Average 55 55 55 55 56 100 56 100
Auto Ward 55 55 55 55 100 100 100 100
Single 80 55 100 100 94 100 100 100
Average 100 99 100 100 100 100 100 100
Ward 100 99 100 100 100 100 100 100

Heatmap
Single 53 53 100 100 0 100 100 100
Average 100 99 100 100 99 100 100 100
Ward 100 99 100 100 100 100 100 100

Plaid Bicluster 0 0 43 99 0 60 77 94
Convex Bicluster 54 0 100 100 0 100 100 100
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4.6 Application

The yeast galactose gene expression data (Ideker et al., 2001) investigates the influence
of the gal gene family that allows cells to consume galactose, as a source of carbon. A
perturbation is made in two different ways, related to a specific pathway component: i)
eliminating one of the gal genes or ii) a wild-type for each subject regardless of galactose
existence. We consider a sub-matrix of this data, widely analyzed by other researchers. The
analysis of the entire data set 3935× 20 is feasible thanks to the computational acceleration
of the algorithm. For a similar analyses see Yeung et al. (2003); Yeung and Ruzzo (2001);
Fowler and Heard (2012).

Each value in this data matrix is an average of four replicates. We cluster log10 of data
with no preprocessing. The data are available in the supplementary material of Ideker et al.
(2001). Forestogram helps to recognize similar group of genes with the same reaction to
the genetic perturbation. Figure 4.8 (bottom panel) is the two-dimensional projection of the
forestogram corresponding to Figure 4.8 (top panel). Presence of gene gal perturbation is
indicated by + sign.

The gal4 is the only gene that stays in the same cluster regardless of whether galactose
present or not after perturbation. This means the presence or absence of galactose has no
effect on gal4. A similar result is reported in Fowler and Heard (2012) but with a Bayesian
biclustering model.
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Figure 4.8 Top panel: forestogram produced using Ward bilinkage with automatic cut using
FORIC. Bottom panel: two-dimensional projection of forestogram on rows and columns.
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CHAPTER 5 ARTICLE 2: A VISUAL SEGMENTATION METHOD FOR
TEMPORAL SMART CARD DATA

5.1 Abstract

In many cities, worldwide public transit companies use smart card system to manage
fare collection. Analysis of this collected information provides a comprehensive insight of
user’s influence in the interactive public transit network. In this regard, analysis of tempo-
ral data, describing the time of entering to the public transit network is considered as the
most substantial component of the data gathered from the smart cards. Classical distance-
based techniques are not always suitable to analyze this time series data. A novel projection
with intuitive visual map from higher dimension into a three-dimensional clock-like space
is suggested to reveal the underlying temporal pattern of public transit users. This projec-
tion retains the temporal distance between any arbitrary pair of time-stamped data with
meaningful visualization. Consequently, this information is fed into a hierarchical clustering
algorithm as a method of data segmentation to discover the pattern of users. 1

Keyword clustering ; public transit ; smart card ; temporal pattern ; projection.

5.2 Inrtoduction

Public transit serves the society to solve their mobility in almost every country (Gallotti
and Barthelemy, 2015). Thus, inter-disciplinary challenges of public transit is attended in
several branch of science and engineering (Gkiotsalitis and Stathopoulos, 2015). Progress of
smart data and the use of automated payment system provides a rich source of data, whose
its analysis can promote the economy (Weisbrod and Reno, 2009), reduce the air pollution,
and enhance the quality of life (Ma et al., 2015). In this regard, diverse combination of tools
and techniques from various disciplines, e.g. data mining, machine learning, urban compu-
ting, urban planning, management, business, civil engineering, industrial engineering, statis-
tics, mathematical engineering, geographic information system (GIS), and high-performance
computing are vital to extract the meaningful piece of information from such data.

In most of public transit studies, bus stops and subway stations play the central role, re-
gardless of the temporal features of the data. The frequency of the used locations is utilized
to construct a model for identifying the user behavior. This knowledge is helpful to provide
particular services in each station or bus stop. Nonetheless, such models are incapable to

1. MS. Ghaemi, B. Agard, M. Trépanier, V. Partovi Nia. “A visual segmentation method for temporal
smart card data”, Transportmetrica A: Transport Science, vol. 13, no. 5, pp. 381–404, 2017.
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uncover the detailed behavioral pattern of users. In most of recent researches summary sta-
tistics such as the frequency of travel days, the count of similar starting boarding times, the
number of similar transit sequences, and the repetition of similar stop/station sequences are
extracted as descriptive features to be fed into clustering algorithms with few justification
and explanatory translation. In recent years, user satisfaction from public transit system,
quality of service and perceived quality of bus transit model are investigated based on re-
liability, length of journey, and driver amiability (Bordagaray et al., 2014; Del Castillo and
Benitez, 2013; de Oña and de Oña, 2015).

Despite the extensive research that has been done on public transit domain, various
obstacles arise for specific purposes. Such specific purposes require particularly new compu-
tationally efficient views to address them. In this study, the problem of user clustering is
attacked. The ultimate aim is to uncover the temporal behavior of users in their monthly
trips.

The aim of this research work is to identify group of similar users relying on the gathered
data from smart cards. More specifically, groups of similar user focusing on temporal aspect
of the smart card data are identified. To this end, in Section 5.4 we propose a projection
technique which is able to transform a vector of hourly usage associated to each smart
card into a three dimensional feature vector that lays out the hidden temporal patterns.
Accordingly, we deploy a hierarchical clustering algorithm to elicit the coherent internal
representation of users in terms of analogous temporal behavior. In Section 5.6 experimental
results of one month record of smart card data from Gatineau (a city in western Québec,
Canada) is analyzed to illustrate the effectiveness of our suggested technique.

5.3 State-of-the-art

5.3.1 Recent research papers on the analysis of smart card data

Public transit systems have been expanded independently in many cities regardless of
their size. Thus, having a strategic plan of Integrated Smart Card Fare Collection System
(ISFCS) is necessary in development and enlargement of the public transit network. ISFCS
fills the gap of different public transit operators and better meets the passengers’ needs
and satisfaction. Barriers of ISFCS and their possible solutions are discussed in Yahya and
Noor (2008). In Pelletier et al. (2011) several other aspects of ISFCS are considered from
technologies to privacy issues in three levels of management including, strategic, tactical,
and operational. Moreover, discussion and comparison of planning, scheduling, and survival
modeling for many different purposes are provided in Pelletier et al. (2011).

Describing user behavior in public transit network is one of the main issues that can
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be revealed via the smart cards data (Ma et al., 2013). Accordingly, finding a measure to
evaluate and disclose behavioral patterns from the history of user’s habits is a crucial part
of Smart Card Fare Collection System (SCFCS) analysis. Various measures are proposed in
Morency et al. (2006) by considering the variability of users’ behavior over smart card data of
ten months. Agard et al. (2008) applied k-means on weekly boarding ; this study permitted
to identify large temporal users’ behavior and detect important changes in users’ schedule
(spring break for example) but the optimal number of clusters is difficult to identify and new
estimation techniques for determining the number of clusters in such data seem necessary.
In Lathia and Capra (2011), two viewpoints are investigated to measure the transportation
system’s performance ; self-report of users’ feedback, and real behavior while they are encou-
raged by various incentives. Lathia and Capra (2011) and Herrera et al. (2010) concluded
that smart card data is as important as human activity on mobile phone data for designing
future infrastructure and guidance of travelers. Therefore, human mobility could be modeled
according to the smart card data as one of the big data sources concerning human activity.

Smart card data contain worthwhile digital information of daily locations visited at certain
period by a large number of individuals. Besides, other source of information can be combined
with this data such as mobile phone, GPS tracker vehicle, e.g. bike, car, motorcycle, credit
card transactions, social network, (Herrera et al., 2010; Gkiotsalitis and Stathopoulos, 2015).
This helpful information could be utilized to characterize and model urban mobility patterns
(Hasan et al., 2012; Järv et al., 2014). Other useful information such as travel time and
number of passengers for the sake of congestion analysis and planning improvement could be
possibly extracted as well (Fuse et al., 2012).

Kusakabe and Asakura (2014) proposed a data fusion approach in order to estimate the
trip purpose and then interpret the observed behavioral features. They are able to successfully
distinguish the following different reasons: (a) commuting, (b) leisure or business and (c)
returning home in 86,2% of their available trip data.

Ma et al. (2013) used a data mining technique to understand regular travel patterns
in Beijing, China. First they constructed trip chains, then extracted regular patterns using
clustering that leads to specific trip rules.

Ali et al. (2016) analyze electronic fare transactions for analyzing travel behavior of the
users, in Seoul, South Korea. They used an open-source agent-based transport simulation
package, MATSim, over smart card data to model input demand. This study permitted to
generate micro-simulation travel demand models.

Amoung others, Trépanier et al. (2007) and Alsger et al. (2016) explore smart card data
in order to estimate trip’s origin and destination. Origin of trips are relatively easy to define,
thanks to the first boarding check, but destinations may require prediction.
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Data representation in public transit is more complicated than conventional data sets
in data mining or machine learning (Nantes et al., 2016). Summary of steady sequential
time model in a discrete structure is the main reason that makes it difficult to analyze the
temporal behavior (Shekhar et al., 2015). The focus of this research, is to deal with the tem-
poral datasets, that could be categorized as temporal snapshot model in spatial-temporal
data as in Shekhar et al. (2015). Most of the research works in this domain perform the
data mining techniques on transformed spatial-temporal attributes in a conventional way.
However, because of the intrinsic structure of spatial-temporal data, independent and identi-
cally distributed (i.i.d.) observations cannot be assumed for this sort of data. Consequently,
conventional data analysis algorithms often fail to capture the essential knowledge from the
data. Moreover, the extracted information has no real interpretation for the experts. These
are the two principal reasons that reflect the urge of why advanced techniques are required
to be tailored for public transit data.

Machine learning methods are often divided into supervised, and unsupervised sub-fields ;
semi-supervised methods have attracted more attention recently. Most learning methods seek
for dividing data into sub-populations. The difference between supervised and unsupervised
method is the existence of training data (Hastie et al., 2009). More precisely, when an in-
dicator variable is available for sub-population allocation, the problem is called supervised
learning. If dividing the whole spontaneous data into k homogeneous sub-populations is re-
quired without any guide, the problem is called unsupervised learning. Note that even the
number of sub-populations, k, may be unknown.

Smart card data, may provide two distinct information: spatial and temporal. Spatial data
consists of coordinates of the bus stop, e.g. latitude and longitude that could be GPS data or
relative location coordinates. Temporal data describes the boarding time. According to this
information, analyzing users behavior is divided into three categories, 1) Spatial patterns, 2)
Temporal patterns and 3) Spatial-temporal patterns.

1. Spatial pattern analysis focuses on location, such as the bus stop information. It turns
out measuring the behavioral pattern only depends on the location of bus stops taken
by the users, rather than knowing the starting hour of their trip.

2. Temporal methods seek the information pertinent to the time associated to the pu-
blic transit usages. Consequently, computing user’s similarity score is carried out, by
assuming that the bus stop information is unavailable. Thus taking the public transit
at a specific time, plays the central role in this approach.

3. The third scenario, is a mixture of the spatial and temporal approaches, called spatial-
temporal data analysis. It could be viewed as a combination of the last two steps or
an independent new approach to deal with spatial-temporal behavioral patterns.
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5.3.2 Extraction of users’ temporal patterns in transportation

The extraction of users’ temporal behaviors may be of value for planners. It may help them
to plan the service more effectively. Classical approach to to discover users’ need includes
counting passengers on board. Then, a generic demand is estimated. Smart card data permit
to get more information: it is possible to extract generic behavior for all the users, or it
is possible to follow a specific card. Clustering algorithms permit to subdivide the whole
population of users in different groups that share certain behavior. The number of groups
may vary depending on the accuracy needed by planners.

The majority of clustering algorithms can be divided into distance-based methods or
model-based methods. Distance-based techniques are easy to understand and simple to im-
plement. On the contrary, model-based approaches are flexible and adapt to complex data
patters, but are counter-intuitive to implement or interpret.

Hierarchical clustering is a breakthrough in distance-based clustering context, because of
producing a visual guide in the form of a binary tree, known as dendrogram. In addition it
requires little prior knowledge, except for a dissimilarity measure. The dissimilarity measure
is a positive semi-definite symmetric mapping of pairs of groups onto the set of real numbers.
This measure, however, may not satisfy the triangle inequality unlike a distance. Hierarchi-
cal algorithms require a dissimilarity measure to merge clusters in order to build a nested
structure of clusters. The common dissimilarities include single linkage (or nearest neigh-
bors), complete linkage (or farthest neighbors), average linkage, and centroid linkage. There
are two variants of hierarchical clustering depending on the direction of the construction of
the nested groups. Agglomerative clustering starts with every observation as a singleton and
consequently merges the closest clusters to end up with all data in one cluster. Divisive algo-
rithms, on the contrary, start with all data in one cluster and split the clusters until finishing
with all singletons.

The nested groups generated using a hierarchical clustering algorithm of data, are visua-
lized through a dendrogram. It provides an informative representation and visualization for
different potential data structures, specifically while real hierarchical relations exist in the
data. Dendrogram illustrates the nested structure or the evolutionary pattern of the members
of a particular set. The idea of the dendrogram first appeared in evolutionary biology, and
then applied in practice as an illustrative clustering tool in Sneath (1957). The height of the
dendrogram expresses the dissimilarity between each pair of clusters. The initial groups are
the leaves and every merge of clusters appears with an increasing height.

An automatic cutting point on the dendrogram has been a well-known problem for de-
cades. Estimating a grouping, cutting a dendrogram, and model selection are closely related
concepts. The ultimate estimated grouping is found by cutting the dendrogram at some
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height. One expects a visible gap in the height of the dendrogram for a natural grouping, but
providing a universal cutting point on a dendrogram is counter-intuitive. An approximate
model selection criteria such as AIC Akaike (1973) or BIC Schwarz (1978) can be applied
to cut the dendrogram if a statistical model is used to produce nested clusters (Heller and
Ghahramani, 2005; Heard et al., 2006). Most of the statistical models for clustering are a
sort of mixture model (McLachlan et al., 2004). The R package NbClust (Charrad et al.,
2014) provides 30 different techniques to discover the optimal number of clusters in a data
set. However, dendrogram itself provides a fairly well description of the clusters, so that it
enables the experts in each domain to have a profound insight where to cut the dendrogram
for finding the appropriate groups of data.

Data mining approach is used to understand passenger’s temporal behavior to exploit
the interpretable clusters (Mahrsi et al., 2014). This approach helps transportation operators
to become aware of the customers’ demands. In addition, it enables them to maintain their
services and meet the user’s requests more effectively. The real dataset from the metropolitan
area of Rennes (France) with four weeks of smart card data containing trips of both bus and
subway is tested. Furthermore, the cluster of similar temporal passengers extracted based on
their boarding time, according to a generative model-based clustering approach. After, the
effect of distribution of socioeconomic characteristics on the passenger temporal clusters are
investigated in this study.

As another example Ortega-Tong (2013) studied the extensive database of Oyster Card
transactions obtained from London’s public transit users. This database is deployed to clas-
sify users based on the temporal variability, the spatial variability, the socio-demographic
characteristics, the activity patterns, and the membership type. Improving the planning and
the design of market research are the aims of this work, when selecting groups of homogeneous
people is also of interest. Four groups of users including, regular users consist of workers and
students commuting during the week, portion of them who make leisure journeys during the
weekends, occasional users containing leisure travelers, and visitor travelers for tourism and
business affair are investigated in this work.

Smart card data gathered from Brisbane, Australia is another source of information stu-
died in Kieu et al. (2014) for strategic transit planning according to the individual travel
patterns. Origins and destinations of cardholders is defined as travel regularity, and the defi-
nition of habitual time is the regular time of trips. Thus, mining the travel regularity of the
frequent users could be inferred to extract the travel pattern and its purposes. Reconstruc-
tion of user trips is made by spatial and temporal characteristics, then the frequent users are
grouped by applying k-means clustering technique on the trip features including, origin and
destination, number of transfers, travel mode and route uses, total travel time, and transfer
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time. In the last step, three level of Density Based Spatial Clustering of Application with
Noise (DBSCAN) are applied to find the travel regularity Kieu et al. (2014).

Schedules are a proper solution for the public transit user and for the public transit service
provider. Most of the time, service providers operate on the same schedule in weekdays from
Monday to Friday, and maintain distinct schedules for Saturdays and Sundays, assuming
that the public transit user follows the same travel behavior during weekdays. It could be
true for people with a regular schedule. However, society is constantly changing and more
people now work only four days while other people work distantly once or twice a week.
In addition, there are an increasing number of citizens with non-regular schedule such as
immigrants or tourists. Hence, it becomes more of interest of the service provider to measure
and predict the amount of regularity of public transit users, through their time-stamped
smart card transaction database. By applying learning methods on smart card database we
aim to divide the users into several sub-populations to obtain the clusters of users according
to their behavior. These clusters can be put back in the context of daily mobility. Hopefully,
by the analysis of these clusters we better understand the categories of the users, especially
those who have a regular pattern of travel (Morency et al., 2010).

5.3.3 Synthesis and justification of the needs

The state of the art shows large interest of researchers in extracting knowledge from smart
card data. Authors propose many directions, tools, and methods to explore this rich source
of data. Those contributions may be classified in three main domains

The first set of studies focuses on understanding the data, e.g. what happens on the net-
work ? this aspect is about extracting many indicators, evaluate characteristics and identify
behaviors in the data. All information available from the smart cards are manipulated, for-
matted, and analyzed boarding times, stops, lines and directions are the main information
that are explored here.

The second set of studies deals with explaining the behaviors, e.g. why do we observe those
behaviors ? Here researchers explore the reasons that explain what they observe. Various
sources of external data are widely used, depending on the intention of the authors. The idea
is to cross, fusion, and predict from a data set. The smart card data are put in relation with
the external sources of data to explain why one behavior or another is observed.

The third set of research consists of taking advantage of the extracted knowledge to help
in decision making. Various objectives are considered i) to improve the service for the user,
with no supplementary cost for the transit operator, ii) to keep the same service but with
minimized cost for the transit system operator.

Nevertheless, all of those topics rely on a good extraction of the user’s behavior from
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the smart card data set. Besides, that extraction could be improved considering a better
metric for the comparison of users’ behavior. Traditional metrics consider Euclidean distance
(which could not be used in our case), but also Dynamic Time Warping (DTW) and cross
correlation. The two last metrics are powerful and widely recognized for the comparison of
time series, but specific properties required for the analysis of customers’ behavior could be
used to improve this extraction. The main goal of this paper is to contribute in this aspect.

5.4 Proposed methodology

We suggest a two-stage visual method for analysis of temporal user behavior. The first
stage consists of semi-circle projection to reduce the high-dimensional data into highly inter-
pretable lower space. In the second stage a hierarchical clustering is applied on the prepro-
cessed data to extract the cluster structure for the expert.

We offer a simple mapping of boarding time information to the Cartesian coordinates.
This suggestion is a sort of a multidimensional scaling (Borg and Groenen, 2005), when
some equalities and inequalities are proposed for certain distance between individuals. The
mapping, that we call Semi-Circle Projection (SCP) is easier to understand in the polar
coordinate, i.e. in terms of radius and angle.

First, reserve the center of a half circle for zero boarding time. For users with one boarding,
take radius equal to r1 = 1 and move the angle from 0 to π depending on the time of boarding.
For vectors with 2 boardings, take radius r2 = 2. Generalization for users with sequence of
n boardings is then straightforward. Choose rn = n and move the angle according to the
average time of boardings. However, the identity function rn = n diverges for large n. Choice
of a converging rn helps us to renormalize the half circles for long binary sequences, if needed.
Our suggestion is rn = (1 + 1

n
)n having limn→∞ rn = e, where e is the Euler constant. The

third coordinate is required, as this method maps [0 1 1 0] and [1 0 0 1] on the same location
after projection, because both have the same number of unit values (being two) and both
have the same average of positions for unit values (being 2.5). This appeals to add another
coordinate with a scale measure over the position of the unit values to distinguish these
two users from each other in the projected space. We suggest the standard deviation of the
position of the unit values as the z coordinate, giving a larger value to [1 0 0 1] comparing to
[0 1 1 0], so they would not be mapped on the same point in three-dimensional projection.
Suppose there are m user-day entities, organized in the binary matrix Xm×L whose rows
indicate the daily usage for specific smart card. This mapping can be formalized as follows,
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θm×L =


1 2 · · · L

1 2 · · · L
...

...
. . .

...

1 2 · · · L

�X

where � is Hadamard (elementwise) product operator. Let r represents the number of
boardings, thus for all smart cards with equal r, reduced data in the new space is written as

[
xi = ri sin

 π

Lni

L∑
j=1

θij

 , yi = ri cos
 π

Lni

L∑
j=1

θij

 ,

zi =

√√√√√√√√√√
1

L− 1


∑

{j|θij>0}
θ2
ij −

(
L∑
j=1

θij

)2

L


]
.

The number of boardings for the i’th user-day as ni = ∑L
j=1Xij that is the number of unit

elements in the vector Xi, L = 24 denotes the number of time intervals, and ri =
(
1 + 1

ni

)ni .
The suggested simple transformation maps a binary sequence of any length to the Car-

tesian coordinates of only three dimensions. Implementing this method for traveled days,
is compressed into only three dimensions, hugely facilitating further computation, analysis,
and data visualization. The x coordinate represents the number of trips, the y coordinate
represents the average time of trips, and the z axis shows the time variability of the trips.
The result of this method on the dataset from Table 5.1 is shown in Figure 5.1.

5.5 Projection properties

The suggested projection includes two parameters, ri, and θi for each temporal usage Xi

that contribute to map the binary representation into three dimensional semi-circle space.
The number of ones or frequency of usage is one of the most important factor which leads
the projection through the mentioned parameters. Thus, the properties of this projection are
somehow proportional to the total amount of usage determined by sum of ones. This implies
the range of ri, θi and var(θi) are decreasing by increase in frequency of usage across time.
Furthermore, it is evident for any pair of temporal usage encoded in binary vectors denoted by
X1, andX2, whereX1 6= X2, and n1, n2 ∈ {1, 2}, SCP maps them onto distinct points in three
dimensional reduced space, i.e. the projection is unique. However, this interesting property
may not hold for ni > 2. Below we separately state some properties of the projection in terms
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of these parameters ri, θi and var(θi). Remind that the first two axes of SCP is constructed
using (ri, θi) and the third axis is

√
var(θi).

Theorem 3 Suppose ni ∈ N, then

rni+1

rni

< exp
{ 1
ni + 1

}

The rate of radius growth is decreasing by increase in boarding.

1
ni + 1 < log(1 + 1

ni
)

ni
ni + 1 < ni log(1 + 1

ni
)

ni
ni + 1 < log(rni

)

− log(rni
) < − ni

ni + 1

(5.1)

log(1 + 1
ni + 1) < 1

ni + 1

(ni + 1) log(1 + 1
ni + 1) < ni + 1

ni + 1
log(rni+1) < 1

(5.2)

By adding the inequalities (5.1), (5.2) we have,

log(rni+1)− log(rni
) < 1− ni

ni + 1

log(rni+1)− log(rni
) < 1

(ni + 1)
rni+1

rni

< exp
{ 1
ni + 1

}

It is evident that rni
is an increasing sequence of ni. Theorem 3 states that the rate of

increase of the radius in SCP is very tight as the number of boarding ni increases.

Theorem 4 Suppose a pair of binary vectors Xi and Xi′ of length L, both with the same
number of boarding ni, then

max |θ̃i − θ̃i′| ≤ 1− ni
2L

where θ̃i = 1
Lni

∑L
j=1 θij.
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The range of angle is decreasing by increase in boarding. We start with an example
where ni = 3. Then Xargmin

i

θ̃ni=3
= [1, 1, 1, . . . ] and Xargmax

i

θ̃ni=3
= [. . . , 1, 1, 1]. Therefore, the

maximum range of angle |θ̃i− θ̃i′ | for a set of temporal usages with the same boarding varies
between min θ̃i, and max θ̃i that is [ni(ni+1)/2

niL
, L(L+1)−(L−ni)(L−ni+1)

2niL
] according to the definition,

this implies the range of angle is shrinking by L(L+1)−(L−ni)(L−ni+1)
2niL

− ni(ni+1)
2niL

= (1− ni

2L).
Theorem 4 states that the angular range decreases as ni increases. This property along

Theorem 3 gives a vague idea about concentration of data after SCP for large ni for the x-y
coordinates of the SCP.

A similar result exists for the z-coordinate as well.

Theorem 5 Suppose a set of all possible binary vectors with ni number of boarding, and
accordingly a set of all possible binary vectors with ni + 1 number of boarding. Then the
projection of such points over the z-coordinate of the SCP satisfy

min zni
< min zni+1,

and
max zni+1 < max zni

.

Trivially if min zL = max zL because the set of possible boarding with L number of boarding
includes only one member.

The range of variance is decreasing by increase in boarding. In this section we use the
alternative definition of variance that can be defined as

1
ni − 1

ni∑
i=1

(θi − θ̄)2 =
n∑

i,j=1,i 6=j

(θi − θj)2

2(ni − 1)2

In order to prove the decrease of variance we have to show that minimum of variance is
monotonically increasing by increase in boarding while the maximum of variance is monoto-
nically decreasing.

Minimum variance of the temporal usages is monotonically increasing by increase in
boarding.

Proof by induction.
First of all, we show that our claim is true for the first step.

min zni=2 =
√
.5 < min zni=3 =

√
1

this is true according to the definition where it occurs at Xargmin
i

zni=2 = [1, 1, . . . ], and
Xargmin

i

zni=3 = [1, 1, 1, . . . ].
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Let sni
= ∑L

i,j=1,i 6=j(θi − θj)2 now, we suppose that sni

2(ni−1)2 <
sni+1
2n2

i
is true, then we want

to show that sni+1
2n2

i
<

sni+2
2(ni+1)2 also holds based on the first assumption.

sni

2(ni − 1)2 <
sni+1

2n2
i

= sni
+∑ni

i=1(ni + 1− i)2

2ni2
(ni − 1)2

ni2
<

ni
2

(ni + 1)2

(5.3)

Thus by multiplying two inequalities in 5.3 we have,

sni

2ni2
<
sni

+∑ni
i=1(ni + 1− i)2

2(ni + 1)2 (5.4)

lemma For any n ∈ N, we have
∑n
i=1(n+ 1− i)2

2n2 <

∑n+1
i=1 (n+ 2− i)2

2(n+ 1)2 (5.5)

Proof,

2n3 + 5n2 + 4n+ 1 < 2n3 + 7n2 + 6n
2n2 + 3n+ 1

2n <
2n2 + 7n+ 6

2(n+ 1)
n(n+ 1)(2n+ 1)

2n2 <
(n+ 1)(n+ 2)(2n+ 3)

2(n+ 1)2∑n
i=1(n+ 1− i)2

2n2 <

∑n+1
i=1 (n+ 2− i)2

2(n+ 1)2

Thus by adding two inequalities from (5.4), and (5.5) we have,

sn +∑n
i=1(n+ 1− i)2

2n2 <
sn +∑n

i=1(n+ 1− i)2 +∑n+1
i=1 (n+ 2− i)2

2(n+ 1)2

That is,
sn+1

2n2 <
sn+2

2(n+ 1)2

Maximum variance of the temporal usages is monotonically decreasing by increase in boar-
ding.

Proof by induction.
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First of all, we show that our claim is true for the first step.

max zni=2 =
√

264.5 > max zni=3 =
√

169

this is true according to the definition where it occurs at Xargmax
i

zni=2 = [1, . . . , 1], and
Xargmax

i

zni=3 = [1, 1, . . . , 1].

Now, we suppose that sni

2(ni−1)2 >
sni+1
2ni

2 is true, then we show that sni+1
2ni

2 >
sni+2

2(ni+1)2 based
on the first assumption.

By setting A = sni
, B = sni+1 − sni

such that B = ∑ni
2
i=1(ni

2 + 1− i)2 +∑ni
2
i=1(L− ni

2 − i)
2,

and C = L− ni

2 −
ni

2 − 1, suppose,

A

2(ni − 1)2 >
A+B

2ni2
(5.6)

Now, we have to show that the following inequality is true.

A+B

2ni2
>
A+ 2B + C

2(ni + 1)2

By expanding equation (5.6) we have,

n2
iA > (ni − 1)2A+ (ni − 1)2B

(2ni − 1)A > (ni − 1)2B

(2ni + 1)A > (ni − 1)2B + 2A

(5.7)

Thus we have to show that, the following inequality is true.

(ni + 1)2A+ (ni + 1)2B > n2
iA+ 2n2

iB + n2
iC

(2ni + 1)A > (n2
i − 2ni − 1)B + n2

iC

From equation (5.7) we know that (2ni + 1)A > (ni− 1)2B + 2A, now it is sufficient to show
that (ni − 1)2B + 2A > (n2

i − 2ni − 1)B + n2
iC.

By rearranging (ni−1)2B+2A > (n2
i −2ni−1)B+n2

iC we should show that A+B >
n2

i

2 C

holds.

A+B = 2
ni+1∑
j=1


j
2∑
i=1

(j2 + 1− i)2 +
j
2∑
i=1

(L− j

2 − i)
2
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j
2∑
i=1

(j2 + 1− i)2 =
j
2( j2 + 1)(j + 1)

6 >
j3

24
j
2∑
i=1

(L− j

2 − i)
2 >

j

2C

A+B >
ni∑
j=1

( j
3

12 + jC) > n4
i

48 + n2
i

2 C >
n2
i

2 C

Therefore, we prove that the minimum variance of temporal usages is monotonically increa-
sing and maximum variance of temporal usages is monotonically decreasing by increase in
boarding. This implies the range of variance is also monotonically decreasing by increase in
boarding and for the extreme usage where one enters the network at every single hour the
minimum and maximum variance is collapsed on the same point.

Adding Theorem 5 to the other properties suggests that the data have the tendency of
concentration as the number of boardings increases. So if a clustering technique is imple-
mented after projection, one may expect one or several clusters of data with large number
of boardings raised naturally as the property of the concentration of data with large number
of boarding. Subsequently SCP better maps the data with small number of boardings. The-
refore, from public transport perspective, we recommend clustering after SCP if a clustering
of data with small number of boarding is of interest.

5.6 Experimental results

Experimental design consists of two steps to analyze the data. First of all, SCP is applied
on the high-dimensional binary data to project the data into the lower dimension. Next,
hierarchical clustering reveals the structure of the users where similar ones grouped together.
To this end, we first show the performance of SCP method on a small synthetic example by
comparing our suggested method with other standard techniques. Then we use smart card
data to discover similar groups of users in Gatineau transit network.

5.6.1 Demonstration of Semi-Circle Projection (SCP)

After introducing the suggested ad-hoc SCP method, we compare it with the other state-
of-the-art time series distance measurements to illustrate the properties of the SCP. This
demonstrates how one can improve the drawbacks for the temporal user behavior. Two com-
monly used distance measures, namely, cross-correlation distance, and autocorrelation-based
dissimilarity distance are used from the TSdist package in R as the base measures for this
comparison.
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The cross-correlation based distance measure between two numeric time series is calcula-
ted by

D(x, y) =
√√√√√√ (1− {CrossCorr(x, y, 0)}2)

K∑
k=1

(1− {CrossCorr(x, y, k)}2)
,

where CrossCorr(x, y, k) is the cross-correlation between x and y at lag k, and the sum in
the denominator goes from 1 to the maximum lag say K. Autocorrelation-based dissimilarity,
computes the dissimilarity between a pair of numeric time series based on their estimated au-
tocorrelation coefficients that can be calculated as D(x, y) =

√
(ρx − ρy)>Ω(ρx − ρy), where

ρx, ρy are the estimated autocorrelation vectors of x and y respectively, Ω is a matrix of
weights, and > denotes the transpose operator (Montero and Vilar, 2014).

Table 5.1 Synthetic example of temporal data associated to 13 users and the corresponding
usage during 7 hours, e.g. user 1 entered the public transit in the very early hour of day
where the related index is 1.

User 1 2 3 4 5 6 7 ... 24
X1 1 0 0 0 0 0 0 ... 0
X2 0 1 0 0 0 0 0 ... 0
X3 0 0 1 0 0 0 0 ... 0
X4 0 0 0 1 0 0 0 ... 0
X5 0 0 0 0 1 0 0 ... 0
X6 0 0 0 0 0 1 0 ... 0
X7 0 0 0 0 0 0 1 ... 0
X8 1 1 0 0 0 0 0 ... 0
X9 1 0 1 0 0 0 0 ... 0
X10 0 1 1 0 0 0 0 ... 0
X11 1 0 0 1 0 0 0 ... 0
X12 0 0 0 0 1 1 0 ... 0
X13 0 0 0 0 0 1 1 ... 0

The results of the three different distance measures are shown in Figure 5.2, 5.3 for the
usersX1 andX8, respectively. Then {X8, X9, X2} could be considered as the first three nearest
users to the user X1 because of the similar time behavior. All three methods indicate the
user X8 as the closest user to the user X1 in Figure 5.2, however, X9 is selected as the second
nearest user in Figure 5.2(b) while the X2 is selected in Figure 5.2(a), 5.2(c). Despite, the
reasonable justification for the first two nearest users selected by cross-correlation distance,
picking the userX13 as the third closest user to theX1 violates the assumption of the temporal
behavior in this dataset. Autocorrelation-based dissimilarity and the SCP measures preserve
the constraints of the temporal distance for the user X1. Next, the user X8 is taken into
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Figure 5.1 Result of the Semi-Circle Projection on the synthetic dataset from Table 5.1 in
three dimension which illustrates how similar users are located close to each other.

account to follow up the performance of each method. The users {X1, X2, X9} are the first
three candidates to be chosen as the nearest users to the X8. In Figure 5.3, the selected users
associated to the user X8 are shown. Autocorrelation and the SCP are capable of picking
those users as are shown in Figure 5.3(a) and 5.3(c), respectively. Yet cross-correlation is able
to discover only X1 as the second closest user while X13 is chosen as the first nearest similar
user. Apparently, cross-correlation is not well-tailored to extract the similar users according
to the temporal pattern. Regarding the discrete values of the autocorrelation distance that is
redundant for couple pairs, e.g. in Figure 5.3(a), the same distance is assigned between four
pairs, (X8, X4), (X8, X5), (X8, X6), and (X8, X7) which should not be the same. However, the
correct order with associated distance is restrained by the SCP method. Moreover, the time
series measurements are designed to give a value for a pair of vectors which requires

(
n
2

)
flops.

The SCP projects each data into a lower space independently to demonstrate the data in
the reduced space with less computational complexity. The computational complexity of the
SCP is of order O(n), where n is the number of projecting users. In Figure 5.1, the projected
users from Table 5.1 into 3D space is shown where the aforementioned constraints are still
kept.
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(c) Semi-circle projection

Figure 5.2 Comparison of the nearest users ofX1 with three similarity measurements, autocor-
relation, cross-correlation, and semi-circle projection, respectively. As we expect, observations
show that SCP method effectively sort out the similar users according to the temporal usage
related to the user 1.

5.6.2 Experimenting the SCP method on Gatineau dataset

Société de transport de l’Outaouais (STO) in Gatineau, Québec, Canada, provides the
data of this study. The STO authority has started to use smart card system since 2001 in its
200-buses network. Everyday, data of every transaction is gathered from public transit users
at bus stops boarding passengers. For each transaction, the following properties are present:

1. Date and time of the boarding transaction ;

2. Card number and fare type ;
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(c) SCP

Figure 5.3 Comparison of the nearest users of X8 with three measures of similarity, autocor-
relation, cross-correlation, and semi-circle projection, respectively. As it could be seen, SCP
is able to find out the analogous users by projecting them into three dimensions.

3. Route number and direction ;

4. Vehicle and driver numbers ;

5. Stop number at boarding.

Note that for the sake of security and privacy purposes, card numbers are encrypted so
that all user-information is completely anonymous. Additionally, we suggest to encode the
temporal data into a 0 − 1 vector whereas 24 binary vector associated to the daily hours.
In this vector, occurrence of 1 at a specific index represents the usage of smart card at the
corresponding hour. To deal with the binary values, discrete structure is usually suggested
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as the first option to entail the data for further process.
This projection method is tested on the mid-size authority (300 buses and 220, 000 inha-

bitants), over one month period in April 2009 (data is gathered from 753, 016 transactions,
with 26, 176 unique users and 416, 076 card-days). From the first analysis of usage histogram
shown in Figure 5.4, it turns out a large subset of users prefer to take the public transit
between 15-20 days per month, on average. Figure 5.5 (3D histogram of the projected users

Figure 5.4 Histogram of the frequency of the traveled days in one month.

on xy-plane) demonstrates how many users overlapped on the same point without the z-axis
that captures the standard deviation of the timestamps. In other words, the frequency of this
histogram states the proliferation of the same sum of usage indices for different behaviors.
Moreover, this illustrates the peak of the half-circle has the highest density which reflects the
existence of a meaningful pattern depicted in Figure 5.5.

The dendrogram in Figure 5.6(a) shows the visual aggregation of users on the projected
data. In Figure 5.6(b) existing clusters for the cutting point are illustrated. Vertical axis
represents similarity measure between clusters. Similar users are grouped in the bottom of
the dendrogram ; higher in the hierarchy, clusters are grouped together. The closer the groups
are the more in the bottom, the more different they are bigger is the dissimilarity and higher
are the steps in the dendrogram. It is then easy to identify possible cuts in the dendrogram
that will stop the grouping process where too much dissimilar clusters are merged together ;
it is simply about translating the red line from the top to the bottom in order to identify big
steps in the dendrogram.

Different options may be possible. From Figure 5.6(a), cuts in 2, 3, 4, 6, 9 or 18 clusters
are to be considered. For a similarity/dissimilarity perspective they are close options, besides
for an expert in the application domain it is possible to differentiate between these options.
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Figure 5.5 3D histogram of the overlapped projected data on xy-plane.

Considering domain expertise, a cut on the top, in 2, 3 or 4 clusters, will be completely
unbalanced (few customers on the right will be separated from all other users on the left in
another group), this option will not be useful for the context of explaining users’ behavior,
we would have one conclusion that applies to a large group, which is not really useful for
the practitioner. Options in 9 or 18 groups are still available, both could be processed and
compared. From a methodological aspect here, we selected 18 groups for a more accurate
prospect. These clusters of user behavior in public transit are described as the following
categories.

Single trip: as it is shown in Figure 5.7, significant number of patterns belong to this
group ranging from early morning to late night, though with different number of users and
distribution that is shown in Figure 5.6. Members of this group commute once or few times
a day for one-way monadic trips at certain hours.

Regular commuters: four types of users take the public transit regularly as can be seen in
Figure 5.8. The pattern of these loyal users shows the frequent of usage all day long. Taking
the number of users in this group into account, considerable portion of users are categorized
as regular users who rely on public transit for their daily trip.

Late commuters: another category of users is determined in Figure 5.9, which demons-
trates typical evening and late night usages for the most expeditions occurring or done on
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many occasions. These users usually enter the public transit network after the work for
different purposes or come back to home late night.

Long day: this category is characterized by a two-peak distribution of the transactions
during a typical day of travel shown in Figure 5.10. This is generic schedule of morning and
evening peak period travel time.

Midday versus long day: the patterns of long day users and midday travelers are shown in
Figure 5.10(a) and Figure 5.10(b), respectively. The former group of users usually behave as
a combination of regular users and late commuters. This reflects the fact that long day users
intrinsically take the public transit for habitual commuting to work and late night circulation.
In analogy, the subscriber of the latter cluster, are more similar to the late commuters whose
pattern is shifter over to left. This implies the spread of transactions revolves around lunch
peak time and evening rush hour.

Active versus inactive: Figure 5.11 shows the active users and the inactive smart cards’ be-
haviors. Active users never miss any bus along their way as it could be seen in Figure 5.11(a).
However, few users never used their smart card for the given one month interval with null
pattern as it is shown in Figure 5.11(b). These two groups of users have the most extreme
behavior in the public transit network in comparison to the remaining ones.

Let us look at the proportion of cards-day corresponding to each cluster in Figure 5.12, by
working days, Saturdays and Sundays for the duration of the given month. It shows that du-
ring the working days (from Monday to Friday), the proportion of regular and single clusters
(pendulum AM-PM trips) are much higher than the other ones. However, the proportion of
the late commuters and the active clusters increased over the weekend, while a sharp drop of
regular users is seen. This happens because people move later in the afternoon, and the trips
are less characterized by pendulum movements like in the working days. It is also interesting
to look at the distribution of the cluster by the entire days of month shown in Figure 5.13
where the same patterns could be found scaled by the frequency of trips per day.

5.7 Conclusion and Discussion

User’s behavior modeling is crucial for predicting future financial gain, transportation
scheduling, and traffic load. Thus, the main objective of the data mining on the public transit
data is uncovering people’s behavior. We presented the analysis of the public transit smart
card transactions by projecting the high-dimensional binary vector of the temporal data into
a three dimensional semi-circle and three-dimensional space. The new representation of the
data provides a visual guide to a better understanding of the temporal pattern. Seventeen
clusters are identified in terms of single trip, regular users, late commuters, long day, midday,
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(a) Dendrogram of hierarchical clusters. (b) Corresponding temporal patterns.

Figure 5.6 Dendrogram of the hierarchical clustering with the associated clusters of the
projected data. Figure 5.6(a), shows 18 clusters, the total temporal patterns that exist for
the one month period of the smart card usage. These clusters are shown on the projected
data, in Figure 5.6(b).

Figure 5.7 Pattern of single trips ordered by early to late.

active and inactive groups as the temporal behavior of the users by applying agglomerative
hierarchical clustering on the transformed data. Despite a continuous variable carries more
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Figure 5.8 Pattern of regular users.

Figure 5.9 Patterns of late commuters.

(a) Long day pattern (b) Midday pattern

Figure 5.10 Patterns of long-day trips vs midday excursion.

information, binary data carries little amount of information compared to the continuous
variable. This motivated us to transform a binary sequence to one or several continuous
variable to execute a computationally efficient analysis. In this research study, 24 hours user-
day pattern is used as the original data, however, our method is flexible to analyze even more
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(a) Active users (b) Inactive smart cards

Figure 5.11 Patterns of active users versus inactive cards.

Figure 5.12 Distribution of clusters shown in Figure 5.6 for usual working days and weekends.

complicated patterns such as 30 day user-day, or 365 user-day efficiently.
Most of the data mining algorithms are developed for continuous variables that we can

take the advantage of them, if we properly transform binary data to continuous and infor-
mative space. Benefiting from a proper transformation we also gain computational feasibi-
lity through dimension reduction. Developing a particular data structure, one can decrease
the computational time complexity of the hierarchical clustering algorithm from O(n3) to
O(n2 log n) or even O(n2) by certain properties of the algorithm, where n is the number of
users. Remembering the binary vector of length 24× 30 for each individual using the public
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Figure 5.13 Daily cluster distribution for the entire period of the month.

transit in one month, if only 1000 people use the public transit, the amount of storage and
computing facility required for analysis of such data with recent data mining algorithms is
cumbersome, even with today computational power. The issue becomes worse if we analyze
data of several years.

Several issues arise as future directions of this work. First, there is a need to define
an equivalent metric on the binary space corresponding to the Euclidean measure on the
projected three dimensional space. Second, the analysis of spatial data remains as the open
question for our future research because of the existence of complex scenarios which require
sophisticated techniques to compute the similarity of the users. Third, the technique can be
applied to other sorts of vectors, not only including timestamps, but also the location of
boarding on the territory, the route sequences, route types, etc. if the data are encoded in a
binary vector.

The following subsections dealing with spatial data analysis are not part of the published
journal paper. The challenges of spatial data analysis was already published as a conference
paper in Ghaemi et al. (2015). Recently under the light of forestogram development, we
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suggest a new perspective to extract the spatial patterns through temporal latent variable.
In the following we present the spatial data analysis with the observed results produced by
forestogram biclustering.

5.8 Challenges in Spatial Data Analysis Targeting Public Transit

Spatial data contains worthwhile information about the geographical details of each bus
stop and are stored sequentially following the order of temporal usage. Although enough
information about the coordinates of bus stops are available, defining a measure of similarity
of behaviors in the public transport network is troublesome. The main issues about similar
trips in the spatial case can be summarized into the following two questions. First, are two
users similar according to the similar bus stops they usually use every day ? Second, are
they categorized in the homogeneous group of users, if their resultant traversed distance
resembles ? Moreover, it is possible to consider the following scenarios to realize how this
spatial criterion is difficult to define.

Fig. 5.15, shows three users, red, blue, and green, who use the public transport from the
same starting point and leaving the system at the same point as well, however, they use
different number of trips in various directions. Hence, their resultant traversed distance is
quite identical while each uses a different path. This example shows that how the answer to
the two asked question can quit change the measure of user similarity in the spatial data
analysis task.

Fig. 5.16, points out two red and blue users start and end their trips using the same bus
stops but in the opposite directions. In contrary to the Fig. 5.15, regardless of the resultant
trips, one can define the similarity only according to the bus stops. This may reflect the trip
patterns of the same user who travels between home to work and vice versa in different time
period.

In Fig. 5.17, it turns out that it is possible to ask even the third question. Despite, the
starting points and the ending points are distinct for both users and none of them use the
same bus stops, still one directional routing pattern is emerged. Besides, that it can be a
consequence of taking different buses from variant inceptions to the terminations, taking the
same bus stops in the same route but in different time intervals would be the other reason.
The former instance, is happening in the spatial-temporal data analysis.

With the similar argument described for Fig. 5.17, Fig. 5.18, the directional routing
pattern can happen in a symmetric manner as well. This symmetrical property, is held in
the horizontal orientation in Fig. 5.18, vertical orientation, x = y, x = −y, and etc. are also
likely to consider.
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Bus
stop

Subway 
station

Figure 5.14 A typical network of public transport

Figure 5.15 Three users with the same start point and end point

Figure 5.16 Two users taking the same buses in opposite directions
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Figure 5.17 Two users with the same directional pattern

Figure 5.18 Two users with the same symmetric directional pattern

Figure 5.19 Two users with the same pattern of usage except one
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Consider a case where two users are following almost the same sequence of bus stops order
except one. Fig. 5.19 shows this situation, this behavior can also belong to the schedule of
one user in two different days. This anomaly would be likely to occur too when frequent bus
stops are used by similar users. Defining this type of usage pattern as an outlier or might be
a noise, because of fault in storing or capturing devices, quite depends on the definition of
user similarity criterion.

In Fig. 5.20, two users are shown, the total trip and bus stops taken by user blue, is a
subset of the used bus stops by user red. In this circumstance, two users are utilizing the
public transport roughly alike in a particular part of their schedule, nevertheless they behave
differently beyond that interval. Hence, it turns out, the number of the taken bus stations is
another important factor in defining the user similarity in the spatial domain.

Fig. 5.21, shows the other scenario, where the two users differ in the number of trips.
Similar to Fig. 5.20, the blue trajectory that used bus stops, is a subset of taken bus stops
by the red user. However, the resultant traversed distance is almost the same for both users.
The sequence of bus stop usage, associate to the closely similar pair of users differs in the
number of taken bus stops.

Suppose two users who take the same bus stops not necessarily in the same order, during
their daily trip. In other words, permutations of the same bus stops can amount to the
totally different resultant traversed distance. As it is shown in Fig. 5.22, the same bus stops
are still shared between the two users without the same usage pattern. This often gets more
complicated when temporal information gets involved in this sort of data analysis dilemma.

In other scenario, two users might use the public transport exactly in the same order,
except the starting point and end point. This is an ordinary pattern that would be used by
users who live in different parts of the city, they take the same bus stops during their daily
trip. For instance, Fig. 5.23 shows two users following the same pattern in the downtown
area, while living far away from each other.

In the former circumstances, Euclidean distance between bus stops, was assumed in the
definition of the user similarity. This presumption can be violated, if the utilization of the

Figure 5.20 Two users with partial similarity pattern
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Figure 5.21 The same resultant traversed distance with different bus stops

Figure 5.22 Two users taking the same buses with different order

Figure 5.23 The same pattern of two users living in the different places
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Figure 5.24 User similarity based on circular grid representation of bus stops

bus stops does not conform the uniform distribution. Despite the utilization of the bus stops
usually comes from a mixture of normal distributions, for the sake of simplicity, we can
assume that bus stops are sampled from just a normal distribution. Fig. 5.24, illustrates a
typical public transport network, where the center of the city is the mean of the spherical
normal distribution, and the off-diagonal entries of the covariance matrix are zeros, because
of the spherical symmetry of the density function.

This hypothesis implies that if two bus stops are taken from the same circle with the
particular radius, it can be assumed they are relatively close to each other, in contrary to
the Euclidean distance. Accordingly, in Fig. 5.24, the red user is following the same pattern
as the user blue (at each time point, the identical bus stops are taken from the same orbit).

So far, a number of possible use cases are introduced about the spatial public transport
usages, comparing two given users. In the real world datasets, where millions of users usually
take the public transport for their daily journeys, the combination of these patterns can
happen in the whole picture. Moreover, taking the temporal behavior into account, certainly
affects the complexity of the scheduling and methods of data analysis.

Two aforementioned questions address how the user similarity criterion can be defined
under few assumptions. As the first one, we assume two users are comparable if they take
the same number of bus stops in their daily trip. For the second assumption, two users are
similar if in the sequence of the used bus stops each pair of the bus stops associated to the
same time stamp are close to each other. Finally, by summing the all distances between pair
of bus stops from an origin user, similarity of a user can be computed. One suggestion for the
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Figure 5.25 Pairwise bus stop difference criterion for measure of user similarity

origin user, is the mean geographical coordinates of the used bus stops at each time point.
These few hypotheses preserve the defined constraints such that resultant traversed distance
of two users is similar if they take similar bus stops at each time step. Fig. 5.25, shows three
users, where the users red and orange are compared to the blue user. The sum of differences
between all pairs of bus stop between blue and red circles (green lines) identifies the similarity
of user blue and red. Similarly, the similarity of users blue and orange can be computed.

Formalizing this definition mathematically, suppose these two sequences are given as
S1 and S2 from the same length. Each entry of the sequence, consists of (x, y) geographical
coordinates of the bus stop. Hence, we define the similarity of two sequences as the summation
of Euclidean distances of the point-wise elements. Then we have,

DEuclidean(S1, S2) =
n∑
i=1

d(S1i, S2i) (5.8)

where n is the number of boardings.
In addition, Cosine similarity and Pearson similarity are the other measurements sugges-

ted in (Li et al., 2008) as follows,

DCosine(S1, S2) =
∑n
i=1 S1iS2i√∑n

i=1 S
2
1i

√∑n
i=1 S

2
2i

DPearson(S1, S2) =
∑n
i=1(S1i − S1)(S2i − S2)√∑n

i=1(S1i − S1)2
√∑n

i=1(S2i − S2)2
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5.9 Spatial-temporal data analysis with forestogram

As it was mentioned earlier, tackling the spatial analysis of the transit data is challenging
due to different scenarios that may arise in defining a good metric to express the similarity
among a pair of spatial trajectories. However, in analyzing the spatial-temporal data, often
each component of the data, e.g. time and space is taken into account separately. One com-
ponent is acting as a weight to influence the second one. Here, we take the advantage of both
components reciprocally such that Euclidean property of geodesic distance for spatial data
can contribute to elaborate the temporal similarity. Furthermore, sequential occurrence of
time series utilization can act as a latent variable to represent the spatial structure of user
behavior in public transit network. In this regard, customized version of forestogram library
designed for biclustering is employed to extract the similar group of users with their cor-
responding temporal and spatial pattern simultaneously. To this end, daily temporal usage
requires to split into hourly binary intervals as it is shown before. Then the spatial coordinate
pair of GPS location (x, y) from the corresponding time interval takes the same place in the
input data matrix. This way, we can perform the Euclidean distance to the entries of the
matrix while the latent time information is implicitly playing its role. Now the remaining part
is to modify the distance for columns of the matrix, such that (x, y) location is considered as
a unit measurement for computing the dissimilarity measure associated to the Lance-William
property. This way spatial-temporal patterns can be easily extracted from the columns of the
matrix while similar users appear on rows. Yet hierarchical structure of the forestogram de-
termines the evolution of the biclusters with benefits of FORIC as a statistically meaningful
guide to guess how many blocks we have in the data. For better understanding what this
biclustering does on a spatial-temporal matrix, let’s consider an example. Suppose we have 8
users that only commute from one point to another as is shown on the map in figure 5.26 at
two different timestamps. The Table in 5.2 encodes this behavior to be fed into the modified
forestogram.

Therefore in order to find the spatial-temporal patterns in the given example, forestogram
with adjusted distance function can easily be used here. In figure 5.27 the result of running
forestogram on this example is shown where we have two main clusters of users each has two
subgroups. The first one contains subgroups with two opposite directions and in the second
one we have two clusters with different starting points but the same destination. Moreover,
from the spatial-temporal patterns, there exists two main groups where times {2, 5} are in
one temporal behavior and {1, 3, 4} hours belong to the same pattern. From the spatial
viewpoint, we just have (10, 50) location shared between two spatial behaviors because it is
used in two different timestamps. This example is an illustration of the idea how forestogram
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Figure 5.26 Visualization of the synthetic example of spatial-temporal data associated with
8 users and the corresponding spatial usages during 5 hours shown in Table 5.2.

can be effectively tailored for spatial-temporal data analysis such that Euclidean distance is
relevant to location history and the time series is implicitly taken into account.

We also take another empirical data study besides this intuitive example to investigate
this method on real data gathered for a period of one week from 113692 observations between
5 to 23 based on daily hours. It turns out forestogram in conjunction with FORIC extract
11 groups of similar users with 3 different spatial-temporal patterns described in Figure 5.29,
5.30, and Figure 5.31 with the corresponding forestogram depicted in Figure 5.28.

Three spatial-temporal patterns across 11 groups of similar users that are discovered by
FORIC on the forestogram shown in Figure 5.28, are elucidated in Figure 5.29, Figure 5.30,
and Figure 5.31. In both figures x axis encodes the discrete hourly usages and y axis shows
the shared location in (latitude, longitude) pair. The overview of the extracted patterns that
are released by forestogram, demonstrates that three temporal patterns exist in the current
collected data with diversity of location histories. Here are a number of salient patterns which
describe the daily behavior of subscribers in the public transit network. Late night and middle
day commuters with corresponding geographical location is shown in Figure 5.29(b). Figure
5.30(b) shows the early morning and afternoon behavior of users for the related locations. In
Figure 5.31(c) a combination of early morning, noon and overnight usage is depicted in three
sub-blocks of bicluster-9 with variety of spatial patterns. The temporal patterns of Figure
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Table 5.2 Synthetic example of spatial-temporal data associated with 8 users and the corres-
ponding usages during 5 hours. Spatial location is denoted by (latitude, longitude) pair.

User 1 2 3 4 5
X1 0 (10, 10) 0 0 (50, 40)
X2 0 (10, 20) 0 0 (50, 50)
X3 (30, 30) 0 0 (10, 50) 0
X4 (30, 40) 0 0 (10, 50) 0
X5 (50, 10) 0 0 0 (10, 50)
X6 (40, 10) 0 0 0 (10, 40)
X7 0 (50, 50) 0 0 (10, 10)
X8 0 (40, 50) 0 0 (10, 20)

Figure 5.27 Forestogram of the synthetic example of spatial-temporal data defined in Table
5.2.

5.30(e) are very similar to the temporal patterns in Figure 5.31(c) with slightly sparse hourly
usage, though with disparate geographical locations. In Figure 5.31 the second sub-block in
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Figure 5.28 Forestogram built on top of the cluster centers obtained from the real data.

biclusters (c), and (d) shows a similar spatial patterns with the same hourly order but variant
shift such that we can conclude the commuters travel from home to work and from work to
home during the weekdays and weekends, respectively. The overall spatial behavior of each
temporal bicluster is illustrated in Figure 5.31(f) by averaging on all users. We can argue that
each bicluster identifies a certain spatial-temporal pattern in terms of scheduling, working
day, weekend, summer, holidays, particular events, station/stop quality and functionality, tap
in/tap out information, etc. if the type of each card was available, the location of station/stop
was determined and the range of boarding date was beyond just one week.

We show the pattern of spatial-temporal behavior of the similar users extracted by fores-
togram in Figure 5.29, Figure 5.30, and Figure 5.31, where the temporal usage is captured
on x-axis and the y-axis displays the average of the spatial data corresponding to the used
hours. This new spatial-temporal patterns can help public transport analysts comprehend
how the temporal pattern varies over the geographical locations inside the existing biclusters.
It is worth to mention that each bicluster is also self descriptive such that, we can observe
how many distinct spatial-temporal templates is discovered by the forestogram automatically
to make sense of public transport data visually.

As it was discussed earlier, this subsection has not published yet and we use a preliminary
limited data to conduct a pilot study for evaluating the feasibility of deploying our suggested
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Figure 5.29 Patterns of spatial-temporal behavior extracted from the real data with modified
forestogram. x axis encodes the discrete hourly usages and y axis shows the shared location
in (latitude, longitude) pair.

forestogram in the area of public transport as the first application of this thesis. In light of
recent development of forestogram, and promising analysis of one week data that was partially
available for this experimental study, we can suggest that using the geodesic distance trick
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Figure 5.30 Patterns of spatial-temporal behavior extracted from the real data with modified
forestogram. x axis encodes the discrete hourly usages and y axis shows the shared location
in (latitude, longitude) pair.

to extract the spatial patterns through the latent temporal usage is a novel idea for spatial-
temporal data analysis in public transport domain. Furthermore, the combination of SCP
idea for temporal behavior along with the bicluster analysis of spatial-temporal pattern can
open a new direction to study the integration of both elements from smart card data more
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Figure 5.31 Patterns of spatial-temporal behavior extracted from the real data with modified
forestogram cont. x axis encodes the discrete hourly usages and y axis shows the shared
location in (latitude, longitude) pair.

effectively in the future.
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CHAPTER 6 MULTIOMICS ANALYSIS OF HOST RESPONSE TO
PREGNANCY

6.1 Abstract

Motivation: Despite the well-established impact of baby development during the early
months of pregnancy on long-term outcomes, the biological mechanisms that govern pre-
gnancy have not been studied in details. Most clinical assays (e.g., those based on ultrasound)
can only capture abnormalities at a late pregnancy stage. The maintenance of pregnancy relies
on a finely-tuned balance between tolerance to the fetal allograft and protective mechanisms
against invading pathogens. This is achieved through a series of symbiotic interactions bet-
ween different biological modalities. Demonstrating the chronology of these adaptations to a
term pregnancy provides the framework for future studies examining deviations implicated
in pregnancy-related pathologies including preterm birth and preeclampsia.

Results: We perform a multiomics analysis of 51 samples from 17 pregnant women, de-
livering at term. The datasets include measurements from the immunome, transcriptome,
microbiome, proteome, and metabolome of samples obtained simultaneously from the same
patients. Elastic net algorithm is used to measure the ability of each dataset to predict gesta-
tional age. Using stacked generalization, these datasets are combined into a single model. This
model not only significantly increases the predictive power by combining all datasets, but
also reveals novel interactions between different biological modalities. Future work includes
expansion of the cohort to preterm-enriched populations and in vivo analysis of immune-
modulating interventions based on the mechanisms identified. Furthermore, we investigate
the performance of forestogram for biclustering task where selected variables can show how
much supervised information contributes to the prediction of pregnancy trimesters. Additio-
nally, visualization property of forestogram provides a comprehensive tool for analyzing the
interrelated features across the pregnancy trimesters to interpret the results.

6.2 Introduction

Recent technological advances in science provide novel opportunities to unravel the com-
plex biology of pregnancy. A particularly pressing issue is to identify the biological pathway
and the converging pathological processes that lead to preterm birth (Lackritz et al., 2013).
Preterm birth is the major cause of neonatal death, and the second leading cause of mortality
in children under the age of 5 years (Liu et al., 2012).
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An ongoing cohort study by the March of Dimes Prematury Research Center at Stanford
University exploits recent technological advances to examine an array of biological and en-
vironmental factors associated with normal and pathological pregnancies (Stevenson et al.,
2013). From a biological perspective, this effort has so far produced two major lines of evi-
dence. One line sheds light onto precisely tuned chronological changes that occur during
normal pregnancy. For example, a highly multiplexed cell-based assay in whole blood revea-
led an “immunological clock” of human pregnancy that predicts gestational age at the time
of sampling (Aghaeepour et al., 2017). These findings are echoed in a longitudinal analysis
of cell-free, maternal RNA (Pan et al., 2016). The second line points to important pathophy-
siological derangements. For example, dense longitudinal sampling of the vaginal microbiome
revealed community composition profiles associated with preterm birth that were validated
in an independent cohort (DiGiulio et al., 2015; Callahan et al., 2017).

Current multiomics efforts belong to two categories generally known as multi-staged and
meta-dimensional (Ritchie et al., 2015). In multi-staged analysis, measurements of the same
biological factors are integrated at various biological levels and using different technological
platforms e.g., DNA and RNA sequencing, epigenetic analysis, and proteomics assays. No-
table examples include Emilsson et al. (2008); Schadt et al. (2005); Maynard et al. (2008);
Shabalin (2012); Shen et al. (2009). However, modern biological studies extend well beyond
these layered measurements and include various assays such as single cell analysis, imaging,
mechanical measurements using wearable sensors, and clinical phenotypes. Meta-dimensional
multiomics is an emerging approach that aims at combine heterogeneous datasets to identify
key factors at various biological levels, their interactions with each other, and with clinical
outcomes. Some studies achieve this by simply merging all available datasets into a single
matrix for joint modeling Fridley et al. (2012); Mankoo et al. (2011); Holzinger et al. (2013).
These approaches are often susceptible to biases introduced by the differential sizes, modu-
larities, scalings, and batch effects of the included datasets. Various kernel e.g., Borgwardt
et al. (2005), and graph e.g., Kim et al. (2012) transformations have been proposed to ad-
dress this. Depending on type of analysis that is performed against an external factor, an
alternative approach is to use a mixture-of-experts methods to combine the results of inde-
pendent models produced on each dataset through various algorithms ranging from voting
e.g., Aghaeepour and Hoos (2013) to integration of Bayesian probabilities Zhu et al. (2008,
2012); Akavia et al. (2010).

While the analysis of a specific molecular data set is of undisputed value, the meta-
dimensional analysis of various data sets holds significant promise. Physiological changes
during pregnancy are highly dynamic and involve multiple interconnected biological sys-
tems. The simultaneous interrogation of these systems with suitable technologies can reveal
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otherwise unrecognized crosstalk. Understanding such crosstalk can inform several lines of
investigation. From a biological perspective, it points to important disease mechanisms such
as immune programming by the microbiome, or specific interactions between proteins and
cellular elements (Aghaeepour et al., 2017; Dethlefsen et al., 2007). From a diagnostic pers-
pective, it reveals biomarkers from several biological domains that provide higher predictive
power if combined. Alternatively, it also points to substitute biomarkers in an accessible bio-
logical compartment, which can replace biomarkers that are difficult to obtain or expensive
to measure.

The first objective of this study is to test whether a multiomics analysis of transcriptomic,
immunological, microbiome, and proteomic data can increase the power of a model predicting
gestational age in term pregnancy. The second objective is to probe whether and to what
extent each data set contributes to the model. The third objective is to test whether the
number of model parameters can be reduced without compromising predictive power. The
fourth objective is to interrogate derived model for novel and testable biological links as
is shown in Figure 6.1. And in the fifth objective, regardless of the supervised information
forestogram is performed to demonstrate the role of biclustering in analyzing the integrative
model for multiomics dataset in contrast to the other unsupervised perspectives shown in
Figure 6.14.
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Figure 6.1 Integrative model for combining seven multiomics dataset through cross-validation.
In the first layer, for each omic dataset a regression model is tuned. Then the integrative
prediction is made by bringing gestational output from each omic dataset together in the
second layer.

6.3 Results

6.3.1 Overview

Samples from a total of 51 visits throughout pregnancy and 17 visits 6 weeks postparturm
are collected. Samples are analyzed for seven biological modalities, Cell-free transcriptomics,
luminex proteomics in plasma and serum, microbiome analysis from several body sites, mass
cytometry analysis of whole blood, and metabolomics and proteomics analysis of plasma
Figure 6.2(a). Not only these datasets significantly varied in the number of measurements
Figure 6.2(b), but also has different levels of complexity as measured by the number of
principal components needed for accounting for 90% variance of each dataset Figure 6.2(c).
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Figure 6.2 (a) Overview of the study design. A total of 51 samples are collected during
three trimesters of pregnancy as well as an addition 17 samples 6 weeks after delivery. Seven
datasets are produced for each sample. (b) The number of biological measurements in each
dataset. (c) Complexity of each dataset calculated as the number of principle components
needed to capture 90% variance.

The first step toward gestational age prediction, is to analyze each dataset separately
to use the prediction of each omic prediction in the second step for the integrative model.
Elastic net (Zou and Hastie, 2005) is deployed as a promising regression technique for high-
dimensional small sample size dataset. In the second step, stacked generalization is designed
based on elastic net to improve the prediction through the incorporation of multiomics da-
taset.

6.3.2 Estimation of Gestational Age

Elastic net algorithm is used to predict the gestational age of each subject at each visit.
A two-layer cross-validation procedure is used to both optimize the free parameters of the
elastic net model and to ensure predictions are always made on samples that are not used
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for training, to avoid overfitting see Figure 6.3(a). A broad range of p-values with Plasma
Proteomics analysis using the Somalogic platform producing the highest correlation 6.3(b).
Results remained generally consistent on the test set 6.3(c). These findings are independent
of the size or complexity of each dataset 6.2(b) and (c).

6.3.3 Stacked Generalization

The estimations produced by these models is then merged using an additional elastic net
model. Cross-validation is synchronized across all layers to ensure predictions are made on
samples that have not been seen by the stacked generalization elastic net or any of the models
built on individual dataset Figure 6.4(a). For visualization purposes, the top hits from each
model are extracted and visualized using a Minimum Spanning Tree (MST) between the
selected features.
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Figure 6.3 a) Overview of the two-layer cross-validation procedure. On the outer layer, a
modified leave-one-patient-out cross-validation procedure is used in which all samples from
the same subject (as opposed to just one subject) is left out as a blinded sample. Within each
fold a second cross-validation is performed to optimize the free parameters of elastic net. (b
and c) the Spearman correlation between the (b) training set and (c) test set cross-validated
results for each dataset. (d) performance of the trained models on the whole datasets including
the first trimesters of pregnancy and post-partum that is never exposed to the training set.
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This resulted in a set of 226 interrelated features, revealing statistically robust interac-
tions within and between each omics dataset. A Minimum Spanning Tree (MST) represen-
tation organized these interactions into a branched structure in which the distance between
two features is proportional to the strength of the correlation between them. Metabolomics,
transcriptomics and proteomics features primarily segregated into three clusters. Cytomic
features from the immune system were distributed across the MST graph, forming a link
between other omics datasets rather than being confined to a single cluster. The MST graph
highlighted the connectivity between biological processes measured in the plasma (metabo-
lomics, transcriptomics, proteomics measurement) or local compartments (microbiome data)
and cell-specific immune responses measured in the peripheral blood compartment.
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(b) Model reduction and MST correlation visualization

Figure 6.4 (a) Stacked generalization analysis. The size of the boxes is proportional to the
log 10 of the number of measurements in each dataset. The thickness of the arrow is propor-
tional to the − log10 of p-value of a correlation test for gestational age ; (b) Visualization of
the most predictive features in a correlation network. The size of each node is proportional
to the univariate correlation between that feature and gestational age. Color represents the
corresponding dataset.



93

With respect to the microbiome data, a strong correlation is observed between changes in
the composition of bacterial species localized in the oral cavity and the frequency of B-cells
and TCRgd+ T-cell, a finding consistent with the unique role of TCRgd+ T-cell in muco-
sal immunity. With respect to the metabolic dataset, the model reveals strong correlations
between the plasma factor pregnanolone and the NF-kB signaling in myeloid dendritic cells
(mDCs) and regulatory T-cell (Tregs). Pregnanolone, or 3α, 5β-tetrahydroprogesterone(3α, 5β-
THP), is an endogenous steroid biosynthesized from progesterone. Modulation of immune cell
function by progesterone and its derivative is well established (Druckmann and Druckmann,
2005). However, their role in regulating the function of specific immune cell subsets during
pregnancy is not fully understood. The results thus generate a novel hypothesis that pregna-
nolone may regulate important aspects of mDC and Treg function during pregnancy.

With respect to the proteomic dataset, a three-way interaction between the transcripto-
mic, proteomic and cytomic datasets was particularly interesting, as it highlighted a novel
connection between previously reported models of molecular clocks of pregnancy. This in-
teraction contained the Chorionic Somatomammotropin Hormone-1 (CSH-1), represented at
the transcript (cell-free RNA dataset) and protein (Somalogic dataset) levels, and the endo-
genous activity of the transcription factor STAT5 measured at the single-cell level in CD4+
and CD8+ T cell subsets. CSH-1 is known to bind to the prolactin receptor (Walsh and Kos-
siakoff, 2006), which signals through the JAK2/STAT5 signaling pathway (Gouilleux et al.,
1994).

The strong correlation observed between CSH-1 RNA and protein levels, and STAT5
activity in T cells (R=0.5936333, p=4.402 × 10−06) prompted further examination in an in
vitro model to determine whether CSH-1 can directly activate the JAK2/STAT5 signaling
pathway in T cells. However, incubation of whole blood samples from non-pregnant or pre-
gnant (Supplemental Figure S3) women with CSH-1 did not induce the phosphorylation of
STAT5 in CD4+ or CD8+ T cell subsets. On further inspection of the proteomic dataset,
CSH-1 was found to belong to a community of tightly correlated plasma factors known to
regulate the JAK/STAT signaling pathway. This community included the inflammatory cy-
tokine Interleukin-2. Supplementary Figure S3 shows that, in contrast to CSH-1 or prolactin,
incubation of whole blood samples with IL-2 induced a robust STAT5 phosphorylation signal
in all major T cell subsets. These results suggest that in the context of pregnancy, the pro-
gressive increase in intracellular STAT5 activity in T cell subsets is likely driven by changes
in IL-2 rather than CSH-1.
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6.4 Methods

Pregnant women presenting to the obstetrics clinics of the Lucile Packard Children’s
Hospital at Stanford University for prenatal care were invited to participate in a cohort
study to prospectively examine environmental and biological factors associated with normal
and pathological pregnancies. Women were eligible if they were at least 18 years of age and
in their first trimester of singleton pregnancy. Samples were obtained during the first (7− 14
weeks), second (15−20 weeks), and third (24−32 weeks) trimesters of pregnancy, and 6 weeks
post-partum. In a subsets of 17, specimens were collected for the comprehensive analysis of
cell-based immunological changes in whole blood using mass cytometry, proteomic changes
in plasma using multiplexed antibody and aptamer-based platforms, transcriptomic changes
in plasma using cell-free RNA, and microbial changes in the vagina using high resolution
sequencing techniques. The study was approved by the Institutional Review Board of Stanford
University School of Medicine and all participants provided written informed consent.

6.4.1 Elastic net

For a matrix X of all features from a given dataset, and a vector of estimated gestational
ages at time of each sampling Y, the EN algorithm calculates coefficients β to minimize
the error term L(β) = ||Y − Xβ||2. An L1 regularization (?) to increase model sparsity
(which facilitates biological interpretation and validation). However, this approach is not
ideal for the analysis of the highly interrelated biological data sets, because it would select
only representatives of communities of highly correlated features while disregarding highly
correlated but potentially biologically relevant features. This limitation is addressed by using
an additional L2 regularization penalty: L(α, λ,β) = ||Y−Xβ||2 +λ

[
(1−α)||β||2 +α||β||1

]
,

where ||β||2 = β>β and ||β||1 = ∑n
i=1 |βi|. The subset selecting factor λ controls the sparsity

of the model and the smoothing factor α controls the smoothing of selection from correlated
variables (Zou and Hastie, 2005).
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Figure 6.5 An example of bivariate elastic net penalty with α = .5, in presence of LASSO
and ridge regression constraints.

The ratio of samples to features is the key factor that affects the statistical model perfor-
mance. A simple linear regression model is prone to overfit the data by adversely increasing
the model complexity through dramatic number of features. Providing a model with a good
generalization capacity through the overwhelming features (dimensions) with respect to the
fixed number of samples requires sparse model selection techniques to avoid the curse of
dimensionality. Although LASSO (Tibshirani, 1996) with `1 regularization penalty has been
shown to be an effective sparsification model by setting irrelevant variables to zero, certain
drawbacks arise due to growth of highly correlated features. Since, in biology often relatively
small group of correlated measures among many other features are associated to particular
disease, elastic net incorporates the `2 constraint with `1 penalty to select the correlated
group of features for accounting the same biological pathway see Figure 6.5.

L(α, λ,β) = ||y−Xβ||2 + λ
[
(1− α)||β||2 + α||β||1

]
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6.4.2 Cross-validation

Model selection in elastic net for the hyper-parameters, smoothing factor α and sparsity
penalty λ is performed with two-layer leave-one-patient-out cross-validation to avoid over-
fitting the training data. In this setting, the patients that are left out in the first layer are
constituting the test set, while the patients of the second layer create the training data for
hyper parameters tuning. In this regard, one patient sampled at three trimesters of pregnancy
is left out as unseen data for reporting the test p-values in the first layer of cross-validation.
Next in the second layer, another patient is left out for model selection and computing the
train p-values. In the first layer of cross-validation, we repeat this procedure 17 times to
keep every single patient out once in the iteration while in the second layer a similar routine
carries out 16 times for the remaining patient. Thus, in the learning phase no patient is seen
at all by the elastic net except for calculating the training p-values. Then, the optimized
hyper-parameters α and λ are selected to output the test p-values as is demonstrated in
Figure 6.3.

6.4.3 Stack generalization

Ensemble learning is categorized into two different types, 1) diverse models on the same
data, 2) same model selection technique on diverse data (Sharkey, 1996). Various methods
are proposed for diversification of the algorithms to perform on the same data. Alterna-
ting the data by processing, sampling or bootstrapping is a another hybrid approach that
falls in between the two categories (Sharkey, 1996). Here, we emphasize on applying the
fixed model selection topology on multiple sources of data where an effective algorithm is
needed to combine the output of several models. Averaging and its weighted variant is a
common choice for linear pooling aggregation. In contrary, nonlinear perspective is also in-
vestigated by voting, rank-based algorithm, and order statistics. Dempster-Shafer is another
nonlinear approach for fusion of information under uncertainty with several alternatives in-
cluding Bayesian networks, fuzzy logic, neural networks and probability theory. The next
popular nonlinear approach is stacked generalization, where the outputs predicted from the
feature space is given as the input to next level of features for prediction (Sharkey, 1996).
Additionally, stacked generalization, is designed for minimizing the generalization error by
decreasing the bias with many applications in biology (Wolpert, 1992; Breiman, 1996; Wang
et al., 2006; Ge and Wong, 2008; Larranaga et al., 2006; He et al., 2013; Yang et al., 2010).

To combine several multiomics dataset, there are two level of integration in 1) feature
space 2) output of prediction space. For the first level of abstraction, merging all features to
reconstruct a whole new dataset can be considered to combine all seven multiomics dataset.
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In the output level, stacking the predictions corresponding to each dataset, builds up an
abstraction representation for the multiomics dataset in the reduced space. To this end,
stacked generalization ensemble is deployed to combine the results of multiple elastic nets
learned from the multiomics dataset via synchronized leave-one-patient-out cross-validation.
Figure 6.9, and Figure 6.8 shows the prediction of each dataset with respect to the gestational
age, and also the stacked generalization model.
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Figure 6.6 Ablation (left) and inverse ablation (right) analysis of each dataset’s contribution
in the integrative model. Elimination of each dataset is carried out according to the p-
value of gestational age prediction shown in Figure 6.4 in ascending, and descending order,
respectively. Color portion is associated with the coefficient of each dataset represented by
the stacked generalization integrative model.

In particular circumstances due to the limited access to all seven technologies especially
deprived areas, only a subset of multiomics dataset is available. In this regard, it is vital
to determine the most important omics measurements to make the prediction. Figure 6.6
shows the effect of each omic dataset toward integrating the multiomics dataset for gesta-
tional age prediction. Ablation and inverse ablation analysis of each dataset’s contribution
in the integrative model. Elimination of each dataset is carried out according to the p-value
of gestational age prediction shown in Figure 6.4 in ascending, and descending order, res-
pectively. Color portion is associated with the coefficient of each dataset represented by the
stacked generalization integrative model. In addition to the elastic net, other state-of-the-art
regression techniques are tested as is shown in Figure 6.10. The hyper parameters of each
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method are tuned by the two-layer leave-one-patient-out cross-validation procedure for pre-
dicting the gestational age on the test set. Elastic net predominantly outperforms the other
rival methods especially for the integrative model.

6.4.4 Correlation network

Interrelated features extracted from different multiomics dataset are combined together in
the context of correlation network such that the edges reflect the adjusted correlation among
the multiomics features. The node’s size represents the magnitude of the corresponding elastic
net coefficient. The group of features selected from the same dataset is differentiated by the
associated color shown in barplots in Figure 6.3(c). Moreover, in Figure 6.7, the visualization
network is shown where the correlation direction is denoted by the intensity of blue and red
colors indicating the negative or positive correlation, respectively. All p-values are adjusted
using Bonferroni’s method (adjusted-p-value=p−value

n
), where n is the number of features.
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Figure 6.7 Correlation network of interrelated features extracted from different multiomics
dataset. An edge reflects the adjusted correlation among the multiomics features. A node’s
size represents the magnitude of the corresponding elastic net coefficient. Correlation direc-
tion is denoted by the intensity of blue and red colors indicating the negative or positive
correlation, respectively.



100

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0

10

20

30

10 15 20 25 30
Cellfree RNA

Pr
ed

ic
tio

n

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

10 15 20 25 30
Plasma Luminex

Pr
ed

ic
tio

n

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●● ●

●

●

●

●

●

●
●

●

●●

●
●

●

●

−40

−20

0

20

10 15 20 25 30
Serum Luminex

Pr
ed

ic
tio

n ●

●

●

●

●●●
●●

●

●

●●

●

●
●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−10

0

10

20

30

10 15 20 25 30
Microbiome

Pr
ed

ic
tio

n

Figure 6.8 Regression lines between actual gestational age and the corresponding predictions
from seven multiomics dataset and stacked generalization with their 95% confidence interval.
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Figure 6.9 Regression lines between actual gestational age and the corresponding predictions
from seven multiomics dataset and stacked generalization with their 95% confidence interval
cont.
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Figure 6.10 Overview of performance comparison using a number of regression algorithms,
e.g. random forest, XGboost, Gaussian process, support vector regression, and elastic net.
The hyper parameters of each method are tuned by the two-layer leave-one-patient-out cross-
validation procedure for predicting the gestational age on the test set. Elastic net predomi-
nantly outperforms the other rival methods especially for the integrative model.

6.5 Unsupervised Analysis

Supervised integrative model based on elastic net for predicting the gestational age is
developed and discussed across seven omics data. However, the available data of this project
can be used for other biological and clinical purposes as well. In this section we propose to
investigate an unsupervised integrative model with the introduced forestogram framework
to combine all seven datasets. Before biclustering analysis, we analyze the data with two
other unsupervised methods to figure out how datasets are intercorrelated with each other.
Spearman’s rank correlation coefficient is one of the unsupervised approaches that is known
as nonparametric statistic (Spearman, 1904). In contrary to the Pearson’s correlation, this
method is a nonparametric measure of a monotonic relationship. Moreover, the calculation
of Spearman correlation coefficient is based on the data rank rather than the data continuity.
In Figure 6.11, and Figure 6.12 the Spearman’s rank correlation coefficient for a few pair of
datasets are shown in network visualization and heatmap representation.
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Figure 6.11 Illustration of rank correlation among a number of datasets. Left panel shows the
network representation of RGCCA after Bonferroni adjustment such that presence of an edge
between a pair of nodes shows strong correlation between those nodes. Right panel simply
demonstrates the heatmap visualization of correlation among two datasets.
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Figure 6.12 Illustration of rank correlation among a number of datasets cont. Left panel
shows the network representation of RGCCA after Bonferroni adjustment such that presence
of an edge between a pair of nodes shows strong correlation between those nodes. Right panel
simply demonstrates the heatmap visualization of correlation among two datasets.
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Regularized generalized canonical correlation analysis (RGCCA) is the second unsupervi-
sed method to study the relationships across the datasets (Tenenhaus and Tenenhaus, 2014).
This method combines the advantages of multi-block data analysis and the flexibility of par-
tial least squares regression for unraveling the ties among the different variables of the given
multiomics dataset. The result of this algorithm is shown in Figure 6.13(a) as network visua-
lization of multiomics dataset. Thickness of an edge shows the strength and the color shows
the direction of correlation black+, and gray−. Figure 6.13(b) displays the heatmap visua-
lization of multivariate correlation among all multiomics dataset. Since Serum and Plasma
generated from Luminex family are the most similar omics, they are grouped in one cluster.
The remaining datasets show more consistency by forming another tangible cluster.



106

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Cellfree RNA
PlasmaLuminex
SerumLuminex
Microbiome
ImmuneSystem
Metabolomics
PlasmaSomalogic

(a) Network visualization of multiomics dataset. Thickness of an
edge shows the strength and the color shows the direction of corre-
lation black+, and gray−.

S
er

um
Lu

m
in

ex

P
la

sm
aL

um
in

ex

M
ic

ro
bi

om
e

Im
m

un
eS

ys
te

m

P
la

sm
aS

om
al

og
ic

M
et

ab
ol

om
ic

s

C
el

lfr
ee

 R
N

A

SerumLuminex

PlasmaLuminex

Microbiome

ImmuneSystem

PlasmaSomalogic

Metabolomics

Cellfree RNA

(b) Heatmap visualization of multivariate correlation among
all multiomics dataset

Figure 6.13 Unsupervised RGCCA performance on the seven multiomics dataset. Since Serum
and Plasma generated from Luminex family are the most similar omics, they are grouped
in one cluster. The remaining datasets show more consistency by forming another tangible
cluster.
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None of the two unsupervised approaches for clustering analysis of multiomics dataset
are effectively designed to show meaningful pattern underlying the data. In order to extract
more information from the data and describe the correlation among multiomics features and
patients intuitively, hierarchical biclustering integrative model is performed on this dataset
by the proposed forestogram. Figure 6.14 shows the result of this integrative modeling in two
different visualization graphs. Forestogram representation in Figure 6.14(a), depicts the 3D
model of hierarchical combination of features and associative patients with 6 automatically
selected biclusters. In addition to the 3D model, the 2D projection also demonstrates the
biclusters found by the FORIC model selection technique with features and patients label
shown in Figure 6.14(b). Furthermore, the same row and column dendrograms extracted from
the 2D projection are taken to show the heatmap in Figure 6.15 for fine-grained correlation
of the features combined from the seven datasets. Despite this model integrates the features
without the supervision information for patients, it turns out the third trimester of pregnancy
is distinguished as a separate bicluster from the first two trimester that are located in one
bicluster. Moreover, if three clusters are chosen on row, the first two trimesters are still identi-
fiable up to an acceptable noise level. More interestingly, microbiome features are condensed
in a unit of bicluster except one measurement that is merged with immune system features.
Similarly, one may separate the subclusters of features generated from the same datasets in
the lower level of the forestogram. The larger biclusters show a set of merged features which
provides more biological insights for further clinical studies.
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(a) Hierarchical biclustering integrative model with forestogram in 3D
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Figure 6.14 Unsupervised integrative model through forestogram biclustering on the features
of multiomics dataset.
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Figure 6.15 Hierarchical biclustering integrative model shown on heatmap.

6.6 Discussion

We described an analysis of seven different biological modalities during term pregnancy.
A machine learning approach is used to evaluate the predictive power of each dataset. An
additional step is used to combine these predictions to further increase the predictive power.
Importantly, these datasets differed in both size and modularity. By taking this two step
approach, we prevented larger datasets from overwhelming the final model. This increases
both the predictive power, and also the biological interpretation.

Using this approach, we analyze the estimation of the gestational age of the fetus at the
time of each sampling. The stacked generalization algorithm produced models more accurate
than any individual dataset. Ablation analysis is used to determine the number of omics
dataset required for each model, and the impact of each dataset on the final predictions.
Importantly, this analysis showed that by retraining the stacked generalization model, other
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datasets could partially compensate for the removal of a given dataset. This lays the founda-
tion for analysis of sampling, and for assay costs to strike a cost/predictive-power trade-off
in resource-poor settings. Using piece-wise regression and sequential feature reduction, each
model is reduced to a limited number of required measurements. These reduced features,
then, are used for correlation analysis and visualization.

The approach provided an integrated model of maternal adaptations to pregnancy, high-
lighting the interconnectivity of multiple biological systems. Notably, strong correlations bet-
ween metabolomic, proteomic, transcriptomic features and specific immune cell signaling
responses pointed at biologically plausible interactions. For example, the model identified a
strong relationship between the steroid hormone pregnanolone and the signaling behavior of
mDCs and Tregs. mDCs and Tregs play a critical role in feto-maternal tolerance and the
maintenance of pregnancy (Erlebacher, 2013; Aluvihare et al., 2004). Our data provide the
basis for a novel hypothesis that pregnanolone plays a role in regulation of the function of
these two cell types during pregnancy. Alternatively, recent evidence indicating that T-cell
can produce pregnenolone, the precursor of pregnanolone (Mahata et al., 2014), suggests im-
mune cells may be a cellular source of pregnanolone production, providing another hypothesis
for the observed correlations.

The study also shows that the biological interpretation of observed interactions between
two model components benefits from exploring the community of features that strongly cor-
relate with these model components. As such, the integrative model revealed a strong inter-
action between the proteomic factor CSH1 and STAT5 activity in CD4+ T-cell. However, a
community of proteomic factors correlating with CSH1 contained the cytokine IL-2, a cano-
nical activator of the JAK/STAT5 signaling pathway in CD4+ T-cell (Mahmud et al., 2013).
Together with our in vitro data showing that stimulation with IL-2 but not with CSH1 re-
sults in STAT5 phosphorylation in CD4+ T-cell, these findings suggest that the interaction
between CSH1 and STAT5 activity in CD4+ T-cell is likely indirectly mediated by IL-2. For
example, activation of the PRL/CSH1 receptor in cells other than T-lymphocytes has been
shown to promote the transcription of IL-2 (Sun et al., 2004). CSH1 may thus be implica-
ted in the paracrine regulation of T-cell function through positive regulation of IL-2 gene
expression in other immune or non-immune cell types.

A two-layer cross-validation procedure is used in this analysis. The inner layer enables
optimization for the hyper parameters of the elastic net model. The outer layer ensures the
generalizability of the results to the previously unseen samples. To increase sample size, each
sample extracted at a trimester from a single subject is treated as an independent data
point. To ensure the models are not biased by the dependency between samples donated by
the same subject, all three trimesters of a given subject are excluded together in the same
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cross-validation fold. Therefore, the reported results are based on models that have access to
no samples from a subject in the test-set. The samples used for testing purposes in all cross-
validation layers are synchronized across all models. Therefore, all test-set results (including
those of the stacked generalization models) are reported only on samples that are blinded to
all previous analysis.

This study has several limitations that have inspired our future plans. First, the cohort
size for this proof-of-concept study is relatively small and recruitment from a single-care cen-
ter limited the diversity of the dataset. Despite this, we are able to capture the chronology of
biological changes during pregnancy. However, given the racial disparities in pregnancy out-
comes, replicating this analysis in more diverse cohorts is crucial. We have engaged in several
multi-national collaborations to directly address this. Second, the number of measurements
is significantly larger than the cohort size, which increased the possibility of false positives.
In addition to carefully designed cross-validation, feature reduction and clustering Bien and
Tibshirani (2011); Witten and Tibshirani (2010); Partovi Nia and Davison (2015) can be used
to improve the predictive power of multivariate models in high-dimensional settings. Finally,
the current dataset included only one sample per trimester. In the future, high-resolution
sampling together with linear mixed effect models Gałecki and Burzykowski (2013) can pro-
duce increasingly more accurate estimation of pregnancy related events (including onset of
labor) using serial sampling throughout pregnancy.

In summary, our study revealed a precisely timed chronology of responses over the course
of term pregnancy. This is enabled using seven high-throughput longitudinal biological assays
of the same patient cohort. The computational pipeline produced can increase predictive po-
wer by combining datasets of various sizes and modularities in a balanced way. We expect this
pipeline to be applicable to a wide range of studies beyond the field of pregnancy. Similarly,
the dataset produced here provides a unique resource for future biological investigations.
Particularly, this pipeline can be used to identify correlates of any other features from one
of the seven datasets that may be identified in future studies. Finally, by characterizing the
biological chronology of normal pregnancy, this study provides the conceptual backbone and
analytical framework to analyze the complex interplays between various biological modalities
that govern preterm birth and other pregnancy-related pathologies.
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CHAPTER 7 GENERAL DISCUSSION

We present a new statistical methodology for biclustering problem relying on the hierar-
chical manner of agglomerative approach for combining pairs of biclusters iteratively towards
building the suggested forestogram. This statistical framework demonstrates the hierarchi-
cal evolution of biclusters with an intuitive visualization scheme. Additionally, we show how
the number of biclusters can be revealed automatically with FORIC as a subtle connection
from Bayesian model-based view to the hierarchical nature of forestogram. This statistical
setting for the suggested Bayesian model provides enough flexibility supported by data to
incorporate a powerful model for applying statistical inference on the data.

For the purpose of performance analysis and applicability, we directly perform this new
framework for biclustering on two different applications: 1) in public transport, and 2) in
bioinformatics. In the following we briefly discuss the forestogram framework’s properties
and practical usages for grouping blocks of rows and columns that are interrelated with each
other. Then we argue why this approach is promising for the applications that are introduced
in this thesis. We complete this discussion by mentioning the limitations of the suggested
method and the mitigations to relieve the drawbacks.

7.1 Forestogram

Despite very simple assumptions that forestogram framework is built on, the powerful
machinery behind this model-based biclustering approach, makes the framework rich enough
to detect broad range of patterns that do not necessarily come from the model. There are a
number of properties that make this happens for real data. First of all, hierarchical approach
uses Euclidean measure to define the dissimilarity analogous to many data analysis methods.
The second interesting property is the connection of this model to the well-known clustering
technique i.e k-means (Hartigan and Wong, 1979). In this regard, the hierarchical clustering
with Ward’s linkage is shown to be equivalent to k-means cost in order to produce the
groups of data with spherical shape (Telgarsky and Dasgupta, 2012). However, in order to
incorporate other shape of biclusters, the squared Euclidean distance can be changed into
Bregman divergence–a general class of distortion functions with connection to the exponential
family (Banerjee et al., 2005, 2007). Separability condition ensures, under mild condition
meaningful biclusters can be shown on the forestogram. Furthermore, FORIC is suggested
to quantify the number of biclusters on the forestogram. The fast computation of clusters’
dissimilarity at each iteration is feasible by Lance-William property (Lance and Williams,
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1966) to speed up the algorithm. Consequently, putting all these components together, creates
a unified framework to perform and analyze the biclustering task through forestogram.

In order to show the efficiency of this framework, we investigate the performance of
forestogram on two applied domains.

7.2 Public transport

The main purpose of public transport data analysis in this thesis is to segmenting the
similar users into subclusters based on two distinct information gathered from smart card
data, known as spatial-temporal data. First of all, we consider the temporal data separa-
tely by introducing the semi-circle projection to analyze this information so as to unraveling
the hourly patterns in the data. Furthermore, we treat the temporal data as a latent va-
riable to use the Euclidean measure as a geodesic metric on spatial used locations to employ
forestogram for extracting the similar spatial-temporal pattern across the users.

In this study we discretized the continuous time usage into hourly binary vector to define
the similarity among the users’ behavior. We also take Cartesian coordinates for encoding the
geographical locations. Using temporal sensitivity analysis by preprocessing the hourly usages
instead of equidistant intervals, a dynamic discretization can conduct a better measure of
representation for the temporal behavior in the network. Devising new methods for continuous
time data based on time series algorithm, using polar coordinate for explaining the location
information according to downtown centrality are the next steps that we would like to inspect
for modeling the public transport data. In addition, card-day usage or monthly usage could
be carried out separately according to the purpose of data analysis to see how clusters vary
based on different representation of the temporal information. Furthermore, the temporal
data analysis introduced in this study is flexible enough so that by changing the dissimilarity
measure a similar analysis can be investigated for temporal behavior in public transit network.

In order to incorporate the temporal information with collection of spatial coordinates,
alternative approaches could be studied as well. For instance, time of the entrance can be
embedded as a weight to the geographical location. Another scenario is to treat both informa-
tion independently in the first place, such that by tuning the contribution of each component
through convex combination of two parts, the unified model can be amounted to.

For the future direction of this research, we are working on new methods to visualize the
spatial-temporal patterns to be comprehensible more intuitively for the transport practitio-
ners. For the spatial analysis of clustering we can use other measure of overlapping between
two routes that are relevant for the spatial component of the clustering or alternatives for
model estimation which requires to be independent. For the distribution of travel demand,
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we may observe other distribution for the usage of bus stops. Moreover, the new overwhel-
ming trend of car pooling technology has raised new challenges for transportation so that
integrating public transport data with car pooling, bike sharing, and other similar systems
can help better serving society by minimizing the cost and maximizing the quality of the
traffic.

7.3 Bioinformatics

Gestational age prediction during term pregnancy is vital toward preventing preterm
birth as a second cause for child’s death. Moreover, by increasing the accuracy of delivery
prediction, hospitals can better schedule their clinical system in order to maximizing the
throughput of the health care system and improving the service quality. Mechanism of pre-
gnancy is achieved by interaction between different biological modalities so that we gather a
multiomic dataset including measurements from the immunome, transcriptome, microbiome,
proteome, and metabolome to predict the gestational age with. In addition to each dataset
alone, we suggest two integrative models for multiomics data integration analysis with and
without gestational age target. In the supervised integrative fashion, stacked generalization
model is used based on cross-validated elastic net that can increase the predictive power by
combining datasets of various sizes and modularities in a balanced way.

The unsupervised version provides an extensive model to a context free integrative model
to be used for an arbitrary clinical analysis regardless of the supervised labels. However, to
some extent, it shows that meaningful features are taken by this model even for pregnancy
case. Furthermore, the forestogram visualization provides an intuitive interpretation of fea-
tures to demonstrate how they combine together to build the integrative model.

This study has several limitations that have inspired our future plans. Despite, the cohort
size for this study that is relatively small and the limited diversity of the patients in dataset,
we were able to capture the chronology of biological changes during pregnancy. However, given
the racial disparities in pregnancy outcomes, replicating this analysis in more diverse cohorts
is crucial. We deal with several multi-national collaborations to directly address this. Second,
prediction accuracy dropped for large omic datasets due to the underdetermined matrix of the
data where number of measurements is significantly larger than the cohort size. In addition
to carefully designed cross-validation, feature reduction and semi-supervised biclustering can
be used to improve the predictive power of multivariate models in high-dimensional settings.
Finally, the current dataset included only one sample per trimester.

In the future, high-resolution sampling together with linear mixed effect models suggested
by Gałecki and Burzykowski (2013), can produce increasingly more accurate estimation of



115

pregnancy related events using serial sampling throughout pregnancy.

7.4 Limitations of forestogram and hierarchical algorithms

Clustering is an NP-hard problem. However, in order to compute a feasible guess an
approximation is made to the exact optimal solution up to certain level of error. Hierarchi-
cal approaches are suboptimal solutions to clustering that are highly prone to converge to
local optimal solution due to the greedy nature of the algorithm. Ackermann et al. (2014)
show that agglomerative complete linkage clustering is an O(log k)-approximation to the k-
clustering problem. For general hierarchical clustering, for every k, the approximation factor
of k-clustering is at most eight times of the optimal solution (Dasgupta and Long, 2005). Re-
gardless of the intrinsic limitation of hierarchical approaches, they provide a nice visualization
with a partitioning of data for different number of clusters that vary from 1 to n. Moreo-
ver, changing the linkage function makes this approach flexible to produce different type of
clusters with interesting properties, though naïve computation of these methods could be
inefficient for moderately large scale datasets.

In our suggested hierarchical framework, Lance-William speed up technique accelerates
the dissimilarity computation at each step, but the overall time complexity is still cubic. This
can be reduced to n2 log n using the priority queue (Schrage, 1967) or even square with reci-
procal nearest neighbor introduced in Murtagh and Contreras (2011). On the other hand, the
normal distribution assumption with the same variance for all biclusters, limits the FORIC
for number of biclusters prediction with the cost of fast computation of predictive distribu-
tion. Additionally, due to the cubic time complexity and square space complexity performing
forestogram on big data on personal computers is cumbersome. Even if the algorithm is per-
formed on big data, it is not possible to illustrate a large forestogram object to elucidate all
rows and columns details and labels.

Moreover, in certain problems the data is given in terms of tensor structure including
replicates of the same matrix data type with different measurements. The suggested fores-
togram is not tailored to address the biclustering of the 3D matrix data structure. In this
regard, if one wants to use this framework, the tensor should be converted to a bigger matrix
or with some statistical methods a matrix representative for the given tensor requires to use
forestogram for biclustering.

7.5 Improvement

Our proposed forestogram model can be extended in various directions while the focus of
this research was to develop an efficient framework for fast computing hierarchical biclustering
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model. The configuration of current setting is constructed by distanced-based hierarchical
approach for the sake of tractable computation of forestogram. However, it is possible to
merge the biclusters according to a probabilistic model of the data with statistical measure
e.g. Dirichlet mixture (Heller and Ghahramani, 2005), and maximum likelihood generative
tree (Castro et al., 2004). Other linkages such as minmax introduced in Bien and Tibshirani
(2011), and robust linkage (Balcan et al., 2014) could also be implemented for forestogram if
heavy time complexity of dissimilarity update does not matter at each iteration. Moreover,
for predicting the number of biclusters we use a uniform prior on likelihood to implement
the FORIC effectively, while other priors such as multinomial-Dirichlet distribution can also
be plugged in the predictive distribution in favor of small clusters (Heard et al., 2006). The
next issue of biclustering is big data trend, to this end, one can run k-means with plenty of
clusters in order to invoke forestogram with Ward’s linkage on top of the extracted cluster
centers since Ward’s linkage is shown to be equivalent to k-means clustering in Telgarsky and
Dasgupta (2012). Since, k-means is sensitive to initial cluster centers, we suggest to utilize
the stochastic variant of k-means with no means parameter developed in Partovi Nia et al.
(2017). The stochastic scheme is promising in terms of parallel implementation especially
for GPU parallel computing in order to scale up the computation for big chunk of data. We
already know that under Ward’s linkage our forestogram is equivalent to apply k-means at
each iteration, because they optimize the same cost function. In addition, we are interested
to investigate the potential theoretical connections of this methodology with other clustering
and biclustering approaches such as Spectral clustering, nonnegative matrix factorization,
Gaussian mixture, convex clustering, etc. in the future.
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CHAPTER 8 CONCLUSION

The importance of unsupervised learning, such as clustering and biclustering is unpre-
cedented in the advent of modern data analysis era. There is a number of state-of-the-art
methods for clustering that are categorized into two major branches, hierarchical and parti-
tional. Partitional approach is effective when the number of clusters is already known. For
many real world data, identifying this information is part of the data analysis study to rea-
lize more knowledge from the data. Toward this goal, model-based hierarchical approach is
proposed in this thesis such that flexibility of the model is led by the support of data to
incorporate a powerful model for carrying out statistical inference on the data. The other
advantage of this perspective is the visualization property to demonstrate the model as an
intuitive way of describing the hidden structures underlying the data. This conceptual view
in conjunction with revealing the biclusters automatically make an autonomous framework
for biclustering analysis of an arbitrary data matrix.

The main contribution of this research is designing and developing the forestogram me-
thodology to biclustering analysis of a data matrix without supervised information in general.
In this regard, we propose a hierarchical approach to address this problem in particular. Mo-
reover, we implement FORIC by which the number of biclusters is determined automatically.
Consequently, the evolution of biclusters is demonstrated by the extension of dendrogram,
that we call forestogram as a visual representation for recursive merged biclusters through
row or column. In order to validate the efficiency of forestogram in applied fields, we suggest
to perform this framework on public transport, and bioinformatics.

User’s behavior modeling plays a central role in studying and analyzing public transport
data collected from smart card. In order to uncover the spatial-temporal behavior of subscri-
bers in the public transit network, we suggest a smart projection to map the binary vector
of timestamped data into a 3D space. This SCP conserves the pairwise similarity among the
users the same in the new space with a visualization guide for better understanding of the
temporal pattern. Seventeen clusters are identified in terms of single trip, regular users, late
commuters, long day, midday, active and inactive groups as the temporal behavior of the
users by applying agglomerative hierarchical clustering on the transformed data.

Furthermore, under the light of forestogram development, we suggest a new perspec-
tive to extract the spatial patterns through temporal latent variable. Spatial data contains
worthwhile information about the geographical details of each bus stop and are stored sequen-
tially following the order of temporal usage. Finding an appropriate measure of similarity for
spatial-temporal behaviors in public transit network is challenging due to different scenarios
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that may arise in to express the similarity among a pair of spatial trajectories. In this regard,
a customized version of forestogram is designed to extract the similar group of users with
their corresponding temporal and spatial patterns simultaneously. To this end, the spatial
coordinate of GPS location (x, y) from the corresponding time interval takes the same place
in the data matrix. This way, we can perform the Euclidean distance to the entries of the
matrix while the latent time information is implicitly taken into account

In the analysis of pregnancy, our empirical study of multiomics features reveals a chrono-
logy of biologically diverse events over the course of pregnancy. This is enabled using seven
high-throughput longitudinal biological assays of the same patient cohort. The computatio-
nal pipeline introduced in this thesis can increase predictive power by combining datasets
of various sizes and modularities in a balanced way. Moreover, by performing the suggested
forestogram for biclustering on biological chronology of measured features, we can provide an
unsupervised model for pregnancy as well. Our biclustering framework presents an analytical
unsupervised model for the complex interplays between various biological modalities that
govern preterm birth and other pregnancy-related pathologies.
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