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A Motion Planning Strategy for the Active
Vision-Based Mapping of Ground-Level Structures
Manikandasriram Srinivasan Ramanagopal , André Phu-Van Nguyen, and Jerome Le Ny, Senior Member, IEEE

Abstract—This paper presents a strategy to guide a mobile
ground robot equipped with a camera or depth sensor, in order
to autonomously map the visible part of a bounded 3-D struc-
ture. We describe motion planning algorithms that determine
appropriate successive viewpoints and attempt to f ll holes auto-
matically in a point cloud produced by the sensing and perception
layer. The emphasis is on accurately reconstructing a 3-D model
of a structure of moderate size rather than mapping large open
environments, with applications for example in architecture, con-
struction, and inspection. The proposed algorithms do not require
any initialization in the form of a mesh model or a bounding box,
and the paths generated are well adapted to situations where
the vision sensor is used simultaneously for mapping and for
localizing the robot, in the absence of additional absolute posi-
tioning system. We analyze the coverage properties of our policy,
and compare its performance with the classic frontier-based
exploration algorithm. We illustrate its effi acy for different
structure sizes, levels of localization accuracy, and range of the
depth sensor, and validate our design on a real-world experiment.

Note to Practitioners—The objective of this paper is to auto-
mate the process of building a 3-D model of a structure of interest
that is as complete as possible, using a mobile camera or depth
sensor, in the absence of any prior information about this
structure. Given that increasingly robust solutions for the visual
simultaneous localization and mapping problem are now readily
available, the key challenge that we address here is to develop
motion planning policies to control the trajectory of the sensor
in a way that improves the mapping performance. We target
in particular scenarios where no external absolute positioning
system is available, such as mapping certain indoor environments
where GPS signals are blocked. In this case, it is often important
to revisit previously seen locations relatively quickly, in order to
avoid excessive drift in the dead-reckoning localization system.
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Our system works by fi st determining the boundaries of the
structure, before attempting to fil the holes in the constructed
model. Its performance is illustrated through simulations, and a
real-world experiment performed with a depth sensor carried by
a mobile manipulator.
Index Terms—Active sensing, active simultaneous localization

and mapping (SLAM), autonomous inspection, autonomous map-
ping, motion planning.

I. INTRODUCTION

ACCURATE 3-D computer models of large structures have
a wide range of practical applications, from inspecting an

aging structure to providing virtual tours of cultural heritage
sites [1], [2]. In civil engineering for example, an important
problem is that of construction progress monitoring, i.e., com-
paring the state of a building under construction over time
to the project plan. The process of regularly updating the
estimate of the state of the building has traditionally been
performed manually, but in recent years, new methods have
been developed to automate it using data obtained from a
variety of sensors, e.g., positioning systems, stationary 3-D
laser scanners [3], high-resolution video cameras [4], or still
cameras carried by unmanned aerial vehicles [5].
This paper considers the problem of guiding in real time

a mobile autonomous robot carrying a vision sensor, in order
to build a 3-D model of a structure. For this, we need to
address two problems. First, we need a robust mapping system
that can build the 3-D model in real time when given a
sequence of images or depth maps as input. This is a widely
researched problem called visual simultaneous localization and
mapping (vSLAM) or real-time Structure from Motion (SfM),
for which several open source packages offer increasingly
accurate and eff cient solutions [6], [7]. The second problem
relates to active sensing [8], as we need motion planning
strategies that can guide a mobile sensor to explore the
structure of interest. For mapping, monitoring, or inspection
applications, certain classical strategies, such as frontier-based
exploration algorithms [9], which guide the robot to previously
unexplored regions irrespective of whether it is part of the
structure of interest or not, are not necessarily well adapted.
Some recent work considers the problem of reconstructing

a 3-D model of arbitrary objects by moving a depth sensor
relative to the object using different forms of next best view
planning algorithms [10], [11]. Typically, these systems itera-
tively build a complete 3-D model of the object by heuristically
choosing the next best viewpoint according to some perfor-
mance measure. However, much of this paper is restricted to
building models of relatively small objects that are bounded
by the size of the robot workspace. In contrast, our focus is

1545-5955 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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on the 3-D reconstruction of larger but still bounded structures
such as buildings, which can be several orders of magnitude
larger than a mobile robot. The related problem of automated
inspection deals with large structures, such as tall buildings [5]
and ship hulls. Bircher et al. [12] assume that a prior 3-D
mesh of the structure to inspect is available and compute a
short path connecting viewpoints that together are guaranteed
to cover all triangles in the mesh. Englot and Hover [13]
begin by assuming a safe bounding box of the hull and
construct a coarse mesh of the hull by tracing along the walls
of this box in a f xed trajectory without taking feedback from
the actual geometry of the structure. Moreover, this coarse
mesh is manually processed off ine to yield an accurate 3-D
mesh, which is then used to inspect the f ner structural details.
Yoder and Scherer [14] also assume a bounding box and
develop an algorithm combining next best view planning
and frontier-based exploration to encourage coverage of the
structure. Sheng et al. [15] use a prior CAD model of an
aircraft to plan a path for a robotic crawler, such that it inspects
all the rivets on the surface of the aircraft. In this paper,
however, we do not assume any prior information in terms of a
3-D mesh, CAD model, or a bounding box around the
structure, and focus on reactive path planning to build the
model online. Our mapping problem is also related to coverage
path planning (see [16]–[19] and the references therein),
which has traditionally focused on developing algorithms
ensuring that a mobile robot passes over all points in a 2-D
environment, assuming a suffi iently accurate localization
system.
In computer vision and photogrammetry, SfM techniques

aim at building a 3-D model of a scene from a large number
of images [20]–[23], but much of this paper focuses on batch
postprocessing and typically assumes a given data set, whereas
here our focus is essentially on how to acquire an appro-
priate set of images. Let us mention, however, the work of
Daftry et al. [24], which presents an interactive real-time SfM
system providing online feedback to the user taking pictures,
alerting him or her when a new picture cannot be properly
integrated in the model. Also, Tuite et al. [25] develop a com-
petitive game where players are encouraged to take pictures
that help build complete 3-D models. We emphasize that we do
not discuss in detail the task of actually building a model from
a collection of pictures or depth maps, which can be executed
by one of the available vSLAM or real-time SfM systems,
such as the real-time appearance-based mapping (RTAB-Map)
package [6] that we use in our experiments. This paper focuses
on actively exploring the environment with an autonomous
robot to build a complete model in real time, with our con-
troller taking at any time the current model as an input. Which
package we use for model reconstruction has little infl ence
on our algorithms, for example, any vSLAM system based
on pose-graph optimization [26] could be used. The state-of-
the-art batch SfM systems can also be used to postprocess
the sequence of images or depth maps captured using our
policies in order to obtain a more accurate model off ine.
Naturally, eventual completeness of the model is limited by
the physical characteristics of the robot, and specif cally the
reachable space of the sensor (see Fig. 1).

Fig. 1. Comparison of (a) simulated model in Gazebo [27] that needs to
be mapped and (b) reconstructed 3-D model by a mobile ground robot using
our policies. Only the bottom portion is mapped due to the limited reachable
space of the sensor.

Finally, another line of work in informative path planning
relates to autonomous exploration and coverage of relatively
large environments, using variants of frontier-based explo-
ration algorithms [28]–[31]. While these papers focus on path
planning to quickly build models of potentially large and com-
plex spaces, they do not address the problem of autonomously
delimiting and mapping as completely as possible a specifi
bounded structure of interest.
Our contributions can be summarized as follows. After

presenting the problem statement in Section II, we develop
in Section III a motion planner allowing a ground robot
equipped with a camera or depth sensor to autonomously
determine the boundaries of an initially unknown structure.
Then, Section IV describes an algorithm for detecting missing
portions in the 3-D model constructed during the boundary
determination phase and an exploration strategy to improve
the completeness of the model. In Section V, we analyze the
level of coverage completeness that can be expected from our
strategy. The behavior of the proposed policies is illustrated in
Section VI through simulations, and the resulting accuracy of
the constructed models compared with that obtained using the
classical frontier-based exploration algorithm. Experimental
results are presented in Section VII to validate the algorithms
under more realistic illumination conditions. One justificatio
for our incremental exploration approach is that we focus
on using the vSLAM module both for mapping the structure
as well as localizing the robot, although an additional dead-
reckoning system, such as wheel odometry, could be present
as well. In the absence of an independent source of accurate
absolute positioning, it is important to close loops relatively
frequently with the vSLAM system, i.e., revisit regions that
have already been explored, in order to control the growth of
the localization errors building up with visual odometry alone.
We also help the vSLAM system by following the boundaries
of the structure, where visual features are likely to be present.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SRINIVASAN RAMANAGOPAL et al.: MOTION PLANNING STRATEGY FOR THE ACTIVE VISION-BASED MAPPING 3

Fig. 2. (a) Starting configuratio for the robot and camera with respect to
the structure. (b) Initial image seen by the camera: the robot only knows that
the structure in the FOV is the one that should be mapped.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Consider the problem of constructing a 3-D model of a
given structure of f nite size, e.g., a monument or a building,
using a mobile ground robot carrying an imaging or depth
sensor, such as a Kinect, a monocular or stereo camera, or an
LIDAR. Initially, no approximate model of the structure nor
map of the environment is available, and the actual size
of the structure is also unknown. The sensor (also called
camera in the following) provides a sequence of point clouds
obtained directly or computed from depth and/or luminance
images. These local point clouds, together with an estimate of
the sensor trajectory, can then be assembled and registered
in a coordinate frame in real time using available SLAM
algorithms, such as RTAB-Map [6] or RGBD-SLAM [7], and
postprocessing then allows us to build a dense 3-D model or a
3-D occupancy grid stored in an OctoMap [32]. We do not
directly address here the model reconstruction problem in
vSLAM. Instead, we focus on determining good trajectories
for the robot allowing a vSLAM module (and potentially a
batch SfM module in postprocessing) to produce a high-quality
model, which ideally should capture the entire visible portion
of the structure accurately. A key challenge is to develop
strategies that are applicable for any type of structure while
respecting the physical limitations of the platform.
We assume that initially, the robot is positioned along the

structure to be mapped, with the camera capturing point clouds
mounted on its right and facing the structure at a distance
D measured in a horizontal plane (see Fig. 2). In normal
operations, we wish to maintain this distance D between the
structure and the path of the camera, where D is chosen based
on the camera’s resolution. Def ne a global f xed Frame of
Reference (FoR) G := {Og, xg, yg, zg}, in which the global
point cloud is to be assembled. Note that we write vectors in
bold. The robot FoR R := {Or, xr, yr, zr} (forward, left, up)
coincides initially with G, but is attached to a point Or that
moves along with the robot. For concreteness to describe our
scenario and algorithms, the camera FoR C := {Oc, xc, yc, zc}
is assumed to be rigidly attached to the robot except for the
yaw motion, which is left unconstrained.
Assumption 1: The center Oc of the camera mounted on

the mobile ground robot has f xed coordinates (0, 0, hc) in
frame R, and in addition, we always maintain zr = zc.
Such a choice of camera conf guration determines which

parts of the structure are not visible at all, and hence cannot
be mapped by any algorithm implemented on this platform.
However, other system conf gurations could be handled with
some of the more generic tools developed in this paper.

Fig. 3. Camera is kept at a constant height above the robot’s base. The red,
green, and blue lines correspond to the x-, y-, and z-axes, respectively, and
both the camera and the robot can rotate along their z-axes. The yellow region
corresponds to the view frustum of the camera.

Fig. 3 shows our conventions for the different FoRs used.
The imaging plane of the camera is def ned by yczc, with xc
pointing toward the front of the camera on the optical axis.
Coordinates in the camera, robot, and global FoR are denoted
using superscripts as vc, vr, and vg, respectively, for a vector v.
We assume that initially, xc = −yr so that the camera points
to the right of the robot. We make two additional assumptions
for simplicity of exposition. The f rst one guarantees that there
exist collision free paths around the structure.
Assumption 2: The horizontal distance of the closest obsta-

cle from the structure is at least 2 D.
The next assumption simplifie the problem of detecting,

tracking, and removing the ground surface from point clouds,
a processing step performed in Algorithm 1 to compute
waypoints that only depend on the structure to inspect.
Assumption 3: The structure and the robot are placed on the

horizontal plane zg = 0. In particular, we have zc = zr = zg.
In the following, we fi the z-coordinate of Or to be zero. A

consequence of these assumptions is that relatively horizontal
surfaces that are at the same height or above the camera
center, for example, cannot be mapped, and the maximum
height (measured in the R or G frame) of the structure that can
be mapped is Hmax = hc+D tanψ/2, where ψ is the vertical
angle of view of the camera. Assumption 3 could be removed
by using recent classificatio systems that can differentiate
between ground and nonground regions [33] to preprocess the
point clouds before sending them to our system.
Finally, there are additional implicit assumptions that we

state informally. First, since we rely on an external mapping
module to build the 3-D model, the conditions that allow
this module to operate suff ciently reliably must be met.
For example, vSLAM generally requires appropriate scene
illumination and the presence of a suff ciently rich set of visual
features. Second, we concentrate on the reconstruction of the
details of the model at a scale comparable with or larger than
the typical length of the robot. If features at a smaller scale
need to be included, e.g., f ne structural details on a wall, our
system could be augmented with a more local planner for a
robotic arm carrying the sensor [10], [34], as well as targeted
computer vision techniques [23]. Finally, for reasons explained
in Section III-C, we assume that the robot is equipped with
sensors capable of detecting obstacles in a 180° region ahead
of it and within a distance of D (see Fig. 8).
We divide our mapping process into two phases (see Fig. 4).

The f rst is the perimeter exploration (PE) phase, during which
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Fig. 4. Overview of the two phases of the mapping strategy. The gray area
represents the slice M in the plane zg = hc of the structure to map, with the
assumption that any potential hanging structure above the white area leaves
enough vertical clearance for the mobile ground robot to navigate.

the robot moves with the structure on its right to determine
its boundaries. The robot continuously moves toward previ-
ously unseen regions of the structure, with the exploration
directed toward fi ding the limits of the structure and closing a
f rst loop around it relatively quickly rather than trying to map
all its details. The PE phase ends when our algorithm detects
that the robot has returned to the neighborhood of its starting
point Og, and the vSLAM module detects a global loop
closure. After completing the PE phase, the system determines
the locations of potential missing parts in the constructed 3-D
model. Next, in the cavity exploration (CE) phase, the system
explores these missing parts in the model. Sections III and IV
explain each step of our process in detail.

III. PERIMETER EXPLORATION
In this section, we present a method to autonomously deter-

mine the boundaries of an unknown structure. From Assump-
tions 2 and 3, zg = 0 and zg = Hmax are bounding horizontal
planes for the model. The remaining problem is to determine
the expansion of the structure in the xgyg plane. To do this,
the robot moves clockwise around the structure by determining
online a discrete sequence of successive goals or waypoints.
It tries to keep the optical axis of the depth sensor approx-
imately perpendicular to the structure, which maximizes the
depth resolution at which a given portion of the structure is
captured, and increases the density of captured points. It also
tries to maintain the camera center Oc on a smooth path at a
fi ed distance D from the structure.

A. Determination of the Next Goal
The pseudocode to determine the next position and ori-

entation of the camera in our PE algorithm is shown in

Algorithm 1: Algorithm for Computing the Next Goal for the
Camera Using the Current Point Cloud in the Camera FoR
1: function COMPUTENEXTGOAL(cloud_full)
2: cloud ← PCLremoveGroundPlane(cloud_full)
3: cloud_slice← f lterForwardSlice(cloud)
4: pc← PCLcompute3Dcentroid(cloud_slice)
5: [v1, v2, v3; λ1, λ2, λ3] ← PCA(cloud_slice)
6: ñ← v3 − (v3 · zc)v3 � Projection on the xcyc plane
7: n← ñ sign(ñ · −−−→Oc pc); n← n/‖n‖
8: r← zc × n
9: goal← pc − D n + step r
10: return goal,n
11: end function

Fig. 5. Top–down view illustrating the computation of the next goal, for
a corner section of the structure. (a) Forward slice S (highlighted in red)
contains a portion of the farther section of the corner. (b) For the acute corner,
it does not and becomes very narrow.

Algorithm 1. It takes as input the current point cloud produced
by the camera in its FoR. For its implementation, we rely on
the point cloud library (PCL) [35].
Since the next goal should depend only on the structure,

we f rst remove the ground plane from the captured point cloud
by removing all points below a certain height to obtain a point
cloud P . Next, on line 3, we select a subset S of P referred to
as the forward slice, which adjoins the part of the structure that
must be explored next [see Fig. 5(a)]. Concretely, we choose
S so that its yc-coordinates satisfy ycmax − (ycmax − ycmin/3) ≤
yc ≤ ycmax, where ycmin and ycmax are the minimum and
maximum yc-coordinate values for all points in P . On line 5,
following [36], we compute via principal component analysis
the normal direction to that plane �, which best f ts S.
In more detail, denote S = {pci : i = 1, 2, . . . ,m} and defin
the covariance matrix X = (1/m)∑m

i=1(pci − pc)(pci − pc)T ,
where pc = (1/m)∑m

i=1 pci is the centroid of S computed on
line 4. We compute the eigenvectors [v1, v2, v3] of X, ordered
here by decreasing value of the eigenvalues λ1, λ2, and λ3.
The eigenvector v3 for the smallest eigenvalue corresponds to
the normal to the plane �.
The algorithm returns n, computed from the projection of

the normal vector v3 on the xcyc plane, and taken to point
in the direction of the vector

−−−→
Oc pc. This vector n def nes the

desired orientation of the camera. The algorithm also returns
the next goal point goal = pc − Dn + step r for the center
Oc of the camera, where r = zc × n is computed on line 8,
and step = (ycmax − ycmin/6). The term step r, which is along
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Fig. 6. Potential f eld for a goal at (4, 3) with D = 3 is shown as a heat
map and the corresponding gradient vectors are shown as a vector field

the plane �, is used to shift the goal forward so that both
sections of a corner fall in the f eld of view (FOV) of the
camera, as in the situation shown in Fig. 5(a). This prevents
the algorithm from making slow progress around corners.
Furthermore, the interior angle of a corner could be acute,
as shown in Fig. 5(b), and consequently, the farther section of
the corner would not be visible from the camera. Such a case
can be detected by monitoring the width of S to fall below
a threshold. In this case, we modify the computation of the
goal to be goal = pc + Dr, which allows the robot to move
around sharp corners of the structure. Finally, the computed
camera pose is transformed into the global FoR to obtain the
next goal point gg for the camera center Oc. We simplify the
notation gg to g in the following, where we work in the global
reference frame.

B. Local Path Planning to the Next Goal
In order to move the camera center to g while keeping it

approximately at the desired distance D from the structure
along the way, we use a local path planner based on potential
f elds [37], [38]. A potential function encoding the structure
as obstacles in the neighborhood of the camera, as well as the
goal g, is sampled in the form of a cost map on a local 2-D grid
of size 2D×2D centered on the camera’s current position (see
Fig. 6). Assumption 2 guarantees that all the occupied cells in
this cost map denote the structure itself. For k occupied cells
centered at {x j }kj=1, the potential function N(x) is define as

N(x) = α‖x − g‖2 +
k∑

j=1
I j (x)d j (x) (1)

with

d j (x) = 1
β‖x − x j‖; I j (x) =

{
1, if ‖x − x j‖ ≤ D
0, otherwise

for some scalar parameters α and β. Here, d j is the repul-
sion from the j th occupied cell, and is limited by I j to a
neighborhood of radius D around the cell. A path for the
camera is obtained by following the negative gradient of N ,
i.e., ẋ = −∇N(x). Denoting Jx = { j : I j (x) = 1} the
occupied cells in the D-neighborhood of x , we have

−∇N(x) = 2α(g − x)+
∑

i∈Jx

1
β‖x − xi‖3 (x − xi ). (2)

Fig. 7. (a) While the robot is following the structure, its forward facing
sensors detect an obstacle ahead (robot configuratio shown in faded colors).
(b) Obstacle is outside the FOV of the camera. The position of the robot at
the next waypoint along the new direction to explore, determined by using
the arm to scan ahead, is shown in bright colors.

Let MD = {x : Jx 	= ∅} denote the region that is at
distance at most D from the structure. Assuming a small
value of β, the summation term in (2) is dominant whenever
x ∈ MD and pushes the path away from the structure.
However, this term vanishes as soon as x /∈ MD. Then,
assuming that the camera starts at x0 on the boundary ∂MD of
MD , it remains approximately on ∂MD if −→xg points toward
the interior of MD . It is possible that this condition is not
satisf ed by the point g computed in Section III-A, in which
case we replace g by g1, which is obtained by selecting a
new goal = pc − D′ n + step r for D′ < D, such that this
condition is satisfie . The path will then slide on ∂MD until
it reaches its goal [39]. Finally, this path for the center of the
camera is used to compute a corresponding path for the center
of the robot, which then needs to be tracked using a platform
specifi controller.
Overall, during the PE phase, the robot attempts to maintain

a viewpoint orthogonal to the structure, even though it replans
for a new goal according to Algorithm 1 only at discrete times.
Note that only the computation of the next goal happens at
discrete instants but the vSLAM module updates the model at
a higher rate as per the capabilities of the hardware.

C. Replanning Due to the Structure Interferring
Assumption 2 guarantees that the robot can move suff -

ciently freely around the structure, but this does not prevent the
structure itself from interfering with the path planned above.
Consider the situation shown in Fig. 7(a). The wall ahead of
the robot does not fall into the FOV of the camera due to
the limited horizontal angle of view, yet the robot should not
approach this wall closer than a distance D. Hence, if the robot
detects obstacles in its forward D-neighborhood, it is stopped
at its current position and the yaw motion of the camera is
used to scan ahead and face the new section of the structure.
More precisely, as shown in Fig. 8, we use the costmap from
Section III-B to turn the camera to face along the direction
from the robot center Or to the f rst occupied cell in the D-
neighborhood of the robot. The next goal is then recomputed
using the newly captured point cloud.

D. End of the PE Phase
The end of the PE phase corresponds to the robot closing

a loop around the structure. Therefore, we require that the
vSLAM module detects a global loop closure based on the
captured images, i.e., recognizes that the robot has returned to
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Fig. 8. When the robot is currently following Section A of the structure,
a later Section B of the structure could interfere with the planned path. The
angle ω made by Section B with respect to Section A satisf es ω ∈ [0, π).
Also, the two sections could be connected to form a nonconvex corner.

the vicinity of a known point. The robot continues traveling
on the PE path until this condition is met. Detecting a global
loop closure is not necessarily straightforward because of
localization errors, notably the drift accumulating in dead-
reckoning systems such as the visual odometry function of the
vSLAM module, or the wheel odometry system. However, it is
typically possible to place a unique object or mark on or near
the structure in the initial FOV, which helps prevent incorrect
loop closures. If available, absolute positioning sensors such
as a GPS receiver in the case of outdoor operations can also
indirectly help improve the loop closure detection by limiting
the localization drift. One can also use the measurements of a
compass to detect when the robot is traveling along an edge of
the structure that has the same orientation as the starting edge,
and focus the search for a loop closure along these edges.

IV. COMPLETING THE MODEL: CAVITY EXPLORATION
There are two possible types of f aws in the model obtained

at the end of the PE phase. Type I f aws correspond to holes
that are present in the already explored regions. As noted
in Section II, these holes could be due to limitations of the
sensor or local occlusions caused by small irregularities in
the structure itself, and should be f lled using a platform with
a more appropriate reachable space, and hence, we do not
consider them further. Type II fl ws, called cavities in the
following, correspond to regions that were skipped during the
PE phase, due to the situation depicted in Fig. 7 in particular.
These cavities will be fille during the CE phase, where the
robot is allowed to move closer to the structure, although this
means that the model will not necessarily be reconstructed up
to a height Hmax in some places.

A. Cavity Entrances
In this section, we describe an algorithm to determine the

locations of the entrances of the cavities in the model, which
will be subsequently used by the CE strategy. We use a voxel-
based 3-D occupancy grid constructed from the global point
cloud, and maintained in a hierarchical tree data structure by
the OctoMap [32] library. Internally, this library performs ray
casting operations, labeling the occupancy measurement of
each voxel along the line segment from the camera position
to each point in the point cloud as free and the point itself as

Fig. 9. (a) Constructed OctoMap with occupied voxels shown in blue and
frontier voxels shown in yellow. These yellow voxels form the boundary of
the explored region, but most of them lie along the top and bottom faces of
the view frustums. (b) Cavity entrance voxels are shown in red.

Fig. 10. OctoMap queried at depth level 16 and 13, respectively. In this
paper, the value of D is 3 m, and the threshold d0 is chosen as 0.4 m.
(a) Leaf size: 0.05 m and depth: 16. (b) Leaf size: 0.4 m and depth: 13.

occupied. For this, we require the vSLAM module to provide
the sequence of point clouds and associated estimated camera
positions used in assembling the current model. All voxels in
the occupancy grid that are not labeled free or occupied are
called unknown. Using the constructed OctoMap, we compute
a set of frontier voxels, whose defi ition is adapted from [9].
Def nition 1: A frontier voxel is a free voxel with at least

one neighboring unknown voxel.
Recall that the camera is constrained to move in a horizontal

plane during the PE phase. Consequently, many frontier voxels
lie along the top and bottom faces of the view frustums
[see Fig. 9(a)] but do not correspond to cavities to explore.
We can ignore them by only considering frontier voxels
for which the normal vector n, computed using the nearby
frontier voxels [36], makes a suff ciently small angle with the
horizontal plane. In other words, we keep only the frontier
voxels for which the z-coordinate of the normal n satisfie
|ngz | < α, for some chosen threshold α. Next, Type I f aws can
result in frontier voxels, which we also want to exclude from
consideration. Therefore, we require that the distance to the
closest occupied voxel should be greater than some threshold
d0, which can be chosen as a small fraction of the distance
maintained from the structure, say 0.1D. As the number of
voxels in a typical structure is very large, we do not perform
this thresholding exactly, but instead, we use an estimate for
the distance to the structure obtained from OctoMap. The hier-
archical structure of OctoMap allows efficie t multiresolution
queries (see Fig. 10), and thus, we keep as cavity entrance
voxels only those that are marked free at a resolution of
approximately d0.
Finally, we call cavity entrance voxels the frontier voxels

that satisfy the two preceding conditions [see Fig. 9(b)]. The
cavity entrance voxels are clustered using an Euclidean clus-
tering algorithm from PCL [35], and each cluster is referred to
as a cavity entrance. Moreover, there could be some sparsely
located cavity entrance voxels, which are removed by setting
a minimum size for the cavity entrance.
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Fig. 11. Robot at a starting viewpoint for exploring a cavity. All the cavity
entrance voxels are also shown. We also show on the left an ending viewpoint,
where the vSLAM system detects that it is back in a region already explored
during the PE phase.

B. Cavity Exploration

Once the cavity entrances have been determined, we can
start the CE phase. We explore each detected cavity using
a motion analogous to the PE phase, wherein we maintain
the structure to the right at a distance 
 ∈ [δ, D] that is
determined online based on the available clearance in the
cavity and δ is the minimum required distance for the mapping
module. For this, we require a starting viewpoint for each
cavity entrance and an algorithm to compute 
. The starting
viewpoint is chosen from the set of camera poses returned
by the vSLAM module during the PE phase, such that the
centroid of the cavity entrance lies within the view frustum.
Additionally, the centroid should not be occluded by the
structure from the camera position. From these camera poses,
the one with the earliest timestamp is chosen as starting
viewpoint (see Fig. 11).
The timestamps of the starting viewpoints of the cavity

entrances are used to sort them in increasing order, and each
of the cavities is explored in sequence. A typical cavity has at
least two cavity entrances bordering it, as shown in Fig. 9(b),
and it is possible to have more cavity entrances in some cases.
During the CE phase, if the centroid of a cavity entrance falls
within the view frustum of the current camera position and is
not occluded by the structure, we remove that cavity entrance
from our list.
Exploring conf ned regions during the CE phase requires

certain modification to the PE policy. Recall that the system
skipped the cavities during the PE phase as the robot came
closer than a distance D from the structure. Therefore, during
the CE phase, only the region directly ahead of the robot
and within a distance 
 is checked for interference of the
computed path with the structure. Moreover, our potential
fiel -based local path planner now returns paths that maintain
a distance 
 from the structure. For this, using the notation
of Sections III-A and III-B, we modify goal as goal ←
pc −
 n+ step r and transform to the global FoR to obtain
the new point g. The distance 
 is chosen by starting from
the minimum value δ and increasing it until we reach a local
minimum of N
(g) along n, where the defi ition of N
 is
adapted from (1) with 
 replacing D. Similarly, when an acute
angled corner is encountered during the CE phase, we modify
goal as goal ← pc +
 r.
When the robot exits a cavity, the point clouds captured

by the camera correspond to parts of the structure that are

Fig. 12. Impossibility of self-intersection during PE. Dashed curve: boundary
of the structure. Solid curve: path of the robot.

already present in the model from the PE phase. Consequently,
the system can detect that it has f nished exploring the current
cavity by monitoring the loop closures obtained by the vSLAM
module. The robot can then choose the next region to explore
from its current list of remaining cavity entrances, and can
travel there by following again the PE path. Alternatively,
the number of changes in the occupancy measurements of the
OctoMap could be used to detect the end of the cavity, as point
clouds captured after exiting the cavity ideally would not add
new information to the OctoMap. But this solution tends to be
less robust, because localization errors and sensor noise can
induce a large number of changes even when the camera is
viewing a region that is already present in the model.

V. COVERAGE ANALYSIS

In this section, we provide some analysis of the coverage
completeness of the PE and CE strategies. To simplify the
discussion, we focus on the case of simple structures consist-
ing of vertical walls, potentially supporting hanging structures
under which the mobile robot is able to pass. We then analyze
the boundary coverage in 2-D for the slice M of the structure
on the plane zg = hc (see Fig. 4).
First, we analyze the PE phase. We assume that the path

planner is able to keep the robot at distance D fromM, and in
other words, the robot’s path remains on the boundary ∂MD
def ned in Section III-B, keeping the structure on its right.
Note that MD is the Minkowski sum M⊕ BD of M and a
closed disk of radius D.
Lemma 1: The path followed by the robot during PE phase

cannot self-intersect, except at the initial point Og.
Proof: During the PE phase, the robot keeps the structure

at distance D on its right as it moves forward. Fig. 12
then shows the impossibility for the robot’s path to intersect
itself during PE. Indeed, in Fig. 12(a) of a counterclockwise
cycle, one can show that before the merging point, the robot’s
obstacle detector would have seen the structure on its left at
distance at most D (point A in Fig. 12), and implemented
the left turn as explained in Section III-C. In Fig. 12(b) of
a clockwise cycle, the tube of width 2D around the robot’s
trajectory would collide with the structure before closing the
path, which again would have induced a left turn. In both
cases, we have a contradiction.
Recall that a simple closed curve (SCC) is a nonself-

intersecting, continuous loop. We then have the following.
Corollary 1: Suppose ∂MD consists of a f nite set of

disjoint SCCs. Then, during the PE phase, the robot travels
on the SCC of ∂MD on which it initially started, in the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 13. Illustration of the notation used in Proposition 1. Here, Cδ = A⊕Bδ .

direction that keeps MD on its right. Moreover, assuming the
loop closure detection does not incorrectly terminate the PE
phase too early, the robot reaches back its starting point Og
on this curve.

Proof: The robot progresses along ∂MD, and its path
cannot self-intersect by Lemma 1, so it must eventually reach
back its starting point, since the length of ∂MD is fi ite.
It cannot switch to another SCC than the one on which it
started, since it would violate the assumption that the planner
maintains a distance D with M.
Corollary 1 characterizes the part of the boundary of MD

that the PE strategy covers, assuming the path planner and PE
termination algorithm work correctly. The robot ideally travels
on an SCC that is part of ∂MD, which we call the PE curve
in the following. We orient this curve in the direction of travel
of the robot, with MD on the right.
Let us now turn to the analysis of the CE phase. Let Mδ =

M⊕Bδ be the Minkowski sum of M and the closed disk of
radius δ, where δ is the minimum horizontal clearance define
in Section IV-B. We work under the mild assumption that
both ∂MD and ∂Mδ consist of a fi ite set of disjoint SCCs,
although ∂MD can have a strictly smaller number of such
curves in general. The notation of the following proposition
is illustrated in Fig. 13.
Proposition 1: Let �D be the oriented PE curve, and Cδ be

a connected component of Mδ in the region on the right of
�D . Let δ be one of the SCC forming ∂Cδ, orient δ, such
that Cδ is on its right, and let D be the (possibly empty)
SCC forming the boundary of δ ⊕ BD−δ on the left of δ.
If D ∩�D 	= ∅, then at the end of the PE and the CE phase,
the view frustum has covered the curve δ.
Referring to Fig. 4, M has four components Ci ,

i = 0, . . . , 3. MD has a unique component, since by adding
a buffer D, the components merge into one. Note, however,
that in general, MD does not have to be simply connected,
nor even path connected. The dashed line representing the
PE curve is also the boundary of MD . Now, Mδ has three
components, because C0 and C2 merge once we add a buffer δ.
C1 and C3 remain disconnected in Mδ however, which allows
the robot to enter the passages separating C0 and C1 on the
one hand, and C2 and C3 on the other hand. At the end of CE,
the boundary of the components C1⊕Bδ and (C0 ∪C2)⊕Bδ
will be mapped, but C3 ⊕ Bδ does not satisfy the hypothesis
of Proposition 1 (the boundary of C3⊕BD does not share any
point with the PE curve), and in this case, its boundary indeed
is not mapped. The robot cannot map the whole boundary of

C0 or C2 individually, since it cannot pass between these two
structures that are less than δ apart.

Proof: Note that D is an SCC that forms part or all of
∂CD , where CD = Cδ⊕BD−δ, i.e., D consists of points that
are at distance D of the portion of the structure in Cδ . As a
result, all the points belonging to D must be either also on
�D or on the right of �D . A fi st possibility is that D = �D ,
in which case the curve δ is covered at the end of the PE
phase.
If δ is not covered at the end of the PE phase, there

is a point on δ that lies on a cavity entrance (fron-
tier boundary between the free and unknown regions)
and that is reachable by a path starting from �D (since
Cδ is a connected component of Mδ, a robot could
travel along δ during the CE phase). Assuming this
point is detected by the procedure of Section IV-A,
during the CE phase, the robot will travel to this point and
remove it from its list of cavities to explore, keeping Cδ
on its right along the way. It will then continue following a
path along Cδ contained in the annulus between δ and D ,
until δ has been entirely covered by the view frustum. The
coverage of δ terminates, since it is an SSC.
In conclusion, the cavity entrances computed at the end of

the PE phase act as attractors for the robot during the CE
phase. However, the robot only covers those frontier voxels
that it can reach while still keeping the structure on its right
as a guide and remaining at a distance between δ and D
away from it. For example, if it enters a large room after
going through a cavity entrance, it will not try to cover the
area far away from the walls (hence, it does not try to cover
obstacle C3 in Fig. 4). One could potentially attempt to cover
these interior areas as well at the same time, e.g., by using
a 2-D coverage algorithm when we enter a wide cavity, but
this would require, in general, a suff ciently precise absolute
positioning system complementing the odometry information
of the vSLAMmodule. This might not be a trivial requirement,
for example, because the structure itself might obstruct GPS
reception. Instead, our algorithm is motivated by the fact that
keeping the structure in range helps maintain the accuracy
of the visual odometry component of the vSLAM module.
By trying to exit a cavity quickly once we enter it, the vSLAM
module can also close loops more frequently as the robot
returns to the PE curve, before accumulating too much error
through the odometry.

VI. SIMULATION RESULTS

We illustrate the behavior of our policies via 3-D sim-
ulations for different sizes of the structure, camera range
values, and localization accuracy levels for the robot. The
implementation of our motion planning policies is integrated
with the robot operating system (ROS) navigation stack [40],
which is supported by many mobile ground robots. All the
simulations are performed using the Gazebo simulator [27].
The vSLAM algorithm used is RTAB-Map [6].
The simulations are carried out with publicly available

models of a Clearpath Husky A200 robot and a Kinect
depth sensor whose range can be varied [41] (see Fig. 2).
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Fig. 14. Projection of the reconstructed model on the xgyg plane is shown
in black line, and the trajectory followed by the robot based on our policies
is shown in blue line. (a) Model: small � and range: 4.5 m. (b) Model: small
� and range: 12 m. (c) Model: large � and range: 4.5 m. (d) Model: large a
and range: 4.5 m.

A UR5 robotic arm is used to carry the sensor, but only yaw
motions of the arm are allowed, as described in Section II.
For illustration purposes, we consider artificia structures made
of short walllike segments. We refer to the structure used in
most of the previous illustrations as the small � model. The
large � model has the same shape as small � but is twice the
size. We also illustrate the effectiveness of our policy for a
realistic model of a house, and compare its performance with
that of the classic frontier-based exploration (FBE) algorithm
[9]. We have included a supplementary MP4 format video,
which shows the simulation and real-world experiments with
a Husky robot following our policies for mapping the small
� model using a Kinect sensor.

A. Structure Size and Camera Range

The relative size of the structure with respect to the range of
the camera affects the trajectory determined by our algorithms.
Fig. 14 shows the simulation results for four scenarios. With
a camera range of 4.5 m, the large � model is completely
mapped at the end of the PE phase. For the small � model,
a cavity remains, which is subsequently explored during the
CE phase. Increasing the camera range to say 12 m allows the
small � structure to be mapped at the end of the PE phase
as well [see Fig. 14(b)]. One can see in Fig. 14(d) that the
robot following our policies is able to map large structures
with multiple cavities of different sizes. Table I lists the path
lengths obtained for the different test cases.

TABLE I
SIMULATION RESULTS FOR DIFFERENT SIZES OF THE

STRUCTURE AND RANGE OF THE CAMERA

Fig. 15. (a) Large errors in localization results in poor alignment, although
all portions of the structure have been captured in the model [see Fig. 16(a)
for comparison]. (b) Projection of the reconstructed model on the xgyg plane,
when compared with Fig. 14(a), shows the distortion introduced due to the
noisy wheel odometry.

B. Localization Accuracy

The Husky robot combines data from an inertial measure-
ment unit (IMU), a standard GPS receiver, and wheel odom-
etry to achieve a relatively small localization error overall.
In order to evaluate the impact of localization accuracy on our
algorithms, we simulate the effect of large wheel slippage by
introducing a zero mean additive Gaussian white noise to each
of the wheel encoder measurements, with a variance equal to
k(vx + ωz)/2, where vx is the linear velocity of the robot,
ωz is its yaw rate, and k is a proportionality constant, also
called noise level in the following. Increasing k results in
a poorer alignment of the point clouds, but all portions of
the structure, except the horizontal faces, are still captured in
the reconstructed model (see Fig. 15). Note that our policies
compute the next waypoint at discrete times and therefore
assume that the drift in localization between waypoints is
suff ciently small so that the robot reaches the next waypoint
with the camera facing the structure.
We use the CloudCompare [42] software to compute the

distortion in the reconstructed model Ck , for a noise level k,
with respect to a reference point cloud CR generated using
a different mobile platform with almost perfect localization.
First, we register Ck to CR using an iterative closest point
algorithm [43]. We then def ne for every point in Ck , its error
to be the distance to the nearest neighbor in CR . Table II lists
the simulation results for mapping the small � model with
different noise levels k, where nk is the number of points in
Ck and μ, σ , and max are, respectively, the mean, standard
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TABLE II
SIMULATION RESULTS FOR DIFFERENT LEVELS OF

LOCALIZATION ACCURACY

deviation, and maximum value of the errors of all points in
Ck . Table II indicates that both the mean and standard deviation
of the errors increase with the noise level.

C. Comparing With Frontier-Based Exploration
The frontier exploration [44] package available in ROS

relies on a 2-D LIDAR to build an occupancy grid that is
used to compute the frontiers. The package requires the user to
def ne a 2-D polygon that encloses the structure. The algorithm
then explores until there are no more frontiers inside the
user-def ned polygon. In comparison with the FBE algorithm,
our algorithms: 1) do not require a user def ned bounding
polygon; 2) maintain as much as possible a f xed distance
from the structure (during the PE phase), thereby ensuring
that all portions up to a height of Hmax are mapped; and
3) consistently explore the structure while keeping it on the
right, which can be important from a user perspective to
understand the behavior of the robot. On the other hand,
the trajectory prescribed by the FBE algorithm depends on the
size of the user-def ned bounding polygon. A large bounding
polygon will cause the robot to explore areas far away from
the structure and will possibly not maintain a f xed direction
of exploration. Our strategy produces the same path every
time for a given structure, whereas the path computed by
the FBE algorithm could differ greatly between two trials.
The robot also often gets stuck while using the FBE algo-
rithm as the computed waypoints are often too close to the
structure.
In order to get a quantitative measure of the structure cov-

erage, we again use the CloudCompare software to compute
essentially the projection of the reconstructed model C on
the reference point cloud CR . Namely, for each point in C,
we compute the closest point in CR . Note that multiple points
in C can have the same closest point in CR . In this case,
we remove these duplicate points to obtain the unique closest
point set. Then, as long as the reconstructed model aligns
relatively well with the reference model, the cardinality of the
unique closest point set is taken as our estimate of the structure
coverage. Table III compares the level of structure coverage
achieved by our policies and FBE with a camera range of
4.5 m for two of the environments considered. For the small
� model, our reference point cloud has 6116 points with a
minimum distance of 0.1 m between points. For the House
model, our reference point cloud has 10 889 points with a
minimum distance of 0.1 m between points. Since the height
of the House model is more than Hmax, we only take the
portion of the reconstructed model up to the height Hmax for

TABLE III
COMPARISON BETWEEN OUR POLICY AND

FRONTIER-BASED EXPLORATION

Fig. 16. (a)–(d) Comparison of the reconstructed model using our policies
and FBE. Fig. (c) should be compared with Fig. 1(b). (d) and (e) Trajectories
prescribed by FBE for the small � and House structure are shown in blue
line.

computing the structure coverage and mean error for the two
algorithms.
Table III shows that our policies achieve a higher level

of structure coverage than FBE for the environments con-
sidered and our proposed coverage metric. Note also that
the smooth trajectory prescribed by our policies is benef cial
to the vSLAM module to achieve a better alignment and a
lower value for the mean error in the reconstructed model,
especially if the robot localization accuracy is poor. A visual
inspection of Fig. 16(a) and (b) shows the improvement in
model reconstruction when using our algorithms compared
with FBE.
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Fig. 17. Left: Husky robot used in our experiments with the robotic arm,
depth sensor, and laser range scanner. All other sensors seen are not used.
Right: indoor structure being inspected.

VII. REAL-WORLD EXPERIMENT

Here, we discuss an example of real-world experiment using
the Husky robot shown in Fig. 17, equipped with a Kinova
robotic arm carrying a Kinect v2 depth sensor. An SICK
laser range scanner is used only for obstacle detection. All
computations are done in real time on an embedded Intel
i5-based computer without the help of a dedicated GPU.
The structure was built from cork display panels and foam
insulation boards. As shown in Fig. 17, it mimics the small �
model used in simulation and its dimensions are 8.2 m × 4m.
To help the vSLAM algorithm detect a loop closure, we place
a visual marker (a colorful poster seen in Fig. 17) on the
structure in front of the starting point of the robot. Since the
panels are similar on both sides, we also put visual markers
inside the structure to conf rm that the cavity inspection has
correctly mapped all of the inside. The most computationally
intensive part of our algorithm is the detection of cavity
entrances, (see Section IV-A) which takes a few seconds of
computation for this structure at the end of the PE phase.
Due to the limited space available to maneuver around the

structure, we reduce the obstacle sensing region to a range of
1.8 m and to a 10° cone in front of the robot. The depth camera
range is cut at 4 m and we set the desired wall distance D to
1.5 m. For odometry, we use the extended Kalman f lter (EKF)
from [45] with IMU and wheel odometry data as inputs. The
output of the EKF is sent to RTAB-Map [6] for mapping and
localization purposes. Since we use a ground robot on f at
terrain, we constrain RTAB-Map’s mapping to three degrees
of freedom (x, y and yaw angle).
The behavior of our algorithm is illustrated on the accompa-

nying video, and the model produced online with the vSLAM
module is shown in Fig. 18. Overall, the executed trajectory
conf rms that our algorithm correctly performs PE followed
by cavity inspection. Noise in the depth measurements can
be an issue if left unf ltered. However, proper calibration and
applying a standard speckle and bilateral f lter can alleviate
the problem. In our experiments, we tuned the parameters of
these f lters by placing the robot in a location where signif cant
noise was measured. We then increased the maximum speckle
size and size of the bilateral f lter window until most of the
visible noise was removed.
The experiment also illustrates some practical issues that

can degrade mapping performance. First, because of the height

Fig. 18. Angled view of the constructed model. The cyan lines with squares
indicate the path taken by the robot.

of the boards used to build the structure and the limited space
available to navigate around it, the robotic arm was extended
so that the depth sensor was at a height of 1.2 m. It then
tended to shake during acceleration changes of the robot,
making the sensor vulnerable to producing blurry images.
This could be mitigated by a better control of the smooth-
ness of the robot trajectories, a stiffer orientable platform to
hold the sensor, and by using a stereo camera with global
shutters in bright daylight to reduce motion blur. During
testing, we also noticed that the algorithm can be sensitive
to gaps or “windows” in the structure. In front of a gap,
the depth sensor can detect surfaces inside the structure, which
can then perturb the goal calculation algorithm described in
Section III-A. This can be addressed by reducing the range
of the sensor measurements to a value close to the desired
distance D.
In summary, among the possible failure cases of our algo-

rithm, we identif ed during our experiments and simulations:
1) waypoint determination errors due to the presence of
gaps or windows in the structure and 2) incorrect global loop
closures due to the possible self-similarity of the structure,
which can be mitigated by adding a unique marker at the
starting point.

VIII. CONCLUSION

This paper presents motion planning strategies that guide
a mobile ground robot carrying a camera or depth sensor
to autonomously explore the visible portion of a bounded
3-D structure. The proposed policies do not assume any
prior information about the size or geometry of the structure.
Coupled with state-of-the-art vSLAM systems, our strategies
are able to achieve high coverage in the reconstructed model,
given the physical limitations of the platform. We illustrate
the eff cacy of our approach via 3-D simulations for differ-
ent structure sizes, camera range, and localization accuracy,
and we have tested our system in real-world experiments.
In addition, a comparison of our policies with the classi-
cal frontier-based exploration algorithms clearly shows the
improvement in performance for a realistic structure such as a
house.
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