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ABSTRACT 
In this paper, we analyze the performance and cost trade-off from 
selecting two representations of nodes when implementing the 
Aho-Corasick algorithm. This algorithm can be used for pattern 
matching in network-based intrusion detection systems such as 
Snort. Our analysis uses the Snort 2.9.7 rules set, which contains 
almost 26k patterns. Our methodology consists of code profiling 
and analysis, followed by the selection of a parameter to maximize 
a metric that combines cycles count and memory usage. The pa-
rameter determines which of two types of nodes is selected for each 
trie node. We show that it is possible to select the parameter to op-
timize the metric, which results in an improvement by up to 12× 
compared with the single node-type case. 

Categories and Subject Descriptors 
I.5.4 [Pattern Recognition]: Applications – Text processing. 

C.2.0 [Computer-Communication Networks]: General – Secu-
rity and protection. 

General Terms 
Algorithms, Performance, Design, Experimentation, Security. 

Keywords 
Aho-Corasick algorithm, node configuration, pattern matching, 
string matching, Deep Packet Inspection (DPI), Intrusion Detection 
System (IDS). 

1. Introduction 
Network intrusions pose a significant threat to network security. An 
intrusion detection system (IDS) automates the intrusion detection 
process by monitoring the packets coming from outside a computer 
system or network, and analyzes them for signs of a variety of pos-
sible attacks or probes. If these problematic packets can be detected 
in time, it is then possible to stop them from getting inside the net-
work, thus preventing numerous attacks. This detection can be done 
by inspecting the payload of a network packet and comparing it to 
a collection of suspicious patterns such as Snort’s. Snort is an open 
source network intrusion detection systems (NIDS) which can per-
form real-time traffic analysis [1].  

The Aho-Corasick (AC) algorithm [2] is used in Snort 2.9.7 [3] and 
performs multiple keywords pattern matching. It can be divided 
into two distinct steps. The first step is to build a finite state autom-
aton. For that, a trie or a prefix tree with input words must be con-
structed. The second step consists of the search of patterns itself. 
This search involves traveling through the automaton’s nodes fol-
lowing transitions according to the values of input character stream. 
The matches are retrieved from the state of the automaton itself. 
While implementing the AC algorithm, there are two key objec-
tives: maximize the throughput, or in other words, minimize the 
number of cycles per character; and minimize the memory require-
ments of the nodes. In this paper, we propose a way of selecting a 
node’s configuration between two types of nodes in order to 
achieve a trade-off between these two objectives. Our main contri-
bution is to show that it is possible to select a parameter to obtain 
an optimal memory × cycle product.  
The rest of the paper is organized as follows. We present the node 
configuration and our metric in Section 2. The methods used are 
discussed in Section 3. Section 4 presents the results. 

2. Node configuration selection 
In this section we present the two types for the node configuration 
that we propose. We then show how the AC nodes are distributed 
for Snort 2.9.7, which leads to optimal node type selection. We also 
present a performance metric. 

2.1 Types of nodes 
The two types of nodes that we propose are similar to the ones used 
in Shenoy’s hybrid storage [4]. The difference resides in the way to 
store the pointers to the next nodes. The type 1 node is shown in 
Figure 1. It is similar to Bremler-Barr’s symbol-state pairs array 
[5]. It consists of an array of r structures which is equal to the num-
ber of next nodes. Each structure is composed of two fields. The 
first field is the character to be matched to reach a next node. The 
second field is a pointer to the corresponding next node. This type 
of node is thus compact. A search for a match within the array of 
characters is linear in the worst case. It can be sped up with a binary 
search, at the cost of additional computation. In this work, we do 
not consider this type of search. 

Ci0 Ci1 Ci2 Ci3 Ci(r-2)Ci(r-1)...

...

0 1 2 3 ri-2 ri-1

 
Figure 1 - Type 1 node 

The type 2 node is shown in Figure 2. It is similar to Bremler-Barr’s 
lookup tables [5]. It consists of an array of pointers, one for each 
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possible input character. We select an array size of 256, which cor-
responds to the characters of an extended ASCII table or UTF-8. 
The character values are used as index to a pointer to the next node 
if it exists. If there is no corresponding next node, the pointer value 
is set to NULL. This represents wasted memory. However, a search 
within the array of pointers can be done in constant time. 

...
0 1 2 3 254 255

 
Figure 2 - Type 2 node 

2.2 Node distribution and trie construction 
Figure 3 shows the distribution of the number of next nodes for a 
trie built with the Snort 2.9.7 rule set. Almost 92% of the nodes 
have a single next node. For clarity of presentation, the root node 
with 254 next nodes is not included in the figure. For numbers of 
next nodes between 0 and 20, the number of nodes reduces from 
around a million to ten. Then, the number of nodes stabilizes in 
between 1 and 10. The first question for the selection of node type 
thus arises: at what number of next nodes should type 2 be selected 
instead of type 1? A compromise must be made between overall 
storage space and time of trie traversal. 

 
Figure 3 - Number of nodes with a specific number of next 

nodes 
For our experiments, we built an AC trie as follows. The trie is first 
built with type 2 nodes. Then for each node, the array size required 
for node type 1 (the number of next nodes ri) is used to select the 
final node type according to a defined threshold. For up to n next 
nodes (ri ≤ n), the node will be of type 1, otherwise, it will be of 
type 2. For example, if we set the threshold at n = 1, every node 
with zero next node will be of type 1 without any structure. The 
nodes with one possible next node will be of type 1 with a single 
structure. The nodes with 2 or more possible next nodes will be of 
type 2. This can lead to significant memory waste for a node. For 
example, if a node has only six possible next nodes, the type 2 node 
will have 250 NULL pointers in its array. 
In this work, we compare different trie configurations using (1), 
where P is the performance, C is the number of cycles per character 
and M is the overall memory used. This relation allows to find the 
best compromise between C and M. 

MC
P

×
=

1010
 (1) 

3. Methods 
To compare various trie configurations, we used a virtual machine 
with Xubuntu 14.04 and Valgrind was used as the profiler for the 
cycle count of the AC search. 

The tries were constructed with 26328 patterns which are all the 
unique contents of the 31133 Snort 2.9.7 rules [3], which results in 
approximately 381k nodes. In order to create and search through a 
trie, an implementation from Kanani [6] was modified. For test 
data, many sources were used including real inputs traffics, Internet 
pages, the Snort rules themselves and some randomly generated 
character sets. All these inputs have different character counts. 

4. Results 
A comparison was made between three node combinations with a 
real traffic test set. In the first case we use only type 1 nodes, which 
corresponds to a value of n = 256. In Figure 4, this is the rightmost 
point and the metric has a value of 1.48. In the second case, we use 
only type 2 nodes, which corresponds to a value of n = -1. In Figure 
4, this is the leftmost point in the curve and the metric has a value 
of 1.53. In the thirds case, we use a combination of type 1 and type 
2 nodes. In Figure 4, this corresponds to all the other points on the 
curve and various values of n between 0 and 102. The highest value 
of the metric is achieved for n = 4 with a value of 18.51. The per-
formance improvement in this case is approximately 12× compared 
with the single node-type cases. Thus, it is possible to find a balance 
between the two node types that trades memory space with search 
time. 

 
Figure 4 - Performance comparison 
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