
Titre:
Title:

Node configuration for the Aho-Corasick algorithm in Intrusion Detection
Systems

Auteurs:
Authors:

Alexsandre B. Lacroix, J.M. Pierre Langlois, François-Raymond Boyer,
Antoine Gosselin et Guy Bois

Date: 2016

Type: Communication de conférence / Conference or workshop item

Référence:
Citation:

Lacroix, A. B., Langlois, J.M. P., Boyer, F.-R., Gosselin, A. & Bois, G. (2016, mars). Node
configuration for the Aho-Corasick algorithm in Intrusion Detection Systems.
Communication écrite présentée à ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS 2016), Santa Clara, Californie (2 pages).
doi:10.1145/2881025.2889473

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: https://publications.polymtl.ca/2854/

Version: Version finale avant publication / Accepted version
Révisé par les pairs / Refereed

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Nom de la conférence:
Conference Name:

ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS 2016)

Date et lieu:
Date and Location: Santa Clara, Californie

Maison d’édition:
Publisher: IEEE

URL officiel:
Official URL: https://doi.org/10.1145/2881025.2889473

Mention légale:
Legal notice:

"©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/repub-
lishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted com-
ponent of this work in other works"

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213621621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://publications.polymtl.ca/2854/
https://doi.org/10.1145/2881025.2889473
http://publications.polymtl.ca/

1

Node configuration for the Aho-Corasick algorithm
in Intrusion Detection Systems

Alexsandre B. Lacroix, J.M. Pierre Langlois, François-Raymond Boyer,
Antoine Gosselin and Guy Bois

Computer and Software Engineering Department
Polytechnique Montréal, Canada

{alexsandre.lacroix, pierre.langlois, francois-r.boyer, antoine.gosselin, guy.bois}@polymtl.ca

ABSTRACT
In this paper, we analyze the performance and cost trade-off from
selecting two representations of nodes when implementing the
Aho-Corasick algorithm. This algorithm can be used for pattern
matching in network-based intrusion detection systems such as
Snort. Our analysis uses the Snort 2.9.7 rules set, which contains
almost 26k patterns. Our methodology consists of code profiling
and analysis, followed by the selection of a parameter to maximize
a metric that combines cycles count and memory usage. The pa-
rameter determines which of two types of nodes is selected for each
trie node. We show that it is possible to select the parameter to op-
timize the metric, which results in an improvement by up to 12×
compared with the single node-type case.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications – Text processing.

C.2.0 [Computer-Communication Networks]: General – Secu-
rity and protection.

General Terms
Algorithms, Performance, Design, Experimentation, Security.

Keywords
Aho-Corasick algorithm, node configuration, pattern matching,
string matching, Deep Packet Inspection (DPI), Intrusion Detection
System (IDS).

1. Introduction
Network intrusions pose a significant threat to network security. An
intrusion detection system (IDS) automates the intrusion detection
process by monitoring the packets coming from outside a computer
system or network, and analyzes them for signs of a variety of pos-
sible attacks or probes. If these problematic packets can be detected
in time, it is then possible to stop them from getting inside the net-
work, thus preventing numerous attacks. This detection can be done
by inspecting the payload of a network packet and comparing it to
a collection of suspicious patterns such as Snort’s. Snort is an open
source network intrusion detection systems (NIDS) which can per-
form real-time traffic analysis [1].

The Aho-Corasick (AC) algorithm [2] is used in Snort 2.9.7 [3] and
performs multiple keywords pattern matching. It can be divided
into two distinct steps. The first step is to build a finite state autom-
aton. For that, a trie or a prefix tree with input words must be con-
structed. The second step consists of the search of patterns itself.
This search involves traveling through the automaton’s nodes fol-
lowing transitions according to the values of input character stream.
The matches are retrieved from the state of the automaton itself.
While implementing the AC algorithm, there are two key objec-
tives: maximize the throughput, or in other words, minimize the
number of cycles per character; and minimize the memory require-
ments of the nodes. In this paper, we propose a way of selecting a
node’s configuration between two types of nodes in order to
achieve a trade-off between these two objectives. Our main contri-
bution is to show that it is possible to select a parameter to obtain
an optimal memory × cycle product.
The rest of the paper is organized as follows. We present the node
configuration and our metric in Section 2. The methods used are
discussed in Section 3. Section 4 presents the results.

2. Node configuration selection
In this section we present the two types for the node configuration
that we propose. We then show how the AC nodes are distributed
for Snort 2.9.7, which leads to optimal node type selection. We also
present a performance metric.

2.1 Types of nodes
The two types of nodes that we propose are similar to the ones used
in Shenoy’s hybrid storage [4]. The difference resides in the way to
store the pointers to the next nodes. The type 1 node is shown in
Figure 1. It is similar to Bremler-Barr’s symbol-state pairs array
[5]. It consists of an array of r structures which is equal to the num-
ber of next nodes. Each structure is composed of two fields. The
first field is the character to be matched to reach a next node. The
second field is a pointer to the corresponding next node. This type
of node is thus compact. A search for a match within the array of
characters is linear in the worst case. It can be sped up with a binary
search, at the cost of additional computation. In this work, we do
not consider this type of search.

Ci0 Ci1 Ci2 Ci3 Ci(r-2)Ci(r-1)...

...

0 1 2 3 ri-2 ri-1

Figure 1 - Type 1 node

The type 2 node is shown in Figure 2. It is similar to Bremler-Barr’s
lookup tables [5]. It consists of an array of pointers, one for each

2

possible input character. We select an array size of 256, which cor-
responds to the characters of an extended ASCII table or UTF-8.
The character values are used as index to a pointer to the next node
if it exists. If there is no corresponding next node, the pointer value
is set to NULL. This represents wasted memory. However, a search
within the array of pointers can be done in constant time.

...
0 1 2 3 254 255

Figure 2 - Type 2 node

2.2 Node distribution and trie construction
Figure 3 shows the distribution of the number of next nodes for a
trie built with the Snort 2.9.7 rule set. Almost 92% of the nodes
have a single next node. For clarity of presentation, the root node
with 254 next nodes is not included in the figure. For numbers of
next nodes between 0 and 20, the number of nodes reduces from
around a million to ten. Then, the number of nodes stabilizes in
between 1 and 10. The first question for the selection of node type
thus arises: at what number of next nodes should type 2 be selected
instead of type 1? A compromise must be made between overall
storage space and time of trie traversal.

Figure 3 - Number of nodes with a specific number of next

nodes
For our experiments, we built an AC trie as follows. The trie is first
built with type 2 nodes. Then for each node, the array size required
for node type 1 (the number of next nodes ri) is used to select the
final node type according to a defined threshold. For up to n next
nodes (ri ≤ n), the node will be of type 1, otherwise, it will be of
type 2. For example, if we set the threshold at n = 1, every node
with zero next node will be of type 1 without any structure. The
nodes with one possible next node will be of type 1 with a single
structure. The nodes with 2 or more possible next nodes will be of
type 2. This can lead to significant memory waste for a node. For
example, if a node has only six possible next nodes, the type 2 node
will have 250 NULL pointers in its array.
In this work, we compare different trie configurations using (1),
where P is the performance, C is the number of cycles per character
and M is the overall memory used. This relation allows to find the
best compromise between C and M.

MC
P

×
=

1010
 (1)

3. Methods
To compare various trie configurations, we used a virtual machine
with Xubuntu 14.04 and Valgrind was used as the profiler for the
cycle count of the AC search.

The tries were constructed with 26328 patterns which are all the
unique contents of the 31133 Snort 2.9.7 rules [3], which results in
approximately 381k nodes. In order to create and search through a
trie, an implementation from Kanani [6] was modified. For test
data, many sources were used including real inputs traffics, Internet
pages, the Snort rules themselves and some randomly generated
character sets. All these inputs have different character counts.

4. Results
A comparison was made between three node combinations with a
real traffic test set. In the first case we use only type 1 nodes, which
corresponds to a value of n = 256. In Figure 4, this is the rightmost
point and the metric has a value of 1.48. In the second case, we use
only type 2 nodes, which corresponds to a value of n = -1. In Figure
4, this is the leftmost point in the curve and the metric has a value
of 1.53. In the thirds case, we use a combination of type 1 and type
2 nodes. In Figure 4, this corresponds to all the other points on the
curve and various values of n between 0 and 102. The highest value
of the metric is achieved for n = 4 with a value of 18.51. The per-
formance improvement in this case is approximately 12× compared
with the single node-type cases. Thus, it is possible to find a balance
between the two node types that trades memory space with search
time.

Figure 4 - Performance comparison

5. Acknowledgments
The authors would like to thank Thomas Luinaud for providing
support and ideas used in this work.

6. References
[1] M. Roesch, "Snort - Lightweight Intrusion Detection for

Networks," in Proceedings of the 13th USENIX Conference
on System Administration, Berkeley, CA, USA, 1999.

[2] A. V. Aho and M. J. Corasick, "Efficient String Matching: An
Aid to Bibliographic Search," Commun. ACM, vol. 18, no. 6,
pp. 333-340, June 1975.

[3] Snort, "Snort," 2014. [Online]. Available:
https://www.snort.org/.

[4] G. Shenoy, J. Tubella and A. Gonzalez, "A Performance and
Area Efficient Architecture for Intrusion Detection Systems,"
in IEEE International Parallel Distributed Processing
Symposium (IPDPS), 2011.

[5] A. Bremler-Barr, Y. Harchol and D. Hay, "Space-time
tradeoffs in software-based Deep Packet Inspection," in IEEE
12th International Conference on High Performance
Switching and Routing (HPSR), 2011.

[6] K. Kanani, "Aho-Corasick implementation (part of
multifast)," 2013. [Online]. Available:
http://multifast.sourceforge.net/.

1

10

100

1000

10000

100000

1000000

0 10 20 30 40 50 60 70 80 90 100 110

of

 n
od

es

of next nodes

0

2

4

6

8

10

12

14

16

18

20

-20 0 20 40 60 80 100 120 140 160 180 200 220 240 260

P

n

	2017_Lacroix_Node_configuration_Aho-Corasick_algorithm

