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A DAQM-based Load Balancing Scheme for High
Performance Computing Platforms

Kaijun Yang, Meng Li, Guchuan Zhu, Senior Member, IEEE, and Yvon Savaria, Fellow, IEEE

Abstract—This paper addresses the load balancing problem,
which is one of the key issues in high-performance computing
(HPC) platforms. A novel method, called decentralized active
queue management (DAQM), is proposed to provide a fair
task distribution in a heterogeneous computing environment for
HPC platforms. An implementation of the DAQM is presented,
which consists of an ON-OFF queue control and a utility
maximization-based coordination scheme. The stability of the
queue control scheme and the convergence of the algorithm for
utility maximization have been assessed by rigorous analysis. To
demonstrate the performance of the developed queueing control
system, numerical simulations are carried out and the obtained
results confirm the efficiency and the viability of the developed
scheme.

Index Terms—decentralized active queue management
(DAQM), load balancing, high performance computing.

I. INTRODUCTION

Driven by the ever increasing complexity of applications
and a stringent requirement in terms of Quality of Service
(QoS), high performance computing (HPC) platforms have
received considerable attention over the past decades [1], [2],
[3]. Nowadays, HPC systems have been employed to support
a great variety of scientific and commercial applications, such
as data mining, computational biology, weather prediction,
and mobile communication networks [4], [5]. Typically, an
HPC platform is composed of multi-core computing units, e.g.,
GPUs, FPGAs and/or Network on Chips (NoCs), to offer a
certain degree of parallelism and scalability [6]. Therefore, in
order to fully utilize the capacity of HPC systems, an opti-
mized load balancing is required to maximize computational
efficiency.

In general, applications in an HPC platform can be divided
into multiple tasks that can be executed on different nodes
(GPU, FPGA, NoC, etc.). Hence, the goal of load balancing
is to find a task mapping, which results in an approximately
equal load distribution for each node [7]. The strategies for
load balancing can be either static [8], [9] or dynamic [10],
[11]. Generally, static load balancing (SLB) runs depending
on previously obtained knowledge, while dynamic load bal-
ancing (DLB) continuously updates the information to make
a decision. In scenarios where workloads are unpredictable,
DLB is preferred to assure an adequate system performance,
although SLB is simple to implement.

Much work has been dedicated to the development of
algorithms for DLB. Different solutions have been proposed

The authors are with the Department of Electrical Engineering, Polytech-
nique Montréal, P.O. Box 6079, Station Centre-Ville, Montreal, QC, Canada
H3C 3A7.

aiming at an efficient and fair resource allocation, while
achieving adequate QoS levels [12], [13], [14]. From the
control theoretical point of view, there basically exist two
types of architectures for DLB: centralized closed-loop control
and decentralized hierarchical control. The centralized closed-
loop control requires complete and reliable knowledge of all
application and platform parameters to make decisions. This
architecture can provide good performance in grid computing,
but it suffers from poor flexibility and scalability in addition
to difficulties to handle unpredictable workloads. Another
solution is the decentralized hierarchical control, in which each
node runs locally in a closed-loop manner and contributes
to the global performance. However challenges arise from
decentralized control regarding, particularly, task distribution
and load balancing among the processing nodes as it is in
general hard for such a system to achieve stability and high
utilization without global information.

In this paper, we adopt a decentralized architecture and
tackle the challenge of balancing load among processing
nodes. Inspired by the well-studied paradigm of active queue
management (AQM), we introduce the concept of decentral-
ized active queue management (DAQM). A DQAM-based
scheme consists of two layers. At the lower layer, a local
feedback control loop is introduced to leverage the basic
feature of AQM to assure a stable operation at each processing
node. At the upper layer, a coordination controller is applied
to achieve a fair load balancing while maximizing resource
utilization. The theoretical analysis shows that this method can
provide a fair task distribution in a heterogeneous computing
environment for HPC platforms.

The main contributions of this paper are:

• a DAQM-based load balancing strategy, which considers
real-time computing capability of each processing node;

• an implementation of the DAQM, which can achieve a
fair load balancing among processing nodes by mini-
mizing the overall processing delay while maximizing
resource utilization.

The remaining of the paper is organized as follows. Sec-
tion II makes a brief review of some related work on task
scheduling for HPC platforms and applications of AQM.
Section III presents a queue management scheme for HPC
platforms, namely DAQM. Section IV illustrates an imple-
mentation of DAQM mechanism. Then, in Section VI, the
developed control mechanism is evaluated by simulation.
Finally, some concluding remarks are provided in Section VII.
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II. RELATED WORK

A. Task Scheduling on HPC Platforms

With the development of HPC technology, it becomes
possible to support computationally intensive applications with
an aggregation of computing nodes instead of supercomputers.
In such a heterogeneous computing environment, effectively
mapping the tasks to minimize operating costs while respect-
ing QoS constraints represents a real challenge.

One issue for task scheduling in this environment is the
unpredictability of workloads. In recent years, much attention
has been put on workload characterization in order to have a
better understanding of workload features in terms of arrival
rate and duration [15]. Such analysis can be found in [16],
[17]. In [15], task classification is performed and utilized
in resource provisioning, which allows for important energy
savings while significantly reducing task scheduling delay.

Other works focus on the minimization of the makespan,
which is defined as the maximum completion time of all
tasks [18], [19], [20], [21], [22]. It is known that task
scheduling is NP-complete in general [23], [24]. Thus, in
the literature, several heuristic scheduling algorithms, such as
Opportunistic Load Balancing (OLB) [18], [19], [25], Min-
Min [20], [22], and Max-Min [20], [22], have been proposed
to achieve suboptimal solutions. The intuition of OLB is to
keep all computing resources as busy as possible. This may
lead to poor makespan as it does not consider the expected
task execution times. The Min-Min algorithm is based on the
minimum completion time. The strategy behind the Min-Min
algorithm is to select the task with the minimum completion
time from all unscheduled tasks at each step, with the hope
of obtaining a smaller makespan. The Max-Min algorithm
is similar to the Min-Min, while its purpose is to minimize
the penalties caused by tasks with longer execution times.
For practical applications, suitable heuristic algorithms should
be chosen by considering performance, efficiency, complexity,
etc.

In our work, instead of characterizing the heterogeneity of
workloads to perform task allocation, a generic decentralized
active queue model is applied to achieve load balancing. By
monitoring and adjusting the queue lengths instead of the
behaviours of computing nodes, the overall average processing
delay can be minimized.

B. Active Queue Management

Queueing theory is a mathematical model-based analysis
framework. In general, its ultimate objective is to model
the behavior of queueing systems from which it can take
appropriate actions [26]. Queueing theory is extensively ap-
plied in many industrial sectors, in particular in information
and communications technology (ICT) industries for system
dimensioning, performance assessment, traffic engineering,
etc. [27], [28]. By developing proper models such as M/M/1
queue [29], [30], M/D/1 queue [31], M/G/1 queue [32],
M/Ek/1 queue [33], queuing length and waiting time can
be predicted. It has been observed that long latency and delay
variation in queueing networks, e.g, packet networks, can be
induced by excess buffering of packets. In order to address

these issues, several queue management schemes have been
proposed and investigated, among which we can find the active
queue management (AQM) [34].

The main objective of AQM is to maintain the queues
at an adequate level, which represents a compromise be-
tween queueing delay and resource utilization. Benefiting from
AQM, system performance can be improved and QoS can
be guaranteed in an average sense. AQM is extensively used
in TCP networks for congestion control. In this context, the
AQM controller notifies traffic sources of congestion in order
to reduce their transmission rates to avoid congestion and
to reduce both queueing delay and packet loss [35], [36].
For example, the Early Random Drop and Random Early
Detection (RED) mechanism [34] is a variation of the Random
Drop mechanism aimed at avoiding congestion by predicting
when it will occur rather than reacting to it. Many significant
modifications have been adopted in RED, such as Adaptive
RED, Gentle RED, BLUE, Random Early Marking (REM),
and Double Slope RED (DSRED), in order to improve its
performance. Most of these studies mainly focus on when
and how to drop the arriving packets and to reduce RED
sensitivity to parameter settings. Explored solutions rely on
static thresholds which can be restrictive when they operate
with sources.

Note that although the DAQM introduced in this work
is greatly inspired by the paradigm of AQM, it behaves
differently. Detailed explanations on the basic properties of
DAQM are provided in the next section.

III. ARCHITECTURE OF DAQM FOR HPC PLATFORMS

A. Basic Queueing Models for AQM

A queueing model is composed of three basic components:
arrival process, queue, and service process, as illustrated in
Fig. 1. These three components interact with each other and
the information changes of each part will affect the behaviour
of the others. For the arrival process of tasks, we often make
assumptions that the interarrival times are independent and
have an identical distribution, such as Poisson distribution.
Tasks can get into queues one by one or in batches, which will
vary in different applications. The behaviour of assigned tasks
depends mainly on the nature of the associated operations.
Some tasks may be impatient and leave after a while, such
as the calls in telephone systems. Some tasks may wait in
a line to be processed by the server. The queues are the
core of queueing systems, which can be divided into infinite
queues and finite queues. When the tasks go through the
queues, they should all comply with some queueing rules
that determine how tasks are processed. A queueing rule
determines which tasks can get processed and which tasks can
be dropped by the queue. Queueing rules vary in the applied
models, such as first-come-first-served [37], last-come-first-
served [38], priority service order [39], random service order
[40], etc. The emphasis of the present work is put on the
control theory-based approaches [35],[41].

There are two basic types of queueing systems: queueing
systems with exponential arrivals and queueing systems with
non-exponential arrival distributions. In order to study the
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Fig. 1. Schematics of AQM for task flow management

transient performance of systems with queues of processing

tasks, some approximate models have been developed, such

as diffusion models [42], fluid flow models [43], and service

time convolution. The flow conservation principle can be

applied in single queue systems to describe the time-dependent

queue dynamics. Let x(t) be the average queue length and

ẋ(t) = dx(t)/dt denote the rate of change of the average

queue length. Then, by conservation law, the rate of change

of the average queue length in the system is equal to the

difference between the average arrival and departure rates.

The fluid dynamic queueing model is extensively used in

network systems analysis and design (see, e.g., [42],[44]). It

has been shown that this model matches very well many real-

life situations [45], [46].

The approach of regulating queue lengths based on a fluid

model is motivated by two main reasons: first, it is used

to randomly compute periods of filling and emptying, and

second, it relies on continuous incoming rates, unlike M/M/1

or M/G/1 queues based on discrete arrivals. As the traffic

flow is composed of a huge number of particles, a sufficiently

long discrete incoming traffic flow can be considered as a

continuous process, which suits to the network architectures,

as well as network traffic control. In the AQM model, it is

common to assume that the incoming flow will be very large

over a long time, which means that the queue may overflow.

Thus, in order to make a network work smoothly, controllers

in AQM are used to drop tasks waiting in queues, which may

result in failure of running applications due to dependency. In

our work, dropping tasks is not allowed and hence AQM is

not suitable for our context.

In a queue model, both the time between successive ar-

rivals and the service time are exponentially distributed. This

model can be expressed by ordinary differential equations. The

M/M/1 queue is one of the simplest models [30]. In an M/M/1

queue, the interarrivals are described by a Poisson process with

mean 1/μa, the service times are exponentially distributed

with a mean value 1/μs, and there is a single server. Tasks

are served in the order of arrival. The queueing dynamics are

given by

ẋ(t) = − x(t)

1 + x(t)
C(t) + λ(t), (1)

where λ(t) denotes the incoming traffic rate, and C(t) is the

service rate.

Remark III.1. In the present work, the M/M/1 queue model
is used in queueing control design and the validation of
the proposed load balancing scheme. However, other queue
models (for instance M/D/1,M/G/1) can also be applied and
will yield similar results.

B. Decentralized Active Queue Management

In the schemes based on AQM for network congestion

control, the queues to be controlled are located at the bot-

tleneck points, such as routers and switches. Moreover, it is

commonly assumed that packet dropping is allowed and that

the processing speed of the servers is known, or even can be

controlled. However, this is not the situation for the considered

workload balancing problems in HPC platforms. Specifically,

this is because:

• The direction of information flows is reversed compared

to the common network traffic control problems. In the

considered computing platform, task flows enter into the

master node and then the tasks are dispatched to multiple

servers (or processing nodes). Therefore, queue control at

the master node level becomes gradually impractical for

larger and larger systems.

• Each sever can contain multiple processors (or cores)

managed by local schedulers. Indeed, the processing rate

of a node is time-varying and is hard to control.

• Task forwarding must be performed in a lossless manner,

which means that discarding tasks is not allowed.

xi

x
x

x

Fig. 2. Architecture of a System with Decentralized Active Queue Manage-
ment

In order to develop suitable solutions for workload con-

trol in computing clusters, we introduce a novel concept,

called decentralized active queue management (DAQM). Fig. 2

shows the schematic diagram of a DAQM system in the

context of workload control in a computing cluster. In the

paradigm of DAQM, each computing node manages a local

queue. As in decentralized control schemes, there is a control

component at the master node, which is used to maintain the

queue length around a desired value. In order to simplify the

implementation of task allocation strategy at the master node, a

proportional distribution mechanism is applied. In this way, the

task dispatcher at the master node assigns tasks proportionally

according to the desired queue length of each computing node.

The choice of the target queue length is critical because it
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reflects a compromise between the processing delay and the
efficiency of resource utilization.

IV. DAQM IMPLEMENTATION

In this section, we present an implementation of the DAQM
for workload balancing in a computing cluster. The proposed
scheme consists in a set of local queue controllers and a
coordination controller at the cluster level for utility max-
imization. In the present work, a simple ON-OFF control
scheme is used to achieve a stable queue length regulation
under certain realistic assumptions, which coordinates the
operation of the local queue controllers to achieve a global
optimality, e.g., fair task distribution by minimizing the overall
processing delay and maximizing the resource utilization. Let
x∗ be the desired reference of task distribution. The choice of
x∗ is crucial for the implementation of DAQM to guarantee
that every local queue fairly receives tasks based on the
current utility of its corresponding processing node. In the
next section, we determine the value of x∗ by the method of
dual decomposition.

A. Utility Maximization-based Coordination Control: Compu-
tation of x∗

In the queue control scheme, the choice of the desired queue
lengths has an important influence on systems performance.
A small value of x∗ indicates that a small processing delay
is expected, while the utilization of the server may be low.
Whereas, a high value of x∗ leads to a high utilization
efficiency, but the system may experience important delays.
Moreover, in the environment of cluster computing, the work-
loads have to be fairly distributed over all the computing nodes
to reduce the overall processing delay while maximizing the
utilization of the cluster. To this end, the coordination control
at the cluster level is formulated as a utility maximization
problem. In this context, we consider the following utility
function:

U(x) =
∑
xi∈Rn

Ui(xi), (2)

where x = {x1, x2, ..., xn} is an allocation vector and xi is the
reference length of the ith queue. We choose a utility function
of the following form:

Ui(xi) = 1−
(
1− xi

ximax

)wi

, 0 < xi ≤ ximax, 1 < wi, (3)

where ximax is the maximum queue size associated with
processing node i. This utility function implies that when xi
becomes very close to ximax, the value of its utility function
tends to 1, corresponding to the highest utilization of the
ith node. Let Xtotal be the maximum number of tasks on
average in a task pool, then the considered utility maximization
problem can be expressed as

maximize{x∈Rn} U(x)

subject to : xi ∈ [0, ximax],∀i ∈ {1, . . . , n},
n∑
i=1

xi ≤ Xtotal.

(4)

To handle the coupling constraints in (4), we resort to
the method of dual decomposition based on Lagrange relax-
ation [47]. Let us introduce the Lagrange function

L(x, µ) = U(x) + µ

(
Xtotal −

n∑
i=1

xi

)
=

n∑
i

Li(xi, µ) + µXtotal,

(5)

where µ is the Lagrange multiplier and Li = Ui − µxi. The
problem (4) can be reformulated as

maximize
n∑
i

Li(xi, µ) + µXtotal

subject to xi ∈ [0, ximax],∀i = 1, ..., n.

(6)

Then, the prime optimum of the original problem is given
by

x∗i (µ) = argmax
xi∈[0,xi

max]

(Li(xi, µ)) , (7)

which is unique due to the strict concavity of Ui. Moreover,
considering the utility function Ui given in (3), the optimal
solution for (7) is given by

x∗i (µ) =max

[
0, ximax

(
1− µximax

wi

) 1
wi−1

]
, (8)

which is the explicit optimal value.
The master dual problem is given by

minimize g(µ) =
n∑
i=1

gi(µ) + µXtotal

subject to µ ≥ 0,

(9)

where gi = Li(x
∗
i , µ), i ∈ {1, . . . , n}, are the dual func-

tions [47]. In order to obtain the primal solution, we apply the
gradient method to (9), which gives

µ(k + 1) =

[
µ(k)− αk

(
Xtotal −

n∑
i=1

x∗i (µ(k))

)]+
, (10)

where k is the iteration index, αk is a sufficiently small
positive step-size, and [·]+ denotes the projection onto the non-
negative part.

B. Local Queue Control

In the present work, we consider first a local queueing
control based on the fluid model given in (1). Furthermore,
we impose the following assumption:

Assumption IV.1. Assume that λ(t) ∈ [0, λmax] and C(t) ∈
(0, Cmax], where λmax is the maximum allowed input task flow
rate and Cmax is the maximum service rate of the processing
node. Furthermore, for every fixed t0 > 0, it holds

x∗ <

∫ ∞
t0

λ(τ) dτ <

∫ ∞
t0

C(τ) dτ <∞, (11)

where x∗ is the desired queue length.
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This assumption states essentially that the input flow is

bounded, and the server has a limited capacity while it

will never be completely idle. Specifically, the assumption

x∗ <
∫∞
t0

λ(τ) dτ is a persistent excitation requirement. Under

this condition, the queue length x(t) will reach the reference

x∗ in finite-time if x(t0) < x∗ [46]. This implies that the

server is sufficiently utilized in the long run. The assumption∫∞
t0

λ(τ) dτ <
∫∞
t0

C(τ) dτ is a lossless condition, which can

guarantee the aim that no task will be discarded in a queue

may be achievable. In addition, as limx→∞ x
x+1C=C, if the

queue length become very large, the derivative of queue length

will turn into a negative value, which implies that the queue

length will decrease. Thus, this condition ensures also that the

queue length will never grow to infinity.

Note that if
∫∞
t0

λ(τ) dτ < x∗ and x(t0) < x∗, then all the

input tasks will pass through the queue. The queue length will

stay around x = λ
C−λ

, where C and λ are, respectively, the

average server rate and the average input task flow rate. This

means that the queueing control has no effect. Meanwhile, it

indicates that the server might not be sufficiently utilized.

For the purpose of lossless queueing control, we developed

a control scheme shown in Fig. 3. The following ON-OFF

scheme is used in this controller:

u =

{
1, x− x∗ ≤ 0,

0, x− x∗ > 0.
(12)

Note that, to achieve a lossless queue length regulation, the

tasks will be routed back to the input buffer when u = 0.
When u = 1, the input buffer will be flushed out and all

the tasks will be forwarded to the queue. The stability of this

control scheme is assessed below.

ʃ
ʃ

Fig. 3. Schematics of the ON-OFF queueing control system.

Theorem IV.1. Consider a queueing system governed by (1)

satisfying the conditions specified in Assumption IV.1. The
queuing length of such a system with the control given in (12)

converges to the reference queue length x∗ as t→∞ or has
x∗ as its upper bound.

Proof. When x ≥ x∗, let V = 1
2 (x− x∗)2 be a Lyapunov

candidate function. Noting that in this case u = 0, the time-

derivative of V along the trajectory of the controlled system

is given by

V̇ (t) =
xx∗ − x2

1 + x
C ≤ 0.

By virtue of Barbalat’s lemma [48], we can conclude that |x−
x∗| → 0 as t→∞.

When x < x∗, the controller u = 1. The controlled system

becomes:

ẋ = − x

1 + x
C + λ. (13)

We apply the Comparison principle [48] to estimate x. Let us
first construct a new system

ẏ = −C + λ, y(t0) = x(t0), (14)

where t0 represents the initial time and y(t0) and x(t0) are

the initial values of y and x, respectively. Let v = x − y.
According to (13) and (14), we can obtain

v̇ = C − x

1 + x
C ≥ 0, v(t0) = 0. (15)

Therefore, x ≥ x(t0)+
∫ t

t0
λ(τ) dτ−∫ t

t0
C(τ) dτ . Based on the

condition (11), there exists T such that x(T ) = x∗, otherwise

x(t) < x∗, for t > t0. In the latter situation, based on the first

part of the proof, we have |x− x∗| → 0 as t→∞.

V. CONVERGENCE ANALYSIS AND ALGORITHM FOR

UTILITY MAXIMIZATION

In section (IV), an optimal solution to the problem (4), x∗
i ,

has been obtained. Specifically, x∗
i can be computed through

an iterative process that updates the Lagrange multiplier μ
via (10). Furthermore, μ is obtained by solving the master

dual problem (9). In this section, we first prove that the optimal

solution of (9) can be approximated with a solution in finite

iterations by applying the analysis technique used in [47], [49].

Then, two types of step size rules are presented so as to obtain

x∗
i efficiently and explicitly within finite recursion steps.

Define

g
(k)
best = min{g(μ(1)), ..., g(μ(k))}, (16)

where g
(k)
best is the best objective value found in k iterations.

Since g
(k)
best is decreasing and positive, it admits a limit.

Suppose that μ∗ is an optimal point to the problem (9). The

desired objective is to approximate the optimal value g(μ∗)
by g

(k)
best, i.e, limk �→∞ g

(k)
best − g(μ∗) → 0. We begin with

estimating the distance between μ(k + 1) and μ∗,

|μ(k + 1)− μ∗|2

=

∣∣∣∣∣∣
[
μ(k)− αk(Xtotal −

n∑
i=1

x∗
i (μ(k)))

]+

− μ∗

∣∣∣∣∣∣
2

=|μ(k)− μ∗|2 − 2αk

(
Xtotal −

n∑
i=1

x∗
i (μ(k))

)
(μ(k)− μ∗)

+ α2
k

(
Xtotal −

n∑
i=1

x∗
i (μ(k))

)2

≤|μ(k)− μ∗|2 − 2αk (g(μ(k))− g(μ∗))

+ α2
k

(
Xtotal −

n∑
i=1

x∗
i (μ(k))

)2

.
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Applying the above inequality recursively, we obtain

|µ(k + 1)− µ∗|2 ≤ |µ(1)− µ∗|2 − 2

k∑
i=1

αi (g(µ(i))− g(µ∗))

+

k∑
j=1

α2
j

(
Xtotal −

n∑
i=1

x∗i (µ(j))

)2

.

As |µ(k + 1)− µ∗|2 ≥ 0, it yields

2
k∑
i=1

αi (g(µ(i))−g(µ∗))

≤ |µ(1)− µ∗|2 +
k∑
j=1

α2
j

(
Xtotal−

n∑
i=1

x∗i (µ(j))

)2

.

(17)

By the inequality (17), we can obtain the estimate of g(k)best −
g(µ∗):

g
(k)
best−g(µ

∗) ≤
|µ(1)−µ∗|2+

∑k
j=1 α

2
j (Xtotal−

∑n
i=1 x

∗
i (µ(j)))

2

2
∑k

i=1 αi

≤
|µ(1)−µ∗|2+

∑k
j=1 α

2
j (Xtotal+

∑n
i=1 x

i
max)

2

2
∑k

i=1 αi

.

In order to verify that g(k)best can approximate the optimal
value g(µ∗), two step size rules are considered.

Constant step size. If αk = h is a constant, independent
of k, then we obtain

g
(k)
best − g(µ

∗) ≤
|µ(1)− µ∗|2 + h2k(Xtotal +

∑n
i=1 x

i
max)

2

2hk
.

For a sufficiently large k, g(k)best − g(µ∗) ≤ h(Xtotal +∑n
i=1 x

i
max)

2. We can choose a very small h to approximate
the optimal value g(µ∗).

Square summable but not summable. If the step size
satisfies

∞∑
k=1

α2
k <∞,

∞∑
k=1

αk =∞. (18)

we can obtain the following estimate:

g
(k)
best−g(µ

∗) ≤
|µ(1)−µ∗|2+

∑k
i=1 α

2
i (Xtotal+

∑n
i=1 x

i
max)

2

2
∑k
i=1 αi

.

Hence, when k tends to infinity, g(k)best− g(µ∗) converges to 0.

Based on the above analysis of the two cases, g(k)best can con-
verge to g(µ∗) when k tends to∞. Thus, we can approximate
the optimal problem (4) based on g

(k)
best. An implementation

of the considered utility maximization problem is given by
Algorithm 1.

Algorithm 1 Utility Maximization
Require: queue capacities (ximax for all i = 1, ..., n), αk a

sequence of steps;
Ensure: 0 ≤ xi ≤ ximax, µ > 0, µbest = µ;

1: Set k = 0, and µ(1) equals to some nonnegative value
2: for all k = 1 : n do
3: for all i = 1 : n do
4: compute x∗i (µ) ∈ argmaxxi∈[0,xi

max]
(Li(xi, µ))

5: end for
6: µ ∈ argmin

∑n
i=1 gi(µ) + µXtotal

7: µ← [µ− αk(Xtotal −
∑n
i=1 x

∗
i (µ))]

+

8: end for

VI. PERFORMANCE EVALUATION

In this section, the performance of the queueing control
system developed in Section IV is evaluated through numerical
simulations with Matlab. In Section VI-A, a single queueing
control is validated by using a randomly distributed input and
a sine wave input. In Section VI-B, the DAQM control is
evaluated with a varying input.

A. Simulation of Single Queueing Control

Consider a queue with a processing capacity of C = 20,
and suppose that the input task flow is randomly distributed
as shown in Fig. 4(a). Note that in the simulation, all the
variables and parameters are in normalized coordinates. It
can be seen from Fig. 4(b) that an uncontrolled queue tends
to overflow very quickly. Therefore, adequate controls are
required to make the system stable. In this simulation, the
reference queue lengths of the two servers are set to x∗ = 50
and x∗ = 30, respectively. As shown in Fig. 4(c), by using
the proposed ON-OFF control mechanism, the queue length
can be stabilized around the desired level or be kept below the
reference queue length in both cases.

Furthermore, a sine wave input flow rate is used to test the
controlled queue as shown in Fig. 5(a). The simulation result
given in Fig. 5(c) for a setup with C = 40 shows that the
ON-OFF control mechanism works well. For both references,
x∗ = 20 and x∗ = 40, the queue length can be stabilized
around the desired level.

B. Validation of the DAQM Control Scheme

As presented in the previous sections, the maximum queue
size of a processing node corresponds to the processing capac-
ity. Given an admissible delay, ximax can be fixed according
to its processing capacity, e.g., the processing speed and the
bus width (32-bit or 64-bit). Considering a HPC platform
consisting of multiple processing nodes, a design preference
can be introduced to allocate the resources and maximize the
system utilization. In general, nodes with higher processing
rates can be assigned larger queue length references to achieve
a better resource utilization.

Suppose that there are three computing nodes in one cluster.
We then consider a scenario in which the total input varies
with time, leading to the reconfiguration of the reference queue
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(a)

(b)

(c)

Fig. 4. Uniform random workload: (a) input flow rate; (b) uncontrolled queue;
(c) Controlled queue: C = 20; Server 1: x∗ = 50; Server 2: x∗ = 30.

length of each node. Fig. 6 shows a simulation result, in which
the reference queue lengths of three nodes are reported. In this
simulation, it is assumed that the processing capacity of each
node is constant. In addition, the node with a larger maximum
queue size is assigned with more tasks to maximize resource
utilization.

For a given configuration, the reference queue length for
each processing node can be obtained through iterations as
shown in Fig. 7(a). Finally, the iterative solution will converge
and simultaneously the Lagrange multiplier tends to zero
as shown in Fig. 7(b). In this case, after 2000 iterations,
the reference queue length for each processing node can be
obtained.

It can be seen from Fig. 6(a) that resource allocation is
reconfigured according to the updated average input in total.
Accordingly, the flow dispatched to each node is adjusted.
As shown in Fig. 6(b), the queue length of each node is

(a)

(b)

(c)

Fig. 5. Sine wave workload: (a) input flow rate; (b) uncontrolled queue; (c)
controlled queue: C = 40; Server 1: x∗ = 20; Server 2: x∗ = 40.

stabilized around or blew the reference queue length. Finally,
the input workload and the input flow of each node are given
in Fig. 8. The simulation results show that the workloads are
fairly distributed over the three nodes and the queue lengths
are all kept at an adequate level.

It can be observed from the above simulations that the
queue length can be stabilized around the desired level when
the task input or the desired reference varies. The control
scheme can quickly adapt the change of configurations. Since
the processing capacity does not change significantly in a
short time, it is assumed to be constant in the simulation. In
this case, any significant processing capacity change can be
treated as a system reconfiguration. Therefore, the simulation
results still hold. Furthermore, by taking advantage of the
decentralized architecture, the system can be scaled easily by
adding or removing processing nodes.
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(a)

(b)

Fig. 6. Queuing control with variable reference queue length: (a) Xtotal

subject to x1
max = 20, x2

max = 60, x3
max = 45; (b) controlled queue

lengths.

VII. CONCLUSION

This work presented a DAQM-based control scheme, con-
sisting in local queueing control and coordination control
for workload balancing in the context of HPC platforms.
An implementation of a DAQM-based control system was
developed. It was shown that it can achieve a fair load
balancing by controlling the queue lengths and dynamically
adjusting the reference queue length for each node. Finally,
the performance of the control scheme has been evaluated by
numerical simulations, and the obtained results confirm the
validity and feasibility of the proposed strategy.

In the present work, the same queueing-based control mech-
anism is used in all processing nodes. However, in a more
generic setting, each processing node may have its own control
model [50]. In our future work, the coordination of different
control models will be conducted.
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