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RÉSUMÉ 

 Ce mémoire de maîtrise présente une solution pour améliorer la sécurité des systèmes de 

contrôle de trafic aérien. Cette solution prend la forme d’un détecteur d’anomalies qui va déceler 

les manipulations malicieuses de données. Par les mêmes mécanismes, ce détecteur peut aussi 

détecter les situations d’urgences et les violations des lois du trafic aérien. Les systèmes de contrôle 

de trafic aérien sont composés de plusieurs capteurs qui envoient des données aux stations de travail 

des contrôleurs aérien sur un réseau IP en utilisant un protocole de partage de données en temps 

réel nommé Data Distribution Service. Des données malicieuses comme de fausses positions 

d’avions peuvent être insérées dans le trafic du réseau en compromettant une machine connectée à 

celui-ci ou en émettant des signaux contenant les données falsifiées qui seront captées et transmises 

sur le réseau par les capteurs. Actuellement, une fois que ces données sont sur le réseau, les 

systèmes ne disposent pas de mécanismes pour différencier les données malicieuses des vraies 

données et les traiteront de la même façon. La présence de données falsifiées sur le réseau peut 

causer de la confusion qui peut mener à des situations dangereuses incluant une sécurité aérienne 

réduite. 

 Nous avons évalué l’impact des différentes attaques sur les systèmes de contrôle de trafic 

aérien en construisant un modèle de menaces tout en considérant les procédures d’urgence déjà en 

place dans le monde de l’aviation. Nous avons conclu qu’il y a plusieurs façons selon lesquelles 

un adversaire peut injecter des données malicieuses dans les systèmes. Il peut le faire soit en 

injectant les données directement dans le réseau ou en utilisant une radio logicielle pour émettre 

des données malicieuses sur les fréquences utilisées par les capteurs qu’ils les transmettent eux-

mêmes sur le réseau. Ces données peuvent induire les contrôleurs de trafic aérien en erreur et leur 

faire prendre une décision dangereuse. Ce modèle de menaces a servi dans l’ébauche des méthodes 

de détection. 

 Pour contrer ces menaces, nous avons conçu un système de détection qui utilise les 

ontologies pour entreposer les données et un moteur de requêtes ontologiques qui s’occupe des 

requêtes de détection. Utiliser les ontologies nous a permis d’ajouter de la sémantique dans les 

données, ce qui facilita la création de requêtes de détection dans le langage de requêtes SPARQL. 

Le système de détection utilise un tableau d’équivalences entre les structures des données circulant 

sur le réseau et les concepts ontologiques. Le système de détection est installé sur des machines 

dédiées et envoie des alertes lorsqu’une requête détecte une anomalie. Nous avons conçu le modèle 

ontologique en nous basant sur les hypothèses à propos des données qui circulent dans les systèmes 
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de contrôle de trafic aérien. Concevoir un modèle ontologique qui est assez précis pour pouvoir 

faire une détection appropriée, mais aussi assez générique pour permettre l’ajout de nouvelles 

capacités de détection sans trop de problèmes s’est avéré être un défi. Nous avons eu des difficultés 

à ajouter de nouvelles requêtes de détection sans devoir ajouter des concepts au modèle. 

 Pour tester notre solution, nous avons conçu et construit un simulateur de système de 

contrôle de trafic aérien qui se veut une imitation de l’architecture et du comportement d’un vrai 

système de contrôle de trafic aérien. Le simulateur simule le trafic aérien et l’activité réseau qui en 

découlerait dans un vrai système. Le but est d’avoir une plateforme pour reproduire et démontrer 

l’impact des attaques identifiées dans notre modèle de menaces et pour éventuellement tester notre 

système de détection. Nous avons incorporé des logiciels gratuits utilisés dans les communautés 

d’amateurs de simulation de vol en ligne pour reproduire les composantes physiques d’un vrai 

système de contrôle de trafic aérien et atteindre les fonctionnalités de base. Il y a plusieurs 

fonctionnalités avancées qui ajouteraient au réalisme de la simulation comme la météo que nous 

n’avons pas pu implémenter. 
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ABSTRACT 

This Master’s thesis introduces an anomaly detection solution to increase the security of 

Air Traffic Control Systems against malicious data manipulation threats. At the same time, this 

detection system can detect emergencies and air traffic rules violations. Air Traffic Control 

Systems are made of multiple sensors sending data to air traffic controller workstations over an IP 

network using a publish-subscribe protocol, Data Distribution Service. Malicious data can be 

inserted into this network by either compromising a machine on the network, or by tricking the 

sensors into emitting falsified data. Once into the network, the system currently cannot distinguish 

malicious data from real one and will treat it as such, potentially causing dangerous situations and 

general confusion that could lead to air traffic safety being compromised. 

We quantify the impact different attacks have on the system by building a threat model 

while considering existing safety procedures already in place in the aviation world. We found that 

there are multiple ways an attacker can inject malicious data into the system either directly by 

injecting false data into the network or indirectly by sending spoofed broadcasts that will be picked 

up by the ground equipment and in turn injected into the network. These data manipulations can 

induce an air traffic controller into making a wrong decision. This threat model also gives us 

direction on how to detect potential threats. 

 To counter these threats, we design a detection solution using ontologies to store data and 

a query engine to interact with it. By using ontologies, we can add semantics to the data and 

facilitate the creation of detection queries in the SPARQL query language. It uses a translation 

table to convert Data Distribution Service data structures into ontological concepts. The detection 

engine runs on dedicated machines and sends alerts to the concerned computers if a query detects 

an anomaly. The ontological model was built using the assumptions we made about the data pieces 

circulating on the Air Traffic Control System’s network. Designing an ontology that is specific 

enough to be useful for detection, but also generic enough to easily add new detection capabilities 

proved to be a challenge. We found that we often needed to add new concepts to the ontology when 

we designed new queries. 

 To test our solution, we designed and built an Air Traffic Control System Simulator to 

replicate the architecture and behaviour of a real-life Air Traffic Control System. This simulator 

models air traffic and the resulting network activity that would incur in an actual system. The goal 

behind this simulator is to have a platform to reproduce and demonstrate the impacts of the attacks 
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described in the threat model, and to eventually test the detection solution. We used free software 

from the aviation gaming industry to reproduce the physical components of a real system and 

achieved basic functionalities. However, there are advanced features that could be added to our 

simulator to make the air traffic simulation more realistic such as weather. 
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CHAPTER 1 INTRODUCTION 

1.1 Modern Air Traffic Control Systems (ATCS) 

Air travel has become essential to our way of life and increasingly so. The demand, measured 

by multiplying the number of passengers with the distance they travelled, grew 5.8 % in 2014 

compared to 2013, from 5 806 222 million kilometres to 6 144 510 million kilometres, and 57% 

compared to 2005, from 3 913 613 million, according to the International Civil Aviation 

Organisation (ICAO) (International Civil Aviation Organisation, 2016). The organization also 

indicates that aircraft freight and mail traffic is growing; the combined freight and mail volume 

went up 5% in 2014 compared to 2013 and 26.4% compared to 2005. 

To deal with the increase in air transportation and costs of radar equipment maintenance, the 

Federal Aviation Administration (FAA) created the Next Generation Air Transportation System 

(NextGen) program in 2004 (Federal Aviation Administration, 2017). NextGen is an air traffic 

control system (ATCS) that uses a host of new Internet Protocol (IP) based technologies. The 

transition from the previous ATCS to NextGen has started in 2011 and the FAA aims to equip all 

American airports and control centers with the new system before 2019. The FAA has already 

measured the benefits of this new ATCS: helicopter flights in the Gulf of Mexico are on average 

14 nautical miles shorter and use 14 gallons of fuel less per flight on average and more low visibility 

flights can take-off (Federal Aviation Agency, 2014). The FAA estimates that NextGen will save 

14.5 billion USD in fuel, 400 million USD in reduction of carbon dioxide emissions, 2 billion USD 

in FAA efficiency and 37.1 billion in crew reductions and maintenance costs through 2030 (Federal 

Aviation Agency, n.d.). 

Air traffic control systems are essential tools to monitor air traffic. The goal of these systems 

is to enable air traffic controllers to make the best decision for a given situation by providing the 

most accurate information about air traffic and weather conditions. They are a made of a 

continually expanding collection of equipment pieces and technologies that cover various 

functions. The most basic function is voice communication between the controller and the pilot, 

which is covered by very high frequency (VHF) radio broadcasts. A very important part of ATCS 

is air traffic position acquisition. This is done through various sensors that range from the basic 

echolocation with radio waves of the primary and secondary surveillance radar (PSR and SSR, 

respectively), to Automatic Dependent Surveillance – Broadcast (ADS-B), a packet-based data 
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transfer protocol allowing aircraft to self-report their position. These sensors send data to the air 

traffic controller (ATC) workstation which in turn displays it on a computer screen to the controller. 

These displays show, among other things, aircraft positions, identification and tracks, i.e. a list of 

their previous positions. The more advanced ones show additional information like live weather. 

Flight plans, which contain flight details such as itinerary and departure and takeoff time as 

declared by the pilot before the actual flight, are stored in a flight plan database. This database can 

be queried by controllers to get a particular aircraft’s flight plan information or to update its flight 

plan. Air traffic control systems also keep data about current and forecasted weather. In Canada, 

data concerning current weather and weather forecasts come from Environment and Climate 

Change Canada, a governmental department that, among other things, measures weather conditions 

all across Canada. All of these components are typically connected together through an IP network 

that links the sensors, the flight plan database, and the air traffic controller stations. Due to the real-

time nature of this data exchange requirements, ATCS do not use standard TCP or typical 

application-layer Internet protocols such as HTTP or FTP. Instead, they use specialized higher-

level data transfer protocols such as the Data Distribution Service (DDS) (Object Management 

Group) communication protocol to share data with other members of the network. One of the main 

features of DDS is the concept of data topics which are predetermined data structures that network 

members use to send or receive information. The process of sending information is called 

publishing and only the members who are subscribed to a topic will receive information about it. 

1.2 Security and safety issues with ATCS 

ATCS are critical to air traffic safety and attacks against them could have serious 

consequences. Air traffic controllers and pilots rely on the accuracy of the data gathered by the 

ATCS sensors and data anomalies or errors can cause them to make the wrong decision, which 

could lead to accidents. If an aircraft appears at a different position on the radar screen than in 

reality, controllers may direct a nearby aircraft to change course or altitude which can result in a 

near-miss or a collision with the first aircraft. This could be caused by spoofed or jammed GPS 

signals, spoofed position reports, or cyber attack on the ATCS. The ATCS displays could be 

flooded with false aircraft positions or the radar signal could be jammed preventing them from 

being displayed, effectively shutting down the control center for the duration of the attack. While 

there are procedures already in place to address similar situations, the increased responsibilities of 

the backup control centers could lead to potentially dangerous scenarios, flight delays or 
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cancellations which would cost a lot of money to airlines. Repeated attacks could cause aviation 

workers to eventually lose trust in the new technologies. 

We focus our attention on attacks that do not aim to shut down or otherwise alter the behavior 

of the computer systems behind the ATCS, but rather make it unreliable and unusable by inserting 

false data into it. In other words, we concentrate on attacks on the integrity of the data and not the 

integrity of the systems. 

Altering data on the ATCS can be done by compromising a computer on the internal network 

and publishing false data onto it which will be picked up along with the real data. Many data 

exchange protocols such as DDS do not have integrated authentication mechanisms, which makes 

it possible for the attacker to do this from any machine on the IP network. Finally, even if 

authentication mechanisms are put in place, an attacker could compromise the machine that is a 

DDS publisher of sensor-related data topics, e.g. radar data. 

The introduction of ADS-B presents a particularly significant security challenge. Unlike older 

surveillance technologies such as radar, it depends on aircraft to create and send position reports. 

It is also the only one where the aircraft sends data without prior interrogation by ground 

surveillance equipment. Since ADS-B reports do not include any authentication information either, 

it is possible for anyone to create and send spoofed ADS-B position reports by simply transmitting 

an adequately formatted packet on the frequency used by this technology (1090 MHz), for example 

by using cheap, readily available software-defined radios (SDR). The spoofed broadcast ADS-B 

signal will be picked up by aircraft and ground stations alike. These spoofed reports would then be 

injected into the ATCS, potentially leading to wrong and disastrous decision making by air traffic 

controllers and pilots. What is particularly insidious in this scenario is that it does not require 

compromising any machines on the ATCS and would be especially hard to detect using traditional 

computer security techniques. Finally, since the legitimate ADS-B reports are not encrypted and 

broadcast, anyone with an adequate receiver can have a real-time view of aircraft positions, which 

represents itself a problem in terms of privacy and physical threats to aircraft.  

Due to the unusual nature of these attacks, traditional computer security techniques like 

firewalls, antiviruses or intrusion detection systems will be less effective. These techniques are 

designed to enhance the security of the computers themselves, and detect attack vectors related to 

attacks on generic computer systems, and not specifically computers used in ATCS. Hence, it 

becomes necessary to design detection solutions specific to ATCS that could detect such 
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manipulations of data, whether at the source (e.g. fake broadcast ADS-B reports) or on the network 

(e.g. compromise and manipulation of computers within the ATCS network).  

The need for adequate detection technology for ATCS goes beyond the possibility of direct 

malicious attack against them. There are several situations in aviation, not necessarily involving 

malicious intent, that require prompt identification and reaction by pilots and controllers alike. 

Currently, pilots and controllers detect and handle a variety of such scenarios such as fuel 

emergencies, approaches under weather minima, and overdue aircraft. With increasing levels of 

traffic within the same airspace, it becomes necessary to have automated systems that can help 

controllers detect such situations ahead of time or quickly as they develop. While there are some 

automated systems that detect and raise alarms in more critical situations such as separation 

conflicts between aircraft, there are many other situations that are only being detected and handled 

manually by controllers and for which an automated detection system would be useful and could 

improve safety and efficiency. For example, an alert system could be built to predict fuel 

emergencies by tracking fuel levels based on initial fuel levels declared in flight plans, nominal 

aircraft performance and in-flight information such as weather, route changes, etc. which would 

allow controllers to better predict and handle such situations by making changes to the route or 

giving adequate priority to certain aircraft. By correlating predicted aircraft trajectories with 

weather information, congestion at airports with adverse weather conditions could be identified 

and resolved earlier, in order to help alleviate delays and predict potentially unsafe situations.  

As previously stated, traditional computer security approaches are inadequate to detect 

malicious data manipulation scenarios, in part because some of them would not require 

manipulation of computer systems, such as ADS-B report spoofing. The same can be said of the 

detection of non-malicious potentially dangerous situations. On the other hand, human controllers 

do routinely identify such situations and could potentially, with enough time and information, 

detect even some of the more insidious data spoofing scenarios. What allows them to do so is their 

high-level knowledge of air traffic control, usual traffic patterns, and other information such as 

aircraft performance, weather, etc. It thus becomes clear that an automated detector must be able 

to represent and reason on the same high-level abstract concepts that an air traffic controller 

considers when making these decisions.  

This is why we propose the use of ontologies as the basis for modelling and construction of 

such detection solutions. Ontologies are knowledge representation technique that allows humans 
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to represent concepts and the relationship between them in a manner that is understandable by 

machines. Ontological databases can be used to store and query data about the represented 

concepts, and allows machines to make deductions about these concepts and their instances 

(examples of these concepts) that are in the database. Hence, our proposal is to construct an 

ontological model of relevant concepts in Air Traffic Control, and populate an ontological database 

with real-time data about air traffic, that a machine-based automated process can leverage to reason 

and make deductions about malicious data manipulation and potentially dangerous scenarios. 

1.3 Research objectives 

The goal of this research project is to propose a method for detecting threats to Air Traffic 

Control, including malicious manipulation of data and potentially dangerous scenarios in Air 

Traffic Control Systems that are not necessarily malicious in nature. 

Much has been said about the threat that ADS-B spoofing and other malicious manipulations 

of ATCS represent to ATC and aviation safety. On the one hand, it is easy to imagine doomsday 

scenarios in the aviation domain where minimal failures can lead to catastrophic consequences. On 

the other, aviation in general and ATC in particular incorporates many fail-safe procedures and 

practices put in place to improve safety in many adverse situations. Nonetheless, there is a 

difference between safety, where the objective is to protect against accidents and equipment failures 

vs. security where the objective is to protect against scenarios driven by a determined and capable 

malicious adversary. While aviation has been traditionally focused on the former, the advent of 

airborne terrorism in the last few decades has increased security awareness in aviation professionals 

and organizations. However, the threats that have been considered are mostly physical in nature, 

e.g. hijacking and aircraft bombing. Accordingly, it becomes important to evaluate the actual risk 

related to the kinds of cyber attacks targeting the integrity of the data in ATCS we have described 

above, which leads to our first research question: 

1. What are the actual probability and impact of attacks on the integrity of 

ATCS data through sensor data spoofing or cyber attacks on the ATCS 

network, taking into consideration existing safety and security procedures 

and practices in ATC? 

We have hinted in the last section that detection of malicious manipulations and potentially 

dangerous scenarios requires high-level concepts and reasoning, and further suggested the use of 
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ontologies for the construction of an automated detection system for ATCS. Unfortunately, 

ontological databases are not as widespread as SQL-based relational databases that might be 

present and used in modern ATCS. Furthermore, temporary data items such as aircraft positions 

reports and radar tracks will not necessarily be stored in a persistent database. This poses several 

technical questions on how data-in-motion in an ATCS (such as radar data and weather) and data-

at-rest (such as flight plans) can be integrated into a single ontological system onto which our 

proposed detector can get the necessary information to make its deductions and detections. This 

raises our second research question: 

2. How can an ontological system be viably constructed atop an ATCS, 

integrating both stored information and real-time data obtained from ATC 

sensors, while maintaining adequate speed of detection? 

Verifying the functionality, performance and discrimination of such a detection system for 

ATCS represents in itself a formidable challenge. First of all, the details of the architecture, 

components and software of ATCS are very expensive and closely guarded by their vendors and 

the Air Navigation Service Providers (ANSP) that operate ATC and ATCS for civil aviation 

authorities, partly for commercial reasons, but also for national and aviation security reasons. Thus, 

we needed to propose an alternate approach to evaluate our ATCS detection solution that would 

involve testing against an operational ATCS-like system, while retaining a certain level of realism. 

This requirement has two important parts. First, it would be necessary to reproduce with adequate 

fidelity the Information Technology (IT) infrastructure behind the ATCS in order to reproduce and 

evaluate the performance of the solution and its detection capabilities against traditional cyber 

attacks. Second, we need to reproduce realistic data streams that would be present in a typical 

ATCS and, furthermore, have the ability to measure and demonstrate the real-world consequences 

of such data being manipulated. Finally, we need to be able to reproduce in an efficient and accurate 

manner the various attack scenarios and dangerous situations that we will be evaluating our solution 

against. How to integrate the cyber and physical world aspects of ATCS in a reproducible 

evaluation approach represents an important challenge addressed by our third research question: 

3. How to construct an evaluation platform for ATCS detection solutions that 

has 1) a high level of fidelity of the cyber aspect of the ATCS, 2) reproduces 

and demonstrates real-world physical impact of attacks and dangerous 
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scenarios on ATC, and 3) can easily be used to reproduce results of 

previous evaluations? 

One of the main difficulties and challenges in the use of ontologies is to determine the 

adequate level of detail vs. abstraction. A good balance will allow the ontological model to be 

complete enough to implement the required deduction logic for various situations, while at the 

same time make the construction and maintenance of the ontological model a manageable 

proposition for the domain experts that will be involved in that process. Indeed, a very wide and 

all-encompassing ontology will allow, in our case, the domain expert to easily represent all 

detection rules as interrogations or queries onto the ontological database. However, the process of 

building such an ontology could be unmanageable in terms of time and effort, and, furthermore, 

become too specific to a particular scenario, a particular ANSP organization, or a particular ATCS. 

The difficulties related to this delicate balance between detail and abstraction, specificity and 

flexibility, are at the core of the following fourth and last research question: 

4. How do we build an ontology that is complete enough to address the 

identified attack scenarios, but general and flexible enough to cover 

future, unpredicted scenarios while remaining easily maintainable? 

1.4 Thesis roadmap 

This Master’s thesis introduces an ontology-based data anomaly detection system to address 

malicious and non-malicious threats to air traffic control systems. This solution is based on an 

ontological model of the data generated by an ATCS and ontological queries designed to detect 

anomalies caused by attacks on the system or potentially dangerous situations. We also provide a 

threat model to better guide our detection queries. Finally, we present an architecture for a platform 

that emulates an ATCS in order to test our solution. 

We begin by providing in Chapter 2 background material to familiarize the reader with the 

domain of air traffic control and its related technologies. We also discuss provide a brief description 

of the threats against them and discuss the relative (in)applicability of existing IT security solutions. 

Finally, we provide a description of ontologies and how they have been used in security and 

aviation-like application domains. 

In 0, we describe the concept and architecture for our ontology-based ATCS detection solution. 

We describe in Chapter 4 the air traffic control system simulator (ATCSS) that we designed to 
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demonstrate and evaluate the detection solution we proposed. In Chapter 5, we describe our threat 

model in more details, as well as the details of the ontology and the ontological queries that are the 

core of the detector. Finally, we analyze the design process of the solution and we evaluate the 

architecture of the simulation environment in the conclusions in Chapter 6. 
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CHAPTER 2 A REVIEW OF ATC AND RELATED TECHNOLOGIES 

2.1 Air traffic controllers 

The role of air traffic controllers is to direct air traffic in order to maintain aircraft safety and 

efficiency. They take charge of aircraft at the departure gate and release them only at the arrival 

gate. They are constantly in contact with them in between. An air traffic controller in a given area 

will be assigned a specific frequency will use that frequency to talk to pilots in his area. Over the 

course of a flight, a pilot will talk to multiple controllers. The first controller, named apron, will 

instruct the pilot on his way to the takeoff runway. Then, a series of controllers will take 

responsibility for takeoff instructions and for the area surrounding the airport, namely the tower 

and terminal controller. Once the aircraft is far enough from the departure airport, the control 

responsibility falls unto the regional control centers, called area. Then, a controller is assigned to 

the pilot until the aircraft leaves the control area or approaches the destination airport. If the flight 

crosses an ocean, the pilot will be instructed by a controller called oceanic that take care of oceanic 

routes and time slots. Controllers can, among other things, order an aircraft to change altitude in 

order to respect minimum separation distances with other aircraft or a route change depending on 

weather conditions or traffic density in the aircraft’s projected trajectory. Pilots can also request 

those changes to the controllers, but the latter make the final decision. 

2.2 Air traffic control systems (ATCS) 

Air traffic control systems are at the heart of the civil and commercial aviation infrastructure. 

They are an aggregation of systems and data acquired by different sources and are a critical and 

essential tool for air traffic controllers. Each air navigation service provider (ANSP) owns their 

own; the FAA in the United States has NextGen and NAV CANADA developed and operates the 

Canadian Automated Air Traffic Control System (CAATS), to name a few. These systems receive 

data from a slew of sensors including primary and secondary surveillance radars, ADS-B antennae, 

weather information providers and flight plan databases. In CAATS, data travels through a private 

IP network using the DDS protocol (Real-Time Innovations, 2013), which we talk about in more 

details in section 2.7. 
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2.2.1 Sources of data in ATCS 

2.2.1.1 Primary surveillance radar (PSR) 

The first technology we cover is Primary Surveillance Radar (PSR). The Allied military 

developed it during the Second World War and then adapted it for civil use. These radars send an 

electromagnetic impulse that bounces off aircraft and other physical objects such as birds and 

mountains. When the radars receive the bounced impulse, they compute the distance between 

themselves and the perceived aircraft using the travel time of the impulse. The primary surveillance 

radar can also measure the azimuth of the aircraft by using the angle the radar was facing when it 

received the impulse. The radar then deducts the longitude and latitude of the aircraft using the 

distance and azimuth. However, this surveillance device cannot measure the altitude of an aircraft. 

Primary surveillance radars are autonomous in the sense that they do not need aircraft to carry a 

special instrument to detect them. 

2.2.1.2 Secondary surveillance radar (SSR) 

The Secondary Surveillance Radar (SSR) is a technology that completes the primary 

surveillance radar by providing the missing data needed for an accurate picture of the air traffic. It 

is a by-product of the technological advancements made during the Second World War. Originally, 

the Allied military developed this technology to be able to differentiate enemy aircraft from allied 

ones, something the primary surveillance radar cannot do. Aircraft need to have a transponder to 

communicate with the secondary surveillance radars using radio frequencies. The pilot enters a 

code made of four numbers each ranging from 0 to 7 called SQUAWK on the aircraft's transponder. 

The transponder then broadcasts the code when a secondary surveillance radar interrogates it. This 

code becomes the aircraft's identifier for the duration of its flight. A transponder can also 

communicate with other transponders such as in the Traffic Alert and Collision Avoidance System 

(TCAS). For civil aircraft, transponders can operate using three modes: A, C, or S, chosen by the 

interrogating radar. If a transponder uses mode A, it transmits only the SQUAWK code given by 

the air traffic controller to the pilot. If a secondary surveillance radar interrogates a transponder 

operating under mode C, the transponder transmits the flight level, i.e. the aircraft's altitude by 

increments of 100 feet, as read on the aircraft's altimeter. Due to those advantages, most 

transponders use mode C with mode A. Finally, mode S allows the transponder to transmit a unique 
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24-bit identification number, different from the SQUAWK code given by the air traffic controller, 

as well as a data field of variable length. 

2.2.1.3 Automatic Dependent Surveillance (ADS) 

ADS is a more cost-efficient and precise surveillance technology that can provide better 

coverage in areas where access is difficult like the Hudson Bay and the rest of the Great Canadian 

North. To be able to transmit ADS data, an aircraft needs a GPS receiver and a transponder. The 

transponder is the same one that transmits data to secondary surveillance radars and uses the mode 

S data field to relay the data. The first version of this technology is ADS-C. Under this 

communication protocol, a contract is established between the ADS ground receiver and the 

aircraft's ADS system to specify which data will be transmitted and when. When the data 

transmission conditions meet the conditions specified in the contract, the ADS-C system will 

broadcast the data specified in the contract to a ground station. ADS-B is the most important ADS 

implementation for data acquisition in ATCS like NextGen and CAATS. This technology is made 

of two features: ADS-B In and ADS-B Out. Contrary to ADS-C, aircraft equipped with ADS-B 

Out systems broadcast their flight data to whoever can receive it without having a data contract 

with them. Data receivers are ground stations or another aircraft's ADS-B In system. When an 

aircraft's ADS-B In system receives data, it updates its airspace display with the new information. 

That way, pilots have an accurate representation of the other aircraft around them. When ground 

stations receive aircraft data, they relay that information to the ATCS to update it with the most 

recent information. NAV CANADA plans to use the Iridium satellite constellation as ADS-B 

receivers and transmitters to achieve a more complete coverage of its surveillance territory (NAV 

CANADA, n.d.). Since ADS-B data is unencrypted and not authenticated, antennae owned by 

civilians can pick up broadcasts. This is how flight tracking websites gather their data. There is 

currently no way to verify the integrity or the authenticity of ADS data. 

 Table 2.1 depicts the differences between the three major surveillance technologies, as well 

as the advantages and disadvantages of each of them. 
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Table 2.1: Comparison of the main surveillance technologies 

Sensor PSR SSR ADS-B 

Data acquired Azimuth 

Distance 

Azimuth 

Distance 

SQUAWK 

Altitude 

Identification number 

Identification number 

GPS position 

Altitude 

Airspeed 

Ground speed 

Route 

Cost per aircraft (USD) 0 3000-40001 40001 

Cost per antenna (USD) 6 million2 3 million2 100 000 to 400 0003 

Security features Laws of physics Multilateration when 

available 

None 

Advantages Hard to deceive 

Independent 

Accurate data Complete data set 

Cost 

Disadvantages Cost 

Needs to be used 

with SSR for 

complete data set 

Cost 

Needs to be used with 

PSR for complete 

data set 

Aircraft needs a 

transponder 

No security 

Aircraft needs a 

transponder and 

ADS-B equipment 

2.2.1.4 Flight plans 

Flight plans are a tool used by pilots to provide various information to controllers about 

aircraft and the route they want to take. Pilots provide them in advance and generally need approval 

from the ANSP before the flight can take place. The content varies depending on the ANSP, but 

they generally include information about the aircraft such as identification number, type, capacity, 

as well as information about the flight such as departure and arrival airports, cruising speed, 

altitude, and route, which consists of a series of waypoints through which the aircraft will go. The 

pilot also needs to specify whether the flight is under Instrument Flight Rules (IFR) or Visual Flight 

Rules (VFR). The set of rules chosen largely depends on the weather conditions along the flight’s 

route. VFR requires the pilot to be able to see clearly where the aircraft is going. If those conditions 

are not met, the pilot has to fly using the onboard instruments, hence the name IFR. A controller 

can modify a flight plan after the aircraft has taken off due to traffic conflicts or at a pilot’s request. 

                                                 

1 (Gulf Coast Avionics) 

2 (International Civil Aviation Organisation - Asia and Pacific Office, 2007) 

3 (Perreault, 2015), (Dunstone, 2012) 
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They are stored in a database in the ATCS and the system fetches and displays them one of the 

many screens that are part of a controller's workstation. 

2.2.1.5 Aircraft track 

A track is the modelling of an aircraft's movement. It contains information about the flight 

plan, the position of the aircraft as reported by radar or where the aircraft reported its position with 

ADS-B, and other data points used by the controller over the duration of the flight from the 

departure gate to the arrival gate. Surveillance radars, ADS-B antennae, and ATC, through 

directives like route change, update the track. ATCs use this to keep track of where an aircraft is, 

was, and where it is going in order to give the appropriate directives. 
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2.2.2 Typical Modern ATCS Architecture 

 

Figure 2.1: Modern ATCS architecture 

 As illustrated in Figure 2.1, an ATCS is made of multiple machines that have different roles. 

Some of them are sources of data. Examples of such machines are PSR, SSR and ADS-B. These 

machines send data over the network. Other machines are both data producers and consumers, like 

the flight plan database – comprised in the Flight services station on Figure 2.1 – and the controller 

workstation, included in the enroute control and in the control tower in the figure. The controller 

workstation is the computer terminal where air traffic controllers sit and work. They usually have 

computer screens to display aircraft position, and a screen to display flight plans. These data-
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consuming machines receive data from the producers and interpret it or store it depending on their 

role in the system. In the controller workstation’s case, it sends data whenever there is a flight plan 

modification. Modern machines are regular computers with generic operating systems that run 

custom software, as opposed to the custom-made black boxes of the past. All of these machines 

are connected to each other through an IP network. The individual sites like enroute control and 

control tower each have their own Local Area Network (LAN). This allows local machines to share 

data with each other before sending it to the machines at other sites, which reduces the outbound 

traffic and thus the bandwidth needed for timely delivery of information. The sites are 

interconnected with a Wide Area Network (WAN) to allow the information to go where it is 

needed. Data shared across this network includes flight plans, weather, surveillance data, Voice 

over IP (VoIP), and links between the latter and very high frequency (VHF) voice communication. 

The system is also connected to other ATCS though another WAN. This is important as it allows 

easy information sharing between different ATCS to facilitate operations. For example, an ATCS 

in Canada (CAATS) shares its flight plans with an ATCS in the United States (NextGen). This 

way, when a flight crosses the border and is handed off to an American controller from a Canadian 

one, the American controller already has the flight plan and the information needed to guarantee 

proper handling of the inbound aircraft. The shared information includes the flight plans, weather, 

and surveillance data. The sharing of information also enables an ATCS site to take over air traffic 

control duty in case another ATCS becomes inoperable. 

2.3 Air traffic rules violations and emergency scenarios 

In this section, we explain the different air traffic violations scenarios. While our solution is 

aimed at detecting malicious air traffic data injections, it can be extended to also detect potential 

emergencies as well as air traffic rules violations.  

The first scenario is that of loss of separation conflicts. At all times, aircraft must keep a 

certain distance between them. This distance is defined by a radius around them, as well as a 

minimum altitude separation both above and under. The resulting volume is a cylinder centered on 

each aircraft. A loss of separation conflict happens when one aircraft enters another aircraft’s 

cylinder.  

The second scenario is route deviation. Normally, an aircraft flying under IFR submits a 

flight plan that, among other things, defines a route between its departure airport and its arrival 
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airport. A route is a trajectory made of a series of fixed waypoints with a flying altitude tied to 

them. Air traffic controllers can make changes to an aircraft’s route in case of bad weather along 

the original one, for example. The ATC updates the flight plan and informs the pilot of the changes. 

A deviation occurs when an aircraft is not following its determined route. This can make controlling 

other aircraft in the same area more difficult due to the unpredictable trajectory of the deviating 

aircraft and can even, in extreme cases, cause loss of separation conflicts.  

Another scenario is that related to noise reduction. Noise reduction is done in two ways: 

around airports and along routes. Airports have noise reduction rules in order to avoid disturbing 

people living close. For example, at John Wayne airport in southern California, aircraft are limited 

in from landing and takeoff to specific time slots. In addition, they must fly specific routes that 

take them out over the Pacific Ocean before using full-engine power to limit the amount of noise 

over the city. This airport also has very strict noise limits that vary depending on the day of the 

week as well as the hour of the day (John Wayne Airport, Orange County, 2013). Those rules 

include landing and takeoff time slots during which aircraft are prohibited from landing or taking 

off. The ANSP will also keep aircraft off low-altitude routes that are too close to heavily populated 

areas during the night (Transport Canada, 2017).  

Another scenario is that involving Minimum Equipment Lists (MEL) that aircraft must have 

on board and that must be functional for aircraft to operate under certain conditions. For example, 

to fly over large bodies of water, civil aviation authorities require aircraft to have additional 

equipment such as life rafts and a pyrotechnic signalling device (Federal Aviation Association, 

2017). Doing so without the equipment can be dangerous for the passengers of the aircraft and is a 

violation of air traffic rules that can lead to a fine.  

The last rule violation scenario is that of prohibited airspace intrusion. A prohibited airspace 

is a three-dimensional zone where regular air traffic is not allowed for various reasons including 

the presence of military bases nearby. Currently, military radars and military ATCs contact any 

plane that is approaching such zones to instruct them to divert course or be intercepted and even 

attacked. 

Fuel emergencies happen whenever a pilot evaluates in flight that the destination or alternate 

airports cannot be reached due to, for example, stronger winds than forecasted or route changes. 

The pilot then needs to request priority handling, which can cause disruption to other aircraft.  
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Another emergency scenario we address is interrupted track. During flight, an aircraft’s 

instruments will periodically send information such as SSR replies or ADS-B messages to ground 

stations in order to keep ATC up to date on their location and situation. When an ATCS receives 

information from an aircraft, it updates its track. If no information has been received recently, the 

track is considered interrupted. This can happen because the aircraft has landed and turned off its 

instruments, but it can also happen because of instrument malfunction, which the pilot may or may 

not be aware of. This can be problematic because ATC can now only rely on the low-information 

PSR returns to gather information about aircraft. This makes ATCs lose some awareness of air 

traffic and can impact their decision making.  

The last emergency we cover is anomalous descent. During flight, it is normal for pilots to 

change altitude to follow routes and ATCs instructions. However, there are normal rates of descent 

and an aircraft that descends too fast or in unusual circumstances indicates that something could 

be wrong. 

2.4 Attack model on ATCS 

For the purpose of making the next sections easier to understand, we summarise the attack 

model we developed by briefly presenting the techniques that can be used. The model is presented 

in further detail in Chapter 5. We split the attacks on air traffic control systems into four categories: 

identification and localisation, jamming, GPS spoofing and packet injection. Our criteria to 

differentiate them was the technique used to perpetrate an attack and its effect on the system.  

In the first category, identification and localisation, an attacker wants to identify an aircraft 

currently flying to track it. We consider this an attack because it serves as the basis for more 

dangerous ones. We have identified two different techniques to execute this attack. The first one 

consists of listening to nearby aircraft’s ADS-B broadcasts with a personal ADS-B antenna and the 

second one is to go on websites that offer unfiltered ADS-B traffic data. The second category is 

radio-frequency jamming. This category is straightforward; using a radio emitter, an attacker jams 

the frequencies used by air traffic control communications in order to disrupt voice and instrument 

communications. The third category, GPS spoofing, aims to trick an aircraft’s GPS receiver into 

passing erroneous position data to the ADS-B emitter which will then be sent to the ATCS. This 

attack is realised by spoofing a GPS satellite signal in order to make the aircraft’s GPS receiver 

calculate a wrong position. The last category is packet injection and consists of directly sending 
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spoofed ADS-B packets. In this attack category, a rogue ADS-B emitting station sends spoofed 

ADS-B packets in order to eventually input false data into an ATCS or into surrounding aircraft’s 

ADS-B In system. 

2.5 Traditional IT Security solutions 

2.5.1 Intrusion detection systems (IDS) 

As the Internet grew in popularity, network security became an issue that needed to be 

addressed and user activity needed to be monitored to ensure that no one was tampering with the 

computer systems. The first systems to do this task, named intrusion detection systems, were built 

in the 1980s and were very basic in their detection method; they used a list of threat signatures to 

identify and filter traffic. This method evolved to become rule-based intrusion detection; a 

technique that uses rules based on the vulnerabilities themselves as opposed to a specific exploit. 

This technique operates on the principle that the vulnerabilities of the system are known and their 

detection can be expressed in terms of rules to filter out traffic that could exploit them. The other 

main method of detection is using artificial intelligence (AI) to classify traffic and detect anomalies 

in the pattern. This method is called statistical analysis. The principle behind the technique is that 

there is a set of features –quantifiable traffic data and metadata– that make malicious traffic stand 

out from normal traffic. The features can be defined by a human being or can be computed by 

giving a set of traffic data to a machine learning algorithm. IDSs come in two modes of operation: 

host-based (HIDS) or network-based (NIDS), which is independent of the detection technique they 

use. As described by the name, HIDSs are installed on a computer and analyse the computer’s own 

in and out traffic. NIDSs, on the other hand, are deployed on dedicated machines connected to a 

network and analyze all traffic passing through it. They can detect denial of service (DoS) attacks 

as well as port scanners and other potentially malicious activity. 

The traditional intrusion detection methods and systems are not useful for this project 

because the attacks we investigate are not perpetrated at the network traffic level. They are 

perpetrated before the packets are created as they target the data sent to the sensors on the radio 

frequency (RF) level. This means that the packets will seem normal to traditional intrusion 

detection methods. For this reason, we designed a different approach to intrusion detection by 

reasoning on the data on a higher level using ontologies. Instead of looking at the networking data 
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in the packet, we look at the air traffic data the packet is carrying and analyse it to see if it makes 

physical and logical sense with the data previously received. 

2.5.2 Antiviruses 

Antiviruses are another important part of computer security. Unlike the IDSs, they are used 

to enhance the security of the computer on which they are installed. They were created as an answer 

to computer viruses and worms which started to spread in the late 1980s. As viruses evolved to go 

undetected by antiviruses, new virus detection techniques were invented. The game of cat and 

mouse has been going on since then. One of these techniques is signature-based detection. This 

technique consists of scanning a program’s code to try to match a sequence of bytes –the signature– 

with sequences that the antivirus knows to be contained in viruses - the definitions. If there is a 

match, then the program is flagged as a virus. This technique relies on having up-to-date definitions 

of viruses. Another technique used is behavioral analysis. Instead of looking directly at the virus, 

this detection technique uses the virus’ behaviour to categorize it. In the same vein as signature-

based detection, they compare the behaviour of the program to a database of known malicious virus 

behaviours. This technique is effective against polymorphic viruses because different copies of this 

category of viruses do not have the same signature, but behave in the same way. 

While antiviruses have proven their effectiveness in other cases, they do not entirely prevent 

attacks on ATCS. They would only be useful to defend against an attacker who wants to control a 

machine inside the network to carry out the attacks. An effective antivirus would detect that the 

computer is compromised and alert the people in charge. However, antiviruses are ineffective if 

the attack is perpetrated by emitting false data on the ADS-B frequency since the attacks we study 

do not require infecting a computer on the ATCS’s network with a virus or tampering with them. 

2.6 Air traffic control security solutions 

Researchers proposed many solutions to increase air traffic control system security and 

reliability. However, most of them do not take into account the vulnerabilities of the ADS 

technology summarized in the previous section. In this section, we present the most promising and 

complete solutions in terms of ATCS security. 

Multilateration (MLAT) is a hardware-based security solution. It consists of a cluster of 

sensors that listen for SSR replies or ADS-B broadcasts from an aircraft. It uses the transmission 
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times of arrival differences to estimate the location of an aircraft. If an aircraft broadcasts the wrong 

position on the ADS-B link, this technology will be able to detect that the aircraft is not where it 

says it is and alert the ATCS about the situation. This solution is very costly because it requires the 

installation of multiple antennae and is not applicable everywhere since there are places, such as in 

the Great North or over the ocean, where putting up antennae is impractical. 

 Research on ATCS network vulnerabilities and ways to mitigate potential attacks has been 

done in Aviation communication infrastructure security (Karmarkar, 2012). The author is 

concerned with traditional cyber security threats such as denial of service and viruses. The author's 

proposed security measures reflect this focus: defense-in-depth, rate-limiting, access lists, etc. The 

threats we want to address with our research are not directly related to traditional cyber security 

because they do not compromise the computers themselves and the solutions proposed in this 

article do not concern the attacks we considered. 

 Sampigethaya and his team (Sampigethaya & Poovendran, Visualization & assessment of 

ADS-B security for green ATM, 2010) propose a novel solution to guarantee ADS-B position 

report integrity. The technique the authors developed uses groups of interconnected aircraft and an 

aircraft-based multilateration technique to validate the position data contained in an ADS-B 

message. Aircraft would share the data they receive with the group they are part of using a different, 

secure data link. Then, each aircraft estimates the validity of the position report and votes to reject 

it or not. While this solution addresses many of the packet injection issues, it only concerns aircraft 

while we focused our research on ATCS. 

 In Securing the skies: in requirements we trust (Nuseibeh, Haley, & Foster, 2009), the 

authors share their experience with security requirements in the air traffic control domain. As part 

of their project, they developed a framework to define and analyze security requirements all while 

taking into account the functional requirements. The example they used was ADS-B position 

reports. After defining the functional requirements of the system, the authors defined security goals 

as well as threats in order to define security goals. While the project brought security requirements 

analysis to the air traffic control domain, their focus was on the design phase of the software life 

cycle. Given that the aviation world is very slow to change and adapt to new technologies or threats, 

new threats could emerge after the system goes live. Modifying the design and its implementation 

would take a very long time and be very costly, on top of the inherent safety hazard a vulnerability 

poses. 
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 Sink or SWIM: Information Security in the Sky (Jaatun & Fægri, 2013) introduces the 

System-Wide Information Management (SWIM): a publish-subscribe network that would allow 

different ATCS to share aeronautical, flight trajectory, aerodrome operations, weather, air traffic 

flow, capacity, and demand data. The information sources are pilots, airports, airline operations 

centres, ANSPs, weather providers, and military operations centres. The goal of this infrastructure 

is to provide a secure and reliable way for different ATCS to share information in order to improve 

efficiency and air space utilization. The authors talk about network security, but there is no mention 

in the paper about the validity or authenticity of the information going through the network. The 

authors also mention specifically that surveillance information will not travel through SWIM. It is 

worth noting that ATCS currently use SWIM. 

 Krozel et al. developed a Kalman filter technique to enable aircraft to verify the integrity of 

an ADS-B broadcast in Aircraft ADS-B Data Integrity Check (Krozel, Andrisani, Ayoubi, 

Hoshizaki, & Schwalm, 2004). This technique was designed to cover transmission errors, loss of 

signal, and noise filtering. It does so by using the previous data points to infer the tracked aircraft's 

trajectory and intent. Since it relies on the cooperation of the broadcaster, it could not be adapted 

to detect most of the previously discussed attacks. This approach could, however, detect a careless 

attack where the attacker broadcasts random aircraft position, but a more sophisticated attack with 

a realistic simulated trajectory would fool this solution. 

The papers Methods to provide system-wide security ADS-B backup, validation and security 

(Smith, Cassell, Breen, & Hulstrom, 2006) and Detecting malicious ADS-B broadcasts using wide 

area multilateration (Monteiro, Barreto, & Kacem, 2015) both propose a similar solution to 

validate ADS-B broadcasts. Both solutions consist of using Wide Area Multilateration 

(WAMLAT) to verify and validate the position reported in the ADS-B broadcasts using time-of-

arrival difference between multiple stations that are in the aircraft's range. Thus, this solution 

requires that multiple operating ground stations be within range. This might not always be the case 

in the event that a spoofing attack is committed in tandem with a jamming attack on surrounding 

ground stations, leaving only one station in operation, or in the case where there is only one receiver 

in range of the aircraft. 

 ERA Systems Corporation filed a patent for a Method and apparatus to improve ADS-B 

security (United States of America Patent No. US20060119515, 2006), invented by Alexander 

Smith. The patent describes a method to verify the identity of an aircraft's identification broadcast 
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using the information sent by the aircraft as well as information coming from another source like 

primary or secondary surveillance radars. Contrarily to our solution, this method presumes that the 

old surveillance technologies will still be in use and available in the affected area, which may not 

be the case. 

 Kacem et al. introduce an ontological approach in Security Requirements Analysis of ADS-

B Networks (Kacem, Wijesekeram, Costa, & Barreto, 2014). Their method focuses on classifying 

attacks based on misuse cases and properties extracted from surveillance data. While the system 

described in the paper can detect attacks, the authors do not provide a way to mitigate them. It also 

does not account for attacks that emerge after the system is put in place. 

2.7 Data Distribution Service (DDS) protocol 

The Data Distribution Service (DDS) protocol is a OSI layer 7 real-time protocol that uses 

the publish-subscribe design pattern (Pardo-Castellote, 2005). It is used by financial trading 

applications as well as in air traffic control systems because it offers dependable, high-performance 

data exchanges. It is data-centric since the data sent through DDS comes with instructions on how 

the application should interpret it. 

 Thales, Real-Time Innovations Inc., and Object Interface Systems, Inc. originally 

developed DDS in collaboration. The DDS specification is under the responsibility of the Object 

Management Group (OMG). OMG released the first version of DDS in 2004 (Object Management 

Group, 2004). Since its inception, many vendors have developed their own implementation of 

DDS. The version used in this research project, DDS 1.4, was released in April 2015 and the 

implementation we chose is OpenDDS 3.7 (Object Computing, Inc., 2015), released on September 

11, 2015. 

 A DDS application has three major components: data topics, DDS domains, and 

participants, which are either publishers or subscribers. Data topics are a collection of classes that 

specify the different ways the shared data is structured. A DDS domain is a collection of such 

structures and does not overlap with other domains. Participants can be either subscribers or 

publishers. Subscribers have to subscribe to a particular topic in order to receive updates. They do 

so by notifying the router that they want to part of the assigned multicast group for a given topic. 

When it receives packets for a given multicast group, the router forwards them only to the members 

of the specified group. 
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 There are two ways for participants to discover new ones in OpenDDS. The first one is with 

a centralized information repository managed by a separate process. The other one is Real-Time 

Publish-Subscribe (RTPS) discovery, which is an application layer protocol that automatically 

discovers new services and subscribes to the relevant multicast groups. We used the latter in our 

project. 

 Many ATCS use DDS as their data distribution protocol (Object Management Group). The 

PSR, SSR and ADS-B sensors gather the relevant information and use a DDS publisher to send it 

over the network. Other publishers are ATC workstations, for flight plan modifications, the flight 

plan database, and weather information providers. Machines that use a DDS subscriber to receive 

data from the network are the controller workstations and the flight plan database. 

2.8 Ontologies 

Ontologies are collections of concepts and the relationships between them. The concept of 

ontologies comes from philosophy, but it has since been adapted to computing in the 1980s as part 

of research on artificial intelligence. Since then, there have been efforts to use this concept in other 

areas of computer science such as the Semantic Web and biomedical informatics. Our project aims 

to classify data coming from surveillance equipment into an ontology and do various analysis to it 

in order to detect anomalies. This paradigm is well suited for our anomaly detector because the 

data and the relationships between different pieces of information are well-defined in our 

application domain. The domain concepts are thus easy to model in an ontology and it simplifies 

the analysis. 

2.8.1 Ontological solutions 

An Extended Ontology for Security Requirements (Massacci, Mylopoulos, Paci, Tun, & Yu, 

2011) brings the concept of ontologies to ATCS security. However, they populated their ontology 

with actors, threats, goals, actions, etc. related to a specific case study threat, i.e. GPS spoofing. 

This approach is not optimal since the ontology needs a large update whenever a new threat 

emerges. Furthermore, the ontology does not allow for direct attack detection queries as the 

concepts needed are not represented in it. The solution we investigate is more general and 

preventative as it does not rely on ontological representations of attacks. 



24 

Automated Reasoning for Maritime Anomaly Detection (Roy) details an ontological system 

that would use data gathered from sensors to generate facts and use them to infer new situational 

knowledge with the use of automated reasoning. They use a system composed of reasoners, a 

database containing facts, and a management service to control the flow of information. The 

architecture of our solution is inspired by this project. 

 A theoretical basis for our research comes from the work on trajectory modelling made in 

A Conceptual View on Trajectories (Spaccapietra, et al., 2008). This paper is the first to define 

trajectories from a semantical point of view. This definition takes into account the temporal aspect 

of a trajectory by including the path, stops, which can be instant, moves, and the start and end of a 

trajectory. The author also specifically addresses trajectories defined by points made of a space-

time pair, which are directly related to our research's domain since it is how ADS-B works. 

 Baglioni et al. iterated on the previous article in An Ontology-Based Approach for the 

Semantic Modelling and Reasoning on Trajectories (Baglioni, de Macedo, Renso, & Wachowicz, 

2008) and provided a methodology to transform trajectory data into an ontology containing 

geographic data, domain knowledge, as well as the stops and moves that define the trajectory. The 

article also gives an example of trajectory reasoning using Web Ontology Language (OWL) to 

detect malicious behaviour among players of a game. 

 An Enhanced Spatial Reasoning Ontology for Maritime Anomaly Detection (Vandecasteele 

& Napoli, 2012) uses the concepts introduced by the two previous articles to detect and characterize 

anomalies in ship behaviour. Abnormal behaviour detection is done by matching rules defined by 

experts against an ontology containing sensor data. The article gives ships navigating in restricted 

zones and trajectory analysis as detection examples. The latter example is very relevant to our 

research project as trajectory analysis is one of our anomaly detection method. 

2.9  Summary 

In this chapter, we reviewed the technologies used by ANSPs to control air traffic. We also 

exposed the weaknesses these technologies bring and how they can be exploited by malicious 

people. This overview allowed us to have a clear picture of the air traffic control domain. We then 

explored the most recent solutions proposed in the scientific literature to see if they addressed the 

attacks identified in our attack model. 
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The traditional security solutions like IDSs and antiviruses were not adequate in the context 

of our attack model since the attacks did not require tampering directly with the ATCS, but rather 

falsifying the data before it enters it. We also looked at solutions specific to our application domain. 

A lot of the solutions we found rely on radar coverage, which will not always be available, or on 

installing extra equipment to enable multilateration. Other solutions were not easily adaptable to 

new threats. 

 Academic research in this particular application domain is limited. Most research on the 

vulnerabilities of aviation technologies and the threats they pose do not take into account real-life 

consequences and how they would impact the way air traffic is directed. This research project is 

the first to bridge the gap between cybersecurity and the aviation world by evaluating how air 

traffic controllers and pilots would react to specific attacks and how they would operate under such 

circumstances. 
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CHAPTER 3 ANOMALY DETECTION FOR ATCS 

In this chapter, we will describe an approach and an architecture for constructing an anomaly 

detection system for ATCS that will allow us to both detect malicious manipulation of data 

(described briefly in Section 2.4 and in more detail in Section 5.1) and also some of the potentially 

dangerous ATC situations described in Section 2.2.2. The detector gathers data from data sources 

already on the ATCS and uses it to populate an ontological database. It detects anomalies in the 

data by running queries against the database. If anomalies are detected, it dispatches alerts and 

information about the detection to the relevant network actors. 

3.1  System architecture 

3.1.1 Key assumptions on target ATCS 

Before we talk about the design our solution, we need to gather all the information we have 

about real-life ATCS. Doing so gives us guidance on basic, technical decisions about the solution. 

The first such decision is to decide where to put the detection engine, i.e. on every computer in the 

ATCS do to detection for the computer only or on its own separate machine doing detection for the 

entire ATCS. The second question is how the detection system gets the data needed to function. 

This question becomes important in the event that the detection engine runs on its own machine 

since it will need to interact with the network in order to receive the data. This is not a problem if 

it runs on every machine currently in the ATCS since they already receive the data relevant to them 

and have it available locally. The third question we need to answer is how the detection 

information, i.e. the results of the queries, is dispatched to the concerned network actors. Similarly 

to the second question, this one is also important if the detection system runs on a separate machine 

because it needs to communicate the results to the other machines. This question becomes a non-

issue if the system runs on the existing machines since it will only do the detection relevant to its 

host and can communicate directly without going through the network. In order to answer these 

questions, we need to make basic assumptions about what a typical ATCS architecture looks like. 

We described this hypothetical architecture in section 2.2.2.  

In short, we presume that ATCS are made of regular computer hardware and operating 

systems that run specialized software. The machines communicate through an IP network isolated 

from the Internet. The key element of this network is the data exchange protocol, DDS, that is used 



27 

to transmit data in real time. Typical networking protocols such as Transmission Control Protocol 

(TCP), User Datagram Protocol (UDP), Hypertext Transfer Protocol (HTTP), and File Transfer 

Protocol (FTP) cannot be used alone for two reasons. First, the nature of the data transfers on the 

network is not point-to-point, which makes most of the previously mentioned protocols 

inapplicable by themselves. Second, the real-time and Quality of Service (QoS) requirements are 

very strict since the timely delivery of the information can affect real-life decisions taken by ATC 

and could compromise air traffic safety. There are many higher OSI layer protocols that satisfy 

those requirements and can be used on top of TCP or UDP, but we found evidence that CAATS 

(Real-Time Innovations, 2013) uses DDS as its communication protocol. It is not far-fetched to 

presume that other ATCS use the same protocol. We chose DDS as an example, but this is without 

loss of generality due to the design of our solution since it is easily adaptable to different 

communication protocols. 

3.1.2 Detector localization  

We know that ATCS currently have mechanisms for detecting potentially dangerous 

situations, in particular loss of separation situations. Whenever two planes are too close to each 

other, the ATCS notifies the controllers by sending a visual alert on their computer screens. This 

computation is fairly simple to do since it only requires checking if a point is inside a cylinder, as 

we described in Section 2.2.2. This example of known-to-exist anomaly detector in ATCS is a good 

starting point for us to discuss various architecture choices for the more general detector we 

propose. The two obvious options are the following. 

1. Decentralized detection: In this case, the detection is done directly where the 

information is needed, e.g. controller’s workstation and local servers at an area 

control centre. This is akin to how Host-based Intrusion Detection systems 

(HIDS) work in traditional IT security. The advantages of having a detection 

system running on a controller’s workstation is that it can do computations only 

on the area that concerns the controller. This design makes sense for the loss of 

separation scenario since the aircraft need to be in the same area to be close to 

each other. Moreover, the controllers of the other areas do not need to see the 

alerts that do not concern them. The same result could be achieved by a 

centralized design, but the time to process the data needed for the loss of 

separation scenario for every aircraft in every area covered by the ATCS could 
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take too long and the response time would in turn be too long to prevent this 

scenario. Fortunately, in this specific example, aircraft have their own prevention 

system. Another advantage is that this design is lighter on the ATCS network’s 

bandwidth. No new machines are added to the network and the existing network 

components already receive most data needed for detection. Moreover, the alerts 

stay on the same machine, which guarantees timely delivery and also does not 

take any network bandwidth. 

2. Centralized detection: The centralized design operates similarly to a Network-

based Intrusion Detection System (NIDS), in the sense that the detection is done 

on a completely separate machine connected to the network. The alerts are then 

sent as DDS topics to the concerned network participants. An advantage of this 

design is that the detection system is that it does not need to run on an already-

existing ATCS component. This greatly increases portability and enables system 

updates without having to update an entire component. Furthermore, since the 

detection system is encapsulated and separate from existing machines, only one 

version needs to be created instead of having custom versions for all the different 

types of controller workstations, servers, etc. Another advantage of this design is 

that all the data needed for detection is gathered at the same machine. Having one 

machine also simplifies managing and maintaining the detection system. The 

disadvantage of a centralized design is performance. Since we are introducing a 

new machine on the network, it will need to receive all of the relevant data, 

increasing the amount of bandwidth needed. The detection system also sends 

alerts to the concerned components, which takes even more bandwidth. Timely 

delivery of alerts is crucial for air traffic safety and sufficient bandwidth is 

necessary to achieve this goal. 

In the end, we chose the centralized detection system design for our solution. This allows us 

to design a solution that can be adapted to different environments without much modifications to 

the solution or to the ATCS itself. It also addresses more network architecture issues, which is 

important since there are no two ATCS alike. We evaluate that we only need to add a few data 

topics in the system as well as a slight modification to the subscriber of the controller’s workstation 

to enable it to subscribe to the new topics. It is also more general, which is why we feel it is better 
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for proof of concept. Performance engineering problems could be addressed by other means such 

as filtering, compression, networking configurations, etc. and are out of scope for this project. 

3.2 Architecture 

 

Figure 3.1 : Detection system architecture 

The centralized detection architecture we propose is depicted in Figure 3.1. Our solution is 

entirely encapsulated and separated from the rest of the system. It consists of the following main 

components: 

1. DDS data collector: This module subscribes to relevant DDS topics being 

published by the various data sources on the ATCS. It is the equivalent of 

an IDS sensor on a traditional IT network. Unlike those, however, no 

special network configuration adjustments must be made to accommodate 

them. The machine running the data collector must simply subscribe to the 

relevant DDS topics using the built-in DDS subscribe requests. It provides 
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as output a stream of DDS messages of the relevant topics in a format that 

can be easily parsed and interpreted by downstream modules. 

2. DDS data translator: This module populates the ontological database 

based on the DDS topic messages that the data collector has received. This 

is in principle a simple script that parses the DDS message and uses the 

API of the ontological database to generate and launch procedures that 

insert or update instances of concepts in the database. Parsing is done with 

the help of the DDS topics to ontology concepts translation table that 

defines the equivalences between data points in DDS topics and concept 

attributes in the ontology, i.e. where to put each data piece. This table is 

described in more details in section 5.3. 

3. Ontological Database: The ontological database is used to store the 

ATCS data as concepts and as relations between concepts, i.e. the 

semantics of the data. It receives insert and update commands from the 

DDS data translator. The structure in which the data is stored is called an 

RDF Triplestore (Ontotext, n.d.) and is made of a subject, an object, and a 

predicate, linking the two. For example, our ontology database can have 

an aircraft subject, a track object, and a has a predicate. This semantic 

structure represents the fact that an aircraft has a track. The process by 

which this model was created is described in more detail in section 3.3. 

4. Detection engine: The detection engine runs a SPARQL Protocol and 

RDF Query Language (SPARQL) engine that runs various detection 

queries. It polls the database to gather the data necessary for the query that 

is running. If the query finds an anomaly, the engine creates an alert and 

sends it to the DDS publisher running on the same machine. The publisher 

then creates an appropriate instance of the Alert DDS topic and publishes 

it on the network for the concerned subscribers to receive. The DDS topics 

are described in more details in section 4.7. The detection queries run at 

different frequencies depending on what kind of anomalies they are 

designed to find and on how frequent the data they require is updated. 
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3.3 ATC ontology design process 

The model for the ontological database was designed in collaboration with another Master’s 

student, Simon Malenfant, who is specialised in ontologies. We expect this consultation process 

between domain experts and ontological experts to be representative of what would happen during 

the implementation of our solution with an actual ANSP. 

The first step was to explain the inner workings of ATC to the ontological expert. Since the 

ontological expert was not familiar with the air traffic control domain, we had to do an overview 

of ATC to detail the context for the ontology. We started with the background workings of a regular 

flight, from the departure gate to the arrival gate. We also talked about air traffic regulations to 

give the ontological expert a better idea of the emergencies and rules violations we want the 

ontology to cover. The overview is similar in content to what is described in Chapter 2. 

Once the expert was familiar with the inner workings and procedures of air traffic control, 

we talked about the technology behind ATC, namely the ATCS and its components. The goal of 

this step is to identify the data circulating on the network in order to familiarize the ontology expert 

with the data that is available for inclusion in the model. We started with an overview of the main 

sensors that are part of the ATCS, namely PSR, SSR and ADS-B antennae. We also detailed the 

data present in flight plans as it provides important information for the emergency scenarios 

detection such as fuel level. Detailing the pieces of data also helped to determine the DDS topics 

for our ATCS simulator which are detailed in section 4.7. This step is important because the data 

pieces available to be inserted into the ontological database is the basis for our model. 

In the third step, we gave meaning to the data by adding semantical relationships. We started 

by linking individual data pieces together when it made sense, either because they were circulating 

together on the ATCS network such as the positioning data coming from radars, or because they 

were related and part of a bigger data structure like flight plans. These larger data structures are 

called concepts and are the building blocks of the ontology. 

Finally, we added semantical relationships between the concepts to form the ontological 

model. Adding relationships between them links every piece of information together in one 

coherent model. Having such a model allows us to store the data in a way that allows us to easily 

query it to find anomalies. The final model is presented in Figure 5.2. 
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3.4 Anomaly detection system 

The anomaly detection system gathers data by subscribing to the relevant DDS topics 

identified in section 4.7. Once the subscriber receives data updates, it forwards them to the DDS 

data translator to be inserted into the ontological database. The DDS data translator uses the DDS 

to ontology translation table to make equivalencies between DDS topics attributes and ontological 

concepts attributes for easy data conversion. The details of the table are presented in section 5.3. 

This step also filters out irrelevant data, i.e. data that does not have an equivalent attribute in the 

ontological model. Once the ontological mapping has been done, the translator inserts the 

converted data into the ontological database. 

Using a connection to the ontological database, the detection engine queries the database to 

gather data needed for the detection queries it is currently running. The detection queries are written 

in SPARQL and run on a regular basis triggered by a separate polling process that keeps track of 

the frequencies of the queries. The frequencies will vary between queries as some of them run very 

frequently because they need to act on every new piece of data that comes into the system and 

others are only run on demand or every few hours for forensic purposes. For example, queries that 

use radar data to detect loss of separation run very frequently, but queries that are used for the 

forensic mode run every few hours or even on demand. The duality of query frequencies introduces 

design challenges to the system. On the one hand, some queries need to run at a very high 

frequency, i.e. as soon as there is new data available – which is every second or faster. On the other, 

some need large amounts of data to produce forensic reports. Thus, the system needs to be very 

efficient for quick responses while also being capable of storing large amounts of data. Since these 

decisions are technical in nature, we chose to keep them out of the scope of this thesis and we do 

not address them. 

The results of the real-time queries are alerts that need to be dispatched to the concerned 

machines. To do so, we added an Alert DDS topic to the network’s existing topics. When the 

detection engine produces an alert, it forwards it to the DDS subscriber sitting on the same machine 

as the engine. The DDS subscriber then converts the alert to the correct DDS topic structure and 

publishes it on the network. To receive alerts, the computers such as the controller’s workstation 

need to subscribe to the new Alert topic. Alert processing if left to the concerned machines once 

they receive an alert through their respective DDS subscriber. When the detection engine runs in 

forensic mode, it produces a report that contains the results of the queries. 



33 

3.5 Implementation  

Due to time constraints, we chose not to build a working prototype of the detection engine. 

Instead, we concentrated our efforts on building the ATCS simulator and constructing the 

ontological model. 

Having a working ATCS simulator was important because it gives us good data and a 

working testbed for future research, something much IDS research lack. We tried contacting ANSP 

and ATCS vendors to form a partnership with them to facilitate our research, but they all declined. 

ATCS design and implementation are closely guarded secrets for two reasons. First, ATCS are 

very expensive and there is a lot of competition between vendors and they want to keep their ATCS 

design as an industrial secret. Second, there are security issues associated with doing research on a 

real ATCS that can lead to real-life safety issues if technical details about ATCS were to be leaked. 

Building the simulator was a critical step in our laboratory’s research plan. Lots of time and effort 

was put into its design and prototyping, which left us with no time to focus on the detector. 

One of the challenges of designing the ontology is to make it specific enough that it can 

detect what we need it for, but also generic enough so that it is easily expandable for new detection 

capabilities. This problem comes up every time an ontology is to be designed and is not exclusive 

to our research. 

Building the above components to have a working detection system would not present a 

research challenge and would constitute a lot of simple work for a small incremental gain, which 

is why we left this step out of scope. We decided to focus our efforts on what we evaluated was the 

hard and interesting parts, the design of the solution, the ontology and its queries, and the ATCS 

simulator.  
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CHAPTER 4 AIR TRAFFIC CONTROL SYSTEM SIMULATOR 

(ATCSS) 

  In this chapter, we describe the proposed architecture of our air traffic control system 

simulator (ATCSS). We first explain the goals we set to achieve. Then, we focus on the most basic 

parts: the radar screen, the simulation engine, the sensors and the communication protocol used by 

the system. We then explain how we put together those building blocks to emulate an air traffic 

control system and the DDS traffic passing through it. We finish this chapter by detailing the DDS 

topics we chose. 

4.1 Goals 

The main goal behind the design of the air traffic control system simulator is to create an 

environment that allows us to simulate attacks on an ATCS and to visualise and measure their 

effects. For our experiments to be valid, the system needs to be as close as possible in functionality 

and architecture to an actual ATCS and thus needs to include its critical components as well as its 

communication protocols. The components we identified as critical to the functioning of an ATCS 

are the sensors, namely PSR, SSR and ADS-B antenna, and the radar screen. We chose to use DDS 

for our simulator as it is the communication protocol used by ACTSs in Canada and Europe (Object 

Management Group). The second goal of the design was to be able to create custom air traffic 

scenarios that suit the needs of our experiments and to be able to repeat those experiments. Finally, 

we want to be able to visualise the air traffic that is being simulated in order to ensure the adherence 

of our air traffic scenarios to real traffic patterns and to validate the hypotheses of our attack model 

about the impacts of the attacks. 

4.2 Radar screen 

 The first step in this project was to check for existing software we could use as part of the 

simulator. We directed our search towards virtual flight simulation communities like VATSIM and 

IVAO. After testing different software used the communities’ virtual air traffic controllers, we 

chose EuroScope (Csernak, n.d.), an air traffic controller console application that includes an air 

traffic simulation engine. It also includes server software to allow multiple instances of EuroScope 

and multiple flight simulators to take part in the same virtual flight environment. We contacted the 

developer, Gergely Csernak, to ask permission to use his software as part of our research project, 
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which he granted. Once we installed the software, we were able to capture packets in order to 

understand the Flight Simulator Data (FSD) communication protocol used by the software. Mr. 

Csernak gave us a specification document (ProtoDev Development Group, 2002) that explained 

the different packet types used by the protocol. It helped understand the packet sequence of a 

communication between a simulated aircraft, EuroScope, and the server. EuroScope allows the 

user to visualize the flight data of locally simulated aircraft or of flight simulators connected to the 

same server, as shown in Figure 4.1. It also displays the flight plans filed by the aircraft’s pilot, as 

well as sector information such as runways, sector boundaries, and waypoints. 

 

Figure 4.1 : EuroScope 

 Since this software is designed to use the FSD protocol for data sharing, we had to create a 

translator that takes the incoming DDS packets and convert them to FSD packets. We chose to use 

Python (Python Software Foundation, 2017) because it is very flexible and enables quick 

development of software prototypes. This translator connects to the DDS subscriber on the same 

machine as the radar screen to receive the DDS packets. Then, using the data contained in the 

packet, it will create an FSD packet and send it to the radar screen to be displayed. 
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4.3 Simulation engine 

As mentioned in the previous section, EuroScope has its own built-in simulation engine. It 

moves aircraft around according to air traffic rules and allows an air traffic controller to give 

instructions to the simulated aircraft such as takeoff, landing, route change, etc. The simulation 

engine is a separate process that sends the simulation data on the loopback network on a specific 

port. Then, Euroscope sends the simulation information to other instances of Euroscope that are 

connected to it. The information about air traffic comes from a scenario file that details existing 

aircraft and their routes. Those files can be manually created, but there are tools to generate them 

with proper syntax and coherence (Phillips, 2011). 

4.4 Sensors 

The next components of the air traffic control system simulator are the sensors. These are 

abstractions of PSRs, SSRs and ADS-B antennae. Their role is to receive data from the simulation 

engine and translate it into properly formed DDS packets that are then published on the DDS 

network. The topic under which they publish the data and the type of data depends on which sensor 

they are emulating. These are explained in more details in section 4.6. Separating the sensors by 

category adds realism to the system’s simulation and enables us to add different levels of trust to 

the data depending on its source. For example, data coming from PSRs is very reliable while data 

coming from ADS-B could have been spoofed. Therefore, we prioritise data coming from a 

trustworthy source when it is available. 

4.5 Flight Simulation Data protocol 

The FSD protocol is an OSI model layer 7 protocol that uses TCP connections. The data 

segment of the packets has three parts: a single character indicating the packet style, a pair of 

characters indicating the packet command, and the rest is the packet’s actual content, which 

comprises multiple data fields each separated by a colon. Table 4.1 shows the most important 

commands and packet styles. The FSD protocol is the standard used by multiplayer plugins written 

for the most popular flight simulators – X-Plane (Laminar Research, 2015), FlightGear (FlightGear 

Flight Simulator, 2016), Microsoft Flight Simulator (Microsoft, 2006), and Prepar3D (Lockheed 

Martin, 2015) – to connect to servers belonging to the virtual communities VATSIM and IVAO. 

Table 4.1 shows the different types of packets part of the FSD specification. 
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Table 4.1 : FSD packets description 

Prefix Style Description Command Command Description 

$ Administrative packet FP Send a flight plan to the server. 

HO Request a hand-off to a different air traffic 

controller. 

HA Response to the HO request. 

CQ Request client data (e.g. flight plan, pilot 

details, current server, etc.). 

CR Response to the CQ request. 

    

# Communication packet AA Add an air traffic controller to the server. 

DA Remove an air traffic controller from the 

server. 

AP Add a pilot to the server. 

DP Remove a pilot from the server. 

TM Send text message. 

SB Request the aircraft model to display in the 

flight simulator. 

    

@ Update the aircraft data.   

    

% Update the air traffic 

controller data. 

  

 

4.6 System architecture 

 Figure 4.2 shows the architecture of the system. It features two networks: a control network, 

in red, which acts to provide the data source – the “real world” - for the simulation network, in 

blue, which is our equivalent of a real ATCS. 
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Figure 4.2 : Air traffic management system simulator architecture 

4.6.1 Simulation network (DDS) 

The components of the blue network include a simulation monitor, the equivalent of an 

ATC’s workstation, as well as multiple surveillance radars and ADS-B antennae. 

 The Simulation monitor virtual machine (VM) consists of the radar display software, 

EuroScope, a DDS subscriber and a Python script. EuroScope’s purpose is to visualize the aircraft 

in the simulation and to issue directives. The Python script sends the packets containing the 

directives and the administrative data to the server. The DDS subscriber subscribes to the relevant 

topics - aircraft positions and flight plans – and transfers the data to EuroScope. 

 The PSR, SSR, and ADS-B VMs, are the equivalent of the surveillance equipment. They 

get the aircraft's positioning data from a Python script that connects directly to the server using the 

FSD protocol. The script relays the data to the C++ DDS publishers who publishes it under the 

appropriate topic. 

The next component is the DDS capture module. This module captures all DDS traffic during 

a simulation session and sends it to a translator to extract the relevant data. The translator then 

sends the extracted data to another script which populates the ontology with the new data. The 

SPARQL queries are then run against this ontology by the Detection engine to verify that there are 

no anomalies in the data, i.e. to detect potential attacks, rule violations, and emergencies. 
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4.6.2 Control network (FSD) 

The modules of the control network are the simulation server, a VM dedicated to capturing 

DDS packets with replay functionality, and a VM with a flight simulator installed on it. 

The simulation server is where all the information about the aircraft positioning, the flight 

plans and the air traffic scenario information. The EuroScope instance runs the simulation and 

manages the simulated aircraft. It is also a reference since the effects of the various attacks will not 

reach this instance. The simulated aircraft send their positioning data directly to the FSD server, 

which will in turn send it to the subscribed Python scripts using the FSD protocol. 

The last piece is the Pilot VM. This optional component runs a flight simulator that can 

connect directly to the FSD server and integrate the player's positioning data in the simulation. This 

feature allows us to test the interaction of an air traffic controller with a real pilot in one of our 

attack scenarios. 

4.7 DDS topics 

DDS topics are data structure definitions used by publishers and subscribers to send and 

interpret that data circulating on the DDS network. We have identified three DDS topics that are 

used by the sensors. The first one is the primary surveillance radar data broadcast. It contains the 

data gathered by a primary surveillance radar, i.e. the azimuth and distance of a radar return, as 

well as a timestamp, and the radar’s identification number in order to translate the data points into 

latitude and longitude. The second topic is the secondary surveillance radar data broadcast. 

Similarly to the primary surveillance radar’s broadcast, it contains a timestamp and the 

identification number of the radar, but it also contains the SQUAWK, altitude, and identification 

number of the communicating aircraft. The third topic in our DDS definitions is the ADS-B report. 

It is made up of an aircraft’s reported coordinates, altitude, callsign, ground speed, heading, 

airspeed, and a timestamp. The other DDS topics are used for pilot-controller interactions. The first 

of those topics is the flight plan, which contains the information listed in section 2.2.1.4. Our topics 

also include an alert topic used by the anomaly detector to send messages to ATCs about anomalies 

and to highlight the aircraft concerned by the anomaly. The last topics, open flight plan, close flight 

plan, and route change are sent by the ATC to the FSS to interact with flight plans and perform the 

function described by their names.  



40 

CHAPTER 5 THREAT MODEL AND ONTOLOGICAL SOLUTION 

In this chapter, we present our theoretical contributions. The first such contribution is our 

attack model, which we summarized in section 2.4. It is presented here in much more details. The 

next contributions are the ontology, which is our method of storing the data to be analysed, and the 

SPARQL reasoner, which runs the analysis queries. 

5.1 Attack model 

In this section, we detail the attack model we developed in order to evaluate the best 

solution. The vulnerabilities at the core of this model are based on multiple research articles 

(McCallie, Butts, & Mills, 2011) (Purton, Abbas, & Alam, 2010) (Martinovic & Strohmeier, 2013) 

(Costin & Francillon, 2012) (Haines, 2012) (Wood, 2009) (Sampigethaya, Assessment and 

mitigation of cyber exploits in future aircraft surveillance, 2010) (Tippenhauer, Pöpper, 

Rasmussen, & Capkun, 2011) (Strohmeier, Lenders, & Martinovic, On the Security of the 

Automatic Dependent Surveillance-Broadcast Protocol, 2015) (Sampigethaya, Privacy of future 

air traffic management broadcasts, 2009) (Magazu III, 2012) (Lim, 2014), as well as various other 

types of articles (Kelly, 2016) (Marks, 2011) (Zetter, 2012) (Walker, 2012) (Greenberg, 2012) 

(Henn, 2012) (Cenciotti, 2014) (Le Monde, 2015) (Miller, 2015) (Mark, 2015) (Pasztor, 2015) 

(Laboda, 2015) (Thurber, 2012) (BBC News, 2012). We organized our attack model in sections 

that each represents a different attack category. For each category, we explain the different 

scenarios, consequences, and possible solutions. Schäfer et al. from Oxford University (Schäfer, 

Lenders, & Martinovic, 2013) developed a similar attack model in parallel and verified it by 

surveying industry specialists, which adds validity to our findings. We split the attack scenarios 

into five categories: identification and localization, RF jamming, GPS spoofing, packet injection 

and replay, and DDS intrusion. Due to technological and time constraints, the solution we 

developed only addresses the packet injection and replay attack scenarios. 

5.1.1 Identification and localization 

A core feature of ADS-B is the broadcast of position and flight information by the aircraft. 

Currently, the information transmitted is not encrypted, which means that anyone can listen to the 

broadcasts and get the position and flight information about all aircraft surrounding an ADS-B 

antenna. While flight tracking websites make use of this feature of ADS-B coupled with official 
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information shared by ANSPs to offer their services to the public, a malicious person can use the 

data broadcast by an aircraft to enable different attacks. 

 An example of a malicious activity enabled by this feature is stalking whether done by 

paparazzi or by someone with worse intent. The identification information of an aircraft, such as 

the callsign or tail number, is publicly available on public aircraft registration databases on the 

Internet (Transport Canada, 2014). A malicious person can use this information to track the targeted 

aircraft by listening to its ADS-B broadcasts with a homemade antenna and receiver, even if the 

owner of the aircraft has requested aircraft tracking websites to filter out data about the aircraft. If 

access to the equipment is too costly, there are websites that provide unfiltered aircraft tracking 

features where ADS-B tracking enthusiasts provide the information (ADS-B Exchange, n.d.). 

Examples of aircraft that do not appear on commercial websites but appear on amateur 

communities' websites are FBI surveillance aircraft, shown in Figure 5.1, U-2 reconnaissance 

planes (Aircraft Spots, 2017), and even Air Force One (RTL-SDR.COM, 2015). 

 

Figure 5.1 : FBI plane spotted 

The ability to track aircraft accurately by listening to ADS-B broadcasts facilitates aircraft 

targeting. For example, a terrorist organization wanting to blow up an aircraft can use this feature 

to know exactly where the aircraft is and evaluate when it is in a vulnerable position such as when 

approaching or landing, where it will be nearer to the ground and outside of the boundaries of the 
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airport, to attack it with an explosive device. The consequences of this attack range from loss of 

life to loss of money from the reduced confidence of the public in air travel depending on the attack 

this vulnerability made possible. 

 The solution to these attacks is to encrypt ADS-B communications. Doing so would not 

only prevent unwanted listeners from gaining information about aircraft currently flying, but would 

also authenticate the communications, which would prevent spoofing. However, as we show later 

in this chapter, encryption does not prevent every attack on ADS-B. 

5.1.2 Jamming 

ATCS rely on radio frequency communications, such as ADS-B, to operate, which makes 

them vulnerable to jamming. The impact depends on the target of the jamming attack. We have 

identified three possible attack scenarios that take advantage of this vulnerability: jamming a piece 

of ground equipment, jamming an aircraft, and area-wide jamming. 

 The most basic form of a jamming attack is to emit a powerful signal in the direction of a 

piece of ground equipment in order to prevent it from receiving ADS-B packets or SSR replies 

from surrounding aircraft. ATCs will most likely consider the piece of equipment malfunctioning 

until they investigate. If there are other, unaffected ADS-B receivers or SSRs in the range covered 

by the targeted equipment, the consequences will be minimal. If there are no unaffected receivers 

or radars in the target's range, there will be a loss of coverage, which might in turn lower the ATC’s 

confidence in ADS-B or SSR as a surveillance technology. 

 A different version of the jamming attack is to target an aircraft. The goal in this scenario 

is to prevent an aircraft from receiving radio communications from ground equipment or from other 

aircraft. Similarly to the previous scenario, a malicious person uses a software-defined radio (SDR) 

to emit a powerful radio signal in the direction of the target, which the attacker acquires by listening 

to its ADS-B broadcasts. The consequences of this attack vary on the frequency that is being 

jammed. If the attacker targets the frequency used for voice communications, the pilot and 

controller will switch to an available one. If the attacker targets the 1090 MHz frequency, the 

victim's transponder will not be able to hear the interrogations of the SSR, which means it will not 

send an answer. It also means that the ADS-B In equipment, if present on the aircraft, will not be 

able to receive ADS-B updates from ground equipment or hear collision avoidance system (CAS) 
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signals from surrounding aircraft. The pilot of the targeted aircraft will treat the affected equipment 

as malfunctioning and will apply the directives related to equipment malfunction. 

 The final scenario of this type of attack is area-wide jamming. Due to the scope of this 

attack, we presume that it is carried out by an organization and not an individual. A malicious 

organization wants to cause chaos around a busy air traffic area or around an airport by shutting 

down all communications. To do so, they choose to jam the 1090 MHz frequency used by ADS 

and SSR as well as the ones used by VHF over an area. One potential way to do this is with a 

swarm of SDR-equipped drones. The first step is to scatter them over the targeted area. When 

everything is in place and the weather conditions are favourable for chaos, e.g. low visibility, the 

terrorist organization activates the drones. They will then soar out of small arms reach and start 

broadcasting a powerful radio signal across the targeted radio frequencies. This attack will most 

likely trigger an emergency security control of air traffic (ESCAT) procedure, as well as the ATC 

Zero directive. The consequences for this catastrophic scenario include loss of human lives due to 

possible collisions as well as monetary losses in both loss of material, flight cancellations, and loss 

of customer's confidence. 

 Increasing the density of ADS-B receivers can decrease the loss of coverage in case of an 

attack on a ground antenna, which reduces the impact of such an attack, but does not fully prevent 

or solve one. 

5.1.3 GPS spoofing 

Since ADS-B Out systems use a GPS receiver to determine the aircraft's coordinates, the 

system is vulnerable to GPS spoofing. In this scenario, the attacker uses GPS spoofing equipment 

to trick the aircraft's GPS receiver into thinking the fake signal is coming from an actual GPS 

satellite. The ADS-B equipment will then start broadcasting the position the GPS unit calculated 

using the satellite signals it received, including the spoofed one. Since the signal is spoofed, the 

calculated position is not valid. Encryption will not fix this vulnerability because the ADS-B data 

is compromised before it is encrypted. Multilateration would help in the event that there are 

multiple, operational ADS-B receivers in the targeted aircraft's range but it is costly and not always 

viable such as in remote places like the Great Canadian North and over the oceans. 
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5.1.4 Packet injection 

The attacks in this category take advantage of ADS-B's lack of authentication and 

encryption to trick the ATCS as well as aircraft's ADS-B In equipment by sending fake ADS-B 

broadcasts using an SDR. The scenarios associated with this attack category are ghost aircraft, 

radar screen clutter, broadcast spoofing, and packet replay. 

 In the ghost aircraft scenario, a malicious person wants to create confusion by tricking 

ground equipment or aircraft ADS-B receivers into displaying on the ADS-B feed an aircraft that 

is not there. The perpetrator of the attack uses an SDR to broadcast ADS-B packets with fake data, 

which ground equipment as well as nearby aircraft will pick up. Those systems then update their 

display with the fake data. The consequences will vary depending on the situational awareness of 

the victims of this attack. A very aware pilot might be able to tell that the aircraft is fake and the 

only consequence will be a loss in confidence in ADS-B from the pilot and ATC. If the pilot is not 

well aware, he or she might ask the ATC for a course change in order to avoid the fake aircraft. 

This might result in higher fuel consumption and loss of confidence in ADS-B if the ATC finds 

out that the aircraft is fake. If the ghost aircraft appears near an airport, it can result in monetary 

losses due to delays or flight cancellations. By carefully selecting the ghost aircraft's identification 

data, the attacker can instead create political tensions. For example, a malicious person in China 

can broadcast ADS-B packets containing the identification information of an American U-2 

reconnaissance plane, which is available on aircraft registration websites, and place it somewhere 

above one of China's military facilities. The ground equipment picks up the packets and updates 

the radar screens accordingly, which might cause confusion among Chinese air traffic controllers, 

who might report the incident. Until they find the cause of the ghost aircraft, if they find it at all, 

there will most likely be suspicion towards the United States of America. Other consequences 

include money wasted on the investigation and loss of confidence in ADS-B if they find the cause. 

 The radar screen clutter attack is similar to the ghost aircraft attack except that the goal is 

to introduce many fake aircraft in order to clutter the ATC’s radar screens to prevent controllers 

from distinguishing real aircraft from fake ones. The technique is also similar to the previous 

scenario, except that the attacker will send ADS-B packets at a higher rate and containing different 

aircraft information and positioning data. The aircraft's ADS-B In systems, if present, that are 

affected by the attack display a multitude of aircraft, which means that the pilot will not be able to 

trust the ADS-B In feed and will most likely ignore it. The consequence will be a loss of confidence 
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in the ADS-B technology. On the air traffic control’s side, the controllers will most likely ignore 

the ADS-B feed and will instead rely on radar surveillance. The consequence will be a loss of 

confidence in ADS-B, as well as a loss of situational awareness from the lack of ADS-B data. If 

the area affected has no radar coverage, such as the north of Canada, ATCs will most likely have 

to operate under lower air travel volume capacity in that area for the duration of the attack since 

there are no other means of surveillance. This causes monetary losses associated to delays, 

cancellations, route changes, and loss of confidence in air travel safety from the public, as well as 

loss of confidence in ADS-B from ATC. 

 The broadcast spoofing attack iterates on the ghost aircraft scenario by using the 

identification data of an aircraft that is currently flying in the same area as the malicious person. 

The attacker can learn which aircraft are flying nearby by listening to their ADS-B broadcasts, 

which also provides the aircraft's identification information that the attackers need in order to carry 

out this attack. The perpetrator will begin by targeting a nearby aircraft and gather its identification 

information. Then, this information is inserted in the spoofed ADS-B packets in order to trick the 

ATCS and other aircraft's ADS-B In equipment into thinking those packets are sent by the aircraft. 

Since the goal is to create confusion, the attacker inserts fake positioning data in the packets before 

broadcasting them. This causes the ADS-B equipment to update the displays with the spoofed 

position and possibly alternate between the spoofed position and the real one when it receives a 

new ADS-B packet from the aircraft or from the rogue emitter. However, as in the previous 

scenario, consequences could include monetary losses due to route changes, cancellations, delays, 

and loss of confidence in the event that there is no radar coverage. 

 The final scenario in the packet injection attack category we consider is packet replay. In 

this scenario, similarly to the other packet injection attacks, a malicious person wants to trick the 

ATCS into thinking an aircraft that is currently in the air is not where it really is. The attacker 

listens for an aircraft's ADS-B broadcasts and records them in order to rebroadcast them later. Since 

there is currently no timestamp on ADS-B packets, the ATCS’s ground stations and nearby 

aircraft's ADS-B In receivers will not be able to tell that someone is rebroadcasting old packets. As 

usual, the consequences on the ATC’s side are minimal in the event that there is primary or 

secondary surveillance radar coverage. If not, the consequence is a loss of situational awareness, 

which could lead to worse outcomes as stated in previous scenarios. In any case, the ADS-B 
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information on the surrounding aircraft's displays will not be accurate and will cause a loss of 

situational awareness on the pilot's side. 

 Encrypting ADS-B communications would solve these issues to an extent, but it would be 

useless in the event that someone steals the private key associated with the aircraft's registration 

information. Another scenario to consider is a pilot who purposely or accidentally enters the wrong 

private key or identification information in the aircraft's ADS-B system. The positioning data will 

be accurate, which means that multilateration will not filter it out, but the identification data will 

be wrong and could be a duplicate of an aircraft already flying in the area, which would confuse 

ATC. Encryption would effectively prevent the packet replay attack because the ADS receiver 

knows when the aircraft generated the packet and can ignore it if the timestamp is too far in the 

past. However, all of these solutions would require a change in the ADS-B specifications as the 

current one does not have room for more data on an ADS-B packet, or an easy way to implement 

an encryption scheme. 

5.1.5 DDS intrusion 

This attack category is different in execution from the others. Indeed, in the DDS intrusion 

case, the attacker relies on compromising a machine that is part of the ATCS local network, instead 

of emitting data over the air. Traditional IT security solutions may help here by making it harder 

to compromise a machine, but they are ineffective once the machine is compromised, as we 

discussed in section 2.5. The attack scenarios here are similar to the previous categories in goals 

and effects, so we will not repeat them here. What we do talk about here is the execution. This 

attack technique relies on compromising a machine that is running a DDS subscriber. This can be 

done by directly taking control of that machine and manually modifying its behaviour or by 

infecting it with a virus that autonomously publishes false data. Obviously, an antivirus is of great 

help in this scenario as it would prevent the virus infection in the first place. Since this scenario is 

outside of the realm of ADS-B and other radar technologies, techniques like multilateration and 

ADS-B encryption would not be effective at preventing this type of attack. This technique is much 

harder to execute because the machines part of the ATCS are isolated from the outside world and 

are difficult to physically access. This type of attack presents a different set of challenges to security 

experts as it concerns both traditional IT security and malicious data manipulations. However, this 

can also be seen as an advantage since there are complementary solutions in the form of antiviruses 

to prevent it and our proposed anomaly detection engine to mitigate the effects. 
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5.2 Ontological model 

The ontology is the basis of our solution. It is used to store data coming from the sensors in a 

way that expresses what each data point represents and establishes relations to add context and 

meaning. This step is crucial for the reasoner because it translates data into concepts. The ontology 

was developed jointly with another Master’s student, Simon Malenfant, who works in the same 

research laboratory and who is specialized in ontology design. 

The first and most basic concept in our ontology is the Position, which is made of three data 

points that represent latitude, longitude and altitude. The next concepts augment the Position in 

different ways to express more complex data relations. The Position can be either a PSR position, 

SSR position, or an ADS-B position, depending on which instrument sent the data. These subclasses 

have different level of trust, according to our attack model. 

The first complex relation we address is how we represent an aircraft and its trajectory. The 

Measured position, which is made of a Position and a timestamp, is used as a point in space and 

time. A Track is a series of Measured position and represents the trajectory of an Aircraft. The 

Aircraft class also contains a Zone of separation and a list of Equipment. A Zone of separation 

represents the cylinder centered on an aircraft in flight that represents the minimum distance or 

altitude aircraft need to keep between them. It is made up of a radius and an altitude. An Equipment 

represents a piece of special equipment on board of the aircraft like life rafts and signaling devices 

that are mandatory for certain types of flight.  

The next complex concept is an aircraft’s route, which is needed as a key part of the 

representation of a Flight plan in the ontology. For this concept, we introduce the Named position, 

which includes a Position, as well as a name to express the waypoints aircraft use during IFR. A 

Route is a list of those positions and represents the announced waypoints the pilot will fly through. 

A Flight plan also contains data points to express fuel level, cruise speed, departure time, arrival 

time, and flight plan status which is either opened or closed. Other key elements of the Flight plan 

are the departure and destination airports, which we conceptualize with the Airport class. A 

Prohibited zone represents prohibited airspace that aircraft cannot enter without special 

authorizations. It is categorized by a Position as well as a radius and an altitude. In this case, the 

altitude component represents the maximum altitude of the prohibited zone. 
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The Airport class contains a Named position property and a Regulation property used to 

conceptualize the periods where take-offs and landings are restricted to reduce noise pollution 

around an airport. The Regulation property has a start time and an end time that represent the time 

slot where landings and take-offs are allowed. 

Figure 5.2 depicts how those concepts are related to each other. 

 

 

Figure 5.2 : Ontological model 

5.3 DDS topics to Ontology subjects data translation table 

The equivalence table contains a list of all the data topics used by the ATCS, a list of all 

ontology subjects and instructions on how to create the ontology subjects with the data from the 

DDS topics. This is another part of our design that allows for great portability as it allows easy 

adaptation to any data topic definitions, which can vary from one ATCS to another. The only data 
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topics that have to be added in the existing system are the topics for the alerts. It tells the DDS 

adapter where to find each data point needed by the ontology. The relationships between the DDS 

topics defined in Chapter 4 and the ontological concepts described in section 5.2 are described in 

the following table. This table becomes the specification for constructing the DDS data translator 

module described in section 3.2. Table 5.1 shows an example of what a DDS translation table could 

look like. 

Table 5.1: DDS topics to ontological concepts translation table 

DDS topics  Ontological concepts 

PSR data broadcast Azimuth PSR position.Azimuth 

Track.Measured_position.Azimuth 

 Distance PSR position.Distance 

Track.Measured_position.Distance 

 Timestamp PSR position.Timestamp 

Track.Measured_position.Timestamp 

 Radar ID PSR position.Radar ID 

   

SSR data broadcast SQUAWK SSR position.SQUAWK 

Track.Measured_position.SQUAWK 

 Altitude SSR position.Altitude 

Track.Measured_position.Altitude 

 Aircraft ID SSR position.Aircraft ID 

 Timestamp SSR position.Timestamp 

 Radar ID SSR position.Radar ID 

   

ADS-B report Latitude ADS-B position.Latitude 

Track.Measured_position.Latitude 

 Longitude ADS-B position.Longitude 

Track.Measured_position.Longitude 

 Altitude ADS-B position.Altitude 

Track.Measured_position.Altitude 

 Callsign ADS-B position.Callsign 

Track.Measured_position.Callsign 

 Ground speed ADS-B position.Ground_speed 

Track.Measured_position.Ground_speed 
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Table 5.1: DDS topics to ontological concepts translation table 

DDS topics  Ontological concepts 

 Heading ADS-B position.Heading 

Track.Measured_position.Heading 

 Airspeed ADS-B position.Air_speed 

Track.Measured_position.Air_speed 

 Timestamp ADS-B position.Timestamp 

Track.Measured_position.Timestamp 

 Radar ID ADS-B position.Radar ID 

   

Flight plan Equipment Aircraft.Equipment 

 Route Flight_plan.Route 

 Departure airport Flight_plan.Departure_airport 

 Arrival airport Flight_plan.Arrival_airport 

 Cruise speed Flight_plan.Cruise_speed 

 Cruise altitude Flight_plan.Cruise_altitude 

 Flight rules Flight_plan.Flight_rules 

   

Alert  Alert 

5.4 Detection logic 

The reasoner is the cornerstone of this solution. This module uses a set of queries to analyze 

the data stored in the ontology to detect dangerous situations such as loss of separation and 

anomalies in the data such as impossible aircraft movements. Our reasoner uses the SPARQL 

Protocol and RDF Query Language (SPARQL) (W3C, n.d.). These rules aim to detect data 

anomalies that could be symptoms of an attack or emergency situations. Attack symptoms are data 

anomalies that would indicate that an attacker is trying to compromise data integrity and accuracy. 

We have included some SPARQL pseudo-code queries as examples throughout this section. The 

rest of them can be found in the appendices. 
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5.4.1 Detecting fake aircraft 

5.4.1.1 Aircraft materialization 

The first abnormal situation we address is aircraft materialization. This event occurs when 

a new aircraft track starts at an unexpected location. Expected locations include the areas near 

airports and near sector limits since these are the places where an aircraft would normally come 

into the ATC’s radar screen. The query does so by looking at the start location of a new track when 

it is registered in the system. If the coordinates are not near an expected location, then an alert is 

shown to the ATC. By marking and segregating suspicious aircraft, ATCs can decide to hide them 

in the event of a screen clutter attack. We evaluate that this query only needs to run each time a 

new track is added into the system. 

5.4.1.2 Violation of physical laws 

This query is used to detect whenever an aircraft appears to have impossible behaviour. 

Examples of impossible behaviour are aircraft that are moving too fast, turning too tightly or simply 

appear to teleport on the radar screen. Other examples are sudden altitude changes and aircraft 

appearing out of nowhere on the ADS-B feed but that were never seen by the primary or secondary 

surveillance radars. This situation could be caused by track reconstruction errors, but it may also 

be the result of an attack on the ATCS. Figure 5.3 shows the SPARQL query to detect violation of 

physical laws. 

01 TIME_RANGE = maximum time interval between data points to compare them 

02 MAX_SPEED = maximum allowed speed 

03 SELECT ?aircraftID ?timestamp1 ?sensor 

04 { ?ddsSubject1 rdf:type :ADSBReport 

05   ?ddsSubject2 rdf:type :ADSBReport } 

06 UNION 

07 { ?ddsSubject1 rdf:type :SSRPosition 

08   ?ddsSubject2 rdf:type :SSRPosition } 

09 ?ddsSubject1 :ID ?aircraftID 

10 ?ddsSubject2 :ID ?aircraftID 

11 FILTER(?ddsSubject1 != ?ddsSubject2) 

12 ?ddsSubject1 :timestamp ?timestamp1 

13 ?ddsSubject2 :timestamp ?timestamp2 

14 FILTER(|?timestamp1 - ?timestamp2| < TIME_RANGE) 

15 ?ddsSubject1 :longitude ?longitude1 

16 ?ddsSubject1 :latitude ?latitude1 

17 ?ddsSubject2 :longitude ?longitude2 

18 ?ddsSubject2 :latitude ?latitude2 

19 ?distance = getDistance(?longitude1, ?latitude1, ?longitude2,     

               ?latitude2) 

Figure 5.3 : Violation of physical laws 
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20 FILTER(?distance/|?timestamp1 - ?timestamp2| > MAX_SPEED) 

21 ?ddsSubject1 :publishedBy ?sensor 

Figure 5.3 : Violation of physical laws 

 For every aircraft in the monitored area, the reasoner compares the history of reported 

positions (lines 4 to 11) up to a certain time in the past (lines 12 to 14) and verifies if the longitude, 

latitude, airspeed, and ground speed are consistent with each other. It also verifies that the ground 

speed is lower than the allowed maximum (lines 15 to 20). If any of those conditions are not met, 

the suspicious aircraft is highlighted on the radar screen to let ATCs know that its movement is not 

normal. In order to be effective, this query needs to run every time a new position update is added 

to the ontological database. 

5.4.2 Detecting emergencies and air traffic rules violations 

5.4.2.1 Loss of separation 

While our solution is aimed at detecting malicious air traffic data injections, it can be 

extended to also detect air traffic rules violations. One of these is loss of separation. During flight, 

aircraft have to keep a certain distance between them, either in latitude/longitude or in altitude. 

This zone of separation can be seen as a hockey puck centered on an aircraft. A loss of separation 

incident happens when an aircraft enters another aircraft’s hockey puck. 

01 TIME_RANGE = Maximum time difference between two Measured positions 

02 ALTITUDE_MIN = Minimum altitude difference between aircraft 

03 DIST_MIN - Minimum distance between aircraft 

04 SELECT ?aircraft1ID ?aircraft2ID ?timestamp1 

05 ?ddsSubject1 rdf:type :ADSBReportType1 

06 ?ddsSubject2 rdf:type :ADSBReportType1 

07 FILTER(?ddsSubject1 != ?ddsSubject2) 

08 ?ddsSubject1 :timestamp ?timestamp1 

09 ?ddsSubject2 :timestamp ?timestamp2 

10 FILTER(|?timestamp1 - ?timestamp2| < TIME_RANGE) 

11 ?ddsSubject1 :altitude ?altitude1 

12 ?ddsSubject2 :altitude ?altitude2 

13 FILTER(|?altitude1 - ?altitude2| < ALTITUDE_MIN) 

14 ?ddsSubject1 :longitude ?longitude1 

15 ?ddsSubject1 :latitude ?latitude1 

16 ?ddsSubject2 :longitude ?longitude2 

17 ?ddsSubject2 :latitude ?latitude2 

18 ?distance = getDistance(?longitude1, ?latitude1, ?longitude2,  

               ?latitude2) 

19 FILTER(?distance < DIST_MIN) 

20 ?ddsSubject1 :publishedBy ?sensor 

21 ?ddsSubject2 :publishedBy ?sensor 

Figure 5.4 : Loss of separation 
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As shown in Figure 5.4, the query looks at all pairs of aircraft (lines 4 to 7) within a given 

time range (lines 8 to 10). The query will then verify if the aircraft are too close vertically (lines 11 

to 13), and horizontally and vertically (lines 14 to 18). Aircraft that meet these conditions are 

highlighted on the ATC’s screen to alert the controller that the aircraft are too close together. Since 

the goal of this query is to be an early warning to avoid two aircraft getting in loss of separation 

distance, this query does not need to run every time the database receives a new position update. 

We evaluate that the frequency at which this query runs for each aircraft depends on the density of 

the air traffic. When there are multiple aircraft in a given area, this query will run more often and 

vice versa.  

5.4.2.2 Route deviation 

Another traffic rule violation our solution can detect is route deviation. Before taking off, 

pilots have to file a flight plan to tell ATCs of their intentions. The flight plan contains a route that 

consists of a series of waypoints that the aircraft plans to go over. Unless instructed otherwise by 

an air traffic controller, the pilot has to fly along the routes between the waypoints. A route 

deviation incident happens when an aircraft strays too far from the routes between the waypoints. 

The query computes the time it should take to reach the aircraft’s next waypoint from the previous 

one and takes into consideration the aircraft’s ground speed to compensate for wind speeds. The 

query raises an alert if the aircraft takes longer than that time to reach the next waypoint, within a 

certain threshold. Every time an aircraft reaches a waypoint, the system computes how long it 

should take for the aircraft to reach the next waypoint plus a grace period to allow for slight delays. 

It then schedules this query to run after the time has expired. 

5.4.2.3 Prohibited zones 

Our solution also helps prevent prohibited airspace intrusion. A prohibited airspace is a 

well-defined three-dimensional cylinder centered on a given point. By looking at the distance 

between an aircraft and the center of a prohibited airspace and comparing it to the radius of the 

zone as well as the difference between the altitude of the aircraft and the ceiling of the zone, the 

query can detect aircraft that are too close to the prohibited airspace. An alert is then shown to 

ATCs so they can contact and warn the aircraft to prevent it from going too close to the prohibited 

zone and have military ATCs contact the pilot of the aircraft. Similarly to the loss of separation 
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query, this query also serves as an early warning. Thus, it only needs to run every so often for each 

aircraft. 

5.4.2.4 Noise reduction 

Our ontological solution can help detect noise reduction rules violations by looking at the 

time an aircraft requests a take-off or landing permission and at allowed take-off and landing 

periods. It can also verify the route that a given aircraft will take and make sure it does not break 

any noise reduction rules along the route. The query looks at all the take-off and landing requests 

as well as the routes in the ontology and compares them to the effective noise reduction rules. Since 

this is an audit mode query, it does not need to be scheduled to run regularly and instead runs on 

demand. 

5.4.2.5 Fuel emergency 

Our solution has the added benefits of being able to predict and help resolve emergencies 

like fuel emergencies. With the centralized data store our solution offers, the reasoner can keep 

track of the amount of fuel left in an aircraft’s tank by submitting a query to the ontology. The 

query allows the reasoner to know when the aircraft took off and how much fuel the pilot indicated 

in the flight plan. It can then alert the ATCs when an aircraft is projected to run out of fuel before 

reaching its destination airport. Similarly to the route deviation query, this query can be scheduled 

ahead of time. Since we know how much fuel a given aircraft has in flight time from this original 

flight plan and from ADS-B updates, we can schedule the query to run every so often to check on 

the fuel level of the aircraft and adjust the frequency of the query accordingly. If the fuel levels of 

a given aircraft are getting low, the query can run more often for that aircraft in order to warn ATC 

as quickly as possible if the fuel levels get too low and the aircraft needs special attention. 

5.4.2.6 Interrupted track 

In this scenario, an aircraft suddenly stopped transmitting data. This could happen for a 

number of reasons: loss of radar or ADS-B coverage, malfunctioning equipment on the aircraft or 

a crash. Figure 5.5 shows how the query would detect such an event. 

01 TIMEOUT = Maximum delay since last update before considering track  

             interrupted 

02 NOW = The current time 

03 SELECT ?aircraftID ?sensor 

Figure 5.5 : Interrupted track 
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04 {?ddsSubject rdf:type :ADSBReport} 

05 UNION 

06 {?ddsSubject rdf:type :SSRPosition} 

07 ?ddsSubject :ID ?aircraftID 

08 ?ddsSubject :timestamp ?timestamp 

09 FILTER( [NOW] - ?timestamp > TIMEOUT) 

10 ?ddsSubject :publishedBy ?sensor 

Figure 5.5 : Interrupted track 

The query looks at the latest update of every aircraft (lines 3 to 6) and checks if an aircraft 

has not updated its position for a certain amount of time (lines 7 to 9). The aircraft that fulfill this 

condition are identified as such and the system raises the appropriate alert. This query also runs on 

a scheduled basis. Every time a new update comes in, the system calculates a delay in which a new 

update is expected. If the end of the delay is reached without any new update, this query triggers 

the alert. 

5.4.2.7 Anomalous descent 

An anomalous descent occurs when an aircraft has a descent rate that is too high to be a 

normal descent and would indicate a problem with the aircraft. The rate of descent is the difference 

of altitude between two position updates divided by the timespan between those updates. This 

query looks at every aircraft’s last position update and another one a certain amount of time in the 

past and computes the rate of descent using the altitudes reported on those two updates. If the rate 

of descent is too high, the module can alert the ATCs. Since this query calculates differences 

between updates to detect an emergency situation, it needs to run every time a new update comes 

in. 

5.4.3 Detecting high-level attacks 

The alerts triggered by the previous can be analysed on a macro level to detect the nature 

of the attack. We identified four types of attacks from our attack model that can be deduced using 

the metadata from the anomalies detected by our ontological reasoner as symptoms of those attacks. 

These scenarios help decide whether the alerts raised by the previous detection rules are anomalies 

due to errors in the system or actual attacks. Since the following query are meta-analysis, they run 

every time a new alert is triggered. 
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5.4.3.1 Ghost aircraft 

The first and most basic high-level attack type we look at is the ghost aircraft. In this 

scenario, an attacker wants to make a fake aircraft appear on the controllers’ screen. Depending on 

the execution and sophistication of the attack, it can be detected in different ways. The first sign a 

ghost aircraft is being injected into the system is the presence of aircraft materialization alerts, 

which would be triggered by a careless attacker who makes an aircraft appear in the middle of 

nowhere instead of near an airport or sector boundaries, for example. The second sign is a route 

deviation alert. This can occur when an attacker is spoofing the information of an existing aircraft 

with modified coordinates. The last and surest sign is that the ADS-B broadcasts of an aircraft do 

not match any aircraft detected by the primary surveillance radar. However, this detection 

technique only works in area with primary surveillance radar coverage. 

5.4.3.2 Screen clutter attack 

The goal of a screen clutter attack is to fill the ATC radar screens with fake aircraft in order 

to make real aircraft hard to discern by hiding them under clutter. It is similar to the ghost aircraft 

attack in technique, but with a different goal. By looking at how many aircraft materialization, laws 

of physics violation and ghost aircraft alerts, the reasoner can deduce that those anomalies are 

related and injected into the system with a purpose, namely to clutter the screens of ATCs. 

5.4.3.3 Jamming 

An attacker may choose to jam the frequencies used by aircraft equipment to disrupt 

communications. While it cannot be directly solved due to the nature of attack, our reasoner can 

detect whenever such an attack happens. By routinely compiling average air traffic density at any 

hour of the day, we can compare those averages to the current air traffic density. A much lower 

density value than usual would potentially indicate a jamming attack. Another detection technique 

our reasoner uses is to analyse how many interrupted track events it detected in the recent past. Too 

many events close to each other geographically and temporally indicate that the area may be victim 

of a jamming attack. 

5.4.3.4 System tampering 

The last detection scenario is system tampering. It is important to detect such events because 

this attack technique is at the core of the problems introduced by ADS-B and also serves as a check 
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on the system’s integrity. By looking at the alerts that concern ADS-B data, namely aircraft 

materialization, violation of laws of physics, loss of separation, route deviation, prohibited zones, 

interrupted track, anomalous descent, ghost aircraft, screen clutter, and jamming as well as how 

often they have been raised in the recent past, the query can evaluate if the system is compromised 

and if the data displayed on radar screens can be trusted. 

5.5 Discussion and lessons learned 

The application domain was fairly easy to break down into classes for the ontology. We 

think the biggest factor was that it is a concrete application domain with clearly defined real-world 

objects and relations as opposed to a more abstract application domain like IP network traffic. 

However, we could not represent everything we originally wanted to. For example, we are not able 

to easily represent and implement the notion of a body of water in our ontology, which prevented 

us from creating some rules for the audit mode of the detection system. Prohibited zones were 

approximated to circles which may not be representative of the actual area. We evaluated that this 

approximation was good enough as the alert raised by the detection system is an early warning 

when an aircraft is approaching a prohibited zone. 

We also found that adding new detection rules to the detection engine was hard without 

going back to the ontology to add new classes or properties. However, once the most basic classes 

like Position and Aircraft were added, it was easy to expand them to fulfill our needs. For example, 

we needed to differentiate the positions by the surveillance equipment that report them, so we 

created the PSR position, SSR position, and ADS-B position subclasses. 
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 

This Master’s thesis makes three main contributions: 1) an architecture for a rule-based 

anomaly detection system for Air Traffic Control Systems (ATCS) employing an ontology of high-

level concepts in Air Traffic Control (ATC) and aviation that detects data manipulation attacks and 

potentially dangerous situations, 2) an architecture and implementation of a high-fidelity air traffic 

control system simulator (ATCSS) that allows us to measure the real-time impact of cyber attacks, 

and 3) an attack model detailing the goals and techniques that could be used by modern attackers 

to attack ATCS. In order to construct ontological model of ATCS and attacks on them, we 

introduced a threat model of realistic attacks against modern ATCS. As far as we know, this is one 

of the first threat models that encompasses both physical and cyber threats to ATC and ATCS and 

partially answers our first research question. 

After defining the attack model, we designed and built an ATCSS to reproduce the effects 

of those attacks and test eventual solutions. This simulator leverages free software used in aviation 

gaming communities to reproduce the physical simulation components of an ATCSS, which allows 

us to measure and demonstrate the real-life impact of cyber attacks, something that we do not 

believe has been done before. This achievement was one of most time-consuming and technically 

challenging tasks of this research and we believe adequately addresses our third research question. 

Nonetheless, the ATCSS we built could certainly be improved upon. The most important features 

missing from our air traffic simulator is the integration of weather and flight plan information, and 

more realistic pilots, whether in the way of “smart pilots” - artificial intelligence that would 

simulate the behaviour  or real pilots interacting with the system through a flight simulator. Adding 

weather would improve the realism of our air traffic by adding wind patterns and turbulence that 

the smart pilots would interact with by requesting flight level changes or route deviations to the 

ATC. Weather would also include storms, fog, heavy snowfalls and other weather phenomena that 

cause route deviations and airport delays or closures. Despite the fact that it is able to simulate 

Automatic Dependent Surveillance-Broadcast (ADS-B) data sources, our simulation engine does 

not allow the aircraft to broadcast its heading or airspeed, which would have helped make the 

simulation more realistic, but would also have provided extra data points for the detection engine 

to analyze. Also, the simulated aircraft does not keep track of the amount of fuel on board and will 

thus never have unforeseen fuel emergencies due to unexpected winds or route changes. Other 

limitations in our architecture and data are pilot errors like missed approach or missed landing, 
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Primary Surveillance Radar (PSR) false-positives such as birds or mountains, aircraft Traffic alert 

and Collision Avoidance System (TCAS) alerts, areas without or with limited radar or ADS-B 

coverage, prohibited zones, and bodies of water. The next step would be to address the limitations 

of the simulator to have a more realistic air traffic simulation. Another direction would be to include 

ADS-B data taken from flight tracking websites. This option would provide the most realistic test 

data because it is taken directly from real air traffic. Finally, it would be desirable to use the flight 

simulator plugins and the radar screens to test different attack scenarios with real pilots and air 

traffic controllers. This would allow measurement of their reaction to attacks and to evaluate 

different remediation techniques. 

The next step in our research was to establish which Data Distribution Service (DDS) topics 

would be realistically part of a typical ATCS. Using the available data in those topics, we mapped 

them to the high-level concepts in an ontology that we designed, such as positions and tracks. Then, 

we used these concepts to design SPARQL Protocol and RDF Query Language (SPARQL) queries 

that address the attacks pointed out in the first step and other non-malicious potentially dangerous 

scenarios. In this process, we were able to address our fourth research question by providing 

important answers about the difficulty of this process and discover some of the techniques and 

rules of thumbs to keep this process on track. This part of the research was done in collaboration 

with another Master’s student, Simon Malenfant, and these results on the ontological design 

process are mainly his contribution. 

The anomaly detection solution we proposed in 0 takes advantage of ontologies to find 

anomalies in the data coming from the different sensors. We opted for a Network-based Intrusion 

Detection System (NIDS)-like architecture where our detection engine runs on dedicated machines 

connected to the ATCS network. This decision was somewhat confirmed to be easier to adapt to 

different ATCS than the Host-based Intrusion Detection System (HIDS) design since modifying 

our controller workstation (EuroScope) was fairly complicated. The advantages this design has 

over other design and over other solutions is portability and extensibility. Since the detection 

system is independent from the air traffic control system, it is easily adaptable to different ATCS. 

Furthermore, the data sources across ATCS are mostly the same and only the interface between the 

ATCS network and the ontology would need to be modified. Our design also allows air traffic 

management organizations to extend the detection to include other attacks and dangerous scenario 

than the ones presented in our model since detecting a new attack or scenario would be a matter of 
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writing a new SPARQL query, which does not require a thorough knowledge of the detection 

system. 

While addressing some of the most pressing issues concerning ATCS vulnerabilities to data 

manipulation attacks, our proposed detection system is not complete. A proof-of-concept prototype 

of the anomaly detection solution described in 0 was not fully implemented during the course of 

this work, and this is an important limitation of our work; our second research question remains 

only answered in theory. We consciously chose to concentrate our research efforts on the 

construction of an adequate simulator architecture (described in Chapter 4) and the ontological 

modelling process (Chapter 5). On the one hand, the construction of an adequate simulator was key 

to allow further research by the research group, but was also a necessary step to gain better domain 

knowledge on ATC in order to meaningfully participate in the ontological modelling process. On 

the other hand, the research team knew that the main difficulty and open research questions lay in 

the process of creating such an ontology for a concrete purpose, in this case anomaly detection. 

Thus, integrating the ontological model and queries that we constructed into a fully functional 

prototype to be tested in realistic simulations on the ATCSS that we built would have been the 

logical next step. Unfortunately, we simply ran out of time.  
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APPENDIX A – SPARQL QUERIES 

AIRCRAFT MATERIALIZATION 

01 SELECT ?aircraftID ?sensor 

02 { ?ddsSubject rdf:type :ADSBReport } 

03 UNION 

04 { ?ddsSubject rdf:type :SSRPosition } 

05 UNION 

06 { ?ddsSubject rdf:type :PSRPosition } 

07 SELECT ?airport 

08 ?ddsSubject :latitude ?latitude1 

09 ?ddsSubject :longitude ?longitude1 

10 ?airport :position :latitude ?latitude2 

11 ?airport :position :longitude ?longitude2 

12 ?distance = getDistance(?longitude1, ?latitude1, ?longitude2,    

  ?latitude2)  

12 FILTER(?distance < DIST_MIN) 

13 ?ddsSubject :publishedBy ?sensor 

 

 

ROUTE DEVIATION 

Part 1: scheduling the verification query 

01 NOW = current time 

02 SELECT ?flightplan 

03 ?flightplan :nextwaypoint ?nextwaypoint 

04 ?flightplan :lastwaypoint ?lastwaypoint 

05 ?flightplan :aircraftPlanID ?aircraftPlanID 

06 SELECT ?aircraftID ?airspeed 

07 { ?ddsSubject rdf:type :ADSBReport } 

08 FILTER(?aircraftID == ?aircraftPlanID) 

09 ?traveltime = computeTravelTime(?lastwaypoint, ?nextwaypoint,  

   ?airspeed) 

10 scheduleQuery(NOW + ?travelTime, ?nextwaypoint, ?aircraftPlanID) 

 

Part 2: the verification query 

01 ID = ID of the aircraft for which the verification query was scheduled 

02 WAYPOINT = the waypoint the aircraft was supposed to reach before this  

   query runs 

03 SELECT ?flightplan 

04 ?flightplan :aircraftPlanID ?aircraftPlanID 

05 ?flightplan :lastwaypoint ?lastwaypoint 

06 FILTER(?aircraftPlanID == ID && ?lastwaypoint != WAYPOINT) 

07 ?aircraftPlanID 
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PROHIBITED ZONES 

01 ZONE_RADIUS = radius of the prohibited zone 

02 SELECT ?aircraftID ?sensor 

03 { ?ddsSubject rdf:type :ADSBReport } 

04 UNION 

05 { ?ddsSubject rdf:type :SSRPosition } 

06 UNION 

07 { ?ddsSubject rdf:type :PSRPosition } 

08 SELECT ?zoneID 

09 ?zoneID :latitude ?zonelat 

10 ?zoneID :longitude ?zonelong 

11 ?zoneID :altitude ?zoneceil 

12 ?aircraftID :altitude ?aircraftalt 

13 FILTER(?zoneceil > ?aircraftalt) 

14 ?aircraftID :latitude ?aircraftlat 

15 ?aircraftID :longitude ?aircraftlong 

16 ?distance = getDistance(?aircraftlat, ?aircraftlong, zonelat,  

   zonelong) 

17 FILTER(?distance < ZONE_RADIUS) 

18 ?aircraftID :publishedBy ?sensor 

 

 

NOISE REDUCTION 

01 SELECT ?flightplan ?airport 

02 ?flightplan :departureAirport ?departureAirport 

03 ?flightplan :departureTime ?departureTime 

04 ?flightplan :arrivalAirport ?arrivalAirport 

05 ?flightplan :arrivalTime ?arrivalTime 

06 ?airport :noiseReductionTimeStart ?noiseStart 

07 ?airport :noiseReductionTimeEnd ?noiseEnd 

08 FILTER(?departureAirport == ?airport || ?arrivalAirport == ?airport) 

09 FILTER( 

(?departureTime > ?noiseStart && ?departureTime < ?noiseEnd) 

    || (?arrivalTime >?noiseStart && ?arrivalTime < noiseEnd)) 

10 ?flightplan :aircraftPlanID 

 

 

FUEL EMERGENCY 

Part 1: scheduling the verification query 

01 ID = ID of the aircraft for which we are scheduling the verification  

   query 

02 NOW = current time 

03 SELECT ?flightplan 

04 ?flightplan :aircraftID ?aircraftID 

05 FILTER(?aircraftID == ID) 

06 ?flightplan :fuelLevel ?fuelLevel 

07 ?flightplan :route ?route 

08 ?flightTime = computeFlightTime(?route, ?fuelLevel) 

09 scheduleQuery(?flightTime + NOW) 
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Part 2: the verification query 

01 ID = ID of the aircraft this query needs to look up 

02 LOW_FUEL = amount of fuel that is considered low 

03 SELECT ?aircraftID ?status ?fuelLevel 

04 FILTER(?aircraftID == ID && ?status == OPEN && ?fuelLevel <= LOW_FUEL) 

05 ?aircraftID 

 

 

ANOMALOUS DESCENT 

01 ALT_DIFFERENCE = maximum reasonable difference between two positions’  

   altitudes 

02 TIME_RANGE = maximum time difference between two updates to compare  

   them 

03 SELECT ?aircraftID ?timestamp1 ?sensor  

04 { ?ddsSubject1 rdf:type :ADSBReport  

05 ?ddsSubject2 rdf:type :ADSBReport }  

06 UNION  

07 { ?ddsSubject1 rdf:type :SSRPosition 

08 ?ddsSubject2 rdf:type :SSRPosition } 

09 ?ddsSubject1 :ID ?aircraftID  

10 ?ddsSubject2 :ID ?aircraftID  

11 FILTER(?ddsSubject1 != ?ddsSubject2) 

12 ?ddsSubject1 :timestamp ?timestamp1  

13 ?ddsSubject2 :timestamp ?timestamp2  

14 FILTER(|?timestamp1 - ?timestamp2| < TIME_RANGE) 

15 ?ddsSubject1 :altitude ?altitude1 

16 ?ddsSubject2 :altitude ?altitude2 

17 FILTER(|altitude1 - altitude2| > ALT_DIFFERENCE) 

18 ?ddsSubject1 :publishedBy ?sensor 

 

 

GHOST AIRCRAFT AND SCREEN CLUTTER 

01 GHOST_FREQUENCY = alert frequency to consider ghost aircraft attack 

02 CLUTTER_FREQUENCY = alert frequency to consider screen clutter attack 

03 TIMESPAN = timespan to consider alerts 

04 NOW = current time 

05 SELECT ?timestamp 

06 { ?alert rdf:type :materialization } 

07 UNION 

08 { ?alert rdf:type :violationphysics } 

09 FILTER (NOW – TIMESPAN < ?timestamp) 

10 ?alertfreq = COUNT(?timestamp) / TIMESPAN 

11 IF(?alertfreq > GHOST_FREQUENCY && ?alertfreq < CLUTTER_FREQUENCY) 

12 THEN SEND_GHOST_ALERT() 

13 ELSE IF(?alertfreq > CLUTTER_FREQUENCY) 

14 THEN SEND_CLUTTER_ALERT() 

15 END 
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JAMMING AND SCREEN CLUTTER 

01 NOW = current time 

02 TIMESPAN = timespan to compute average traffic 

03 AVERAGE_DENSITY = average air traffic density at current time 

04 DENSITY_DIFF = maximum allowed difference between current and average  

   densities 

05 SELECT UNIQUE ?aircraftID ?timestamp 

06 { ?ddsSubject rdf:type :ADSBReport } 

07 UNION 

08 { ?ddsSubject rdf:type :SSRPosition } 

09 UNION 

10 { ?ddsSubject rdf:type :PSRPosition } 

11 FILTER(NOW – TIMESPAN < ?timestamp) 

12 ?density = COUNT(?aircraftID) / TIMESPAN 

13 IF(AVERAGE_DENSITY - DENSITY_DIFF > ?density) 

14 THEN SEND_JAMMING_ALERT() 

15 ELSE IF(AVERAGE_DENSITY + DENSITY_DIFF < ?density) 

16 THEN SEND_CLUTTER_ALERT() 

17 END 

 

 

SYSTEM TAMPERING 

01 AVERAGE_FREQUENCY = regular alert frequency 

02 TIMESPAN = timespan to consider recent alerts 

03 NOW = current time 

04 FREQUENCY_DIFF = maximum difference in frequencies allowed 

05 SELECT ?timestamp 

06 { ?alert } 

07 FILTER(NOW – TIMESPAN < ?timestamp) 

08 ?frequency = COUNT(?timestamp) / TIMESPAN 

09 IF(?frequency > AVERAGE_FREQUENCY + FREQUENCY_DIFF) 

10 THEN SEND_TAMPERING_ALERT() 

11 END 


