

UNIVERSITÉ DE MONTRÉAL

USING ONTOLOGIES TO DETECT ANOMALIES IN THE SKY

LOUIS-PHILIPPE MOREL

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION

DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INFORMATIQUE)

NOVEMBRE 2017

© Louis-Philippe Morel, 2017.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213621571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé:

USING ONTOLOGIES TO DETECT ANOMALIES IN THE SKY

présenté par : MOREL Louis-Philippe

en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquées

a été dûment accepté par le jury d’examen constitué de :

M. GAGNON Michel, Ph. D., président

M. FERNANDEZ José M., Ph. D., membre et directeur de recherche

M. DEAN Thomas R., Ph. D., membre et codirecteur de recherche

M. LE NY Jérôme, Ph. D., membre

iii

DEDICATION

À mes parents, pour leur soutien et leurs encouragements durant toutes ces années.

À Cleo, pour m’avoir appuyé et encouragé durant cette aventure. Oui oui! J’ai fini!

Aux joueurs de musique traditionnelle, pour toutes les belles soirées de musique.

To my parents, for their support and their encouragements during all these years.

To Cleo, for supporting me and cheering me on. Yes! I’m really done!

To traditional musicians, for all the amazing evenings of music.

iv

ACKNOWLEDGEMENTS

I would like to thank Professor Jose Fernandez and Professor Thomas Dean for the

academic and financial support, without whom this research project would not have been possible.

I would like to thank Gergely Csernak for giving us the permission to use his software,

EuroScope, and for helping us understand it.

Finally, I would like to thank Simon Malenfant for working on ontologies with me.

v

RÉSUMÉ

 Ce mémoire de maîtrise présente une solution pour améliorer la sécurité des systèmes de

contrôle de trafic aérien. Cette solution prend la forme d’un détecteur d’anomalies qui va déceler

les manipulations malicieuses de données. Par les mêmes mécanismes, ce détecteur peut aussi

détecter les situations d’urgences et les violations des lois du trafic aérien. Les systèmes de contrôle

de trafic aérien sont composés de plusieurs capteurs qui envoient des données aux stations de travail

des contrôleurs aérien sur un réseau IP en utilisant un protocole de partage de données en temps

réel nommé Data Distribution Service. Des données malicieuses comme de fausses positions

d’avions peuvent être insérées dans le trafic du réseau en compromettant une machine connectée à

celui-ci ou en émettant des signaux contenant les données falsifiées qui seront captées et transmises

sur le réseau par les capteurs. Actuellement, une fois que ces données sont sur le réseau, les

systèmes ne disposent pas de mécanismes pour différencier les données malicieuses des vraies

données et les traiteront de la même façon. La présence de données falsifiées sur le réseau peut

causer de la confusion qui peut mener à des situations dangereuses incluant une sécurité aérienne

réduite.

 Nous avons évalué l’impact des différentes attaques sur les systèmes de contrôle de trafic

aérien en construisant un modèle de menaces tout en considérant les procédures d’urgence déjà en

place dans le monde de l’aviation. Nous avons conclu qu’il y a plusieurs façons selon lesquelles

un adversaire peut injecter des données malicieuses dans les systèmes. Il peut le faire soit en

injectant les données directement dans le réseau ou en utilisant une radio logicielle pour émettre

des données malicieuses sur les fréquences utilisées par les capteurs qu’ils les transmettent eux-

mêmes sur le réseau. Ces données peuvent induire les contrôleurs de trafic aérien en erreur et leur

faire prendre une décision dangereuse. Ce modèle de menaces a servi dans l’ébauche des méthodes

de détection.

 Pour contrer ces menaces, nous avons conçu un système de détection qui utilise les

ontologies pour entreposer les données et un moteur de requêtes ontologiques qui s’occupe des

requêtes de détection. Utiliser les ontologies nous a permis d’ajouter de la sémantique dans les

données, ce qui facilita la création de requêtes de détection dans le langage de requêtes SPARQL.

Le système de détection utilise un tableau d’équivalences entre les structures des données circulant

sur le réseau et les concepts ontologiques. Le système de détection est installé sur des machines

dédiées et envoie des alertes lorsqu’une requête détecte une anomalie. Nous avons conçu le modèle

ontologique en nous basant sur les hypothèses à propos des données qui circulent dans les systèmes

vi

de contrôle de trafic aérien. Concevoir un modèle ontologique qui est assez précis pour pouvoir

faire une détection appropriée, mais aussi assez générique pour permettre l’ajout de nouvelles

capacités de détection sans trop de problèmes s’est avéré être un défi. Nous avons eu des difficultés

à ajouter de nouvelles requêtes de détection sans devoir ajouter des concepts au modèle.

 Pour tester notre solution, nous avons conçu et construit un simulateur de système de

contrôle de trafic aérien qui se veut une imitation de l’architecture et du comportement d’un vrai

système de contrôle de trafic aérien. Le simulateur simule le trafic aérien et l’activité réseau qui en

découlerait dans un vrai système. Le but est d’avoir une plateforme pour reproduire et démontrer

l’impact des attaques identifiées dans notre modèle de menaces et pour éventuellement tester notre

système de détection. Nous avons incorporé des logiciels gratuits utilisés dans les communautés

d’amateurs de simulation de vol en ligne pour reproduire les composantes physiques d’un vrai

système de contrôle de trafic aérien et atteindre les fonctionnalités de base. Il y a plusieurs

fonctionnalités avancées qui ajouteraient au réalisme de la simulation comme la météo que nous

n’avons pas pu implémenter.

vii

ABSTRACT

This Master’s thesis introduces an anomaly detection solution to increase the security of

Air Traffic Control Systems against malicious data manipulation threats. At the same time, this

detection system can detect emergencies and air traffic rules violations. Air Traffic Control

Systems are made of multiple sensors sending data to air traffic controller workstations over an IP

network using a publish-subscribe protocol, Data Distribution Service. Malicious data can be

inserted into this network by either compromising a machine on the network, or by tricking the

sensors into emitting falsified data. Once into the network, the system currently cannot distinguish

malicious data from real one and will treat it as such, potentially causing dangerous situations and

general confusion that could lead to air traffic safety being compromised.

We quantify the impact different attacks have on the system by building a threat model

while considering existing safety procedures already in place in the aviation world. We found that

there are multiple ways an attacker can inject malicious data into the system either directly by

injecting false data into the network or indirectly by sending spoofed broadcasts that will be picked

up by the ground equipment and in turn injected into the network. These data manipulations can

induce an air traffic controller into making a wrong decision. This threat model also gives us

direction on how to detect potential threats.

 To counter these threats, we design a detection solution using ontologies to store data and

a query engine to interact with it. By using ontologies, we can add semantics to the data and

facilitate the creation of detection queries in the SPARQL query language. It uses a translation

table to convert Data Distribution Service data structures into ontological concepts. The detection

engine runs on dedicated machines and sends alerts to the concerned computers if a query detects

an anomaly. The ontological model was built using the assumptions we made about the data pieces

circulating on the Air Traffic Control System’s network. Designing an ontology that is specific

enough to be useful for detection, but also generic enough to easily add new detection capabilities

proved to be a challenge. We found that we often needed to add new concepts to the ontology when

we designed new queries.

 To test our solution, we designed and built an Air Traffic Control System Simulator to

replicate the architecture and behaviour of a real-life Air Traffic Control System. This simulator

models air traffic and the resulting network activity that would incur in an actual system. The goal

behind this simulator is to have a platform to reproduce and demonstrate the impacts of the attacks

viii

described in the threat model, and to eventually test the detection solution. We used free software

from the aviation gaming industry to reproduce the physical components of a real system and

achieved basic functionalities. However, there are advanced features that could be added to our

simulator to make the air traffic simulation more realistic such as weather.

ix

TABLE OF CONTENTS

DEDICATION .. iii

ACKNOWLEDGEMENTS .. iv

RÉSUMÉ .. v

ABSTRACT ... vii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES .. xii

LIST OF SYMBOLS AND ABBREVIATIONS.. xiii

LIST OF APPENDICES ... xvi

CHAPTER 1 INTRODUCTION ... 1

1.1 Modern Air Traffic Control Systems (ATCS) ... 1

1.2 Security and safety issues with ATCS ... 2

1.3 Research objectives .. 5

1.4 Thesis roadmap .. 7

CHAPTER 2 A REVIEW OF ATC AND RELATED TECHNOLOGIES 9

2.1 Air traffic controllers .. 9

2.2 Air traffic control systems (ATCS) .. 9

2.3 Air traffic rules violations and emergency scenarios ... 15

2.4 Attack model on ATCS .. 17

2.5 Traditional IT Security solutions .. 18

2.6 Air traffic control security solutions .. 19

2.7 Data Distribution Service (DDS) protocol ... 22

2.8 Ontologies .. 23

2.9 Summary .. 24

x

CHAPTER 3 ANOMALY DETECTION FOR ATCS .. 26

3.1 System architecture .. 26

3.2 Architecture .. 29

3.3 ATC ontology design process .. 31

3.4 Anomaly detection system ... 32

3.5 Implementation ... 33

CHAPTER 4 AIR TRAFFIC CONTROL SYSTEM SIMULATOR (ATCSS) 34

4.1 Goals ... 34

4.2 Radar screen ... 34

4.3 Simulation engine ... 36

4.4 Sensors ... 36

4.5 Flight Simulation Data protocol ... 36

4.6 System architecture .. 37

4.7 DDS topics ... 39

CHAPTER 5 THREAT MODEL AND ONTOLOGICAL SOLUTION 40

5.1 Attack model .. 40

5.2 Ontological model .. 47

5.3 DDS topics to Ontology subjects data translation table ... 48

5.4 Detection logic ... 50

5.5 Discussion and lessons learned .. 57

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS .. 58

BIBLIOGRAPHY .. 61

xi

LIST OF TABLES

Table 2.1: Comparison of the main surveillance technologies .. 12

Table 4.1 : FSD packets description ... 37

Table 5.1: DDS topics to ontological concepts translation table ... 49

xii

LIST OF FIGURES

Figure 2.1: Modern ATCS architecture.. 14

Figure 3.1 : Detection system architecture ... 29

Figure 4.1 : EuroScope ... 35

Figure 4.2 : Air traffic management system simulator architecture ... 38

Figure 5.1 : FBI plane spotted .. 41

Figure 5.2 : Ontological model .. 48

Figure 5.3 : Violation of physical laws .. 51

Figure 5.4 : Loss of separation ... 52

Figure 5.5 : Interrupted track .. 55

xiii

LIST OF SYMBOLS AND ABBREVIATIONS

ADS Automatic Dependent Surveillance

ADS-B Automatic Dependent Surveillance – Broadcast

ADS-C Automatic Dependent Surveillance – Contract

AI Artificial Intelligence

ANSP Air Navigation Service Provider

ATC Air Traffic Control

ATCS Air Traffic Control System

ATCSS Air Traffic Control System Simulator

ATM Air Traffic Management

CAATS Canadian Automated Air Traffic Control System-Wide

CAS Collision Avoidance System

CSV Comma-separated value

DDS Data Distribution Service

ES EuroScope

ESCAT Emergency Security Control of Air Traffic

FAA Federal Aviation Agency

FBI Federal Bureau of Investigation

FSD Flight Simulation Data

FTP File Transfer Protocol

GPS Global Positioning System

HTTP HyperText Transfer Protocol

ICAO International Civil Aviation Organisation

IFR Instrument Flight Rules

IP Internet Protocol

xiv

IT Information Technology

IVAO International Virtual Aviation Organisation

MEL Minimum Equipment List

MLAT Multilateration

NAS National Airspace System

NextGen Next Generation Air Transportation System

OSI Open Systems Interconnection

PCAP Packet capture

PSR Primary Surveillance Radar

QoS Quality of Service

RF Radio Frequency

RTPS Real-Time Publish-Subscribe

SDR Software-Defined Radio

SPARQL SPARQL Protocol and RDF Query Language

SSR Secondary Surveillance Radar

SWIM System-Wide Information Management

TCAS Traffic alert and Collision Avoidance System

TCP Transmission Control Protocol

TESLA Timed Efficient Stream Loss-toleration Authentication

UDP User Datagram Protocol

USA United States of America

VATSIM Virtual Air Traffic Simulation Network

VFR Visual Flight Rules

VHF Very High Frequency

VM Virtual Machine

xv

VoIP Voice over Internet Protocol

WAMLAT Wide Area Multilateration

xvi

LIST OF APPENDICES

Appendix A – SPARQL queries .. 71

1

CHAPTER 1 INTRODUCTION

1.1 Modern Air Traffic Control Systems (ATCS)

Air travel has become essential to our way of life and increasingly so. The demand, measured

by multiplying the number of passengers with the distance they travelled, grew 5.8 % in 2014

compared to 2013, from 5 806 222 million kilometres to 6 144 510 million kilometres, and 57%

compared to 2005, from 3 913 613 million, according to the International Civil Aviation

Organisation (ICAO) (International Civil Aviation Organisation, 2016). The organization also

indicates that aircraft freight and mail traffic is growing; the combined freight and mail volume

went up 5% in 2014 compared to 2013 and 26.4% compared to 2005.

To deal with the increase in air transportation and costs of radar equipment maintenance, the

Federal Aviation Administration (FAA) created the Next Generation Air Transportation System

(NextGen) program in 2004 (Federal Aviation Administration, 2017). NextGen is an air traffic

control system (ATCS) that uses a host of new Internet Protocol (IP) based technologies. The

transition from the previous ATCS to NextGen has started in 2011 and the FAA aims to equip all

American airports and control centers with the new system before 2019. The FAA has already

measured the benefits of this new ATCS: helicopter flights in the Gulf of Mexico are on average

14 nautical miles shorter and use 14 gallons of fuel less per flight on average and more low visibility

flights can take-off (Federal Aviation Agency, 2014). The FAA estimates that NextGen will save

14.5 billion USD in fuel, 400 million USD in reduction of carbon dioxide emissions, 2 billion USD

in FAA efficiency and 37.1 billion in crew reductions and maintenance costs through 2030 (Federal

Aviation Agency, n.d.).

Air traffic control systems are essential tools to monitor air traffic. The goal of these systems

is to enable air traffic controllers to make the best decision for a given situation by providing the

most accurate information about air traffic and weather conditions. They are a made of a

continually expanding collection of equipment pieces and technologies that cover various

functions. The most basic function is voice communication between the controller and the pilot,

which is covered by very high frequency (VHF) radio broadcasts. A very important part of ATCS

is air traffic position acquisition. This is done through various sensors that range from the basic

echolocation with radio waves of the primary and secondary surveillance radar (PSR and SSR,

respectively), to Automatic Dependent Surveillance – Broadcast (ADS-B), a packet-based data

2

transfer protocol allowing aircraft to self-report their position. These sensors send data to the air

traffic controller (ATC) workstation which in turn displays it on a computer screen to the controller.

These displays show, among other things, aircraft positions, identification and tracks, i.e. a list of

their previous positions. The more advanced ones show additional information like live weather.

Flight plans, which contain flight details such as itinerary and departure and takeoff time as

declared by the pilot before the actual flight, are stored in a flight plan database. This database can

be queried by controllers to get a particular aircraft’s flight plan information or to update its flight

plan. Air traffic control systems also keep data about current and forecasted weather. In Canada,

data concerning current weather and weather forecasts come from Environment and Climate

Change Canada, a governmental department that, among other things, measures weather conditions

all across Canada. All of these components are typically connected together through an IP network

that links the sensors, the flight plan database, and the air traffic controller stations. Due to the real-

time nature of this data exchange requirements, ATCS do not use standard TCP or typical

application-layer Internet protocols such as HTTP or FTP. Instead, they use specialized higher-

level data transfer protocols such as the Data Distribution Service (DDS) (Object Management

Group) communication protocol to share data with other members of the network. One of the main

features of DDS is the concept of data topics which are predetermined data structures that network

members use to send or receive information. The process of sending information is called

publishing and only the members who are subscribed to a topic will receive information about it.

1.2 Security and safety issues with ATCS

ATCS are critical to air traffic safety and attacks against them could have serious

consequences. Air traffic controllers and pilots rely on the accuracy of the data gathered by the

ATCS sensors and data anomalies or errors can cause them to make the wrong decision, which

could lead to accidents. If an aircraft appears at a different position on the radar screen than in

reality, controllers may direct a nearby aircraft to change course or altitude which can result in a

near-miss or a collision with the first aircraft. This could be caused by spoofed or jammed GPS

signals, spoofed position reports, or cyber attack on the ATCS. The ATCS displays could be

flooded with false aircraft positions or the radar signal could be jammed preventing them from

being displayed, effectively shutting down the control center for the duration of the attack. While

there are procedures already in place to address similar situations, the increased responsibilities of

the backup control centers could lead to potentially dangerous scenarios, flight delays or

3

cancellations which would cost a lot of money to airlines. Repeated attacks could cause aviation

workers to eventually lose trust in the new technologies.

We focus our attention on attacks that do not aim to shut down or otherwise alter the behavior

of the computer systems behind the ATCS, but rather make it unreliable and unusable by inserting

false data into it. In other words, we concentrate on attacks on the integrity of the data and not the

integrity of the systems.

Altering data on the ATCS can be done by compromising a computer on the internal network

and publishing false data onto it which will be picked up along with the real data. Many data

exchange protocols such as DDS do not have integrated authentication mechanisms, which makes

it possible for the attacker to do this from any machine on the IP network. Finally, even if

authentication mechanisms are put in place, an attacker could compromise the machine that is a

DDS publisher of sensor-related data topics, e.g. radar data.

The introduction of ADS-B presents a particularly significant security challenge. Unlike older

surveillance technologies such as radar, it depends on aircraft to create and send position reports.

It is also the only one where the aircraft sends data without prior interrogation by ground

surveillance equipment. Since ADS-B reports do not include any authentication information either,

it is possible for anyone to create and send spoofed ADS-B position reports by simply transmitting

an adequately formatted packet on the frequency used by this technology (1090 MHz), for example

by using cheap, readily available software-defined radios (SDR). The spoofed broadcast ADS-B

signal will be picked up by aircraft and ground stations alike. These spoofed reports would then be

injected into the ATCS, potentially leading to wrong and disastrous decision making by air traffic

controllers and pilots. What is particularly insidious in this scenario is that it does not require

compromising any machines on the ATCS and would be especially hard to detect using traditional

computer security techniques. Finally, since the legitimate ADS-B reports are not encrypted and

broadcast, anyone with an adequate receiver can have a real-time view of aircraft positions, which

represents itself a problem in terms of privacy and physical threats to aircraft.

Due to the unusual nature of these attacks, traditional computer security techniques like

firewalls, antiviruses or intrusion detection systems will be less effective. These techniques are

designed to enhance the security of the computers themselves, and detect attack vectors related to

attacks on generic computer systems, and not specifically computers used in ATCS. Hence, it

becomes necessary to design detection solutions specific to ATCS that could detect such

4

manipulations of data, whether at the source (e.g. fake broadcast ADS-B reports) or on the network

(e.g. compromise and manipulation of computers within the ATCS network).

The need for adequate detection technology for ATCS goes beyond the possibility of direct

malicious attack against them. There are several situations in aviation, not necessarily involving

malicious intent, that require prompt identification and reaction by pilots and controllers alike.

Currently, pilots and controllers detect and handle a variety of such scenarios such as fuel

emergencies, approaches under weather minima, and overdue aircraft. With increasing levels of

traffic within the same airspace, it becomes necessary to have automated systems that can help

controllers detect such situations ahead of time or quickly as they develop. While there are some

automated systems that detect and raise alarms in more critical situations such as separation

conflicts between aircraft, there are many other situations that are only being detected and handled

manually by controllers and for which an automated detection system would be useful and could

improve safety and efficiency. For example, an alert system could be built to predict fuel

emergencies by tracking fuel levels based on initial fuel levels declared in flight plans, nominal

aircraft performance and in-flight information such as weather, route changes, etc. which would

allow controllers to better predict and handle such situations by making changes to the route or

giving adequate priority to certain aircraft. By correlating predicted aircraft trajectories with

weather information, congestion at airports with adverse weather conditions could be identified

and resolved earlier, in order to help alleviate delays and predict potentially unsafe situations.

As previously stated, traditional computer security approaches are inadequate to detect

malicious data manipulation scenarios, in part because some of them would not require

manipulation of computer systems, such as ADS-B report spoofing. The same can be said of the

detection of non-malicious potentially dangerous situations. On the other hand, human controllers

do routinely identify such situations and could potentially, with enough time and information,

detect even some of the more insidious data spoofing scenarios. What allows them to do so is their

high-level knowledge of air traffic control, usual traffic patterns, and other information such as

aircraft performance, weather, etc. It thus becomes clear that an automated detector must be able

to represent and reason on the same high-level abstract concepts that an air traffic controller

considers when making these decisions.

This is why we propose the use of ontologies as the basis for modelling and construction of

such detection solutions. Ontologies are knowledge representation technique that allows humans

5

to represent concepts and the relationship between them in a manner that is understandable by

machines. Ontological databases can be used to store and query data about the represented

concepts, and allows machines to make deductions about these concepts and their instances

(examples of these concepts) that are in the database. Hence, our proposal is to construct an

ontological model of relevant concepts in Air Traffic Control, and populate an ontological database

with real-time data about air traffic, that a machine-based automated process can leverage to reason

and make deductions about malicious data manipulation and potentially dangerous scenarios.

1.3 Research objectives

The goal of this research project is to propose a method for detecting threats to Air Traffic

Control, including malicious manipulation of data and potentially dangerous scenarios in Air

Traffic Control Systems that are not necessarily malicious in nature.

Much has been said about the threat that ADS-B spoofing and other malicious manipulations

of ATCS represent to ATC and aviation safety. On the one hand, it is easy to imagine doomsday

scenarios in the aviation domain where minimal failures can lead to catastrophic consequences. On

the other, aviation in general and ATC in particular incorporates many fail-safe procedures and

practices put in place to improve safety in many adverse situations. Nonetheless, there is a

difference between safety, where the objective is to protect against accidents and equipment failures

vs. security where the objective is to protect against scenarios driven by a determined and capable

malicious adversary. While aviation has been traditionally focused on the former, the advent of

airborne terrorism in the last few decades has increased security awareness in aviation professionals

and organizations. However, the threats that have been considered are mostly physical in nature,

e.g. hijacking and aircraft bombing. Accordingly, it becomes important to evaluate the actual risk

related to the kinds of cyber attacks targeting the integrity of the data in ATCS we have described

above, which leads to our first research question:

1. What are the actual probability and impact of attacks on the integrity of

ATCS data through sensor data spoofing or cyber attacks on the ATCS

network, taking into consideration existing safety and security procedures

and practices in ATC?

We have hinted in the last section that detection of malicious manipulations and potentially

dangerous scenarios requires high-level concepts and reasoning, and further suggested the use of

6

ontologies for the construction of an automated detection system for ATCS. Unfortunately,

ontological databases are not as widespread as SQL-based relational databases that might be

present and used in modern ATCS. Furthermore, temporary data items such as aircraft positions

reports and radar tracks will not necessarily be stored in a persistent database. This poses several

technical questions on how data-in-motion in an ATCS (such as radar data and weather) and data-

at-rest (such as flight plans) can be integrated into a single ontological system onto which our

proposed detector can get the necessary information to make its deductions and detections. This

raises our second research question:

2. How can an ontological system be viably constructed atop an ATCS,

integrating both stored information and real-time data obtained from ATC

sensors, while maintaining adequate speed of detection?

Verifying the functionality, performance and discrimination of such a detection system for

ATCS represents in itself a formidable challenge. First of all, the details of the architecture,

components and software of ATCS are very expensive and closely guarded by their vendors and

the Air Navigation Service Providers (ANSP) that operate ATC and ATCS for civil aviation

authorities, partly for commercial reasons, but also for national and aviation security reasons. Thus,

we needed to propose an alternate approach to evaluate our ATCS detection solution that would

involve testing against an operational ATCS-like system, while retaining a certain level of realism.

This requirement has two important parts. First, it would be necessary to reproduce with adequate

fidelity the Information Technology (IT) infrastructure behind the ATCS in order to reproduce and

evaluate the performance of the solution and its detection capabilities against traditional cyber

attacks. Second, we need to reproduce realistic data streams that would be present in a typical

ATCS and, furthermore, have the ability to measure and demonstrate the real-world consequences

of such data being manipulated. Finally, we need to be able to reproduce in an efficient and accurate

manner the various attack scenarios and dangerous situations that we will be evaluating our solution

against. How to integrate the cyber and physical world aspects of ATCS in a reproducible

evaluation approach represents an important challenge addressed by our third research question:

3. How to construct an evaluation platform for ATCS detection solutions that

has 1) a high level of fidelity of the cyber aspect of the ATCS, 2) reproduces

and demonstrates real-world physical impact of attacks and dangerous

7

scenarios on ATC, and 3) can easily be used to reproduce results of

previous evaluations?

One of the main difficulties and challenges in the use of ontologies is to determine the

adequate level of detail vs. abstraction. A good balance will allow the ontological model to be

complete enough to implement the required deduction logic for various situations, while at the

same time make the construction and maintenance of the ontological model a manageable

proposition for the domain experts that will be involved in that process. Indeed, a very wide and

all-encompassing ontology will allow, in our case, the domain expert to easily represent all

detection rules as interrogations or queries onto the ontological database. However, the process of

building such an ontology could be unmanageable in terms of time and effort, and, furthermore,

become too specific to a particular scenario, a particular ANSP organization, or a particular ATCS.

The difficulties related to this delicate balance between detail and abstraction, specificity and

flexibility, are at the core of the following fourth and last research question:

4. How do we build an ontology that is complete enough to address the

identified attack scenarios, but general and flexible enough to cover

future, unpredicted scenarios while remaining easily maintainable?

1.4 Thesis roadmap

This Master’s thesis introduces an ontology-based data anomaly detection system to address

malicious and non-malicious threats to air traffic control systems. This solution is based on an

ontological model of the data generated by an ATCS and ontological queries designed to detect

anomalies caused by attacks on the system or potentially dangerous situations. We also provide a

threat model to better guide our detection queries. Finally, we present an architecture for a platform

that emulates an ATCS in order to test our solution.

We begin by providing in Chapter 2 background material to familiarize the reader with the

domain of air traffic control and its related technologies. We also discuss provide a brief description

of the threats against them and discuss the relative (in)applicability of existing IT security solutions.

Finally, we provide a description of ontologies and how they have been used in security and

aviation-like application domains.

In 0, we describe the concept and architecture for our ontology-based ATCS detection solution.

We describe in Chapter 4 the air traffic control system simulator (ATCSS) that we designed to

8

demonstrate and evaluate the detection solution we proposed. In Chapter 5, we describe our threat

model in more details, as well as the details of the ontology and the ontological queries that are the

core of the detector. Finally, we analyze the design process of the solution and we evaluate the

architecture of the simulation environment in the conclusions in Chapter 6.

9

CHAPTER 2 A REVIEW OF ATC AND RELATED TECHNOLOGIES

2.1 Air traffic controllers

The role of air traffic controllers is to direct air traffic in order to maintain aircraft safety and

efficiency. They take charge of aircraft at the departure gate and release them only at the arrival

gate. They are constantly in contact with them in between. An air traffic controller in a given area

will be assigned a specific frequency will use that frequency to talk to pilots in his area. Over the

course of a flight, a pilot will talk to multiple controllers. The first controller, named apron, will

instruct the pilot on his way to the takeoff runway. Then, a series of controllers will take

responsibility for takeoff instructions and for the area surrounding the airport, namely the tower

and terminal controller. Once the aircraft is far enough from the departure airport, the control

responsibility falls unto the regional control centers, called area. Then, a controller is assigned to

the pilot until the aircraft leaves the control area or approaches the destination airport. If the flight

crosses an ocean, the pilot will be instructed by a controller called oceanic that take care of oceanic

routes and time slots. Controllers can, among other things, order an aircraft to change altitude in

order to respect minimum separation distances with other aircraft or a route change depending on

weather conditions or traffic density in the aircraft’s projected trajectory. Pilots can also request

those changes to the controllers, but the latter make the final decision.

2.2 Air traffic control systems (ATCS)

Air traffic control systems are at the heart of the civil and commercial aviation infrastructure.

They are an aggregation of systems and data acquired by different sources and are a critical and

essential tool for air traffic controllers. Each air navigation service provider (ANSP) owns their

own; the FAA in the United States has NextGen and NAV CANADA developed and operates the

Canadian Automated Air Traffic Control System (CAATS), to name a few. These systems receive

data from a slew of sensors including primary and secondary surveillance radars, ADS-B antennae,

weather information providers and flight plan databases. In CAATS, data travels through a private

IP network using the DDS protocol (Real-Time Innovations, 2013), which we talk about in more

details in section 2.7.

10

2.2.1 Sources of data in ATCS

2.2.1.1 Primary surveillance radar (PSR)

The first technology we cover is Primary Surveillance Radar (PSR). The Allied military

developed it during the Second World War and then adapted it for civil use. These radars send an

electromagnetic impulse that bounces off aircraft and other physical objects such as birds and

mountains. When the radars receive the bounced impulse, they compute the distance between

themselves and the perceived aircraft using the travel time of the impulse. The primary surveillance

radar can also measure the azimuth of the aircraft by using the angle the radar was facing when it

received the impulse. The radar then deducts the longitude and latitude of the aircraft using the

distance and azimuth. However, this surveillance device cannot measure the altitude of an aircraft.

Primary surveillance radars are autonomous in the sense that they do not need aircraft to carry a

special instrument to detect them.

2.2.1.2 Secondary surveillance radar (SSR)

The Secondary Surveillance Radar (SSR) is a technology that completes the primary

surveillance radar by providing the missing data needed for an accurate picture of the air traffic. It

is a by-product of the technological advancements made during the Second World War. Originally,

the Allied military developed this technology to be able to differentiate enemy aircraft from allied

ones, something the primary surveillance radar cannot do. Aircraft need to have a transponder to

communicate with the secondary surveillance radars using radio frequencies. The pilot enters a

code made of four numbers each ranging from 0 to 7 called SQUAWK on the aircraft's transponder.

The transponder then broadcasts the code when a secondary surveillance radar interrogates it. This

code becomes the aircraft's identifier for the duration of its flight. A transponder can also

communicate with other transponders such as in the Traffic Alert and Collision Avoidance System

(TCAS). For civil aircraft, transponders can operate using three modes: A, C, or S, chosen by the

interrogating radar. If a transponder uses mode A, it transmits only the SQUAWK code given by

the air traffic controller to the pilot. If a secondary surveillance radar interrogates a transponder

operating under mode C, the transponder transmits the flight level, i.e. the aircraft's altitude by

increments of 100 feet, as read on the aircraft's altimeter. Due to those advantages, most

transponders use mode C with mode A. Finally, mode S allows the transponder to transmit a unique

11

24-bit identification number, different from the SQUAWK code given by the air traffic controller,

as well as a data field of variable length.

2.2.1.3 Automatic Dependent Surveillance (ADS)

ADS is a more cost-efficient and precise surveillance technology that can provide better

coverage in areas where access is difficult like the Hudson Bay and the rest of the Great Canadian

North. To be able to transmit ADS data, an aircraft needs a GPS receiver and a transponder. The

transponder is the same one that transmits data to secondary surveillance radars and uses the mode

S data field to relay the data. The first version of this technology is ADS-C. Under this

communication protocol, a contract is established between the ADS ground receiver and the

aircraft's ADS system to specify which data will be transmitted and when. When the data

transmission conditions meet the conditions specified in the contract, the ADS-C system will

broadcast the data specified in the contract to a ground station. ADS-B is the most important ADS

implementation for data acquisition in ATCS like NextGen and CAATS. This technology is made

of two features: ADS-B In and ADS-B Out. Contrary to ADS-C, aircraft equipped with ADS-B

Out systems broadcast their flight data to whoever can receive it without having a data contract

with them. Data receivers are ground stations or another aircraft's ADS-B In system. When an

aircraft's ADS-B In system receives data, it updates its airspace display with the new information.

That way, pilots have an accurate representation of the other aircraft around them. When ground

stations receive aircraft data, they relay that information to the ATCS to update it with the most

recent information. NAV CANADA plans to use the Iridium satellite constellation as ADS-B

receivers and transmitters to achieve a more complete coverage of its surveillance territory (NAV

CANADA, n.d.). Since ADS-B data is unencrypted and not authenticated, antennae owned by

civilians can pick up broadcasts. This is how flight tracking websites gather their data. There is

currently no way to verify the integrity or the authenticity of ADS data.

 Table 2.1 depicts the differences between the three major surveillance technologies, as well

as the advantages and disadvantages of each of them.

12

Table 2.1: Comparison of the main surveillance technologies

Sensor PSR SSR ADS-B

Data acquired Azimuth

Distance

Azimuth

Distance

SQUAWK

Altitude

Identification number

Identification number

GPS position

Altitude

Airspeed

Ground speed

Route

Cost per aircraft (USD) 0 3000-40001 40001

Cost per antenna (USD) 6 million2 3 million2 100 000 to 400 0003

Security features Laws of physics Multilateration when

available

None

Advantages Hard to deceive

Independent

Accurate data Complete data set

Cost

Disadvantages Cost

Needs to be used

with SSR for

complete data set

Cost

Needs to be used with

PSR for complete

data set

Aircraft needs a

transponder

No security

Aircraft needs a

transponder and

ADS-B equipment

2.2.1.4 Flight plans

Flight plans are a tool used by pilots to provide various information to controllers about

aircraft and the route they want to take. Pilots provide them in advance and generally need approval

from the ANSP before the flight can take place. The content varies depending on the ANSP, but

they generally include information about the aircraft such as identification number, type, capacity,

as well as information about the flight such as departure and arrival airports, cruising speed,

altitude, and route, which consists of a series of waypoints through which the aircraft will go. The

pilot also needs to specify whether the flight is under Instrument Flight Rules (IFR) or Visual Flight

Rules (VFR). The set of rules chosen largely depends on the weather conditions along the flight’s

route. VFR requires the pilot to be able to see clearly where the aircraft is going. If those conditions

are not met, the pilot has to fly using the onboard instruments, hence the name IFR. A controller

can modify a flight plan after the aircraft has taken off due to traffic conflicts or at a pilot’s request.

1 (Gulf Coast Avionics)

2 (International Civil Aviation Organisation - Asia and Pacific Office, 2007)

3 (Perreault, 2015), (Dunstone, 2012)

13

They are stored in a database in the ATCS and the system fetches and displays them one of the

many screens that are part of a controller's workstation.

2.2.1.5 Aircraft track

A track is the modelling of an aircraft's movement. It contains information about the flight

plan, the position of the aircraft as reported by radar or where the aircraft reported its position with

ADS-B, and other data points used by the controller over the duration of the flight from the

departure gate to the arrival gate. Surveillance radars, ADS-B antennae, and ATC, through

directives like route change, update the track. ATCs use this to keep track of where an aircraft is,

was, and where it is going in order to give the appropriate directives.

14

2.2.2 Typical Modern ATCS Architecture

Figure 2.1: Modern ATCS architecture

 As illustrated in Figure 2.1, an ATCS is made of multiple machines that have different roles.

Some of them are sources of data. Examples of such machines are PSR, SSR and ADS-B. These

machines send data over the network. Other machines are both data producers and consumers, like

the flight plan database – comprised in the Flight services station on Figure 2.1 – and the controller

workstation, included in the enroute control and in the control tower in the figure. The controller

workstation is the computer terminal where air traffic controllers sit and work. They usually have

computer screens to display aircraft position, and a screen to display flight plans. These data-

15

consuming machines receive data from the producers and interpret it or store it depending on their

role in the system. In the controller workstation’s case, it sends data whenever there is a flight plan

modification. Modern machines are regular computers with generic operating systems that run

custom software, as opposed to the custom-made black boxes of the past. All of these machines

are connected to each other through an IP network. The individual sites like enroute control and

control tower each have their own Local Area Network (LAN). This allows local machines to share

data with each other before sending it to the machines at other sites, which reduces the outbound

traffic and thus the bandwidth needed for timely delivery of information. The sites are

interconnected with a Wide Area Network (WAN) to allow the information to go where it is

needed. Data shared across this network includes flight plans, weather, surveillance data, Voice

over IP (VoIP), and links between the latter and very high frequency (VHF) voice communication.

The system is also connected to other ATCS though another WAN. This is important as it allows

easy information sharing between different ATCS to facilitate operations. For example, an ATCS

in Canada (CAATS) shares its flight plans with an ATCS in the United States (NextGen). This

way, when a flight crosses the border and is handed off to an American controller from a Canadian

one, the American controller already has the flight plan and the information needed to guarantee

proper handling of the inbound aircraft. The shared information includes the flight plans, weather,

and surveillance data. The sharing of information also enables an ATCS site to take over air traffic

control duty in case another ATCS becomes inoperable.

2.3 Air traffic rules violations and emergency scenarios

In this section, we explain the different air traffic violations scenarios. While our solution is

aimed at detecting malicious air traffic data injections, it can be extended to also detect potential

emergencies as well as air traffic rules violations.

The first scenario is that of loss of separation conflicts. At all times, aircraft must keep a

certain distance between them. This distance is defined by a radius around them, as well as a

minimum altitude separation both above and under. The resulting volume is a cylinder centered on

each aircraft. A loss of separation conflict happens when one aircraft enters another aircraft’s

cylinder.

The second scenario is route deviation. Normally, an aircraft flying under IFR submits a

flight plan that, among other things, defines a route between its departure airport and its arrival

16

airport. A route is a trajectory made of a series of fixed waypoints with a flying altitude tied to

them. Air traffic controllers can make changes to an aircraft’s route in case of bad weather along

the original one, for example. The ATC updates the flight plan and informs the pilot of the changes.

A deviation occurs when an aircraft is not following its determined route. This can make controlling

other aircraft in the same area more difficult due to the unpredictable trajectory of the deviating

aircraft and can even, in extreme cases, cause loss of separation conflicts.

Another scenario is that related to noise reduction. Noise reduction is done in two ways:

around airports and along routes. Airports have noise reduction rules in order to avoid disturbing

people living close. For example, at John Wayne airport in southern California, aircraft are limited

in from landing and takeoff to specific time slots. In addition, they must fly specific routes that

take them out over the Pacific Ocean before using full-engine power to limit the amount of noise

over the city. This airport also has very strict noise limits that vary depending on the day of the

week as well as the hour of the day (John Wayne Airport, Orange County, 2013). Those rules

include landing and takeoff time slots during which aircraft are prohibited from landing or taking

off. The ANSP will also keep aircraft off low-altitude routes that are too close to heavily populated

areas during the night (Transport Canada, 2017).

Another scenario is that involving Minimum Equipment Lists (MEL) that aircraft must have

on board and that must be functional for aircraft to operate under certain conditions. For example,

to fly over large bodies of water, civil aviation authorities require aircraft to have additional

equipment such as life rafts and a pyrotechnic signalling device (Federal Aviation Association,

2017). Doing so without the equipment can be dangerous for the passengers of the aircraft and is a

violation of air traffic rules that can lead to a fine.

The last rule violation scenario is that of prohibited airspace intrusion. A prohibited airspace

is a three-dimensional zone where regular air traffic is not allowed for various reasons including

the presence of military bases nearby. Currently, military radars and military ATCs contact any

plane that is approaching such zones to instruct them to divert course or be intercepted and even

attacked.

Fuel emergencies happen whenever a pilot evaluates in flight that the destination or alternate

airports cannot be reached due to, for example, stronger winds than forecasted or route changes.

The pilot then needs to request priority handling, which can cause disruption to other aircraft.

17

Another emergency scenario we address is interrupted track. During flight, an aircraft’s

instruments will periodically send information such as SSR replies or ADS-B messages to ground

stations in order to keep ATC up to date on their location and situation. When an ATCS receives

information from an aircraft, it updates its track. If no information has been received recently, the

track is considered interrupted. This can happen because the aircraft has landed and turned off its

instruments, but it can also happen because of instrument malfunction, which the pilot may or may

not be aware of. This can be problematic because ATC can now only rely on the low-information

PSR returns to gather information about aircraft. This makes ATCs lose some awareness of air

traffic and can impact their decision making.

The last emergency we cover is anomalous descent. During flight, it is normal for pilots to

change altitude to follow routes and ATCs instructions. However, there are normal rates of descent

and an aircraft that descends too fast or in unusual circumstances indicates that something could

be wrong.

2.4 Attack model on ATCS

For the purpose of making the next sections easier to understand, we summarise the attack

model we developed by briefly presenting the techniques that can be used. The model is presented

in further detail in Chapter 5. We split the attacks on air traffic control systems into four categories:

identification and localisation, jamming, GPS spoofing and packet injection. Our criteria to

differentiate them was the technique used to perpetrate an attack and its effect on the system.

In the first category, identification and localisation, an attacker wants to identify an aircraft

currently flying to track it. We consider this an attack because it serves as the basis for more

dangerous ones. We have identified two different techniques to execute this attack. The first one

consists of listening to nearby aircraft’s ADS-B broadcasts with a personal ADS-B antenna and the

second one is to go on websites that offer unfiltered ADS-B traffic data. The second category is

radio-frequency jamming. This category is straightforward; using a radio emitter, an attacker jams

the frequencies used by air traffic control communications in order to disrupt voice and instrument

communications. The third category, GPS spoofing, aims to trick an aircraft’s GPS receiver into

passing erroneous position data to the ADS-B emitter which will then be sent to the ATCS. This

attack is realised by spoofing a GPS satellite signal in order to make the aircraft’s GPS receiver

calculate a wrong position. The last category is packet injection and consists of directly sending

18

spoofed ADS-B packets. In this attack category, a rogue ADS-B emitting station sends spoofed

ADS-B packets in order to eventually input false data into an ATCS or into surrounding aircraft’s

ADS-B In system.

2.5 Traditional IT Security solutions

2.5.1 Intrusion detection systems (IDS)

As the Internet grew in popularity, network security became an issue that needed to be

addressed and user activity needed to be monitored to ensure that no one was tampering with the

computer systems. The first systems to do this task, named intrusion detection systems, were built

in the 1980s and were very basic in their detection method; they used a list of threat signatures to

identify and filter traffic. This method evolved to become rule-based intrusion detection; a

technique that uses rules based on the vulnerabilities themselves as opposed to a specific exploit.

This technique operates on the principle that the vulnerabilities of the system are known and their

detection can be expressed in terms of rules to filter out traffic that could exploit them. The other

main method of detection is using artificial intelligence (AI) to classify traffic and detect anomalies

in the pattern. This method is called statistical analysis. The principle behind the technique is that

there is a set of features –quantifiable traffic data and metadata– that make malicious traffic stand

out from normal traffic. The features can be defined by a human being or can be computed by

giving a set of traffic data to a machine learning algorithm. IDSs come in two modes of operation:

host-based (HIDS) or network-based (NIDS), which is independent of the detection technique they

use. As described by the name, HIDSs are installed on a computer and analyse the computer’s own

in and out traffic. NIDSs, on the other hand, are deployed on dedicated machines connected to a

network and analyze all traffic passing through it. They can detect denial of service (DoS) attacks

as well as port scanners and other potentially malicious activity.

The traditional intrusion detection methods and systems are not useful for this project

because the attacks we investigate are not perpetrated at the network traffic level. They are

perpetrated before the packets are created as they target the data sent to the sensors on the radio

frequency (RF) level. This means that the packets will seem normal to traditional intrusion

detection methods. For this reason, we designed a different approach to intrusion detection by

reasoning on the data on a higher level using ontologies. Instead of looking at the networking data

19

in the packet, we look at the air traffic data the packet is carrying and analyse it to see if it makes

physical and logical sense with the data previously received.

2.5.2 Antiviruses

Antiviruses are another important part of computer security. Unlike the IDSs, they are used

to enhance the security of the computer on which they are installed. They were created as an answer

to computer viruses and worms which started to spread in the late 1980s. As viruses evolved to go

undetected by antiviruses, new virus detection techniques were invented. The game of cat and

mouse has been going on since then. One of these techniques is signature-based detection. This

technique consists of scanning a program’s code to try to match a sequence of bytes –the signature–

with sequences that the antivirus knows to be contained in viruses - the definitions. If there is a

match, then the program is flagged as a virus. This technique relies on having up-to-date definitions

of viruses. Another technique used is behavioral analysis. Instead of looking directly at the virus,

this detection technique uses the virus’ behaviour to categorize it. In the same vein as signature-

based detection, they compare the behaviour of the program to a database of known malicious virus

behaviours. This technique is effective against polymorphic viruses because different copies of this

category of viruses do not have the same signature, but behave in the same way.

While antiviruses have proven their effectiveness in other cases, they do not entirely prevent

attacks on ATCS. They would only be useful to defend against an attacker who wants to control a

machine inside the network to carry out the attacks. An effective antivirus would detect that the

computer is compromised and alert the people in charge. However, antiviruses are ineffective if

the attack is perpetrated by emitting false data on the ADS-B frequency since the attacks we study

do not require infecting a computer on the ATCS’s network with a virus or tampering with them.

2.6 Air traffic control security solutions

Researchers proposed many solutions to increase air traffic control system security and

reliability. However, most of them do not take into account the vulnerabilities of the ADS

technology summarized in the previous section. In this section, we present the most promising and

complete solutions in terms of ATCS security.

Multilateration (MLAT) is a hardware-based security solution. It consists of a cluster of

sensors that listen for SSR replies or ADS-B broadcasts from an aircraft. It uses the transmission

20

times of arrival differences to estimate the location of an aircraft. If an aircraft broadcasts the wrong

position on the ADS-B link, this technology will be able to detect that the aircraft is not where it

says it is and alert the ATCS about the situation. This solution is very costly because it requires the

installation of multiple antennae and is not applicable everywhere since there are places, such as in

the Great North or over the ocean, where putting up antennae is impractical.

 Research on ATCS network vulnerabilities and ways to mitigate potential attacks has been

done in Aviation communication infrastructure security (Karmarkar, 2012). The author is

concerned with traditional cyber security threats such as denial of service and viruses. The author's

proposed security measures reflect this focus: defense-in-depth, rate-limiting, access lists, etc. The

threats we want to address with our research are not directly related to traditional cyber security

because they do not compromise the computers themselves and the solutions proposed in this

article do not concern the attacks we considered.

 Sampigethaya and his team (Sampigethaya & Poovendran, Visualization & assessment of

ADS-B security for green ATM, 2010) propose a novel solution to guarantee ADS-B position

report integrity. The technique the authors developed uses groups of interconnected aircraft and an

aircraft-based multilateration technique to validate the position data contained in an ADS-B

message. Aircraft would share the data they receive with the group they are part of using a different,

secure data link. Then, each aircraft estimates the validity of the position report and votes to reject

it or not. While this solution addresses many of the packet injection issues, it only concerns aircraft

while we focused our research on ATCS.

 In Securing the skies: in requirements we trust (Nuseibeh, Haley, & Foster, 2009), the

authors share their experience with security requirements in the air traffic control domain. As part

of their project, they developed a framework to define and analyze security requirements all while

taking into account the functional requirements. The example they used was ADS-B position

reports. After defining the functional requirements of the system, the authors defined security goals

as well as threats in order to define security goals. While the project brought security requirements

analysis to the air traffic control domain, their focus was on the design phase of the software life

cycle. Given that the aviation world is very slow to change and adapt to new technologies or threats,

new threats could emerge after the system goes live. Modifying the design and its implementation

would take a very long time and be very costly, on top of the inherent safety hazard a vulnerability

poses.

21

 Sink or SWIM: Information Security in the Sky (Jaatun & Fægri, 2013) introduces the

System-Wide Information Management (SWIM): a publish-subscribe network that would allow

different ATCS to share aeronautical, flight trajectory, aerodrome operations, weather, air traffic

flow, capacity, and demand data. The information sources are pilots, airports, airline operations

centres, ANSPs, weather providers, and military operations centres. The goal of this infrastructure

is to provide a secure and reliable way for different ATCS to share information in order to improve

efficiency and air space utilization. The authors talk about network security, but there is no mention

in the paper about the validity or authenticity of the information going through the network. The

authors also mention specifically that surveillance information will not travel through SWIM. It is

worth noting that ATCS currently use SWIM.

 Krozel et al. developed a Kalman filter technique to enable aircraft to verify the integrity of

an ADS-B broadcast in Aircraft ADS-B Data Integrity Check (Krozel, Andrisani, Ayoubi,

Hoshizaki, & Schwalm, 2004). This technique was designed to cover transmission errors, loss of

signal, and noise filtering. It does so by using the previous data points to infer the tracked aircraft's

trajectory and intent. Since it relies on the cooperation of the broadcaster, it could not be adapted

to detect most of the previously discussed attacks. This approach could, however, detect a careless

attack where the attacker broadcasts random aircraft position, but a more sophisticated attack with

a realistic simulated trajectory would fool this solution.

The papers Methods to provide system-wide security ADS-B backup, validation and security

(Smith, Cassell, Breen, & Hulstrom, 2006) and Detecting malicious ADS-B broadcasts using wide

area multilateration (Monteiro, Barreto, & Kacem, 2015) both propose a similar solution to

validate ADS-B broadcasts. Both solutions consist of using Wide Area Multilateration

(WAMLAT) to verify and validate the position reported in the ADS-B broadcasts using time-of-

arrival difference between multiple stations that are in the aircraft's range. Thus, this solution

requires that multiple operating ground stations be within range. This might not always be the case

in the event that a spoofing attack is committed in tandem with a jamming attack on surrounding

ground stations, leaving only one station in operation, or in the case where there is only one receiver

in range of the aircraft.

 ERA Systems Corporation filed a patent for a Method and apparatus to improve ADS-B

security (United States of America Patent No. US20060119515, 2006), invented by Alexander

Smith. The patent describes a method to verify the identity of an aircraft's identification broadcast

22

using the information sent by the aircraft as well as information coming from another source like

primary or secondary surveillance radars. Contrarily to our solution, this method presumes that the

old surveillance technologies will still be in use and available in the affected area, which may not

be the case.

 Kacem et al. introduce an ontological approach in Security Requirements Analysis of ADS-

B Networks (Kacem, Wijesekeram, Costa, & Barreto, 2014). Their method focuses on classifying

attacks based on misuse cases and properties extracted from surveillance data. While the system

described in the paper can detect attacks, the authors do not provide a way to mitigate them. It also

does not account for attacks that emerge after the system is put in place.

2.7 Data Distribution Service (DDS) protocol

The Data Distribution Service (DDS) protocol is a OSI layer 7 real-time protocol that uses

the publish-subscribe design pattern (Pardo-Castellote, 2005). It is used by financial trading

applications as well as in air traffic control systems because it offers dependable, high-performance

data exchanges. It is data-centric since the data sent through DDS comes with instructions on how

the application should interpret it.

 Thales, Real-Time Innovations Inc., and Object Interface Systems, Inc. originally

developed DDS in collaboration. The DDS specification is under the responsibility of the Object

Management Group (OMG). OMG released the first version of DDS in 2004 (Object Management

Group, 2004). Since its inception, many vendors have developed their own implementation of

DDS. The version used in this research project, DDS 1.4, was released in April 2015 and the

implementation we chose is OpenDDS 3.7 (Object Computing, Inc., 2015), released on September

11, 2015.

 A DDS application has three major components: data topics, DDS domains, and

participants, which are either publishers or subscribers. Data topics are a collection of classes that

specify the different ways the shared data is structured. A DDS domain is a collection of such

structures and does not overlap with other domains. Participants can be either subscribers or

publishers. Subscribers have to subscribe to a particular topic in order to receive updates. They do

so by notifying the router that they want to part of the assigned multicast group for a given topic.

When it receives packets for a given multicast group, the router forwards them only to the members

of the specified group.

23

 There are two ways for participants to discover new ones in OpenDDS. The first one is with

a centralized information repository managed by a separate process. The other one is Real-Time

Publish-Subscribe (RTPS) discovery, which is an application layer protocol that automatically

discovers new services and subscribes to the relevant multicast groups. We used the latter in our

project.

 Many ATCS use DDS as their data distribution protocol (Object Management Group). The

PSR, SSR and ADS-B sensors gather the relevant information and use a DDS publisher to send it

over the network. Other publishers are ATC workstations, for flight plan modifications, the flight

plan database, and weather information providers. Machines that use a DDS subscriber to receive

data from the network are the controller workstations and the flight plan database.

2.8 Ontologies

Ontologies are collections of concepts and the relationships between them. The concept of

ontologies comes from philosophy, but it has since been adapted to computing in the 1980s as part

of research on artificial intelligence. Since then, there have been efforts to use this concept in other

areas of computer science such as the Semantic Web and biomedical informatics. Our project aims

to classify data coming from surveillance equipment into an ontology and do various analysis to it

in order to detect anomalies. This paradigm is well suited for our anomaly detector because the

data and the relationships between different pieces of information are well-defined in our

application domain. The domain concepts are thus easy to model in an ontology and it simplifies

the analysis.

2.8.1 Ontological solutions

An Extended Ontology for Security Requirements (Massacci, Mylopoulos, Paci, Tun, & Yu,

2011) brings the concept of ontologies to ATCS security. However, they populated their ontology

with actors, threats, goals, actions, etc. related to a specific case study threat, i.e. GPS spoofing.

This approach is not optimal since the ontology needs a large update whenever a new threat

emerges. Furthermore, the ontology does not allow for direct attack detection queries as the

concepts needed are not represented in it. The solution we investigate is more general and

preventative as it does not rely on ontological representations of attacks.

24

Automated Reasoning for Maritime Anomaly Detection (Roy) details an ontological system

that would use data gathered from sensors to generate facts and use them to infer new situational

knowledge with the use of automated reasoning. They use a system composed of reasoners, a

database containing facts, and a management service to control the flow of information. The

architecture of our solution is inspired by this project.

 A theoretical basis for our research comes from the work on trajectory modelling made in

A Conceptual View on Trajectories (Spaccapietra, et al., 2008). This paper is the first to define

trajectories from a semantical point of view. This definition takes into account the temporal aspect

of a trajectory by including the path, stops, which can be instant, moves, and the start and end of a

trajectory. The author also specifically addresses trajectories defined by points made of a space-

time pair, which are directly related to our research's domain since it is how ADS-B works.

 Baglioni et al. iterated on the previous article in An Ontology-Based Approach for the

Semantic Modelling and Reasoning on Trajectories (Baglioni, de Macedo, Renso, & Wachowicz,

2008) and provided a methodology to transform trajectory data into an ontology containing

geographic data, domain knowledge, as well as the stops and moves that define the trajectory. The

article also gives an example of trajectory reasoning using Web Ontology Language (OWL) to

detect malicious behaviour among players of a game.

 An Enhanced Spatial Reasoning Ontology for Maritime Anomaly Detection (Vandecasteele

& Napoli, 2012) uses the concepts introduced by the two previous articles to detect and characterize

anomalies in ship behaviour. Abnormal behaviour detection is done by matching rules defined by

experts against an ontology containing sensor data. The article gives ships navigating in restricted

zones and trajectory analysis as detection examples. The latter example is very relevant to our

research project as trajectory analysis is one of our anomaly detection method.

2.9 Summary

In this chapter, we reviewed the technologies used by ANSPs to control air traffic. We also

exposed the weaknesses these technologies bring and how they can be exploited by malicious

people. This overview allowed us to have a clear picture of the air traffic control domain. We then

explored the most recent solutions proposed in the scientific literature to see if they addressed the

attacks identified in our attack model.

25

The traditional security solutions like IDSs and antiviruses were not adequate in the context

of our attack model since the attacks did not require tampering directly with the ATCS, but rather

falsifying the data before it enters it. We also looked at solutions specific to our application domain.

A lot of the solutions we found rely on radar coverage, which will not always be available, or on

installing extra equipment to enable multilateration. Other solutions were not easily adaptable to

new threats.

 Academic research in this particular application domain is limited. Most research on the

vulnerabilities of aviation technologies and the threats they pose do not take into account real-life

consequences and how they would impact the way air traffic is directed. This research project is

the first to bridge the gap between cybersecurity and the aviation world by evaluating how air

traffic controllers and pilots would react to specific attacks and how they would operate under such

circumstances.

26

CHAPTER 3 ANOMALY DETECTION FOR ATCS

In this chapter, we will describe an approach and an architecture for constructing an anomaly

detection system for ATCS that will allow us to both detect malicious manipulation of data

(described briefly in Section 2.4 and in more detail in Section 5.1) and also some of the potentially

dangerous ATC situations described in Section 2.2.2. The detector gathers data from data sources

already on the ATCS and uses it to populate an ontological database. It detects anomalies in the

data by running queries against the database. If anomalies are detected, it dispatches alerts and

information about the detection to the relevant network actors.

3.1 System architecture

3.1.1 Key assumptions on target ATCS

Before we talk about the design our solution, we need to gather all the information we have

about real-life ATCS. Doing so gives us guidance on basic, technical decisions about the solution.

The first such decision is to decide where to put the detection engine, i.e. on every computer in the

ATCS do to detection for the computer only or on its own separate machine doing detection for the

entire ATCS. The second question is how the detection system gets the data needed to function.

This question becomes important in the event that the detection engine runs on its own machine

since it will need to interact with the network in order to receive the data. This is not a problem if

it runs on every machine currently in the ATCS since they already receive the data relevant to them

and have it available locally. The third question we need to answer is how the detection

information, i.e. the results of the queries, is dispatched to the concerned network actors. Similarly

to the second question, this one is also important if the detection system runs on a separate machine

because it needs to communicate the results to the other machines. This question becomes a non-

issue if the system runs on the existing machines since it will only do the detection relevant to its

host and can communicate directly without going through the network. In order to answer these

questions, we need to make basic assumptions about what a typical ATCS architecture looks like.

We described this hypothetical architecture in section 2.2.2.

In short, we presume that ATCS are made of regular computer hardware and operating

systems that run specialized software. The machines communicate through an IP network isolated

from the Internet. The key element of this network is the data exchange protocol, DDS, that is used

27

to transmit data in real time. Typical networking protocols such as Transmission Control Protocol

(TCP), User Datagram Protocol (UDP), Hypertext Transfer Protocol (HTTP), and File Transfer

Protocol (FTP) cannot be used alone for two reasons. First, the nature of the data transfers on the

network is not point-to-point, which makes most of the previously mentioned protocols

inapplicable by themselves. Second, the real-time and Quality of Service (QoS) requirements are

very strict since the timely delivery of the information can affect real-life decisions taken by ATC

and could compromise air traffic safety. There are many higher OSI layer protocols that satisfy

those requirements and can be used on top of TCP or UDP, but we found evidence that CAATS

(Real-Time Innovations, 2013) uses DDS as its communication protocol. It is not far-fetched to

presume that other ATCS use the same protocol. We chose DDS as an example, but this is without

loss of generality due to the design of our solution since it is easily adaptable to different

communication protocols.

3.1.2 Detector localization

We know that ATCS currently have mechanisms for detecting potentially dangerous

situations, in particular loss of separation situations. Whenever two planes are too close to each

other, the ATCS notifies the controllers by sending a visual alert on their computer screens. This

computation is fairly simple to do since it only requires checking if a point is inside a cylinder, as

we described in Section 2.2.2. This example of known-to-exist anomaly detector in ATCS is a good

starting point for us to discuss various architecture choices for the more general detector we

propose. The two obvious options are the following.

1. Decentralized detection: In this case, the detection is done directly where the

information is needed, e.g. controller’s workstation and local servers at an area

control centre. This is akin to how Host-based Intrusion Detection systems

(HIDS) work in traditional IT security. The advantages of having a detection

system running on a controller’s workstation is that it can do computations only

on the area that concerns the controller. This design makes sense for the loss of

separation scenario since the aircraft need to be in the same area to be close to

each other. Moreover, the controllers of the other areas do not need to see the

alerts that do not concern them. The same result could be achieved by a

centralized design, but the time to process the data needed for the loss of

separation scenario for every aircraft in every area covered by the ATCS could

28

take too long and the response time would in turn be too long to prevent this

scenario. Fortunately, in this specific example, aircraft have their own prevention

system. Another advantage is that this design is lighter on the ATCS network’s

bandwidth. No new machines are added to the network and the existing network

components already receive most data needed for detection. Moreover, the alerts

stay on the same machine, which guarantees timely delivery and also does not

take any network bandwidth.

2. Centralized detection: The centralized design operates similarly to a Network-

based Intrusion Detection System (NIDS), in the sense that the detection is done

on a completely separate machine connected to the network. The alerts are then

sent as DDS topics to the concerned network participants. An advantage of this

design is that the detection system is that it does not need to run on an already-

existing ATCS component. This greatly increases portability and enables system

updates without having to update an entire component. Furthermore, since the

detection system is encapsulated and separate from existing machines, only one

version needs to be created instead of having custom versions for all the different

types of controller workstations, servers, etc. Another advantage of this design is

that all the data needed for detection is gathered at the same machine. Having one

machine also simplifies managing and maintaining the detection system. The

disadvantage of a centralized design is performance. Since we are introducing a

new machine on the network, it will need to receive all of the relevant data,

increasing the amount of bandwidth needed. The detection system also sends

alerts to the concerned components, which takes even more bandwidth. Timely

delivery of alerts is crucial for air traffic safety and sufficient bandwidth is

necessary to achieve this goal.

In the end, we chose the centralized detection system design for our solution. This allows us

to design a solution that can be adapted to different environments without much modifications to

the solution or to the ATCS itself. It also addresses more network architecture issues, which is

important since there are no two ATCS alike. We evaluate that we only need to add a few data

topics in the system as well as a slight modification to the subscriber of the controller’s workstation

to enable it to subscribe to the new topics. It is also more general, which is why we feel it is better

29

for proof of concept. Performance engineering problems could be addressed by other means such

as filtering, compression, networking configurations, etc. and are out of scope for this project.

3.2 Architecture

Figure 3.1 : Detection system architecture

The centralized detection architecture we propose is depicted in Figure 3.1. Our solution is

entirely encapsulated and separated from the rest of the system. It consists of the following main

components:

1. DDS data collector: This module subscribes to relevant DDS topics being

published by the various data sources on the ATCS. It is the equivalent of

an IDS sensor on a traditional IT network. Unlike those, however, no

special network configuration adjustments must be made to accommodate

them. The machine running the data collector must simply subscribe to the

relevant DDS topics using the built-in DDS subscribe requests. It provides

30

as output a stream of DDS messages of the relevant topics in a format that

can be easily parsed and interpreted by downstream modules.

2. DDS data translator: This module populates the ontological database

based on the DDS topic messages that the data collector has received. This

is in principle a simple script that parses the DDS message and uses the

API of the ontological database to generate and launch procedures that

insert or update instances of concepts in the database. Parsing is done with

the help of the DDS topics to ontology concepts translation table that

defines the equivalences between data points in DDS topics and concept

attributes in the ontology, i.e. where to put each data piece. This table is

described in more details in section 5.3.

3. Ontological Database: The ontological database is used to store the

ATCS data as concepts and as relations between concepts, i.e. the

semantics of the data. It receives insert and update commands from the

DDS data translator. The structure in which the data is stored is called an

RDF Triplestore (Ontotext, n.d.) and is made of a subject, an object, and a

predicate, linking the two. For example, our ontology database can have

an aircraft subject, a track object, and a has a predicate. This semantic

structure represents the fact that an aircraft has a track. The process by

which this model was created is described in more detail in section 3.3.

4. Detection engine: The detection engine runs a SPARQL Protocol and

RDF Query Language (SPARQL) engine that runs various detection

queries. It polls the database to gather the data necessary for the query that

is running. If the query finds an anomaly, the engine creates an alert and

sends it to the DDS publisher running on the same machine. The publisher

then creates an appropriate instance of the Alert DDS topic and publishes

it on the network for the concerned subscribers to receive. The DDS topics

are described in more details in section 4.7. The detection queries run at

different frequencies depending on what kind of anomalies they are

designed to find and on how frequent the data they require is updated.

31

3.3 ATC ontology design process

The model for the ontological database was designed in collaboration with another Master’s

student, Simon Malenfant, who is specialised in ontologies. We expect this consultation process

between domain experts and ontological experts to be representative of what would happen during

the implementation of our solution with an actual ANSP.

The first step was to explain the inner workings of ATC to the ontological expert. Since the

ontological expert was not familiar with the air traffic control domain, we had to do an overview

of ATC to detail the context for the ontology. We started with the background workings of a regular

flight, from the departure gate to the arrival gate. We also talked about air traffic regulations to

give the ontological expert a better idea of the emergencies and rules violations we want the

ontology to cover. The overview is similar in content to what is described in Chapter 2.

Once the expert was familiar with the inner workings and procedures of air traffic control,

we talked about the technology behind ATC, namely the ATCS and its components. The goal of

this step is to identify the data circulating on the network in order to familiarize the ontology expert

with the data that is available for inclusion in the model. We started with an overview of the main

sensors that are part of the ATCS, namely PSR, SSR and ADS-B antennae. We also detailed the

data present in flight plans as it provides important information for the emergency scenarios

detection such as fuel level. Detailing the pieces of data also helped to determine the DDS topics

for our ATCS simulator which are detailed in section 4.7. This step is important because the data

pieces available to be inserted into the ontological database is the basis for our model.

In the third step, we gave meaning to the data by adding semantical relationships. We started

by linking individual data pieces together when it made sense, either because they were circulating

together on the ATCS network such as the positioning data coming from radars, or because they

were related and part of a bigger data structure like flight plans. These larger data structures are

called concepts and are the building blocks of the ontology.

Finally, we added semantical relationships between the concepts to form the ontological

model. Adding relationships between them links every piece of information together in one

coherent model. Having such a model allows us to store the data in a way that allows us to easily

query it to find anomalies. The final model is presented in Figure 5.2.

32

3.4 Anomaly detection system

The anomaly detection system gathers data by subscribing to the relevant DDS topics

identified in section 4.7. Once the subscriber receives data updates, it forwards them to the DDS

data translator to be inserted into the ontological database. The DDS data translator uses the DDS

to ontology translation table to make equivalencies between DDS topics attributes and ontological

concepts attributes for easy data conversion. The details of the table are presented in section 5.3.

This step also filters out irrelevant data, i.e. data that does not have an equivalent attribute in the

ontological model. Once the ontological mapping has been done, the translator inserts the

converted data into the ontological database.

Using a connection to the ontological database, the detection engine queries the database to

gather data needed for the detection queries it is currently running. The detection queries are written

in SPARQL and run on a regular basis triggered by a separate polling process that keeps track of

the frequencies of the queries. The frequencies will vary between queries as some of them run very

frequently because they need to act on every new piece of data that comes into the system and

others are only run on demand or every few hours for forensic purposes. For example, queries that

use radar data to detect loss of separation run very frequently, but queries that are used for the

forensic mode run every few hours or even on demand. The duality of query frequencies introduces

design challenges to the system. On the one hand, some queries need to run at a very high

frequency, i.e. as soon as there is new data available – which is every second or faster. On the other,

some need large amounts of data to produce forensic reports. Thus, the system needs to be very

efficient for quick responses while also being capable of storing large amounts of data. Since these

decisions are technical in nature, we chose to keep them out of the scope of this thesis and we do

not address them.

The results of the real-time queries are alerts that need to be dispatched to the concerned

machines. To do so, we added an Alert DDS topic to the network’s existing topics. When the

detection engine produces an alert, it forwards it to the DDS subscriber sitting on the same machine

as the engine. The DDS subscriber then converts the alert to the correct DDS topic structure and

publishes it on the network. To receive alerts, the computers such as the controller’s workstation

need to subscribe to the new Alert topic. Alert processing if left to the concerned machines once

they receive an alert through their respective DDS subscriber. When the detection engine runs in

forensic mode, it produces a report that contains the results of the queries.

33

3.5 Implementation

Due to time constraints, we chose not to build a working prototype of the detection engine.

Instead, we concentrated our efforts on building the ATCS simulator and constructing the

ontological model.

Having a working ATCS simulator was important because it gives us good data and a

working testbed for future research, something much IDS research lack. We tried contacting ANSP

and ATCS vendors to form a partnership with them to facilitate our research, but they all declined.

ATCS design and implementation are closely guarded secrets for two reasons. First, ATCS are

very expensive and there is a lot of competition between vendors and they want to keep their ATCS

design as an industrial secret. Second, there are security issues associated with doing research on a

real ATCS that can lead to real-life safety issues if technical details about ATCS were to be leaked.

Building the simulator was a critical step in our laboratory’s research plan. Lots of time and effort

was put into its design and prototyping, which left us with no time to focus on the detector.

One of the challenges of designing the ontology is to make it specific enough that it can

detect what we need it for, but also generic enough so that it is easily expandable for new detection

capabilities. This problem comes up every time an ontology is to be designed and is not exclusive

to our research.

Building the above components to have a working detection system would not present a

research challenge and would constitute a lot of simple work for a small incremental gain, which

is why we left this step out of scope. We decided to focus our efforts on what we evaluated was the

hard and interesting parts, the design of the solution, the ontology and its queries, and the ATCS

simulator.

34

CHAPTER 4 AIR TRAFFIC CONTROL SYSTEM SIMULATOR

(ATCSS)

 In this chapter, we describe the proposed architecture of our air traffic control system

simulator (ATCSS). We first explain the goals we set to achieve. Then, we focus on the most basic

parts: the radar screen, the simulation engine, the sensors and the communication protocol used by

the system. We then explain how we put together those building blocks to emulate an air traffic

control system and the DDS traffic passing through it. We finish this chapter by detailing the DDS

topics we chose.

4.1 Goals

The main goal behind the design of the air traffic control system simulator is to create an

environment that allows us to simulate attacks on an ATCS and to visualise and measure their

effects. For our experiments to be valid, the system needs to be as close as possible in functionality

and architecture to an actual ATCS and thus needs to include its critical components as well as its

communication protocols. The components we identified as critical to the functioning of an ATCS

are the sensors, namely PSR, SSR and ADS-B antenna, and the radar screen. We chose to use DDS

for our simulator as it is the communication protocol used by ACTSs in Canada and Europe (Object

Management Group). The second goal of the design was to be able to create custom air traffic

scenarios that suit the needs of our experiments and to be able to repeat those experiments. Finally,

we want to be able to visualise the air traffic that is being simulated in order to ensure the adherence

of our air traffic scenarios to real traffic patterns and to validate the hypotheses of our attack model

about the impacts of the attacks.

4.2 Radar screen

 The first step in this project was to check for existing software we could use as part of the

simulator. We directed our search towards virtual flight simulation communities like VATSIM and

IVAO. After testing different software used the communities’ virtual air traffic controllers, we

chose EuroScope (Csernak, n.d.), an air traffic controller console application that includes an air

traffic simulation engine. It also includes server software to allow multiple instances of EuroScope

and multiple flight simulators to take part in the same virtual flight environment. We contacted the

developer, Gergely Csernak, to ask permission to use his software as part of our research project,

35

which he granted. Once we installed the software, we were able to capture packets in order to

understand the Flight Simulator Data (FSD) communication protocol used by the software. Mr.

Csernak gave us a specification document (ProtoDev Development Group, 2002) that explained

the different packet types used by the protocol. It helped understand the packet sequence of a

communication between a simulated aircraft, EuroScope, and the server. EuroScope allows the

user to visualize the flight data of locally simulated aircraft or of flight simulators connected to the

same server, as shown in Figure 4.1. It also displays the flight plans filed by the aircraft’s pilot, as

well as sector information such as runways, sector boundaries, and waypoints.

Figure 4.1 : EuroScope

 Since this software is designed to use the FSD protocol for data sharing, we had to create a

translator that takes the incoming DDS packets and convert them to FSD packets. We chose to use

Python (Python Software Foundation, 2017) because it is very flexible and enables quick

development of software prototypes. This translator connects to the DDS subscriber on the same

machine as the radar screen to receive the DDS packets. Then, using the data contained in the

packet, it will create an FSD packet and send it to the radar screen to be displayed.

36

4.3 Simulation engine

As mentioned in the previous section, EuroScope has its own built-in simulation engine. It

moves aircraft around according to air traffic rules and allows an air traffic controller to give

instructions to the simulated aircraft such as takeoff, landing, route change, etc. The simulation

engine is a separate process that sends the simulation data on the loopback network on a specific

port. Then, Euroscope sends the simulation information to other instances of Euroscope that are

connected to it. The information about air traffic comes from a scenario file that details existing

aircraft and their routes. Those files can be manually created, but there are tools to generate them

with proper syntax and coherence (Phillips, 2011).

4.4 Sensors

The next components of the air traffic control system simulator are the sensors. These are

abstractions of PSRs, SSRs and ADS-B antennae. Their role is to receive data from the simulation

engine and translate it into properly formed DDS packets that are then published on the DDS

network. The topic under which they publish the data and the type of data depends on which sensor

they are emulating. These are explained in more details in section 4.6. Separating the sensors by

category adds realism to the system’s simulation and enables us to add different levels of trust to

the data depending on its source. For example, data coming from PSRs is very reliable while data

coming from ADS-B could have been spoofed. Therefore, we prioritise data coming from a

trustworthy source when it is available.

4.5 Flight Simulation Data protocol

The FSD protocol is an OSI model layer 7 protocol that uses TCP connections. The data

segment of the packets has three parts: a single character indicating the packet style, a pair of

characters indicating the packet command, and the rest is the packet’s actual content, which

comprises multiple data fields each separated by a colon. Table 4.1 shows the most important

commands and packet styles. The FSD protocol is the standard used by multiplayer plugins written

for the most popular flight simulators – X-Plane (Laminar Research, 2015), FlightGear (FlightGear

Flight Simulator, 2016), Microsoft Flight Simulator (Microsoft, 2006), and Prepar3D (Lockheed

Martin, 2015) – to connect to servers belonging to the virtual communities VATSIM and IVAO.

Table 4.1 shows the different types of packets part of the FSD specification.

37

Table 4.1 : FSD packets description

Prefix Style Description Command Command Description

$ Administrative packet FP Send a flight plan to the server.

HO Request a hand-off to a different air traffic

controller.

HA Response to the HO request.

CQ Request client data (e.g. flight plan, pilot

details, current server, etc.).

CR Response to the CQ request.

Communication packet AA Add an air traffic controller to the server.

DA Remove an air traffic controller from the

server.

AP Add a pilot to the server.

DP Remove a pilot from the server.

TM Send text message.

SB Request the aircraft model to display in the

flight simulator.

@ Update the aircraft data.

% Update the air traffic

controller data.

4.6 System architecture

 Figure 4.2 shows the architecture of the system. It features two networks: a control network,

in red, which acts to provide the data source – the “real world” - for the simulation network, in

blue, which is our equivalent of a real ATCS.

38

Figure 4.2 : Air traffic management system simulator architecture

4.6.1 Simulation network (DDS)

The components of the blue network include a simulation monitor, the equivalent of an

ATC’s workstation, as well as multiple surveillance radars and ADS-B antennae.

 The Simulation monitor virtual machine (VM) consists of the radar display software,

EuroScope, a DDS subscriber and a Python script. EuroScope’s purpose is to visualize the aircraft

in the simulation and to issue directives. The Python script sends the packets containing the

directives and the administrative data to the server. The DDS subscriber subscribes to the relevant

topics - aircraft positions and flight plans – and transfers the data to EuroScope.

 The PSR, SSR, and ADS-B VMs, are the equivalent of the surveillance equipment. They

get the aircraft's positioning data from a Python script that connects directly to the server using the

FSD protocol. The script relays the data to the C++ DDS publishers who publishes it under the

appropriate topic.

The next component is the DDS capture module. This module captures all DDS traffic during

a simulation session and sends it to a translator to extract the relevant data. The translator then

sends the extracted data to another script which populates the ontology with the new data. The

SPARQL queries are then run against this ontology by the Detection engine to verify that there are

no anomalies in the data, i.e. to detect potential attacks, rule violations, and emergencies.

39

4.6.2 Control network (FSD)

The modules of the control network are the simulation server, a VM dedicated to capturing

DDS packets with replay functionality, and a VM with a flight simulator installed on it.

The simulation server is where all the information about the aircraft positioning, the flight

plans and the air traffic scenario information. The EuroScope instance runs the simulation and

manages the simulated aircraft. It is also a reference since the effects of the various attacks will not

reach this instance. The simulated aircraft send their positioning data directly to the FSD server,

which will in turn send it to the subscribed Python scripts using the FSD protocol.

The last piece is the Pilot VM. This optional component runs a flight simulator that can

connect directly to the FSD server and integrate the player's positioning data in the simulation. This

feature allows us to test the interaction of an air traffic controller with a real pilot in one of our

attack scenarios.

4.7 DDS topics

DDS topics are data structure definitions used by publishers and subscribers to send and

interpret that data circulating on the DDS network. We have identified three DDS topics that are

used by the sensors. The first one is the primary surveillance radar data broadcast. It contains the

data gathered by a primary surveillance radar, i.e. the azimuth and distance of a radar return, as

well as a timestamp, and the radar’s identification number in order to translate the data points into

latitude and longitude. The second topic is the secondary surveillance radar data broadcast.

Similarly to the primary surveillance radar’s broadcast, it contains a timestamp and the

identification number of the radar, but it also contains the SQUAWK, altitude, and identification

number of the communicating aircraft. The third topic in our DDS definitions is the ADS-B report.

It is made up of an aircraft’s reported coordinates, altitude, callsign, ground speed, heading,

airspeed, and a timestamp. The other DDS topics are used for pilot-controller interactions. The first

of those topics is the flight plan, which contains the information listed in section 2.2.1.4. Our topics

also include an alert topic used by the anomaly detector to send messages to ATCs about anomalies

and to highlight the aircraft concerned by the anomaly. The last topics, open flight plan, close flight

plan, and route change are sent by the ATC to the FSS to interact with flight plans and perform the

function described by their names.

40

CHAPTER 5 THREAT MODEL AND ONTOLOGICAL SOLUTION

In this chapter, we present our theoretical contributions. The first such contribution is our

attack model, which we summarized in section 2.4. It is presented here in much more details. The

next contributions are the ontology, which is our method of storing the data to be analysed, and the

SPARQL reasoner, which runs the analysis queries.

5.1 Attack model

In this section, we detail the attack model we developed in order to evaluate the best

solution. The vulnerabilities at the core of this model are based on multiple research articles

(McCallie, Butts, & Mills, 2011) (Purton, Abbas, & Alam, 2010) (Martinovic & Strohmeier, 2013)

(Costin & Francillon, 2012) (Haines, 2012) (Wood, 2009) (Sampigethaya, Assessment and

mitigation of cyber exploits in future aircraft surveillance, 2010) (Tippenhauer, Pöpper,

Rasmussen, & Capkun, 2011) (Strohmeier, Lenders, & Martinovic, On the Security of the

Automatic Dependent Surveillance-Broadcast Protocol, 2015) (Sampigethaya, Privacy of future

air traffic management broadcasts, 2009) (Magazu III, 2012) (Lim, 2014), as well as various other

types of articles (Kelly, 2016) (Marks, 2011) (Zetter, 2012) (Walker, 2012) (Greenberg, 2012)

(Henn, 2012) (Cenciotti, 2014) (Le Monde, 2015) (Miller, 2015) (Mark, 2015) (Pasztor, 2015)

(Laboda, 2015) (Thurber, 2012) (BBC News, 2012). We organized our attack model in sections

that each represents a different attack category. For each category, we explain the different

scenarios, consequences, and possible solutions. Schäfer et al. from Oxford University (Schäfer,

Lenders, & Martinovic, 2013) developed a similar attack model in parallel and verified it by

surveying industry specialists, which adds validity to our findings. We split the attack scenarios

into five categories: identification and localization, RF jamming, GPS spoofing, packet injection

and replay, and DDS intrusion. Due to technological and time constraints, the solution we

developed only addresses the packet injection and replay attack scenarios.

5.1.1 Identification and localization

A core feature of ADS-B is the broadcast of position and flight information by the aircraft.

Currently, the information transmitted is not encrypted, which means that anyone can listen to the

broadcasts and get the position and flight information about all aircraft surrounding an ADS-B

antenna. While flight tracking websites make use of this feature of ADS-B coupled with official

41

information shared by ANSPs to offer their services to the public, a malicious person can use the

data broadcast by an aircraft to enable different attacks.

 An example of a malicious activity enabled by this feature is stalking whether done by

paparazzi or by someone with worse intent. The identification information of an aircraft, such as

the callsign or tail number, is publicly available on public aircraft registration databases on the

Internet (Transport Canada, 2014). A malicious person can use this information to track the targeted

aircraft by listening to its ADS-B broadcasts with a homemade antenna and receiver, even if the

owner of the aircraft has requested aircraft tracking websites to filter out data about the aircraft. If

access to the equipment is too costly, there are websites that provide unfiltered aircraft tracking

features where ADS-B tracking enthusiasts provide the information (ADS-B Exchange, n.d.).

Examples of aircraft that do not appear on commercial websites but appear on amateur

communities' websites are FBI surveillance aircraft, shown in Figure 5.1, U-2 reconnaissance

planes (Aircraft Spots, 2017), and even Air Force One (RTL-SDR.COM, 2015).

Figure 5.1 : FBI plane spotted

The ability to track aircraft accurately by listening to ADS-B broadcasts facilitates aircraft

targeting. For example, a terrorist organization wanting to blow up an aircraft can use this feature

to know exactly where the aircraft is and evaluate when it is in a vulnerable position such as when

approaching or landing, where it will be nearer to the ground and outside of the boundaries of the

42

airport, to attack it with an explosive device. The consequences of this attack range from loss of

life to loss of money from the reduced confidence of the public in air travel depending on the attack

this vulnerability made possible.

 The solution to these attacks is to encrypt ADS-B communications. Doing so would not

only prevent unwanted listeners from gaining information about aircraft currently flying, but would

also authenticate the communications, which would prevent spoofing. However, as we show later

in this chapter, encryption does not prevent every attack on ADS-B.

5.1.2 Jamming

ATCS rely on radio frequency communications, such as ADS-B, to operate, which makes

them vulnerable to jamming. The impact depends on the target of the jamming attack. We have

identified three possible attack scenarios that take advantage of this vulnerability: jamming a piece

of ground equipment, jamming an aircraft, and area-wide jamming.

 The most basic form of a jamming attack is to emit a powerful signal in the direction of a

piece of ground equipment in order to prevent it from receiving ADS-B packets or SSR replies

from surrounding aircraft. ATCs will most likely consider the piece of equipment malfunctioning

until they investigate. If there are other, unaffected ADS-B receivers or SSRs in the range covered

by the targeted equipment, the consequences will be minimal. If there are no unaffected receivers

or radars in the target's range, there will be a loss of coverage, which might in turn lower the ATC’s

confidence in ADS-B or SSR as a surveillance technology.

 A different version of the jamming attack is to target an aircraft. The goal in this scenario

is to prevent an aircraft from receiving radio communications from ground equipment or from other

aircraft. Similarly to the previous scenario, a malicious person uses a software-defined radio (SDR)

to emit a powerful radio signal in the direction of the target, which the attacker acquires by listening

to its ADS-B broadcasts. The consequences of this attack vary on the frequency that is being

jammed. If the attacker targets the frequency used for voice communications, the pilot and

controller will switch to an available one. If the attacker targets the 1090 MHz frequency, the

victim's transponder will not be able to hear the interrogations of the SSR, which means it will not

send an answer. It also means that the ADS-B In equipment, if present on the aircraft, will not be

able to receive ADS-B updates from ground equipment or hear collision avoidance system (CAS)

43

signals from surrounding aircraft. The pilot of the targeted aircraft will treat the affected equipment

as malfunctioning and will apply the directives related to equipment malfunction.

 The final scenario of this type of attack is area-wide jamming. Due to the scope of this

attack, we presume that it is carried out by an organization and not an individual. A malicious

organization wants to cause chaos around a busy air traffic area or around an airport by shutting

down all communications. To do so, they choose to jam the 1090 MHz frequency used by ADS

and SSR as well as the ones used by VHF over an area. One potential way to do this is with a

swarm of SDR-equipped drones. The first step is to scatter them over the targeted area. When

everything is in place and the weather conditions are favourable for chaos, e.g. low visibility, the

terrorist organization activates the drones. They will then soar out of small arms reach and start

broadcasting a powerful radio signal across the targeted radio frequencies. This attack will most

likely trigger an emergency security control of air traffic (ESCAT) procedure, as well as the ATC

Zero directive. The consequences for this catastrophic scenario include loss of human lives due to

possible collisions as well as monetary losses in both loss of material, flight cancellations, and loss

of customer's confidence.

 Increasing the density of ADS-B receivers can decrease the loss of coverage in case of an

attack on a ground antenna, which reduces the impact of such an attack, but does not fully prevent

or solve one.

5.1.3 GPS spoofing

Since ADS-B Out systems use a GPS receiver to determine the aircraft's coordinates, the

system is vulnerable to GPS spoofing. In this scenario, the attacker uses GPS spoofing equipment

to trick the aircraft's GPS receiver into thinking the fake signal is coming from an actual GPS

satellite. The ADS-B equipment will then start broadcasting the position the GPS unit calculated

using the satellite signals it received, including the spoofed one. Since the signal is spoofed, the

calculated position is not valid. Encryption will not fix this vulnerability because the ADS-B data

is compromised before it is encrypted. Multilateration would help in the event that there are

multiple, operational ADS-B receivers in the targeted aircraft's range but it is costly and not always

viable such as in remote places like the Great Canadian North and over the oceans.

44

5.1.4 Packet injection

The attacks in this category take advantage of ADS-B's lack of authentication and

encryption to trick the ATCS as well as aircraft's ADS-B In equipment by sending fake ADS-B

broadcasts using an SDR. The scenarios associated with this attack category are ghost aircraft,

radar screen clutter, broadcast spoofing, and packet replay.

 In the ghost aircraft scenario, a malicious person wants to create confusion by tricking

ground equipment or aircraft ADS-B receivers into displaying on the ADS-B feed an aircraft that

is not there. The perpetrator of the attack uses an SDR to broadcast ADS-B packets with fake data,

which ground equipment as well as nearby aircraft will pick up. Those systems then update their

display with the fake data. The consequences will vary depending on the situational awareness of

the victims of this attack. A very aware pilot might be able to tell that the aircraft is fake and the

only consequence will be a loss in confidence in ADS-B from the pilot and ATC. If the pilot is not

well aware, he or she might ask the ATC for a course change in order to avoid the fake aircraft.

This might result in higher fuel consumption and loss of confidence in ADS-B if the ATC finds

out that the aircraft is fake. If the ghost aircraft appears near an airport, it can result in monetary

losses due to delays or flight cancellations. By carefully selecting the ghost aircraft's identification

data, the attacker can instead create political tensions. For example, a malicious person in China

can broadcast ADS-B packets containing the identification information of an American U-2

reconnaissance plane, which is available on aircraft registration websites, and place it somewhere

above one of China's military facilities. The ground equipment picks up the packets and updates

the radar screens accordingly, which might cause confusion among Chinese air traffic controllers,

who might report the incident. Until they find the cause of the ghost aircraft, if they find it at all,

there will most likely be suspicion towards the United States of America. Other consequences

include money wasted on the investigation and loss of confidence in ADS-B if they find the cause.

 The radar screen clutter attack is similar to the ghost aircraft attack except that the goal is

to introduce many fake aircraft in order to clutter the ATC’s radar screens to prevent controllers

from distinguishing real aircraft from fake ones. The technique is also similar to the previous

scenario, except that the attacker will send ADS-B packets at a higher rate and containing different

aircraft information and positioning data. The aircraft's ADS-B In systems, if present, that are

affected by the attack display a multitude of aircraft, which means that the pilot will not be able to

trust the ADS-B In feed and will most likely ignore it. The consequence will be a loss of confidence

45

in the ADS-B technology. On the air traffic control’s side, the controllers will most likely ignore

the ADS-B feed and will instead rely on radar surveillance. The consequence will be a loss of

confidence in ADS-B, as well as a loss of situational awareness from the lack of ADS-B data. If

the area affected has no radar coverage, such as the north of Canada, ATCs will most likely have

to operate under lower air travel volume capacity in that area for the duration of the attack since

there are no other means of surveillance. This causes monetary losses associated to delays,

cancellations, route changes, and loss of confidence in air travel safety from the public, as well as

loss of confidence in ADS-B from ATC.

 The broadcast spoofing attack iterates on the ghost aircraft scenario by using the

identification data of an aircraft that is currently flying in the same area as the malicious person.

The attacker can learn which aircraft are flying nearby by listening to their ADS-B broadcasts,

which also provides the aircraft's identification information that the attackers need in order to carry

out this attack. The perpetrator will begin by targeting a nearby aircraft and gather its identification

information. Then, this information is inserted in the spoofed ADS-B packets in order to trick the

ATCS and other aircraft's ADS-B In equipment into thinking those packets are sent by the aircraft.

Since the goal is to create confusion, the attacker inserts fake positioning data in the packets before

broadcasting them. This causes the ADS-B equipment to update the displays with the spoofed

position and possibly alternate between the spoofed position and the real one when it receives a

new ADS-B packet from the aircraft or from the rogue emitter. However, as in the previous

scenario, consequences could include monetary losses due to route changes, cancellations, delays,

and loss of confidence in the event that there is no radar coverage.

 The final scenario in the packet injection attack category we consider is packet replay. In

this scenario, similarly to the other packet injection attacks, a malicious person wants to trick the

ATCS into thinking an aircraft that is currently in the air is not where it really is. The attacker

listens for an aircraft's ADS-B broadcasts and records them in order to rebroadcast them later. Since

there is currently no timestamp on ADS-B packets, the ATCS’s ground stations and nearby

aircraft's ADS-B In receivers will not be able to tell that someone is rebroadcasting old packets. As

usual, the consequences on the ATC’s side are minimal in the event that there is primary or

secondary surveillance radar coverage. If not, the consequence is a loss of situational awareness,

which could lead to worse outcomes as stated in previous scenarios. In any case, the ADS-B

46

information on the surrounding aircraft's displays will not be accurate and will cause a loss of

situational awareness on the pilot's side.

 Encrypting ADS-B communications would solve these issues to an extent, but it would be

useless in the event that someone steals the private key associated with the aircraft's registration

information. Another scenario to consider is a pilot who purposely or accidentally enters the wrong

private key or identification information in the aircraft's ADS-B system. The positioning data will

be accurate, which means that multilateration will not filter it out, but the identification data will

be wrong and could be a duplicate of an aircraft already flying in the area, which would confuse

ATC. Encryption would effectively prevent the packet replay attack because the ADS receiver

knows when the aircraft generated the packet and can ignore it if the timestamp is too far in the

past. However, all of these solutions would require a change in the ADS-B specifications as the

current one does not have room for more data on an ADS-B packet, or an easy way to implement

an encryption scheme.

5.1.5 DDS intrusion

This attack category is different in execution from the others. Indeed, in the DDS intrusion

case, the attacker relies on compromising a machine that is part of the ATCS local network, instead

of emitting data over the air. Traditional IT security solutions may help here by making it harder

to compromise a machine, but they are ineffective once the machine is compromised, as we

discussed in section 2.5. The attack scenarios here are similar to the previous categories in goals

and effects, so we will not repeat them here. What we do talk about here is the execution. This

attack technique relies on compromising a machine that is running a DDS subscriber. This can be

done by directly taking control of that machine and manually modifying its behaviour or by

infecting it with a virus that autonomously publishes false data. Obviously, an antivirus is of great

help in this scenario as it would prevent the virus infection in the first place. Since this scenario is

outside of the realm of ADS-B and other radar technologies, techniques like multilateration and

ADS-B encryption would not be effective at preventing this type of attack. This technique is much

harder to execute because the machines part of the ATCS are isolated from the outside world and

are difficult to physically access. This type of attack presents a different set of challenges to security

experts as it concerns both traditional IT security and malicious data manipulations. However, this

can also be seen as an advantage since there are complementary solutions in the form of antiviruses

to prevent it and our proposed anomaly detection engine to mitigate the effects.

47

5.2 Ontological model

The ontology is the basis of our solution. It is used to store data coming from the sensors in a

way that expresses what each data point represents and establishes relations to add context and

meaning. This step is crucial for the reasoner because it translates data into concepts. The ontology

was developed jointly with another Master’s student, Simon Malenfant, who works in the same

research laboratory and who is specialized in ontology design.

The first and most basic concept in our ontology is the Position, which is made of three data

points that represent latitude, longitude and altitude. The next concepts augment the Position in

different ways to express more complex data relations. The Position can be either a PSR position,

SSR position, or an ADS-B position, depending on which instrument sent the data. These subclasses

have different level of trust, according to our attack model.

The first complex relation we address is how we represent an aircraft and its trajectory. The

Measured position, which is made of a Position and a timestamp, is used as a point in space and

time. A Track is a series of Measured position and represents the trajectory of an Aircraft. The

Aircraft class also contains a Zone of separation and a list of Equipment. A Zone of separation

represents the cylinder centered on an aircraft in flight that represents the minimum distance or

altitude aircraft need to keep between them. It is made up of a radius and an altitude. An Equipment

represents a piece of special equipment on board of the aircraft like life rafts and signaling devices

that are mandatory for certain types of flight.

The next complex concept is an aircraft’s route, which is needed as a key part of the

representation of a Flight plan in the ontology. For this concept, we introduce the Named position,

which includes a Position, as well as a name to express the waypoints aircraft use during IFR. A

Route is a list of those positions and represents the announced waypoints the pilot will fly through.

A Flight plan also contains data points to express fuel level, cruise speed, departure time, arrival

time, and flight plan status which is either opened or closed. Other key elements of the Flight plan

are the departure and destination airports, which we conceptualize with the Airport class. A

Prohibited zone represents prohibited airspace that aircraft cannot enter without special

authorizations. It is categorized by a Position as well as a radius and an altitude. In this case, the

altitude component represents the maximum altitude of the prohibited zone.

48

The Airport class contains a Named position property and a Regulation property used to

conceptualize the periods where take-offs and landings are restricted to reduce noise pollution

around an airport. The Regulation property has a start time and an end time that represent the time

slot where landings and take-offs are allowed.

Figure 5.2 depicts how those concepts are related to each other.

Figure 5.2 : Ontological model

5.3 DDS topics to Ontology subjects data translation table

The equivalence table contains a list of all the data topics used by the ATCS, a list of all

ontology subjects and instructions on how to create the ontology subjects with the data from the

DDS topics. This is another part of our design that allows for great portability as it allows easy

adaptation to any data topic definitions, which can vary from one ATCS to another. The only data

49

topics that have to be added in the existing system are the topics for the alerts. It tells the DDS

adapter where to find each data point needed by the ontology. The relationships between the DDS

topics defined in Chapter 4 and the ontological concepts described in section 5.2 are described in

the following table. This table becomes the specification for constructing the DDS data translator

module described in section 3.2. Table 5.1 shows an example of what a DDS translation table could

look like.

Table 5.1: DDS topics to ontological concepts translation table

DDS topics Ontological concepts

PSR data broadcast Azimuth PSR position.Azimuth

Track.Measured_position.Azimuth

 Distance PSR position.Distance

Track.Measured_position.Distance

 Timestamp PSR position.Timestamp

Track.Measured_position.Timestamp

 Radar ID PSR position.Radar ID

SSR data broadcast SQUAWK SSR position.SQUAWK

Track.Measured_position.SQUAWK

 Altitude SSR position.Altitude

Track.Measured_position.Altitude

 Aircraft ID SSR position.Aircraft ID

 Timestamp SSR position.Timestamp

 Radar ID SSR position.Radar ID

ADS-B report Latitude ADS-B position.Latitude

Track.Measured_position.Latitude

 Longitude ADS-B position.Longitude

Track.Measured_position.Longitude

 Altitude ADS-B position.Altitude

Track.Measured_position.Altitude

 Callsign ADS-B position.Callsign

Track.Measured_position.Callsign

 Ground speed ADS-B position.Ground_speed

Track.Measured_position.Ground_speed

50

Table 5.1: DDS topics to ontological concepts translation table

DDS topics Ontological concepts

 Heading ADS-B position.Heading

Track.Measured_position.Heading

 Airspeed ADS-B position.Air_speed

Track.Measured_position.Air_speed

 Timestamp ADS-B position.Timestamp

Track.Measured_position.Timestamp

 Radar ID ADS-B position.Radar ID

Flight plan Equipment Aircraft.Equipment

 Route Flight_plan.Route

 Departure airport Flight_plan.Departure_airport

 Arrival airport Flight_plan.Arrival_airport

 Cruise speed Flight_plan.Cruise_speed

 Cruise altitude Flight_plan.Cruise_altitude

 Flight rules Flight_plan.Flight_rules

Alert Alert

5.4 Detection logic

The reasoner is the cornerstone of this solution. This module uses a set of queries to analyze

the data stored in the ontology to detect dangerous situations such as loss of separation and

anomalies in the data such as impossible aircraft movements. Our reasoner uses the SPARQL

Protocol and RDF Query Language (SPARQL) (W3C, n.d.). These rules aim to detect data

anomalies that could be symptoms of an attack or emergency situations. Attack symptoms are data

anomalies that would indicate that an attacker is trying to compromise data integrity and accuracy.

We have included some SPARQL pseudo-code queries as examples throughout this section. The

rest of them can be found in the appendices.

51

5.4.1 Detecting fake aircraft

5.4.1.1 Aircraft materialization

The first abnormal situation we address is aircraft materialization. This event occurs when

a new aircraft track starts at an unexpected location. Expected locations include the areas near

airports and near sector limits since these are the places where an aircraft would normally come

into the ATC’s radar screen. The query does so by looking at the start location of a new track when

it is registered in the system. If the coordinates are not near an expected location, then an alert is

shown to the ATC. By marking and segregating suspicious aircraft, ATCs can decide to hide them

in the event of a screen clutter attack. We evaluate that this query only needs to run each time a

new track is added into the system.

5.4.1.2 Violation of physical laws

This query is used to detect whenever an aircraft appears to have impossible behaviour.

Examples of impossible behaviour are aircraft that are moving too fast, turning too tightly or simply

appear to teleport on the radar screen. Other examples are sudden altitude changes and aircraft

appearing out of nowhere on the ADS-B feed but that were never seen by the primary or secondary

surveillance radars. This situation could be caused by track reconstruction errors, but it may also

be the result of an attack on the ATCS. Figure 5.3 shows the SPARQL query to detect violation of

physical laws.

01 TIME_RANGE = maximum time interval between data points to compare them

02 MAX_SPEED = maximum allowed speed

03 SELECT ?aircraftID ?timestamp1 ?sensor

04 { ?ddsSubject1 rdf:type :ADSBReport

05 ?ddsSubject2 rdf:type :ADSBReport }

06 UNION

07 { ?ddsSubject1 rdf:type :SSRPosition

08 ?ddsSubject2 rdf:type :SSRPosition }

09 ?ddsSubject1 :ID ?aircraftID

10 ?ddsSubject2 :ID ?aircraftID

11 FILTER(?ddsSubject1 != ?ddsSubject2)

12 ?ddsSubject1 :timestamp ?timestamp1

13 ?ddsSubject2 :timestamp ?timestamp2

14 FILTER(|?timestamp1 - ?timestamp2| < TIME_RANGE)

15 ?ddsSubject1 :longitude ?longitude1

16 ?ddsSubject1 :latitude ?latitude1

17 ?ddsSubject2 :longitude ?longitude2

18 ?ddsSubject2 :latitude ?latitude2

19 ?distance = getDistance(?longitude1, ?latitude1, ?longitude2,

 ?latitude2)

Figure 5.3 : Violation of physical laws

52

20 FILTER(?distance/|?timestamp1 - ?timestamp2| > MAX_SPEED)

21 ?ddsSubject1 :publishedBy ?sensor

Figure 5.3 : Violation of physical laws

 For every aircraft in the monitored area, the reasoner compares the history of reported

positions (lines 4 to 11) up to a certain time in the past (lines 12 to 14) and verifies if the longitude,

latitude, airspeed, and ground speed are consistent with each other. It also verifies that the ground

speed is lower than the allowed maximum (lines 15 to 20). If any of those conditions are not met,

the suspicious aircraft is highlighted on the radar screen to let ATCs know that its movement is not

normal. In order to be effective, this query needs to run every time a new position update is added

to the ontological database.

5.4.2 Detecting emergencies and air traffic rules violations

5.4.2.1 Loss of separation

While our solution is aimed at detecting malicious air traffic data injections, it can be

extended to also detect air traffic rules violations. One of these is loss of separation. During flight,

aircraft have to keep a certain distance between them, either in latitude/longitude or in altitude.

This zone of separation can be seen as a hockey puck centered on an aircraft. A loss of separation

incident happens when an aircraft enters another aircraft’s hockey puck.

01 TIME_RANGE = Maximum time difference between two Measured positions

02 ALTITUDE_MIN = Minimum altitude difference between aircraft

03 DIST_MIN - Minimum distance between aircraft

04 SELECT ?aircraft1ID ?aircraft2ID ?timestamp1

05 ?ddsSubject1 rdf:type :ADSBReportType1

06 ?ddsSubject2 rdf:type :ADSBReportType1

07 FILTER(?ddsSubject1 != ?ddsSubject2)

08 ?ddsSubject1 :timestamp ?timestamp1

09 ?ddsSubject2 :timestamp ?timestamp2

10 FILTER(|?timestamp1 - ?timestamp2| < TIME_RANGE)

11 ?ddsSubject1 :altitude ?altitude1

12 ?ddsSubject2 :altitude ?altitude2

13 FILTER(|?altitude1 - ?altitude2| < ALTITUDE_MIN)

14 ?ddsSubject1 :longitude ?longitude1

15 ?ddsSubject1 :latitude ?latitude1

16 ?ddsSubject2 :longitude ?longitude2

17 ?ddsSubject2 :latitude ?latitude2

18 ?distance = getDistance(?longitude1, ?latitude1, ?longitude2,

 ?latitude2)

19 FILTER(?distance < DIST_MIN)

20 ?ddsSubject1 :publishedBy ?sensor

21 ?ddsSubject2 :publishedBy ?sensor

Figure 5.4 : Loss of separation

53

As shown in Figure 5.4, the query looks at all pairs of aircraft (lines 4 to 7) within a given

time range (lines 8 to 10). The query will then verify if the aircraft are too close vertically (lines 11

to 13), and horizontally and vertically (lines 14 to 18). Aircraft that meet these conditions are

highlighted on the ATC’s screen to alert the controller that the aircraft are too close together. Since

the goal of this query is to be an early warning to avoid two aircraft getting in loss of separation

distance, this query does not need to run every time the database receives a new position update.

We evaluate that the frequency at which this query runs for each aircraft depends on the density of

the air traffic. When there are multiple aircraft in a given area, this query will run more often and

vice versa.

5.4.2.2 Route deviation

Another traffic rule violation our solution can detect is route deviation. Before taking off,

pilots have to file a flight plan to tell ATCs of their intentions. The flight plan contains a route that

consists of a series of waypoints that the aircraft plans to go over. Unless instructed otherwise by

an air traffic controller, the pilot has to fly along the routes between the waypoints. A route

deviation incident happens when an aircraft strays too far from the routes between the waypoints.

The query computes the time it should take to reach the aircraft’s next waypoint from the previous

one and takes into consideration the aircraft’s ground speed to compensate for wind speeds. The

query raises an alert if the aircraft takes longer than that time to reach the next waypoint, within a

certain threshold. Every time an aircraft reaches a waypoint, the system computes how long it

should take for the aircraft to reach the next waypoint plus a grace period to allow for slight delays.

It then schedules this query to run after the time has expired.

5.4.2.3 Prohibited zones

Our solution also helps prevent prohibited airspace intrusion. A prohibited airspace is a

well-defined three-dimensional cylinder centered on a given point. By looking at the distance

between an aircraft and the center of a prohibited airspace and comparing it to the radius of the

zone as well as the difference between the altitude of the aircraft and the ceiling of the zone, the

query can detect aircraft that are too close to the prohibited airspace. An alert is then shown to

ATCs so they can contact and warn the aircraft to prevent it from going too close to the prohibited

zone and have military ATCs contact the pilot of the aircraft. Similarly to the loss of separation

54

query, this query also serves as an early warning. Thus, it only needs to run every so often for each

aircraft.

5.4.2.4 Noise reduction

Our ontological solution can help detect noise reduction rules violations by looking at the

time an aircraft requests a take-off or landing permission and at allowed take-off and landing

periods. It can also verify the route that a given aircraft will take and make sure it does not break

any noise reduction rules along the route. The query looks at all the take-off and landing requests

as well as the routes in the ontology and compares them to the effective noise reduction rules. Since

this is an audit mode query, it does not need to be scheduled to run regularly and instead runs on

demand.

5.4.2.5 Fuel emergency

Our solution has the added benefits of being able to predict and help resolve emergencies

like fuel emergencies. With the centralized data store our solution offers, the reasoner can keep

track of the amount of fuel left in an aircraft’s tank by submitting a query to the ontology. The

query allows the reasoner to know when the aircraft took off and how much fuel the pilot indicated

in the flight plan. It can then alert the ATCs when an aircraft is projected to run out of fuel before

reaching its destination airport. Similarly to the route deviation query, this query can be scheduled

ahead of time. Since we know how much fuel a given aircraft has in flight time from this original

flight plan and from ADS-B updates, we can schedule the query to run every so often to check on

the fuel level of the aircraft and adjust the frequency of the query accordingly. If the fuel levels of

a given aircraft are getting low, the query can run more often for that aircraft in order to warn ATC

as quickly as possible if the fuel levels get too low and the aircraft needs special attention.

5.4.2.6 Interrupted track

In this scenario, an aircraft suddenly stopped transmitting data. This could happen for a

number of reasons: loss of radar or ADS-B coverage, malfunctioning equipment on the aircraft or

a crash. Figure 5.5 shows how the query would detect such an event.

01 TIMEOUT = Maximum delay since last update before considering track

 interrupted

02 NOW = The current time

03 SELECT ?aircraftID ?sensor

Figure 5.5 : Interrupted track

55

04 {?ddsSubject rdf:type :ADSBReport}

05 UNION

06 {?ddsSubject rdf:type :SSRPosition}

07 ?ddsSubject :ID ?aircraftID

08 ?ddsSubject :timestamp ?timestamp

09 FILTER([NOW] - ?timestamp > TIMEOUT)

10 ?ddsSubject :publishedBy ?sensor

Figure 5.5 : Interrupted track

The query looks at the latest update of every aircraft (lines 3 to 6) and checks if an aircraft

has not updated its position for a certain amount of time (lines 7 to 9). The aircraft that fulfill this

condition are identified as such and the system raises the appropriate alert. This query also runs on

a scheduled basis. Every time a new update comes in, the system calculates a delay in which a new

update is expected. If the end of the delay is reached without any new update, this query triggers

the alert.

5.4.2.7 Anomalous descent

An anomalous descent occurs when an aircraft has a descent rate that is too high to be a

normal descent and would indicate a problem with the aircraft. The rate of descent is the difference

of altitude between two position updates divided by the timespan between those updates. This

query looks at every aircraft’s last position update and another one a certain amount of time in the

past and computes the rate of descent using the altitudes reported on those two updates. If the rate

of descent is too high, the module can alert the ATCs. Since this query calculates differences

between updates to detect an emergency situation, it needs to run every time a new update comes

in.

5.4.3 Detecting high-level attacks

The alerts triggered by the previous can be analysed on a macro level to detect the nature

of the attack. We identified four types of attacks from our attack model that can be deduced using

the metadata from the anomalies detected by our ontological reasoner as symptoms of those attacks.

These scenarios help decide whether the alerts raised by the previous detection rules are anomalies

due to errors in the system or actual attacks. Since the following query are meta-analysis, they run

every time a new alert is triggered.

56

5.4.3.1 Ghost aircraft

The first and most basic high-level attack type we look at is the ghost aircraft. In this

scenario, an attacker wants to make a fake aircraft appear on the controllers’ screen. Depending on

the execution and sophistication of the attack, it can be detected in different ways. The first sign a

ghost aircraft is being injected into the system is the presence of aircraft materialization alerts,

which would be triggered by a careless attacker who makes an aircraft appear in the middle of

nowhere instead of near an airport or sector boundaries, for example. The second sign is a route

deviation alert. This can occur when an attacker is spoofing the information of an existing aircraft

with modified coordinates. The last and surest sign is that the ADS-B broadcasts of an aircraft do

not match any aircraft detected by the primary surveillance radar. However, this detection

technique only works in area with primary surveillance radar coverage.

5.4.3.2 Screen clutter attack

The goal of a screen clutter attack is to fill the ATC radar screens with fake aircraft in order

to make real aircraft hard to discern by hiding them under clutter. It is similar to the ghost aircraft

attack in technique, but with a different goal. By looking at how many aircraft materialization, laws

of physics violation and ghost aircraft alerts, the reasoner can deduce that those anomalies are

related and injected into the system with a purpose, namely to clutter the screens of ATCs.

5.4.3.3 Jamming

An attacker may choose to jam the frequencies used by aircraft equipment to disrupt

communications. While it cannot be directly solved due to the nature of attack, our reasoner can

detect whenever such an attack happens. By routinely compiling average air traffic density at any

hour of the day, we can compare those averages to the current air traffic density. A much lower

density value than usual would potentially indicate a jamming attack. Another detection technique

our reasoner uses is to analyse how many interrupted track events it detected in the recent past. Too

many events close to each other geographically and temporally indicate that the area may be victim

of a jamming attack.

5.4.3.4 System tampering

The last detection scenario is system tampering. It is important to detect such events because

this attack technique is at the core of the problems introduced by ADS-B and also serves as a check

57

on the system’s integrity. By looking at the alerts that concern ADS-B data, namely aircraft

materialization, violation of laws of physics, loss of separation, route deviation, prohibited zones,

interrupted track, anomalous descent, ghost aircraft, screen clutter, and jamming as well as how

often they have been raised in the recent past, the query can evaluate if the system is compromised

and if the data displayed on radar screens can be trusted.

5.5 Discussion and lessons learned

The application domain was fairly easy to break down into classes for the ontology. We

think the biggest factor was that it is a concrete application domain with clearly defined real-world

objects and relations as opposed to a more abstract application domain like IP network traffic.

However, we could not represent everything we originally wanted to. For example, we are not able

to easily represent and implement the notion of a body of water in our ontology, which prevented

us from creating some rules for the audit mode of the detection system. Prohibited zones were

approximated to circles which may not be representative of the actual area. We evaluated that this

approximation was good enough as the alert raised by the detection system is an early warning

when an aircraft is approaching a prohibited zone.

We also found that adding new detection rules to the detection engine was hard without

going back to the ontology to add new classes or properties. However, once the most basic classes

like Position and Aircraft were added, it was easy to expand them to fulfill our needs. For example,

we needed to differentiate the positions by the surveillance equipment that report them, so we

created the PSR position, SSR position, and ADS-B position subclasses.

58

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

This Master’s thesis makes three main contributions: 1) an architecture for a rule-based

anomaly detection system for Air Traffic Control Systems (ATCS) employing an ontology of high-

level concepts in Air Traffic Control (ATC) and aviation that detects data manipulation attacks and

potentially dangerous situations, 2) an architecture and implementation of a high-fidelity air traffic

control system simulator (ATCSS) that allows us to measure the real-time impact of cyber attacks,

and 3) an attack model detailing the goals and techniques that could be used by modern attackers

to attack ATCS. In order to construct ontological model of ATCS and attacks on them, we

introduced a threat model of realistic attacks against modern ATCS. As far as we know, this is one

of the first threat models that encompasses both physical and cyber threats to ATC and ATCS and

partially answers our first research question.

After defining the attack model, we designed and built an ATCSS to reproduce the effects

of those attacks and test eventual solutions. This simulator leverages free software used in aviation

gaming communities to reproduce the physical simulation components of an ATCSS, which allows

us to measure and demonstrate the real-life impact of cyber attacks, something that we do not

believe has been done before. This achievement was one of most time-consuming and technically

challenging tasks of this research and we believe adequately addresses our third research question.

Nonetheless, the ATCSS we built could certainly be improved upon. The most important features

missing from our air traffic simulator is the integration of weather and flight plan information, and

more realistic pilots, whether in the way of “smart pilots” - artificial intelligence that would

simulate the behaviour ­ or real pilots interacting with the system through a flight simulator. Adding

weather would improve the realism of our air traffic by adding wind patterns and turbulence that

the smart pilots would interact with by requesting flight level changes or route deviations to the

ATC. Weather would also include storms, fog, heavy snowfalls and other weather phenomena that

cause route deviations and airport delays or closures. Despite the fact that it is able to simulate

Automatic Dependent Surveillance-Broadcast (ADS-B) data sources, our simulation engine does

not allow the aircraft to broadcast its heading or airspeed, which would have helped make the

simulation more realistic, but would also have provided extra data points for the detection engine

to analyze. Also, the simulated aircraft does not keep track of the amount of fuel on board and will

thus never have unforeseen fuel emergencies due to unexpected winds or route changes. Other

limitations in our architecture and data are pilot errors like missed approach or missed landing,

59

Primary Surveillance Radar (PSR) false-positives such as birds or mountains, aircraft Traffic alert

and Collision Avoidance System (TCAS) alerts, areas without or with limited radar or ADS-B

coverage, prohibited zones, and bodies of water. The next step would be to address the limitations

of the simulator to have a more realistic air traffic simulation. Another direction would be to include

ADS-B data taken from flight tracking websites. This option would provide the most realistic test

data because it is taken directly from real air traffic. Finally, it would be desirable to use the flight

simulator plugins and the radar screens to test different attack scenarios with real pilots and air

traffic controllers. This would allow measurement of their reaction to attacks and to evaluate

different remediation techniques.

The next step in our research was to establish which Data Distribution Service (DDS) topics

would be realistically part of a typical ATCS. Using the available data in those topics, we mapped

them to the high-level concepts in an ontology that we designed, such as positions and tracks. Then,

we used these concepts to design SPARQL Protocol and RDF Query Language (SPARQL) queries

that address the attacks pointed out in the first step and other non-malicious potentially dangerous

scenarios. In this process, we were able to address our fourth research question by providing

important answers about the difficulty of this process and discover some of the techniques and

rules of thumbs to keep this process on track. This part of the research was done in collaboration

with another Master’s student, Simon Malenfant, and these results on the ontological design

process are mainly his contribution.

The anomaly detection solution we proposed in 0 takes advantage of ontologies to find

anomalies in the data coming from the different sensors. We opted for a Network-based Intrusion

Detection System (NIDS)-like architecture where our detection engine runs on dedicated machines

connected to the ATCS network. This decision was somewhat confirmed to be easier to adapt to

different ATCS than the Host-based Intrusion Detection System (HIDS) design since modifying

our controller workstation (EuroScope) was fairly complicated. The advantages this design has

over other design and over other solutions is portability and extensibility. Since the detection

system is independent from the air traffic control system, it is easily adaptable to different ATCS.

Furthermore, the data sources across ATCS are mostly the same and only the interface between the

ATCS network and the ontology would need to be modified. Our design also allows air traffic

management organizations to extend the detection to include other attacks and dangerous scenario

than the ones presented in our model since detecting a new attack or scenario would be a matter of

60

writing a new SPARQL query, which does not require a thorough knowledge of the detection

system.

While addressing some of the most pressing issues concerning ATCS vulnerabilities to data

manipulation attacks, our proposed detection system is not complete. A proof-of-concept prototype

of the anomaly detection solution described in 0 was not fully implemented during the course of

this work, and this is an important limitation of our work; our second research question remains

only answered in theory. We consciously chose to concentrate our research efforts on the

construction of an adequate simulator architecture (described in Chapter 4) and the ontological

modelling process (Chapter 5). On the one hand, the construction of an adequate simulator was key

to allow further research by the research group, but was also a necessary step to gain better domain

knowledge on ATC in order to meaningfully participate in the ontological modelling process. On

the other hand, the research team knew that the main difficulty and open research questions lay in

the process of creating such an ontology for a concrete purpose, in this case anomaly detection.

Thus, integrating the ontological model and queries that we constructed into a fully functional

prototype to be tested in realistic simulations on the ATCSS that we built would have been the

logical next step. Unfortunately, we simply ran out of time.

61

BIBLIOGRAPHY

ADS-B Exchange. (n.d.). Global Radar View. Retrieved July 14, 2016, from ADS-B Exchange:

https://www.adsbexchange.com/

Aircraft Spots. (2017, March 8). Aircraft Spots. Récupéré sur Twitter:

https://twitter.com/aircraftspots/status/839624252810641408

Baglioni, M., de Macedo, J. A., Renso, J., & Wachowicz, M. (2008). An Ontology-Based Approach

for the Semantic Modelling and Reasoning on Trajectories. In Advances in Conceptual

Modeling - Challenges and Opportunities (pp. 344-353). Springer Berlin Heidelberg.

doi:10.1007/978-3-540-87991-6_41

BBC News. (2012, June 29). Researchers use spoofing to 'hack' into a flying drone. Retrieved July

14 2016, from BBC News: http://www.bbc.com/news/technology-18643134

Cenciotti, D. (2014, August 13). U.S. airborne communication plane could be tracked on the Web

for 9 hours during air strike that killed Taliban leaders in Afghanistan. Retrieved May 4,

2016, from The Avionist: https://theaviationist.com/2014/08/13/bacn-supports-air-strike-

afghanistan/

Costin, A., & Francillon, A. (2012). Ghost in the Air (Traffic): On insecurity of ADS-B protocol

and practical attacks on ADS-B devices. Retrieved June 15, 2016, from

https://media.blackhat.com/bh-us-

12/Briefings/Costin/BH_US_12_Costin_Ghosts_In_Air_WP.pdf

Csernak, G. (n.d.). EuroScope. Retrieved from EuroScope: http://www.euroscope.hu/main.php

DenQuixote. (2014, October 10). Wiresharking VATSIM and IVAO. Retrieved June 29, 2016, from

SimFed - The Simulator Federation Project:

https://simfed.org/blog/2014/10/10/wiresharking-vatsim-and-ivao/

Dunstone, G. (2012). ADS-B Introduction. Retrieved July 5, 2016, from ICAO:

http://www.icao.int/APAC/Meetings/2012_SEA_BOB_ADSB_WG8/SP01_AUS%20-

%20ADS-B%20Basics.pdf

Federal Aviation Administration. (2016, November 28). Measuring the Performance of Airports.

Retrieved January 5, 2017, from Federal Aviation Administration:

https://www.faa.gov/nextgen/snapshots/airport/

62

Federal Aviation Administration. (2017, January 4). A Brief History of the FAA. Retrieved January

5, 2017, from Federal Aviation Administration:

https://www.faa.gov/about/history/brief_history/

Federal Aviation Agency. (2014). NextGen Works for the Gulf of Mexico.

Federal Aviation Agency. (n.d.). Next Generation Air Transportation System (NextGen). Retrieved

March 22, 2016, from https://www.faa.gov/nextgen/

Federal Aviation Agency. (n.d.). NextGen - NextGen Programs. Retrieved from

https://www.faa.gov/nextgen/programs/

Federal Aviation Association. (2017, Februaru 28). Electronic Code of Federal Regulations.

Retrieved March 1, 2017, from U.S. Government Publishing Office:

http://www.ecfr.gov/cgi-bin/text-

idx?c=ecfr&sid=3efaad1b0a259d4e48f1150a34d1aa77&rgn=div5&view=text&node=14:

2.0.1.3.10&idno=14#se14.2.91_1509

FlightGear Flight Simulator. (2016). Retrieved March 27, 2016, from FlightGear:

http://www.flightgear.org/

Grappel, R. D., & Wiken, R. T. (2007). Guidance Material for Mode-S-Specific Protocol

Applicaiton Avionics. Lexington: Massachusetts Institute of Technology.

Greenberg, A. (2012, July 25). Next-Gen Air Traffic Control Vulnerable To Hackers Spoofing

Planes Out Of Thin Air. Retrieved Mai 14, 2016, from Forbes:

http://www.forbes.com/sites/andygreenberg/2012/07/25/next-gen-air-traffic-control-

vulnerable-to-hackers-spoofing-planes-out-of-thin-air/#71bcd3ff3cad

Gulf Coast Avionics. (n.d.). Avionics | Aircraft Transponders | Search Results | Gulf Coast

Avionics. Retrieved March 11, 2016, from

https://www.gulfcoastavionics.com/category/68-transponders.aspx

Haines, B. (2012). Hackers + Airplanes No Good Can Come Of This. Retrieved May 15, 2016,

from YouTube: https://www.youtube.com/watch?v=mY2uiLfXmaI

Henn, S. (2012, August 14). Could The New Air Traffic Control System Be Hacked? All Things

Considered. NPR. Retrieved July 23, 2016, from

63

http://www.npr.org/sections/alltechconsidered/2012/08/16/158758161/could-the-new-air-

traffic-control-system-be-hacked

Hieb, J., Graham, J., & Guan, J. (2009). An Ontology for Identifying Cyber Intrusion Induced

Faults in Process Control Systems. In Critical Infrastructure Protection III (pp. 125-138).

Springer Berlin Heidelberg.

International Civil Aviation Organisation - Asia and Pacific Office. (2007). Guidance Material on

Comparison of Surveillance Technologies (GMST). Retrieved June 18, 2016, from

http://www.icao.int/APAC/Documents/edocs/cns/gmst_technology.pdf

International Civil Aviation Organisation. (2014). Annual Report of the ICAO Council. Montréal:

ICAO.

International Civil Aviation Organisation. (2016). Facts and Figure. Retrieved from

http://www.icao.int/sustainability/Pages/FactsFigures.aspx

International Civil Aviation Organisation. (2016). Medium-Term Passaenger and Freight Traffic

Forecasts. Retrieved August 10, 2016, from ICAO:

http://www.icao.int/sustainability/pages/eap_fp_forecastmed.aspx

Jaatun, M. G., & Fægri, T. E. (2013). Sink or SWIM: Information Security Requirements in the

Sky. Eighth International Conference on Availability, Reliability and Security (ARES) (pp.

794-801). Regensburg: IEEE. doi:10.1109/ARES.2013.106

Jaiganesh, V., Mangayarkarasi, S., & Sumathi, P. (2013, April). ntrusion Detection Systems: A

Survey and Analysis of Classification Techniques. International Journal of Advanced

Research in Computer and Communication Engineering, 2(4).

John Wayne Airport, Orange County. (2013). GA Noise Abatement. Récupéré sur John Wayne

Airport, Orange County: http://www.ocair.com/generalaviation/noise

Kacem, T., Wijesekeram, D., Costa, P., & Barreto, A. (2014). Security Requirements Analysis of

ADS-B Networks. Semantic Technologies for Intelligence, Defense, and Security. Faifax,

VA.

Karmarkar, A. R. (2012). Aviation communication infrastructure security. Integrated

Communications, Navigation and Surveillance Conference (ICNS) (pp. E7-1 - E7-9).

Herndon, VA: IEEE. doi:10.1109/ICNSurv.2012.6218392

64

Kelly, H. (2016, July 26). Researcher: New air traffic control system is hackable. Retrieved August

4, 2016, from CNN: http://www.cnn.com/2012/07/26/tech/web/air-traffic-control-

security/index.html

Krozel, J., Andrisani, D., Ayoubi, M., Hoshizaki, T., & Schwalm, C. (2004). Aircraft ADS-B Data

Integrity Check. 4th Aviation Technology, Integration and Operations (ATIO) Forum.

Chicago: AIAA.

Laboda, A. (2015, November 14). Unencrypted ADS-B OUT Confounds Aircraft Blocking.

Retrieved June 27, 2016, from AINonline: https://www.ainonline.com/aviation-

news/business-aviation/2015-11-14/unencrypted-ads-b-out-confounds-aircraft-blocking-0

Laminar Research. (2015). X-Plane. Retrieved January 14, 2016, from http://www.x-

plane.com/desktop/home/

Le Monde. (2015, November 11). Les avions civils pourraient être localisables en temps réel sur

toute la Terre en 2017. Retrieved February 6, 2016, from Le Monde:

http://www.lemonde.fr/international/article/2015/11/11/les-avions-civils-devraient-etre-

localisables-en-temps-reel-sur-toute-la-terre-en-2017_4807585_3210.html

Liao, H., Lin, C., Lin, Y., & Tung, K. (2013). Intrusion detection system: A comprehensive review.

Journal of Network and Computer Applications, 36, 16-24.

Lim, B. (2014). Emerging Threats from Cyber Security in Aviation – Challenges and Mitigations.

Journal of Aviation Management, 81-91.

Lockheed Martin. (2015). Prepar3D. Retrieved June 15, 2016, from Prepar3D:

http://www.prepar3d.com/

Magazu III, D. (2012). Exploiting the Automatic Dependent Surveillance-Broadcast System via

False Target Injection. Master's Thesis, Air Force University, Air Force Institue of

Technology, Wright-Patterson Air Force Base. Retrieved July 16, 2016, from

http://www.jmargolin.com/sense3/ref15_magazu_usaf.pdf

Mark, R. P. (2015, September 1). TCAS, ADS-B Unreliable on East Coast During September.

Retrieved March 21, 2016, from AINonline: http://www.ainonline.com/aviation-

news/aerospace/2015-09-01/tcas-ads-b-unreliable-east-coast-during-september

65

Marks, P. (2011, September 10). Air traffic system vulnerable to cyber attack. New Scientist,

211(2829), 22-23. doi:10.1016/S0262-4079(11)62203-3

Martinovic, I., & Strohmeier, M. (2013). Security of ADS-B: State of the Art and Beyond. Retrieved

December 17, 2015, from http://www.cs.ox.ac.uk/publications/publication6980-

abstract.html

Massacci, F., Mylopoulos, J., Paci, F., Tun, T. T., & Yu, Y. (2011). An Extended Ontology for

Security Requirements. In C. Salinesi, & O. Pastor (Eds.), Advanced Information Systems

Engineering Workshops (Vol. 83, pp. 622-636). London: Springer Berlin Heidelberg.

doi:10.1007/978-3-642-22056-2_64

McCallie, D., Butts, J., & Mills, R. (2011). Security Analysis of the ADS-B implementation in the

next generation air transportation system. International Journal of Critical Infrastructure

Protection, 4(2), 78-87. doi:http://doi.org/10.1016/j.ijcip.2011.06.001

Microsoft. (2006). Microsoft Flight Simulator X. Retrieved March 27, 2016, from

https://www.microsoft.com/france/jeux/flight-simulator-x.aspx

Miller, S. (2015, December 14). Why Boing 787s are appearing to lose their way. Retrieved

January 26, 2016, from Runway Girl Network:

https://www.runwaygirlnetwork.com/2015/12/14/why-boeing-787s-are-appearing-to-lose-

their-way/

Mitchell, R., & Chen, I. (2014, March). A Survey of Intrusion Detection Techniques for Cyber-

Physical Systems. ACM Computing Surveys, 46(4). doi: http://dx.doi.org/10.1145/2542049

Monteiro, M., Barreto, A., & Kacem, T. (2015). Detecting malicious ADS-B broadcasts using wide

area multilateration. 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC)

(pp. 4A3-1 - 4A3-12). Pargue: IEEE.

NAV CANADA. (2016, July 21). Part 2 - En Route. Aeronautical Information Publication, pp. 1-

55. Retrieved from https://www.navcanada.ca/EN/products-and-

services/Documents/AIP/Next/part_2_enr/2enr_eng.pdf

NAV CANADA. (n.d.). Surveillance dépendante automatique en mode diffusion. Retrieved

January 5, 2017, from NAV CANADA: http://www.navcanada.ca/fr/products-and-

services/pages/on-board-operational-initiatives-ads-b.aspx

66

Nuseibeh, B., Haley, C. B., & Foster, C. (2009, September 9). Securing the skies: in requirements

we trust. Computer, 42(9), 64-72. doi:10.1109/MC.2009.299

Object Computing, Inc. (2015, September 11). OpenDDS 3.7. Consulté le January 5, 2017, sur

GitHub: https://github.com/objectcomputing/OpenDDS/releases/tag/DDS-3.7

Object Management Group. (2004, December). Data Distribution Service for Real-time Systems

Specification. Récupéré sur Object Management Group:

http://www.omg.org/spec/DDS/1.0/PDF/

Object Management Group. (2007). Data Distribution Service for Real-time Systems Version 1.2.

Retrieved from http://www.omg.org/spec/DDS/1.2/

Object Management Group. (n.d.). What is DDS? Retrieved January 4, 2017, from

http://portals.omg.org/dds/what-is-dds-3/

Object Management Group. (n.d.). Who's Using DDS? Retrieved from

http://portals.omg.org/dds/who-is-using-dds-2/

Ontotext. (n.d.). What is RDF Triplestore? Retrieved August 25, 2017, from ontotext:

https://ontotext.com/knowledgehub/fundamentals/what-is-rdf-triplestore/

Pardo-Castellote, G. (2005, January). OMG Data Distribution Service: Real-Time

Publish/Subscribe Becomes a Standard. Retrieved January 4, 2017, from Real-Time

Innovations: https://info.rti.com/hubfs/docs/reprint_rti.pdf

Pasztor, A. (2015, April 10). Pilot Union Highlights Cybersecurity Concerns for Air-Traffic

Control. Retrieved January 11, 2016, from The Wall Street Journal:

http://www.wsj.com/articles/pilot-union-highlights-cybersecurity-concerns-for-air- traffic-

control-1428702355

Perreault, M. (2015). Révolution Dans Le Trafic Aérien. La Presse+. Retrieved January 19, 2016,

from http://plus.lapresse.ca/screens/7436d8ee-dfd8-4034-bd40-

fe5af5341e3d|2nG6ZIn4tZxP.html

Perrig, A., Canetti, R., Tygar, J., & Song, D. (2005). The TESLA Broadcast Authentication

Protocol. RSA CryptoBytes.

Phillips, C. (2011). Récupéré sur Aircraft Situation Editor: http://www.craig-phillips.co.uk/ase/

ProtoDev Development Group. (2002, March 18). Current Protocol / Specification Document .

67

Purton, L., Abbas, H., & Alam, S. (2010). Identification of ADS-B System Vulnerabilities and

Threats. Australasian Transport Research Forum. Sydney.

Python Software Foundation. (2017). Welcome to Python. Récupéré sur Python:

https://www.python.org/

Real-Time Innovations. (2013, September 5). NAV CANADA Enhances ATM Technology Platform

with RTI Connext. Retrieved from http://news.rti.com/pr/nav-canada-navcantrac

Roe, C. (2012, June 7). A Short History of Ontology: It's not just a Matter of Philosophy Anymore.

Retrieved June 15, 2016, from http://www.dataversity.net/a-short-history-of-ontology-its-

not-just-a-matter-of-philosophy-anymore/

Roy, J. (n.d.). Automated Reasoning for Maritime Anomaly Detection. Québec: DRDC. Retrieved

June 13, 2016, from http://cradpdf.drdc-rddc.gc.ca/PDFS/unc92/p532648.pdf

RTL-SDR.COM. (2015, October 31). AN UNFILTERED ADS-B CO-OP: ADSBEXCHANGE.

Consulté le July 21, 2017, sur RTL-SDR.COM: http://www.rtl-sdr.com/an-unfiltered-ads-

b-co-op-adsbexchange/

Sampigethaya, K. (2009). Privacy of future air traffic management broadcasts. 2009 IEEE/AIAA

28th Digital Avionics Systems Conference (pp. 6.A.1-1 - 6.A.1-11). Orlando: IEEE.

Sampigethaya, K. (2010). Assessment and mitigation of cyber exploits in future aircraft

surveillance. Aerospace Conference (pp. 1-10). Big Sky: IEEE.

doi:10.1109/AERO.2010.5446905

Sampigethaya, K., & Poovendran, R. (2010). Visualization & assessment of ADS-B security for

green ATM. Digital Avionics Systems Conference (DASC) (pp. 3.A.3-1 - 3.A.3-16). Salt

Lake City: IEEE. doi:10.1109/DASC.2010.5655382

Sandhu, U., Haider, S., Naseer, S., & Ateeb, O. (2011). A Survey of Intrusion Detection &

Prevention Techniques. 2011 International Conference on Information Communication

and Management, IPCSIT, 16.

Schäfer, M., Lenders, V., & Martinovic, I. (2013). Experimental Analysis of Attacks on Next

Generation Air Traffic Communication. In M. Jacobson, M. Locasto, P. Mohassel, & R.

Safavi-Naini (Eds.), Applied Cryptography and Network Security (Vol. 7954, pp. 253-271).

Banff, Alberta: Springer Berlin Heidelberg. doi:10.1007/978-3-642-38980-1_16

68

Schwab, P. (2015, September 9). The History of Intrusion Detection Systems (IDS) - Part 1.

Retrieved November 13, 2016, from Threat Stack: http://blog.threatstack.com/the-history-

of-intrusion-detection-systems-ids-part-1

SKYbrary. (2015, September 3). Automatic Dependent Surveillance - Contract (ADS-C). Retrieved

March 14, 2016, from SKYbrary Aviation Safety:

http://www.skybrary.aero/index.php/Automatic_Dependent_Surveillance_-

Contract(ADS-C)

SKYbrary. (2015, November 3). Automatic Dependent Surveillance Broadcast (ADS-B). Retrieved

March 14, 2016, from SKYbrary Aviation Safety:

http://www.skybrary.aero/index.php/ADS-B

Smith, A. E. (2006). United States of America Patent No. US20060119515.

Smith, A., Cassell, R., Breen, T., & Hulstrom, R. (2006). Methods to Provide System-Wide ADS-

B Back-Up, Validation and Security. ieee/aiaa 25TH Digital Avionics Systems Conference

(pp. 1-7). Portland: IEEE.

Spaccapietra, S., Parent, C., Damiani, M. L., de Macedo, J. A., Porto, F., & Vangenot, C. (2008,

April). A conceptual view on trajectories. Data & Knowledge Engineering, 65(1), 126-146.

Strohmeier, M., Lenders, V., & Martinovic, I. (2015, May 19). On the Security of the Automatic

Dependent Surveillance-Broadcast Protocol. IEEE Communications Surveys & Tutorials,

17(2), 1066-1087. doi:10.1109/COMST.2014.2365951

Strohmeier, M., Schäfer, M., Pinheiro, R., Lenders, V., & Martinovic, I. (2016). On Perception

and Reality in Wireless Air Traffic Communications Security. Retrieved from arXiv:

http://arxiv.org/abs/1602.08777

The Apache Software Foundation. (2016). Apache Jena - Jena Ontology API. Consulté le June 16,

2016, sur Apache: https://jena.apache.org/documentation/ontology/

Thurber, M. (2012, August 21). Hackers, FRAA Disagree Over ADS-B Vulnerability. Retrieved

January 26, 2016, from AINonline: http://www.ainonline.com/aviation-news/air-

transport/2012-08-21/hackers-faa-disagree-over-ads-b-vulnerability

69

Tippenhauer, N. O., Pöpper, C., Rasmussen, K. B., & Capkun, S. (2011). On the Requirements for

Successful GPS Spoofing Attacks. Proceedings of the 18th ACM Conference on Computer

and Communications Security (pp. 75-86). New York: ACM.

Transport Canada. (2014, February 19). Canadian Civil Aircraft Register: Quick Search. Retrieved

from Transport Canada: http://wwwapps.tc.gc.ca/saf-sec-sur/2/ccarcs-riacc/RchSimp.aspx

Transport Canada. (2017, March 01). Managing noise from aircraft. Retrieved March 1, 2017,

from Transport Canada:

https://www.tc.gc.ca/eng/civilaviation/standards/aerodromeairnav-standards-noise-menu-

923.htm#_Modifying_procedures_to

U.S. Government Accountability Office. (2015). Air Traffic Control: FAA Needs a More

Comprehensive Approach to Address Cybersecurity As Agency Transitions to NextGen.

Washington. Retrieved from https://www.gao.gov/products/GAO-15-370

U.S. Government Accountability Office. (2015). FAA Needs a More Comprehensive Approach to

Address Cybersecurity As Agency Transitions to NextGen. Washington.

Vabre, P. (n.d.). Primary and Secondary Radar. Retrieved January 25, 2016, from

http://www.airwaysmuseum.com/Surveillance.htm

Vandecasteele, A., & Napoli, A. (2012). An enhanced spatial reasoning ontology for maritime

anomaly detection. System of Systems Engineering (pp. 1-6). Genoa: IEEE.

Vinod, P., Jaipur, R., Laxmi, V., & Gaur, M. (2009). Survey on Malware Detection Methods.

Proceedings of the 3rd Hackers’ Workshop on computer and Internet security

(IITKHACK’09), (pp. 74-79). Kanpur.

W3C. (2016, June 1). RDF - Semantic Web Standards. Retrieved from W3C:

https://www.w3.org/RDF/

W3C. (n.d.). SPARQL - Semantic Web Standards. Retrieved from W3C:

https://www.w3.org/2001/sw/wiki/SPARQL

Walker, G. (2012, October 28). Is air traffic control a soft target for hackers? Retrieved January

23, 2016, from NATS blog: http://nats.aero/blog/2013/10/is-air-traffic-control-a-soft-

target-for-hackers/

70

Wood, R. G. (2009, May). Security Risk Analysis of the Data Communications Network Proposed

in the Nextgen Air Traffic Control System. Dissertation, Oklahoma State University,

Graduate College, Stillwater. Retrieved May 16, 2016, from

https://shareok.org/bitstream/handle/11244/7198/School%20of%20Educational%20Studi

es_22.pdf

Zetter, K. (2012, July 26). Air traffic controllers pick the wrong week to quit using radar. Retrieved

February 17, 2016, from Wired: https://www.wired.com/2012/07/adsb-spoofing/

71

APPENDIX A – SPARQL QUERIES

AIRCRAFT MATERIALIZATION

01 SELECT ?aircraftID ?sensor

02 { ?ddsSubject rdf:type :ADSBReport }

03 UNION

04 { ?ddsSubject rdf:type :SSRPosition }

05 UNION

06 { ?ddsSubject rdf:type :PSRPosition }

07 SELECT ?airport

08 ?ddsSubject :latitude ?latitude1

09 ?ddsSubject :longitude ?longitude1

10 ?airport :position :latitude ?latitude2

11 ?airport :position :longitude ?longitude2

12 ?distance = getDistance(?longitude1, ?latitude1, ?longitude2,

 ?latitude2)

12 FILTER(?distance < DIST_MIN)

13 ?ddsSubject :publishedBy ?sensor

ROUTE DEVIATION

Part 1: scheduling the verification query

01 NOW = current time

02 SELECT ?flightplan

03 ?flightplan :nextwaypoint ?nextwaypoint

04 ?flightplan :lastwaypoint ?lastwaypoint

05 ?flightplan :aircraftPlanID ?aircraftPlanID

06 SELECT ?aircraftID ?airspeed

07 { ?ddsSubject rdf:type :ADSBReport }

08 FILTER(?aircraftID == ?aircraftPlanID)

09 ?traveltime = computeTravelTime(?lastwaypoint, ?nextwaypoint,

 ?airspeed)

10 scheduleQuery(NOW + ?travelTime, ?nextwaypoint, ?aircraftPlanID)

Part 2: the verification query

01 ID = ID of the aircraft for which the verification query was scheduled

02 WAYPOINT = the waypoint the aircraft was supposed to reach before this

 query runs

03 SELECT ?flightplan

04 ?flightplan :aircraftPlanID ?aircraftPlanID

05 ?flightplan :lastwaypoint ?lastwaypoint

06 FILTER(?aircraftPlanID == ID && ?lastwaypoint != WAYPOINT)

07 ?aircraftPlanID

72

PROHIBITED ZONES

01 ZONE_RADIUS = radius of the prohibited zone

02 SELECT ?aircraftID ?sensor

03 { ?ddsSubject rdf:type :ADSBReport }

04 UNION

05 { ?ddsSubject rdf:type :SSRPosition }

06 UNION

07 { ?ddsSubject rdf:type :PSRPosition }

08 SELECT ?zoneID

09 ?zoneID :latitude ?zonelat

10 ?zoneID :longitude ?zonelong

11 ?zoneID :altitude ?zoneceil

12 ?aircraftID :altitude ?aircraftalt

13 FILTER(?zoneceil > ?aircraftalt)

14 ?aircraftID :latitude ?aircraftlat

15 ?aircraftID :longitude ?aircraftlong

16 ?distance = getDistance(?aircraftlat, ?aircraftlong, zonelat,

 zonelong)

17 FILTER(?distance < ZONE_RADIUS)

18 ?aircraftID :publishedBy ?sensor

NOISE REDUCTION

01 SELECT ?flightplan ?airport

02 ?flightplan :departureAirport ?departureAirport

03 ?flightplan :departureTime ?departureTime

04 ?flightplan :arrivalAirport ?arrivalAirport

05 ?flightplan :arrivalTime ?arrivalTime

06 ?airport :noiseReductionTimeStart ?noiseStart

07 ?airport :noiseReductionTimeEnd ?noiseEnd

08 FILTER(?departureAirport == ?airport || ?arrivalAirport == ?airport)

09 FILTER(

(?departureTime > ?noiseStart && ?departureTime < ?noiseEnd)

 || (?arrivalTime >?noiseStart && ?arrivalTime < noiseEnd))

10 ?flightplan :aircraftPlanID

FUEL EMERGENCY

Part 1: scheduling the verification query

01 ID = ID of the aircraft for which we are scheduling the verification

 query

02 NOW = current time

03 SELECT ?flightplan

04 ?flightplan :aircraftID ?aircraftID

05 FILTER(?aircraftID == ID)

06 ?flightplan :fuelLevel ?fuelLevel

07 ?flightplan :route ?route

08 ?flightTime = computeFlightTime(?route, ?fuelLevel)

09 scheduleQuery(?flightTime + NOW)

73

Part 2: the verification query

01 ID = ID of the aircraft this query needs to look up

02 LOW_FUEL = amount of fuel that is considered low

03 SELECT ?aircraftID ?status ?fuelLevel

04 FILTER(?aircraftID == ID && ?status == OPEN && ?fuelLevel <= LOW_FUEL)

05 ?aircraftID

ANOMALOUS DESCENT

01 ALT_DIFFERENCE = maximum reasonable difference between two positions’

 altitudes

02 TIME_RANGE = maximum time difference between two updates to compare

 them

03 SELECT ?aircraftID ?timestamp1 ?sensor

04 { ?ddsSubject1 rdf:type :ADSBReport

05 ?ddsSubject2 rdf:type :ADSBReport }

06 UNION

07 { ?ddsSubject1 rdf:type :SSRPosition

08 ?ddsSubject2 rdf:type :SSRPosition }

09 ?ddsSubject1 :ID ?aircraftID

10 ?ddsSubject2 :ID ?aircraftID

11 FILTER(?ddsSubject1 != ?ddsSubject2)

12 ?ddsSubject1 :timestamp ?timestamp1

13 ?ddsSubject2 :timestamp ?timestamp2

14 FILTER(|?timestamp1 - ?timestamp2| < TIME_RANGE)

15 ?ddsSubject1 :altitude ?altitude1

16 ?ddsSubject2 :altitude ?altitude2

17 FILTER(|altitude1 - altitude2| > ALT_DIFFERENCE)

18 ?ddsSubject1 :publishedBy ?sensor

GHOST AIRCRAFT AND SCREEN CLUTTER

01 GHOST_FREQUENCY = alert frequency to consider ghost aircraft attack

02 CLUTTER_FREQUENCY = alert frequency to consider screen clutter attack

03 TIMESPAN = timespan to consider alerts

04 NOW = current time

05 SELECT ?timestamp

06 { ?alert rdf:type :materialization }

07 UNION

08 { ?alert rdf:type :violationphysics }

09 FILTER (NOW – TIMESPAN < ?timestamp)

10 ?alertfreq = COUNT(?timestamp) / TIMESPAN

11 IF(?alertfreq > GHOST_FREQUENCY && ?alertfreq < CLUTTER_FREQUENCY)

12 THEN SEND_GHOST_ALERT()

13 ELSE IF(?alertfreq > CLUTTER_FREQUENCY)

14 THEN SEND_CLUTTER_ALERT()

15 END

74

JAMMING AND SCREEN CLUTTER

01 NOW = current time

02 TIMESPAN = timespan to compute average traffic

03 AVERAGE_DENSITY = average air traffic density at current time

04 DENSITY_DIFF = maximum allowed difference between current and average

 densities

05 SELECT UNIQUE ?aircraftID ?timestamp

06 { ?ddsSubject rdf:type :ADSBReport }

07 UNION

08 { ?ddsSubject rdf:type :SSRPosition }

09 UNION

10 { ?ddsSubject rdf:type :PSRPosition }

11 FILTER(NOW – TIMESPAN < ?timestamp)

12 ?density = COUNT(?aircraftID) / TIMESPAN

13 IF(AVERAGE_DENSITY - DENSITY_DIFF > ?density)

14 THEN SEND_JAMMING_ALERT()

15 ELSE IF(AVERAGE_DENSITY + DENSITY_DIFF < ?density)

16 THEN SEND_CLUTTER_ALERT()

17 END

SYSTEM TAMPERING

01 AVERAGE_FREQUENCY = regular alert frequency

02 TIMESPAN = timespan to consider recent alerts

03 NOW = current time

04 FREQUENCY_DIFF = maximum difference in frequencies allowed

05 SELECT ?timestamp

06 { ?alert }

07 FILTER(NOW – TIMESPAN < ?timestamp)

08 ?frequency = COUNT(?timestamp) / TIMESPAN

09 IF(?frequency > AVERAGE_FREQUENCY + FREQUENCY_DIFF)

10 THEN SEND_TAMPERING_ALERT()

11 END

