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RÉSUMÉ

Les métamatériaux sont des structures conçues pour intéragir avec les composantes élec-

triques et magnétiques de la lumière d’une manière particulière qui n’est pas possible avec

des matériaux naturels. Elles sont composées de méta-atomes, qui sont faits d’un ensemble

d’éléments de taille plus petite que la longueur d’onde, réalisés à partir de matériaux compo-

sites tels que des métaux ou des diélectriques. Les métamatériaux acquièrent leurs propriétés

de leur structure macroscopique plutôt que des propriétés microscopiques des élements qui les

composent. Le mot « méta » provient du Grec dont la signification est au-delà, indiquant le

concept d’une abstraction au-delà d’un autre concept. Les métamatériaux statiques conven-

tionnels tirent profit de l’ingénierie spatiale de la dispersion pour présenter des propriétés

exotiques non observées dans les matériaux usuels, tel qu’un indice de réfraction négatif. Un

type plus sophistiqué de métamatériaux statiques, basé sur une structure dispersive modulée

spatialement, peut être employé pour former un manteau d’invisibilité.

Au cours de la dernière décennie, les métamatériaux dynamiques ont été présentés comme une

nouvelle génération de systèmes électromagnétiques versatiles et ont rapidement acquis un

grand intérêt de la part de la communauté scientifique. Les milieux modulés dans “l’espace-

temps”, dont les paramètres constitutifs varient périodiquement dans l’espace et le temps,

représentent une classe avancée de métamatériaux dynamiques non-réciproques. De tels mi-

lieux sont dotés de propriétés particulières telles que la capacité à générer des fréquences

de façon non-réciproque. Contrairement aux métamatériaux périodiques statiques tels que

les cristaux photoniques, les milieux modulés dans l’espace-temps présentent une dispersion

asymétrique. D’ailleurs, par analogie avec les milieux en mouvement, où la vitesse du milieu

est limitée à la vitesse de la lumière, les milieux modulés dans l’espace-temps peuvent acqué-

rir des vitesses subluminales et superluminales. En conséquence, un éventail varié de bandes

d’énergie orientées horizontalement, obliquement et verticalement sont accessibles dans les

milieux modulés dans l’espace-temps, alors que dans les métamatériaux conventionnels ou les

réseaux de Bragg, les bandes d’énergie sont seulement orientées horizontalement. Ces bandes

d’énergie obliques et verticales apportent des degrés de liberté additionnels qui peuvent être

utilisés pour la conception de différents systèmes électromagnétiques. La non-réciprocité basée

sur la modulation dans l’espace-temps offre un chemin viable vers la conception de systèmes

électromagnétiques non-réciproques intégrés. Cette technique résoud les problèmes des mé-

thodes conventionnelles pour réaliser de la non-réciprocité, telles que par exemple la grosseur

et l’incompatibilité avec la technologie de circuits intégrés dont la non-réciprocité est basée

sur l’application d’un champ magnétique, et la restriction en puissance des signaux actionnant
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les systèmes non-linéaires non-réciproques.

Les techniques de modulation spatio-temporelles ainsi que les techniques d’ingénierie de la

dispersion spatiale et temporelle offrent une grande gamme de propriétés électromagnétiques

uniques à découvrir. Cette thèse révèle quelques propriétés sans précédent de structures dont

la dispersion est contrôlée par modulation spatiale ou spatio-temporelle. En tirant profit

de ces propriétés, une diversité de dispositifs électromagnétiques possédant une efficacité

augmentée, dont la dispersion spatiale et temporelle est contrôlée par modulation spatiale ou

spatio-temporelle du milieu, seront présentés.

Tout d’abord, deux phaseurs non-uniformes, ou spatiallement modulés, sont présentés : un

phaseur non-uniforme de section en C et une ligne non-uniforme chargée de tronçons de ligne

non-uniformes. La première structure, le phaseur de section en C, a une dispersion temporelle

qui dépend du couplage non-uniforme. Ce phaseur, qui possède une taille plus petite que la

longueur d’onde, est une évolution par rapport aux phaseurs qui sont faits d’une cascade

de sections quart d’onde couplées. La non-uniformité de la structure augmente les degrés de

liberté, et en exploitant ces degrés de liberté, ce phaseur présente un retard de groupe qu’il

serait impossible de réaliser en utilisant des phaseurs à sections en C uniformes. De plus, il

possède une plus grande largeur de bande due à l’apériodicité de son retard de groupe, et

offre ainsi de grands avantages pour le traitement de signaux radio analogiques. La seconde

structure, un phaseur à tronçons modulés spatiallement, est une alternative aux phaseurs

conventionnels faits de sections à lignes couplées. Des lignes en circuit ouvert et en circuit

fermé sont employées pour réaliser des formes flexibles spécifiques de retard de groupe avec des

réponses plates de grandeur de transmission. Contrairement aux phaseurs conventionnels, qui

sont basés sur le couplage et sont donc fabriqués en multi-couche, ce phaseur, qui se compose

des lignes de transmission, peut être réalisé en technologie microruban. Il s’intègre donc avec

différents composants mis en cascade sur une structures planaire. Puisque le dispositif est

intégrable, il réduit la complexité, augmente la flexibilité de conception, et abaisse le coût de

structures qui requièrent des phaseurs.

Deuxièmement, une métasurface dispersive non-gyrotropique et non-réciproque modulée spa-

tio-temporellement est présentée. Cette métasurface, une version bidimensionnelle et com-

pacte des métamatériaux conventionnels, qui sont volumiques, brise la symmétrie temporelle

par un couplage unidirectionnel fort entre l’onde incidente, un circuit électronique unilaté-

ral, et l’onde sortante. La métasurface n’exige pas d’aimant polarisant, et est donc légère et

favorable à la fabrication de circuits intégrés. Elle fonctionne sur une large plage d’angles

d’incidence et absorbe efficacement les ondes réfléchies pour tous les angles d’incidence. Il

y a un gain de transmission sur une plage d’angle d’incidence d’environ 120o, rendant cette
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structure intéressante pour des une quantité applications possibles telles que des isolateurs,

des circulateurs et des manteaux d’invisibilité tels que les manteaux d’invisibilité.

La diffusion électromagnétique d’ondes incidentes obliques sur un bloc modulé périodique-

ment dans l’espace-temps sera étudiée. On montrera qu’un tel métamatériau dynamique

génère des harmoniques et filtre les fréquences spatiales. Pour des ondes à incidence oblique,

les harmoniques de basse fréquence sont transformées en ondes de surface, tandis que les har-

moniques de haute fréquence sont transmises. Dans le régime de quasi-sonique, où la vitesse

de la modulation spatio-temporelle est proche de la vitesse des ondes électromagnétiques

dans le milieu non-modulé, l’onde incidente dans une une direction est fortement couplée

aux harmoniques spatio-temporelles transmises, alors que dans l’autre direction il y a peu de

couplage à d’autres harmoniques.

La non-réciprocité du milieu modulé spatio-temporellement dans la zone quasi-sonique sera

alors exploitée pour la réalisation d’un isolateur électromagnétique et sera expérimentalement

démontrée à des fréquences micro-ondes. Puis, la démonstration expérimentale d’un nouveau

type d’isolateur optique sera présentée. Cet isolateur optique tire profit des bandes interdites

qui sont asymétriques dans un milieu modulé spatio-temporellement. Ensuite, une nouvelle

technique d’isolation électromagnétique basée sur la cohérence à sens unique entre l’onde

d’entrée et la structure modulée est présentée. La modulation et l’onde incidente ont la

même fréquence et l’opération de la structure est dictée par la différence de phase entre

elles. Pour un déphasage et une profondeur de modulation donnée, correspondant à l’état

de cohérence, la structure fonctionne en tant qu’isolateur. La structure proposée ne produit

pas de fortes harmoniques indésirables et a une efficacité supérieure comparée aux isolateurs

basés sur une modulation spatio-temporelles précédemment rapportés. D’ailleurs, le signal

d’entrée module la structure elle-même, et par conséquent cette structure est auto-modulée.

Finalement, un système à onde de fuite qui effectue des opérations de mélangeur-duplexeur-

antenne basé sur l’ingénierie spatiale de la dispersion et une modulation spatio-temporelle

est présentée. Ce système fonctionne comme un émetteur-récepteur, avec les opérations de

up-conversion et de down-conversion effectuées par des transitions spatio-temporelles. L’opé-

ration de duplexage est dûe à la nature non-réciproque de la structure, et l’opération de

rayonnement est réalisée par la structure à onde de fuite. Une solution électromagnétique

rigoureuse est dérivée pour la distribution du champ et la relation de dispersion. Le sys-

tème est mis en application sous la forme d’une structure à onde de fuite en technologie

microruban modulée spatio-temporellement. La modulation est réalisée par une rangée de

varacteurs espacés à une distance inférieure à la longueur d’onde. En plus de l’opération

globale de mélangeur-duplexeur-antenne, on observe que le faisceau généré balaie l’espace en
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fonction de la fréquence, pour une fréquence d’entrée fixe. Il s’agit d’une des caractéristiques

intéressantes du système.
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ABSTRACT

Metamaterials are engineered structures which interact with the electric and magnetic compo-

nents of light in a peculiar way that natural materials do not. These so-called meta-atoms are

made of assemblies of subwavelengthly spaced elements fashioned from composite materials

such as metals or dielectrics. Metamaterials acquire their properties from their macroscopic

structure rather than the microscopic material of which they are made of. The word “Meta”

originates from Greek whose meaning is beyond, indicating a concept as an abstraction be-

yond another concept. Conventional static metamaterials take advantage of spatial dispersion

engineering to exhibit exotic properties not observed in bulk materials, such as for instance

negative refractive index. A more sophisticated type of conventional static metamaterials

based on a space-modulated (gradient-index) spatially dispersive structure, was used to form

an invisibility cloak.

Over the past decade, dynamic metamaterials, as a new generation of versatile electromag-

netic systems, have been introduced and soon acquired a surge of scientific interest. “Space-

time modulated” media, whose constitutive parameters are periodically varying in space and

time, represent an advanced class of nonreciprocal dynamic metamaterials. Such media are

endowed with peculiar properties such as nonreciprocal frequency generation. In contrast

to static periodic metamaterials such as photonic crystals, periodic space-time modulated

media exhibit asymmetric dispersion. Moreover, by analogy with the moving media, where

the velocity of the medium is limited to the speed of light, space-time modulated medium

may acquire both subluminal and superluminal velocities. As a result, a diverse range of

horizontally-, obliquely- and vertically-oriented electromagnetic band-gaps are accessible in

space-time modulated media, compared to horizontal bandgaps in conventional metama-

terials and Bragg structures. These oblique and vertical electromagnetic band-gaps offer

extra degrees of freedom which may be leveraged for the design of different electromagnetic

systems. Nonreciprocity based on space-time modulation grants a viable path towards inte-

grated nonreciprocal electromagnetic systems. This addresses issues of conventional nonre-

ciprocity techniques, such as for instance bulkiness and incompatibility with integrated circuit

technology in magnet-based nonreciprocity, and signal power restrictions in nonlinear-based

nonreciprocity.

Space and time modulation combined with spatial and temporal dispersion engineering tech-

niques offers a variety of unique electromagnetic properties to be discovered. This thesis

discloses some unprecedented properties of space and space-time modulated dispersion en-
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gineered structures. Leveraging these properties, a diversity of enhanced efficiency and in-

tegrated electromagnetic devices formed by spatial/temporal dispersion engineering of space

and space-time modulated structures will be introduced.

First of all, two nonuniform, or space-modulated, phasers are presented: a nonuniform C-

section phaser and a nonuniform stub-line phaser. The first structure, the nonuniform C-

section phaser, is a static space-modulated temporal dispersion engineered C-section phaser,

representing the subwavelength-section evolution of the end-connected cascaded quarter-

wavelength section coupled-line phaser. This nonuniform C-section phaser, thanks to its

extra topological degrees of freedom, presents group delay functions that are unattainable by

uniform C-section phasers. Moreover, it exhibits larger bandwidth due to group delay aperi-

odicity, and thus offers great advantages for radio analog signal processing (R-ASP) systems.

Moreover, a static and continuously space-modulated stub-line coupling-free phaser is pre-

sented as an alternative to conventional coupled-line sections based phasers to reduce the

complexity, enhance the design flexibility, and lower the cost. Continuously space-modulated

open- and short-terminated stubs are used to achieve specified flexible group delay shapes

with flat transmission magnitude responses. This phaser does not require multilayer technolo-

gies since it consists of coupling-free transmission lines, and therefore it can be realized using

microstrip technology and integrate with different lumped components and planar structures.

Next, a nonreciproal nongyrotropic magnet-less metasurface is introduced as a space-mod-

ulated (gradient), spatiotemporal dispersion engineered structure. This metasurface, a two-

dimensional and compact version of conventional volume metamaterials, breaks the time-

reversal symmetry by strong unidirectional coupling between the incident wave, a unilateral

electronic circuit and the outgoing wave. The metasurface does not require a biasing magnet,

and is therefore lightweight and amenable to integrated circuit fabrication, provides a very

wide working angle and effectively absorbs backward propagating waves from all angles of

incidence, while it exhibits transmission gain over about 120o, making this structure interest-

ing for a wealth of possible applications such as isolators, circulators and invisibility/illusion

cloaks.

The electromagnetic scattering of an obliquely incident wave from a periodically space-time

modulated slab will be investigated. It will be shown that such a dynamic metamaterial

operates as a nonreciprocal harmonic generator and a spatial-frequency filter. Low frequency

harmonics are filtered out in the form of surface-waves, while high-frequency harmonics are

transmitted as space-waves. In the quasi-sonic regime, where the velocity of the space-time

modulation is close to the velocity of the electromagnetic waves in the background medium,

the incident wave strongly couples to space-time harmonics in the forward direction, while
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in the backward direction weak coupling occurs to other harmonics.

The quasi-sonic nonreciprocity of space-time modulated medium will be then leveraged for

the realization of an electromagnetic isolator and will be experimentally demonstrated at mi-

crowave frequencies. Then, the experimental demonstration of a novel type of optical isolator

will be presented. This optical isolator takes advantage of the asymmetric electromagnetic

band-gaps in a space-time modulated medium. Next, a new technique for electromagnetic

isolation based on one-way coherency between the input wave and space-time modulated

structure will be presented. The modulation and the incident wave have the same frequency

and the operation of the structure is dictated by the phase difference between them. At

certain phase shifts and modulation depths, corresponding to the coherency condition, the

structure operates as an isolator. The proposed structure does not produce strong unde-

sirable harmonics and has superior efficiency compared to previously reported space-time

isolators. Moreover, the input signal modulates the structure itself, and hence it operates as

a self biased isolator.

Finally, a mixer-duplexer-antenna leaky-wave system based on spatial dispersion engineering

of periodic space-time modulation is presented. This system operates as a full transceiver,

where the upconversion and downconversion mixing operations are performed by space-time

transitions, the duplexing operation is provided by the nonreciprocal nature of the struc-

ture, and the radiation operation is given by the leaky-wave nature of the wave. A rig-

orous electromagnetic solution is derived for the dispersion relation and field distributions.

The system is implemented by modulating a microstrip leaky-wave structure by an array

of sub-wavelengthly spaced varactors modulated by a RF bias. In addition to the over-

all mixer-duplexer-antenna operation, frequency beam scanning at fixed input frequency is

demonstrated as one of the interesting features of the system.
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CHAPTER 1 INTRODUCTION

1.1 History of Space and Time Modulated Dispersion Engineered Metamate-

rials

Over the past two decades, metamaterials and metasurfaces have spurred a surge of interest

in the scientific community due to their unique optical properties [11–22]. The electroma-

gnetic properties of these new class of ordered composites are deliberately engineered to

offer a range of advantageous and exceptional responses not readily available in nature.

Electromagnetic metamaterials are composed of an arrangement of macroscopic subwave-

length scatterers emulating the microscopic particles, e.g. atoms or molecules, of real mate-

rials. Considering the sub-wavelength nature of inclusions, metamaterials may be classified

in terms of their constitutive parameters, e.g. permittivity, permeability, conductivity and

bi-anisotropic parameters. Tailoring these constitutive parameters, provides a variety of me-

tamaterial systems. Metasurfaces are known as the two-dimensional counterparts of volume

metamaterials [23–25], where Snell’s law is generalized by the introduction of an abrupt phase

shift along the optical path, leading to effects such as anomalous reflection and refraction of

light [21] and a diversity of unprecedented wave transformation functionalities [26].

Conventional metamaterials are endowed by spatial and temporal dispersion engineering [11–

14]. They are volume arrangements of resonant particles composed of wire media and split-

ring resonators, to realize effective negative permittivity and permeability depending on spa-

tial and temporal frequencies, yielding negative refraction. However, these volume metama-

terials suffer from narrow-band operation and losses which is due to the resonant nature of

their particles. In contrast to conventional volume metamaterials, new generation of meta-

materials are represented by space, time and space-time modulated constitutive parameters.

Space and time modulated metamaterials offer various intriguing eletromagnetic properties,

including broadband impedance matching [27] and reciprocal frequency generation [28]. Ho-

wever, over the past few years, periodic space-time modulated systems have represented the

most celebrated metamaterials, owing to their peculiar properties such as for instance nonre-

ciprocal frequency generation [7, 19, 29], and asymmetric electromagnetic bandgaps [7, 8]. It

should be noted that space and time modulated metamaterials may also leverage the spatial

and temporal dispersion engineering, representing the most sophisticated and flexible class of

electromagnetic systems which provide various exotic and peculiar electromagnetic responses.

Nonuniform transmission lines, also known as width-modulated transmission lines, may re-

present the most common static space-modulated metamaterials [30]. Thanks to their extra
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topological degrees of freedom, nonuniform transmission lines are capable to provide va-

riety of eletromagnetic responses that are unattainable by uniform transmission lines. They

may be considered as subwavelength evolution of uniform transmission lines [30]. Analysis

of continuously modulated nonuniform transmission lines has been investigated using dif-

ferent techniques, including using an iterative and adaptive perturbation technique [31–34],

and Taylor series expansion [35]. Moreover, sensitivity analysis of nonuniform transmission

lines has been reported in [36]. A variety of enhanced efficiency electromagnetic systems

have been reported based on the use of continuously modulated nonuniform metamaterials,

such as for instance VLSI interconnection structures to provide smooth connections between

high-density IC chips and their chip carriers [37, 38], directional filters [39], impedance mat-

ching for complex loads lines [27,40], lowpass filter [41], generalized single-section broad-band

asymmetrical Wilkinson power divider [42], miniaturized wide band rat race and branch-line

couplers [43–45], dual- and wide-band power dividers with arbitrary power division [46], and

matching circuits of multiplexers [47].

Time modulated medium may be represented by a moving medium. It may be shown that such

a medium provides unique features, including periodic symmetric dispersion, electromagnetic

bandgaps, and reciprocal frequency generation [28].

Spatial dispersion represents a phenomenon where constitutive parameters of the media have

dependence on wavevector [48]. Eventhough such a dependence is neglected for simplicity,

spatial dispersion exists to varying degrees in all media [48, 49]. All natural and artificial

media are spatially discontinuous since they are formed by particles. However, majority of

natural materials are represented as effectively continuous media since the optical size of

particles, i.e. atoms and molecules, is very small at microwave and optical regimes. However,

this homogenization is not valid for cases where the distance between the adjacent particles

is non-negligible. In such cases, nonuniformity of the field over the particle and over the

unit cell of the composite medium should be taken into account [24]. From the physical

point of view, the origin of spatial dispersion is the non-locality of the polarization response,

where the response to a force field appears at different locations even in locations where the

force is zero [50]. From an engineering point of view, spatial dispersion occurs because of

the coupling between particles. Wire media [2, 51], chiral anisotropic structures [52, 53] and

uniform metasurfaces [54] are some examples of spatially dispersive metamaterial structures.

Leaky-wave antennas are another type of spatially dispersive metamaterials [10]. Recently,

there has been a regain interest in leaky-wave antennas due to discovery of new structures and

systems [55,56]. Some of the most recent advances in this area include full-space scanners [57,

58], combined duplexer/diplexer-antennas [59] and nonreciprocal leaky-eave antennas utilized

as low-profile traveling-wave monopole [60].
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C-section phasers represent a temporally dispersive medium, a device providing specified

group delay versus frequency responses (linear, quadratic, staircase, Chebyshev, etc.) depen-

ding on the application [3]. Various types of reflection-type (one-port) and transmission-type

(two-port) microwave phasers have been developed along with corresponding synthesis tech-

niques [61–64]. All-pass phasers based on contra-directional coupled transmission line cou-

plers [65] are particularly attractive in Radio Analog Signal Processing (R-ASP) given their

two-port configuration (avoiding the need for circulators or extra couplers), and their sim-

plicity and flexibility responses [66, 67]. A number of applications have been reported based

on C-section phasers, direction-of-arrival detectors [68], spectrum sniffers [69], and enhanced

signal-to-noise receivers [70].

Space-time varying metamaterials whose constitutive parameters are spatiotemporally mo-

dulated, have been theoretically studied for a long time as travelling-wave parametric ampli-

fiers [71–79]. In contrast to moving media, where the velocity of the medium is restricted to the

speed of light, space-time modulated medium can present both subluminal and superluminal

velocities. In contrast to static periodic media such as for instance photonic crystals, perio-

dic space-time media exhibit asymmetric, tilted dispersion [74, 75]. Moreover, superluminal

space-time media produce electromagnetic bandgaps that are oriented vertically, compared to

horizontal bandgaps, in the ω ´ β dispersion diagram, in conventional photonic crystals and

Bragg structures. These vertical bandgaps describe instabilities or unbounded growth [75].

Harmonic generation is another feature of space-time media. Recently, it has been pointed

out that such unidirectionally modulated metamaterials are fundamentally nonreciprocal [19],

and this has triggered a regain of interest in space-time modulated systems [19, 29, 80–83].

Such a medium provides exotic effects such as interband photonic transitions mediated by

space-time varying metamaterials [84] and associated nonreciprocity [19,29], inverse Doppler

effect in a shockwave induced photonic bandgap structure [85,86], electromagnetic isolation in

oblique space-time bandgaps [8], nonreciprocal space-time metasurfaces [87–89], and nonreci-

procal antenna systems [9,90–93]. Several applications of space-time modulated nonreciprocal

metamaterials have been subsequently reported, including isolators [19], circulators [94, 95],

nonreciprocal metasurfaces [6, 87–89] and nonreciprocal antennas [90–93,96].

Space-modulated temporally dispersive media may be represented by reflective chirped de-

lay lines [62, 97, 98]. Various electromagnetic components may be realized using this class of

metamaterials, incluidng multichannel filter using chirped bandgap structure [99, 100], tem-

poral magnification of signals in the ultra-wideband regime [101], and parallel-coupled-line

bandpass filter with suppressed spurious passband [102]. Nonuniform leaky-wave antennas

are another type of χpr; ωq media [103–105]. This class of leaky-wave antennas present various

advantages such as for instance near-field focusing pattern synthesis [106].
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1.2 Motivation and Objectives

The motivation for this thesis came from the fact that several key features of space-time

modulated dispersion engineered metamatarials were still missing in the literature. This

thesis focuses on some of the most unexplored space- and tme-modulated dispersion enginee-

red metamaterials, and experimentally presents various enhanced efficiency and integrated

electromagnetic components which may be used in different applications as desribed in the

following.

– Coupled-line all-pass phasers, representing temporally dispersive metamaterials, are the

most common type of phasers [3, 61, 67]. However, they suffer from restricted group de-

lay responses, due to their periodic response, restricted bandwidth, due to the related

presence of spurious group delay harmonic peaks, and substantial loss, due to their electri-

cally large unfolded size. Chapter 3 shows how these limitations can be mitigated by using

space-modulated temporally dispersive medium, i.e. continuously nonuniform C-section

phasers [1, 107], as the sub-wavelength section limit of step-discontinuity multi-section

coupled-line phasers [67]. Although this nonuniform C-section phasers may be conside-

red as the most flexible transmission-type phasers [1], they still suffer from requiring high

coupling coupled-line sections, demanding multilayer technologies which represents design

complexity and high cost. To overcome this issue, nonuniform stub-line coupling-free pha-

sers will be introduced as an alternative to conventional coupled-line sections based phasers

to reduce the complexity and lower the cost in Radio Analog Signal Processing (R-ASP)

systems. This nonuniform stub-line coupling-free phaser does not require multilayer tech-

nologies since it consists of coupling-free transmission lines, and therefore it can be realized

using microstrip technology and integrate with different lumped components and planar

structures.

– It will be shown that space-modulated nonreciprocal metasurfaces may be utilized to form

a versatile nongyrotropic magnetless spatial isolator [6]. The vast majority of the metasur-

faces reported to date are restricted to reciprocal responses. Introducing nonreciprocity re-

quires breaking time reversal symmetry. This can be accomplished via the magneto-optical

effect [108–113], nonlinearity [114–116], space-time modulation [19, 87–89, 93, 117, 118] or

metamaterial transistor loading [119–122]. However, all these approaches suffer from a

number of drawbacks. The magneto-optical approach requires bulky, heavy and costly

magnets [110]. The nonlinear approach involves dependence to signal intensity and severe

nonreciprocity-loss trade-off [123]. Finally, the transistor-based nonreciprocal metasurfaces

reported in [120, 122] are intended to operate as Faraday rotators, whereas gyrotropy is

undesired in applications requiring nonreciprocity without alteration of the wave polariza-



5

tion, such as for instance one-way screens, isolating radomes, radar absorbers or illusion

cloaks.

– This thesis investigates different features of space-time modulated metamaterials. First, the

nonreciprocal electromagnetic scattering of obliquely incident electromagnetic waves from

a periodically space-time modulated slab will be thoroughly evaluated. It is shown that

such structures operate as nonreciprocal harmonic generators and spatial-frequency filters.

For oblique incidences, low frequency harmonics are filtered out in the form of surface

waves, while high-frequency harmonics are transmitted as space waves. In the quasi-sonic

regime, where the velocity of the space-time modulation is close to the velocity of the

electromagnetic waves in the background medium, the incident wave is strongly coupled to

space-time harmonics in the forward direction, while in the backward direction it exhibits

low coupling to other harmonics. Previous research works on space-time modulated media

have been mostly focused on propagation in infinite space-time media or normal incidence

on a semi-infinite space-time modulated region. Oblique electromagnetic incidence on a

space-time modulated slab has unique features that have been unexplored.

– Taking advantage of the unique features of the space-time modulated media, three magnet-

less isolators, with distinct properties and specifications and suitable for distinct applica-

tions, will be introduced. First, an efficient quasi-sonic isolator will be presented based on

the properties of space-time modulated medium in the sonic region. This isolator presents

a fairly high isolation, with a short length, which makes it a good candidate for isolation

in microwave and milimeterwave regimes. Next, leveraging the electromagnetic bandgaps

in a space-time modulated medium, an isolator will be shown which is more suitable for

optical regime. Finally, a self-biased and broadband isolator with high efficiency based on

the nonreciprocal electromagnetic coherency in a space-time modulated medium will be

introdued.

Ferrite isolators are endowed with high power-handling capability, high isolation and no

dc power consumption. However, they suffer from the bulkiness, heaviness, incompatibility

with integrated circuits and high cost [124]. Active, transistor-based, isolators may over-

come these shortcomings [6, 125], but they endure restricted power handling and noise by

the transistors, sensitivity to reflected wave, and harmonic generation due to the nonli-

nearity. Moreover, these isolators may present the isolation in the cost of the passing-way

gain, which may not be always desired [126]. Isolation based on nonlinearity suffers for

requiring high signal levels [115, 116, 127–129], while in the presence of a high-level input

signals in a nonlinear optical isolator, some low-level signals reciprocally pass through the

isolator, and hence it does not really operate as an optical isolator [130]. Balanced loss-

gain parity-time symmetric media [131–133], exhibit unidirectional properties [134–138].
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However, the nonreciprocity of these devices [133, 135] is due to nonlinearity rather than

being a consequence of PT symmetry. Linear PT media are constrained to be reciprocal

according to Lorentz reciprocity theorem and can not produce optical isolation [139,140].

– A mixer-duplexer-antenna leaky-wave system may be realized using a space-time modu-

lated leaky-wave antenna. The first nonreciprocal leaky-wave system based on space-time

modulation was independently proposed at the same time in [90] and [96]. Experimen-

tal demonstration of this single-port nonreciprocal leaky-wave antenna is then presented

in [93], while the experimental demonstration of a two-port full transceiver, as the develo-

ped version of [90], is introduced in [9]. In addition to the overall mixer-duplexer-antenna

operation, frequency beam scanning at fixed input frequency is demonstrated as one of the

interesting features of the system. Most of previously reported nonreciprocal leaky-wave

systems were based on magnetically biased ferrites [58,60,141–144,144–146], and hence suf-

fer from the drawbacks inherent to ferrite technology, i.e. bulkiness and non-integrability.

1.3 Thesis Organization

Chapter 2 introduces the dispersion engineering techniques as well as the space, time, and

space-time modulation techniques. Chapter 3 focuses on space modulated temporal disper-

sion engineered devices and proposes two different phasers which may be used in different

applications. Next, a space modulated spatial dispersion and temporal dispersion engineered

metasurface will be introduced in Chapter 4. Principle and characteristics of space-time mo-

dulated medium and nonreciprocal electromagnetic scattering from a space-time modulated

slab will be investigated in Chapter 5. Based on the achieved results in Chapter 5, three dif-

ferent space-time modulated isolators will be presented in Chapter 6. These isolators operate

based on different mechanisms and may be used in different applications. Chapter 7 shows

how we can leverage the temporal dispersion engineering of space-time modulated media and

realize an integrated electromagnetic components. This chapter presents the realization of an

integrated mixer-duplexer-antenna leaky-wave system which operates as a full transceiver.

Finally, Chapter 8 summarizes the achievements of the thesis and their significance for the

future of metamaterials and metasurfaces.
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CHAPTER 2 SPACE AND TIME MODULATION VERSUS SPATIAL AND

TEMPORAL DISPERSION ENGINEERING

This chapter first presents operation principle of space, time and space-time-modulated struc-

tures, and then, introduces the concepts of spatial and temporal dispersion engineering. Star-

ting from the space modulation, realization and general synthesis method of space-modulated

(nonuniform) transmission lines will be presented. Next, a generic representation, functiona-

lity and the electromagnetic wave propagation in a time-modulated medium will be presen-

ted. Moreover, the realization of such a medium using array of distributed varactors will be

shown. Then, an overview on the operation, functionality and the wave transmission through

a space-time-modulated medium will be presented. Next, we will show the realization of such

a spatiotemporally modulated medium using an array of distributed varactors. Finally, the

principle of spatial and temporal dispersion engineering will be presented.

2.1 Space- and Time-Modulated Metamaterials

2.1.1 Space Modulation

Figure 2.1 illustrates a general continuously space-modulated (nonuniform) structure. In

such a structure, the width of the transmission line is modulated along the propagation of

the electromagnetic wave, introducing space-dependent permittivity of ǫpzq. As a result, the

voltage and current through the lossless and non-dispersive space-modulated transmission

line may be expressed as [30, 147]

dV pzq
dz

“ ´jωLpzqIpzq (2.1a)

dIpzq
dz

“ ´jωCpzqV pzq (2.1b)

where Lpzq and Cpzq are the space-dependent inductance and capacitance per unit length

of the line. Solving these two equations together, we find the equation, with non-constant

coefficients, for the voltage across the transmission line



8

d2V pzq
dz2

´
„

1
Lpzq

dLpzq
dz


dV pzq

dz
`
“
ω2LpzqCpzq

‰
V pzq “ 0, (2.2)

x

y

z

D

W pzq

Figure 2.1 Continuously space-modulated transmission line.

In contrast to uniform transmission lines, general space-modulated transmission lines do not

admit closed-form solutions [30, 148], since no analytical solution exists for 2.2 while Lpzq
and Cpzq are general space-dependent functions. The classical and easiest approach to tackle

this problem is to subdivide the space-modulated line into locally uniform sections and then

analyze them using concatenation of their chain-parameter or ABCD matrices.

As mentioned in the previous chapter, a space-modulated structure may be utilized for dif-

ferent purposes, e.g. impedance matching or for the realization of a specified phase response

in a broad frequency band. The goal of the synthesis is to determine the space-dependent

permittivity function ǫpzq (which corresponds to a space-dependent characteristic impedance

function Z0pzq) of the line which realizes the desired specifications. This function must typi-

cally satisfy the fabrication limitation condition as

ǫmin ă ǫpzq ă ǫmax, (2.3)

A possible approach is to expand ǫpzq in a Fourier series as
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ǫpzq “ a0 `
Qÿ

q“1

raq cosp2πqz{Dq ` bq sinp2πqz{Dqs , (2.4)

where D is the total length of the space-modulated transmission line. Equation (2.4) pro-

vides a continuous and smooth characteristic impedance variations with a moderate expan-

sion terms, Q. We search for the appropriate unknown coefficients aq and bq in (2.4), and

then, the space-dependent characteristics impedance of the transmission line, Z0pzq, may

be simply achieved [149]. Since no closed-form formulas exist for a general space-modulated

transmission line, we discretize the nonuniform structure with the total length of D into M

deep subwavelength uniform subsections, with the length of d{λg Ñ 0, for which closed-form

formulas are available. The length of each section reads

∆z “ d “ D

M
! λmin “ λgpfmaxq, (2.5)

The inequality in (2.5) ensures subwavelength sampling over the entire operation bandwidth,

where the highest frequency represents the most restrictive.

Figure 2.2 shows the discretization of the space-modulated, nonuniform, transmission line

into M uniform subwavelength subsections. The corresponding space-dependent impedances

are obtained by sampling (2.4) according to (2.5),

Z0p,m “ Z0ppmdq. (2.6)

The input impedance of the mth subsection, Z in
m, are related to those of the pm ` 1qth sub-

section, Z in
m`1, by

Z in
m “ Z0,m

Z in
m`1 ` jZ0,m tanp∆θq

Z0,m ` jZ in
m`1 tanp∆θq , (2.7a)

with m “ 1, . . . , M , and

∆θ “ βd “ ω

c
?

ǫeff
d (2.7b)

being the electrical length of each subsection [149]. Iteratively computing Z in
m from m “ M to

1, where Z in
M`1 “ Zload, provides the reflection coefficient at the input of the overall structures

via
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Port-1 Port-2

Z in
M

Z in
0

Zload

Z0,m´1
Z0,m Z0,m`1

Figure 2.2 Discretization of space-modulated, nonuniform, transmission line into M uniform
subwavelength subsections.

Γin “ Z in
M ´ Z0

Z in
M ` Z0

. (2.8)

Then, using (3.11), we are able to calculate the total S-parameters and group delay of the

structure [149], which may be used for the impedance matching or achieving specified group

delay response by optimization of the profile of this nonuniform transmission line.

2.1.2 Time Modulation

A time-modulated permittivity may be considered as

ǫptq “ ǫav ` ǫm cospωmtq. (2.9)

Figure 2.3 depicts electromagnetic wave transmission through a periodic time-modulated

medium. The input single-tone plane wave, with frequency ω0, as

EIpz, tq “ ŷE0e´jpk0z´ω0tq, (2.10)

impinges on the time-modulated slab medium, and the slab introduces all Block-Floquet

harmonics, i.e. ω0 ` nωm. In (2.10), E0 is the amplitude of the incident field, k0 “ ω0{vb, and

vb is the phase velocity of the background medium as

vb “ c?
ǫr

, (2.11)
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The electromagnetic fields inside such a medium may be formulated as [28, 150]

EMpz, tq “ ŷ
8ÿ

n,p“´8

`
A`

npe
´jβnpz ` A´

npe
jβnpz

˘
ejpω0`nωmqt, (2.12)

where n is the number of space-time harmonics. It will be shown in chapter 5 that each point

pβ0p, ω0q represents a mode of the medium, itself constituted of an infinite number of oblique

space-time harmonics corresponding to modes at other frequencies, since such a point is a

solution to the complete wave equation.

The transmitted electric field through such a slab reads

ETpz, tq “ ŷ
8ÿ

n“´8

Etne´jrk0nz´pω0`nωmqts, (2.13)

A time-modulated structure may be realized in the form of a time varying artificial micros-

trip transmission line shown in Fig. 2.4 [151]. In order to provide temporal control on the

capacitance of the transmission line, it is loaded with an array of sub-wavelengthly spaced

shunt varactors. A power divider splits the power of the modulation signal and drive the

distributed varactors. A DC bias VDC ensures the operation of the varactors in the, reverse

bias, capacitance region. Therefore, the varactors experience a time-dependent voltage as

V ptq “ VDC ` Vm,n cospωmtq (2.14)

where ωm is the modulation frequency. The varactors are reverse biased in the linear region

of the C-V curve and act as voltage controlled capacitors. Thus, they introduce the time

varying distributed capacitance to the transmission line as

Cptq “ Cav ` Cm cospωmtq (2.15)

Therefore, the structure in Fig. 2.4 emulates a medium with time varying permittivity in (2.9),

background permittivity of ǫr and modulation depth M “ Cm{Cav.

We will see in the following chapters that such a temporally modulated medium introduces

spacial and temporal dispersions.
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EI,
ω0

ET,
ω0 ˘ nωm

EM,
ω0 ˘ nωm

z

y

ǫav ` ǫm cospωmtq

Figure 2.3 Illustration of wave transmission through a time-modulated medium.

ǫav ` ǫm cospωmtqEI,
ω0

ET,
ω0 ˘ nωm

EM,
ω0 ˘ nωm

Modulation,
Vm cospωmtq

z

y

Power divider

Figure 2.4 Realization of time-modulated medium using array of modulated varactors.
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2.1.3 Space-Time Modulation

A space-time-modulated medium may assume the unidirectional forward relative permittivity

as [7]

ǫpz, tq “ fperpβmz ´ ωmtq, (2.16)

where fperp.q represents a general periodic function of the space-time phase variable, with βm

and ωm being the spatial temporal modulation frequencies, respectively. Figure 2.5 presents

schematic of a space-time-modulated slab medium, where a plane wave, EI, impinges in the

forward (`z) direction or backward (´z) direction on a periodically space-time-modulated

medium. The problem with the incident wave traveling towards the `z-direction is called

the forward problem, denoted by the superscript “F”, while the problem with the incident

wave propagating towards the ´z-direction is called the backward problem, denoted by the

superscript “B”.

Taking the time derivative of a constant phase point in (2.16) leads to the modulation phase

velocity

vm “ ωm

βm

. (2.17)

which may be smaller or greater than the phase velocity of the background medium, which

we define here as the velocity

vb “ c?
ǫr

, (2.18)

where c “ 1{?
µ0ǫ0 is the speed of light, and ǫr is the average permittivity of the modulated

medium. The ratio between the modulation and background phase velocities reads

γ “ vm

vb
, (2.19)

is called the space-time velocity ratio. The limit γ “ vm “ 0 corresponds to a purely space-

modulated medium, while the limit γ “ vm “ 8 corresponds to a purely time-modulated

medium [80]. Moreover, γ “ 1 corresponds to the space-time-modulated medium where the

modulation propagates exactly at the same velocity as a wave in the background medium.

As a particular case, a periodic sinusoidal space-time-modulated permittivity may be consi-

dered

ǫpz, tq “ ǫav ` ǫm cospβmz ´ ωmtq. (2.20)
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EF
I ,

ω0

EF
T,

ω0 ˘ nωm

EB
I ,

ω0

EB
T,

ω0 ˘ nωm
z

y

fperpβmz ´ ωmtq

Figure 2.5 Space-time modulated structure. Unidirectionality of the space-time modulation
leads to nonreciprocal frequency generation, EF

T ‰ EB
T.

The incident fields may be written as

EIpz, tq “ ŷE0e¯jpk0z´ω0tq, (2.21)

where ´ and ` signs respectively stand for the forward and backward problems, E0 is the

amplitude of the incident field and k0 “ ω0{vb. The electric and magnetic fields inside the

slab may be formulated as

EMpz, tq “ ŷ
8ÿ

n,p“´8

´
A`

npe´jpβ`
0p`nβmqz ` A´

npe
jpβ´

0p´nβmqz
¯

ejpω0`nωmqt, (2.22)

The transmitted electric fields outside of the slab may be defined as

ETpz, tq “ ŷ
8ÿ

n“´8

Etne¯jrk0nz´pω0`nωmqts, (2.23)

where ´ and ` signs respectively stand for the forward and backward problems. It will be

shown that such a space-time-modulated medium introduces nonreciprocal transmission of

the wave for forward and backward problems. Moreover, nonreciprocal temporal and spacial

dispersions are introduced by the modulated medium provides extra functionalities. In the

next chapters, we will present different applications of such a nonreciprocal spatiotemporally

dispersive medium.

A space-time-modulated structure may be realized in the form of a space-time varying ar-
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tificial microstrip transmission line shown in Fig. 2.6. The transmission line is loaded with

an array of sub-wavelengthly spaced shunt varactors, providing spatiotemporal control on

the distributed capacitance. The bias line at the bottom provides a DC bias VDC plus a

propagating modulation bias to the varactors as

V pz, tq “ VDC ` Vm cospβmz ´ ωmtq (2.24)

where ωm is the modulation frequency. The bias phase velocity vm “ ωm{βm. The varactors are

reverse biased in the linear region of the C-V curve and act as voltage controlled capacitors,

presenting a space-time varying distributed capacitance to the transmission line as

Cpz, tq “ Cav ` Cm cospβmz ´ ωmtq (2.25)

The structure in Fig. 2.6 imitates a medium with space-time varying permittivity (5.22),

with background permittivity ǫr and modulation depth M “ Cm{Cav.

ǫav ` ǫm cospβmz ´ ωmtqEF
I ,

ω0

EF
T,

ω0 ˘ nωm

EB
I ,

ω0

EB
T,

ω0 ˘ nωm

Modulation,
VDC ` Vm cospωmtq

Vm cospβmz ´ ωmtq

Matched
load

z

y

Figure 2.6 Realization of the periodic unidirectional space-time-modulated medium using a
transmission line loaded with an array of unidirectionally modulated varactors.
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2.2 Dispersion Engineering

2.2.1 Spatial Dispersion Engineering

Based on physics of continuous media, spatial dispersion represents a phenomenon where

constitutive parameters of the media, such as permittivity, permeability or conductivity have

dependence on wavevector, k “ pkx, ky, kzq [152]. Eventhough such a dependence is neglected

for simplicity, spatial dispersion exists to varying degrees in all media [49, 152]. All natural

and artificial media are spatially discontinuous since they are formed by particles. However,

majority of natural materials are represented as effectively continuous media since the optical

size of particles, i.e. atoms and molecules, is very small at microwave and optical regimes.

However, this homogenization is not valid for cases where the distance between the adjacent

particles, a, is non-negligible a{λ ą 0.01. In such cases, nonuniformity of the field over the

particle and over the unit cell of the composite medium should be taken into account [24].

From physical point of view, the origin of spatial dispersion is the non-locality of the pola-

rization response, where the response to a force field appears at different locations even in

locations where the force is zero [50]. The non-locality in an array of particles emerges due

to two reasons, as follows [24].

– Particles have an optically non-negligible size. In this case, the field distributed over, opti-

cally finite volume of the particle excites the polarization currents, while the overall current

distribution in the particle depends on the particle size and geometry. As a result, the po-

larization at any point of the particle feels the field at other points of the same particle.

Therefore, the electric and magnetic responses of a large particle, except an isotropic and

homogeneous particle, will strongly depend on the direction of the propagating wave and

its polarization.

– Distances between the particles are optically non-negligible, even if the particles are opti-

cally vanishingly small. This results form averaging the microscopic fields over an optically

large volume. The constitutive parameters of the medium represent the relations between

the averaged electric and magnetic fields and electric and magnetic polarizations. The-

refore, for optically small particles, their electric polarization is a response to the local

electric field distributed in a small volume.

Figure 2.7 illustrates the most well-known spatially dispersive metamaterial, an artificial

plasma called simple wire medium [2]. It represents a medium with negative permittivity as

a square lattice of thin parallel wires which may be considered as a perfect conducting media

in the microwave regime. The effective permittivity of such a medium may be achieved by a

nonlocal model as [51]
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ǫeff “ ǫ0

ˆ
1 ´ k2

p

k2 ´ q2
z

˙
(2.26)

where k “ ω{c, and ω and c are respectively the frequency of the incident wave and the

velocity of light. Also, qz is the component of the wave vector q “ qx, qy, qz along the wires,

and kp represents the plasma wave number, may be expressed as

kp “ 1b
a2

2π

“
ln
`

a
2πr

˘
` 0.5275

‰ (2.27)

for and for a “ b, where a and b are the distances between the wires and r is the radius of

the wires, as shown in Fig. 2.7. However, it may be shown that while the wave propagates

normally with respect to the rods, the simple wire medium does not introduces the spatial

dispersion [24, 51, 153].

b
y

x

r

a

ǫ0µ0

z

Figure 2.7 Conventional method for spatial dispersion engineering using simple wire me-
dium [2].

Recently, the effects of spatial dispersion in the wire medium have been studied theoreti-

cally [51, 153–158], and experimental demonstrations of some of these effects were repor-

ted [54, 159, 160].

Figure 2.8 shows the architecture of a metasurface that consists of array of patch elements

with a deep-subwavelength thickness, t ăă λ. Metasurface represents the state of the art

technology for spatial dispersion engineering owing to its compactness and various exotic
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functionalities. In such a media, Snell’s law is generalized by the introduction of an abrupt

phase shift along the optical path, leading to effects such as anomalous reflection and refrac-

tion of light [21] and a diversity of unprecedented wave transformation functionalities [26]. It

may be shown that a metasurface has a k-dependent susceptibility, which introduces spatial

dispersion [161]. Metasurface technology represents a rapidly growing field of research with

broad range of applications from microwave to visible. Different applications of metasurfaes

have been recently proposed, including polarization conversion [162–164], broadband opera-

tion based on dielectric metasurface [165], wave guidance and radiation [166,167], efficiency

enhancement in LEDs [168], remote switches [169], metasurface antenna [170] and energy

harvesting [171].

y

x

a

b

z

t ăă λ

Figure 2.8 State of the art technology for spatial dispersion engineering using metasurface
based on arrangement of optically large particles.

Spatial dispersion engineering represents a growing field of reasearch [172,173], proving extra

degrees of freedom for the design of novel metamaterials and metasurfaces. Chapter 4 of this

thesis presents a space-modulated nonreciproal nongyrotropic magnetless metasurface based

on spatial dispersion engineering. It will be shown that such a spatial dispersion engineered

medium presents unprecedented functionalities.
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2.2.2 Temporal Dispersion Engineering

Temporal dispersion engineering is the essence of Real-time Analog Signal Processing (R-

ASP). R-ASP was initially inspired by ultrafast optics concepts [174], and has recently been

considered as a potential alternative to dominantly digital radio technology given its unique

real-time, low-consumption and frequency-scalability characteristics [3]. Over the past decade,

various temporal dispersion engineered microwave systems have been introduced for enhanced

efficiency and flexibility in Radio Analog Signal Processing (R-ASP), including direction-of-

arrival detectors [68], spectrum sniffers [69], and enhanced signal-to-noise receivers [70].

The key element of a R-ASP system is the phaser, a temporal dispersion engineered device,

χpωq, providing specified group delay versus frequency responses (linear, quadratic, quintic,

staircase, Chebyshev, etc.) depending on the application. Various types of reflection-type

(one-port) and transmission-type (two-port) microwave phasers have been recently developed

along with corresponding synthesis techniques [62–64]. All-pass phasers based on contra-

directional coupled transmission line couplers [65] are particularly attractive in R-ASP given

their two-port configuration (avoiding the need for circulators or extra couplers), and their

simplicity and flexibility responses [4, 66, 67].

Figure 2.9 shows two fundamental effects of the temporal dispersion, frequency discrimina-

tion in the time domain and frequency chirping with time spreading [3]. The phaser, as a

temporally dispersive medium, is a linear element with transfer function Hpωq “ exppjφpωqq,
with unity magnitude and nonlinear phase as a function of frequency, yielding a frequency-

dependent group delay response, where the bandwidth of Hpωq covers the entire spectrum

of the input signal.

Figure 2.9(a) shows the application of a step-profile phaser for frequency discrimination. The

input is a two-tone signal with frequencies ωL and ωH, passes through a phaser providing a

negative stepped group delay response, with two steps, centered at ωL and ωH. As a result,

the part of the input signal modulated at the lower frequency, ωL, is delayed more than the

part modulated at the higher frequency, ωH, and therefore appears later in time. Therefore,

the two signals are separated in the time domain.

Figure 2.9(b) presents another application of temporal dispersion engineering, frequency chir-

ping. The frequency chirping represents a parasitic effect in optics, but it may be also used,

in a sophisticated way, for instance in recently proposed Dispersion Code Multiple Access

(DCMA) method [175, 176]. A modulated pulse passes through a phaser, which provides a

negative linear group delay slope across a frequency band with the frequency of ωc and group

delay of τc. As a consequence of the temporal dispersion introduced by the phaser, different
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spectral components of the pulse experience different phase-shifts and therefore appear at

different times, i.e. the high frequency components are less delayed and therefore appear ear-

lier in time while the low frequency component are more delayed and appear later in time.

This leads to frequency chirping, where the instantaneous frequency of the output pulse is

progressively decreased. Another important phenomenon is the time spreading of the pulse,

i.e. Tout ą T0, yielding reduced amplitude due to the energy conservation.

(a)

(b)

Temporal dispersion for
frequency discrimination

Temporal dispersion for
frequency chirping

Mixed signal,
ωL and ωH

τpωq

τpωq

ω

ω

timetime

timetime

ωL

ωL

ωH

ωH

T0

T0T0T0

Tout ą T0

Figure 2.9 Temporal dispersion effect when a (a) mixed signal passes from a phaser with step
group delay shape. (b) pulse signal passes from a phaser with linear group delay shape [3].
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CHAPTER 3 ENHANCED EFFICIENCY AND VERSATILE PHASERS

USING APERIODIC SPACE MODULATED TEMPORALLY DISPERSIVE

MEDIA

This chapter has been partly taken from author’s published articles [1, 5, 107].

Two static space-modulated (also known as nonuniform and width-modulated) phasers will be

introduced as temporal dispersion engineered devices. Both phasers provide unique properties

for enhanced efficiency and reduced complexity in Radio Analog Signal Processing [1,107], re-

presenting flexible phasers applicable for different applications and different frequency bands.

Section 3.1 introduces C-section space-modulated phasers for enhanced flexibility and increa-

sed bandwidth in radio analog signal processing. Unfortunately, coupled-line based all-pass

phasers suffer from restricted group delay responses, due to their periodic response, restricted

bandwidth, because of the related presence of spurious group delay harmonic peaks, and sub-

stantial loss, due to their electrically large unfolded size. In an attempt to remedy this issues,

the concept of nonuniform C-section phasers is suggested in [6,107]. The first section provides

a study of conventional C-section phasers [61, 67], the explanation of the trade-offs between

group delay ripple levels and size and loss, a detailed comparison with Cristal’s structure [67],

demonstrations of the greater bandwidth, lower loss and smaller size of the space-modulated

C-section structure, a detailed presentation of a simple synthesis procedure of the phaser, the

presentation of Chebyshev higher-order group delay designs, experimental validations, and

the explanation of the group delay response in terms of electromagnetic energy storage.

Section 3.2 proposes space-modulated stub-line phasers as a simple single-layer phasing me-

chanism, for reduced cost and complexity in radio analog signal processing. C-section space-

modulated phasers may be considered as the most flexible and broadband transmission-type

phasers [1]. However, they suffer from requiring high coupling coupled-line sections, which

demands multilayer technologies, and leads to high complexity and high cost. In contrast,

space-modulated stub-line phaser may be easily realized using microstrip lines since it re-

quires no coupling element [5]. This phaser leverages the high group delay dispersion and

swing of nonuniform stub-lines. We show that a shunt short/open stub provides greater

group delay dispersion and group delay swing, in comparison with a series transmission line.

The proposed phaser may realize different group delay shapes thanks to the nonuniformity

and high group delay swing of stubs. Moreover, it may be designed as a reflection-type pha-

ser to achieve higher group delay swing. It should be noted that C-section space-modulated

phasers present, theoretically, infinite bandwidth while the bandwidth of space-modulated
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stub-line phasers is limited.

3.1 C-section Continuously Space-Modulated Phaser

3.1.1 Temporal Dispersion Engineering Using C-Section Phasers In Radio Ana-

log Signal Processing

Radio Analog Signal Processing (R-ASP), inspired by ultrafast optics concepts [174], repre-

sents a potential alternative to dominantly digital radio technology given its unique real-time,

frequency-scalability and low-consumption characteristics [3]. A number of R-ASP appli-

cations have been reported at microwave frequencies, including direction-of-arrival detec-

tors [68], enhanced signal-to-noise receivers [70] and spectrum sniffers [69].

The key element of a R-ASP system is the phaser, a temporal dispersion engineered de-

vice, providing specified group delay versus frequency responses (linear, staircase, quadratic,

quintic, Chebyshev, etc.) depending on the application, e.g. linear for real-time Fourier trans-

formers [63] and Chebyshev for dispersion code multiple access (DCMA) [1, 107, 176].

Various types of reflection-type (one-port) and transmission-type (two-port) microwave pha-

sers have been recently developed along with corresponding synthesis techniques [4, 62–64].

All-pass phasers based on contra-directional coupled transmission line couplers [65] are par-

ticularly attractive in R-ASP given their two-port configuration (avoiding the need for cir-

culators or extra couplers), and their simplicity and flexibility responses [4, 66, 67].

Figure 3.1(a) represents a conventional C-section, which is two-port component consisting in

a backward-wave coupled-line coupler with the two ports of one end interconnected and the

other two ports representing the input and output of the structure. Such C-sections exhibit

group delay maxima at the odd frequency harmonics of the quarter guided wavelength,

D “ p2m ` 1qλg{4, where m is an integer.

The group delay, τpωq, is defined as the rate of change of the total phase shift with respect

to angular frequency, i.e.

τpωq “ ´dφS21

dω
. (3.1)

Consider a lossy and matched transmission line with the length of L, where the transmission

through this system reads S21 “ expp´jβLq, with β “ ω{v0 and v0 being the phase velocity

of the wave inside the transmission line. The group delay of this transmission line may be

calculated, using (3.1), as
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D “ p2m ` 1qλg{4

(a)

shorter structure ñ lower loss, larger delay ripples

longer structure ñ higher loss pτ2 ą τ1q, smaller delay ripples

ω1ω1

ω1ω1

ω2ω2

ω2ω2
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ω

τpωq τpωq

τpωq τpωq

3ω1

3ω1

τmin “ τ2 ą τ1

τmin “ τ1

∆τspec.

∆τspec.

Restricted BW Specification
Realization

1st harmonic
delay peak

(b)

Figure 3.1 Limitations of conventional uniform C-section phaser structures in group delay
engineering. Arbitrary case of a negatively-sloped group delay versus frequency specification.
a) C-section structure, realized using a backward-wave coupled transmission line coupler.
b) Cascaded C-section phasers [4] realizing a negatively sloped delay response in a restricted
bandwidth, and associated trade-offs between size, dissipation loss and delay ripples.
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τpωq “ ´ d

dω
βL “ L

v0
. (3.2)

Equation (3.2) reveals that the group delay is proportional to the length of the transmission

line. However, for a lossy transmission line, larger length L corresponds to higher attenuation.

As a result, the group delay of a non-ideal transmission line is proportional to the insertion

loss, i.e. higher group delay represents higher insertion loss.

Figure 3.1(b) illustrates the limitations of conventional cascaded C-section phasers [4], which

are composed of the cascade (or series) interconnection of conventional C-sections with gene-

rally different lengths designed so as to meet group delay versus frequency response specifica-

tions. The figure shows that, in the illustrated case of a negatively-sloped group delay versus

frequency response, the bandwidth of conventional cascaded C-section phasers is restricted

by the group delay harmonic frequency peak of the largest C-section in the structure. This

situation differs for different specified group delays, but the bandwidth restriction due to

harmonic peaks is a general issue in such phasers.

The first row in 3.1(b) represents a design with a minimal size, i.e. with a minimal number of

C-sections. Such a design corresponds to a relatively small average group delay, as shown in

the right, and therefore to relatively low dissipation loss. However, the number of C-sections

is too small to closely sample the specified delay function, which results in strong spurious

ripples in the delay response.

The second row in 3.1(b) represents a design with a larger number of C-sections, providing

higher sampling, and hence an essentially ripple-less delay response. However, the size of the

structure has increased, leading to a larger average group delay, as shown in the right, and

the dissipation loss is therefore significantly increased.

Figure 3.2 shows a general step-discontinuity nonuniform coupled-line phaser with M sub-

sections of lengths d1, d2, ..., dM and corresponding even- and odd-mode equivalent circuits,

denoted by the subscript p (p “e,o, resp.), where ZL
e “ 8, ZL

o “ 0. For small discontinuities,

the total even/odd reflection coefficients at the input are [149]

Γin
p “ Γp,0 ` Γp,1e

´j2βd1 ` ... ` Γp,Me´j2MβdM , (3.3)

where Γp,m is the reflection coefficient between sections m and m ` 1 and β is the (m-

independent, assuming TEM sections) guided wavenumber. The total transmission scattering
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Figure 3.2 Non-commensurate C-section phaser (top), and corresponding even- and odd-mode
equivalent circuits (bottom) [1].

parameter and group delay of the phaser follow as

S21 “ 1
2

pΓin
e ´ Γin

o q “ 1
2

M´1ÿ

m“0

pΓe,m ´ Γo,mq e´j2mβdm , (3.4)

τpωq “ ´dφS21

dω
“

M´1ÿ

m“0

ˆ´dφpΓe,m´Γo,mq

dω
` 2mdm

v

˙
, (3.5)

where v “ ω{β is the phase velocity.

The group delay response of a single C-section is periodic, with peaks located at βD “
πpn ` 1{2q, for n “ 0, 1, ..., 8 and having a group delay swing depending on the coupling,

C, and length, D, of the structure. In a commensurate cascaded M-section C-section, the

periodicity is increased by a factor M (M propagation-coupled resonators) with up to M

peaks depending on couplings, due to coherent multiple reflection [factor e´j2mβd in Eq. (3.4)].

Defining BWmax as the frequency bandwidth supporting a non-periodic specified group delay

response (restricted by periodicity), one has from 2βd “ 2π where d “ D{M that BWmax “
Mv{4D. This reveals that the bandwidth of the phaser is increased by increasing M . Finally,

the periodicity is lost in the case of non-commensurate sections, due to incoherent multiple

reflection [factor e´j2mβdm in Eq. (3.4)].
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3.1.2 Synthesize of Continuously Space-Modulated Phasers

To synthesize the nonuniform coupled-line function Cpzq

0 ă Cmin ă Cpzq ă Cmax ă 1 (3.6)

for the specified group delay response, one may use the Fourier series expansion

Cpzq “ a0 `
Qÿ

q“1

raq cosp2πqz{dq ` bq sinp2πqz{dqs , (3.7)

and search for the appropriate unknown expansion coefficients aq and bq. The corresponding

nonuniform even and odd characteristic impedances are [149]

Z0e{opzq “ Z0p
a

1 ˘ Cpzqq{p1 ¯ Cpzqq (3.8)

We shall satisfy the local matching condition as

a
Z0epzqZ0opzq “ Z0, @z, (3.9)

where Z0 is the ports characteristic impedance. The even and odd impedances at the input

of the mth subsection, Z in
p,m, are related to those of the pm ` 1qth subsection, Z in

p,m`1, by

Z in
p,m “ Zp,m

Z in
p,m`1 ` jZp,m tanpβdmq

Zp,m ` jZ in
p,m`1 tanpβdmq . (3.10)

Iteratively computing Z in
p,m from m “ M to m “ 1 provides the even and odd reflection

coefficients at the input of the overall even and odd structures via

Γin
p “ pZ in

p,1 ´ Z0q{pZ in
p,1 ` Z0q. (3.11)

Based on the above derivations, the synthesis procedure follows the flowchart given in Fig. 3.3.

Once a τpωq function has been synthesized for a trial expansion set taq, bqu, it is injected in

the fitness function

ε “ 1
ωh ´ ωl

ż ωh

ωl

ˇ̌
τpωq ´ τspωq

ˇ̌
dω, (3.12)
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which corresponds to the deviation of τpωq from the specified function, τspωq. If ε is smaller

than a given threshold, ξ, considered acceptable for a given application, then the set taq, bqu
forms an acceptable function Cpzq in (3.7), and the synthesis is complete. Otherwise, another

set is tested, using a standard nonlinear problem optimization technique, such as for instance

the sequential quadratic programming algorithm [177], until ε ă ξ is satisfied.

It may be argued that, if the specified bandwidth is small enough to avoid the issue of

group delay harmonics [Fig. 3.1(b)], a cascaded C-section phaser [4] could meet the same

group delay swing specification as the nonunifrom C-section. This is true. However, the

corresponding unfolded length will be much larger, which would entail a much larger average

group delay and hence much larger dissipation loss. This fact is illustrated in Fig. 3.4, where

both designs provide the specified group delay swing of 0.4 ns but the nonuniform phaser

exhibits about 1.5 dB s loss.

Figure 3.5 compares the performance of the continuously modulated nonuniform phaser with

those of step-discontinuity nonuniform phasers. The goal is to achieve negative linearly chir-

ped response of at least 30 ps swing over the largest possible bandwidth between 1 and

20 GHz. Note that the area under the τpωq curve is constant for a given length D. Due to

its zero subsection length (d{λ Ñ 0), the continuously modulated phaser exhibits, according

to Sec. 3.1, an infinite periodicity, and reaches therefore the complete specified bandwidth.

By contrast, the bandwidth of the step-discontinuous phasers is restricted by spurious peaks

due to excessive subsection length. The oscillations in the group delay curves, more visible

in the continuously nonuniform case due to smaller large-scale variations, correspond to the

resonances of the overall C-section structures (βD “ π, i.e. ∆f “ 1.11 GHz). These oscil-

lations may be suppressed by using cascaded non-uniform C-sections, which also allows to

increase the group delay swing, as will be shown later in Fig. 3.9.

In addition to bandwidth enhancement, the proposed phaser provides dispersion diversity

enhancement and is capable to present quasi-arbitrary group delay shapes. This benefit comes

from the virtually unlimited degrees of freedom of the continuously nonuniform structure.

To illustrate this feature, we specify 1st to 4th orders Chebyshev group delay responses, used

in Dispersion Code Multiple Access (DCMA) [176], in the frequency range from 1 to 3 GHz.

Table 3.1 lists the corresponding dimensions and optimal values of the unknown coefficients

aq and bq in (3.7) for each order, while the corresponding coupling and group delay responses

are plotted in Fig. 3.6.
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Fixed parameters
M , D and ǫeff

Initial values of
aq and bq

Compute Cpm∆dq, m “ 1, ..., M

using (3.7)

Compute Z0e,m and Z0o,m using (3.8)

Compute Z in
e,m and Z in

o,m using (3.10)

Compute Γe and Γo using (3.11)

Compute S21 and τ

using (3.4) and (3.5), resp.

ε ă ξ in (3.12)

Synthesis complete

Modify aq and bq

subject to (3.6)using
Sequential Quadratic

Programming

Figure 3.3 Synthesis flowchart for the design of the nonuniform C-section phaser.

Table 3.1 Optimal values of the coefficients aq and bq in Eq. (3.7) for the 1st to 4th order Chebyshev designs

of Fig. 3.6 [1].

Chebyshev 1st Chebyshev 2nd Chebyshev 3rd Chebyshev 4th

(D=3.4 cm) (D=2.8 cm) (D=3.4 cm) (D=4 cm)
q aq bq aq bq aq bq aq bq

0 -0.180 0.000 -0.130 0.000 -0.051 0.000 -0.067 0.000
1 -0.045 0.703 -0.212 0.705 -0.291 0.683 -0.224 0.703
2 0.080 -0.111 0.103 0.102 0.044 0.113 0.062 0.093
3 0.221 0.178 -0.077 0.156 0.002 0.183 -0.014 0.184
4 0.107 -0.160 0.111 -0.054 0.121 -0.033 0.283 -0.001
5 -0.033 0.083 -0.056 0.060 -0.081 -0.049 -0.131 -0.089
6 0.152 -0.116 0.127 0.135 0.132 0.227 0.017 0.035
7 -0.095 -0.096 0.038 -0.082 0.058 -0.053 0.031 -0.134
8 0.069 0.025 0.026 0.207 -0.028 0.342 -0.037 0.127
9 -0.084 -0.159 0.297 -0.052 0.487 -0.045 0.229 -0.004
10 -0.115 0.098 -0.064 -0.239 -0.048 -0.321 -0.011 -0.083
11 0.049 0.030 -0.096 0.036 -0.103 0.022 -0.037 0.022
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Figure 3.4 Demonstration of the lower loss, following from the lower delay, of the nonuniform
C-section (NC) phaser over the cascaded uniform C-section (CUC) structure [4] using analy-
tical transfer functions for the case of a negatively-sloped group delay response. All designs
have been optimized. a) Group delay response. b) Insertion loss. ǫe “ 7.7 and tan δ “ 0.0027
in both cases.

3.1.3 Experimental Demonstration

This section will experimentally demonstrate the 1st order and 2nd order Chebyshev designs

of Fig. 3.6 in stripline technology using the RO3210 substrate with permittivity εr “ 10.2,

height h “ 50 mil and tan δ “ 0.0027. The fabrication limits in (3.6) were set to Cmin “ 0.05

and Cmax “ 0.65. From the even and odd impedances computed with (3.8) using the func-

tions Cpzq plotted in Fig. 3.6, the dimensions of the structure, respecting the matching

condition (3.9), are achieved for the given substrate using standard stripline synthesis for-

mulas [149]. The fabricated prototypes are shown in Fig. 3.7.

The experimental results are presented in Fig. 3.8. Experimental results are found to be in

good agreement with the specification and with full-wave simulation results, and reasonable

matching is achieved.

3.1.4 Space-Modulated C-section Cascading

Although aperiodic space modulation breaks periodicity and hence allows for broader band-

width designs [42, 43], there are naturally limits on the bandwidth that a single space-

modulated C-section may accommodate. Another limitation occurs when the specified group
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Figure 3.7 Fabricated nonuniform C-section phaser prototype. a) Exploded perspective view.
b) Layouts. c) Photograph of the 1st and 2nd orders Chebyshev group delay responses. The
structure includes metalized via holes for stable grounding and transitions from stripline to
microstrip line for easier testing [1].
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Figure 3.8 Experimental results compared with full-wave results (CST Microwave Studio)
for the Chebyshev phaser prototypes in Fig. 3.7(c). a) 1st order group delay. b) 1st order
S-parameters. c) 2nd order group delay. d) 2nd order S-parameters [1].
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delay swing is beyond a certain limit. In both cases, the problem may be resolved by casca-

ding space-modulated C-sections, just as uniform C-sections were cascaded in [4], but with

much smaller size and lower loss due to the superiority of the nonuniform structure (Fig. 3.4).

This is demonstrated in Fig. 3.9.

3.1.5 Correlation between the Group Delay and the Electromagnetic Fields

An interesting question is whether one could identify a correlation between the group delay

and the electromagnetic field distribution in a nonuniform C-section phaser. The answer is

positive, and the correlation may be explained with the help of Figs. 3.10 and 3.13.

Figure 3.10 plots the transverse electric field as a function of the position along the structure

for three of the C-sections with group delay response plotted in Fig. 3.6. Specifically, the

plotted quantity is the magnitude of the transverse component of the electric field in the

direction of coupling in order to best capture coupling effects. A first obvious observation

is that the field generally concentrates in different portions of the structure at different fre-

quencies, which may have been expected from the different correspond wavelengths. A second

clear observation is that whereas the field distributions in the uniform C-section are periodic

or, more precisely, are exact sections of sinusoidal functions of the position (constant energy),

starting at the end of the C-section with a zero field due to the C-section transverse connec-

tion, the field distributions of the nonuniform C-sections are aperiodic (energy depending on

z). This is the reason why nonuniform C-sections are essentially immune to spurious group

delay harmonics.

The third – less obvious but most important – fact in Fig. 3.10 is that different frequencies

store different quantities of energy and that the distribution of energies are different for

the different phasers. This is best visible in Figs. 3.11, 3.12 and 3.13, which plot the total

time-average stored electric and magnetic energies in the structure versus frequency for the

different phasers in Fig. 3.10. This figure strikingly shows that the frequency distributions of

stored energy are perfectly correlated to the corresponding group delays, as may be seen by

comparison with Fig. 3.6. This observation is consistent with previously reported interference

explanations of the proportionality existing between stored energy and group delay and is

intuitively sensible : the delay experienced by a wave, with a given frequency, is proportional

to the amount of time the energy of the wave is stored in the system – higher stored energies

correspond to larger delays.



35

2 4 6 8 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

1 3 52 7 92 4 6 8 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

1 3 5 7 9

1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

 

 

1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

3

3.5

4

 

 

(a) (b)

(c) (d)

Frequency (GHz) Frequency (GHz)

Frequency (GHz) Frequency (GHz)

G
ro

up
D

el
ay

(n
s)

G
ro

up
D

el
ay

(n
s)

G
ro

up
D

el
ay

(n
s)

G
ro

up
D

el
ay

(n
s)

Specification

Specification

Specification

Specification

Theory

Theory

Theory

Theory

D

D

D1

D1

D2

D2

1´
4

G
H

z
1´

6
G

H
z

1 ´
10 GHz

1 ´
10 GHz

0.55 ´ 1.05 ns

0.55 ´ 1.25 ns

0.55 ´ 1.55 ns

0.55 ´
3.55 ns

0.55 ´
3.55 ns
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to 110 %, 143 % and 182 %, showing the failure of a single C-section to provide a band-
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Figure 3.10 Transverse electric field distribution |Expzq| along the phaser at y “ 0, computed
using CST Microwave Studio for three group delay designs in Fig. 3.6(b). a) Conventional
uniform C-section. b) Nonuniform 1st order Chebyshev C-section. c) Nonuniform 2nd order
Chebyshev C-section. The 1st and 2nd order Chebyshev delay response structures correspond
to the fabricated prototypes shown in Fig. 3.7(b).
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Figure 3.13 Electric and magnetic energy densities inside the 2nd order Chebyshev phaser.

3.2 Stub-line Coupling-free Space-Modulated Phaser

3.2.1 Group delay comparison of uniform parallel open/short stub with a direct

transmission line

C-section phasers represent a conventional and useful structure for temporal dispersion engi-

neering, owing to their all-pass property. However, to operate as a all-pass structure, C-section

phasers require a structure that supports TEM propagation of the wave, e.g. strip-line, to

ensure equal phase velocities for the even- and odd-modes [178]. TEM structures require mul-

tilayer technologies which represents design complexity, non-integrability with other devices

and high cost. In contrast, series transmission line cannot be used as a broadband phaser

due to its monochromatic operation. It is due to the fact that, it is not possible to control

the transmission phase and magnitude of a direct transmission line across a bandwidth. To

remedy this issue, this section proposes a new phasing structure using open or short termi-

nated stubs, and then applies the static space-modulation to enhance the bandwidth of the

phaser.

Let us first evaluate the group delay swing and dispersion of series, shunt short- and open-

stub transmission lines. Figure 3.14(a) shows an end-terminated direct transmission line with
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length d0,

The voltage across this transmission line may be represented in the form of

V prq “ V `
0 pe´jβr ` Γtermejβrq. (3.13a)

where β is the wavenumber. The transfer function of this series transmission line may be

easily achieved using ray transfer matrix analysis as

S21 “
ˆ

cospβd0q ` j
1
2

sinpβd0qpz0 ` z´1
0 q

˙´1

, (3.13b)

with unity port impedances, and z0 being the normalized characteristic impedance of the

line. Then, using (3.13b), the corresponding group delay may be achieved as

τpωq “ 2d0pz0 ` z´1
0 q´1 sec2pβd0q

v
`
4pz0 ` z´1

0 q´2 ` tan2pβd0q
˘ , (3.13c)

where v is the velocity of light inside the medium. Figure 3.14(b) shows a shunt short-ended

stub with length d1, with

V prq “ ´2jV `
0 sinpβrq (3.14a)

The transfer function may be achieved as

S21 “
ˆ

1 ´ j
1
2

z´1
1 cotpβd1qq

˙´1

(3.14b)

where z1 is the normalized impedance of the stub. The group delay of the system reads

τpωq “ 2d1z1 csc2pβd1q
v p4z2

1 ` cot2pβd1qq .
(3.14c)

Following the similar procedure, for a parallel open-ended stub shown in Fig. 3.14(c), the

voltage across the line, the transfer function and the group delay may be expressed as

V prq “ 2V `
0 cospβrq, (3.15a)

S21 “
ˆ

1 ` j
1
2

z´1
1 tanpβd1qq

˙´1

, (3.15b)
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Figure 3.14 Uniform transmission line (a) direct line, series with the terminated load (b)
parallel short-ended and (c) parallel open-ended.

τpωq “ ´B=S21

Bω
“ 2d1z1 sec2pβd1q

v p4z2
1 ` tan2pβd1qq . (3.15c)

Figure 3.15 plots the group delay dispersion comparison of a transmission line with short- and

open-terminated shunt stubs, for different normalized impedances, from 0.2 to 2.6. It may

be seen from this figure that the short- and open-ended stubs provide higher dispersion than

the series transmission line, for the transmission line impedances of higher than 0.6, while for

the impedances of lower than 0.6 they present the same dispersion as the series transmission

line. Moreover, it may be seen that varying the impedance of the line yields greater group

delay swing for the stubs than the series transmission line. It may be shown that complete

transmission occurs around βd1 “ π{2 for short-ended and βd1 “ π for open-ended stub.

Besides, varying z1 from 0.2 to 2.6, provides 7.7d1 group delay swing group delay. In contrast,

the series transmission line would be matched at βd0 “ π, providing 5.34d0 group delay swing.

Complete reflection may be achieved at βd1 “ π for the short-ended and βd1 “ π{2 for the

open-ended stub, while at this points, varying z1 from 0.2 to 2.6 offers 16d1 GD swing for

both stubs. In contrast, in a series transmission line partial reflection occurs at βd0 “ π{2,

providing 1.87d0 group delay swing. As a result, open- and short-terminated stubs provide

much higher group delay swing than the series transmission line, while the series transmission

line offers better and wider magnitude response.
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3.2.2 Operation Principle and Synthesis

Figure 3.16 shows structure of stub-line phaser, which takes advantage of the high group de-

lay dispersion and swing of the shunt stubs, where two short/open shunt-stubs are employed

to satisfy the transmission phase shift condition, while having minimum effect on the magni-

tude, and a series transmission line, interconnecting the two stubs, satisfies the magnitude

condition.

It has been shown that static space-modulated transmission lines are capable to satisfy the

magnitude [27,40] and phase [179] conditions across a broad frequency bandwidth. Therefore,

we employ the continuous space modulated transmission lines to widen the bandwidth of the

phaser in Fig. 3.16. Fig. 3.17 shows the structure of the continuously space-modulated phaser

as a wider bandwidth version of the phaser in Fig. 3.16, where shunt stubs represent dispersive

shunt indutances/capaticitances.

General continuously space-modulated, nonuniform, transmission lines do not admit closed-

form solutions. However, a simple synthesis method may be used for their design as follows.

The goal of the synthesis is to determine the space-dependent impedance functions, znprq,
with n “ 0, 1, 2, which satisfies the specified group delay and magnitude conditions. This

function must satisfy the fabrication condition of

zmin ă z0prq, z1prq, z2prq ă zmax. (3.16)

A possible approach is to expand znprq in a Fourier series, which is expected to present

continuous variations with a moderate number Q of expansion terms, as

znprq “ an0 `
Qÿ

q“1

„
anq cos

ˆ
2πqr

dn

˙
` bnq sin

ˆ
2πqr

dn

˙
. (3.17)

We discretize the three nonuniform lines into M deep subwavelength uniform line subsections,

for which closed-form formulas are available. Then, The length of each subsection reads

∆d “ d{M ! λmin. We first compute the input impedance of the stubs, where the input

impedance at the input of the mth subsection, zin
1,m are related to those of the (m ´ 1)th

subsection, zin
1,pm´1q

zin
1,m “ z1,m

zin
1,pm´1q ` jz1,m tanp∆θq

z1,m ` jzin
1,pm´1q tanp∆θq , (3.18)

where m “ 0, 1, . . . , M , ∆θ “ β∆d “ ωd{c
?

ǫeff, as the electrical length of each subsection.
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Figure 3.16 Uniform (narrowband) stub-line phaser.
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Figure 3.17 Nonuniform stub-line phaser as a widened-bandwidth version of the phaser in
Fig. 3.16 [5].
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Iteratively computing from m “ 1 to m “ M provides the input impedance of the stub.

Next, to achieve the transfer matrix of the series line, we calculate the transfer matrix of its

subsection as
«

A0,m B0,m

C0,m D0,m

ff
“
«

cosp∆θq jz0,m sinp∆θq
jy0,m sinp∆θq cosp∆θq

ff
, (3.19)

and then the transfer matrix of the entire series transmission line would be achieved by

multiplying its subsections as

«
A0 B0

C0 D0

ff
“
«

A1 B1

C1 D1

ff
.

«
A2 B2

C2 D2

ff
...

«
AM BM

CM DM

ff
(3.20)

Finally, the total transfer matrix of the phaser will be calculated by multiplying the one of

the three sections, i.e. the first shunt stub, the series line, and the second shunt stub, as

«
AT BT

CT DT

ff
“
«

1 0

yin
s1 1

ff
.

«
A0 B0

C0 D0

ff
.

«
1 0

yin
s2 1

ff
, (3.21)

Next, the scattering vectors S11, S21 are obtained from the overall ABCD matrix of the phaser

as [149],

S11 “ AT ` BTZ´1
0 ´ CTZ0 ´ DT

AT ` BTZ´1
0 ` CTZ0 ` DT

(3.22a)

S21 “ 2
AT ` BTZ´1

0 ` CTZ0 ` DT
(3.22b)

Finally, the group delay of the phaser is computed by differentiating the phase of S21 over

the frequency

τ “ ´BφS21

Bω
(3.23)

Once a τpωq function is established for a trial expansion set anq and bnq, it is injected in

the fitness function ε “ p1{ω2
bq
şωh

ωl

`ˇ̌
τ ´ τs

ˇ̌
`
ˇ̌
Sp1

ˇ̌˘
dω, which corresponds to the deviation

of τpωq from the specified function, τspωq, while minimizing the reflection, S11, or trans-

mission S21 scattering parameter, respectively for transmission- and reflection-type phasers.

Figure 3.18 shows the design procesdure.
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using (3.22)-(3.23)

ε ă ξ

Modify a1q, b1q, ..., b3q

respecting (3.16)

Optimization complete

Figure 3.18 Design procedure.
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Sequential Quadratic Programming (SQP) represents one of the most successful methods

for the numerical solution of constrained nonlinear optimization problems (NLP). SQP is an

iterative procedure which models the NLP for a given xn, n P N by a Quadratic Programming

(QP) subproblem, solves that QP subproblem and then uses the solution to construct a new

iterative xn`1. The construction is done in a way that the sequence xn converges to a local

minimum x of the problem as n Ñ 8

minimize fpaq, bqq (3.24a)

over aq, bq P R (3.24b)

subject to Zdpr “ 0, paq, bqqq ´ Z0 “ 0,

Zdpr “ d, paq, bqqq ´ Z0 “ 0 (3.24c)

Z0,1,2pr, paq, bqqq ´ Zmax ď 0,

Zmin ´ Z0,1,2pr, paq, bqqq ď 0 (3.24d)

The functional L defined by means of

Lpaq, bq; λ, µq “fpaq, bqq ` λ1pZ0pr “ 0q ´ Z0q
` λ2pZ0pr “ dq ´ Z0q ` µ1pZ1prq ´ Zmaxq
` µ2pZdprq ´ Zmaxq ` µ3pZ2prq ´ Zmaxq
` µ4pZmin ´ Z1prqq ` µ5pZmin ´ Zdprq
` µ6pZmin ´ Z2prqq (3.25)

is called the Lagrangian functional of the NLP. The vectors λ P R and µ P R` are Lagrangian

multipliers.

3.2.3 Experimental Demonstration and Discussion

This section presents experimental demonstration of the phaser in Fig. 3.17, where transmission-

type and reflection-type versions with different properties will be introduced.
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Transmission-Type Phaser

Fig. 3.19 shows the wave path through the transmission-type continuously space-modulated

phaser with open-terminated stubs. To design a transmission-type phaser operating inside

a given frequency bandwidth, all interband transmission zeroes resulted from the open-

stubs should be canceled. To best investigate this issue, let us first consider the uniform

transmission-type phaser with uniform open-ended stubs in Fig. 3.16, operating at center

frequency of fc. The input impedance of the stub may be found as Z in
s “ ´jZ0

s cotpθcq. The

transmission zeros of such a phaser occur at θc “ βcd1 “ πpn`1{2q, for n “ 0, 1, 2, .... At each

transmission, zero complete reflection occurs, where depending on the operation frequency

bandwidth, a couple of this transmission zeros may happen in the frequency band. Then, for

an efficient and broadband design, these transmission zeroes should be pushed outside the

frequency band. To ensure minimum number of transmission zeros occur inside the band, the

length of the stubs could be set as

d1, d2 « k
λc

2
k “ 0, 1, . . . , 8 (3.26)

with λc being the guidance wavelength of the center frequency.

Next, the nonuniformity of the stubs could help to cancel the remained transmission ze-

roes inside the frequency band. It is shown in the previous section how nonuniformity of

the stub may be leveraged to cancel the transmission zeroes. Also, comparing the input

impedance of the nonuniform stubs with lumped inductance or capacitance, reveals how

these stubs behave as dispersive, controllable lumped inductance and capacitances, yielding

band-broadening of the structure. Afterwards, we experimentally demonstrate the 2nd order

Chebyshev transmission-type phaser of Fig. 3.17, using open stubs, in microstrip technology.

We use alumina substrate with permittivity ǫr “ 9.9 and height h “ 10 mil. The phaser pre-

sents 53.3% frequency bandwidth, i.e. from 1.1 to 1.9 GHz, with 0.38 ns group delay swing.

Figure 3.20 (a) plots achieved optimal normalized space-dependent characteristic impedances

of the phaser. Table 1.2 shows the optimal coefficients of ( 3.17) for the 2nd order Chebyshev.

Figure 3.20 (b) plots dispersion comparison of input impedance of the shunt space-modulated

open-stub with the one of shunt uniform open-stub, shunt inductance and shunt capacitance.

It may be seen from this figure that, nonuniform stub behaves as dispersive inductance and

capacitance. Moreover, space modulation provides a great control on the dispersion of the

stubs, providing high input impedance stubs, so that they do not affect the magnitude.

It also helps to cancel the transmission zeros across the operation bandwidth. Figure 3.21
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Figure 3.19 Wave path through the transmission-type phaser.

Table 3.2 Optimal values of the coefficients a1q, b1q, a2q, b2q, a3q and b3q for the 2nd order Chebyshev

transmission-type phaser.

q 0 1 2 3 4 5

a1q -0.2600 0.2645 0.0234 0.0454 -0.0366 -0.0077
b1q 1.3121 -0.1112 0.2454 -0.0127 0.0659
a2q 0.4713 -0.3441 0.0862 0.0489 -0.0450 -0.0080
b2q 0.1715 0.0640 -0.0096 -0.0083 -0.0338
a3q -0.2924 0.5564 -0.0900 0.1518 0.0186 0.0094
b3q 0.9986 0.0918 -0.0130 0.0095 -0.0376

q 6 7 8 9 10

a1q -0.0228 -0.0195 -0.0057
b1q 0.0434 -0.0007 0.0473
a2q 0.0113
b2q -0.0293
a3q 0.0195 0.0114 -0.0273 -0.0043 -0.0203
b3q -0.0653 -0.0358 -0.0600 -0.0275 -0.0026
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shows the corresponding group delay and S-parameters of the phaser. Then, the nonuniform

characteristic impedance of the stubs and series transmission line would be achieved through

minimization of the fitness function εtrans, as

εtrans “ 1
ω2

b

ż ωh

ωl

ˇ̌
τ ´ τs

ˇ̌
dω ¨

ż ωN

ω1

ˇ̌
S11

ˇ̌
dω (3.27)

Reflection-Type Phaser

Here, we show that a space-modulated stub-loaded phaser can be designed as reflection-type

to provide enhanced resolution, i.e. higher group delay swing across the operation bandwidth.

Figure 3.22 shows the structure and wave path through the reflection-type phaser with short-

terminated stubs.

In such a reflection-type phaser, all interband reflection zeroes should be canceled. To best

investigate this issue, let’s consider uniform version of the reflection-type phaser in Fig. 3.22,

as shown in Fig. 3.14 with short-ended stubs Zterm “ 0, operating at center frequency fc.

The input impedance of the first stub reads Z in
s “ jZ0

s tanpθcq and reflection zeros occur at

θc “ nλc{2. Reflection zeros yield undesirable zero reflection of input signal. Depending on

the operation frequency bandwidth and length of stubs, there might be couple of refletion

zeros in the frequency band, while for the efficient and broadband operation, these zeroes

should be canceled. For an efficient design, the length of the stubs may be set as

d1, d2 « p2k ` 1qλc

4
k “ 0, 1, . . . , 8 (3.28)

It should be noted that the reflection poles are undesirable as well as reflection zeroes since

they cause huge discontinuity in group delay response. For the reflection type of Fig. 3.22,

the first stub mainly provides the specified group delay swing, while the series-line along with

the second stub are used to present an appropriate impedance mis-matching.

Depending on the required group delay swing, ∆τ , the termination of the stubs would be

determined to be short or open, so that exhibit minimum stub lengths and maximum voltage

at the input of the stub at center frequency, according to equations (3.14a) and (3.15a). Then,

the nonuniform characteristic impedance of the stubs and series transmission line would be

achieved through minimization of the fitness function as
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Figure 3.22 Schematic of the proposed short-terminated stub-loaded reflection-type phaser.

εrefl “ 1
ω2

b

ż ωh

ωl

ˇ̌
τ ´ τS

ˇ̌
dω ¨

ż ωN

ω1

ˇ̌
S21

ˇ̌
dω. (3.29)

A prototype reflection-type phaser is designed and fabricated with the following characte-

ristics. The phaser presents 2nd order Chebyshev group delay response with 100% frequency

bandwidth, i.e. from 1 to 3 GHz, with 1 ns group delay swing. Figure 3.23 (a) and (b) plot

the space-varying impedances of the phaser, and dispersion comparison of the space-varying

(nonuniform) and space-invariant (uniform) short-ended stubs.

Table 3.3 lists the optimized coefficients in 3.17 for the reflection-type 2nd order Chebyshev.

Figure 3.24(a) and (b) respectively show the group delay and S-parameters of the phaser.

Figures 3.25 and 3.26 show the photograph of the fabricated reflection-type and transmission-

type phasers and the corresponding electric and magnetic energy densities inside them, for

three different frequencies. We may identify a correlation between the group delay and the

electromagnetic field distribution in a nonuniform stub-line phaser. These figures show that

distributions of stored energy are perfectly correlated to the corresponding group delays, as

may be seen by comparison with Figs. 3.21(a) and 3.24(a), respectively for transmission-
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Table 3.3 Optimum values of the coefficients a1q, b1q, a2q, b2q, a3q and b3q for the 2nd order Chebyshev

reflection-type phaser.

q 0 1 2 3 4 5

a1q -0.2208 0.4778 -0.6798 -0.2303 -0.1438 0.0530
b1q -0.4079 0.8776 0.2040 0.1383 0.2083
a2q -0.1191 -1.0627 0.0456 0.0728 -0.1776 -0.1363
b2q 0.1496 0.5514 0.42066 -0.0768 -0.0941
a3q -0.2458 -0.7644 -0.0212 -0.3048 0.0707 0.0184
b3q -0.9888 0.0969 0.1399 0.0121 0.1419

q 6 7 8 9

a1q -0.0512 -0.0028 0.0097 0.0065
b1q 0.1244 0.0613 0.0408 0.0133
a2q -0.1066 -0.0770 0.0067 0.0201
b2q 0.0810 -0.0055 -0.0853 -0.0334
a3q 0.0161 0.0485 -0.0204 0.0117
b3q -0.0549 0.0213 -0.0174 -0.0047
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Figure 3.23 Reflection-type phaser. (a) Nonuniform impedances in Fig. 3.17, with d0 “
3.4, d1 “ 4.8, d2 “ 2.2 cm. (b) Dispersion comparison of the input impedance of the no-
nuniform and uniform short-stubs.
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Figure 3.24 Experimental, full-wave and analytical results for the 2nd order Chebyshev
reflection-type phaser prototype. a) Group delay. b) S-parameters.

and reflection-type phasers. The delay seen by a wave, for a given frequency, is proportional

to the amount of time the energy of the wave is stored in the system, where higher stored

energies correspond to larger delays.

Table 3.4 shows ideal input impedances for different sections of transmission-type and reflection-

type phasers.

Table 3.4 Ideal input impedance for different sections of the transmission-type and reflection-type phasers

of Figs. 3.23(a) and 3.22.

– Transmission Reflection

Z in
s1pωq 0 ˘ jhigh 0 ˘ jhigh

Z in
s2pωq 0 ˘ jhigh 0 ´ jlow

Z in

b
pωq “ Z in

s2
pωq}ZL ZL ˘ jlow `low ´ jlow

Z in

d
pωq ZL ˘ jlow 0 ˘ jZin-d

Z in
t

pωq “ Z in
s1

pωq}Z in

d
pωq ZL ˘ jlow 0, 8 ˘ jZin
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Figure 3.25 Transmission-type nonuniform phaser. (a) Photo of the fabricated phaser. (b)
Electric energy density, We at 1.1 GHz. (c) Magnetic energy density, Wm, at 1.1 GHz. (d)
Electric energy density at 1.5 GHz. (e) Magnetic energy density at 1.5 GHz. (f) Electric
energy density at 1.9 GHz. (g) Magnetic energy density at 1.9 GHz.
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Figure 3.26 Reflection-type nonuniform phaser. (a) Photo of the fabricated phaser. (b) Elec-
tric energy density at 1 GHz, We´1 GHz. (c) Magnetic energy density at 1 GHz, Wm´1 GHz.
(d) Electric energy density at 2 GHz, We ´ 2 GHz. (e) Magnetic energy density at 2 GHz,
Wm ´ 2 GHz. (f) Electric energy density at 3 GHz, We ´ 3 GHz. (g) Magnetic energy density
at 3 GHz, Wm ´ 3 GHz.
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CHAPTER 4 NONRECIPROCAL NONGYROTROPIC MAGNETLESS

METASURFACE USING SPACE-MODULATED SPATIOTEMPORALLY

DISPERSIVE MEDIUM

This chapter has been largely taken from author’s published article [6].

Over the past decade, metasurfaces have spurred huge interest in the scientific community

due to their unique optical properties [20, 22]. Metasurfaces may be represented as the two-

dimensional counterparts of volume metamaterials [23–25,180–183]. The vast majority of the

metasurfaces reported to date are restricted to reciprocal responses. Introducing nonrecipro-

city requires breaking time reversal symmetry. Time reversal symmetry is the theoretical sym-

metry of physical laws under the transformation of time reversal. Breaking time reversal sym-

metry can be accomplished via the magneto-optical effect [108–113], nonlinearity [114–116],

space-time modulation [19, 87, 88, 90, 117, 118] or metamaterial transistor loading [119–122].

However, all these approaches suffer from a number of drawbacks. The magneto-optical ap-

proach requires bulky, heavy and costly magnets [110]. The nonlinear approach involves

dependence to signal intensity and severe nonreciprocity-loss trade-off [123]. The space-time

modulation approach implies high design complexity, especially for a spatial device such as

a metasurface. Finally, the transistor-based nonreciprocal metasurfaces reported in [120,122]

are intended to operate as Faraday rotators, whereas gyrotropy is undesired in applications

requiring nonreciprocity without alteration of the wave polarization, such as for instance

one-way screens, isolating radomes, radar absorbers or illusion cloaks.

This chapter introduces the concept of a nonreciprocal nongyrotropic magnetless metasurface

as a space modulated spatiotemporally dispersion engineered medium. A simple three-layer

Surface-Circuit-Surface (SCS) implementation of this structure will be demonstrated. In the

proposed metasurface, time reversal symmetry is broken by the presence of unilateral tran-

sistors in the circuit part of the SCS structure, which is appropriate in the microwave and

millimeter-wave regime. A space-time modulated version of the structure, although nontri-

vial, may also be envisioned for the optical regime. The metasurface is shown to work for all

incidence angles and to provide gain.

4.0.4 Operation Principle

Figure 4.1 depicts the functionality of the nonreciprocal nongyrotropic metasurface. A wave

traveling along the `z direction impinges the metasurface under the angel θ1, ψin,1, passes

through the metasurface from side 1 to side 2, possibly with gain, without polarization al-
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teration and radiates under the angel θ2. By contrast, a wave traveling along the opposite

direction from side 2, ψin,2, is being absorbed and reflected (still without polarization alte-

ration) by the metasurface and can not pass through the metasurface from side 2 to side 1.

Such a metasurface is nonreciprocal, and may hence be characterized by asymmetric scat-

tering parameters, S21 ‰ S12, where S21 “ ψout,2{ψin,1 ą 1 and S12 “ ψout,1{ψin,2 ă 1.

Moreover, the metasurface is nongyrotropic since it does not induce any rotation of the

incident electromagnetic field.

To realize such a nonreciprocal and nongyrotropic metasurface, we employ the three-layer

Surface-Circuit-Surface (SCS) architecture represented in Fig. 4.2. The first surface receives

the incoming wave from one side of the metasurface and feeds it into the circuit while the

second surface collects the wave exiting the circuit and radiates it to the other side of the

metasurface.

The metasurface is constituted of an array of unit cells, themselves composed of two subwave-

lengthly spaced microstrip patch antennas interconnected by the circuit that will introduce

transmission gain with gradient phase in one direction and transmission loss in the other

direction. The phase gradient may be calculated as [21]

sinpθ2qk0 “ sinpθ1qk0 ` BφMS

Bx
, (4.1)

where φMS is the phase gradient along the metasurface, and θ1 and θ2 are the radiation angles

of the input and output waves, respectively.

To best understand the impact of the circuit on the metasurface functionality, first consider

the reciprocal unit cell of Fig. 4.3(a), where the interconnecting circuit is a direct connection

(simple conducting wire). A conducting sheet is placed between the two patches to prevent

any interaction between them. Figures 4.3(b) and 4.3(c) show the Finite Difference Time

Domain (FDTD) response of structure in Fig. 4.3(a). Figure 4.3(b) plots the electric field

distribution for wave incidence from the left and right, with the metasurface being placed at

z “ 0. The response is obviously reciprocal. The corresponding pass-bands are apparent in

the scattering parameter magnitudes plotted in Fig. 4.3(c).

Consider now the nonreciprocal unit cell of Fig. 4.3(d), where the interconnecting circuit is

a unilateral device, typically a transistor-based amplifier. Figures 4.3(e) and 4.3(f) show the

corresponding FDTD response, where an ideal amplifier with a gain of G “ 20 dB is used as

the unilateral device. Figure 4.3(e) plots the electric field distribution for wave incidence from

the left and right. When the excitation is from the left, the incoming wave passes through

the structure, where it also gets amplified, and radiates to the right of the metasurface.
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Figure 4.1 Nonreciprocal nongyrotropic metasurface functionality [6].

When the excitation is from the right, the incoming wave is blocked, namely absorbed and

reflected, by the metasurface. The pass-band (S11 » 0) and stop-band (S11 » 1) are shown

in in Fig. 4.3(f). The explanation of the multiple pass-bands suppression is provided in the

next section.

4.0.5 Coupled-Structure Resonances Suppression

In this section, we provide the exact analytical solution for the scattering parameters of

the normal incidence to the reciprocal and nonreciprocal unit cells in Figs. 4.3(a) and 4.3(d).

While the solution for the former case gives more insight into the patch and coupled-structure

resonances, plotted in Fig. 4.3(c), the solution for the latter case explains how the unilateral

device suppresses the coupled-structure resonances, leading to the result of Fig. 4.3(f).

Figure 4.4 shows the general representation of the unfolded version of the SCS structures in

Figs. 4.3(a) and 4.3(d), where wave propagation through the SCS structure from one side to
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Figure 4.2 Nonuniform surface-Circuit-Surface (SCS) metasurface architecture for the ma-
gnetless implementation of the nonreciprocal nongyrotropic metasurface in Fig. 4.1 [6].

the other side of the metasurface is decomposed in five propagation regions. In this generic

model, each of the five regions may represent either a reciprocal or nonreciprocal structure

or device. Since microstrip transmission lines are inhomogeneous, their wavenumbers depend
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Figure 4.3 Unit cell of the metasurface in Fig. 4.2 with (a,b,c) a direct connection for the
circuit, corresponding to a reciprocal metasurface, and (d,e,f) a unilateral device (typically a
transistor) for the circuit, corresponding to a nonreciprocal metasurface. (a,d) Structure. (b,e)
Full-wave (FDTD) electric field distribution for excitations from the left and right (bottom).
(c,f) Full-wave (FDTD) scattering parameter magnitudes [6].

on the width of the structure [184], and therefore the wavenumbers in different regions are

different, i.e. β1p“ β5q ‰ β2p“ β4q ‰ β3.

The total electric field in the nth region, where n “ 1, . . . , 5, consists of forward and backward

waves as

En “ V `
n e´jβnz ` V ´

n ejβnz, (4.2)

where V `
n and V ´

n are the amplitudes of the forward traveling and backward traveling waves,

respectively, and βn is the wavenumber. It should be noted that the backward waves, propa-

gating along ´z direction, are due to reflection at the different interfaces between adjacent

regions. Upon application of boundary conditions at the interface between regions n and

n ` 1, the total transmission and total reflection coefficients between regions n and n ` 1 are
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Figure 4.4 Generic representation of multiple scattering in the unfolded version of the SCS
structures in Figs. 4.3(a) and 4.3(d) [6].

found as as [185]

rTn`1,n “ V `
n`1

V `
n

“ Tn`1,ne´jpβn´βn`1qz

1 ´ Rn`1,n
rRn`1,n`2e´j2βn`1dn`1

, (4.3a)

rRn,n`1 “ Rn,n`1 ` rRn`1,n`2e
´j2βn`1dn`1

1 ` Rn,n`1
rRn`1,n`2e´j2βn`1dn`1

. (4.3b)

where Rn,n`1 “ pηn`1 ´ ηnq{pηn`1 ` ηnq, with ηn being the intrinsic impedance of region n,

is the local reflection coefficient within region n between regions n and n ` 1, and Rn`1,n “
´Rn,n`1. The local transmission coefficient from region n to region n ` 1 is then found as

Tn`1,n “ 1 ` Rn,n`1.

The factor e´jpβn´βn`1qz in (4.3a) shows that, due to the nonuniformity of structure in Fig. 4.4,

a phase shift corresponding to the difference between the wavenumbers in adjacent regions

occurs at each interface. The total transmission from region 1 to region N is the product of

the transmissions from all interfaces and phase shift inside each region

sN,1 “
N´1ź

n“1

rTn`1,ne´jβndn . (4.4)

Figure 4.5(a) shows the unfolded version of the SCS architecture in Fig. 4.3(a) where, com-
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paring with the general representation of the problem in Fig. 4.4, we denote β1 “ β5 “ β0,

β2 “ β4 “ βp and β3 “ βt the wavenumbers in the air, in the two patches, and in the inter-

connecting transmission line, respectively. We subsequently denote R1,2 “ ´R2,1 “ ´R4,5 “
Rp “ pηp ´η0q{pηp `η0q the reflection coefficient at the interface between a patch and the air,

and R2,3 “ ´R3,2 “ ´R3,4 “ R4,3 “ Rt “ pηt ´ ηpq{pηt ` ηpq the local reflection coefficient at

the interface between a patch and the interconnecting transmission line.

The total transmission coefficient for the reciprocal SCS metasurface of Fig. 4.5(a), from

region 1 to region 5, reads then

S21,Rec “ s5,1 “
4ź

n“1

rTn`1,ne´jβndn , (4.5)

where rTn`1,n, for n “ 1, . . . , 4 is provided by (4.3a) with (4.3b). In particular,

rR2,3,Rec “ Rt ` rR3,4e
´j2βtdt

1 ` Rt
rR3,4e´j2βtdt

“ Rt ` R2
t Rpe´j2βpdp ´ pRt ` Rpe´j2βpdpqe´j2βtdt

1 ` RtRpe´j2βpdp ´ RtpRt ` Rpe´j2βpdpqe´j2βtdt

(4.6)

will be used later.

After some algebraic manipulations in (4.5), the total transmission coefficient from the reci-

procal SCS structure in Fig. 4.5(a) is found in terms of local reflection coefficients as

S21,Rec “ p1 ´ R2
pqp1 ´ R2

t qejpβp`β0´2βtqdt

pRpRt ` ej2βpdpq2 ´ pRtej2βpdp ` Rpq2e´j2βtdt
. (4.7)

The term e´j2βtdt in the denominator of this expression corresponds to the round-trip propa-

gation through the middle transmission line, whose multiplication by ej4βpdp in the adjacent

bracket corresponds to the patch-line-patch coupled-structure resonance, with length 2dp`dt.

Figure 4.5(b) shows the unfolded version of the nonreciprocal SCS structure in Fig. 4.3(d),

where a unilateral device is placed at the middle of the interconnecting transmission line.

Note that in this case the structure is decomposed in 7 (as opposed to 5) regions, with extra

parameters straightforwardly following from the reciprocal case.

Assuming that the input and output ports of the unilateral device are matched, i.e. R34 “
R54 “ 0, then one has rR34 “ 0 and the backward wave is completely absorbed by the device,
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Figure 4.5 Wave interference explanation of the responses in Fig. 4.3. (a) Reciprocal case,
Figs. 4.3(a), 4.3(b), 4.3(c). (b) Nonreciprocal case, Figs. 4.3(d), 4.3(e), 4.3(f) [6].

i.e. T34 “ rT34 “ 0 while the forward wave is amplified by the device as T43 “ rT43 “ G. Then,

the total reflection coefficients at the interface between regions 2 and 3, given by (4.6) in the

reciprocal case, reduces to

rR2,3,NR “ Rt. (4.8)
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This relation, compared with the one for the reciprocal case, reveals the suppression of the

multiple reflections in the interconnecting transmission line. The total transmission coefficient

from the nonreciprocal SCS structure may be found as

S21,NRec “ Gp1 ´ R2
pqp1 ´ R2

t qe´jpβtdt´2β0dpq

pRpRt ` ej2βpdpq2
. (4.9)

Comparing the denominator of (4.9) with that of the reciprocal case in (4.7), shows that the

coupled-structure resonances, corresponding to the second term of the denominator, have

disappeared due to the suppression of the multiple reflections in the middle transmission

line, restricting the spectrum to the harmonic resonances of the two patches, amplified by G.

Figure 4.6(a) shows the magnitude of the scattering parameters for a single isolated patch,

where transmission (|S21| “ 1) occurs at the harmonic resonance frequencies of the patch, nf0

(n integer), where dp “ nλp{2 “ nλ0{p2?
ǫeffq with ǫeff being the effective permittivity [184].

Figure 4.6(b) plots the magnitude of the scattering parameters of the coupled structure for-

med by the two patches interconnected by a short transmission line of dt “ 0.3λ0, given

by (4.7). We see that, in addition to the single patch resonances at f “ nvp{p2dpq, extra

resonances appear in the spectrum, corresponding to the aforementioned coupled-structure

resonances. Increasing the length of the interconnecting transmission line to dt “ 3λ0 yields

the results presented in Fig. 4.6(c). As expected, more coupled-structure resonances appear

in the response due to the longer electrical length of the overall structure, while the patch

resonances remain fixed. Finally, we place the unilateral device in the middle of the inter-

connecting transmission line, still with dt “ 3λ0. Figure 4.6(d) shows the corresponding

scattering parameters, where all the coupled resonances in Fig. 4.6(c) have been completely

suppressed due to the absorbtion of multiple reflections from the patches by the unilateral

device. It should be noted that the forward amplification, |S21| ą 1, and backward isolation,

|S12| ! 1, are due to the nonreciprocal amplification of the unilateral device.

4.0.6 Experimental Demonstration

Figure 4.7 shows the realized 3ˆ3 metasurface, based on the SCS architecture of Fig. 4.3(d).

The metasurface is designed to operate in the frequency range from 5.8 to 6 GHz with

θ1 “ θ2 “ 0. Its thickness is deeply subwavelength, specifically δ « λ0{30, where λ0 is

the wavelength at the center frequency, 5.9 GHz, of the operating frequency range. The

metasurface was realized using multilayer circuit technology, where two 6.2 in ˆ 6.2 in RO4350

substrates with thickness h “ 30 mil were assembled to realize a three metallization layer

structure. The permittivity of the substrates are ǫ “ ǫrp1 ´ j tan δq, with ǫr “ 3.66 and
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Figure 4.6 Scattering parameter frequency responses of the structures in Fig. 4.5. (a) Isolated
patch. (b) Structure (reciprocal) in Fig. 4.5(a) with dt “ 0.3λc. (c) Same structure (reciprocal)
as in (b) except for dt “ 3λc (d) Structure in Fig. 4.5(b) (nonreciprocal) still with dt “ 3λc [6].



66

tan δ “ 0.0037 at 10 GHz. The middle conductor of the structure (Fig. 4.7) both supports

the DC feeding network of the amplifiers and acts as the RF ground plane for the patch

antennas. The dimensions of the 2ˆ9 microstrip patches are 1.08 in ˆ 0.49 in.

The connections between the layers are provided by an array of circular metalized via holes,

with 18 vias of 30 mil diameter connecting the DC bias network to the amplifiers, while the

ground reference for the amplifiers is ensured by 18 sets of 6 vias of 20 mils diameter with

60 mils spacing. The connection between the two sides of the metasurface is provided by 9

via holes (Fig. 4.7), with optimized dimensions of 60 mils for the via diameters, 105 mils for

the pad diameters and 183 mils for the hole diameter in the via middle conductor.

For the unilateral components, we used 18 Mini-Circuits Gali-2+ Darlington pair amplifiers.

To achieve a total gain of 20 dB, each unit-cell contains two cascaded Gali-2 amplifiers, each

of which provides about 10 dB gain across the operation bandwidth.

The amplifier circuit is shown in Fig. 4.8, where Cin “1 pF and Cout “1 pF are DC-block

capacitors, and Cb1 “ 4.7 pF, Cb2 “ 1 nF and Cb3 “ 1 are a set of AC by-pass capacitors.

A 4.5-V DC-supply provides the DC signal for all the amplifiers (for uniform case with

θ1 “ θ2 “ 0) through the DC network with a bias resistor of Rbias “ 39 Ohm corresponding

to a DC current of 40 mA for each amplifier. It should be noted that, to make a space-

modulated (gradient) metasurface with θ1, θ2 ‰ 0, different DC bias voltages, or different

bias resistors, may be considered for the amplifiers.

The measurements were performed by a 37369D Anritsu network analyzer where two micros-

trip array antennas were placed at two sides of the metasurface to transmit and receive the

electromagnetic wave.

Figure 4.9 compares the measurement results with the simulation results of Fig. 4.6(d) for

transmission scattering parameters versus frequency for normally aligned transmit and receive

antennas. In the 1 Ñ 2 direction, more than 17 dB transmission gain is achieved in the

frequency range of interest, while in the 2 Ñ 1 direction, more than 10 dB transmission loss

is ensured across the same range, corresponding to an isolation of more than 27 dB.

Two other experiments are next carried out to investigate the operational angular sector of

the metasurface. In the first experiment, we fix the position of one antenna normal to the

metasurface and rotate the other antenna from 0 to 180˝ with respect to the metasurface,

as illustrated at the top of Fig. 4.10(a). The bottom of Fig. 4.10(a) shows the measured

transmission levels for both directions, |S21| and |S12|. We observe that the metasurface

passes the wave with gain over a beamwidth of about 110˝ from θ “ 35˝ to 145˝ in the 1 Ñ 2

direction and attenuates it by more than 12 dB in the 2 Ñ 1 direction, which corresponds to
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δ ăă λ

λ
2

Figure 4.7 Exploded perspective view of the realized 3 ˆ 3-cell implementation of the meta-
surface, where, compared to Fig. 4.3(d), the transistors have been shifted to the surfaces for
fabrication convenience [6].

a minimum isolation of about 15 dB across the aforementioned beamwidth.

In the next angular dependence experiment, we rotate two antennas rigidly aligned from 0 to

180˝ with respect to the metasurface, as illustrated at the top of Fig. 4.10(b). The bottom of

Fig. 4.10(b) shows the measured transmission levels for both directions. We observe that the

metasurface passes the wave with gain over a beamwidth of about 130˝ from θ “ 25˝ to 155˝

in the 1 Ñ 2 direction and attenuates it by more than 12 dB in the 2 Ñ 1 direction, which

corresponds to a minimum isolation of about 21 dB across the aforementioned beamwidth.

Comparing Figs. 4.10(a) and 4.10(b) reveals that the transmission gain is less sensitive to
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Figure 4.8 Photograph of the realized 3ˆ3-cell implementation of the metasurface with zoom
on transistor part and corresponding biasing network [6].
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Figure 4.10 Experimental scattering parameters versus angle at f “ 5.9 GHz for transmission
(a) under normal (one side) and oblique (other side) angles, (b) in a straight line under an
oblique angle [6].

angle in the latter case. This is due to the fact that the optical path difference between any

pair of rays across the SCS structure is null when the antennas are aligned, as in Fig. 4.10(b),

whereas it is angle-dependent otherwise, as in Fig. 4.10(a) (path difference ∆L).

The experimental results presented above show that the proposed nonreciprocal nongyro-

tropic metasurface works as expected, with remarkable efficiency. Moreover, it exhibits the

following additional favorable features. Firstly, it provides gain, which makes it particularly

efficient as a repeater device. Secondly, in contrast to other nonreciprocal metasurfaces, the
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structure is not limited to the monochromatic regime since patch antennas are fairly broad-

band and their bandwidth can be enhanced by various standard techniques [184]. Note that

the structure presented here has not been optimized in this sense but already features a

bandwidth of over 3%. Thirdly, the metasurface exhibits a very wide operating angular sec-

tor, due to both aforementioned small or null optical path difference between different rays,

due to the SCS architecture, and the inherent low directivity of patch antenna elements. The

reported operating sectors, of over 100˝, are much larger than those of typical metasurfaces.



71

CHAPTER 5 NONRECIPROCAL ELECTROMAGNETIC SCATTERING

FROM A PERIODIC SPACE-TIME MODULATED SLAB

This chapter has been largely taken from author’s published article [7].

In 1950s-1960s, the space-time modulated medium whose constructive parameters are spa-

tiotemporally modulated, has been studied as traveling-wave parametric amplifier. In that

era, it has been shown that an infinite space-time modulated medium transforms the spec-

trum [71, 72, 74–79, 186], where the problem of interest was the forward propagation in an

infinite medium where the permittivity or permeability is sinusoidally varying in space and

time. However, several interesting features of such a medium have not been studied, including

the backward propagation and nonreciprocity of such an infinite medium, the wave propaga-

tion in a general space-time modulated medium, and the electromagnetic scattering form a

space-time modulated slab. Such media are endowed with peculiar properties. In contrast to

moving media, where the velocity of the medium is restricted to the speed of light, space-time

modulation can take both subluminal and superluminal velocities. In contrast to static per-

iodic media such as photonic crystals, periodic space-time media exhibit asymmetric, tilted

dispersion [74,75]. Moreover, superluminal space-time media produce electromagnetic band-

gaps that are oriented vertically, compared to horizontal bandgaps in conventional photonic

crystals and Bragg structures. These vertical bandgaps describe instabilities or unbounded

growth [75]. Harmonic generation is another feature of space-time media. In contrast to

nonlinear harmonics, space-time harmonics are not governed by the classical Manley-Rowe

relations [75]. This result stems from violation of energy conservation in space-time modula-

ted media, as energy is pumped into the system through the modulation.

This technique has regained attention in the past years due to recently discovered exotic

effects such as interband photonic transitions mediated by space-time varying media [84]

and associated nonreciprocity [19, 29], inverse Doppler effect in a shockwave induced photo-

nic bandgap structure [85, 86], electromagnetic isolation in oblique space-time bandgaps [8],

nonreciprocal space-time metasurfaces [87–89], and nonreciprocal antenna systems [9,90–93].

Nonreciprocity based on space-time modulation seems to offer a viable path towards inte-

grated nonreciprocal photonic and electromagnetic devices. This technique addresses issues

of conventional nonreciprocity techniques, such as incompatibility with integrated circuit

technology in magnet-based nonreciprocity, signal power restrictions in nonlinear-based non-

reciprocity [123], and low power handling and frequency limitation in transistor-based non-

reciprocity [187].
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Various electromagnetic modelings of spatitemporally modulated medium have been repor-

ted in the past including Bloch-Floquet [74, 186], coupled-mode approximate [19, 72, 80] and

perturbation approximate [188] solutions. The Bloch-Floquet form provides the complete

spectrum and more insight into the medium, where the two later cases, coupled-mode and

perturbation solutions, provide a closed form approximate spectrum. However, the Bloch-

Floquet form does not converge for a specific range of parameters, where the phase velocities

of the background and modulation are close, which is called sonic region [186]. Up to now,

all reported space-time modulated systems are limited to one-dimensional, infinite and sinu-

soidally modulated media. In this chapter, we consider a general two-dimensional space-time

modulated slab and present the electromagnetic scattering from and into the finite medium.

The rigorous analytical wave solution for for the field inside and outside of the slab are

achieved based on the electromagnetic fields mode matching at the interfaces of the slab.

We will then discuss about the dispersion and the isofrequency diagrams of the medium, for

different set of parameters corresponding to different operation regimes, to best understand

the wave propagation inside such a medium. Next, we will discuss about the quasi-sonic

region for a general modulation and present the analytical and numerical results for a finite

slab. Interesting features of the oblique shinned space-time modulated slab may pave the

road for further research works in this area. In contrast to the infinite space-time modulated

medium, where operating toward the sonic region leads to instability due to the infinite gain,

the corresponding spatiotemporally modulated slab presents a progressive finite gain, given

by the finiteness of the medium, which provides an extra degrees of freedom to have strong

transitions.

Previous research on space-time media has been mostly focused on propagation in infinite

space-time media or normal incidence on a semi-infinite space-time modulated region. Oblique

electromagnetic incidence on a space-time modulated slab has unique features that have been

unexplored. This chapter shows that such a structure operates as a nonreciprocal harmonic

generator and filter. It is demonstrated that a space-time slab operates as a high-pass spatial

frequency filter. For oblique incidence, low frequency harmonics are filtered out in the form

of surface waves, while high frequency harmonics are transmitted as space waves. In the

quasi-sonic regime, where the velocity of the space-time modulation is close to the velocity of

the electromagnetic waves in the background medium, the incident wave is strongly coupled

to space-time harmonics in the forward direction while in the backward direction it exhibits

low coupling to other harmonics. This nonreciprocity is leveraged for the realization of an

electromagnetic isolator in the quasi-sonic regime and is experimentally demonstrated at

microwave frequencies.
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The chapter is organized as follows. Section 5.1 presents an analytical solution for electroma-

gnetic scattering from a space-time slab. Section 5.2 derives analytical expressions describing

electromagnetic scattering from a sinusoidally modulated space-time slab. Dispersion dia-

grams and isofrequency curves are described in Sec. 5.3. Space-time transitions and their

nonreciprocal nature are highlighted in details in Sec. 5.3.

5.1 General Analytical Solution

The problem of interest is represented in Fig. 5.1. A plane wave, EI, impinges in the forward

(`z) direction or backward (´z) direction under the angle θi on a periodically space-time

modulated slab of thickness L sandwiched between two semi-infinite unmodulated media.

Hereafter, the problem with the incident wave propagating towards the `z-direction, depicted

at the top of Fig. 5.1, will be called the forward problem, denoted by the superscript “F”,

while the problem with the incident wave propagating towards the ´z-direction, depicted at

the bottom of Fig. 5.1, will be called the backward problem, denoted by the superscript “B”.

Note that, as illustrated in Fig. 5.1, the forward and backward problems both include forward

and backward waves. The slab assumes the unidirectional forward relative permittivity

ǫpz, tq “ fperpβmz ´ ωmtq, (5.1)

where fperp.q is an arbitrary periodic function of the space-time phase variable ξ “ βmz ´ ωmt,

with βm being the spatial modulation frequency and ωm the temporal modulation frequency.

Taking the time derivative of a constant phase point in (5.1) yields dξ{dt “ 0 “ βmdz{dt´ωm,

vm “ ωm

βm

. (5.2)

This velocity may be smaller or greater than the phase velocity of the background medium,

which we define here as the velocity

vb “ c?
ǫr

, (5.3)

where c “ 1{?
µ0ǫ0 is the speed of light in vacuum, and where ǫr is the relative permittivity

common to media 1 and 3 and to the average permittivity of medium 2. The ratio between

the modulation and background phase velocities,

γ “ vm

vb
, (5.4)



74

is called the space-time velocity ratio. The limit γ “ 0 corresponds to a purely space-

modulated medium, while the limit γ “ 8 corresponds to a purely time-modulated me-

dium [80]. Moreover, γ “ 1 corresponds to the space-time-modulated medium where the

modulation propagates exactly at the same velocity as a wave in the background medium.

We wish to calculate the fields scattered by the slab, namely the reflected fields, EF,B
R , the

fields in the modulated medium, EF,B;˘
M , and the transmitted fields, EF,B

T , in Fig. 5.1.

region 1 region 2 region 3
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θtn
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ǫpz, tq “ fperpβmz ´ ωmtq
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Figure 5.1 Electromagnetic scattering from a periodically space-time modulated slab (re-
gion 2) sandwiched between two semi-infinite unmodulated media (regions 1 and 3). Due to
the unidirectionality of the modulation, ǫpz, tq “ fperpβmz´ωmtq, the system is nonreciprocal,
with different temporal and spatial frequencies scattered in the two directions [7].

Since the slab medium permittivity is periodic in space, with spatial frequency βm, and in

time, with temporal frequency ωm, it may be expanded in the space-time Fourier series

ǫpz, tq “
8ÿ

k“´8

ǫ̃ke´jkpβmz´ωmtq, (5.5)

where ǫ̃k is the coefficient of the kth term and ǫ̃0 “ ǫr. Moreover, assuming TMy or Ey

polarization, the electromagnetic fields inside the slab may be represented in the double
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space-time Bloch-Floquet form

EMpx, z, tq “ E`
Mpx, z, tq ` E´

Mpx, z, tq “
8ÿ

n“´8

`
E`

n ` E´
n

˘
, (5.6a)

where the superscripts F and B have been omitted for notational simplicity and where the

˘ superscripts represent ˘z-propagating wave components. In (5.6),

E`
n “ ŷA`

n e´jpkxx`β`
0 z´ω0tqe´jnpβmz´ωmtq, (5.6b)

E´
n “ ŷA´

n e´jpkxx´β´
0 z´ω0tqe´jnpβmz´ωmtq. (5.6c)

where β0 and ω0 are the spatial and temporal frequencies of the fundamental temporal and

spatial harmonics, respectively, in the slab, and kx “ k0 sinpθiq “ pω0{vbq sinpθiq is the x-

component of the spatial frequency, k.

It is shown in Sec. 1 of [189] that the Bloch-Floquet solution in (5.6) is valid everywhere

except in the interval

γs,min “
c

ǫr

ǫ̃0 ` ǫm

ď γ ď
c

ǫr

ǫ̃0 ´ ǫm

“ γs,max, (5.7)

where ǫ̃0 is the average of ǫpz, tq, as seen in (5.5), and ǫm is the maximal (symmetric) variation

of ǫpz, tq from ǫ̃0, and is called the modulation depth. Upon multiplication by vb and usage

of (5.4) and (5.3), this interval may also be expressed in terms of the modulation velocity as

vm,s,min “ c?
ǫ̃0 ` ǫm

ď vm ď c?
ǫ̃0 ´ ǫm

“ vm,s,max, (5.8)

and is called the “sonic regime” [186] in analogy with a similar interval first identified in

acoustic space-time modulated problems. It has been established that, in the case of the

(nonperiodic) space-time slab ǫpz, tq “ rectpβmz ´ ωmtq, the sonic regime (5.8) supports

both a space-like reflected wave and a time-like reflected wave, whereas only a space-like

reflected wave exists when vm ă vm,s,min and only a time-like reflected wave exists when

vm ą vm,s,max [190]. The sonic interval thus represents a regime requiring a special mathema-

tical treatment, that has not yet been reported in the literature to the best of the authors’

knowledge. When the space-time modulation is made periodic, as in (5.5), the same pheno-

menon occurs for each interface, and therefore the interval (5.8) still corresponds to the same

sonic regime. In the middle of the sonic interval, i.e. at γ “ 1 or vm “ vb, all the forward

space-time harmonics merge into a single dispersion curve, as will be explained later, leading

to a shock wave as in the phenomenon of sound barrier breaking in acoustics.
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To find the unknown coefficients, β`
0 , β´

0 , A`
n and A´

n in (5.6), we shall first fix ω0, as the source

frequency, and then find the corresponding discrete β0 solutions, β0p, forming the dispersion

diagram of the slab. Next, we shall apply the spatial boundary conditions at the edges of the

slab, i.e. at z “ 0 and z “ L, for all the pω0, β0pq states in the dispersion diagram, which will

provide the unknown slab coefficients A`
nppq and A´

nppq in (5.6b) and (5.6c), respectively, and

the corresponding coefficients in the unmodulated regions, i.e. the fields everywhere.

Consider the Maxwell equations for a general space-time modulated permittivity as

∇ ˆ EMpx, z, tq “ ´BBMpx, z, tq
Bt

, (5.9a)

∇ ˆ HMpx, z, tq “ BDMpx, z, tq
Bt

, (5.9b)

∇ ¨ EMpx, z, tq “ 0, (5.9c)

∇ ¨ HMpx, z, tq “ 0. (5.9d)

which may be written as

∇ ˆ p∇ ˆ EMpx, z, tqq “ ´BBM

Bt
“ ´µ0

B
Bt

ˆBDMpx, z, tq
Bt

˙
, (5.10)

and then, using (5.9c), the source-less wave equation reads

∇2EMpx, z, tq “ µ0
B
Bt

ˆBDMpx, z, tq
Bt

˙

“ 1
c2

B
Bt

ˆB rǫpz, tqEMpx, z, tqs
Bt

˙
,

(5.11)

Inserting (5.6) into the first term of (5.11), and (S10) in Sec. 2 of [189] [product of (5.5)

and (5.6)] into the second term of (5.11), and next using (S12), yields the relation

A˘
n

„
k2

x ` pβ0 ˘ nβmq2

rpω0 ` nωmq{cs2


´

8ÿ

k“´8

ǫ̃kA˘
n´k “ 0. (5.12)

Equation (5.12) may be cast, after truncation to 2N ` 1 terms, to the matrix form

rK˘s ¨ rA˘s “ 0, (5.13)
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where rK˘s is the p2N ` 1q ˆ p2N ` 1q matrix with elements

K˘
nn “

„
k2

x ` pβ0 ˘ nβmq2

rpω0 ` nωmq{cs2


´ ǫ0,

K˘
nk “ ´ǫ̃n´k, for n ‰ k,

(5.14)

and rA˘s is the p2N ` 1q ˆ 1 vector containing the A˘
n coefficients. The dispersion relation is

then given by

det
 

rK˘s
(

“ 0, (5.15)

and the p2N `1q forward and backward dispersion curves β0ppω0q, whose number is here finite

due to truncation but theoretically infinite, are formed by solving this equation separately

for the ˘z-propagating waves for a given set of modulation parameters ωm, βm and ǫ̃k, and

for values of ω0 swept across the temporal frequency range of interest. Note that each point

pβ0p, ω0q represents a mode of the medium, itself constituted of an infinite number of oblique

space-time harmonics corresponding to modes at other frequencies, since such a point is a

solution to the complete wave equation by virtue of (5.15).

Once the dispersion diagram has been constructed, i.e. once the β˘
0p states, solutions to (5.11),

have been determined versus ω0, the unknown field amplitudes A˘
np in the slab are found by

solving (5.13) after determining the A˘
0p terms satisfying boundary conditions. These terms

are derived in Sec. 3 of [189] as

AF`
0p “ E0k0rcospθ`

i q ` cospθ`
r0qs

β`
0p ` k0 cospθ`

r0q ´ β´
0p

´k0 cospθ`
r0

q

e
jpβ

`
0p

`β
´
0p

qL

β`
0p

´k0 cospθ`
t0

q

β´
0p

`k0 cospθ`
t0

q

, (5.16a)

AF´
0p “ AF`

0p e´jpβ`
0p

`β´
0p

qL β`
0p ´ k0 cospθ`

t0q
β´

0p ` k0 cospθ`
t0q , (5.16b)

for the forward problem, and

AB´
0p “ E0k0rcospθ´

i q ` cospθ´
r0qsejk0 cospθ´

i qL

β´
0p

`k0 cospθ´
r0

q

e
´jβ

´
0p

L
´ β`

0p
´k0 cospθ´

r0
q

e
jβ

`
0p

L

β´
0p

´k0 cospθ´
t0

q

β`
0p

`k0 cospθ´
t0

q

, (5.17a)

AB`
0p “ AB´

0p

β´
0p ´ k0 cospθ´

t0q
β`

0p ` k0 cospθ´
t0q , (5.17b)

for the backward problem, where k0 “ ω0
?

ǫr{c is the spatial frequency in the unmodulated

media. As expected from the unidirectionality of the perturbation [Eq. (5.1)], we have AF`
0p ‰

AB´
0p and AF´

0p ‰ AB`
0p . It may be easily verified that in the particular case where the temporal
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perturbation is switched off (ωm “ 0), so that β`
0,p “ β´

0,p “ β0,p, these inequalities transform

to equalities after compensating for the round-trip phase shift ´2β0,pL, as expected for the

resulting reciprocal system.

From this point, the scattered fields in the unmodulated media, also derived in Sec. 3 of [189],

are found as

EF
R “ ŷ

8ÿ

n“´8

e´jrk0 sinpθiqx´k0n cospθrnqz´pω0`nωmqts

¨
«

8ÿ

p“´8

`
AF`

np ` AF´
np

˘
´ E`

0 δn0

ff
,

(5.18a)

EF
T “ŷ

8ÿ

n“´8

e´jrk0 sinpθiqx`k0n cospθtnqz´pω0`nωmqts,

.

8ÿ

p“´8

`
AF`

np e´jpβ0p`nβmqL ` AF´
np ejpβ0p´nβmqL

˘
.

(5.18b)

and

EB
R “ ŷ

8ÿ

n“´8

e´jrk0 sinpθiqx`k0n cospθrnqz´pω0`nωmqts

¨
„ 8ÿ

p“´8

`
AB`

np e´jpβ0p`nβmqL ` AB´
np ejpβ0p´nβmqL

˘

´E´
0 δn0ejk0L


,

(5.19a)

EB
T “ŷ

8ÿ

n“´8

`
AB`

np ` AB´
np

˘

¨ e´jrk0 sinpθiqx´k0n cospθtnqz´pω0`nωmqts,

(5.19b)

where k0n “ pω0 ` nωm{vbq.

The scattering angles of the different space-time harmonics in (5.18) for the forward problem,

are represented in Fig. 5.2. They are obtained from the corresponding Helmholtz relations

rk0 sinpθiqs2 ` rk0n cospθrnqs2 “ k2
0n, (5.20a)

and

rk0 sinpθiqs2 ` rk0n cospθtnqs2 “ k2
0n, (5.20b)
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yielding

sinpθrnq “ sinpθtnq “ sinpθiq
1 ` nωm{ω0

, (5.20c)

where θrn and θtn are the reflection and transmission angles of the nth space-time harmonic.

Equation (5.20c) describes the space-time spectral decomposition of the scattered wave. The

reflection and transmission angles for a given harmonic n are equal, due to phase matching,

i.e due to the unique tangential wavenumber, kx “ k0 sinpθiq in all the regions [Eqs. (5.20a)

and (5.20b)]. The harmonics in the n-interval rω0psin θi ´ 1q{ωm, `8r are scattered (reflected

and transmitted) at angles ranging from π{2 to 0 through θi for n “ 0. The harmonics outside

of this interval correspond to imaginary k˘
znp and are hence not scattered. Rather, they travel

as surface waves along the boundary. In the modulated medium, the scattering angles are

found from the dispersion relation as

tanpθ˘
npq “ kx

k˘
znp

“ k0 sinpθiq
β˘

0p ˘ nβm
. (5.21)

region 1 region 2 region 3

EI

HI

ER, n “ 0

ER, n ą 0

ER, n ă 0

ET, n “ 0

ET, n ą 0

ET, n ă 0

θt0

θi

E`
M

E´
M

θr0

ǫpz, tq “ fperpβmz ´ ωmtq
ǫav “ ǫr

ǫ0ǫrǫ0ǫr

x

z

L

surface waves,
n ă ω0

ωm
psin θi ´ 1q

Figure 5.2 Scattered space-time harmonics (shown here for the forward problem) [7].
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5.2 Sinusoidally Modulated Slab

We next consider a sinusoidal forward space-time permittivity as a particular case of the

general periodic permittivity in (5.1), namely

ǫpz, tq “ ǫr ` ǫm cospβmz ´ ωmtq. (5.22)

Such a permittivity has been used in [71] for the realization of a traveling-wave parametric am-

plifier. For the computation of the solution derived in Sec. 5.1, we write the expression (5.22)

in terms of its space-time Fourier components, i.e.

ǫpz, tq “ ǫ̃´1e´jpβmz´ωmtq ` ǫ̃0 ` ǫ̃`1e
`jpβmz´ωmtq, (5.23a)

with

ǫ̃´1 “ ǫ̃`1 “ ǫm{2 and ǫ̃0 “ ǫr. (5.23b)

Inserting (5.23) into (5.12) and subsequently following [9], we find the analytic expressions

A˘
np “ A˘

n`1,p

1
´K˘

np ` 1
K˘

n´1,p
` 1

´K
˘
n´2,p

` 1

K
˘
n´3,p

`...

(5.24)

for n ă 0, and

A˘
np “ A˘

n´1,p

1
´K˘

np ` 1
K˘

n`1,p
` 1

´K
˘
n`2,p

` 1

K
˘
n`3,p

`...

, (5.25)

for n ą 0, where

K˘
np “ 2ǫr

ǫm

„
1 ´

ˆ
k2

x ` pβ˘
0 ˘ nβmq2

rpω0 ` nωmq{vbs2

˙
δnn


. (5.26)

The sonic interval associated with the sinusoidal permittivity in (5.22) is obtained by inser-

ting ǫ̃0 into (5.7) as

γs,min “ 1a
1 ` ǫm{ǫr

ď γ ď 1a
1 ´ ǫm{ǫr

“ γs,max, (5.27)



81

where it is understood that |ǫm cospβmz ´ ωmtq| ď ǫm. Following again [9], we also find the

following analytic form for the dispersion relation of the slab :

1
´K˘

p,´1 ` 1
K˘

p,´2` 1

´K
˘
p,´3

` 1

K
˘
p,´4

`...

` K˘
0p

` 1
´K˘

p,1 ` 1
K˘

p,2
` 1

´K
˘
p,3

` 1

K
˘
p,4

`...

“ 0.

(5.28)

This equation, which uses the K˘
np’s in (5.26), provides, for a given set of modulation pa-

rameters (ǫm, ǫr, ωm, βm, γ) and variable ω0, the periodic dispersion diagram (β0p’s) of the

system.

Finally, the local space-time phase velocity and characteristic impedance read

vpz, tq “ ca
ǫpz, tq

“ ca
ǫr ` ǫm cospβmz ´ ωmtq

(5.29a)

and

Z0pz, tq “
c

µ

ǫpz, tq “
c

µ0

ǫ0 pǫr ` ǫm cospβmz ´ ωmtqq , (5.29b)

respectively. Equation (5.29) indicate that the scattering angles and matching level both vary

in space and time when ǫm ‰ 0.

5.3 Quasi-Sonic Nonreciprocity

5.3.1 Dispersion and Isofrequency Diagrams of the Unbounded Modulated Slab

Medium

In order to gain deeper insight into the wave propagation phenomenology within the space-

time modulated slab medium, we next study the dispersion and isofrequency diagrams of the

corresponding unbounded medium. Both are generally computed using (5.15) with (5.14)

and (5.23).

In the limiting case of a vanishingly small (but non zero) modulation depth, ǫm Ñ 0, the

aforementioned equations lead to the closed-form dispersion relation

k2
x ` pβ˘

0 ˘ nβmq2 “
ˆ

ω0 ` nωm

vb

˙2

. (5.30)
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Using (5.2) and (5.4), this relation may be more conveniently rewritten as

ˆ
kx

βm

˙2

`
ˆ

β˘
0

βm
˘ n

˙2

“ γ2

ˆ
ω0

ωm
` n

˙2

, (5.31)

which represents an infinite periodic set of double cones with apexes at kx “ 0 and β0 “ ˘nβm

and slope vm, as illustrated in Fig. 5.3. A vertical cross section of this 3D diagram at kx “ 0

produces an infinite periodic set of straight lines in the β0{βm ´ω0{ωm plane, and a horizontal

cut produces an infinite periodic set of circles centered at pβ˘
0 {βm, kx{βmq “ p¯n, 0q with

radius γ pω0{ωm ` nq in the β0{βm ´ kx{βm plane, as depicted in Fig. 5.3.

ω0

β0

kx

slope=vm

kx ´ β0 : ω0

isofrequency
plane

ω0 ´ β0 : dispersion plane kx “ 0

n, p “ 0

n, p “ ˘1

n, p “ ˘2

n, p “ ˘3

Figure 5.3 Illustration of the three dimensional dispersion for the unbounded sinusoidally
space-time modulated permittivity (5.22). A vertical cut at kx “ 0 produces the dispersion
diagrams, (ω0, β0). A horizontal cut at the excitation frequency, ω0, produces isofrequency
diagrams, (β0, kx). Note that the ω0, β0 and kx axes are mutually orthogonal [7].

We shall now consider the dispersion diagrams plotted in Fig. 5.4 for the case of normal

incidence, and therefore normal propagation everywhere, i.e. kx “ 0, for different sets of

parameters. Figure 5.4(a) plots the dispersion diagram for a vanishingly small modulation
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depth, i.e. ǫm Ñ 0, and for γ “ 0.3. In such a case, Eq. (5.31) reduces to the very simple

dispersion relation
β˘

0

βm

“ γ
ω0

ωm

` n pγ ¯ 1q . (5.32)

This diagram consists of the infinite periodic set of β0{βm ´ ω0{ωm straight curves, labeled

by n. To any frequency, ω0, corresponds an infinite number of modes, labeled by p, each

of which consisting in the infinite number of forward and backward space-time harmonics

pβ˘
0p `nβm, ω0 `nωm) located on the corresponding oblique curve with slope vm. Note that, as

pointed out in Sec. 5.1, any (oblique) space-time harmonic point may be seen as corresponding

to a different mode, excited at a different frequency, or, equivalently, that any mode, excited

at ω0, may be seen as corresponding to an oblique space-time harmonic of another mode, with

different excitation frequency. Given the vanishingly small periodic perturbation (ǫm Ñ 0),

the medium is here quasi homogeneous, with most of the energy residing in the n “ 0 forward

and backward space-time harmonics, which would in fact represent the only remaining curves

for exactly ǫm “ 0 (homogeneous non-periodic medium).

We note in Fig. 5.4(a) that when the velocity ratio is non-zero (here γ “ 0.3), the distances

between the forward and backward space-time harmonics, ∆β˘ “ β˘
n`1 ´ β˘

n , are different.

Specifically, as γ increases, ∆β` decreases and ∆β´ increases. This may be explained as

follows, considering the horizontal cut ω0 “ 0, where ∆β represents the spatial-frequency

period or Brillouin zone edge. In the static case, vm “ 0 (not shown in Fig. 5.4), we have

∆β˘ “ ∆β “ 2π{pstat, where pstat is the static period seen by both the forward and backward

waves. As vm ą 0 (all of Figs. 5.4), the forward and backward waves see the velocities,

v˘ “ vb ¯ vm, respectively, relative to the modulating wave, with limits v`pvm “ vbq “
0 and v´pvm “ vbq “ 2vb. The corresponding relative periods, satisfying the conditions

p˘
movpvm “ 0q “ pstat, p`

movpvm “ vbq “ 8 (synchronization with modulation and hence no

period seen, i.e. infinite period) and p´
movpvm “ vbq “ pstat{2 (due to opposite propagation

at same velocity as modulation), are found as p˘
mov “ pstatvb{pvb ¯ vmq. Thus, ∆β˘

mov “
2π{p˘

mov “ p2π{pstatqpvb ¯vmq{vb or ∆β˘
mov{βm “ 1¯γ, indicating that distances between the

forward and between the backward space-time harmonics decrease and increase, respectively,

tending to the limits ∆β`
movpγ “ 1q{βm “ 0 and ∆β´

movpγ “ 1q{βm “ 2. This result, deduced

from a physical argument, is in agreement with the mathematical result of (5.32), evaluating

β˘
0,n`1{βm ´ β˘

0,n{βm at ω0 “ 0.

Figure 5.4(b) plots the dispersion diagram for the greater modulation depth ǫm “ 0.22ǫr.

In this case, the periodic perturbation is much more pronounced. Therefore, a substantial

number of space-time harmonics contribute to the fields and the interferences between these

harmonics are sufficiently strong to open up stop-bands. These stop-bands are naturally



84

−3 0 3
0

2

4

6

8

10

β0{βm

ω
0
{ω

m

slope=vm

β`
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0,p“0β´
0,`1

ω0 ´ ωm
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“
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´1
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, p “
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´
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(a)

−2 0 2
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8
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−3 31−1

stop-bands

β0{βm

pβm
, ωm

qpβm
, ωm

qω
0
{ω

m

(b)

Figure 5.4 Normal-incidence (kx “ 0) dispersion diagrams for the sinusoidally space-time
modulated (unbounded) slab medium with the permittivity (5.22), computed using (5.15)
with (5.14) and (5.23). (a) Space-time modulated medium with vanishingly small modula-
tion depth, i.e. ǫm Ñ 0 and for γ “ 0.3 [Eq. (5.31)]. (b) Same as (a) except for the greater
modulation depth ǫm “ 0.22ǫr [7].

oblique, again with slope vm, as they have to occur at the space-time synchronization points,

i.e. at the intersections of the space-time harmonics which lie on oblique lines according to

Fig. 5.4(a). The stopband asymmetry with respect to the β0 “ 0 axis may be used for optical
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isolation [8].

Figure 5.5 plots the dispersion diagram for the greater space-time modulation ratio γ “
0.85, which is subsonic (γ ă 1) and quasi-sonic (γ « γs,min) given γs,min “ 0.905. What is

observed corresponds to the expectation from the above explanation and related formula

∆β˘
mov{βm “ 1 ¯ γ. The forward space-time harmonics get closer to each other (they would

in fact completely fill up the diagram in the limit γ Ñ 1) and eventually collapse into a single

curve at γ “ 1 since ∆β`
movpγ “ 1q{βm “ 0, producing the shock wave. On the other hand, the

backward space-time harmonics tend to be separated by the distance ∆β´
movpγ “ 1q{βm “ 2.

In this quasi-sonic regime, the closest space-time harmonics strongly couple to each other at a

given frequency ω0 because they possess very close phase velocities and are hence essentially

phase-matched to each other. Therefore, this regime is of particular interest, as will be seen

in the application of Sec. 6.1. As mentioned in Sec. 5.1, the analytical results presented in

this chapter are restricted to the subsonic regime, but the quasi-sonic condition γ « γs,min

allows one to reap the essential benefits of the physics occurring in the sonic regime, as will

be seen in Sec. 6.1.

−3 −2 −1 0 1 2 3
0

2

4

6

8

10

ωm

βm

β0{βm

ω
0
{ω

m

Figure 5.5 Normal-incidence (kx “ 0) dispersion diagrams for the sinusoidally space-time
modulated (unbounded) slab medium with the permittivity (5.22), computed using (5.15)
with (5.14) and (5.23). (a) Space-time modulated medium with vanishingly small modulation
depth, i.e. ǫm Ñ 0 and for γ “ 0.3 [Eq. (5.31)]. Same as Fig. 5.4(b) except for the subsonic
(γ ă γs,min) quasi-sonic (γ « γs,min) space-time modulation ratio γ “ 0.85 (γs,min “ 0.905) [7].

We shall now consider the isofrequency diagrams plotted in Fig. 5.7 for different sets of

parameters. These diagrams may be easiest understood using the 3D perspective in Fig. 5.3.
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Figure 5.6(a) plots the isofrequency curves for a purely space modulated medium, where

ωm “ γ Ñ 0, with vanishingly small modulation depth, i.e. ǫm Ñ 0, and ǫm “ 0.2. In

the former case (ǫm Ñ 0), the curves are the circles given by (5.31), corresponding to the

infinite number of space harmonics n and reducing to the center circle, k2
x ` β2

0 “ k2 ´ k2
0{ǫr,

in the trivial limiting case of a perfectly homogenous medium (ǫm “ 0). In the latter case

(ǫm “ 0.2), Eq. (5.31) is not valid any more and one must resort to the general relation (5.15).

Here, spatial (kx ´ β) stop-bands open up at the intersection points for ǫm “ 0, due to

space harmonic coupling. Note that in such a purely spatially modulated medium, the space

harmonics are simply related by β˘
0,n “ β˘

0,0 ` nβm, where, for a given kx, all the spatial

harmonics propagate, attenuate (near stop-bands edges, when ǫm ą 0) or get cut off.

Figure 5.6(b) plots the isofrequency diagram for a space-time modulated medium, where

βm, ωm ą 0, still with vanishingly small modulation depth, i.e. ǫm Ñ 0, and ω0 “ 1.5ωm,

γ “ 0.15. The isofrequency circles have now different radii, corresponding to γ pω0{ωm ` nq
[Eq. (5.31)], with envelope slope of ´γ. This is because, in contrast to the purely spatial

medium in Fig. 5.6(a), the space-time medium supports, for fixed incidence angle (i.e. fixed

kx), an infinite number of modes (labeled by p), each of them composed of an infinite number

of forward and backward space-time harmonics pβ˘
0p ` nβm, ω0 ` nωm), as previously explai-

ned. The medium operates as a spatial (β) high-pass filter, some modes above the cutoff

propagating and those below the cut off, as shown in Fig. 5.2 and related explanation.

Figure 5.6(c) shows the same diagram as Fig. 5.6(b), for the larger space-time modulation

ratio, γ “ 0.3. As γ increases, the isofrequency circles in the forward region, β0 ą 0, get

smaller and appear farther apart. In contrast, those in the backward region, β0 ă 0, get

bigger, and eventually intersect. This behavior can be intuitively understood from the 3D

dispersion curves in Fig. 5.3.

Figure 5.7(a) shows isofrequency curves for the stronger modulation depth ǫm “ 0.22ǫr. As

the modulation depth is increased, forward and backward waves at the intersections of the

isofrequency circles couple more strongly and a visible bandstop appears in the isofrequency

diagram. In the limit of vanishingly small modulation depth, these bandstops become vani-

shingly narrow. Depending on the incidence frequency and angle, some modes propagate and

some are cut off. For instance, for θi “ 44˝, mode p “ ´1 is evanescent, while modes p “ 0

and p “ `2 represent forward propagating waves.

Finally, Fig. 5.7(b) plots the isofrequency diagram in the quasi-sonic regime. The forward

waves are synchronized and exhibit similar group and phase velocities, leading to strong inter-

action and coupling, while backward waves are more distant and therefore interact relatively

weakly.
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Figure 5.6 Isofrequency diagrams for the unbounded sinusoidally space-time modulated me-
dium (5.22), computed using (5.15) with (5.14) and (5.23). (a) Purely space-modulated me-
dium, i.e. ωm “ γ Ñ 0 (but finite γω0{ωm “ 0.6). (b) Space-time modulated medium with
vanishingly small modulation depth, i.e. ǫm Ñ 0, and for ω0 “ 1.5ωm and γ “ 0.15. (c) Same
as (b) except for the greater space-time modulation ratio γ “ 0.3 [7].
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Figure 5.7 Isofrequency diagrams for the unbounded sinusoidally space-time modulated me-
dium (5.22), computed using (5.15) with (5.14) and (5.23). (a) Space-time modulated medium
with space-time modulation depth ǫm “ 0.22ǫr and for ω0 “ 1.5ωm and γ “ 0.15. (b) Same
as (a) but in the quasi-sonic regime with γ “ 0.85 (γs,min “ 0.905) [7].

5.3.2 Nonreciprocal Scattering from the Slab

This section studies the nonreciprocity of the space-time modulated system in Fig. 5.1. The

structure is analyzed with the analytical technique presented in Sec. 5.2 and verified using

full-wave finite difference frequency domain (FDTD) simulations.

First consider the forward problem in Fig. 5.1. A wave is normally incident on the slab

with sinusoidal permittivity (5.22) and operated in the quasi-sonic regime with velocity ratio

γ “ 0.85 (γs,min “ 0.867). Figure 5.8(a) shows the FDTD response for the amplitude of the

electric field. The wave strongly interacts with the medium as it passes through the slab and

generates all the space-time harmonics. The corresponding temporal frequency spectrum for

the transmitted wave is plotted in Fig. 5.9(a). The incident power at ω0 is effectively converted

in the space-time harmonics ω0 ˘ nωm, n ě 1, yielding a transmitted wave carrying weak

power at the incident frequency ω0.
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Next, consider the backward problem. Figure 5.8(b) shows the FDTD response for the ampli-

tude of the electric field. The wave weakly interacts with the medium as it passes through the

slab and remains almost unaltered. The corresponding temporal-frequency spectrum, plotted

in Fig. 5.9(a), confirms this fact. The two weak harmonics at ω0 ` ωm and ω0 ´ ωm are due

to local impedance mismatch [Eq. (5.29b)] in the medium.

The space-time medium affects forward and backward waves differently, producing strong

harmonics in the forward problem and almost no harmonics in the backward problem. This

nonreciprocity is exploited in Sec. 6.1 for realizing of a quasi-sonic isolator. It should be

noted that both in the forward and backward problems the incident wave couples to an

infinite number space-time harmonics. However, in the backward problem this coupling is

extremely weak.

Figures 5.10(a) and 5.10(b) plot temporal frequency spectrum of the reflected wave, for

the same parameters as in Fig. 5.9, for forward and backward excitations, respectively. In

both cases the structure is well matched and reflects weakly. The reflection level is directly

proportional to the modulation depth.

5.3.3 Effect of the Velocity Ratio

This section investigates the effect of the velocity ratio on the power conversion efficiency of

the space-time modulated slab, i.e. the amount of power that is transmitted to desired space-

time harmonics ω0 ˘nωm, n ě 1. Figure 5.11 shows the distribution of the transmitted power

in different harmonics versus the velocity ratio γ. The highlighted region represents the sonic

regime. In the subsonic regime, where γ Ñ 0, little energy is transferred to harmonics. As γ

approaches the sonic regime, power conversion efficiency is increased. In the quasi-sonic and

sonic regimes most of the power is transferred to other harmonics with only a small amount

of power remaining in the fundamental (n “ 0).

In the quasi-sonic and sonic regimes, the total wave power grows quasi-exponentially as the

wave propagates along the space-time modulated section. Figure. 5.12 compares the wave

amplitudes in subsonic and quasi-sonic regimes for γ “ 0.3 and γ “ 0.85, respectively, versus

the position. In the subsonic regime the wave and the modulation are not synchronized and

there is only weak coupling between the two. As a result the wave magnitude is almost

flat. In contrast, in the quasi-sonic and sonic regimes the wave and modulation velocities

are synchronized. Consequently, the two are strongly coupled and the wave amplitude grows

quasi-exponentially along the space-time modulated slab. This observation is not at odds with

power conservation, as energy is pumped into the system through space-time modulation.

However, this exponential growth can not be efficiently used for wave amplification, since
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Figure 5.8 Analytical [Eqs. (5.18b) and (5.19b)] and numerical (FDTD) results for the forward
and backward problems in the quasi-sonic regime with parameters ǫm “ 0.3ǫr, ω0 “ 2π ˆ
1.5 GHz, ωm “ 2π ˆ 0.2 GHz, L “ 3λ0 and γ “ 0.85. FDTD waveforms showing the electric
field amplitude for the forward and backward problems, respectively [7].

power is distributed among infinite space-time harmonics, as seen in the temporal frequency

spectrum in Fig. 5.12(b).

5.3.4 Effect of the Length

Figure 5.13 plots the magnitude of first harmonics with respect to the length of the space-

time modulated slab. The structure operates in the middle of the sonic regime, i.e. γ “ 1. As

the length of the slab is increased, the input power is more efficiently coupled to the space-
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Figure 5.9 Analytical [Eqs. (5.18b) and (5.19b)] and numerical (FDTD) results for the forward
and backward problems in the quasi-sonic regime with parameters ǫm “ 0.3ǫr, ω0 “ 2π ˆ
1.5 GHz, ωm “ 2π ˆ 0.2 GHz, L “ 3λ0 and γ “ 0.85. Temporal frequency spectrum of the
transmitted field for the forward and backward problems, respectively [7].

time harmonics ω0 ˘ nωm, n ě 1. The incident wave gradually couples its energy to these

harmonics as it propagates along the slab. Therefore, a longer slab exhibits more efficient

power conversion. However, this effect saturates at some point as the power in these higher

order modes couples back and transfers its energy back to the fundamental mode. Therefore,

power conversion efficiency shows a quasi-periodic behavior with respect to the length of the

slab.
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Figure 5.10 Temporal frequency spectrum of the reflected field from a space-time modulated
slab with the same parameters as in Fig. 5.9. (a) Forward problem, EF

R. (b) Backward problem,
EB

R [7].
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Figure 5.11 FDTD (FFT) transmitted field versus velocity ratio (γ) showing the harmonics
distribution for a space-time slab with parameters ǫm “ 0.22ǫr (γs,min “ 0.905), ωm “ 2π ˆ
0.2 GHz, ω0 “ 2π ˆ 1.5 GHz and L “ 3.5λ0 [7].
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Figure 5.12 FDTD comparison of the rate of power growth (forward problem) in subsonic
and quasi-sonic regimes for (a) The subsonic space-time velocity ratio γ “ 0.3 and (b) The
quasi-sonic space-time velocity ratio γ “ 0.85 (γs,min “ 0.905), where ǫm “ 0.22ǫr, ωm “
2π ˆ 0.2 GHz, ω0 “ 2π ˆ 1.5 GHz and L “ 15λ0 [7].



94

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

L{λ0

E
F T

{E
i

n “
0

n
“ `1

n
“ ´1

n
“

´3

n
“ `2

n “ ´2
n “ `3

Figure 5.13 Magnitude of different harmonics versus the length of the space-time slab
(FDTD). The slab operates in the middle of sonic regime with parameters ǫm “ 0.22ǫr,
ωm “ 2π ˆ 0.2 GHz, ω0 “ 2π ˆ 1.5 GHz [7].



95

CHAPTER 6 PERIODIC SPACE-TIME MODULATED ISOLATORS

Isolators are key elements in radar, optical and communication systems and are used to reduce

the reflection from antennas and minimize the standing waves seen by the sources. Isolators

based on ferrimagnetic materials are widely employed for nonreciprocal purposes, such as for

instance isolators based on yttrium–iron–garnet (YIG), ferrite-based gyromagnetic [112,191,

192] or semiconductor-based gyroelectric [193, 194]. On the other hand, active, transistors-

based, isolators may have been also used for the isolation in the microwave regime [120,121,

125,195,196], and the isolators based on nonlinear materials have found various applications

in optical systems [115,116,127–129].

Ferrite isolators are endowed with high power-handling capability, high isolation and no

dc power consumption. However, they suffer from the bulkiness, heaviness, incompatibility

with integrated circuits and high cost [124]. Active, transistor-based, isolators may overcome

these shortcomings [125, 196], but they endure restricted power handling and noise by the

transistors, sensitivity to reflected wave, and harmonic generation due to the nonlinearity.

Moreover, these isolators may present the isolation in the cost of the passing-way gain, which

may not be always desired [126]. Isolation based on nonlinearity suffers for requiring high

signal levels, while in the presence of a high-level input signals in a nonlinear optical isolator,

some low-level signals reciprocally pass through the isolator, and hence it does not really

operate as an optical isolator [130].

Over the past few years, space-time modulated nonreciprocal devices have been reported for

microwave and optical isolations [7, 8, 19, 29, 82]. Such a nonreciprocal device operates based

on the nonreciprocal frequency generations which may be used for realization of integrated

devices [118]. However, all reported space-time modulated isolators suffer from strong waste

of energy due to the generation of unwanted space-time harmonics [7, 19].

This chapter presents three magnet-less space-time modulated isolators based on different

techniques. We take advantage of the unique and intriguing features of the space-time modu-

lation and realize three isolators for different applications. Section 6.1 introduces an efficient

quasi-sonic isolator based on the properties of space-time modulated slab in the sonic region.

This isolator presents a fairly high isolation, with a short length, which makes it a good

candidate for isolation in microwave and milimeter wave regimes. Next, Sec. 6.2 leverages

the electromagnetic band-gaps in a space-time modulated medium and presents an isolator,

which is more suitable for optical regime. Finally, Sec. 6.3 introduces a self-biased and broad-

band isolator with high efficiency based on the nonreciprocal electromagnetic coherency in a
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space-time modulated medium.

6.1 Quasi-Sonic Isolator

This section has been largely taken from author’s published article [7].

This section exploits the strong nonreciprocity of the quasi-sonic and sonic regimes for the

realization of an electromagnetic isolator. The principle of operation of the proposed isolator

is illustrated in Figs. 7.2 and 6.2. A space-time slab is operated in the quasi-sonic or sonic

regime. The length and modulation ratio are adjusted such that in the forward direction

the incident power is efficiently converted to higher order space-time harmonics ω0 ˘ ωm,

n ě 1, little energy is transmitted at the fundamental frequency ω0. In contrast, in the

backward direction the space-time slab interacts weakly with the incident wave and therefore

the incident wave passes through almost unaltered. If the transmitted wave is passed through

a bandpass filter with bandpass frequency ω0, as in Fig. 6.2, in the forward direction most of

the power is in the stopband and is therefore dissipated or reflected by the filter. However, in

the backward direction most of the power is at fundamental frequency ω0 and passes through.

Thus, the structure operates as an isolator.

ω

β

β0-βm β0+βm

β0

βm

ωm

ω0

ω0+ωm

ω0+2ωm

ω0-ωm

ω0-2ωm

light cone

-β0

-β0+βm-β0-βm

no mode
for transition

Figure 6.1 A space-time modulated slab operated in the quasi-sonic or sonic regime. In the
forward direction the incident energy is transferred in cascade to space-time harmonics. In
the backward direction the wave passes through with little interaction [7].

We realized the space-time modulated slab with permittivity (5.22) using a microstrip trans-

mission line loaded with an an array of sub-wavelengthly spaced varactors. The fabricated
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Figure 6.2 Quasi-sonic isolator. The quasi-sonic or sonic space-time modulated slab in Fig. 7.2
is connected to a bandpass filter. (a) In the forward direction, the incident power is converted
to higher order harmonics and eliminated by the band-pass filter (BPF). (b) In the backward
direction, the wave passes through the system [7].
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prototype is shown in Fig. 6.3. We employed SMV1247 varactors manufactured by Skyworks

Solutions with capacitance ratio Cmax{Cmin “ 10. The specifications of the structure are L “
11.7 cm, RT6010 substrate with permittivity 10.2, thickness h “ 100 mil and tan δ “ 0.0023.

We consider ǫm “ 0.22ǫr, ω0 “ 2π ˆ1.5 GHz, ωm “ 2π ˆ0.2 GHz, βm “ 3.55π m´1, L “ 3.5λ0

and γ Ñ 1. The modulation circuit is composed of 39 unit cells of antiparallel varactors with

uniform spacing of p “ 5 mm, which corresponds to p{λs “ pβm{p2πq « 1{11.3, and therefore

safely satisfies medium homogeneity in accordance with (6.3). The varactors are reversed

biased by a DC voltage and are spatio-temporally modulated by an RF bias, realizing the

space-time varying capacitance Cpz, tq “ Cav ` Cm cospβmz ´ ωmtq. This circuit emulates a

medium with effective permittivity ǫpz, tq “ ǫav ` ǫm cospβmz ´ ωmtq, with ǫav “ ǫef ` ǫav,var,

where ǫef is the effective permittivity of the microstrip line and ǫav,var is the average permitti-

vity introduced by the varactors. The modulation depth is controlled through the amplitude

of the RF bias.

Figures 6.4(a), 6.4(b) and 6.5 show the measurement results for the transmitted and reflected

electroc fields for the forward and backward problems. The space-time varying microstip

circuit was connected to a bandpass filter, and forward and backward transmission and

reflection coefficients were measured. In the forward direction, corresponding to Fig. 6.4(a),

the transmission level is less than ´20 dB at the fundamental harmonic, and less than ´30 dB

in other spacetime harmonics. Figure 6.5(a) shows that the power injected into the higher

order harmonics ω0˘nωm is reflected by the bandpass filter. In the backward direction, shown

in Fig. 6.4(b), the incident wave is almost fully transmitted at the fundamental frequency,

with less than ´30 dB reflection. Thus, the structure realizes an isolator with more than

20 dB isolation.

6.2 Isolator Based on Space-Time Engineered Asymmetric Electromagnetic Band-

Gaps

6.2.1 Operation Principle

This section presents the idea which was proposed by my colleague, Dr. Nima Chamanara,

and I carried out the experimental demonstration of it. This section has been largely taken

from author’s published article [8].

This section introduces a new concept for the realization of electromagnetic isolation based on

the space-time engineered asymmetric electromagnetic band-gaps [8]. This approach leverages

the space-time variation in the permittivity of a medium to generate electromagnetic band

structures that are asymmetrically aligned with respect to the direction of propagation, as
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RF bias

Figure 6.3 Photograph of the fabricated isolator, employing SMV1247 varactors manufactured
by Skyworks Solutions with capacitance ratio Cmax{Cmin “ 10. The specifications of the
structure are L “ 11.7 cm, RT6010 substrate with permittivity 10.2, thickness h “ 100 mil
and tan δ “ 0.0023 [7].

it is previously shown in in Figs. 5.4 and 5.5. Figure 6.6 shows that the band-gap edges

in a space-time modulated medium are different for the positive and negative propagating

waves. When the structure is excited from the left, i.e. the forward problem, at the frequency

corresponding to the horizontal line, the evanescent mode, marked by the red dot, is excited.

If the structure is long enough, almost no power reaches the opposite end of it and the

wave is fully reflected. In contrast, when the structure is excited from the right, the mode

marked by the blue dot in Fig. 6.6, i.e. a propagating mode, is excited. Therefore, the incident

electromagnetic power is transferred to the other side of the structure, and, assuming proper

matching, is fully transmitted across it.

With proper excitation, such a system may operate as a nonreciprocal electromagnetic device,

i.e. an isolator. In contrast to the optical isolation in [19], we employ a uniform modulation

in the cross section of the waveguide, which leads to a much simpler structure. In addition,

the required modulation frequency is relatively low, and may thus be conveniently provi-

ded by acoustic waves. The proposed approach may find applications in various integrated

magnetless nonreciprocal optical systems. An experimental proof-of-concept at microwave fre-

quencies is presented. In a conventional reciprocal medium supporting the electromagnetic

band-gaps, e.g. a Bragg grating or a waveguide filter, the band-gaps are perfectly horizontal

in the dispersion diagram, i.e. symmetric with respect to positive and negative Bloch-Floquet

wavenumbers. In the band-gaps, the Bloch-Floquet harmonics acquire an imaginary part in
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Figure 6.4 Experimental results for the isolator in Figs. 6.2 and 6.3 with ǫm “ 0.22ǫr, ω0 “
2π ˆ1.5 GHz, ωm “ 2π ˆ0.2 GHz, L “ 3.5λ0 and γ Ñ 1. (a) Forward problem. (b) Backward
problem [7].

their wavenumber and hence become evanescent. Thus, when a wave incident on the structure

is modulated at a frequency falling within a gap, it excites a complex, and hence evanescent,

gap mode. Now, consider the structure in Fig. 6.7 with an oblique, and hence asymmetric

band-gap.
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Figure 6.5 Measured reflections from the isolator slab in Figs. 6.2 and 6.3 with the same
parameters as in Fig. 6.4. (a) Forward problem. (b) Backward problem [7].
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problem

Forward
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Figure 6.6 Dispersion diagram of a periodic space-time modulated medium with the asymme-
tric band-gap structure in Fig. 6.7. The red and blue dots represent the dominantly excited
mode for forward and backward excitations, respectively [8].
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Figure 6.7 Isolator based on nonreciprocal Bragg reflections in a space-time modulated me-
dium with asymmetric electromagnetic band-gaps. (a) Forward problem : propagation of wave
in the electromagnetic band-gap of the structure yields complete-reflection. (b) Backward
problem : propagation of wave in the pass-band of the structure leads to full-transmission.

6.2.2 Forward and Backward Problems

Consider a space-time modulated slab with space-time permittivity (5.22), background per-

mittivity ǫr “ 12.25, modulation depth M “ ǫm{ǫr “ 0.02, temporal and spatial modulation

frequencies ωm “ 0.13ω0 and βm “ ´2.27β0, respectively, and length L “ 200λg, excited

at the normalized frequency ω0 “ 0.259c{a, where a is the spatial period of the space-time

modulated slab. The corresponding permittivity profile represents a sinusoidal Bragg grating,
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whose permittivity perturbation propagates towards the left inside the space-time modulated

region, with velocity vm “ ´|ωm{βm|.

Fig. 6.6 shows that mode p “ 0 falls in a band-gap of the modulated structure. It is thus

evanescent and exponentially decaying in the modulated structure, carrying almost no power

to its right end. Since the system is assumed to be lossless, the incident power can only be

reflected towards to input medium. This is confirmed in Fig. 6.8(a), which plots the transmit-

ted and reflected amplitudes for different temporal frequency harmonics. The transmission

level is below ´40 dB for all frequency harmonics, and the power is almost fully reflected

at the blue-shifted frequency ω0 ` ωm. This is a space-time blue Doppler shift due to the

fact that the space-time varying medium profile has an opposite (negative) phase velocity,

vm “ ωm{βm, with respect to the source on the left.

The levels of the transmitted and reflected power may be controlled by tuning the modulation

depth and the length of the slab. For a given modulation depth, it is always possible to reduce

the transmitted power to a desired level by increasing the length of the slab. Notice that the

reflected power is slightly greater than unity. This is not at odds with energy conservation

since energy is pumped into the space-time varying medium.

For the backward problem, the amplitudes of the harmonics are plotted in Fig. 6.8(b). Almost

all the power is transmitted at the incident frequency, and the reflected power from the

slab is below ´40 dB for all the harmonics. The amount of reflected power is proportional

to the mismatch between the space-time modulated and incident media, which is in turn

proportional to the modulation depth.

The frequency shift may also be explained in terms of intraband electromagnetic transitions

between the forward and backward propagating modes of a single-mode waveguide. For small

modulation depth (M ! 1), instead of considering the exact periodic problem involving the

infinite set of space-time harmonics, the problem may be approximated as follows. As an

electromagnetic wave with momentum and frequency pβ0, ω0q in the background medium

penetrates into the space-time modulated section, the space-time medium provides the extra

momentum and energy corresponding to ˘pβm, ωmq to the wave. If the resulting momentum

and energy pβ0 ˘ βm, ω0 ˘ ωmq correspond to a mode of the waveguide, coupling to this mode

occurs and the incoming waveguide mode is then gradually transformed into the waveguide

mode at pβ0 ˘ βm, ω0 ˘ ωmq. In contrast, if pβ0 ˘ βm, ω0 ˘ ωmq does not correspond to a mode

of the waveguide, the corresponding wave passes through the space-time modulated region

almost unaffected. This interband transition picture and the associated coupled mode analysis

are accurate only for very small modulation depths, and should therefore be considered

with great care in the case of strong modulations, as it ignores the rich spectral features of
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Figure 6.8 Experimental results for the reflection and transmission (outside the modulated
slab) for the space-time modulated slab with the same parameters as in Fig. 6.6. (a) Slab
excited from the left. The dominantly excited evanescent gap mode decays exponentially
and conveys no power to the transmitted region. All of the power is reflected. The reflected
wave is blue-shifted. (b) Slab excited from the right. The dominantly excited propagating
mode transfers all its energy to the other end. Almost all the power is transmitted at the
fundamental frequency (ω0) [8].

the electromagnetic band structure of the space-time modulated system. Nonetheless, this

explanation provides an alternative intuitive understanding of the Doppler frequency shift

described above.

For the space-time modulated problem, the dispersion curves of the single mode background
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medium and the corresponding momentum and energy, ˘pβm, ωmq, provided by the space-

time medium, are plotted in Fig. 6.9(a), for excitation from the left. As pβ0 ` βm, ω0 ` ωmq
corresponds to a backward propagating mode of the background medium, the incident forward

propagating mode gradually transforms to a blue-shifted backward propagating mode, i.e.

reflects with a frequency up-shift exactly equal to ∆ω “ ωm. In contrast, for a wave exciting

the space-time modulated region from the right, the corresponding momentum and energy,

˘pβm, ωmq provided by the space-time medium, is plotted in Fig. 6.9(b). As pβ0 `βm, ω0 `ωmq
does not correspond to a mode of the background medium, it passes through the space-time

region almost unaffected.

6.2.3 Experimental Demonstration

The space-time modulated system was realized at microwave frequencies in the form of a

space-time varying artificial microstrip transmission line shown in Fig. 6.10. In order to

provide spatio-temporal control on the distributed capacitance of the transmission line, it is

loaded with an array of sub-wavelengthly spaced shunt varactors. The bias line at the bottom

provides a DC bias VDC plus a propagating RF bias,

V pz, tq “ VDC ` Vm cospωmt ` βmzq (6.1)

to the varactors, where ωm is the modulation frequency. The bias phase velocity vm “ ωm{βm

is related to the bias line per-unit-length capacitance (Cav) and inductance (Lav) by vm “
1{

?
LavCav. The varactors are reverse biased and act as voltage controlled capacitors. They

thus add the space-time varying distributed capacitance

Cpz, tq “ Cav ` Cm cospωmt ` βmzq (6.2)

to the signal transmission line. The structure in Fig. 6.10 therefore emulates a material with

space-time varying permittivity (5.22), with background permittivity ǫr9Cav and modulation

depth M “ Cm{Cav.

Figure 6.10 shows a photograph of the space-time varying microstrip line. The modulation cir-

cuit is comprised of 39 unit cells of antiparallel varactors, uniformly distributed along the mi-

crostrip line, with the subwavelength period p “ 5 mm, corresponding to p{λm « 1{19. The-

refore, effectively, the structure represents a medium with the continuous permittivity (5.22).

The corresponding dispersion curves are plotted in Fig. 6.6, where the horizontal line re-

presents the excitation frequency. The incident frequency is chosen to excite the evanescent
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Figure 6.9 Explanation of the frequency up-shift in the reflected field in terms of intra-
band electromagnetic transitions. The dashed lines correspond to the dispersion curves of
the background medium. The arrows represent the momentum end energy provided by the
space-time modulated region, ˘pβm, ωmq. (a) Left excitation : the forward propagating mode
gradually transforms into a backward propagating mode with frequency ω0 ` ωm and is re-
flected. (b) Right excitation : the propagating mode passes through the space-time section
as pβ0 ˘ βm, ω0 ˘ ωmq does not correspond to any waveguide mode [8].

mode marked by the red dot in the forward direction and the propagating mode marked

by the blue point in the backward direction. The corresponding length at this frequency is

L “ 6λ0.

The scattering parameters are plotted in Figs. 6.11(a) and 6.11(b) for forward and backward

excitations, respectively. The evanescent mode decays by 10.5 dB before reaching the end of
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Figure 6.10 Experimental realization of the space-time varying system in the form of a
space-time varying artificial microstrip transmission line. (a) Schematic of the system, with
distributed-capacitance varactors modulated by a radio wave emulating (5.22). (b) Photo-
graph of the fabricated structure. The varactors were are the BB833 from Infineon Techno-
logies, with capacitance ratio Cmax{Cmin “ 12. The structure is L “ 8 inches long and is
excited at ω0 “ 2π ˆ 2.5 GHz. The substrate is RT6010 from Rogers with permittivity 10.2,
thickness h “ 100 mil and tan δ “ 0.0023 [8].

the structure, corresponding to -10.5 dB attenuation in Fig. 6.11(a). The rest of the power is

reflected at the up-shifted frequency ω0 ` ωm “ 2π ˆ 3.175 GHz. In the backward direction

the incident wave is almost fully transmitted. Therefore, the isolation level is 10.5 dB. Higher

isolation levels may be achieved by increasing the length of the structure. The small discre-

pancy between theory and experiment are attributed to the metallic and dielectric losses in

the experiment that have not been accounted for in the theory.

6.3 Self-Biased Broadband Magnet-Free Space-Time Modulated Isolator

This section introduces a new technique for isolation based on the nonreciprocal electroma-

gnetic coherency between the input wave and space-time modulated structure. The isolator

takes advantage of the input signal and operates as a self-biased nonreciprocal device. We
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Figure 6.11 Experimental (solid lines) vs. theoretical (dashed lines) results for the isolator in
Fig. 6.10 for the same parameters as in Fig. 6.6. (a) Forward problem : the wave is almost fully
reflected at the blue-shifted frequency ω0 ` ωm “ 2π ˆ 3.175 GHz with a transmission level
less than ´10 dB. (b) Backward problem : the backward incident wave is fully transmitted
at ω0 “ 2π ˆ 2.5 GHz. For clarity, the theoretical results are shifted by 0.1ωm [8].

will experimentally demonstrate the operation of the isolator, without requiring any external

bias-field, in broad frequency bandwidth. The isolator generates no space-time frequency har-

monic, and hence does not suffer from the waste of energy. As a result, it presents a superior

efficiency and the possibility of having gain in the passing direction which may be useful for

some applications.
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6.4 Operation Principle
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ǫav ` ǫm cospκsz ´ ωst ` φq

ǫav ` ǫm cospκsz ´ ωst ` φq

ǫr
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Figure 6.12 Electromagnetic isolation based on nonreciprocal coherency of the wave with a
periodically space-time modulated slab. (a) Coherency between the space-time variation of
the `z propagating wave and the slab leads to full transmission of the wave. (b) Incoherency
between the space-time variation of the ´z propagating wave and the slab yields complete
reflection of the wave.

Figure 6.12 illustrates transmission of an electromagnetic wave, with frequency ωs, through

a space-time modulated slab with thickness L. The permittivity of the medium is space-time
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modulated as

ǫpz, tq “ ǫav ` ǫm cospκsz ´ ωst ` φq, (6.3)

where ǫav denotes the average effective permittivity of the unmodulated medium, ǫm is the

modulation depth, ωs and κs represent respectively the modulation temporal and spatial

frequencies, and φ is the modulation phase. The phase velocity of the modulation is defined

as vm “ ωs{κs, which may be smaller or greater than the phase velocity of the background

medium, vb “ c{?
ǫr, with c “ 1{?

µ0ǫ0 as the speed of light in vacuum, and ǫr being the

relative permittivity. The ratio between the modulation and background phase velocities

reads

γ “ vm

vb
“ βs

κs
, (6.4)

which is called the space-time velocity ratio [7].

A y polarized plane wave, EI, given by

EIpz, tq “ ŷE0e´jp˘βsz´ωstq, (6.5)

impinges the space-time modulated medium in the forward (`z) direction or backward (´z)

direction on the periodically space-time modulated medium of Fig. 6.12. In (6.5), E0 is the

amplitude of the incident wave and βs is the spatial frequency of the wave outside the mo-

dulated medium, where βs “ ωs{vr “ ωsc{?
ǫr. We call the problem with the incident wave

propagating towards the `z-direction, shown in Fig. 6.12(a), as the forward problem, repre-

sented by the superscript “F”, while the problem with the incident wave propagating towards

the ´z-direction, shown in Fig. 6.12(b), will be called the backward problem, represented by

the superscript “B”. However, the forward and backward problems both create forward and

backward waves, inside and outside of the modulated slab. The temporal frequency of the

incident wave, ωs, and the one of the space-time modulated medium are assumed to be equal.

This leads to nonreciprocal electromagnetic coherency between the wave and the medium.

To best understand the operation principle of the structure in Fig. 6.12, here we investigate

effect of the modulation phase φ, on nonreciprocal transmission through the structure. Here,

we denote the modulation phase at z “ L as φL, i.e.

φL “ φ ´ κsL. (6.6)

Considering L “ nλg, the Figure 6.13 plots the closed form solution for the forward trans-

mission versus φL for different modulation depths, where κsL “ ωsL{pγvbq “ π. It may be

seen that the maximum forward transmission is achieved while the medium and the input
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wave are coherent at z “ L, i.e. for φL “ 2nπ with n “ 0, 1, ....
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Figure 6.13 Effect of the coherency of the space-time modulated medium and the wave at
z “ L, given in (6.6), on forward transmission with κsL “ π, and for different modulation
depths ǫm{ǫav.

For the sake of simplicity, and to best observe the nonreciprocal coherency in the closed

form solutions for forward and backward problems, we assume a `z propagating incident

field, given in (6.5), for both forward and backward problems and consider a `z traveling

modulation for the forward problem [ǫpz, tq “ ǫav ` ǫm cospκsz ´ ωst ` φq] and a ´z traveling

modulation for the backward problems [ǫpz, tq “ ǫav ` ǫm cospκsz ` ωst ` φq]. Figure 6.14

shows forward and backward transmission through the structure in Figs. 6.12(a) and (b),

for ǫm{ǫav “ 0.15 and κsL “ π. It may be seen from this figure that maximum isolation

is achieved while the forward wave is completely coherent with the medium at z “ L, i.e.

φF
L “ 2nπ, and the backward wave in completely incoherent with the medium, φB

L “ p2n`1qπ.

Therefore, we may achieve an appropriate isolation between forward and backward transmis-

sions, possibly with forward gain, using proper modulation parameters, i.e. φ, ǫm and κsL. A

complete parametric study will be presented in Sec. 6.6.

6.5 Closed-Form Field Solutions

As shown in Appendix 8.2, considering an appropriate change of variables as
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Figure 6.14 Effect of the coherency of the space-time modulated medium and the wave at
z “ L, given in (6.6), on forward and backward transmissions for ǫm{ǫav “ 0.15, γ “ 1 and
φ0 “ κsL “ π.

W “ 2
?

2ǫmωs

cκs
ejpκsz´ωst`φq{2, t1 “ t, (6.7)

the electric field inside the space-time modulated medium may be achieved as

EMpW, t1q “ ŷAF,BIαpW q ` ŷBF,BKαpW q, (6.8a)

where IαpW q and KαpW q are the solution to the modified Bessel differential equation in (B-7),

and α is defined as

α “ 2
βs

κs
“ 2γ. (6.8b)

The unknown field amplitudes in (6.8a), AF,B and BF,B, will be found by applying the spatial

boundary conditions at W “ W0 “ W pz “ 0, tq and W “ WL “ W pz “ L, tq, separately

for forward and backward problems. We wish to calculate the fields scattered by the slab.

As it is shown in 8.2, we may find the fields scattered by the slab for forward and backward

problems, namely the reflected fields, EF,B
R , and the transmitted fields, EF,B

T , as

EF,B
R pz, t1q “ ŷ

´
AF,BIαpW F,B

0 q ´ BF,BKαpW F,B
0 q ´ E0e

jωst1
¯

ejβsz (6.9a)
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EF,B
T pz, t1q “ ŷ

´
AF,B.IαpW F,B

L q ` BF,B.KαpW F,B
L q

¯
e´jβspz´Lq (6.9b)

with

W F
0 “ W B

0 “ W pz “ 0q “ 2
?

2ǫmωs

cκs
ejp´ωst`φq{2 (6.9c)

and

W
F,B
L “ W pz “ Lq “ 2

?
2ǫmωs

cκs
ejp˘κsL´ωst`φq{2 (6.9d)

where ` and ´ signs respectively stand for the forward and backward problems. The unknown

field amplitudes AF,B and BF,B are derived in 8.2 and represented as

AF “ BF Kα`1pW F
L q

Iα`1pW F
L q (6.10a)

BF “ ´2αE0e
jωst1

W0 pKα´1pW0q ´ Kα`1pW F
L qIα´1pW0q{Iα`1pW F

L qq (6.10b)

for the forward problem, and

AB “ BB Kα´1pW B
L q

Iα´1pW B
L q (6.11a)

BB “ 2αE0e
jωst1

W0 pKα`1pW0q ´ Kα´1pW B
L qIα`1pW0q{Iα´1pW B

L qq (6.11b)

for the backward problem.

6.6 Parametric Study

This section investigates effect of the specifications of the periodic space-time modulated

isolator in Fig. 6.12 on the nonreciprocal transmission. We use the analytical formulas in

Sec. 6.4 to show the effect of different parameters, i.e. the thickness L, the modulation phase

φ, the space-time velocity ratio γ, and the modulation depth ǫm.

It may be seen form (6.9) that, all the parameters ωs, L, γ, φ, ǫm and vb affect the profile, i.e.

amplitude and phase, of the transmitted and reflected waves. The scattered waves acquire a

periodic profile versus varying φ (shown in Fig. 6.14), providing the same profile for forward

and backward problems but with a phase difference, appeared in (6.9d), corresponding to

φF
L ´ φB

L “ κsL “ ωs

γvb
L. (6.12)

Therefore, the parameters ωs, L, γ, and vb affect the phase difference between the forward

and backward transmitted fields, while φ and ǫm determine the profile, amplitude and phase,
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of the transmitted fields.

Figure 6.15 presents amplitude of the forward and backward transmitted waves versus the

modulation depth for different space-time velocity ratios of γ “ 1, 2, 6.66 and 9, computed

using (6.9b) with φ “ 1.318π, ǫe “ 7.06, ωs “ 2π ˆ 2 GHz, and L “ 2λg. A Forward

transmission of EF
T{EF

I “ 0 dB, with the corresponding isolation of 24.5 dB, is achieved for

γ “ 6.66 and ǫm{ǫr “ 0.3.
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Figure 6.15 Nonreciprocal transmission from the space-time modulated isolator in Fig. 6.12
versus the modulation depth, computed using (6.9b) for φ “ 1.318π and L “ 2λg, ǫe “ 7.06,
ωs “ 2π ˆ 2 GHz, and for various space-time velocity ratios. (a) γ “ 0.5. (b) γ “ 2.
(c) γ “ 6.66. (d) γ “ 9.

Next, we investigate the effect of the space-time velocity ratio of the structure on the isola-

tion between the forward and backward transmissions. Figure 6.16 shows the transmissions,

computed using (6.9b), for φ “ 1.318π, ǫm “ 0.3ǫr and L “ 2λg.

Figure 6.17 plots effect of the length L of the space-time modulated isolator in Fig. 6.12 on

forward and backward transmissions, computed using (6.9b), with φ “ 1.318π, ǫm “ 0.3ǫe
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Figure 6.16 Effect of the velocity ratio of the space-time modulated isolator in Fig. 6.12
on forward and backward transmissions and isolation, computed using (6.9b), for the same
parameters as in Fig. 6.15(c), except for varying γ and ǫm “ 0.3ǫe.

and γ “ 6.66. It may be seen that the transmission from the isolator versus L is periodic,

with a period of L “ 13.45λg. The structure introduces reciprocal transmission, EF
T “ EB

T,

for some specific lengths, e.g. L “ 6.8λg, while it presents nonreciprocal transmission with

forward gain, EF
T ą 1 ą EB

T. This represents an extra functionality of the proposed isolator,

as forward transmission gain may be desired in some applications. For specific lengths, e.g.

L “ 2λg, isolation, without forward gain, is provided by the structure.

Figure 6.18 shows effect of the modulation phase, φ, on forward and backward transmissions

through the structure in Fig. 6.12, computed using (6.9b), with ǫm “ 0.3ǫe, γ “ 6.66 and

L “ 2λg.

6.7 Experimental Demonstration

6.7.1 Varactor-Based Realization

To realize the space-time modulated permittivity in (6.3), we employ an array of sub-

wavelengthly spaced anti-parallel varactors, which is distributed in parallel with the in-

trinsic capacitance of a microstrip transmission line. Figure 6.19 illustrates the structure

of the realized space-time modulated isolator. A sinusoidal RF bias, i.e. the modulation
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Figure 6.17 Effect of the length L of the space-time modulated isolator in Fig. 6.12 on
forward and backward transmissions, computed using (6.9b), for the same parameters as in
Fig. 6.15(c), except for varying L and ǫm “ 0.3ǫe.
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Figure 6.18 Effect of the modulation phase, φ, of the space-time modulated isolator in
Fig. 6.12 on forward and backward transmissions, computed using (6.9b), for the same pa-
rameters as in Fig. 6.15(c), except for varying φ and ǫm “ 0.3ǫe.



117

signal, with frequency ωs and wave vector βs, propagating along `z direction, modulates

the varactors in space and time such as to provide the space-time dependent capacitance

Cpz, tq “ Cav ` Cvar cospκsz ´ ωst ` φq. Note that, Cav and Cvar of a microstrip line loaded

with array of varactors, with the periodicity of p, can be calculated using the transmission

line theory [149]. We first calculate the Cav per meter and then Cav per p can easily be achie-

ved. Next, for a known RF bias voltage modulating the varactors in space and time, Cvar

will be achieved using the C-V curve of the varactor. As a result, the corresponding effective

permittivity of the medium reads ǫpz, tq “ ǫav ` ǫm cospκsz ´ ωst ` φq, where the modulation

depth, ǫm, depends on the range of variation of the varactors at a given modulation ampli-

tude. Note that a DC bias line is used to set the varactors in the reverse bias (capacitive)

region and also to provide the optimum average permittivity, ǫav.

EF
I

EF
T

RF bias

To matched load

z

y

x

Figure 6.19 Realization of the space-time modulated isolator in Fig. 6.12 using microstrip
technology.
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6.7.2 Externally Biased Isolator

This subsection presents the implementation of the space-time modulated isolator in 6.19.

The isolator uses an external RF bias as the modulation signal, propagating unidirectionally

along `z direction, modulates the varactors and ends up to a matched load. Figure 6.20 shows

the photo of the fabricated isolator. The modulation specifications are fs “ ωs{2π “ 2 GHz,

κs “ 111.24, L “ 4.65 “ 2λg in and ǫm “ 0.3ǫav, γ “ 6.66, φ “ 1.318π, where the modulation

signal with the amplitude of 10 dBm propagates along `z direction and modulates the

varactors in space and time. The modulation circuit is composed of 39 unit cells of antiparallel

varactors, as shown in Fig. 6.19, with uniform spacing of p “ 5 mm, which corresponds to

p{λs “ pκs{p2πq « 1{11.3, and therefore safely satisfies medium homogeneity in accordance

with (6.3). We employed SMV1247 varactors manufactured by Skyworks Solutions with the

capacitance ratio Cmax{Cmin “ 10. The specifications of the structure are RT6010 substrate

with permittivity ǫe “ 10.2, thickness h “ 100 mil and tan δ “ 0.0023.

Port 1 Port 2

Matched load

Varactors

Grounding wall

RF bias

Figure 6.20 Photograph of the fabricated isolator.

Figure 6.21 plots the experimental input matching of the signal and modulation ports of

the space-time modulated isolator in Figs. 6.19 and 6.20. An optimal varactor DC bias of

3.8 V ensures the varactors safely operate in the linear reverse-biased regime, so that related

nonlinear effects are negligible.

Figure 6.22 shows the photograph of the experimental set-up. A directional coupler is used

to provide the reflection of the isolator.

Figure 6.23 compares the analytical, simulation with Advanced Design System (ADS), and

experimental results forward and backward transmissions. It may be seen that forward trans-

mission of EF
T{EF

I “ ´0.56 dB and backward transmission of EB
T{EB

I “ ´26.3 dB, correspon-

ding to the 25.74 is achieved. Figure 6.24 provides the corresponding reflections for forward

and backward problems. Forward problem reflection of EF
R{EF

I “ ´16.7 dB and backward
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Figure 6.21 Experimental matching of the signal and modulation ports of the isolator in
Fig 6.20.

problem reflection of EB
R{EB

I “ ´2.35 dB, corresponding to the 25.74 is achieved. This reveals

that the isolator passes the input wave in the forward problem, while reflects the input wave

in the backward problem.

6.7.3 Self-Biased Isolator

The isolator in Figs. 6.19 and 6.20 requires an external RF bias, with the same frequency as

the input wave, to modulate the array of varactors. Therefore, it would be intriguing to take

advantage of the input signal and employ it as the source of the RF bias and realize a self-

biased space-time modulated isolator. Such structure represents a self-biased isolator, where

the modulation signal is provided by the input signal. This results in about 3 dB insertion

loss of the transmitted wave due to the insertion loss of the power dividers.

Figure 6.25 plots the simulation experimental results for the frequency bandwidth of the

space-time modulated isolator in Figs. 6.19 and 6.20 with the same parameters as in Fig. 6.23.

We see that the isolator introduces isolation of more than 15 dB in the frequency band from

1.2 GHz to 3.4 GHz (96% FBW) isolation of more than 8.1 dB in the frequency band from

0.4 GHz to 4 GHz (164% FBW).
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Space-time modulated
isolator

Reflection Transmission

Coupler

PXA signal analyzer
Agilent N903A

Signal generator
Agilent E8267D

(RF bias)
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DC-block
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(RF bias out)

(b)

Figure 6.22 Measurement set-up. (a) Photograph. (b) Schematic.
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Figure 6.23 Analytical, simulation (using ADS) and experimental results for nonreciproal
transmission from the space-time isolator in Figs. 6.19 and 6.20 with ǫm{ǫe “ 0.3, φ “ 1.318π,
γ “ 6.66 and L “ 2λg.
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Figure 6.24 Analytical, simulation (using ADS) and experimental results for nonreciproal
reflection from the space-time isolator in Figs. 6.19 and 6.20 with the same parameters as in
Fig. 6.23.
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Figure 6.25 Simulation (ADS) and experimental results for the broadband operation of the
space-time modulated isolator with ǫm{ǫe “ 0.3, φ “ 1.318π, γ “ 6.25 and L “ 2λg.

6.7.4 Modulated Input Signal

The efficiency of the self biased isolator in ?? may be further investigated by considering

an amplitude modulated (AM) input signal. Figure 6.26(a) plots the input AM signal with

carrier frequency of 50 KHz, while Fig. 6.26(b) plots the transmitted signals for forward and

backward problems. Figure 6.27 shows the time domain response for nonreciprocal transmis-

sion from the isolator. It may be seen that forward transmission of EF
T{EF

I ą 4 (dB) and

backward transmission of EB
T{EB

I ă ´28 dB, corresponding to more than 25 dB is achieved.

Figure 6.28 shows the corresponding experimental reflection for the forward and backward

problems. Forward problem reflection of EF
R{EF

I ą ´15 (dB) and backward problem reflection

of EB
R{EB

I “ ´4 (dB) is achieved. This reveals that the isolator passes the input wave in the

forward problem, while reflects the input wave in the backward problem.
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Figure 6.26 Experimental results for nonreciprocal transmission of AM signal from the space-
time isolator with the same parameters as in Fig. 6.25. (a) Spectral domain input AM signal.
(b) Spectral domain forward and backward transmissions.
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Figure 6.27 Experimental results for nonreciprocal transmission of AM signal from the space-
time isolator with the same parameters as in Fig. 6.25. Time domain forward and backward
transmissions.
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CHAPTER 7 MIXER-DUPLEXER-ANTENNA LEAKY-WAVE SYSTEM

USING PERIODIC SPACE-TIME MODULATED SPATIALLY DISPERSIVE

MEDIUM

This chapter has been taken from author’s published article [9].

A two-port nonreciprocal space-time modulated leaky-wave system is presented which si-

multaneously performs the tasks of mixing, duplexing and radiation, hence operating as a

complete transceiver system. Most of previously reported nonreciprocal leaky-wave systems

were based on magnetically biased ferrites [58, 60, 141–144, 144–146], and hence suffer from

the drawbacks inherent to ferrite technology, namely bulkiness, heaviness, incompatibility

with integrated circuits and high cost, in addition to requiring excessive bias field beyond

the X-band for resonance-based components [124]. The first nonreciprocal leaky-wave system

based on space-time modulation, and hence requiring no biasing magnet, was independently

proposed at the same time in [90] and [96], and the latter proposal was extended to an

experimental demonstration in [93].

This chapter, as an extension of [90], presents a nonreciprocal space-time modulated leaky-

wave system. However, this work and [90] feature fundamental differences. The system in [90]

and [93] is a single-port leaky-wave structure where the input frequency is up-converted to

radiate whereas an incoming wave at the radiation frequency is absorbed in the structure

and does not reach the input port. In contrast, this chapter presents a two-port structure

that performs the operation of a full transceiver system, with uplink and downlink space-

time transitions, representing upconversion and downconversion mixing, and separation of

the uplink and downlink paths, representing duplexing. Moreover, this chapter demonstrates

space-time frequency beam scanning at fixed input frequency by variation of a modulation

parameter. Finally, a detailed electromagnetic resolution of the problem for the dispersion

relation and field structure is presented.

The chapter is organized as follows. Section 7.1 presents the operation principle and analytical

solution of the nonreciprocal space-time modulated leaky-wave structure. Section 7.2 proposes

a practical realization of the corresponding mixer-duplexer-antenna system, based on a half-

wavelength microstrip leaky-wave antenna incorporating subwavelengthly-spaced modulating

varactors. Finally, Sec. 7.3 describes the implementation of the system and characterizes it

in terms of its dispersion relation and field distributions. Full-wave and experimental results

are provided in Sec. 7.4.
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7.1 Space-time Modulated Leaky-Wave Structure

7.1.1 Operation Principle

Figure 7.1 shows the generic representation of a periodically space-time modulated leaky-

wave structure. The structure consists of a medium with permittivity

ǫpz, tq “ ǫep1 ` δm cospωmt ´ βmzqq (7.1)

interfaced with air. In Eq. (7.1), ǫe is the effective permittivity of the unmodulated medium,

δm “ ǫm{ǫe is the modulation depth, and ωm and βm are the modulation temporal and spa-

tial frequencies, respectively. Due to the directionally of the space-time modulation, which

propagates in the `z direction with velocity vm “ ωm{βm, the structure is inherently nonre-

ciprocal. The system has two ports, which support a transmitted wave and a received wave

in an uplink/downlink transceiver scenario.

Figure 7.2 qualitatively explains the operation principle of the space-time modulated leaky-

wave structure in Fig. 7.1. The space-time modulated permittivity is provided by injection of

a harmonic wave in a guided-mode of the structure, as will be practically shown in Sec. 7.2,

while the wave of interest is supported by a leaky-mode of the structure, where mixing with

the space-time modulation induces nonreciprocal uplink and downlink oblique transitions,

represented by the green arrow and the magenta arrow, respectively, in Fig. 7.2. The exact

operation is as follows.

In the uplink, a signal wave with frequency ω0 is injected into the transmitter port and

propagates in the `z direction, corresponding to the right-hand side of the dispersion dia-

gram in Fig. 7.2, as Et “ E0ejpω0t´β0zq. As a result of mixing with the periodic modulation,

this wave experiences progressive temporal frequency transition (up-conversion) from ω0 to

ω1 “ ω0 ` ωm along with spatial frequency transition from β0 to β1 “ β0 ` βm. The physical

explanation for the generation of new frequencies due to medium temporal variations – spe-

cifically vertical transitions in the dispersion diagram – has been given in several texts, such

as for instance [80]. In the particular case of periodic temporal variations, one may draw an

analogy with periodic spatial variations in a one-dimensional spatial periodic structure (or

electromagnetic bandgap material). As a result of complex scattering from the spatial periodic

modulation, the field solution to Maxwell equations in the structure is spatially non-sinusoidal

(e.g. having more or less energy concentrated in the high or low refractive index regions for

the lower and higher bands, respectively [197]), except in the long-wavelength regime where

homogeneization applies and leads to a well defined refractive index. Being non-sinusoidal,

this waveform is actually a superposition of an infinite number of Floquet space harmonics,
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transmitted wave :
ω0

space-time modulated
leaky-wave structure

ǫpz, tq “ ǫep1
` δm

cospωm
t ´ βm

zqq

radiated wave :
ω1 “ ω0 ` ωm

incoming wave :
ω1

x

z

received wave :
ω0 “ ω1 ´ ωm

Figure 7.1 Generic representation of a periodically space-time modulated leaky-wave struc-
ture, consisting of a medium with permittivity ǫpz, tq “ ǫep1 ` δm cospωmt ´ βmzqq interfaced
with air. The wave transmitted at the left port is frequency up-converted and radiated under
a specified angle (uplink), while a wave incoming under the same angle and at the same
frequency is down-converted back to the original frequency and received at the right port
(downlink). The system is inherently nonreciprocal due to the directionality of the space-time
modulation [9].

β0 ` nβm, corresponding to horizontal transitions in the dispersion diagram. Similarly, in the

case of a temporal periodic modulation, waves get scattered forward and backward [80] to

form a temporally non-sinusoidal waveform, corresponding to an infinite number of Floquet

time harmonics, i.e. new frequencies, ω0 ` nωm, as will be seen in (7.3b). When the periodic

modulation is both spatial and temporal [74], or spatiotemporal, as in (7.1), we have thus

the generation of an infinite number of spacetime harmonics, (β0 ` nβm, ω0 ` nωm), corres-

ponding to oblique transitions in the dispersion diagram [19], as illustrated in Fig. 7.2. In

the meanwhile, the up-converted wave, Er “ E1ejpω1t´pβ1´jα1qzq, operating in the fast wave

region of the dispersion diagram, radiates as a leaky-wave under a specified angle θ1.

In the downlink, a wave with frequency ω1 is impinging on the structure under the same

angle θ1 and picked up by the structure. It should be noted that directivity of the leaky-

wave structure is proportional to its length, i.e. longer structure leads to a more directive
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Figure 7.2 Schematic dispersion diagram explaining the nonreciprocal uplink and downlink
space-time transitions in the leaky-wave structure of Fig. 7.1 [9].

radiation beam. According to phase matching, the wave can only propagate in the direc-

tion of the modulation, i.e. in the `z direction, corresponding to the right-hand side of the

dispersion diagram in Fig. 7.2, and experiences progressive temporal frequency transition

(down-conversion) from ω1 to ω0 “ ω1 ´ ωm along with spatial frequency transition from β1

to β0 “ β1 ´ βm, while propagating toward the receiver port.

Given the unidirectional nature of the modulation, the structure is fundamentally nonrecipro-

cal. No space-time transition is allowed for wave propagation in the backward (´z) direction

(left-hand side of the dispersion diagram in Fig. 7.2) due to the unavailability of modes at

the points p´β0 ` βm, ω0 ` ωmq from p´β0, ω0q for up-conversion and p´β1 ´ βm, ω0q from

p´β1, ω0 ` ωmq for down-conversion.

The direction of radiation of the main beam [198] depends on the modulation temporal and

spatial frequencies as

θ1 “ sin´1

ˆ
β1pωq
k01

˙
“ sin´1

ˆ
cpβ0 ` βmq
ω0 ` ωm

˙
, (7.2)

where c is the velocity of light in vacuum and k01 “ ω1{c is the effective wavenumber at the

frequency ω1. According to (7.2), frequency beam scanning can be achieved at a fixed input

frequency, ω0, by varying the modulation frequency, ωm.
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Figure 7.3 Circuital representation of the combined mixer-duplexer-antenna operation of the
space-time modulated leaky-wave structure in Fig. 7.1 [9].

Figure 7.3 shows a circuital representation of the space-time modulated leaky-wave structure

of Fig. 7.1. The operation of the structure operates as a combined mixer-duplexer-antenna

system may be essentially read out from the dispersion diagram of Fig. 7.2. Up-conversion

and down-conversion mixing operations are provided by the oblique upwards and downwards

oblique transitions, respectively. The duplexing operation (separation of uplink and downlink

paths at the same frequency) is provided by nonreciprocity. Finally, the antenna operation

is provided by the fast-wave nature of the wave.

7.1.2 General Analytical Solution

Since the structure is periodic in space and time, its electromagnetic field solution can be

expressed as the double Floquet expansion

Epz, tq “
8ÿ

n“´8

Enejωnte´pαn`jβnqz, (7.3a)

where En is the amplitude of the nth space-time harmonic, characterized by the temporal

and spatial frequencies

ωn “ ω0 ` nωm (7.3b)

and

βnpωq “ β0pωq ` nβm, (7.3c)
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respectively, and where αnpωq is the leakage factor of the nth harmonic. For a given input

amplitude E0 and frequency ω0, En in (7.3a), leading to the general field solution, and β0pωq
in (7.3c), corresponding to the dispersion relation, are unknowns to be determined. The

detailed resolution of this problem is presented in Appendix 8.2.

In the case of weak modulation, δm ! 1, the En’s in (7.3a) for |n| ą 1 are negligible. Moreover,

assuming that the leaky-wave structure is designed to support uplink and downlink radiation

mainly at ω1 “ ω0`ωm, in the uplink, the amplitude of the lower harmonic E´1, corresponding

to the frequency ω0 ´ ωm, and in the downlink, the amplitude of the higher harmonic E2

(already negligible from the weak modulation assumption), corresponding to the frequency

ω1 ` ωm “ ω0 ` 2ωm, are negligible. Then we find, as derived in Appendix 8.2, assuming

αn ! βn, that

β0pωq “ ˘βumpω0q ˘ δm

4

a
βumpω0qβ 1

umpω0q, (7.4)

where the upper and lower signs correspond to forward and backward propagation, respecti-

vely, and where β 1
umpω0q “ βumpω0q ` βm with βum being the wavenumber of the unmodulated

structure, which, according to (7.2) with βm “ ωm “ 0, may be obtained from the main beam

radiation angle as

βumpω0q “ ω0

c
sinpθpω0qq. (7.5)

Equation (C-24) shows that, as expected, the change in the wave vector due to the modulation

is proportional to the modulation depth, δm, and to the modulation wavenumber, βm.

As shown in Appendix 8.2, the amplitude of the uplink up-converted electric field is

E1 “ δmE0β
1
um

δm

a
βumβ 1

um ´ 2α2
1{β 1

um ´ jα1

`
δm

a
βum{β 1

um ` 4
˘ , (7.6)

which is proportional to the input electric field, E0, and depends on both the modulation

depth, δm, and the leakage factor, α1. As shown in (C-27), uplink conversion is associated

with power conversion gain.

Similarly, as shown in Appendix 8.2, the amplitude of the downlink down-converted electric

field, corresponding to n “ 0, is

E0 “ δmE1βum

δm

a
βumβ 1

um ´ 2α2
0{βum ´ jα0

`
δm

a
β 1

um{βum ` 4
˘ , (7.7)

which is proportional to the received electric field, E1, and depends on both the modulation

depth, δm, and the leakage factor, α0, and which is associated with power conversion loss.
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7.2 Mixer-Duplexer-Antenna System Realization

The space-time modulated permittivity in (7.1) is realized as follows. An array of sub-

wavelengthly spaced varactors is distributed in parallel with the intrinsic capacitance of a

microstrip transmission line, while a sinusoidal modulation signal, with frequency ωm and

wave vector βm, propagating in the guided-mode regime along `z direction, modulates

the varactors in space and time such as to provide the space-time dependent capacitance

Cpz, tq “ Ce ` Cvar cospωmt ´ βmzq. As a result, the corresponding effective permittivity of

the medium becomes ǫpz, tq “ ǫep1 ` δm cospωmt ´ βmzqq, where the modulation depth, δm,

depends on the range of variation of the varactors at a given modulation amplitude. Note

that a DC bias line is used to set the varactors in the reverse bias (capacitive) regime.

Figure 7.4(a) shows the structure and operation of the realized space-time modulated mixer-

duplexer-antenna system. The structure supports two modes, a dominant even mode, provi-

ding a guided-mode channel for the wave modulating the varactors (narrow strip in Fig. 7.4(a))

and a higher order odd (EH1) mode, providing the leaky-mode channel for radiation (wide

strip in Fig. 7.4(a)). The transmit and receive ports are designed in such a way as to excite

the leaky mode of the microstrip line. Moreover, an array of grounding vias is placed at

the center of the wide microstrip line to suppress the even mode and hence enforce optimal

leaky-wave radiation at ω1, which corresponds to a strip width of W “ λ1{2. Figure 7.5(a)

shows the electric field distribution of the leaky-mode (EH1q along the microstrip leaky-wave

antenna [10, 198,199]. In contrast, Fig. 7.5(b) shows the electric field distribution of the do-

minant guided-mode (EH0q of a microstrip transmission line, where transversally symmetric

distribution of the electric field yields a complete propagation of the wave. The narrow line in

the realized system of Fig. 7.4(a) supporting the propagation of modulation signal is designed

in such a way to support the propagation of the dominant guided-mode of the microstrip

line.

7.3 System Implementation and Characterization

This section presents the implementation and characterization of the mixer-duplexer-antenna

system. The modulation specifications are fm “ ωm{2π “ 0.18 GHz, βm “ ωm
?

ǫe{c “
5.16 rad/m, δm “ 0.15 corresponding to a modulation signal with the amplitude of 10 dBm.

The modulation circuit is composed of 39 unit cells of antiparallel varactors [Fig. 7.4(a)], with

uniform spacing, or period, of p “ 5 mm, which corresponds to p{λm “ pβm{p2πq « 1{250,

and hence safely satisfies medium homogeneity in accordance with (7.1). We employed BB833

varactors manufactured by Infineon Technologies where the capacitance ratio (highest over



133

x

L

TX port :
ω0, β0

modulation,
ωm

θθ

ω1 “ ω0 ` ωm

β1 “ β0 ` βm

matched load

ǫep1
` δm

cospωm
t ´ βm

zqq

β0

grounding
wall

array of
varactors

z

β1

W “
λ

1 {2

RX port :
ω0 “ ω1 ´ ωm

β0 “ β1 ´ βm

array of
grounding vias

(a)

Figure 7.4 Realization of the space-time modulated mixer-duplexer-antenna system in
Fig. 7.3. The structure is based on the half-wavelength microstrip leaky-wave antenna [10] [9].
Note that a sufficiently long structure (L ą 3λr) is required To ensure total radiation of the
transmitted traveling wave and neglect the reflection of the wave from the receive port [10].

lowest capacitance) is about 12.4. The specifications of the structure are f0 “ 1.7 GHz,

f1 “ 1.88 GHz, θ1 “ 4˝ (radiation angle corresponding to the frequency f1), α0 “ 1.2 Np/m,

α1 “ 3.4 Np/m, L “ 8 in and W “ 1.8 in, RT5880 substrate with permittivity ǫr “ 2.2,

thickness h “ 125 mil and tan δ “ 0.0009. The leakage factors, α0 and α1, are experimentally

obtained from the scattering parameter S21 as αk « ´ ln |S21pωkq|{L, k “ 0, 1, since most of

the attenuation is due to leakage.

Figure 7.6 shows the dispersion diagram of the realized prototype computed using (C-21)

and (7.5) with varying ω0. This diagram is, as expected, qualitatively similar to that in

Fig. 7.2, with a leaky-mode cutoff frequency of about 1.65 GHz. It may be observed that the

dispersion of the modulated mode corresponds, also as expected, to an increased momentum
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Figure 7.5 Field distribution along the LWA. (a) Leaky-mode (EH1) odd electric, unaffected
by the vias given their position in the nodal plane of the mode (xz plane, middle of the strip).
(b) Dominant guided-mode (quasi-TEM) even electric field distribution with antinode in the
plane mentioned in (b) and hence shorting (suppression) of this mode in the presence of the
vias [9].

(β), although the difference with the unmodulated dispersion is negligible in the transition

range, consistently with the weak modulation assumption. In uplink (green arrow), the wave
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is up-converted from f0 “ 1.7 GHz to f1 “ 1.88 GHz while in the downlink (magenta

arrow), it is down-converted from f1 “ 1.88 GHz to f0 “ 1.7 GHz. The ratio between

the frequency pair (f1, f0) is practically limited in terms the maximal acceptable size of the

antenna. Indeed, as seen in Fig. 7.8, the antenna must be sufficiently long for the input power

at f0 to sufficiently convert, for a specified conversion efficiency, to the output power at f1,

and the antenna must have a length that is at least a couple of wavelengths of the lowest

frequency. This means that, if f1{f0 “ κ, then the antenna must be κ times longer than

an antenna that would be conventionally operated at f1. Figure 7.7 shows the relative error

of the approximate dispersion relation, given by (7.4), with respect to the exact dispersion

relation, obtained by (C-21), for the modulation indices δm “ 0.05 and 0.15. As expected,

the error is proportional to the modulation depth. Moreover, we see that the approximate

solution of the dispersion diagram for δm “ 0.15, corresponding to the design of Fig. 7.6

would be of less than 4%.
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Figure 7.6 Dispersion diagram for the prototype depicted in Fig. 7.4(a) computed using (C-21)
and (7.5) [9].

Figure 7.8(a) shows the exact and approximate squared real part of the field propagating

along the structure for the uplink, computed using (7.3a) with (C-15) and (C-18) for the

exact solutions and using (7.6) and (7.7) for the approximate solutions. The power of the in-
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put wave (Em
0 , f0 “ 1.7 GHz) progressively transfers to the leaky wave (Em

1 , f0 “ 1.88 GHz)

along the `z direction, with conversion gain, as predicted in Sec. 7.1.2. At the same time,

the power of the leaky mode exponentially decreases due to radiation. Similarly, Fig. 7.8(b)

shows the squared real part of the field propagating along the structure for the downlink,

computed using (7.7). Here, the power of the incoming wave (Em
1 , f0 “ 1.88 GHz) progressi-

vely transfers, still along the `z direction, to the output wave (Em
0 , f0 “ 1.7 GHz). We see in

Figs. 7.8(a) and 7.8(b) that the power level and, more importantly, the power decay, which

corresponds to leaky-wave radiation, is much less for higher order space-time harmonics, i.e.

Em
´1 and Em

2 , than it is for the input and radiating harmonics, Em
0 and Em

1 .

Figure 7.9 shows a photograph of the realized prototype. Band-stop filters centered at f0 are

used at the transmit and receive ports to ensure the suppression of unwanted harmonics,

such as for instance fm and f´1.
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Figure 7.8 Squared real part of the electric field space-time harmonics, propagating in the `z

direction along the antenna for the (a) uplink and (b) downlink, where the approximate wave
solutions for the up- and down-links, E

appr.
0 pzq and E

appr.
1 pzq, obtained using (7.6) and (7.7)

are compared with the exact wave solutions obtained using (7.3a) with (C-15) and (C-18) [9].



138

DC-blockDC-block array of varactors
DC-input

varactors bias
matched load
(mod. output)

array of
grounding vias

LL CC

TX RX
mod.

band-stop filter
at f0 “ 1.7 GHz

(tunable)

band-stop filter
at f0 “ 1.7 GHz

(tunable)
Figure 7.9 Photograph of the fabricated prototype [9].

7.4 Full-wave and Experimental Results

7.4.1 Matching and Measurement Setup

Figure 7.10 shows the full-wave and experimental matching of the transmit and receive ports

of the antenna system in Fig 7.9 for an optimal varactor DC bias of 12 V 1 and the band-stop

filters at both ports tuned at f0 “ 1.7 GHz.

Figure 7.11 shows the experimental setup, which uses a rotating reference antenna as a third

port to model far-field radiation in both the transmit and receive regimes. Figure 7.12(a)

and (b) show the photograph and schematic of the complete measurement setup, respectively.

An Agilent E8267D signal generator, set at frequency fm “ 0.18 GHz and amplitude Pm “
15 dBm, provides the modulation signal for the varactors. The distance between the reference

and test antennas is about 1 m (6.3λ0 at the radiation frequency f1 “ 1.88 GHz), which is

beyond the far-field distance, rfar-field « 0.5 m. For the uplink, an Agilent E825D signal

generator provides the input signal at the transmit port, with frequency f0 “ 1.7 GHz and

amplitude P0 “ 0 dBm, while two spectrum analyzers (R&S FSIQ-40 and Agilent E4440A)

measure the received power at the receive port and at the port of the rotating reference

antenna. In the downlink, the Agilent E825D signal generator provides an input signal at the

rotating reference antenna port, with frequency f1 “ 1.88 GHz and amplitude P0 “ 0 dBm,

while the two spectrum analyzers measure the received power at the receive and transmit

ports.

1. At this voltage level, the component safely operates in the linear reverse-biased regime, so that related
nonlinear effects are negligible.
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Figure 7.11 Experimental setup for the measurement of the mixer-duplexer-antenna sys-
tem [9].



140

7.4.2 Fixed Radiation Beam

Figure 7.13 shows the full-wave and experimental normalized radiated powers at f1 “1.88 GHz

for the uplink, when the transmit port is excited at f0 “ 1.7 GHz. The maximum of the ra-

diated power is at θ1 “ 4˝. Figure 7.14(a) shows the full-wave and experimental normalized

received powers at the receive and transmit ports for the downlink at f0 “ 1.7 GHz, when

the reference antenna port is excited at f1 “ 1.88 GHz. The radiation efficiency is 74 % ;

it is mainly limited by the shortness of the antenna (due to fabrication limitation), as un-

derstood from Fig. 7.8. Figure 7.14(b) plots the isolation between the powers received at the

receive and transmit ports. The isolation achieved at specified radiation angle (θ1 “ 4˝) is

about 31.5 dB. The discrepancy between the simulation and measurement results are mainly

attributed to the imperfect modeling of the varactors in the simulation.

7.4.3 Frequency Beam Scanning

Frequency beam scanning is one of the interesting properties of leaky-wave antennas, where

the radiation beam angle can be controlled by the operation frequency of the antenna [198].

However, it is more practical to control the radiation beam angle at fixed input frequency.

For this reason, we perform here frequency beam scanning at fixed input frequency (f0)

by varying the modulation frequency (fm) since this also results in varying the radiation

frequency (f1 “ f0 ` fm).

Figures 7.15(a), 7.15(b) and 7.15(c) show the full-wave and experimental normalized radiated

powers for uplink frequency beam scanning. The input frequency is f0 “ 1.7 GHz, and

varying the modulation frequency as fm “ t0.18, 0.22, 0.27, 0.3u GHz yields the radiation

frequencies f1 “ t1.88, 1.92, 1.97, 2u GHz, corresponding to the radiation beam angles of

θ1 “ t4, 11.5, 18, 24.5u˝.

Figures 7.16(a) and 7.16(b) show the experimental normalized received power at the re-

ceive and transmit ports for downlink frequency beam scanning. The input frequency at

the reference antenna port varies as f1 “ t1.88, 1.92, 1.97, 2u GHz, corresponding to fm “
t0.18, 0.22, 0.27, 0.3u GHz, for a fixed received signal f0 “ f1´fm “ 1.7 GHz. Finally, Fig. 7.17

plots the isolation between received powers at the receive and transmit ports.
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Figure 7.12 Measurement set-up. (a) Photograph. (b) Schematic [9].
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CHAPTER 8 CONCLUSION AND FUTURE WORK

This thesis presented a collection of recent advances in space- and time-modulated dispersion

engineered metamaterials.

8.1 Summary

Chapter 2 introduced the spatial and temporal dispersion engineering as well as the concept of

continuously space, time and space-time modulation, and presented the general wave solution

inside such electromagnetic systems. First, a general perspective on spatial and temporal

dispersion engineered structures is given. Then, the realization scenario and general synthesis

method of continuously space-modulated media is presented. Next, generic representation,

functionality and electromagnetic wave propagation in a time-modulated medium is provided.

Moreover, the realization of such a medium using array of distributed varactors is shown.

Then, an overview on the operation, functionality and wave transmission through a space-

time modulated medium is presented. Finally, realization of such a space-time modulated

medium using an array of distributed varactors is demonstrated.

In Chapter 3, static contiguously space modulation has been presented as a mechanism for

realization of broadband, flexible and versatile phasers. Two phasers have been introduced

as follows.

– A continuously space-modulated coupled-line C-section phaser is introduced for enhan-

ced bandwidth and profile diversity compared to step-discontinuity coupled-line C-section

phasers. Such a phaser, that may be further cascaded for oscillation suppression and delay

swing enhancement, represents a promising device for real-time analog signal processing

(R-ASP).

This space-varying C-section phaser, thanks to its extra topological degrees of freedom,

provides group delay functions that are impossible to achieve by uniform C-section phasers.

Moreover, it exhibits enhanced bandwidth, due to group delay periodicity breaking, smaller

size, due to greater group delay shape flexibility, and also lower loss, due to shorter overall

length. Moreover, phasers exhibiting Chebyshev group delay functions of different orders

have been demonstrated.

Nonuniform C-section phasers provide an efficient solution in radio analog signal proces-

sing (R-ASP). For instance, Dispersion Code Multiple Access (DCMA) has been recently

proposed as a new technology for multiplexing [175, 176]. In this scheme, the two access
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points of each wireless channel share mutually conjugate dispersion codes, with correspon-

ding conjugate response phasers, while the other channels use other conjugate dispersion

codes and phasers. In this application, the number of channels is equal to the number of

phaser responses, and the cross-channel interferences is minimized with optimal dispersion

responses, provided by Chebyshev phasers.

– Nonuniform stub-line coupling-free phaser may represent an alternative solution to conven-

tional coupled-line sections based phasers, as they reduce the complexity and lower the

cost. Realization of transmission- and reflection-type continuously space-modulated stub-

line phasers are experimentally presented, where the reflection-type version of the phaser

leverages the high group delay swing of the open/short-terminated stubs and round-trip

propagation of the wave inside the structure to enhance the resolution. Moreover, corre-

lation between the group delay shapes and the electromagnetic energy distribution along

the structure has been shown.

A nonreciprocal nongyrotropic magnetless metasurface is presented in Chapter 4 as a space-

modulated spatiotemporally dispersion engineered medium. This metasurface operates as

an active spatial isolator, providing transmission gain, with possible beam scanning, in one

direction and transmission loss in the opposite direction, across a frequency bandwidth and

a broad angular sector. The nonreciprocity of the metasurface is based on transistors rather

than ferromagnetic materials, and therefore the metasurface features small form factor, light

weight, and low cost. Moreover, it is nongyrotropic and thus immune of Faraday rotation,

so that it is expected to find a specific range of applications, such as radar absorbers, novel

one-way screens, illusion cloaks and isolating radomes.

Chapter 5 provided a general perspective of space-time modulation technique. This chapter

studies scattering of obliquely incident electromagnetic waves from periodically space-time

modulated slabs. It is shown that such a structure operates as a nonreciprocal harmonic gene-

rator. It is shown that the structure operates as a high pass filter in oblique incidence, where

low frequency harmonics are filtered out in the form of surface waves, while high frequency

harmonics are scattered as space waves. In the quasi-sonic regime, where the velocity of the

space-time modulation is close to the velocity of the electromagnetic waves in the background

medium, the incident wave strongly couples to the space-time harmonics in the forward di-

rection while in the backward direction it exhibits low coupling to other harmonics. It is

shown that a space-time modulated slab presents new degrees of freedom in electromagnetic

wave transformation, including the transformation from a propagating-wave to surface-wave,

electromagnetic wave isolation, mixing and amplification. Normal incidence dispersion dia-

gram, isofrequency diagram and the physical representation of the wave propagation inside

such a medium are also provided.
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Chapter 6 exhibits how the space-time modulation may be leveraged to realize microwave and

optical isolators. Three different isolators have been introduced based on different properties

of the spatiotemporally modulated media which may find distinct applications. Following is

a brief description of the three proposed isolators.

– The nonreciprocity in the sonic regime has been used for realization of an electromagnetic

isolator. The space-time varying medium was realized at microwave frequencies and its

operation as a quasi-sonic isolator was experimentally demonstrated.

– Space-time modulated slabs may be excited at the frequency corresponding to a electro-

magnetic bandgap, exciting the evanescent bandgap mode in the forward direction while

exciting a propagating mode in the opposite direction. It has been shown that in the for-

ward direction all the energy is reflected, while in the opposite direction, the incident wave

is fully transferred to the other end of the space-time modulated slab by strongly coupling

to one of its propagating modes, hence realizing an optical isolator and a reflection-type

mixer. Since the attenuation in the block direction of the isolator is based on the progres-

sive reflection of an evanescent wave, such an isolator requires a long structure to provide

strong isolation. As a result, it may be more useful for optical isolation.

– Electromagnetic isolation maybe also achieved based on nonreciprocal coherency between

the input wave and space-time modulated structure. In this scheme, the modulation and

the incident wave have the same frequency and the operation of the structure is dictated

by the phase difference between them. At certain phase shifts and modulation depths, cor-

responding to the coherency condition, the structure operates as an isolator. The proposed

structure does not produce undesirable harmonics and has superior efficiency compared to

previously reported space-time isolators. Moreover, the input signal modulates the struc-

ture itself, and hence it operates as a self biased isolator.

Finally, a mixer-duplexer-antenna leaky-wave nonreciprocal integrated system is presented

in Chapter 7 based on periodic space-time modulation. The uplink and downlink conversions

and duplexing are based on oblique directional space-time transitions from a microstrip leaky

mode to itself. One of the interesting features of the system is its capability to perform

beam scanning at a fixed signal frequency by varying modulation parameters, in particular

the modulation frequency. The theoretical predictions have been verified by experimental

demonstration. The proposed system may find applications in various radar, communication

and instruments.
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8.2 Future Direction

For future developments, it would be useful to extend the work presented in this thesis to

discover unknown properties of space and space-time modulated spatiotemporal dispersion

engineered media. This leads to realization of other enhanced efficiency and integrated elec-

tromagnetic systems. Below are a few directions to be studied.

– Space-time modulation may be used to realize a frequency multiplier.

– Analysis and experimental demonstration of space-time modulated metasurfaces.

– Further research on the oblique incidence on a space-time modulated slab is required to

reveal all interesting features of such a medium.

– This thesis has focused on the spatial modulation in one-dimension, i.e. along z direction.

Further researches on the two and three dimensional spatially or spatiotemporally modu-

lated systems may reveal various intriguing phenomenon and their potential applications.

– Another interesting direction is the realization of space-time modulated isolator in optics.

The optical version of the proposed isolators may be realized using other modulation

techniques, e.g. based on electroptic effect.
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APPENDIX A

Supplemental Material for Chapter 5

Sonic-Regime Interval

The sonic-regime interval was shown to correspond to a singularity and mathematically

determined for the particular case of a one-dimensional sinusoidally modulated medium in

[3]. Following the same approach, we derive here the sonic-regime interval for the case of a

two-dimensional general periodic modulated medium.

We first expand the wave equation in (5.11) inside the modulated slab, as

c2 B2EM

Bx2
` c2 B2EM

Bz2
“ B2 rǫpz, tqEMs

Bt2
“ EM

B2ǫpz, tq
Bt2

` ǫpz, tqB2EM

Bt2
` 2

Bǫpz, tq
Bt

BEM

Bt
, (A-1)

where EM “ EMpx, z, tq. Then, we apply the moving medium coordinate transformation

x1 “ x, u “ ´βmz ` ωmt, t1 “ t. (A-2)

Next we express the partial derivatives in (C-3) in terms of the new variable in (A-2), i.e.

B
Bx

“ Bx1

Bx

B
Bx1

` Bu

Bx

B
Bu

` Bt1

Bx

B
Bt1

“ B
Bx1

, (A-3a)

B
Bz

“ Bx1

Bz

B
Bx1

` Bu

Bz

B
Bu

` Bt1

Bz

B
Bt1

“ ´βm
B

Bu
, (A-3b)

B2

Bz2
“ B

Bz

ˆ B
Bz

˙
“ β2

m

B2

Bu2
, (A-3c)

B
Bt

“ Bx1

Bt

B
Bx1

` Bu

Bt

B
Bu

` Bt1

Bt

B
Bt1

“ B
Bt1

` ωm
B

Bu
, (A-3d)

B2

Bt2
“
ˆBt1

Bt

˙2 B2

Bt12
`
ˆBu

Bt

˙2 B2

Bu2
` 2

ˆBt1

Bt

˙ Bu

Bt

B2

BuBt1
“ B2

Bt12
` ω2

m

B2

Bu2
` 2ωm

B2

BuBt1
. (A-3e)

Using (A-3) wherever appropriate, the different terms of (C-3) become

c2 B2EMpx, z, tq
Bx2

“ c2 B2EMc

Bx12
, (A-4a)

c2 B2EMpx, z, tq
Bz2

“ c2β2
m

B2EMpx1, u, t1q
Bu2

, (A-4b)
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EMpx, z, tqB2ǫpz, tq
Bt2

“ EMpx1, u, t1q B2

Bt12

˜
8ÿ

k“´8

ǫ̃kejku

¸
“ ´ω2

mEMpx1, u, t1q
8ÿ

k“´8
k‰0

k2ǫ̃kejku,

(A-4c)

ǫpz, tqB2EMpx, z, tq
Bt2

“
8ÿ

k“´8

ǫ̃kejku

ˆB2EMpx1, u, t1q
Bt12

` ω2
m

B2EMpx1, u, t1q
Bu2

` 2ωm
B2EMpx1, u, t1q

BuBt1

˙
,

(A-4d)

2
Bǫpz, tq

Bt

BEMpx, z, tq
Bt

“ 2ωm
B

Bu

˜
8ÿ

k“´8

ǫ̃kejku

¸ˆBEMpx1, u, t1q
Bt1

` ωm
BEMpx1, u, t1q

Bu

˙

“ 2jωm

8ÿ

k“´8
k‰0

kǫ̃kejku

ˆBEMpx1, u, t1q
Bt1

` ωm
BEMpx1, u, t1q

Bu

˙
,

(A-4e)

Grouping (A-4) according to (C-3) yields then the wave equation in terms of x1, u, t1 and ǫ̃k :

˜
c2β2

m ´ ω2
m

8ÿ

k“´8

ǫ̃kejku

¸
B2EMpx1, u, t1q

Bu2
` c2 B2EMpx1, u, t1q

Bx12
´

8ÿ

k“´8

ǫ̃kejku B2EMpx1, u, t1q
Bt12

´2ωm

8ÿ

k“´8

ǫ̃kejku B2EMpx1, u, t1q
BuBt1

´ 2jωm

8ÿ

k“´8
k‰0

kǫ̃kejku

ˆBEMpx1, u, t1q
Bt1

` ωm
BEMpx, z, tq

Bu

˙

`ω2
m

8ÿ

k“´8
k‰0

k2ǫ̃kejkuEMpx1, u, t1q “ 0.

(A-5)

For this equation to really represent the wave equation, it must maintain all of its order

derivatives. This is generally the case, except when the coefficient of the first term vanishes,

i.e.

c2β2
m ´ ω2

mǫ̃0 ´ ω2
m

8ÿ

k“´8
k‰0

ǫ̃kejku “ 0, (A-6)

or, assuming a real permittivity and hence ℑ

"
8ř

k“´8

ǫ̃kejku

*
“ 0,

8ÿ

k“´8
k‰0

ǫ̃kejku “ ǫr

γ2
´ ǫ̃0, (A-7)

where (2), (3) and (4) have been used. Assuming that the permittivity variation is bounded
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to ǫm, i.e.

ˇ̌
ˇ̌ 8ř

k“´8
k‰0

ǫ̃kejku

ˇ̌
ˇ̌ ď ǫm, and considering that u is real, the condition (A-7) reduces to

ˇ̌
ˇ̌ ǫr

γ2
´ ǫ̃0

ˇ̌
ˇ̌ ď ǫm, (A-8)

which may be rearranged as

c
ǫr

ǫ̃0 ` ǫm
ď γ ď

c
ǫr

ǫ̃0 ´ ǫm
. (A-9)

This corresponds to the sonic interval, where the solution for Em cannot be computed using

the Bloch-Floquet expansion (6).

General Wave Solution To solve the wave equation in (9), we write the product of (5)

and (6) as

ǫpz, tqEMpx, z, tq “ ŷ
8ÿ

n“´8

8ÿ

k“´8

ǫ̃kA˘
n e´jp˘β0z`kxx´ω0tqe´jpn`kqpβmz´ωmtq

“
8ÿ

n“´8

8ÿ

k“´8

ǫ̃kA˘
n´ke´jp˘β0z`kxx´ω0tqe´jnpβmz´ωmtq.

(A-10)

Inserting (6) and (A-10) into (9) yields

ˆ B2

Bx2
` B2

Bz2

˙ 8ÿ

n“´8

A˘
n e´jp˘β0z`nβmz`kxxqejpω0`nωmqt

´ 1
c2

B2

Bt2

8ÿ

n“´8

8ÿ

k“´8

ǫ̃kA˘
n´ke´jp˘β0z`kxx´ω0tqe´jnpβmz´ωmtq “ 0.

(A-11)

Applying the second derivatives transforms this equation to

8ÿ

n“´8

„ `
´k2

x ´ pβ0 ˘ nβmq2
˘
A˘

n e´jp˘β0z`nβmz`kxxqejpω0`nωmqt

` pω0 ` nωmq2

c2

8ÿ

k“´8

ǫ̃kA˘
n´ke´jp˘β0`nβmz`kxxqejpω0`nωmtq


“ 0.

(A-12)

Finally, using the orthogonality property of the complex exponential function to cancel the

common terms e´jp˘β0z`nβmz`kxxqejpω0`nωmtq leads to the recursive set of equations (10).
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Application of Boundary Conditions

Forward Problem

The TMxz or Ey incident fields read

EF
I px, z, tq “ ŷE0e´jrk0 sinpθiqx`k0 cospθiqz´ω0ts, (A-13a)

where E0 is the amplitude of the incident field and k0 “ ω0{vb, and

HF
I px, z, tq “ 1

η1

”
k̂F

I ˆ EF
I px, z, tq

ı

“ r´x̂ cospθiq ` ẑ sinpθiqs
c

ǫ0ǫr

µ0
E0e

´jrk0 sinpθiqx`k0 cospθiqz´ω0ts,

(A-13b)

where η1 “
a

µ0{pǫ0ǫrq. The electric and magnetic fields in the slab may be explicitly written

using (6) as

EF
Mpx, z, tq “ ŷ

8ÿ

n,p“´8

´
AF`

np e´jrkxx`pβ`
0p

`nβmqzs ` AF´
np e´jrpkxx´pβ´

0p
´nβmqzs

¯
ejpω0`nωmqt,

(A-14a)

and

HF
Mpx, z, tq “ 1

η2

”
k̂F

M ˆ EF
Mpx, z, tq

ı

“
8ÿ

n,p“´8

ˆ„
´ x̂

β`
0p ` nβm

µ0pω0 ` nωmq ` ẑ sinpθiq
c

ǫ0ǫr

µ0


AF`

np e´j

“
kxx`pβ`

0p
`nβmqz

‰

`
„
x̂

β´
0p ´ nβm

µ0pω0 ` nωmq ` ẑ sinpθiq
c

ǫ0ǫr

µ0


AF´

np e´j

“
kxx´pβ´

0p
´nβmqz

‰˙
ejpω0`nωmqt.

(A-14b)

where η2 “
a

µ0{pǫ0ǫrq “ η1. The reflected and transmitted electric fields outside of the slab

may be defined as

EF
Rpx, z, tq “ ŷ

8ÿ

n“´8

EF
rne´jrk0 sinpθiqx´k0n cospθrnqz´pω0`nωmqts, (A-15a)

HF
Rpx, z, tq “ 1

η1
rk̂F

R ˆ EF
Rpx, z, tqs

“ rx̂ cospθrnq ` ẑ sinpθiqs
c

ǫ0ǫr

µ0

EF
rne´jrk0 sinpθiqx´k0n cospθrnqz´pω0`nωmqts,

(A-15b)
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EF
Tpx, z, tq “ ŷ

8ÿ

n“´8

EF
tne´jrk0 sinpθiqx`k0n cospθtnqz´pω0`nωmqts, (A-15c)

HF
Tpx, z, tq “ 1

η3

rk̂F
T ˆ EF

Tpx, z, tqs

“ r´x̂ cospθtnq ` ẑ sinpθiqs
c

ǫ0ǫr

µ0

EF
tne´jrk0 sinpθiqx`k0n cospθtnqz´pω0`nωmqts,

(A-15d)

where η3 “
a

µ0{pǫ0ǫrq “ η1 “ η2. We then enforce the continuity of the tangential compo-

nents of the electromagnetic fields at z “ 0 and z “ L to find the unknown field amplitudes

A˘
0p, EF

rn and EF
tn. The electric field continuity condition between regions 1 and 2 at z “ 0,

E1ypx, 0, tq “ E2ypx, 0, tq, reduces to

δn0E0 ` EF
rn “

8ÿ

p“´8

`
AF`

np ` AF´
np

˘
, (A-16)

while the corresponding magnetic field continuity condition, H1xpx, 0, tq “ H2xpx, 0, tq, reads

c
ǫ0ǫr

µ0

cospθiqδn0E0 ´
c

ǫ0ǫr

µ0

cospθrnqEF
rn “

8ÿ

p“´8

ˆ
β`

0p ` nβm

µ0pω0 ` nωmqAF`
np ´ β´

0p ´ nβm

µ0pω0 ` nωmqAF´
np

˙
,

(A-17)

where kn “ pω0 ` nωmq{vb.

Similarly, the electric field continuity condition between regions 2 and 3 at z “ L, E2ypx, L, tq “
E3ypx, L, tq, reduces to

8ÿ

p“´8

´
AF`

np e´jpβ`
0p`nβmqL ` AF´

np ejpβ´
0p´nβmqL

¯
“ EF

tne´jk0n cospθtnqL, (A-18)

while the corresponding magnetic field continuity condition between regions 2 and 3 at z “ L,

H2xpx, L, tq “ H3xpx, L, tq, reads

8ÿ

p“´8

„
β`

0p ` nβm

µ0pω0 ` nωmqAF`
np e´jpβ`

0p`nβmqL ´ β´
0p ´ nβm

µ0pω0 ` nωmqAF´
np ejpβ´

0p´nβmqL



“
c

ǫ0ǫr

µ0
cospθtnqEF

tne´jk0n cospθtnqL

(A-19)

Solving (A-18) and (A-19) for AF´
0p yields (14b). Next solving (A-16), (A-17) and (14b) for AF`

0p

yields (14a). Finally, the total scattered fields outside the slab are obtained by substituting

(14) into (A-15), which yields (16).
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Backward Problem

The TMxz or Ey incident fields read

EB
I px, z, tq “ ŷE0e´jrk0 sinpθiqx´k0 cospθiqz´ω0ts, (A-20a)

HB
I px, z, tq “ 1

η1
rk̂B

I ˆ EB
I px, z, tqs “ rx̂ cospθiq ` ẑ sinpθiqs

c
ǫ0ǫr

µ0
E0e´jrk0 sinpθiqx`k0 cospθiqz´ω0ts,

(A-20b)

The electric and magnetic fields in the slab may be explicitly written using (6) as

EB
Mpx, z, tq “ ŷ

8ÿ

n,p“´8

´
AB`

np e´jrkxx`pβ`
0p`nβmqzs ` AB´

np e´jrkxx´pβ´
0p´nβmqzs

¯
ejpω0`nωmqt,

(A-21a)

HB
Mpx, z, tq “ 1

η2

”
k̂B

M ˆ EB
Mpx, z, tq

ı

“
8ÿ

n,p“´8

ˆ„
´ x̂

β`
0p ` nβm

µ0pω0 ` nωmq ` ẑ sinpθiq
c

ǫ0ǫr

µ0


AB`

np e´j

“
kxx`pβ`

0p`nβmqz
‰

`
„
x̂

β´
0p ´ nβm

µ0pω0 ` nωmq ` ẑ sinpθiq
c

ǫ0ǫr

µ0


AB´

np e´j

“
kxx´pβ´

0p
´nβmqz

‰˙
ejpω0`nωmqt.

(A-21b)

The reflected and transmitted electric fields outside of the slab may be defined as

EB
Rpx, z, tq “ ŷ

8ÿ

n“´8

EB
rnejrpω0`nωmqt´k0n cospθrnqz´k0 sinpθiqxs, (A-22a)

HB
Rpx, z, tq “ 1

η3
rk̂B

R ˆ EB
Rpx, z, tqs

“ r´x̂ cospθrnq ` ẑ sinpθiqs
c

ǫ0ǫr

µ0

EB
rnejrpω0`nωmqt´k0n cospθrnqz´k0 sinpθiqxs,

(A-22b)

EB
Tpx, z, tq “ ŷ

8ÿ

n“´8

EB
tne´jrk0 sinpθiqx´k0n cospθtnqz´pω0`nωmqts, (A-22c)

HB
Tpx, z, tq “ 1

η1
rk̂B

T ˆ EB
Tpx, z, tqs

“ rx̂ cospθtnq ` ẑ sinpθiqs
c

ǫ0ǫr

µ0
EB

tne´jrk0 sinpθiqx´k0n cospθtnqz´pω0`nωmqts.

(A-22d)

We then enforce the continuity of the tangential components of the electromagnetic fields at

z “ 0 and z “ L to find the unknown field amplitudes A˘
0p, EB

rn and EB
tn. The electric field
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continuity condition between regions 2 and 3 at z “ L, E2ypx, L, tq “ E3ypx, L, tq, reduces to

E0δn0e
jk0 cospθiqL ` EB

rne´jk0n cospθrnqL “
8ÿ

p“´8

´
AB`

np e´jpβ`
0p`nβmqL ` AB´

np ejpβ´
0p´nβmqL

¯
, (A-23)

while the corresponding magnetic field continuity condition, H2xpx, 0, tq “ H3xpx, 0, tq, reads

c
ǫ0ǫr

µ0

cospθiqδn0E0ejk0 cospθiqL ´
c

ǫ0ǫr

µ0

cospθrnqEB
rne´jk0n cospθrnqL

“
8ÿ

p“´8

ˆ
´ β`

0p ` nβm

µ0pω0 ` nωmqAB`
np e´jpβ`

0p
`nβmqL ` β´

0p ´ nβm

µ0pω0 ` nωmqAB´
np ejpβ´

0p
´nβmqL

˙
.

(A-24)

Similarly, the electric field continuity condition between regions 1 and 2 at z “ 0, E1ypx, 0, tq “
E2ypx, 0, tq, reduces to

8ÿ

p“´8

`
AB`

np ` AB´
np

˘
“ EB

tn (A-25)

while the corresponding magnetic field continuity condition between regions 1 and 2 at z “ 0,

H1xpx, 0, tq “ H2xpx, 0, tq, reads

8ÿ

p“´8

„
´ β`

0p ` nβm

µ0pω0 ` nωmqAB`
np ` β´

0p ´ nβm

µ0pω0 ` nωmqAB´
np


“
c

ǫ0ǫr

µ0
cospθtnqEB

tn (A-26)

Solving (A-25) and (A-26) for AB`
0p yields (15b). Next solving (A-23), (A-24) and (15b)

for AB´
0p yields (15a). Finally, the total scattered fields outside the slab are obtained by

substituting (15) into (A-22), which yields (17).
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APPENDIX B

Supplemental Material for Chapter 6

General Closed-Form Solution

This section derives the general electromagnetic field solution inside the space-time modulated

isolator in Fig. 6.12.

We start with the Maxwell equations,

∇ ˆ EMpz, tq “ ´µ0
BHMpz, tq

Bt
, (B-1a)

∇ ˆ HMpz, tq “ ǫ0
Brǫeqpt, zqEMpz, tqs

Bt
. (B-1b)

Taking the curl of p12q, using p13q, yields

B2EMpz, tq
Bz2

´ µ0ǫ0
B
Bt

ˆB rǫeqpt, zqEMpz, tqs
Bt

˙
“ 0, (B-2)

which may be expanded in the form of

B2EMpz, tq
Bz2

´ 1
c2

B2

Bt2

ˆ
ǫavEMpz, tq ` ǫm

2
EMpz, tqe´jpκsz´ωst`φq

`ǫm

2
EMpz, tqejpκsz´ωst`φq

˙
“ 0,

(B-3)

Considering BEMpz, tq{Bt “ pjωsqEMpz, tq. Then, (B-3) reduces to

B2EMpz, tq
Bz2

` ω2
s

c2

ˆ
ǫav ` 2ǫmejpκsz´ωst`φq

˙
EMpz, tq “ 0. (B-4)

Next, to find a closed form solution, we consider the below change of variable

W “ 2
?

2ǫmωs

cκs
ejpκsz´ωst`φq{2, t1 “ t (B-5)

and redefine the spatial derivations as
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BEM

Bz
“ BW

Bz

BEM

BW
` Bt1

Bz

BEM

Bt1
“ j

κs

2
W

BEM

BW
, (B-6a)

B2EM

Bz2
“ B

Bz

ˆBEM

Bz

˙
“ B2W

Bz2

BEM

BW
`
ˆBW

Bz

˙2 B2EM

BW 2
(B-6b)

“ ´κ2
s

4

ˆ
W

BEM

BW
` W 2 B2EM

BW 2

˙
. (B-6c)

Therefore, (B-6) simplifies to

B2EM

BW 2
` 1

W

BEM

BW
´
ˆ

1 ` α2

W 2

˙
EM “ 0 (B-7)

which is the modified Bessel differential equation, with

α “ 2ωs
?

ǫav

cκs
. (B-8)

The solution to (B-7) is represented by the first and second modified Bessel function as

EMpW, t1q “ ŷ rApt1qIαpW q ` Bpt1qKαpW qs (B-9)

Electromagnetic Scattering For Forward and Backward Problems

The two unknown coefficients in (B-9), A and B, shall be found separately for forward and

backward problems, by applying the spatial boundary conditions at z “ 0 and z “ L. We

may define the scattered electric fields outside the isolator slab as

EIpz, t1q “ ŷE0e´jpβsz´ωst1q, (B-10a)

EF
Rpz, t1q “ ŷEF

r ejpβsz`ωst1q, (B-10b)

EF
Tpz, t1q “ ŷEF

t e´jpβsz´ωst1q. (B-10c)

The electric field continuity between regions 1 and 2 at W0 “ W pz “ 0q, i.e. E1ypW0, t1q “
E2ypW0, t1q, reads

pE0 ` Erqejωst1 “ Apt1qIαpW0q ` Bpt1qKαpW0q (B-11a)

and the corresponding magnetic field continuity at W0 “ W pz “ 0q, i.e. H1xpW0, t1q “
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H2xpW0, t1q reduces to

´ jβs pE0 ´ Erq ejωst1 “ j
κs

2
W0 rApt1qI 1

αpW0q ` pt1qK 1
αpW0qs (B-11b)

The electric field continuity condition between regions 2 and 3 WL “ W pz “ Lq, i.e.

E2ypWL, t1q “ E3ypWL, t1q, reads

Apt1q.IαpWLq ` Bpt1q.KαpWLq “ Ete
´jpβsL´ωst1q (B-12a)

where WL “ W pz “ Lq. Next, the corresponding magnetic field continuity H2xpWL, t1q “
H3xpWL, t1q reduces to

j
κs

2
WL pApt1q.I 1

αpWLq ` Bpt1q.K 1
αpWLqq “ ´jβsEte

´jpβsL´ωst1q (B-12b)

Solving (B-11) and (B-12) together, using two well-known equalities of bessel functions,

x
d

dx
Iαpxq ¯ αIαpxq “ xIα˘1pxq (B-13a)

x
d

dx
Kαpxq ¯ αKαpxq “ ´xKα˘1pxq (B-13b)

yields unknown coefficients of (B-9), A and B, as given in (6.10) and (6.11).

Then, we may achieve the reflected and transmitted wave coefficients as

Er “ AIαpW0q ´ BKαpW0qe´jωst1 ´ E0 (B-14)

Et “ pA.IαpWLq ` B.KαpWLqq ejpβsL´ωst1q (B-15)
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APPENDIX C

Supplemental Material for Chapter 7

Field and Dispersion Relation Derivation

This section derives the electromagnetic field and dispersion relation following a procedure

similar to that used (but not detailed) in [74].

Due to space-time periodicity, the permittivity can be expanded in the space-time Fourier

series,

ǫpz, tq “
`8ÿ

p“´8

ǫpejppωmt´βmzq, (C-1)

while the electric field can be expanded in the space-time Floquet series

Epz, tq “
`8ÿ

n“´8

Enejωnte´pαn`jβnqz, (C-2)

where ωn “ ω0 `nωm and βnpωq “ β0pωq`nβm, with β0pωq and the En’s being the unknowns

to be found. We will first find the coefficients En, to determine the field in (C-2), and then,

based on this result, determine β0pωq, which provides the dispersion relation.

We start with the wave equation,

B2Epz, tq
Bz2

´ 1
c2

B
Bt

ˆB rǫpz, tqEpz, tqs
Bt

˙
“ 0, (C-3)

where, using (C-1) and (C-2), the product under the double time derivative operator reads

ǫpz, tqEpz, tq

“
`8ÿ

n,p“´8

ǫpEnejpω0`pn`pqωmqte´pαn`jpβ0`pn`pqβmqqz . (C-4)

For a sinusoidally space-time modulated permittivity, ǫpz, tq “ ǫep1 ` δm cospωmt ´ βmzqq
[Eq. (7.1)], Eq. (C-1) reduces to

ǫpz, tq “ ǫe

ˆ
δm

2
e´jpωmt´βmzq ` 1 ` δm

2
e`jpωmt´βmzq

˙
. (C-5)
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Inserting (C-5) into (C-4), and substituting the result and (C-2) into (C-3) yields

`8ÿ

n“´8

ˆ
Enejωnte´pαn`jβnqzppαn ` jβnq2c2 ` ǫeω

2
nq

` δm

2
ω2

n´1Enejωn´1te´pαn`jβn´1qz

` δm

2
ω2

n`1Enejωn`1te´pαn`jβn`1qz

˙
“ 0. (C-6)

Considering that the summation runs from ´8 to `8, this expression may be simplified to

8ÿ

n“´8

ejpωnt´pβn´jαnqzq

ˆ
ppαn ` jβnq2c2 ` ǫeω

2
nqEn

` δm

2
ω2

npEn`1 ` En´1q
˙

“ 0. (C-7)

Since this relation must hold for all the values of z and t, it may finally be expressed as

En´1 ` bnEn ` En`1 “ 0, ´8 ă n ă 8, (C-8)

where

bn “ 2
δm

ˆ
1 ´ pβn ´ jαnq2

k2
en

˙
. (C-9)

where ken “ ωn

?
ǫe{c. To find the En’s for n ă 0, we employ the following set of recursive

equations from (C-8) :

En´1 ` bnEn ` En`1 “ 0, (C-10a)

En´2 ` bn´1En´1 ` En “ 0. (C-10b)

Inserting (C-10b) into (C-10a) gives

En´1 ` bn p´En´2 ´ bn´1En´1q “ ´En`1, (C-11)

and multiplying both sides by En yields

En pEn´1 ` bn p´En´2 ´ bn´1En´1qq
“ ´En`1 p´En´2 ´ bn´1En´1q , (C-12)
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which can be solved for En as

En “ En`1
En´2 ` bn´1En´1

´bn pEn´2 ` bn´1En´1q ` En´1
, (C-13)

and may be rewritten as

En “ En`1
1

´bn ` 1

bn´1`
En´2
En´1

. (C-14)

This relation recursively generalizes to the infinite long division expression

En “ En`1
1

´bn ` 1
bn´1` 1

´bn´2` 1
bn´3`...

. (C-15)

Similarly, to find En for n ą 0, we form from (C-8) the following set of recursive equations :

En´1 ` bnEn ` En`1 “ 0, (C-16a)

En ` bn`1En`1 ` En`2 “ 0. (C-16b)

Following the same procedure as from in (C-10) to (C-14) for n ă 0, yields

En “ En´1
1

´bn ` 1

bn`1`
En`2
En`1

, (C-17)

which generalizes to

En “ En´1
1

´bn ` 1
bn`1` 1

´bn`2` 1
bn`3`...

. (C-18)

Equations (C-15) and (C-18) recursively provide the amplitude coefficients of the space-time

harmonics of the electric field in (C-2) in terms of the excitation electric field E0 and in terms

of the bn coefficients, which themselves depend on δm, ωm and ω0.

Let us now derive the dispersion relation, which essentially corresponds to the unknown

parameter β0 depending on ω in (C-2). First, we write (C-8) for n “ 0, i.e.

E´1 ` b0E0 ` E`1 “ 0. (C-19)

where E´1 and E`1 can also be expressed in terms of E0 using (C-15) for n “ ´1 and (C-18)
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for n “ `1, respectively, transforming (C-19) into

E0

´b´1 ` 1
b´2` 1

´b´3` 1
b´4`...

` b0E0 ` E0

´b1 ` 1
b2` 1

´b3` 1
b4`...

“ 0. (C-20)

Dividing this relation by E0 finally yields

1
´b´1 ` 1

b´2` 1

´b´3` 1
b´4`...

` b0 ` 1
´b1 ` 1

b2` 1

´b3` 1
b4`...

“ 0, (C-21)

which is a relation based on the bn’s in (C-9). For a given set of modulation parameters

pδm, ǫe, ωm, βm, αnq and variables ω0 and β0, Eq. (C-21) provides the dispersion diagram of

the system, βpωq “ β0pωq ` nβm. The resolution is performed numerically, setting ω0 and

finding the corresponding β0 (or vice-versa), and repeating the operation across the frequency

range of interest.

Uplink and Downlink Conversions

For weak modulation, δm ! 1, the wave amplitudes En in (C-15) and (C-18) for | n |ą 1 are

negligible. Moreover, since the leaky-wave antenna is designed to support radiation mostly at

ωr “ ωs`ωm, corresponding to the higher harmonic E`1, the amplitude of the lower harmonic

E´1, corresponding to ωs ´ωm, can be neglected. Then, the system of equations (C-8) reduces

to

b0E0 ` E`1 “ 0, (C-22a)

E0 ` b1E`1 “ 0, (C-22b)

which has non-trivial solution only if

b0b1 “ 1. (C-23)

Solving (C-23) with (C-9) for αn ! βn and δ2
m Ñ 0 (weak modulation) yields

β0 “ ˘βum ˘ δm

4

a
βumβ 1

um, (C-24)

where the upper (positive) signs are for forward (`z) propagation and the lower (negative)

signs are for backward (´z) propagation, β 1
um “ βum ` βm, and βum is given by (7.5). Then,

using (C-22b),

E1 “ δmE0β
1
um

δm

a
βumβ 1

um ´ 2α2
1{β 1

um ´ jα1

`
δm

a
βum{β 1

um ` 4
˘ , (C-25)
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and the uplink power conversion gain reads then

P`1

P0
“
ˇ̌
ˇ̌E`1

E0

ˇ̌
ˇ̌
2

“
ˇ̌
ˇ̌
ˇ

δ2
mβ 12

um

pδm

a
βumβ 1

um ´ 2α2
1{β 1

umq2 ` α2
1

`
δm

a
βum{β 1

um ` 4
˘2

ˇ̌
ˇ̌
ˇ .

(C-26)

Note that in the absence of radiation (α1 “ 0), this expression would reduce to

P`1

P0
“
ˇ̌
ˇ̌βum ` βm

βum

ˇ̌
ˇ̌ , (C-27)

which is the Manley-Rowe relation [200, 201], verifying the conservation of energy in the

space-time modulated system, and indicating power gain since βm ą 0.

A similar procedure provides the corresponding results for the downlink using (C-22a). The

results are

E0 “ δmE1βum

δm

a
βumβ 1

um ´ 2α2
0{βum ´ jα0

`
δm

a
β 1

um{βum ` 4
˘ , (C-28)

and

P0

P`1

“
ˇ̌
ˇ̌ E0

E`1

ˇ̌
ˇ̌
2

“
ˇ̌
ˇ̌
ˇ

δ2
mβ2

um

pδm

a
βumβ 1

um ´ 2α2
0{βumq2 ` α2

0

`
δm

a
β 1

um{βum ` 4
˘2

ˇ̌
ˇ̌
ˇ ,

(C-29)

reducing to the Manley-Rowe relation

P0

P`1

“
ˇ̌
ˇ̌ βum

βum ` βm

ˇ̌
ˇ̌ (C-30)

since α0 “ 0, indicating power loss (βm ą 0).
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