
Titre:
Title:

Towards the exploration strategies by mining Mylyns' interaction
histories

Auteurs:
Authors: Zéphyrin Soh et Yann-Gaël Guéhéneuc

Date: 2013

Type: Rapport / Report

Référence:
Citation:

Soh, Z. & Guéhéneuc, Y.-G. (2013). Towards the exploration strategies by mining
Mylyns' interaction histories (Rapport technique n° EPM-RT-2013-01).

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: http://publications.polymtl.ca/2799/

Version: Version officielle de l'éditeur / Published version
Non révisé par les pairs / Unrefereed

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Maison d’édition:
Publisher: École Polytechnique de Montréal

URL officiel:
Official URL: http://publications.polymtl.ca/2799/

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213621535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://publications.polymtl.ca/2799/
http://publications.polymtl.ca/2799/
http://publications.polymtl.ca/

EPM–RT–2013-01

TOWARDS THE EXPLORATION STRAGEGIES BY

MINING MYLYNS’ INTERACTION HISTORIES

Zéphyrin Soh, Yann-Gaël Guéhéneuc
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

Mai 2013

EPM-RT-2013-01

TOWARDS THE EXPLORATION STRAGEGIES BY
MINING MYLYNS’ INTERACTION HISTORIES

Zéphyrin Soh, Yann-Gaël Guéhéneuc
Département de génie informatique et génie logiciel

École Polytechnique de Montréal

Mai 2013

2013
Zéphyrin Soh, Yann-Gaël Guéhéneuc
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2010
Bibliothèque nationale du Canada, 2010

EPM-RT-2013-01
Towards the Exploration Strategies by Mining Mylyns’ Interaction Histories
par : Zéphyrin Soh, Yann-Gaël Guéhéneuc
Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique : biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue.htm

http://www.polymtl.ca/biblio/catalogue.htm

Towards the Exploration Strategies by Mining

Mylyns’ Interaction Histories

Zéphyrin Soh, Yann-Gaël Guéhéneuc
Department of Computer and Software Engineering

École Polytechnique de Montréal, Canada
Email: {zephyrin.soh, yann-gael.gueheneuc}@polymtl.ca

February 25, 2013

Abstract

When developers perform a maintenance task, they always explore the program, i.e., move
from one program entity to another. However, even though maintenance is a crucial task, the
exploration strategies (ES) used by developers to navigate through the program entities remain
unstudied. This lack of study prevents us from understanding how developers explore a program
and perform a change task, from recommending strategies to developers, and (ultimately) from
critically evaluating a developer’s exploration performance. As a first step towards understanding
ES, we mined interaction histories (IH) gathered using the Eclipse Mylyn plugin from developers
performing a change task on four open-source projects (ECF, Mylyn, PDE, and Eclipse Platform).
An ES is defined and characterized by the way (how) the developers navigate through the program
entities. Using the Gini inequality index on the number of revisits of program entities, we observe
that ES can be either centralized (CES) or extended (EES). We automatically classified interaction
histories as CES or EES and performed an empirical study to ascertain the effect of the ES on
the task duration and effort. We found that, although an EES requires more exploration effort
than a CES, an EES is less time consuming than a CES. Extensive work (number of days spent
performing a task) typically imply a CES. Our results show that developers who follow an EES have
a methodical investigation of source code while developers who follow a CES have an opportunistic
exploration of source code.

Keywords: Software Maintenance, Program Exploration, Interaction Histories, Exploration Strate-
gies, Mylyn

1 Introduction

Software systems must be maintained and evolved to fix bugs and adapt to new technologies and
requirements changes. When developers perform a maintenance task, they always explore the pro-
gram, i.e., navigate through the entities of the program. The purpose of this program navigation is
to find the subset of program entities that are relevant to the maintenance task [21]. Finding the
right set of entities for a task is important for a successful completion of the task [18, 21]. Navigation
information represents a valuable resource for program comprehension and would help better under-
stand developers’ programming strategies [15]. However, even though maintenance is a crucial task,
to the best of our knowledge, the exploration strategies (ES) used by developers to navigate through
the program entities remain unstudied. Understanding developers’ exploration strategies can lead to
the development of new exploration features for Integrated Development Environment (IDE) to assist

1

1 INTRODUCTION

developers during the exploration of the source code [23]. The new exploration features could help re-
duce the developers’ effort to find relevant entities in a program and consequently could improve their
productivity [6]. The exploration strategies can also help to characterize developers expertise i.e., the
difference between exploration strategies can highlight the difference between developers’ experience.

In this report, we analyse developers’ interaction histories collected from four open-source projects
using Mylyn: Eclipse Communication Framework (ECF)1, Mylyn2, Eclipse Plug-in Development En-
vironment (PDE)3, and Eclipse Platform4. Mylyn is an Eclipse plugin that captures all developers’
interactions with the program entities when performing a task. ECF is a framework for building dis-
tributed servers, applications, and tools. Eclipse PDE provides tools to create, develop, test, debug,
build and deploy Eclipse plug-ins. Eclipse Platform defines the set of frameworks and common services
that collectively make up infrastructure required to support the use of Eclipse. We then answer the
following four research questions:

RQ1) Do developers follow specific exploration strategies when performing maintenance tasks?
There are several way in which a developer can interact with entities while performing a mainte-
nance task. This RQ aims to study how developers explore program entities. Two extreme cases
are when the developers concentrate all (most) of his activity on a limited number of entities
and when there is no privileged entity subset. In the latter case all entities are (almost) equally
visited. In this report we are referring to these two extreme cases as the centralized exploration
strategy (CES) and the extended exploration strategy (EES).

A CES is an exploration based on one (or a set of) program entity(ies), called “core entity(ies)”.
These are entities that a developer frequently revisits and concentrates upon. On the contrary,
in an EES strategy, a developer visits program entities with almost the same frequency, i.e.,
there is no set of preferred entities. Based on Robillard et al.’s findings that methodical devel-
opers do not reinvestigate methods as frequently as opportunistic developers [18], we argue that
developers who follow an EES strategy perform a methodical investigation of the source code,
while developers who follow a CES strategy perform an opportunistic exploration.

RQ2) Do specific exploration strategies affect the maintenance time?
A maintenance time is the time spent performing a maintenance task. We conjecture that the
way developers explore the program entities can affect the time spent to perform a maintenance
task. The goal of this RQ is to study whereas exploration strategies affect or not the maintenance
time. An EES is on average 69.39% less time consuming than a CES. Our results is consistent
with Robillard et al.’s findings [18], which state that methodical developers perform the task in
half of the time compared to opportunistic developers. Moreover, opportunistic developers must
guess and read the source code in details [18], which may explain the longer time spent with
CES.

RQ3) Do specific exploration strategies affect the exploration effort?
We measure the exploration effort as the ability of developer to find the program entities to
modify (see Section 3.3.1). We think that finding the program entities that need to be modify
depends on how developers explore the program entities. An EES requires more exploration effort
than a CES. While this observation is surprising, we think that a CES requires less exploration
effort because opportunistic developers make their code modifications in one place [18]. We are

1http://www.eclipse.org/ecf/
2http://www.eclipse.org/mylyn/
3http://www.eclipse.org/pde/
4http://wiki.eclipse.org/Platform/

Exploration Strategies Page 2/24

2 BACKGROUND

aware that other factors such as the architecture, the developer experience, style or preferences
may play an important role. Here, in this first study we limit ourselves to verify if indeed CES
and EES are somehow tied to different effort distribution.

RQ4) Does extensive work results to a specific exploration strategy?
We define an extensive work using the number of days developers work on a maintenance task.
We think that the more days developers work on a task, the more they can follow a specific
exploration strategy. The extensive work usually results to a centralized exploration strategy.
Developers adopt CES for extensive works because they must refresh their knowledge of program
entities.

The reminder of this technical report is organized as follows. Section 2 provides some background
knowledge on the task life-cycle management framework Mylyn and the Gini inequality index used
to identify developers’ exploration strategies. Section 3 describes the design of our empirical study,
including data collection and processing, the identification of exploration strategies, and our analysis
approach. Sections 4 to 7 presents the results of our four research questions and Section 8 discusses
the threats to their validity. We relate our study to previous work in Section 9. Section 10 summarizes
our findings and highlights some avenues for future work.

2 Background

This section presents background knowledge on the Mylyn Plugin used to collect developers’ interac-
tions histories and the Gini Inequality Index used to identify the exploration strategies.

2.1 Mylyn Plugin

Mylyn is an Eclipse plugin that captures developers’ interactions with program entities when per-
forming a task. The definition of a task is the starting point to use Mylyn. The developers must
define a task and activate the current task they are working on. Each developer’s action on a program
entity is recorded as an event. There are eight types of events in Mylyn: Attention, Command, Edit,
Manipulation, Prediction, Preference, Propagation, and Selection [11]. The list of interaction events
triggered by a developer form an interaction history (IH). An interaction history is therefore a se-
quence of interaction events that describe accesses and operations performed on program entities [4].
Interaction histories logs are stored in an XML format. Each interaction history log is identified by a
unique Id (i.e., the task identifier) and contains descriptions of events (i.e., InteractionEvent) recorded
by Mylyn. The description of each event includes: a starting date (i.e., StartDate), an end date (i.e.,
EndDate), a type (i.e., Kind), the identifier of the UI affordance that tracks the event (i.e., OriginId),
and the program entity involved in the event (i.e., StructureHandle). Figure 1 shows an interaction
event extracted from the interaction history #89344 of the Eclipse Platform project.

Figure 1: An example of interaction event from Eclipse Platform’s IH #89344

Exploration Strategies Page 3/24

3 STUDY SETUP

Mylyn also records events that are not directly triggered by developers. However, in this study, we
are interested in developers’ exploration strategies, so we consider only developer’s interaction events:
Selection, Edit, Command, and Preference. Mylyn interaction history logs are compressed, encoded
under the Base64 format, attached to change request reports, and stored in change request tracking
systems.

2.2 Gini Inequality Index

We use the Gini inequality index to investigate exploration strategies. In econometrics, many inequality
indices are used to measure the inequality of income in the society. The Gini inequality index is “one
of the most used indicators of social and economic conditions” [25]. We choose the Gini inequality
index because (1) it has been used in previous software engineering studies [8, 9, 24] and (2) the
mathematical properties of the Gini inequality index presented by Mordal et al. [9] are conform to
the metric that we use as income in Section 3.3.1. In this study, we are interested in the inequality of
revisits among program entities involved in an interaction history. The set of program entities involved
in an interaction history is our population. The income of a program entity is its number of revisits,
which is defined in Section 3.3.1, together with other metrics we used in this technical report.

The Gini inequality index has a value between zero and one. Zero expresses a perfect equality
where everyone has exactly the same income while one expresses a maximal income inequality i.e.,
where only one person has all the income. Xu [25] presented many computational approaches for the
Gini inequality index and mentioned that theses approaches are consistent with one another. These
approaches include geometric, mean difference, covariance, and matrix approaches. Xu [25] mentioned
that theses approaches are consistent with one another. As used in [8, 9], we use the mean difference
approach (see Section 3.3.2) defined as “the mean of the difference between every possible pair of
individuals, divided by the mean size µ”.

3 Study Setup

To investigate exploration strategies (ES), we follow the steps below (summarized in Figure 2):

1. Data collection (Section 3.1)

2. Data parsing (Section 3.2)

3. Exploration strategies identification (Section 3.3)

• Definition of the metrics (Section 3.3.1)

• Identification process (Section 3.3.2)

4. Data Analysis (Section 3.4)

5. RQ1 (Section 4)

6. RQ2 (Section 5)

7. RQ3 (Section 6)

8. RQ4 (Section 7)

Exploration Strategies Page 4/24

3 STUDY SETUP

Extract IH
IH

Parse IH

Parse
StructureHandle

Identification
process

Compute metrics

Strategy Identification
Data analysis

Manual validation

Compromise threshold

Data parsing RQ2

RQ3

RQ4

Data collection

Percentage of ES
RQ1

Figure 2: Overview of the approach

Table 1: Descriptive statistics of the data

Projects
ECF Mylyn PDE Platform All

Number of bugs 138 1603 464 396 2601

Number of IH 158 2309 567 579 3613

Not Java IH 12 68 18 12 110

IH Duration < 0 2 109 8 34 153

IH Duration = 0 82 524 169 198 973

Retained IH 62 1606 372 335 2375

IH <= 2 classes 27 285 204 45 561

IH class level 26 1273 131 275 1705

IH <= 2 files 25 276 183 37 521

IH file level 34 1316 180 293 1823

3.1 Data Collection

We downloaded 3,609 bug reports from Eclipse bug report system5. We consider 2,601 bug reports
from four projects with the highest number of bug reports and at least one interaction history for each
bug. Interaction histories related to a bug are attached to the bug report. We extract the interaction
histories ID of all the attachments with the name “mylyn-context.zip”, which is the default name
given by Mylyn to interaction histories. We downloaded and parsed 3,613 interaction histories. We
clean our data set by removing 110 interaction histories that do not pertain to Java program entities
(see Section 3.2), 153 interaction histories that have at least one event with a negative duration, and
973 interaction histories that have a null duration. We retain 2,375 interaction histories.

Because we are interested to exploration strategy, we think that an exploration strategy cannot be
found with an interaction history in which only one or two program entities are involved. Therefore,
for class (respectively file) levels, we removed 561 (respectively 521) interaction histories in which only
one or two classes (respectively files) were involed. Overall, we kept 1,705 interaction histories for class
level and 1,823 interaction histories for file level. Table 1 presents a description of the data set.

3.2 Data Parsing

We parse the interaction histories to extract useful data. As we are interested in the exploration of
program entities, the name of a program entity on which an event occur is the most important piece
of data which is identified by the StructureHandle attribute for each event (see Figure 1). A program
element can be a resource (XML file, MANIFEST.MF file, properties file, HTML file, etc.) or a
Java program entity (project, package, file, class, attribute, or method). We use the StructureKind
attribute of interaction event to distinguish resource and Java StructureHandles. Figure 3 shows an
example of resource StructureHandle (Figure 3a) and Java StructureHandle (Figure 3b). We consider
only Java StructureHandles and we explain how we parse them in the following Section.

5https://bugs.eclipse.org/bugs/

Exploration Strategies Page 5/24

3 STUDY SETUP

(a) Resources (from PDE’s IH #82914) (b) Java (from ECF’s IH #120570)

Figure 3: An example of StructureHandle

3.2.1 Identification of the Parts of Java StructureHandle

We found that a Java StructureHandle is structured in multiple parts: the project name, an optional
package, file, class, attribute, or method name. We validate the structure of Java StructureHandle in
two ways:

- We follow some IHs and for each interaction event, we navigate through the related source code
and check the presence of each program entity found in the StructureHandle.

- We use the Mylyn plugin when we perform some maintenance tasks on the project that we used
to parse the bugs data. Then, we explore the gathered interaction histories and compare with
the exploration we did.

As Java StructureHandle is well-structured, we use a regular expression to identify all parts of
StructureHandle. Regular expressions is already used by Bettenburg et al. [1] to identify the parts
of stack trace in the bug reports. Figure 4 shows the structure of java StructureHandle. Due to the
containment principle of Java, a StructureHandle cannot contain a package name without a project
name; a file name without a project name and a package name, etc, and we do not need to add many
overlapping optional marks ([]).

Figure 4: The structure of a Java StructureHandle

A Java StructureHandle sometimes starts with the character “=” followed by the name of the
project. Sometimes the name of the project contains “/” and/or “\/”. Since a project can have
more than one source folder, the character “/” indicates the source folder while “\/” indicates the
sub folders. We replace “/” by “.” and “\/” by “/”. Sometimes, the name of the project ends
with “<”. We clean the project name by removing both “=” (at the beginning) and “<” (at the
end). Sometimes, the project also contains the jar file. For example in the PDE IH #82914, many jar
files are in the project name, e.g., org.eclipse.mylyn.context.tests/C:\/eclipse-target-platform\/eclipse-
SDK-I20071113-0800-win32\/plugins\/org.eclipse.pde.core 3.4.0.v20071113-0800.jar. Table 2 shows
the parts of a Java StructureHandle presented in Figure 3b. After the project name, the rest of the
StructureHandle is optional. The package name follows the character “;”. Sometimes, the package
name is empty. It indicates that (1) a program entity is on the root of a source folder or (2) a Java
code containing a program entity is not in a source folder. For example, a developer creates a folder
”test” (not a source folder), and “save” her source code (copy the “src” folder in “test”), then browses
the code in the “test” folder. Anyway, in that case, the name of the package is already in the project
name. So, we just put the name of the project and ignore the name of the package. The file name
follows “{” or “(”. If the file name follows “{”, the file is a Java file, and if the file name follows “(”,
the file is a class file. The class name follows “[”. Sometimes, there are internal classes or enumeration

Exploration Strategies Page 6/24

3 STUDY SETUP

types in the class. So, the class name can contain additional character “[” that separates the class
name and the name of subclass/enumeration type. In case of the presence of subclass/enumeration
type, we replace “[” by “.”. After a class name is an attribute or a method. The attribute name
follows the character “ˆ”, and the method name follows the character “∼”. We use [*] to materialize
the rest of a StructureHandle. We explain below how we use the rest of a StructureHandle.

Part Part Name

Project org.eclipse.ecf.provider.jslp.src

Package org.eclipse.ecf.internal.provider.jslp

File ServicePropertiesAdapter.java

Class ServicePropertiesAdapter

Attribute

Method ServicePropertiesAdapter

Rest ∼QList;

Table 2: Identification of the parts of StructureHandle in Figure 3b

3.2.2 Identification of the Type and Name of a Program Entity

As an event occurs on a program entity which can be a project, package, file, class, attribute, or
method, the whole StructureHandle identify a program entity. Based on the containment principle,
the type of the program entity on which the event occurs is identified by the presence of more internal
part of StructureHandle. The StructureHandle in Figure 3b shows that the event occurs on a method.
Figure 5 shows the examples of StructureHandle corresponding to different type of program entity, i.e.,
project (Figure 5a), package (Figure 5b), file (Figure 5c), class (Figure 5d), and attribute (Figure 5e).

Having identified the type of a program entity and the parts of a StructureHandle, we obtain the
complete name of the entity by using the containment principle (e.g.,, project.package.file.class.method).

Concerning the rest of the StructureHandle, when a developer selects an import declaration in a
file, the event occurs on the file, but the name of the file can be followed by the name of the imported
package, separated by a special character (e.g., #). Well we can have the rest of StructureHandle for
other type of program entity. At this state of the investigation, we limit the depth of the investigation.
Therefore, when an event occurs on a project, package, file, class, or attribute, we consider the rest
of the StructureHandle as a trash, and remove it to the name of the program entity. We define a
regular expression with all the identified special characters (=;{([∼ˆ!|#) to remove the rest of the
StructureHandle. For the event occurs on a method, since we can have different methods with a same
name and different signatures, we use the rest of StructureHandle to distinguish different methods.

3.3 Exploration Strategies Identification

3.3.1 Definition of the Metrics

In the interaction history, an interaction event occurs on a program entity. In object-oriented paradigm,
there are many type of program entity (file, class, method, attribute). We compute the metrics for
each type of program entity. The computation of the metrics for one type of program element is
defined as a level. So, we compute the metrics for file level, class level, attribute level, and method
level. We also take into account the containment principle. For example at file level, we consider all
the events that occurred on the file Foo.java and on the classes, attributes, and methods in the file
Foo.java.

Exploration Strategies Page 7/24

3 STUDY SETUP

(a) Projects (ECF #117973 &
PDE #82914)

(b) Packages (PDE #82914 & Mylyn #81905)

(c) File (Mylyn #103182 & Platform #111733)

(d) Class (Mylyn #84686 & PDE #88323)

(e) Attribute (ECF #74474 & Platform #97747)

Figure 5: Examples of StructureHandle for different types of program entity

We introduce the following notations: Let L be a program entity level, i.e., file, class, attribute,
or method level.

• en ∈ L (is a): en is a program entity at level L, e.g., Foo.java ∈ file.

• ev B el (occur on): an interaction event ev occurs on the program entity en, e.g., an event can
occur on the method foo().

• ev ∈ IH (is a): ev is an interaction event in the interaction history IH.

We define the number of revisits used to identify the exploration strategy as followed:

• Number of revisits: NumRevisit(en) defines the number of time the entity en is revisited, which
is different to the number of events. Consider an interaction history with five interaction events
that occurred on a set of three program entities {en1 , en2 , en3}. If we suppose that the events
occurred in the following order: en1 → en2 → en2 → en3 → en1 . The number of revisits of the
program entities are respectively two, one, and one while the number of events are respectively
two, two, and one.

We also compute the following metrics (if applicable) for each interaction event ev, program entity en,
level L, and interaction history IH:

• Level Duration: a cumulative duration spent on entities at level L.

Exploration Strategies Page 8/24

3 STUDY SETUP

Duration(ev) = EndDate(ev)− StartDate(ev)
Duration(el) =

∑
evBel

Duration(ev)

Duration(L) =
∑

el∈LDuration(el) =
∑
evBel
el∈L

Duration(ev)

• Overall Duration: a duration of interaction history (IH).

Duration(IH) =
∑

ev∈IH Duration(ev)

• Number of events: NumEvent(L) is the total number of user events occurring on entities at
level L.

NumEvent(el) = #ev, ev ∈ UE, ev B el

NumEvent(L) =
∑

el∈LNumEvent(el)

• Number of edit events: a total number of edit events, ev is an edit event if kind(ev) = “Edit”
(see Section 2.1)

NumEdit(ev) =

{
1 if kind(ev) = “Edit”
0 if kind(ev) != “Edit”

NumEdit(el) =
∑

evBel
NumEdit(ev)

NumEdit(L) =
∑

el∈LNumEdit(el)

• Exploration effort: we use an edit ratio to measure the exploration effort. An edit ratio is a
number of edit divided by the number of events. It relates to the identification of the right
program entities to edit.

EditRatio(el) = NumEdit(el)
NumEvent(el)

3.3.2 Identification Process

We explain the process to identify exploration strategy below.

Income for Inequality Index

We use the Gini inequality index for identification of exploration strategy. As Gini inequality index
works with incomes (see Section 2.2), we use the number of revisits of program entities as income to
compute the Gini inequality index. We calculate the Gini inequality index as follows (n is the total
number of visited entities):

Gini = 1
2n2µ

n∑
i=1

n∑
j=1
| NumRevisit(eni)−NumRevisit(enj) |

We use the Gini inequality index to find if there exists any (un)equality between visited entities.
We must define a threshold to determine whereas entities are equally or unequally revisited.

Exploration Strategies Page 9/24

3 STUDY SETUP

Exploration Strategies Identification and Thresholds

We plot all Gini values and we did not find a value (pic) that can be used as threshold i.e., that split
the interaction histories into two groups. Therefore, we use 10 threshold values ranging from 0.1 to 1
per step of 0.1. We identify the threshold as explain in Section 4. We identify exploration strategies
as follows:

• If the Gini value is less than the threshold, the visited entities are almost equally revisited. Thus,
the developer explored the program entities almost equally. We say that the exploration strategy
is extended (EES).

• If the Gini is greater or equal to the threshold, it means that the revisits are concentrated on a
few program entities, i.e., core entities. Thus, we can split the visited entities into two groups,
the more revisited group (core entities) and the less revisited one (periphery entities). We say
that the exploration strategy is centralised (CES).

Cut-off Point

After the identification of exploration strategy, we should define the splitting process to identify the
principal elements. The splitting process is performed only if the exploration strategy is centralized.
We define a Cut-off Point (COP) to split the visited entities into two groups (core and periphery) as
follows: we order the visited entities by NumRevisit from high to low values and we define the COP
as the maximum difference between NumRevisit of two consecutive entities. Formally, if the visited
entities are eni , i = 1, . . . ,m, and we use i′ to iterate on the ordered entities, i.e., NumRevisit(eni′) ≥
NumRevisit(eni′+1

), i′ = 1, . . . ,m− 1, then:

COP = max
1≤i′<m

NumRevisit(eni′)−NumRevisit(eni′+1
)

After the identification of exploration strategy, we should define the splitting process to identify the
principal elements. The splitting process is performed only if the exploration strategy is centralized.
We define the Cut-off Point (COP) as the point to split the visited elements into two groups. The
COP is identify as follow:

If we find two COPs, we use the COP that provide more principal entity. For example, if we have
the following NumRevisit 16, 11, 9, 4, 2 with Gini values greater than the considered threshold, the
maximum difference between consecutive values is 5. we obtain two COP= 5, between 16 and 11 and
between 9 and 4. In such case, we choose the COP between 9 and 4 and the core entities are those
with NumRevisit greater or equal to 9 (i.e., 16, 11, and 9).

3.3.3 Confounding Factor

Developers explore the program by following different kind of relationships [23] and using key bind-
ing [10]. We conjecture that the architecture of the system can affect the exploration strategy. To
address this confounding factor, we compute the number of common entities between each pair of
interaction histories. The program entities involved in an IH, including the relations between them
are the part of the system used to perform a task. Thus, the common parts between IHs is captured
by the number of common entities. If it is true that developers are guided only by the architecture,
then two IHs that were explored using different ES will have few common entities compare to IHs
explored using the same ES.

Exploration Strategies Page 10/24

4 DO DEVELOPERS FOLLOW SPECIFIC EXPLORATION STRATEGIES WHEN
PERFORMING MAINTENANCE TASKS?

3.4 Analysis Method

To answer our first research question on the identification of exploration strategies (i.e., RQ1), we
proceed in two steps: (1) we randomly sample the interaction histories and we manually validate the
sample (oracle). The validation is done at class level; and (2) we choose a compromise threshold value
with high precision and recall. When sampling, we ensure to cover a varied number of program entities
and the different versions of the projects. We also avoid selecting multiple interaction histories from
a same bug. We choose the sample size in order to achieve a 95%±10 confidence level. Because of
the small number of data from the ECF project in our data set, we consider half of ECF interaction
histories in our sample (instead of two as suggested by the sample size). Three students manually
validated all CES and EES in the samples. We compute the precision and recall for each threshold.
The subjects were enrolled in the PhD program in software engineering at the École Polytechnique de
Montréal. They already completed at least two years and a half of their program and used Java in
their research projects. We consider the percentage of CES and EES of the compromise threshold to
answer RQ1.

To investigate the effect of exploration strategies on maintenance tasks (RQ2, RQ3, and RQ4),
we perform an unpaired version of the non parametric Wilcoxon rank sum test. The Wilcoxon rank
sum test is a non-parametric statistical test to assess whether two independent distributions have
equally large values. We use a non-parametric test because our data is not normally distributed. For
all statistical tests, we use a 5% significance level (i.e., α = 0.05).

4 Do developers follow specific exploration strategies when perform-
ing maintenance tasks?

We answer this question by following the method defined in Section 3.4. For the first step, three
students manually validated the exploration strategies of a random set of interaction histories. Table 3
presents the size of the samples for each project.

Table 3: Validation samples, precision and recall values for the compromise Gini’s threashold

Products
ECF Mylyn PDE Platform

Sample size 13 68 7 16

Undecided 0 1 1 1

Precision
CES 1 0.89 1 0.87
EES 0.8 0.76 1 0.71

Recall
CES 0.60 0.60 1 0.77
EES 1 0.94 1 0.88

To validate the exploration strategies, we generated the Graphviz [3] representation of the interac-
tion histories. Then, we use Graphviz to generate PNG file. Grapviz6 is an open-source graph visual-
ization software. Sometimes, some generated Graphviz files encountered the errors when Graphviz try
to generate PNG files. These errors were related to the restrictions7 in the name of the Graphviz node
or the graphs that are too large8. We remove these files before choose the random set of interaction
histories.

6http://www.graphviz.org/
7For example the character $ in the name of the .class file
8Error message “graph is too large for cairo-renderer bitmaps”

Exploration Strategies Page 11/24

4 DO DEVELOPERS FOLLOW SPECIFIC EXPLORATION STRATEGIES WHEN
PERFORMING MAINTENANCE TASKS?

We explained to the subjects that a graph represents the exploration between program entities. The
nodes are the program entities and the arrow between two nodes represents a developers’ movement
from one program entity to another. We asked the subjects to say if the exploration graphs are
centralized, extended, or if they have a doubt. At the end of the validation, we asked each subject
to explain their choice, using the following questions: (1) How did you judged that a graph was
centralized or extended? (2) Why did you had a doubt on some graphs? Subjects comments were
about counting the number of in-out arrows and the number of entities involved in the graphs. Their
identification process is consistent with the definition of the Gini inequality index: when the number
of program entities is high and some of them mainly revisited, the Gini inequality index is also high,
characterizing a CES.

Based on the subjects’ data, we decided that an exploration strategy is centralized (or extended) if
at least two subjects identified the corresponding graph as centralized (or extended). The undecided
cases where all subjects had different interpretations, or where at least two subjects had a doubt, were
removed from the study. In total, we had three undecided cases (see Table 3).

For step two, we define a compromise Gini threshold. The percentage of exploration strategies
obtained for threshold values ranging from 0.1 to 1 per step of 0.1 is presented in Figure 6 for class
level (Figure 6a) and file level (Figure 6b). Because we want to maximize both precision and recall,
we compute the F-Measure for the threshold values around 0.3 as follow:

F-Measure = 2. precision.recallprecision+recall

(a) Class level

(b) File level

Figure 6: Percentage of exploration strategies per threshold

Figure 7 shows the distribution of the F-Measure for class level validation. It indicates that the

Exploration Strategies Page 12/24

4 DO DEVELOPERS FOLLOW SPECIFIC EXPLORATION STRATEGIES WHEN
PERFORMING MAINTENANCE TASKS?

identification of exploration strategies is most accurate at 0.4 threshold. Therefore, we consider the
value 0.4 as a compromise threshold both for class and file level in the reminder of this technical report.

Figure 7: F-Measure per threshold for the validation sample

According to the compromise threshold, Tables 4 and 5 presents the percentage of exploration
strategies for class and file level respectively (LD=Level Duration, OD=Overall Duration, EW=Extensive
Work).

Table 4: Percentage of exploration strategies (ES) and p-values for class level

ES p-values
% LD OD EditRatio EW

ECF
CES 4 15.38

0.028 0.065 0.12 0.036
EES 22 84.61

Mylyn
CES 306 24.03

<2.2e-16 <2.2e-16 < 2.2e-16 <2.2e-16
EES 967 75.96

PDE
CES 31 23.66

2.6e-08 1.4e-07 4.1e-05 1.1e-08
EES 100 76.33

Platform
CES 137 49.81

1.5e-09 4.3e-07 9.9e-12 2.2e-07
EES 138 50.18

All
CES 478 28.03

< 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
EES 1227 71.96

Figures 8 and 9 show examples of CES and EES for class level. Because the architecture of the
system can affect the exploration strategy, we study the number of common entities for each pair
of ES. We focus the study of the architecture effect on the class level because the object oriented
paradigm allow the relations between classes and not between files. Except for the Platform project
(p-value = 1.1e-06), the number of common entities is not statistically different between the pairs of
different ES and the pairs of same ES (ECF: p-value = 0.34, Mylyn: p-value = 1, PDE: p-value = 1).
Without distinguish the project, there is no statistical significant difference (p-value = 1). Therefore,
architecture does not affect the ES.�

�
�
�

Observation 1: Developers follow mostly the EES exploration strategy when performing a
maintenance task.

Exploration Strategies Page 13/24

5 DO SPECIFIC EXPLORATION STRATEGIES AFFECT THE MAINTENANCE TIME?

Table 5: Percentage of exploration strategies (ES) and p-values for file level

ES p-values
% LD OD EditRatio EW

ECF
CES 5 14.70

0.29 0.33 0.20 0.10
EES 29 85.29

Mylyn
CES 282 21.42

<2.2e-16 <2.2e-16 < 2.2e-16 <2.2e-16
EES 1034 78.57

PDE
CES 24 13.33

3.1e-07 6.3e-07 2.3e-07 4.03e-10
EES 156 86.66

Platform
CES 122 41.63

7.9e-09 2.08e-08 <2.2e-16 3.1e-8
EES 171 58.36

All
CES 433 23.75

< 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
EES 1390 76.24

The exploration strategy concept is consistent with Robillard et al. [18] findings that state that
methodical developers do not reinvestigate methods as frequently as opportunistic developers. The
number of revisits used to identify exploration strategies somehow measures/correlates to the rein-
vestigation frequency. Therefore, we argue that an EES is followed by methodical developers while a
CES is followed by opportunistic developers. Moreover, Robillard et al. [18] argue that methodical de-
velopers seem to answer specific questions using focussed search, while opportunistic developers guess
and read the source code in details. Because finding focus points and expanding them are some of the
steps that developers follow during maintenance tasks [21], we think that the EES strategy is a linear
pattern of focus point expansion, while the CES strategy is a star pattern of focus point expansion.

5 Do specific exploration strategies affect the maintenance time?

In RQ1, we found that developers follow different exploration strategies when performing maintenance
tasks. We conjecture that these strategies can affect the time spent to perform a task. In fact, when
developers explore the source code, their exploration can reflect their mental model and the difficulties
that they have to understand the code and perform a task. In this research question, we investigate
at class and file levels and on the whole task, whether the time spent by developers to perform a task
is affected by their exploration strategies.

Tables 4 and 5 show that there is significant difference (at class/file level and overall) between the
time spent when following CES and EES. In general, the exploration strategy affects both the
duration at class/file level and the overall duration. When we study the effect of exploration
strategies on the duration of each project individually, at class level, there is no statistical difference
in overall duration between CES and EES for the ECF project. At file level, there is no statistical
difference in file level duration and overall duration between CES and EES. We think that the case of
the ECF project is possibly because there are only 26 (respectively 34) interaction histories at class
(respectively file) level.

Without distinguishing the projects, we found that the CES is the most time consuming
strategy for both class/file level durations and overall durations. The mean (and standard deviation)
of class level durations for CES is 35,250 (121,324.7) sec. vs. 6,170 (24,061.21) sec. for EES. The
mean (and standard deviation) of file level durations for CES is 42,260 (116,404.7) sec. vs. 14,440
(83,232.1) sec. for EES.

Exploration Strategies Page 14/24

6 DO SPECIFIC EXPLORATION STRATEGIES AFFECT THE EXPLORATION EFFORT?

Figure 8: An example of CES (IH #90442 from Platform)

�
�

�
�

Observation 2: For the class (respectively file) level duration, the EES strategy is on
average 82.49% (respectively 65.83%) less time consuming than the CES strategy.

At class level, the mean (and standard deviation) of the overall duration for CES is 53, 790 (167,
804.7) sec. vs. 16, 460 (80, 629.34) sec. for EES. At file level, the mean (and standard deviation) of
the overall duration for CES is 48,500 (132,372) sec. vs. 18,160 (100,692.7) sec. for EES.�

�
�
�

Observation 3: For the overall duration, the EES strategy is on average 69.39% (respec-
tively 62.55%) less time consuming than the CES strategy at class and file level respectively.

Figure 10 shows the difference between the logarithm of the overall duration of CES and EES
strategies for each of our studied systems.

Our result are in agreement with the findings of Robillard et al. [18], which states that the me-
thodical investigation of a source code does not require more time than an opportunistic investigation.
Moreover, methodical developers performs tasks two times faster than others [18]. Therefore, an EES
that is less time consuming is likely to be related to a methodical investigation of the source code
while a CES may be the result of an opportunistic investigation of the source code. The fact that
opportunistic developers guess and read the source code in details could be a justification for the time
spent. On the contrary, the less time spent when following an EES may be because developers who
follow an EES look at explicit program entity(ies).

6 Do specific exploration strategies affect the exploration effort?

Similarly to RQ2, we think that the exploration strategy can affect developers’ exploration effort. By
definition (see Section 3.3.1), a low value of EditRatio indicates a small number of edit events and

Exploration Strategies Page 15/24

7 DOES EXTENSIVE WORK RESULTS TO A SPECIFIC EXPLORATION STRATEGY?

Figure 9: An example of EES (IH #72336 from Mylyn)

a high number of other events: the developer spent more exploration effort. When the EditRatio is
high, the developer spent less exploration effort and performed edit events more frequently.

As shown in Tables 4 and 5, except for the ECF project, developers’ exploration efforts are sig-
nificantly different for CES and EES. By investigating the less costly exploration strategy in term of
exploration effort, Figure 11 show that the exploration effort of EES is always smaller than that of
CES for all projects.�

�
�
�Observation 4: An EES strategy requires more exploration effort than a CES strategy.

These results indicate that a methodical approach requires more exploration effort, which is surpris-
ing because methodical developers are successful developers compared to opportunistic developers [18].
However, the fact that opportunistic developers make their code modifications in one place [18] can
justify the reduced exploration effort for a CES. Indeed, it is likely that opportunistic developers
could start editing program entities before fully understanding the program and then could have to
revert/modify their previous edits as they explore more program entities. In future work, we plan to
map interaction history modifications (edit events) and commit modifications from the source code
repository to compare real modifications of the source code with revert/cancelled modifications that
we expect to be frequent with CES.

7 Does extensive work results to a specific exploration strategy?

Sometimes, and particularly in open-source projects, developers are volunteers. Therefore, they ad-
dress the tasks (e.g., bug fixing) that are assigned to them on their spare time. Hence, they can work

Exploration Strategies Page 16/24

7 DOES EXTENSIVE WORK RESULTS TO A SPECIFIC EXPLORATION STRATEGY?

(a) Class level (b) File level

Figure 10: Overall duration per project

(a) Class level (b) File level

Figure 11: Difference on exploration effort

on a change request for several days. By extensive work, we mean that the number of days (from an
interaction history) spent by a developer on a change request is greater than three days. In this study,
working days are consecutive or not.

We use the Wilcoxon unpaired test and found that, according to the number of working days,
there is a statistical significant difference between CES and EES at class level (see Table 4). There is
no significant difference for ECF product at file level (see Table 5). When we study the percentage of
interaction histories per number of working days, Tables 6 and 7 show that developers work for one or
two days on about 75% of interaction histories and more than two days on about 25% of interaction
histories. Even with this unbalanced proportion, the distribution of the logarithm of duration (see
Figure 12) shows that the more days developers work on a change task, the more time they spend on
program entities.

Table 6: Percentage of interaction history per number of working days for class level

Number of working days
1 2 3 4 5 6 7

ECF 69.23 15.38 15.38 0 0 0 0

Mylyn 54.43 22.54 11.07 5.34 4.24 1.72 0.62

PDE 56.48 20.61 12.21 6.87 3.05 0.76 0

Platform 38.90 22.18 12.36 6.54 10.54 2.18 7.27

All 52.31 22.22 11.43 5.57 5.10 1.70 1.64

According to RQ2, a CES is more time consuming. More time spent for more working days

Exploration Strategies Page 17/24

8 THREATS TO VALIDITY

Table 7: Percentage of interaction history per number of working days for file level

Number of working days
1 2 3 4 5 6 7

ECF 67.64 17.64 14.70 0 0 0 0

Mylyn 55.24 22.49 10.71 5.16 4.10 1.67 0.60

PDE 67.22 16.66 8.33 5 2.22 0.55 0

Platform 41.63 21.84 11.60 6.14 9.89 2.04 6.82

All 54.47 21.72 10.69 5.21 4.77 1.59 1.53

indicates that a CES is probably the most followed strategy when a task spans multiple working days,
as shown on Figure 13. Therefore, at class level (see Figure 13a) we conclude that when developers
work on maintenance tasks for less than three days, more often, they follow an EES. On the contrary,
when a maintenance task spans four or more days (i.e., is extensive), developers follow the centralized
exploration strategy frequently. The same result is find at file level but the work is consider as extensive
when developers work for more than five or more days (see Figure 13b).

(a) Class level (b) File level

Figure 12: Distribution of duration per number of working days

�
�

�
�Observation 5: The extensive work usually results to a centralized exploration strategy.

We think that two reasons can justify why more extensive works result into more CES. First, when
the work is extensive, developers try to (re)understand the entities that they explored before. So, they
refresh their mind by (re)exploring the core entities. Second, when a developer re-activates a task on
which she was already working, all the entities in the context of the task are reloaded by Mylyn and
the developer usually (re)explore these entities before moving on new entities. This feature of Mylyn
is likely to push developers to (re)explore entities already explored in previous working sessions.

8 Threats to Validity

As any empirical study, many threats can affect the validity of our findings. We discuss them in this
section.

Exploration Strategies Page 18/24

8 THREATS TO VALIDITY

(a) Class level (b) File level

Figure 13: Percentage of exploration strategies per number of working days

8.1 Construct Validity

Construct validity threat is related to the identification of exploration strategies and the metrics that
we use to measure their impact on maintenance tasks. Gini inequality index is recognized to be a
reliable measure of inequality and has already been applied in software engineering. The number of
revisits defines how much a program entity is relevant for a developer’s task. A wrong computation
of the number of revisits could affect our study. We mitigate this threat by computing the number
of revisits only for developers’ interaction events, instead of considering also Mylyn prediction events.
We based our selection of a compromise Gini threshold on a manual validation. A manual validation is
subjective and depends on the way Graphviz displays the exploration graphs. We address this threat
by using an odd number of subjects. Moreover, we had few undecided validation cases: subjectivity
of the manual validation process did not affect our study. For graph displays, we have no control
on Graphviz, however, all subjects worked on the same displayed graphs. For threats related to our
metrics; because some developers can partly record their interaction histories, we think that for some
cases the time recorded can be different from the “real” time spent. We plan to perform an experiment
and collect data to investigate this threat.

8.2 Conclusion Validity

Conclusion validity threat concerns possible violations of the assumptions of the statistical tests, and
the diversity of data used. To avoid violating the assumptions of our statistical tests, we use an un-
paired version of the non-parametric Wilcoxon test because it makes no assertion about the normality
of the data. Concerning the diversity of the data, our study is based on real open-source projects; we
think that many developers with different expertise are involved in these projects. Moreover, theses
projects evolved differently and have different developers. They have different sizes and complexity.

8.3 Internal Validity

Internal validity threat relates to the tools used to collect interaction histories and the choice of
the projects. Many tools [12, 19] can collect developers’ interactions with the IDE. We use Mylyn’s
interaction histories because (1) Mylyn is an industrial tool provided as an Eclipse’s plug-in and (2)

Exploration Strategies Page 19/24

9 RELATED WORKS

all contributions to Mylyn must be made using Mylyn9, i.e., in contrast to other tools, the Mylyn
interaction histories are available. Concerning the projects, because we use the Mylyn interaction
histories, we are constrained to use projects that have Mylyn interaction histories available. Thus, we
use the top four projects using Mylyn to gather developers’ interactions.

8.4 External Validity

External validity threat concerns the generalization of our results. In our study, we used Mylyn
interaction histories gathered from four Eclipse-based projects. More investigations should be done
using (1) data collected with other tools and (2) other non-Eclipse projects.

8.5 Reliability Validity

Reliability validity threat concerns the possibility of replicating this study. All data used in this study
are available online for the public.

Finally, it is the authors opinion that it pays to be cautious as the sub population of developers
working with Mylyn and recording interaction history is a specific developer sub population. Findings,
even if interesting may or may not be representative of the general developers population. This is a
first study investigating if indeed different exploration strategies impact (at least in the case of Mylyn
aware developers) the time and effort in maintenance tasks. More work is needed, for example to
verify if there are more fine grain exploration strategies or to verify if other metrics beside the Gini
index, possibly including developers experience, application architecture and complexity, may help to
better model and understand the underlying phenomenon.

9 Related Works

Our work on exploration strategies is related to works on (1) program explorations, (2) mining of
developer’s interaction histories, and (3) software engineering studies using the Gini inequality index.

9.1 Program Exploration and Tools

Robillard et al. [18] performed an exploratory study of program investigation behaviors using five
developers performing a maintenance task on a real life software system. Using recorded videos
of the developers performing the task, they compared the investigation behaviors of successful and
unsuccessful developers. They concluded that, while successful developers seems to investigate the
source code methodically and answer specific questions using focussed searches, unsuccessful developers
exhibits a more opportunistic approach. Our study differs from Robillard et al.’s study because we
consider the interaction history of multiple developers, gathered by the Mylyn plug-in from four open-
source software projects.

The Mylyn plug-in was developed by Kersten et al. [4, 5, 6] to capture developers’ interactions
with program entities when they perform a task using Eclipse IDE. Later on, Röthlisberger et al.
implemented SmartGroups [19] to complement Mylyn with evolutionary and dynamic information.
Similar to Mylyn, CodingTracker [12] is another Eclipse plug-in that records developers’ interactions
with program entities. However, to date, only few projects have adopted CodingTracker. Moreover,
we couldn’t find developers’ interaction logs from CodingTracker in any open source version control
system that we examined. Hence our choice of Mylyn for this study. Interaction history data collected

9http://wiki.eclipse.org/index.php/Mylyn/Contributor Reference#Contributions

Exploration Strategies Page 20/24

10 CONCLUSION AND FUTURE WORK

from multiple Eclipse projects, using Mylyn are publicly available in the version control system of
Eclipse.

9.2 Mining Interaction Histories

Interaction history logs have been used by the research community to study developers’ programming
behaviors and propose new tools to ease their daily activities.

Zou et al. [28] mined interaction history logs to study the impact of interaction couplings on main-
tenance activities. They conclude that restructuring activities are more costly than other maintenance
activities. Parnin and Rugaber [14] used interaction logs to identify strategies used by developers to
manage task interruptions. In another work [13], they proposed a technique to extract the usage
context of a task when it has been interrupted. Coman and Sillito [2] proposed an approach to au-
tomatically infer task boundaries and split developers’ sessions. Schneider et al. [20] investigated the
benefits of tracking developers’local interactions history when developing in a distributed environment.
Murphy et al. [10] mined Mylyn interaction history logs collected from 41 programmers and observed
that some views of the Eclipse IDE were more useful than others. Mylyn interaction histories are also
used to find developers editing styles/patterns [26, 27]; Ying and Robillard [26] found that the kind
of a task can impact the editing style of developers and Zhang et al. [27] identified four file editing
patterns that they argue can affect the quality of a software system. Most previous studies on Mylyn
interaction histories only considered the kinds of the Mylyn events. In this work, we investigates
Mylyn events in more details by looking at the type of program entities on which an events occurred.

Concerning the features and tools built from interaction histories, Singer et al. [23] proposed
the tool NavTrack that uses selection and open events on a file to discover hidden dependencies
between files and make recommendations about files that are related to a file of interest. Robbes
and Lanza [16, 17] also relied on change history logs to propose a code completion technique that
can reduce programmers’ scrolling efforts. They also proposed the Spyware visualization tool to
graphically display the change history of developers’ sessions [15]. Instead of building a tool, we
investigates developers’ exploration strategies. The results of our study can be used to develop new
features to guide developers during their explorations of program entities.

9.3 Gini Inequality Index in Software Engineering Studies

Mart́ınez-Torres et al. [8] studied the structure and the evolution of virtual development teams in
OSS (Open Source Software) using the Gini Inequality index. They mined the mailing list of open-
source development teams and applied the Gini inequality index on the number of mails shared by
contributors. They found inequalities between contributors and argued that the OSS development
community is organized in a core/periphery topology where the core is composed of regular contributors
and the periphery contains free rider contributors. Vasa et al. [24] used the Gini inequality index
to analyse software metrics. They found that the Gini inequality index of software metrics hover a
bounded value space and that “theses values are remarkably consistent as a project evolves over time”.

10 Conclusion and Future Work

When developers perform a maintenance task, they always explore the program entities. Studying the
way in which exploration is performed can help to improve our knowledge on developers’ comprehension
process and characterize developers’ expertise. As a first step towards understanding exploration
strategies, we mined 1,705 Mylyn’s interaction histories. We applied the Gini inequality index on
the number of program entity revisits. We found that developers’ follow both centralized exploration

Exploration Strategies Page 21/24

REFERENCES

strategy (CES) and extended exploration strategy (EES) when they perform a change task. Although
an EES requires more exploration effort than a CES, an EES is on average 69.39% less time consuming
than a CES. We also found that work items taking up more than three days typically imply a CES.

According to the source code investigation results presented by Robillard et al. [18], and the
opportunistic program comprehension strategy defined by Littman et al. [7], we argue that (1) because
an EES results to less time consuming (RQ2) and more exploration effort (RQ3), an EES is followed
by methodical developers and (2) on the contrary, because a CES results to more time consuming
(RQ2) and less exploration effort (RQ3), a CES is followed by opportunistic developers.

We think that the strategy followed by developers depends on the complexity of the task and the
systems. We plan to investigate in our future work the impact of the complexity of the task/systems
on ES. Also, we conjecture that an EES could be followed by experienced developers while CES is
the inexperienced developers’ strategy. We plan to look at this conjecture. In addition to the relation
between exploration strategy and the complexity of the tasks/projects, and developers’ expertise, we
will study the structure of the core entity(ies), i.e., by somehow characterizing core entity(ies); they
may play a specific role and be related to best practices such as design patterns. Because we think
that the way developers explore a program is related to the evolution of their mental model, we will
investigate the relation between exploration strategies and the understanding of a program over time,
i.e., if the more the developers work on a project, the more their exploration become CES or EES.
We will also refine the strategy at method level and study how developers move through different kind
of program entities [22]. Finally, we plan to link the interaction history to bug fixing (source code
repository) to see how much is the gap between edit events in interaction histories and committed edit
events.

Acknowledgment

This work has been partly funded by the Canada Research Chairs on Software Patterns and Patterns
of Software and on Software Change and Evolution. We also thanks the subjects for the manual
validation of exploration strategies.

References

[1] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Extracting structural information from
bug reports. In Proceedings of the 2008 International Working Conference on Mining Software
Repositories, pages 27–30, 2008.

[2] I. Coman and A. Sillitti. Automated identification of tasks in development sessions. In The 16th
IEEE International Conference on Program Comprehension, pages 212–217, 2008.

[3] E. R. Gansner and S. C. North. An open graph visualization system and its applications to
software engineering. SOFTWARE - PRACTICE AND EXPERIENCE, 30(11):1203–1233, 2000.

[4] M. Kersten. Focusing knowledge work with task context. PhD thesis, The University of British
Columbia, 2007.

[5] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model for ides. In Proceedings of the 4th
International Conference on Aspect-oriented Software Development, AOSD ’05, pages 159–168,
2005.

Exploration Strategies Page 22/24

REFERENCES

[6] M. Kersten and G. C. Murphy. Using task context to improve programmer productivity. In
Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 1–11, 2006.

[7] D. Littman, J. Pinto, S. Letosky, and E. Soloway. Mental models and software maintenance. In
Empirical Studies of Programmers, pages 80–98, 1986.

[8] M. R. Mart́ınez-Torres, S. L. Toral, F. Barrero, and F. Cortés. The role of internet in the
development of future software projects. Internet Research, 20(1):72–86, 2010.

[9] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and S. Ducasse. Software quality
metrics aggregation in industry. Journal of Software: Evolution and Process, 2012.

[10] G. C. Murphy, M. Kersten, and L. Findlater. How are java software developers using the eclipse
IDE? IEEE Software, 23(4):76–83, July 2006.

[11] Mylyn. http://wiki.eclipse.org/mylyn integrator reference.

[12] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig. Is it dangerous to use version
control histories to study source code evolution? In 26th European Conference on Object-Oriented
Programming (ECOOP), 2012.

[13] C. Parnin and C. Görg. Building usage contexts during program comprehension. In 14th IEEE
International Conference on Program Comprehension, pages 13–22, 2006.

[14] C. Parnin and S. Rugaber. Resumption strategies for interrupted programming tasks. Software
Quality Journal, 19(1):5–34, 2011.

[15] R. Robbes and M. Lanza. Characterizing and understanding development sessions. In Interna-
tional Conference on Program Comprehension, pages 155–166, 2007.

[16] R. Robbes and M. Lanza. How program history can improve code completion. In International
Conference on Automated Software Engineering, pages 317–326, 2008.

[17] R. Robbes and M. Lanza. Improving code completion with program history. Automated Software
Engineering, 17(2):181–212, June 2010.

[18] M. P. Robillard, W. Coelho, and G. C. Murphy. How effective developers investigate source code:
An exploratory study. IEEE Transactions on Software Engineering, 30(12):899–903, December
2004.

[19] D. Röthlisberger, O. Nierstrasz, and S. Ducasse. Smartgroups: Focusing on task-relevant source
artifacts in IDEs. In IEEE 19th International Conference on Program Comprehension, pages
61–70, june 2011.

[20] K. A. Schneider, C. Gutwin, R. Penner, and D. Paquette. Mining a softare developers local inter-
action history. In Proceedings of the 2004 international workshop on Mining Software Repositories,
2004.

[21] J. Sillito, G. C. Murphy, and K. D. Volder. Asking and answering questions during a programming
change task. IEEE Transactions on Software Engineering, 34(4):434–451, July/August 2008.

[22] S. E. Sim, S. Ratanotayanon, and L. Cotran. Structure transition graphs: An ecg for program
comprehension? In International Conference on Program Comprehension, pages 303–304, 2009.

Exploration Strategies Page 23/24

REFERENCES

[23] J. Singer, R. Elves, and M. A. Storey. Navtracks: Supporting naviga-tion in software maintenance.
In International Conference on Software Maintenance, pages 325–334, 2005.

[24] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz. Comparative analysis of evolving software sys-
tems using the gini coefficient. In Proceedings of the IEEE International Conference on Software
Maintenance, pages 179–188, sept. 2009.

[25] K. Xu. How has the literature on gini’s index evolved in the past 80 years? Technical report,
Department of Economics, Dalhouse University, Halifax, Nova Scotia, Dec. 2004.

[26] A. Ying and M. Robillard. The influence of the task on programmer behaviour. In IEEE 19th
International Conference on Program Comprehension, pages 31–40, june 2011.

[27] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan. An empirical study of the effect of file editing
patterns on software quality. In WCRE, pages 456–465, 2012.

[28] L. Zou, M. Godfrey, and A. Hassan. Detecting interaction coupling from task interaction histories.
In 15th IEEE International Conference on Program Comprehension, pages 135–144, 2007.

Exploration Strategies Page 24/24

	EPM-RT-2013-01_Soh
	130225 - TechReport.pdf
	Introduction
	Background
	Mylyn Plugin
	Gini Inequality Index

	Study Setup
	Data Collection
	Data Parsing
	Identification of the Type and Name of a Program Entity

	Exploration Strategies Identification
	Definition of the Metrics
	Identification Process
	Confounding Factor

	Analysis Method

	Do developers follow specific exploration strategies when performing maintenance tasks?
	Do specific exploration strategies affect the maintenance time?
	Do specific exploration strategies affect the exploration effort?
	Does extensive work results to a specific exploration strategy?
	Threats to Validity
	Construct Validity
	Conclusion Validity
	Internal Validity
	External Validity
	Reliability Validity

	Related Works
	Program Exploration and Tools
	Mining Interaction Histories
	Gini Inequality Index in Software Engineering Studies

	Conclusion and Future Work

