
Titre:
Title:

Mapping features to source code in dynamically configured avionics
software

Auteurs:
Authors:

Maxime Ouellet, François Gauthier, Ettore Merlo, Neset Sozen et
Martin Gagnon

Date: 2012

Type: Rapport / Report

Référence:
Citation:

Ouellet, M., Gauthier, F., Merlo, E., Sozen, N. & Gagnon, M. (2012). Mapping
features to source code in dynamically configured avionics software (Rapport
technique n° EPM-RT-2012-02).

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: http://publications.polymtl.ca/2796/

Version: Version officielle de l'éditeur / Published version
Non révisé par les pairs / Unrefereed

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved

Document publié chez l’éditeur officiel
Document issued by the official publisher

Maison d’édition:
Publisher: École Polytechnique de Montréal

URL officiel:
Official URL: http://publications.polymtl.ca/2796/

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213621529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://publications.polymtl.ca/2796/
http://publications.polymtl.ca/2796/
http://publications.polymtl.ca/

EPM–RT–2012-02

MAPPING FEATURES TO SOURCE CODE IN

DYNAMICALLY CONFIGURED AVIONICS SOFTWARE

Maxime Ouellet, François Gauthier, Ettore Merlo, Neset Sozen,
Martin Gagnon

Département de Génie informatique et génie logiciel
École Polytechnique de Montréal

CMC Electronics Inc

Février 2012

EPM-RT-2012-02

MAPPING FEATURES TO SOURCE CODE IN
DYNAMICALLY CONFIGURED AVIONICS SOFTWARE

Maxime Ouellet1, François Gauthier1, Ettore Merlo1,
Neset Sozen1,2, Martin Gagnon 2

1Département de génie informatique et génie logiciel
École Polytechnique de Montréal

2CMC Electronics Inc.

Février 2012

2012
Maxime Ouellet, François Gauthier, Ettore Merlo,
Neset Sozen, Martin Gauthier
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2012
Bibliothèque nationale du Canada, 2012

EPM-RT-2012-02
Mapping features to source code in dynamically configured avionics software
par : Maxime Ouellet, François Gauthier, Ettore Merlo, Neset Sozen, Martin Gauthier
Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique : biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue.htm

http://www.polymtl.ca/biblio/catalogue.htm

1

Mapping features to source code in dynamically configured
avionics software

Maxime Ouellet1, François Gauthier1, Ettore Merlo1, Neset Sozen1,2, Martin Gagnon2

1Computer and Software Engineering Department, École Polytechnique de Montréal, Canada
2CMC Electronics Inc., Saint-Laurent, Quebec, Canada

SUMMARY

Mapping software features to the code that implements them is an important activity for program
comprehension and software reengineering. In this paper, we present a novel automated approach to locate
features in source code based on static analysis and model checking. This approach focuses on dynamically
configured software in which the activation of specific features is controlled by configuration variables.
The main advantages of a static approach to feature location are its affordability and applicability to large
systems containing hundreds of features. Our methodology is applied to an industrial Flight Management
System from the avionics industry. Results show that a static approach to feature mapping is feasible and
can locate complex features whose implementation is spread across multiple files and functions.

1. INTRODUCTION

Model-driven engineering allows companies to model software and then generate their systems from
models. For companies whose products share a common base, Software Product Line (SPL) models
can improve reuse of software assets by benefiting from inter-product commonalities. In order to
reuse software assets, companies may want to consider their existing legacy systems while building
their new SPL models. This is especially true in the avionics industry, where complex algorithms
implementing specific features must be reused in future generations of software. An approach that
can help with this perspective is to map implemented features to the legacy code that implements
them, thus allowing the reengineering team to quickly find which algorithms to reuse.

System properties and characteristics that are relevant to stakeholders and understandable by
both customers and developers, are often referred to as features the product has or delivers.
Features can be used to describe commonalities, differences, and variability between systems [1].
They are typically divided into functional and non-functional features. Functional features include
services, which are marketable units or units of increment in a product line, and operations,
which are internal product functions needed to provide services. Nonfunctional features include
distinguishable system characteristics that are not naturally, easily, or intuitively identified in terms
of services or operations, such as presentation, capacity, usage, cost, and other quality attributes
such as safety, reliability, scalability, performance and portability [2].

In this paper, we refer to the implementation of a feature as the set of source code statements
participating in the realization of such a feature. The relation between a feature and its
implementation is called feature mapping, while locating features is the process of computing such
a feature mapping.

Avionic systems usually have to support a wide range of aircraft, so they are sometimes
implemented as dynamically configured software. With this type of system, the products for all
supported aircrafts are located within the same implementation, and features are activated or
deactivated through conditions in the code. Locating features in dynamically configured software

2

is important, since the implementation of a specific feature may be distributed across multiple
files and multiple functions, making features hard to locate efficiently across large software.
Knowing where specific features are implemented is also interesting in the context of software
evolution. Software systems may evolve due to bug fixes, the need to improve the software or some
environment changes, such as new standards. In all these cases, identifying sections of source code
that implement a feature can be of great help to the developers, as concluded in [3].

Different approaches to locate features in source code have been proposed, as described in
section 2.1. However, none can easily be applied to dynamically configured real-time software that
exists in the avionics industry. Since real-time avionics software must be executed on specialized
hardware with limited accessibility, approaches that include dynamic analysis are expensive to
apply, both in time and money. Static feature location techniques are therefore of great interest for
this industry because of their affordability. The code instrumentation necessary for dynamic analysis
may also alter timing specifications of those systems. Moreover, even if dynamic analysis of the
software were possible, the number of features and the complexity of decades old legacy software
make dynamic analysis difficult to accomplish, since those techniques require the development of
specialized test cases to be developed for each feature.

This article proposes an automated feature mapping technique for dynamically configured
software based on static analysis and model checking. Our research objectives are to (1) define
an automated feature mapping technique based on static analysis, and (2) evaluate this technique on
an industrial software program.

This paper is organized as follows. Section 2 lists the research related to our work. Section 3 gives
the necessary background for our approach. Section 4 introduces the goal of our methodology and
the necessary conditions. Section 5 describes our methodology of our feature location technique.
Section 6 presents the results from applying our methodology to an industrial system, the FMS.
Section 7 discusses the results and section 8 concludes the paper.

2. RELATED RESEARCH

This section presents research related to our work. We first discuss existing approaches to locate
features in source code. We then provide a quick overview of the model checking technique used in
our methodology.

2.1. Locating features in source code

The pioneers of the feature location field are Wilde et al. [4, 5] with their dynamic approach
called the software reconaissance method, which is based on the execution of test cases. The target
program must first be instrumented so that each test case produces an execution trace of the executed
blocks or decisions. Then, for a desired feature f , a set of test cases using f and another set that does
not use f must be built and executed. By comparing the traces of the two sets, it becomes possible
to identify which blocks have been executed only when using the feature. Other research [6, 7] has
suggested similar approaches using more specialized heuristics to improve the results.

Approaches based on executing test cases require some knowledge of the software, since test
cases using specific features must be developed. While this might be rather simple for relatively
small software, building all the necessary test cases for large and complex industrial software that
contains hundreds of features can be very time consuming. Moreover, executing those tests for
real-time sytems that run on specialized hardware, as is the case in the avionics industry, could
be complicated because of hardware availability and the time required to run all the necessary test
cases.

A semi-automatic method to locate features using the Abstract System Dependency Graph
(ASDG) has been proposed by Chen and Rajilich [8]. The ASDG basically consists of the functions
of the systems and its global variables, linked together by edges that represent function calls and
data flow between functions and global variables. Using a tool that allows the user to navigate
the ASDG, the user selects a starting point in the ASDG and navigates the graph to find all the

3

components related to a feature’s implementation. The method requires the user navigating the
ASDG to have experience with the target software. This makes it hard to apply to large systems,
since a programmer would need significant experience with the entire software to be able to navigate
it. Moreover, the ASDG must be navigated at least once for each desired feature, which implies that
a lot of worker-hours would be required to locate many features.

Wilde and Rajilich have compared their approaches in [9]. They conclude that even though both
software reconnaissance and dependency graph search are effective, the software reconnaissance
method is generally faster, while the dependency graph is more flexible since it is human-guided.
However, the efficiency of both methods depends on the implementation of the software. Results
tend to show that Wilde’s method is better for locally comprehensible code, while Rajilich’s
approach is better for well modularized code.

Some methods also exist to map features and concepts to source code using information retrieval
(IR) [10, 11]. These methods are based on previous work [12, 13] on the retrieval of source code to
documentation traceability. Methods based on IR use the names of functions and their arguments in
the source code to link them to features. Using a description of these features in natural language,
they build a corpus of keywords related to each feature and then link those keywords to the functions
of the system. Post-processing by specialized algorithms further enhances the precision of the
function-to-feature mapping. However, for methods based on IR to work properly, the name of each
function of the software must be significant, which is not always the case in legacy avionics software.
Those methods also can’t identify any feature implementation at a finer granularity than function
level: this means that it would not be possible to detect cases where features are implemented only
in specific sections of functions.

Eisenbarth et al. [14, 15, 16] combined static and dynamic analysis to locate features and
determine the interactions between them. They first used a dynamic approach using execution traces,
similar to Wilde and Scully’s method, to identify features. Concept analysis was then used to detect
interrelations between features. Their technique has been tested on several systems, including a
large industrial software program of 1.2 million LOCs.

A technique using a Scenario-based Probabilistic Ranking (SPR) of events executed when
running a program under specific scenarios has been developed by Antoniol and Guéhéneuc [17, 18].
Their approach, specialized for object-oriented systems, compares traces of execution of a program
under different scenarios related to a feature, and then uses probabilities to identify the sections of
the software pertinent to the feature. Using those results, they build micro-architectures, which are
subsets of the program architecture, which allow users to relate features to the classes that implement
them.

Several studies have combined two or more feature location techniques with good results [11,
19, 20, 21, 22, 23]. IR-based approaches have often been combined with those based on static
and dynamic analysis. In general, it has been found that using multiple techniques and merging
their results improves feature location accuracy. A visualization tool implementing several feature
location techniques is also available as an Eclipse plugin [24].

2.2. Model extraction and model checking

Our approach was inspired in part by previous work in security analysis [25, 26], where a linear
model checking approach was used to extract the access control models of PHP applications.
This approach suggests detecting application-dependent security patterns in the source code before
building a control flow graph (CFG) annotated with those patterns. The annotated CFG is then
converted into multiple model checking automata, one per security pattern. The result of the
model checking of each automaton reveals the access control model of the application; that is,
the capabilities that are required to execute each statement of an application.

Interestingly, our analysis shares a similar goal from a semantic point of view: we want to identify
blocks of statements that are controlled by the same properties. Hence, we were able to reuse the
approach presented in [25, 26] practically without modification. This section presents a summary of
this technique.

4

The model extraction uses an annotated CFG and transforms it into an automaton A suitable for
model checking:

A = (QA, LA, TA, q0, VA, GA, AA) (1)

where QA is a finite set of states; LA is a finite set of labels applied on the states; TA ⊆ QA ×QA
is a set of transitions; q0 is the initial state; VA is a set of variables used in “guards” and
“assignments”; GA is a set of “guards” that are logical propositions over VA and are associated
with transitions; and AA is a set of assignments that modify the value of variables and are also
associated with transitions.

The model extraction is performed by operations that include the rewriting of intra-procedural
and inter-procedural nodes, and the identification of property granting edges. The intra-procedural
nodes VCFG and edges ECFG are directly rewritten in the automaton A into the corresponding
states QA and transitions TA. A label stmtx is applied on each state to indicate which statement in
the source code this state corresponds to. The label is formed as stmtx with x as a unique identifier.

Beside states and transitions, inter-procedural nodes and edges will also produce variables VA,
guards GA, and assignments AA. The variables with guards and assignments are used to reproduce
the logic of inter-procedural analysis as explained in [25].

Inter-procedural representations in the automaton take time and add complexity; nevertheless,
they are essential. Intra-procedural analysis deals only with events that occur inside the scope of
a function, but a property affects all statements executed after it even if they are located in other
functions.

Thus, some functions that do not grant properties are still affected by properties granted by their
calling function. Therefore, intra-procedural analysis alone is not precise enough.

Although, in principle, we could have done the same analysis with static analyses by using an
algorithm that operates directly on the CFG, as demonstrated by [27], we preferred to use model
checking because of the formal reasoning it offers. Optimized and specialized inter-procedural static
analyses are hard to devise and it may be difficult to assess their soundness and complexity. Making
an inter-procedural automaton for model checking is at least as difficult as doing an inter-procedural
static analysis, but we found reasoning about the formally specified automaton easier than reasoning
about an algorithm that operates on a CFG.

Software model checking [28] is the algorithmic analysis of programs to prove properties of their
executions. While originating from logic and theorem proving fields, it has now evolved as a hybrid
technique, simultaneously making use of analyses traditionally classified as theorem proving, model
checking, or dataflow analysis [29].

A well-known limitation of model checking techniques is known as the combinatorial ”state
explosion problem”. Various techniques have been developed over the years to circumvent this
problem and analyze increasingly larger software. Among them, we find bounded, symbolic and
abstract model checking as well as a large variety of state-space exploration and graph refinement
algorithms.

The model checker used in [25, 26] solves the reachability problem of states in automata
representing a single property. For the application under study in this paper, we identified 2436
properties, which means that building an automaton representing all the properties of that system
would require model checking the effect of all 22436 combinations of properties! We therefore
analyzed the effect of each 2436 properties independently by producing one automaton for each
property.

In the context of this paper, source code related to each feature will be derived from the
reachability results produced by the model checker for each automaton.

3. BACKGROUND

This section introduces the concept of dynamically configured software and explains the specificities
of reengineering for avionics.

5

1: stmt1
2: if config1 then
3: stm2
4: else
5: stmt3
6: end if
7: stmt4

Figure 1. Sample code for dynamically configured software

3.1. Dynamically Configured Software

A dynamically configured software program is a system with multiple features that are activated
or deactivated through various forms of configuration variables. There is a one-to-one relationship
between features and configuration variables: each configuration variable controls the execution of
exactly one feature. In this kind of systems, configuration variables are usually set to specific values
at the software startup. In some systems, a user interface may also allow to toggle features on or off
at runtime. Dynamic configurations are typically used to implement multiple customizable products
in the same source code.

Configuration variables of a dynamically configured software may take different forms. In typical
cases, where a feature can only be on or off, those variables will be of the boolean type to represent
the status of their related feature. The boolean type is easy to implement, since it is bounded only to
two possible values: true or false.

More complex cases can occur when a feature has parameters that can take multiple values:
for example, a feature that controls screen resolution could potentially be set to multiple different
values. In those cases, the configuration variable controlling such a feature could be implemented as
an enum. Each valid value of the enum variable can then represent one possible parameter value of
the feature. Like the boolean type, the enum type is also bounded to a specific number of possible
values.

Figure 1 shows an example of a typical source code section that could be found in dynamically
configured software. The condition found at line 2 modifies the control flow of the software based
on the value of the configuration variable config1. This variable controls a specific feature of the
software. Thus, if this feature is activated, the code in line 3 will be executed, whereas if the feature
is deactivated, the code in line 5 will be executed. Code at lines 1 and 7 will be executed in both
cases.

3.2. Software Reengineering for Avionics

Avionics systems have the particularity of having an exceptionally long lifetime. This can be
explained by the fact that their life expectancy is directly linked to the aircraft on which they are
deployed.

Because of their age, a lot of avionics software all over the world needs to be reengineered. Many
programs are still written in a mix of C and assembly language and while new features have been
added over time, some code that was written a few decades ago is still being used in new software
releases. New standards, such as DO-178C, have recently been issued to allow avionics software to
use more modern technology, such as object-oriented programming. Moreover, in order to remain
competitive, companies need to modernize their software while preserving their key algorithms. For
those reasons, software reengineering is currently a hot topic in this industry.

Since avionics software programs must comply with standards and undergo stringent testing
procedures, they have a few particularities which make them interesting targets for static analysis:

• Many avionics companies prevent the use of some hard-to-analyze C constructs or only allow
their use for specific situations. This includes dynamic function pointers and statements such
as goto and longjmp;

6

• Software tests ensure that every line of code can potentially be executed, so there is no
dead code. This helps enhance the precision of static analysis. Indeed, static analysis usually
approximates that all branches of a control flow statement (e.g an if statement) are executable.
In the context of avionics software, the absence of dead code guarantees that all branches are
executable.

4. FEATURE MAPPING

4.1. Goal

Our objective is to map features to source code in interprocedural avionics software by combining
static analysis and model checking. Our technique works on dynamically configured software and
each of its steps is fully automated. It focuses mainly on software systems for which existing
approaches that use dynamic analysis cannot be used.

Our goal is to map features by identifying the set of code statements that implements each feature
of a software. Another goal is to locate code statements related to a combination of features, which
implies analysis based on sets of features. This problem is intrinsically combinatorial, especially
considering that the number of features in a single program can be quite high. Our methodology
resolves those complexity issues by analyzing each feature independently and then merging results.

4.2. Necessary Conditions

Our feature location approach applies specifically to dynamically configured software. For our
methodology to be applicable, some conditions must be satisfied:

• The system must not contain dead code, since static analysis would not be able to determine
that some code is unreachable, and thus unreliable results could be obtained for dead code.
• The execution of features must be controlled by a boolean variable or another data type that

can be bounded to specific values.

5. METHODOLOGY

The proposed feature location methodology is composed of five steps. For any system for which the
methodology is applicable, each step is completely automatic. We assume that the program source
code is available and that a parser is available for the programming language of the software. The
five steps are the following:

1. Identify dynamic configuration variables pertinent to the features;
2. Find and analyze control statements that use the identifed configuration variables;
3. Generate an annotated inter-procedural control flow graph (CFG) of the source software;
4. Extract transitive and inter-procedural configuration-controlled statements using the

CFG and model checking;
5. Map features to source code using the CFG and the model checking results.

Figure 2 presents the feature location process and its related artefacts. The following subsections
detail each of the steps of our methodology.

5.1. Identify Dynamic Configuration Variables

The execution of a feature in dynamically configured software is controlled by its associated
configuration variable. Hence, to locate features in the source code, those configuration variables
must first be identified, so that their use can then be detected by analyzing the source code. Because
our analysis is done using the configuration variables, it is also fundamental to know which variable
is related to which feature, either by having a definition for each variable or simply by having

7

Identify dynamic
configuration variables

Find control
statements

Generate the
annotated CFG

Extract
configuration-

controlled
statements

Map features to
source code

Configuration
variables

Annotated
CFG

Model checking
results

Figure 2. Feature Location Process

enum MyConfigVar { CONF1, CONF2, CONF3 }
MyConfigVar.CONF1
MyConfigVar.CONF2
MyConfigVar.CONF3

Figure 3. Decomposition of an enum variable in multiple configuration variables

meaningful variable names. This knowledge will later be used to establish the relationships between
a feature, its configuration variable and the set of code statements controlled by the variable.

The way to obtain this information will differ for each system, depending on its implementation.
In many cases, the documentation of the system provides a list of configuration variables together
with the files that initialize them. Otherwise, some manual intervention would be needed to extract
those variables from the source code.

While typical configuration variables are of the boolean type, some may be of another data
type. For our analysis to be applicable, those data types must be bounded and discrete, so that
the cardinality of the set of possible values for the variable is finite. Such data types usually
represent a feature with parameters that can take multiple values. Our methodology requires each
feature of the system to be considered as boolean: a feature can only be activated or deactivated.
This means that configuration variables with parameters need to be interpreted in a way so that
this requirement holds. Our solution is to consider each possible parameter value as a standalone
feature. Configuration variables are thus converted to multiple boolean configuration variables,
each one representing a possible value of its parent configuration variable. Figure 3 shows an
example for decomposing an enum variable having three possibles values in three variables. The
only inconvenience of this technique is that it increases the number of features to consider when
analyzing the system, since each generated configuration variable is related to its own feature.

5.2. Find and Analyze Control Statements

For our analysis, statements of interest are those that can affect the control flow of the program,
commonly called control statements. In the case of procedural languages such as C, the control
statements include branching statements (if, else, switch), loop statements (for, while, do-while)
and jump statements (goto, longjmp). Our feature location technique will need to analyze the
conditions found in those control statements to determine the influence of configuration variables
on the software control flow. Our approach does not currently consider jump statements because of
their hard-to-predict nature. Support for them would need to be added to analyze software systems
that use them.

Our goal is to evaluate the influence of variables on each condition. This will allow us to predict
the control flow of the software given the value of a set of configuration variable. In most cases, it
is relatively easy to determine if a configuration variable is used in a control statement by matching
the name of the configuration variable in the condition. Given a specific value of a configuration
variable, it then becomes possible to assign each outgoing CFG edge of a control statement to one
of the following categories: definitely traversed, may be traversed, or will not be traversed. This
assignment is accomplished by analyzing each control statement condition expression that uses at
least one configuration variable.

In order to divide the problem of analyzing control statements, our approach divides condition
expressions into ten different groups, labeled A to J. Table I gives a short description, a general form

8

Table I. Description of control statements groups

Group Description General Form Condition expression
example

A
One configuration variable used as a boolean
value

id confvar var1

B
One configuration variable used as a negated
boolean value

!id confvar !var1

C
One configuration variable with an equality
comparison to a constant

id confvar == constant var1 == c

D
One configuration variable with an inequality
comparison to a constant

id confvar != constant var1 != c

E
One configuration variable with a relational
comparison (<, ≤, ≥, >) to a constant

id confvar relop constant var1 > c

F
Multiple configuration variables, used as in
groups A to E, in conjunction (and)

id confvar (∧ id confvar)+
var1 ∧ var2 == c ∧

var3 < c

G
One or more configuration variables, used as in
groups A to E, in conjunction (and) with other
variables that are not configuration variables

id confvar (∧ (id confvar | id))+
var1 ∧ (var2 == c) ∧

(var3 < c) ∧ w1 ∧ w2

H
Multiple configuration variables, used as in
groups A to E, in disjunction (or)

id confvar (∨ id confvar)+ var1 ∨ var2 ∨ var3

I
One or more configuration variables used as
boolean values in disjunction (or) with other
variables that are not configuration variables

id confvar (∨ (id confvar | id))+
var1 ∨ var2 ∨ var3 ∨

w1 ∨ w2

J
Any expression not in groups A-I that contains
configuration variables

Anything not in groups A to I
!(var1 ∨ var2) ∧ w1 ∧

f()

and an example statement for each group. In those examples, varx are configuration variables, c is
a constant and wx are any variables that are not configuration variables. This section will explain
how we chose to analyze statements of each group. For any given example, we will suppose that
enum var is an enum variable of type enum type with three possible values: VAL0, VAL1 and
VAL2.

Groups A and B statements are analyzed quickly for boolean configuration variables and it
is easy to determine which edges of the control flow will be executed for any given value of
the configuration variable. In the case where configuration variables are enums, the approach
remains simple, since in languages such as C, enum variables are typically evaluated to false if
their associated integer value is 0 and to true for every other value. By default, the first declared
constant of an enum will evaluate to false, while every other declared constant evaluates to true. For
example, given a condition (enum var), we know that the condition will evaluate to false for the
value enum var.VAL0, whereas it would be true for values enum var.VAL1 or enum var.VAL2.

A similar analysis can be done for groups C to E. However, in these situations, the constant c to
which the configuration variable is compared must also be taken into account. For boolean variables,
this constant will usually be either true or false, while for enums, it will usually be equal to one of
the possible enum values. Thus, if we have a condition (enum var != enum type.VAL1), we know
that the condition will evaluate to false for the value enum var.VAL1, whereas it would be true for
values enum var.VAL0 or enum var.VAL2.

Groups F and G are analyzed differently, since they are actually conjunctions of multiple
conditions from groups A to E. Our strategy to analyze these conditions is to divide them into
multiple subconditions. These subconditions are then necessarily either a condition that is in a
group that we know how to analyze or a condition that uses a variable that is not a configuration
variable. Because of the use of conjunctions, we know that if the condition evaluates to true, then
each subcondition must also evaluate to true, which implies that we know the possible values of
every configuration variable that makes the condition true. However, a similar conclusion cannot be
made if the condition evaluates to false: in this case, the only conclusion we can draw is that each

9

configuration variable contained in the condition may have influenced the execution of this control
flow branch.

Conditions from groups H to J are harder to analyze because of their use of disjunction or,
in the case of group J, because of their overall complexity. Our analysis of those conditions
simply concludes that each configuration variable contained in the condition may have influenced
the execution of related control flow branches. This is conservative, since our analysis of those
conditions recognizes that configuration variables may have an influence on the program control
flow, but does not make any definitive conclusion during the control statements analysis.

5.3. Generate the Control Flow Graph

Generating a control flow graph for a target software program can be accomplished by parsing the
program to generate an Abstract Syntax Tree (AST) for each of its source files. Navigating the AST
then makes it possible to create a CFG:

CFG = (VCFG, ECFG) (2)
with multiple entry nodes vINi ∈ VCFG and their corresponding exit nodes vOUTi ∈ VCFG.

Each entry node represents a possible entry point of the system. While most computer programs
have a single entry point, supporting multiple entry nodes allows our analysis to be compatible with
systems having multiple entry points.

Nodes in VCFG can be of type generic, call begin or call end. Nodes of type generic are
involved in intra-procedural control flow; nodes of types call begin and call end are used in inter-
procedural control flow, since they identify which function is called and where the function call
returns in the CFG.

Edges in ECFG can be of type generic or grant. Edges of type generic represent intra-procedural
transfers of control that do not depend on any configuration variable; edges of type grant represent
intraprocedural transfers of control that depend on a non-empty finite set of properties related to
configuration variables.

Edges of type grant are created for each edge ei ∈ ECFG whose source node is a node vj ∈ VCFG

which represents a control statement using a configuration variable. Condition expressions found in
these nodes have been analyzed as described in section 5.2. These edges are annotated with a set of
properties that represent the results of the control statement analysis. For a configuration variable x
used in a control statement node vj , properties of edge ei can be of multiple types, depending on the
influence of x over the condition. The following properties are defined:

• Gain(x): if edge ei is traversed, we know the variable x to be true;
• Loss(x): if edge ei is traversed, we know the variable x to be false;
• SomehowPlus(x): if edge ei is traversed, it may be because of the value of the variable x

(used for the if condition true edge);
• SomehowMinus(x): if edge ei is traversed, it may be because of the value of the variable x

(used for else statements and the if condition false edge).

Gain and loss can be determined for conditions of groups A to F, while somehowPlus and
somehowMinus are used for conditions of groups G to J. SomehowMinus properties are also used
for else branches of group F conditions. Even though somehowPlus and somehowMinus have
similar definitions, the SomehowMinus property is necessary because of the way we later extract
configuration-controlled statements using model checking, as explained in section 5.4.

Figure 4 shows a simple condition with a configuration variable config1 and its associated
CFG. The CFG indicates that when the edge from the condition to b++; is traversed, the config1
configuration variable is true, thus leading to a Gain(config1) property. On the other hand, when the
edge from the else to b−−; is traversed, config1 is false, leading to a loss(config1) property.

5.4. Extract Configuration-Controlled Statements

Once properties have been assigned to pertinent edges and the control flow of the system is
available through the inter-procedural CFG, a model checking approach is used to determine

10

Figure 4. Sample Code and Extracted CFG

which statements are controlled by which configuration variables. Our methodology uses the model
checking technique described in section2.2.

As stated in section 5.3, our approach defines four properties for each configuration variable xi:
gain(xi), loss(xi), somehowPlus(xi) and somehowMinus(xi). A CFG edge can grant one or more
properties and this information is available simply by taking the system CFG as input. Given a
system with n configuration variables, results will be generated by model checking one automaton
per property, so 4× n automata. Since our goal is to locate features across the entire source code,
every CFG node is converted to a state in the automaton, which means that each automaton contains
4× y nodes, where y is the number of nodes in the CFG.

With our model checker, four states qv,j,k are present in the automaton for each node v in the
CFG and for each property P . In this context, j is the property P satisfaction value of the previous
calling context in the inter-procedural call graph and k is the current property P satisfaction value,
as defined in equations 3 and 4.

rp(v, P) =
(reachable(qv,0,0, P), reachable(qv,1,0, P), reachable(qv,0,1, P), reachable(qv,1,1, P)) (3)

reachable(qi,j,k, P) ≡
∃p = (q0,0,0, ..., qm, qm+1, ..., qi,j,k) | qm ∈ QA(qm, qm+1) ∈ TA

(4)

These reachability profiles are obtained by running the model checker on an automaton that
corresponds exactly to the CFG extracted from the source code. For any edge e of the automaton,
e.grant represents the set of properties that are granted by edge e. Equations 5 to 8 link each possible
state to the original CFG.

CFG = (V,E)
v ∈ V, e ∈ E

reachable(qv,0,0, P)↔
∃p = (q0,0,0, ..., qm, qm+1, ..., qv,0,0)@e = (qm, qm+1) | P ∈ e.grant

(5)

reachable(qv,1,0, P)
This state is not possible for our input CFG

(6)

CFG = (V,E)
v ∈ V, e ∈ E

reachable(qv,0,1, P)↔
∃p = (q0,0,0, ..., qm, qm+1, ..., qv,0,1)∃e = (qm, qm+1) | P ∈ e.grant

(7)

11

CFG = (V,E)
v ∈ V, e ∈ E

reachable(qv,1,1, P)↔
∃p = (q0,0,0, ..., qm, qm+1, ..., qv,0,1, qv,1,1)∃e = (qm, qm+1) | P ∈ e.grant

(8)

Temporal logic predicates on v and P can be re-stated in terms of temporal logic predicates of
automata states and, in turn, on reachability profiles as follows:

def+(P, v) ≡ 2(qv,0,1 ∨ qv,1,1) (9)

CFG = (V,E)
v ∈ V

def+(P, v) ≡ ∀p = (v0, · · · , v)→ P ≡
(¬(reachable(qv,0,0, P))) ∧

(¬(reachable(qv,1,0, P))) ∧ (reachable(qv,0,1, P) ∨ reachable(qv,1,1, P))

(10)

For each configuration variable and each property, the model checker outputs the reachable states
in the corresponding automaton. Unreachable states do not appear in the results files. Resolving
equation 10 is thus a simple matter of observing the reachable states in the corresponding results
file.

The use of model checking to propagate properties and eventually locate functionalities in the
source code has some limitations. Since each configuration variable has four properties, results for
each property must be merged together so that conclusions can be made about the influence of the
variable on each CFG node. Moreover, since configuration variables are analyzed independently
from one another, results must be merged if multiple variables are to be considered together when
locating features. For those reasons, some post-processing must be applied to model checking results
to map features to source code.

5.5. Mapping Features to Source Code

While the model checking results provide the reachability profile of the four properties of each
configuration variable, these raw results need to be interpreted so that features can be mapped
to their related source code. For program comprehension purposes, CFG nodes can be classified
according to the influence a nonempty arbitrary set of configuration variables X has on their
execution. Discussions with our industrial partners led us to classify each CFG node into one of
the following six categories:

• Unreachable: the node is not encountered in the model checking;
• Common: the node is always executed regardless of the values of the configuration variables

in X;
• Necessary: the node is executed specifically because of the values of the configuration

variables in X;
• Maybe: the node may be executed because of the values of the configuration variables in X;
• Not: the node is not executed specifically because of the values of the configuration variables

in X;
• DeadCode: the node cannot be executed in the software.

5.5.1. Results Merging for One Variable

Since the model checking tool analyzes each of the configuration variables separately, two
merging steps are necessary to correctly extract the code related to multiple features. We first need
to classify each CFG node according to the results for a single configuration variable. Once this has
been determined for each requested configuration variable, the results for each variable need to be
merged.

12

This merging needs to be conservative, in the sense that it is preferable to identify unnecessary
code for a feature than to lack necessary code. Thus, all our merging needs to take into account the
fact that all CFG nodes whose execution is influenced by a configuration variable must be identified.
This implies that a CFG node can only be rejected from being influenced by a variable if it is
definitely not influenced.

For a single configuration variable, each CFG node can be classified in a category according
to the reachability profile of its four properties. This can be done by applying boolean formulas
on the possible reachabilities of a CFG node. Since the model checking is done independently for
each configuration variable, we first need to determine the category of each CFG node for each
configuration variable. For every possible category, an equation can be applied to classify each CFG
node vi, for each configuration variable xj .

The unreachable category is used to indicate that a node has not been encountered during model
checking. This is usually because the node is not part of a function, such as a global variable
declaration, or because it is only being called through function pointers, which we do not currently
resolve. We can easily detect these nodes because the model checker does not reach them. Thus, any
node that is not reachable is considered unreachable.

The common category represents code that is executed without any influence from the
configuration variable. Logically, any CFG node that can be reached without any activated property
is common. Moreover, any node that cannot be reached definitely with any of the four properties is
also common, since this implies that it is possible to execute the node without any influence from
configuration variables.

Common(xi, vj) = ¬def+(Gain(xi), vj) ∧ ¬def+(Loss(xi), vj) ∧
¬def+(SomehowPlus(xi), vj) ∧ ¬def+(SomehowMinus(xi), vj)

(11)

The necessary category is used for code that is necessary because of the value of the configuration
variable. Since we want our analysis to be conservative, nodes that can be classified in this category
are those that are definitely reached with a gain property while not being definitely reached with a
loss property.

Necessary(xi, vj) = def+(Gain(xi), vj) ∧ ¬def+(Loss(xi), vj) (12)

The maybe category is used for CFG nodes whose execution may or may not be influenced by the
configuration variable. Since some conditions are very complex, it is hard to analyze their impact on
the program flow. Thus, these conditions lead to the SomehowPlus and SomehowMinus properties
which are used to characterize this uncertainty. A CFG node can be classified as maybe if it is
definitely reached with a somehowPlus or somehowMinus property. However, it must not also be
definitely reached by a gain or a loss (which would classify it in the necessary or not categories,
respectively).

Maybe(xi, vj) = (def+(SomehowPlus(xi), vj) ∨ def+(SomehowMinus(xi), vj)) ∧
¬def+(Gain(xi), vj) ∧ ¬def+(Loss(xi), vj)

(13)

The not category is used for code that is not necessary because of the value of the configuration
variable. Since our analysis is conservative, nodes that can be classified in this category are those that
are definitely reached with a loss property while not being definitely reached with a gain property.
Since those nodes are only reachable without the activated configuration variable, we can safely
assume that they are not used for the implementation of the associated feature.

Not(xi, vj) = def+(Loss(xi), vj) ∧ ¬def+(Gain(xi), vj) (14)

13

Table II. Conservative category merging table for multiple variables

x1 Category x2 Category Merged Category Justification
Common Common Common Same property.
Common Necessary Necessary The node is executed because it is necessary for one config variable, so

it remains necessary.
Common Not Not The node won’t be executed because it is a not for one of the config

variable, so it remains a not.
Common Maybe Maybe The node may be influenced by one of the variables, so it remains a

maybe.
Necessary Necessary Necessary Same property.
Necessary Not Not If a node is definitely not executed for a config, it will never be executed

even if merged with other config variables.
Necessary Maybe Maybe Since it is possible that the node won’t be executed because of the

maybe, the conservative approach is to declare the node as a maybe.
Not Not Loss Same property.
Not Maybe Not If a node is definitely not executed for a config, it will never be executed

even if merged with other config variables.
Maybe Maybe Maybe Same property.
DeadCode Anything DeadCode If the code is dead for one of the config variables, it remains dead when

merging.

The dead code category represents code that can’t be executed. This happens when a node can
be definitely reached with a gain and a loss at the same time. In theory, it should never happen in
avionics software, since avionics code can’t contain dead code.

DeadCode(xi, vj) = def+(Gain(xi), vj) ∧ def+(Loss(xi), vj) (15)

It is important to note that a node vj can only be classified in one category for each configuration
variable xi. Appendix 9 shows the full truth table of the four properties and their associated category.

5.5.2. Results Merging for Multiple Variables

Once each CFG node has been classified for one configuration variable, we need to merge
resulting categories for each node with the categories obtained for other configuration variables.
This merge needs to be conservative so that we don’t lose code that could be necessary to the set
of selected features. Table II shows how this merging can be done for two configuration variables,
with a textual justification for each merge.

Let X be the set of configurable variables to merge for a specific CFG node v: equations 16 to 20
explain what each classification means for multiple variables.

Common(X, v)↔ ∀x ∈ X | Common(x, v) (16)

Necessary(X, v)↔ ∃x ∈ X,∀y ∈ {X \ x} |
Necessary(x, v) ∧ (Necessary(y, v) ∨ Common(y, v))

(17)

Not(X, v)↔ ∃x ∈ X,∀y ∈ {X \ x} | Not(x, v) ∧ ¬DeadCode(y, v) (18)

Maybe(X, v)↔ ∃x ∈ X,∀y ∈ {X \ x} |
Maybe(x, v) ∧ ¬DeadCode(y, v) ∧ ¬Not(y, v)

(19)

14

Figure 5. Results report and related HTML file for the analysis of the config.config1 configuration variable

DeadCode(X, v)↔ ∃x ∈ X | DeadCode(x, v) (20)

By applying those equations, we can classify each CFG node for any set of configuration
variables. Since we can link CFG nodes to the source code they represent, this makes it possible to
easily map features to their related source code. For any feature f related to a configuration variable,
the CFG nodes that implement it are either classified in the necessary or the maybe categories.

5.5.3. Results Visualization

In order to allow users to locate their desired features easily, we developed a small GUI through
which the user can select configuration variables and then calculate their results. Results are
generated in HTML format, with lines highlighted in a specific color that corresponds to the category
of their related CFG node. One HTML file is generated for each file of the source code.

Once results for selected configuration variables have been generated successfully, a results report
is presented to the user. This report consists of a list of code blocks that are in the necessary,
maybe, not and deadCode categories. A code block consists of consecutive lines of code that are
in the same category. For each identified code block, its size and its location is shown to the user.
For any set of selected configuration variables, this report makes it simple to quickly identify which
files implement the desired feature and then locate pertinent lines of code using the highlighting in
the generated HTML files.

A major advantage of using code blocks is that our feature mapping is done at statement
granularity. Figure 5 gives an example of a results report and its related HTML file for the analysis of
the aircraft type.ROTOR configuration variable. The example is synthetized because of the sensitive
nature of the avionics domain. This report indicates that three code blocks have been classified in the
necessary category for this variable. The code related to one of these blocks is shown highlighted
in green, while the code highlighted in blue is code that was classified in the common category and
the code highlighted in red is in the not category.

15

Table III. Performance of the approach for the FMS

Step Time required
CFG generation and control statements analysis 26.28 seconds
Rewriting the CFG in an automaton (average per property) 0.91 seconds
Computing reachability for a property (average per property) 0.17 seconds
Total time for rewriting the CFG and computing reachability 115 minutes
Mapping one feature to source code (average) 11.56 seconds

6. EXPERIMENTATION AND RESULTS

6.1. System Under Study

Our research is done in collaboration with a consortium that includes three companies from the
avionics industry. It is part of a project to reduce the costs of certified avionics software by using
model-driven development and formal methods. Mapping features to software is the first step of
this project, our goal being to use the resulting knowledge to reengineer the system under study and
build models for this system.

We evaluated our feature location methodology on an industrial avionics system provided by one
of our partners. The system is a Flight Management System (FMS) that has been in development
for 15 years and is currently used in four different types of aircraft. It is almost entirely written in
C. The actual FMS resulted from the reengineering of a legacy system entirely written in assembly
code and parts of the FMS still contain assembly code. It contains more than a half a million LOCs
distributed over a thousand files and functions.

Since the system under study is an avionics system, it must comply with multiple standards and it
has some particularities, as described previously in section 3.2. Multiple software tests are available
for the system since full statement coverage is required for software to be deployed on an aircraft.
However, testing the FMS takes a signficant amount of time and money, which means that existing
dynamic feature location approaches are costly to apply. Thus, a less expensive feature location
technique is of interest for embedded software such as the one under study.

6.2. Applying the Methodology

The approach proposed in this paper was evaluated on the FMS. Table III gives the time required to
apply our methodology to the FMS system on a Intel Core I7 930 with 6 GB of RAM. While the
model checking step takes about two hours (115 minutes) to compute, it is important to note that
it only needs to be computed once. Once results from model checking are available, it only takes a
few seconds to map any set of configuration variables to source code.

For the FMS, configuration variables were obtained by consulting its documentation, which
contained a list of enum variables and indicated that they were all located in a C data structure
containing hundreds of enum variables, each of which defines a certain number of constant enum
values. Figure 6a gives the distribution of the number of enum values defined for each of the 226
variables of the FMS. A total of 629 enum values are defined for the FMS enum variables. It is
interesting to note that most of the enum variables can take only two possible values, which means
they are basically used as a substitute for a boolean. This design choice was most likely made so
that each configuration variable could be used in a similar fashion. Since the identified variables
were of type enum, they were converted to multiple boolean variables as described in section 5.1.
Each of the obtained boolean variables is considered as a configuration variable, which means that
our analysis takes into account a total of 629 configuration variables.

Analysis of the FMS showed that of all the control statements using configuration variables, 99%
of them are if statement, with the remaining 1% being switch statements. This is not surprising
considering that branching statements such as if and switch are necessary to control whether the
code for a feature is executed or not.

16

(a) Distribution of the number of enum values for
the 226 enum variables for the FMS

(b) Distribution of control statement groups in the FMS

Figure 6. Distribution of (a) enum values and (b) control statements groups in the FMS

Table IV. Details on the Extracted CFG for the FMS

of nodes 372 674
of edges 365 093
of grant edges 3248
of gain properties 3281
of loss properties 3720
of somehowPlus properties 4310
of somehowMinus properties 2023

As shown in Figure 6b, about 82% of the conditions in the FMS are in groups A to E. As explained
in subsection 5.2, these conditions contain only one configuration variable, which makes them easy
to analyze. About 7% of the conditions are part of groups F and G, which we are able to analyze
with full precision for the true edge of the condition. No condition expressions from groups H and I
were found. Thus, for the entire FMS, the only conditions for which our analysis is uncertain, which
eventually leads to the maybe category, are the false edges of conditions from groups F-G and the
conditions from group K. This means that more than 82% of the conditions of the FMS are analyzed
with full precision.

For the FMS, a CFG was generated for each source file. Table IV gives some details about the
extracted CFG. This CFG is used as an input to the model checking approach. Since the FMS
contains 629 configuration variables with four properties each, our results are derived from model
checking 2436 automata. As our goal is to locate features across the entire source code, every CFG
node is converted to a node in the automaton, which means that each automaton contains 372 674
nodes. Once model checking is completed, results are available through the GUI presented in section
5.5.3.

6.3. Results

Results were calculated individually for each of the 629 configuration variables found in the FMS.
The graphs in Figures 7a, 7b and 7c present the number of files, code blocks and LOCs influenced
by each configuration variable, and thus by each feature, of the FMS. On average, it was found that
a single configuration variable influences the execution of about 420 LOCs, across 12 code blocks
and 4 files.

The two most influential configuration variables control the execution of about 36500 LOCs,
across 232 code blocks and 92 files. Experts of the FMS confirmed that these two configuration
variables are related to a high-level feature which controls multiple sub-features: this explains the

17

(a) Number of files influenced per configuration variable (b) Number of code blocks influenced per configuration
variable

(c) Number of LOCs influenced per configuration variable

Figure 7. Distribution of (a) files, (b) code blocks and (c) LOCs influenced per configuration variable

large amount of code they control. It is likely that a lot of features are dependent on this high-level
feature.

7. DISCUSSION

Our research shows that for dynamically configured software, mapping features to source code using
static analysis is feasible. Our methodology has been assessed on an industrial avionics system
and takes only a few hours to automatically match dynamically configured features to their related
source code. The only step of our approach whose execution requires more than a few seconds is
the model checking analysis. Thus, after the model checker has been executed once for one version
of a software, our approach can map any given set of features to its related source code in a matter
of seconds.

For the system under study, the FMS, it was found that 50 configuration variables influence more
than a thousand LOCs each. Moreover, 43 configuration variables control the execution of code
found in more than 10 files, with 25 of those variables related to more than 20 files. This shows that
some features are very complex, given that they are implemented across more than a thousand lines
of code and ten different files. As for code blocks, 72 features are implemented across more than 20
different code blocks. The repartition of the implementation of some features makes them hard to
locate without an in-depth knowledge of the system. This justifies our feature location technique as
it can be especially helpful for reengineering tasks related to those features.

Results also show that 418 configuration variables influence less than 50 LOCs. Moreover,
388 configuration variables control the execution of code found in less than 3 files, with 266 of
those variables being limited to a single file. As for code blocks, 218 features are implemented in
only one or two code blocks. This leads us to believe that some features have a relatively simple

18

implementation which is concentrated in a few code blocks and files. Considering that simpler tools
could be able to locate those features, locating them with our approach might not be as helpful as
locating more complex ones. However, it could be argued that our feature location technique allows
a programmer with no prior knowledge of the software to quickly locate those features, which can
be a significant advantage for program comprehension.

While mapping features, statements in the maybe category are identified as being potentially part
of a feature’s implementation. Statements are classified in this category because the conditions that
control their execution are complex to analyze statically. Thus, we chose to identify these statements
as potentially executed and leave it to the user to decide whether they are pertinent for a specified
set of features. This choice was made so that our feature mapping remains conservative: some
identified code may not be related to a feature, but all the code related to a feature is identified.
This imprecision could be lessened by improving the analysis of control statements.

Many existing feature mapping approaches in the literature use a combination of static and
dynamic analysis by combining IR and execution traces of test scenarios. Running tests can be very
expensive for some software. This is especially true in the case of embedded and avionics systems,
for which running test scenarios can be complex because of limited resources and timing issues.
Our approach offers a less expensive approach to feature location. Moreover, given that parsers are
available for many programming languages, the effort required to analyze a significant system is
relatively low since our technique is entirely automated.

Using IR approaches on some systems can also give unreliable results, since the granularity of IR
methods in published literature is usually at function level. This means that features implemented in
specific sections of a function would not be mapped precisely. For legacy systems in which functions
can sometimes have thousands of lines of code, this imprecision can be problematic. The granularity
of our approach is at statement level: this allows us to locate features precisely among the source
code.

We believe the approach presented in this paper is useful and easy to apply for most dynamically
configured software systems. While in many cases dynamic or mixed approaches can give better
results than a fully static approach, our technique has the advantage of giving results with minimal
effort and expense by using only the source code as input. Moreover, it can be used in situations
where dynamic approaches cannot be used because of the effort required.

Applying our feature location technique to a real avionic system, the FMS, gave us some
interesting information about the system. Our interprocedural analysis revealed that features were
rarely implemented at function level, but rather were spread across multiple sections of functions.
Some features were also implemented across multiple, seemingly unrelated files, which validates
that a feature location technique can be useful for developers to efficiently locate where features are
implemented.

7.1. Limitations

The main limitation of the feature location technique presented here is that our analysis is based on
evaluating the influence of software variables on control statements. This implies that only features
for which execution is controlled by a configuration variable, as found in dynamically configured
software, can be located. To locate features that are always active in a software program, other
approaches such as the ones based on IR would be needed.

The maybe category in which some CFG nodes are classified is another limitation of our
approach. This is caused by our analysis of boolean conditions found in control statements.
Preferably, the condition analysis should be improved in order to minimize the amount of
somehowPlus and somehowMinus properties assigned to configuration variables.

The way model checking is used in our methodology could also be seen as a limitation. Since
we do not do a power set analysis of configuration variables, our approach does not consider the
dependencies between the configuration variables during our analysis. Unfortunately, because of
the state explosion problem and the amount of configuration variables contained in a software
system, a power set analysis is not possible. For that reason, we propose a fast and feasible solution

19

that analyzes each property of each variable independently, which forces us to merge those results
together.

7.2. Threats to Validity

For our study, there are three primary sources of threat to the validity of the results: construct
validity, internal validity and external validity.

Threats to construct validity concern the extent to which the methodology measures what was
intended. In our case, the threat comes from three main sources.

The proposed approach considers all features to be independent from one another. Since
the analysis is done independently for each feature, our approach cannot detect and consider
dependencies between configuration variables. Our GUI allows the user to select his desired
configuration variables, but there is currently no consideration of possible relationship between
features. For example, there is no indication that two features must never be activated at the same
time, or that two features are codependent.

The system we analyzed has some functions called dynamically through constant function
pointers. However, they are all part of the UI and could be ignored in our case, since our industrial
partners determined the UI was irrelevant for their reengineering objectives. Analyzing a system
that contains function pointers would require determining which functions each function pointer
can possibly call. For constant function pointers, this can be determined by analyzing the source
code. However, if function pointers are not constant, pointer analysis techniques [30, 31] would
have to be used.

Our current analysis does not consider assignments of configuration variables to other variables
that are not configuration variables. For the system under study, those occurrences are currently
ignored, which implies that it is possible that some conditions that use configuration variables
indirectly were not analyzed. This could result in incomplete feature mapping for some features
of the system. The use of slicing and flow analysis could be used to resolve this issue.

Threats to internal validity concern the extent to which conclusions about causal relationships
can be made. These threats usually appear when the independent variable, in our case the features
of the software, is manipulated.The internal validity of our study is not threatened because we have
not manipulated the independent variable.

Threats to external validity concern the extent to which our results can be generalized. So far, our
approach has only been evaluated on one large industrial system written in C. Though we were able
to successfully map features to the code implementing them for this system, we cannot generalize
our findings for more systems. Moreover, the entire methodology has not been assessed for other
programming languages.

7.3. Future Work

Future work will focus on improving the precision of our results by extending our methodology.
It would be possible to improve our condition analysis by subdividing complex control statement
expressions into more groups, thus allowing for a more precise analysis of these expressions. The
use of pointer analysis to consider function pointers would also allow our interprocedural analysis
to cover entire software systems. Another possible improvement would be to use slicing and flow
analysis to consider assignments of configuration variables to other variables during our analysis.

Analyzing the interdependencies between configuration variables, and thus features, would
also be very interesting for program comprehension purposes. Results from our model checker
contain the necessary information to assess the dependencies between variables. However, obtaining
the interdependencies would require assessing each possible combination of variables, which is
hardly feasible because of the amount of configuration variables found in dynamically configured
software. Future work could include interpreting those model checking results to obtain pertinent
interdependencies between features.

Our approach currently uses variables to distinguish among features. Future work will extend
our feature location technique by using configuration patterns to distinguish among features, with
variables being the simplest configuration patterns. Configuration patterns could include function

20

calls and aspects, for example. Such an extension would allow our static analysis approach to be
applicable to more systems.

Evaluating our methodology on other dynamically configured software is also of interest, as
is comparing our static analysis feature location technique with dynamic analysis and IR-based
approaches. Combining our approach with others could also lead to some novel ideas for feature
location.

8. CONCLUSION

In this paper, we have presented a new approach to locate features in dynamically configured
software using static analysis and model checking. We evaluated our technique on an industrial
Flight Management System written in C.

The control statements of the FMS using configuration variables were analyzed and an annotated
inter-procedural CFG was generated using a C parser. Model checking automata, four for each of
the 629 configuration variables, were generated from the CFG. Model checking results for each
automaton were then merged to locate the features related to each configuration variable in the
source code.

Our technique was able to correctly locate features in the FMS. Moreover, we evaluated the
distribution of features across the source code. While most features are typically located in a few
files, it was found that some are distributed among a very large part of the system. We observed that
50 features are implemented with more than a thousand LOCs, whereas 25 features are implemented
across more than 20 different files.

The repartition of some features of the FMS leads us to believe that our feature location approach
is helpful for program comprehension. This is especially true for legacy avionics systems such
as the FMS since their size and complexity can make them hard to comprehend. Better program
comprehension can also be of great help for reengineering purposes, which is one of the objectives
of our research project.

Future work will focus on improving the methodology to obtain more precise results. Analyzing
the interdependencies between configuration variables based on our model checking results would
also be very interesting for program comprehension purposes. While most existing work on feature
location in the literature has focused on dynamic approaches, we believe that in some cases, feature
location techniques based on static analysis are of interest for software maintenance and evolution
because of their execution speed and affordability.

ACKNOWLEDGEMENTS

This project has been funded in part by the Natural Sciences and Engineering Research Council of Canada
(NSERC), the Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ) and our industrial
partners.

21

9. APPENDIX: TRUTH TABLE FOR CLASSIFYING CFG NODES

Table V shows the full truth table that can be obtained by applying equations 11 to 15 on the reachability
profile of each of the four properties.

Table V. Truth Table for Equations 11 to 15

def+

(Gain(xi), vj)

def+

(Loss(xi), vj)

def+

(SomehowPlus
(xi), vj)

def+

(SomehowMinus
(xi), vj)

Category

Common(xi, vj)

X Maybe(xi, vj)

X Maybe(xi, vj)

X X Maybe(xi, vj)

X Not(xi, vj)

X X Not(xi, vj)

X X Not(xi, vj)

X X X Not(xi, vj)

X Necessary(xi, vj)

X X Necessary(xi, vj)

X X Necessary(xi, vj)

X X X Necessary(xi, vj)

X X DeadCode(xi, vj)

X X X DeadCode(xi, vj)

X X X DeadCode(xi, vj)

X X X X DeadCode(xi, vj)

22

REFERENCES

1. Czarnecki K, Helsen S, Eisenecker U. Staged configuration using feature models. Software Product Lines 2004;
:162–164.

2. Kang K, Lee J, Donohoe P. Feature-oriented product line engineering. IEEE Software 2002; 19(4):58–65.
3. Lakhotia A. Understanding someone elses code: Analysis of experiences. Journal of Systems and Software 1993;

23(3):269–275.
4. Wilde N, Gomez J, Gust T, Strasburg D. Locating user functionality in old code. Proceedings of the International

Conference on Software Maintenance - IEEE Computer Society Press, IEEE, 1992; 200–205.
5. Wilde N, Scully M. Software reconnaissance: mapping program features to code. Journal of Software Maintenance

- Research and Practice 1995; 7(1):49–62.
6. Wong W, Gokhale S, Horgan J, Trivedi K. Locating program features using execution slices. Proceedings of the

IEEE Symposium on Application-Specific Systems and Software Engineering and Technology, IEEE, 1999; 194–
203.

7. Eisenberg A, De Volder K. Dynamic feature traces: Finding features in unfamiliar code. Proceedings of the
International Conference on Software Maintenance - IEEE Computer Society Press, IEEE, 2005; 337–346.

8. Chen K, Rajlich V. Case study of feature location using dependence graph. International Workshop on Program
Comprehension, IEEE, 2000; 241–247.

9. Wilde N, Buckellew M, Page H, Rajlich V, Pounds L. A comparison of methods for locating features in legacy
software* 1. Journal of Systems and Software 2003; 65(2):105–114.

10. Marcus A, Sergeyev A, Rajlich V, Maletic J. An information retrieval approach to concept location in source code.
Proceedings of the Working Conference on Reverse Engineering, IEEE, 2004; 214–223.

11. Zhao W, Zhang L, Liu Y, Sun J, Yang F. Sniafl: Towards a static noninteractive approach to feature location. ACM
Transactions on Software Engineering and Methodology 2006; 15(2):195–226.

12. Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E. Recovering traceability links between code and
documentation. IEEE Transactions on Software Engineering 2002; :970–983.

13. Marcus A, Maletic J. Recovering documentation-to-source-code traceability links using latent semantic indexing.
Proceedings of the International Conference on Software Engineering, IEEE Computer Society, 2003; 125–135.

14. Eisenbarth T, Koschke R, Simon D. Aiding program comprehension by static and dynamic feature analysis.
Proceedings of the International Conference on Software Maintenance - IEEE Computer Society Press, IEEE,
2001; 602–611.

15. Eisenbarth T, Koschke R, Simon D. Feature-driven program understanding using concept analysis of execution
traces. International Workshop on Program Comprehension, IEEE, 2001; 300–309.

16. Eisenbarth T, Koschke R, Simon D. Locating features in source code. IEEE Transactions on Software Engineering
2003; :210–224.

17. Antoniol G, Guéhéneuc Y. Feature identification: a novel approach and a case study. Proceedings of the
International Conference on Software Maintenance - IEEE Computer Society Press, IEEE, 2005; 357–366.

18. Antoniol G, Guéhéneuc Y. Feature identification: An epidemiological metaphor. IEEE Transactions on Software
Engineering 2006; 32(9):627–641.

19. Poshyvanyk D, Guéhéneuc Y, Marcus A, Antoniol G, Rajlich V. Feature location using probabilistic ranking of
methods based on execution scenarios and information retrieval. IEEE Transactions on Software Engineering 2007;
33(6):420–432.

20. Eaddy M, Aho A, Antoniol G, Guéhéneuc Y. Cerberus: Tracing requirements to source code using information
retrieval, dynamic analysis, and program analysis. International Conference on Program Comprehension, IEEE,
2008; 53–62.

21. Liu D, Marcus A, Poshyvanyk D, Rajlich V. Feature location via information retrieval based filtering of a single
scenario execution trace. Proceedings of the 22nd IEEE/ACM international conference on Automated software
engineering, ACM, 2007; 234–243.

22. Zhao W, Zhang L, Liu Y, Luo J, Sun J. Understanding how the requirements are implemented in source code. Tenth
Asia-Pacific Software Engineering Conference, IEEE, 2003; 68–77.

23. Revelle M, Dit B, Poshyvanyk D. Using data fusion and web mining to support feature location in software.
International Conference on Program Comprehension, IEEE, 2010; 14–23.

24. Savage T, Revelle M, Poshyvanyk D. Flat 3: feature location and textual tracing tool. Proceedings of the
International Conference on Software Engineering, ACM, 2010; 255–258.

25. Letarte D, Merlo E. Extraction of inter-procedural simple role privilege models from php code. Proceedings of the
Working Conference on Reverse Engineering, IEEE, 2009; 187–191.

26. Gauthier F, Letarte D, Lavoie T, Merlo E. Extraction and comprehension of moodle’s access control model: A case
study. Ninth Annual International Conference on Privacy, Security and Trust (PST), IEEE, 2011; 44–51.

27. Schmidt DA. Data flow analysis is model checking of abstract interpretations. PProceedings of the 25th symposium
on Principles of programming languages (POPL), ACM, 1998; 38–48.

28. Clarke E. Model checking. Foundations of Software Technology and Theoretical Computer Science, Lecture Notes
in Computer Science, vol. 1346. Springer Berlin / Heidelberg, 1997; 54–56.

29. Jhala R, Majumdar R. Software model checking. ACM Computing Surveys 2009; 41(4):1–54.
30. Andersen L. Program analysis and specialization for the c programming language. PhD Thesis, University of

Cophenhagen 1994.
31. Steensgaard B. Points-to analysis in almost linear time. Proceedings of the 23rd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, ACM, 1996; 32–41.

	EPM-RT-2012-02_Ouellet

