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Erratum 

A calibration error on our radiometer led us to misreport irradiance 
values for the UVC lamps used in our original manuscript. 

The original statement: 

The precursor gas mixture (H2 and CO) was injected in the 
reactor with a molar ratio of 0.1/1 (H2/CO) and was irradiated by 
two UVC lamps (main emission peak at 253.7 nm, irradiance of 
5.5 × 10−4 W/cm2 at 4.5 cm). 

The corrected statement: 

The precursor gas mixture (H2 and CO) was injected in the 
reactor with a molar ratio of 0.1/1 (H2/CO) and was irradiated by 
two UVC lamps (main emission peak at 253.7 nm, irradiance of 
0.01 W/cm2 at 3.5 cm). 
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Abstract 

 
Diverse applications of superparamagnetic iron oxide nanoparticles (SPIONs) in the chemical and 

biomedical industry depend on their surface properties. In this paper, we investigate the effect of initial 

surface charge (bare, positively and negatively charged SPIONs) on the resulting physicochemical 

properties of the particles following treatment through photo-initiated chemical vapour deposition 

(PICVD). Transmission electron microscopy shows a nanometric polymer coating on the SPIONs and 

contact angle measurements with water demonstrate that their surface became non-polar following 

functionalization using PICVD. FTIR and XPS data confirm the change in the chemical composition of 

the treated SPIONs. Indeed, XPS data reveal an initial charge-dependent increase in the surface oxygen 

content in the case of treated SPIONs. The O/C percentage ratios of the bare SPIONs increase from 1.7 

to 1.9 after PICVD treatment, and decrease from 1.7 to 0.7 in the case of negatively-charged SPIONs. 

The ratio remains unchanged for positively-charged SPIONs (1.7). This indicates that bare and 

negatively charged SPIONs showed opposite preference for the oxygen or carbon attachment to their 

surface during their surface treatment. These results reveal that both the surface charge and 

stereochemical effects have determinant roles in the polymeric coating of SPIONs with PICVD.  Our 

findings suggest that this technique is appropriate for the treatment of nanoparticles.	
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Introduction 
 

The applications of superparamagnetic iron oxide nanoparticles (SPIONs) in various fields have 

been improved considerably in recent years. Among many applications, superparamagnetic 

nanosystems can be used for magnetic data storage (Eigler et al. 2014), polluting agent removal 

(Nethaji et al. 2013), or, more recently as catalysts for organic reactions (Gawande et al. 2013, 

Obermayer et al. 2013). Beside these numerous applications, SPIONs are widely used nanomaterials 

for biomedical purposes, such as magnetic resonance imaging (MRI) (Chen et al. 2011), hyperthermia 

for cancer therapy (Jin et al. 2008), cell targeting (Das et al. 2008), drugs or gene delivery (Namvari 

and Namazi 2014). Their interaction within the body once introduced into the blood stream depends on 

their surface properties. These nanoparticles (NPs) can be captured by the macrophages and then 

rapidly cleared out from circulation, which can drastically reduce their efficiency in the body (Fan et al. 

2011). Therefore, their surface functionalization and the investigation of their physicochemical 

properties are very important for their diverse applications. SPIONs can be synthesized by diverse 

methods such as co-precipitation (Uzun et al. 2010), thermal decomposition (Sun and Zeng 2002), 

microemulsion (Solans et al. 2005), hydrothermal synthesis (Hu et al. 2007) and sonochemistry 

(Vijayakumar et al. 2000). A suitable surface functionalization and choice of solvent are crucial in 

order to obtain sufficient repulsive interactions to prevent agglomeration of SPIONs. In the absence of 

any proper surface coating, the interactions between these nanoparticles will cause them to aggregate 

and form large clusters (Chang et al. 2007). It is also needed to enhance their biocompatibility in in 

vitro and in vivo studies (Hanini et al. 2011). For example, liposomes and micelles, spherical 

aggregates of amphiphilic molecules, can be used to coat SPIONs (Veiseh et al. 2010). In other words, 

functionalization to improve colloidal stability is necessary for end-use applications and long-term 

storage.  

 

Surface functionalization of nanomaterials includes simple or complex physical or chemical 

procedures that involve weak electrostatic repulsion, hydrogen bonding, hydrophobic interactions or 

covalent bonds, respectively (Wang et al. 2009). One study showed that coating SPIONs with a gold 

layer enabled subsequent functionalization with thiolated DNA, which could then remain stable in 

aqueous solution (Robinson et al. 2010). PEG-siloxane ligands have been shown to promote the 

colloidal stability of SPIONs (Bloemen et al. 2014; Chen et al. 2009), though the authors have not 
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reported any surface characterization of the coated nanoparticles. The use of organic solvents in these 

studies may change the surface composition of SPIONs and sometimes cause the addition of some 

chemical elements on their surface, meaning the presence of contaminants on their surface, which was 

not indicated.  

 

Surfactants, such as sulphuric lycine, may also be employed (Wu et al. 2008). However, none of 

these reports related the effect of initial surface charge and composition of SPIONs (resulting from the 

synthesis approach) on functionalization (Neouze and Schubert 2008; Latham and Williams 2008; De 

Palma et al. 2007; Matsuno et al. 2004; Georgelin et al. 2008). This is significant because surface 

charge and composition can impact the electrostatic interaction of the SPIONs with the polymer 

coating.  

 

Previously, our group designed and developed a new, solvent-free and scalable surface 

functionalization technique called photo-initiated chemical vapor deposition (PICVD) (Dion et al. 

2014). In this work, we carry out surface functionalization of SPIONs using PICVD, and assess its 

impact as a secondary functionalization tool on the physicochemical properties of these nanomaterials 

as a function of their initial surface charge.	

	

Materials and methods 

 
Chemicals. Sodium hydroxide (5 M), hydrogen peroxide (50%), acetone (ACS reagent, ≥99.0%), 

diethylic ether (ACS reagent, ≥99.0%), dimethylformamide anhydrous HPLC, n-[3-

(trimethoxysilyl)propyl] ethylenediamine (TPED) (97%) were purchased at Sigma-Aldrich. HPLC-

grade methanol was purchased at ChemLab. Diethylene glycol (> 99%), iron (II) chloride tetrahydrate 

(99%) were purchased at Merck and iron (III) chloride solution (45%) was purchased at Riedel-de 

Haën.1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (>98%), and tetramethylammonium hydroxide 

(>95%) were purchased at TCI Chemicals, while 3-(triethoxysilyl)propyl succinic anhydride (TEPSA) 

(>94%) was purchased at ABCR. 
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Nanoparticle preparation. Bare SPIONs:  5 ml of an aqueous solution of FeCl2.4H2O (0.045 M) and 

FeCl3.6H2O (0.0375 M) were added to 250 ml of diethylene glycol. The mixture was heated to 170 °C 

and maintained at this temperature for 15 min before addition of the base (i.e. solid NaOH until a final 

concentration of 0.375 M). Subsequently, temperature was maintained at 170 °C for a period of 1 h 

before cooling to 60 °C. The synthesized SPIONs were collected with a neodymium magnet and 

washed with 100 ml of a HNO3 (1 M) solution. 

 

Negatively charged SPIONs (with carboxylate functions) (Stanicki et al. 2014): 14.2 ml of 3-

(triethoxysilyl)propylsuccinic anhydride (TEPSA, 50 mmol) were slowly added to a nanoparticle 

suspension in DMF (100 mM of iron in 100 ml). 8.6 ml of water followed by 5 ml of TMAOH solution 

(1 M) were added at room temperature and under homogenization. The solution was heated to 100 °C 

for 24 h under continuous stirring. The SPIONs were precipitated by addition of acetone/ether (50/50) 

mixture and collected with a neodymium magnet. The precipitate was washed with acetone several 

times and finally dispersed in water. Excess of silane derivative and other chemicals were removed by 

membrane filtration (cut-off of the membrane is 30,000 Da). 

 

Positively charged SPIONs (with amino functions): N-[3-(trimethoxysilyl)propyl] 

ethylenediamine (TPED) was grafted onto SPIONs by adding 25 mmol of TPED (5.4 ml) to a 

suspension of NP (100 ml, [Fe] = 25 mM) at 50°C. After stirring for 2h at reflux, the mixture was 

cooled at room temperature and the suspension was purified by membrane filtration (membrane cut-

off: 30 kDa), and then centrifuged (16,500 g; 45 minutes). 

 

Photo-initiated chemical vapor deposition. The surface modification of the SPIONs was carried out 

in a PICVD micro-reactor illustrated in Figure 1 and detailed extensively in (Dion et al. 2014). 50 µL 

of the SPIONs suspension were deposited onto polished copper sample holders three successive times 

and allowed to dry at room temperature for 24 hours. The copper sample holders were polished 

beforehand using deionized water and sandpaper (grit 1200 MX); Cu was retained as a sample holder 

for it was the material used in the initial PICVD investigation (Dion et al. 2014). The SPIONs to be 

treated were placed inside the tubular quartz reactor at a distance of 40 cm from the inlet. Before each 

treatment sequence, argon was used to purge the reactor for 3 minutes. The precursor gas mixture (H2 

and CO) was injected in the reactor with a molar ratio of 0.1/1 (H2/CO) and was irradiated by two UVC 
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lamps (main emission peak at 253.7 nm, irradiance of 5.5x10-4W/cm2 at 4.5 cm). The gas ratio was 

controlled by adjusting the individual mass flow of each gas (total gas flow rate was 376 ml/min). H2O2 

was added to the reactor as a photoinitiator at a rate of 1 mL/h using a syringe pump. Treatment 

duration was set to 1h. A valve was placed at the reactor outlet to control the operating pressure in the 

reactor, maintained at 10 kPag for all experiments (Dion et al. 2014). When the experiments were 

completed, the copper sample holders were carefully taken out of the reactor for analysis. All the 

surface treatments were carried out in triplicata. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Schematic of the PICVD reactor 

 

Contact angle measurements. 50 µL of the untreated SPIONs suspension were deposited onto 

polished copper sample holders three successive times and allowed to dry at room temperature for 24 

hours. The treated SPIONs were taken directly from PICVD. The contact angle measurements were 

achieved by placing 2 µL of deionized water on the samples. The sessile drop contact angle being 

stable on the minute time frame, one measurement per location was taken immediately using a FDS 

contact angle system OCA DataPhysics TBU 90E. The measurements were carried out on several spots 

on the untreated and treated SPIONs. In order to prepare the dispersion of SPIONs at a concentration of 

12 mg/mL in water, sonication over 5 minutes with a Cole Parmer 500 watt ultrasonic homogenizer 

(CP505) was conducted. 
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Fourier Transform Infrared (FTIR) Spectroscopy. Using a Perkin Elmer spectrum 65 FTIR 

spectrometer, attenuated total absorbance probe, in the range of 600-4000 cm-1, FTIR spectra at 4 cm-1 

resolution were recorded. 32 scans were collected to improve the signal-to-noise ratio. 

 

Transmission Electron Microscopy. A high-resolution transmission electron microscope (HRTEM) 

JOEL JEM 2100F was used for imaging the SPIONs. Analysis of the TEM images was carried out with 

the Gatan Digital Micrograph software. Average sizes of the untreated and treated SPIONs were 

calculated on the basis of 50 nanoparticles for each sample.  

 

X-Ray Photoelectron Spectroscopy. Survey and C1s, O1s, and N1s high resolution spectra of 

SPIONs were obtained on a VG ESCALab 3 Mk II, using nonmonochromated Mg Kα radiation 

(1253.6 eV), at a power setting of 300 W, having an instrument resolution of 0.7 eV. The samples were 

deposited onto silica substrates, using two-sided adhesive Cu tape. The base pressure during scanning 

was less than 1x10-9 torr. Electrons were detected at a perpendicular take-off angle, using 0.05 eV 

steps, and spectra were analyzed using the VG Avantage software. 
 

Results and discussion 
 

Contact angle measurement. Figure 2 shows the results of the contact angle measurement of the bare, 

positively and negatively charged SPIONs before and after surface treatment with PICVD.  
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a)  Bare SPIONs, before treatment 

	

b) Bare SPIONs, after treatment 

 

c) Positively-charged SPIONs, before treatment 

	

d) Positively-charged SPIONs, after treatment 

	

e)   Negatively-charged SPIONs, before treatment 

	

f)	Negatively-charged SPIONs, after treatment 

	

Fig. 2:  Contact angle of (a,b) bare, (c,d) positively charged and (e,f) negatively charged SPIONs 

before and after surface treatment with PICVD, respectively                       

	

The average values of the contact angle of the untreated and treated bare, positively and negatively 

charged SPIONs are reported in Table 1. Essentially, these results demonstrate that the initial surface 



!

+!

charge plays no role in the final behaviour of the SPIONs, from a wettability perspective – both 

positively and negatively-charged SPIONs take on a hydrophobic behaviour post-treatment, as 

expected by the treatment conditions retained (Dion et al. 2014).  Figure 3 shows treated SPION 

samples dispersed in water – these exhibit sedimentation, likely as a result of increased hydrophobicity 

(visual inspection).  

Table 1: !The average values of the contact angles of the untreated and treated bare, positively- and 

negatively-charged SPIONs 

 

Samples! Untreated! Treated!

Bare SPIONs! 40° ± 9°! 77° ± 14°!

Positively-charged SPIONs! 58° ± 12°! 100° ± 23°!

Negatively-charged SPIONS! 47° ± 13°! 97° ± 15°!

 

 
Fig. 3: Bare and treated SPIONs suspended in water 
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FTIR analysis of the SPIONs. Figure 4a, 4c and 4e show the FTIR spectra of the bare, positively and 

negatively charged untreated SPIONs, respectively. The peaks at 635 cm-1, 1000 cm-1 (highlighted in 

Figure 4a) and the strong band at 1330 cm-1 are attributed to the Fe-O and the C-O bonds of the CH2-

OH	groups, respectively. The peak that appears at 1690 cm-1 in the FTIR spectra of positively charged 

SPIONs	 corresponds to the amine bending mode (Kazemzadeh et al. 2012; Stuart 2004). The Si-O 

vibrational bond, which is due to the silica shell on the surface of positively and negatively charged 

SPIONs, appears at around 1100 cm-1 (Misra et al. 2003). The broad band at 3400–3500 cm-1 

corresponds to the presence of surface hydroxyl groups. The vibrations at around 1555 cm-1 and 1420 

cm-1 are attributed to asymmetric and symmetric stretching of COO-
	 group (Namanga et al. 2013). 

Figures 4b, 4d and 4f show the FTIR spectra of the bare, positively and negatively charged treated 

SPIONs, respectively. In these spectra, the peak at 1650 cm-1 is attributed to the C=C alkenyl 

stretching, which is absent in those of the untreated SPIONs. The peak at 880 cm-1, which is attributed 

to =C-H bending, is absent in the spectrum of the untreated negatively charged SPIONS, but appears in 

that of the treated sample. These last two peaks are attributed to the polymer-like coating on the treated 

nanoparticles.  
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Fig. 4:  FTIR spectra of a) bare, c) positively charged and e) negatively charged untreated SPIONs, b) 

bare, d) positively and f) negatively charged treated SPIONs  

	

Transmission Electron Microscopy. Figure 5 shows the morphology of the untreated and treated 

SPIONs through TEM. The additional shell on their surface corresponds to the polymer coating 

imparted by the PICVD treatment. The average size distributions of untreated and treated SPIONs were 

calculated on the basis of fifty nanoparticles selected randomly in each sample type (Table 2). It should 

be noted that the values presented in Table 2 included both coated and uncoated particles (treatment 

efficiency is not 100%, especially in the case of the positively-charged SPIONs). This artificially 

creates an overlap between the coated and uncoated data – the user is referred to Figure 5 to clearly 

observe the presence of the coating. The increase in the average size of the charged SPIONs in 

comparison to the bare SPIONs confirms the surface functionalization of the samples due to the 
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presence of the silica shell on their surface. The average size of negatively charged treated SPIONs was 

more than that of the positively charged treated SPIONs. This indicates a thicker layer of polymers on 

the surface of the negatively charged treated SPIONs in comparison to the positively charged treated 

SPIONs. The average width of the polymers on the treated SPIONs was 1.5 nm. Moreover, the polymer 

coating deposited on the surface of the charged SPIONs seems to have affected their surface charge and 

caused aggregation.. The polymer appears heterogeneous, likely a result of the reactor geometry used. 

 

X-ray Photoelectron Spectroscopy. The peaks of carbon, oxygen, nitrogen and iron were observed in 

the survey spectra of the untreated and treated SPIONs (data not shown). A small peak of silicon, 

corresponding to the substrate, was also observed. The high-resolution O1s spectra of the untreated and 

treated bare, positively- and negatively-charged SPIONs are shown in Figure 6. In Figure 6a, the peak 

at 533 eV is attributed to an oxygen atom in a O-C bond (Johansson and Campbell 2004). The peaks at 

532 eV and 531 eV are attributed to C=O and COOH bonds, respectively. The peak at 528.5 eV is 

attributed to O-Fe bond.  The same peaks are observed in Figures 6b, 6c and 6d. In Figure 6e, the peaks 

at 533 eV, 531.7 eV, 530 eV and 529.5 eV are attributed to O-C, C=O, COOH and O-Fe bonds, 

respectively. In Figure 6f, the peaks at 533 eV, 532 eV, 530.5 eV and 529.5 eV are attributed to O-C, 

C=O, COOH and O-Fe bonds, respectively. The O/C ratio of the bare SPIONs increased after treatment 

(Table 3). For negatively-charged SPIONs, this ratio decreased after PICVD surface modification. The 

O/C ratio of the positively-charged SPIONs was unaffected by treatment. This may be due to the same 

quantity of C and O of the coating on the surface of these nanoparticles.  Indeed, this is supported by 

the fact that we observe a change in the wettability of these samples, as well as a coating via TEM. We 

hypothesize that negatively-charged electron cloud of the oxygen atoms imposed restrictions on the 

positioning of oxygen atoms on the surface of negatively-charged SPIONs (repulsive electrostatic 

interaction).  

 

  



!

"%!

a) Bare SPIONs, before treatment 

!

b) Bare SPIONs, after treatment 

!

c) Positively-charged SPIONs, before treatment!

!

d) Positively-charged SPIONs, after treatment 

!

e) Negatively charged SPIONs before treatment 

 

f) Negatively-charged SPIONs, after treatment 

 

Fig. 5 TEM images of untreated and treated (a,b) bare, (c,d) positively charged and (e,f) negatively 

charged treated SPIONs. The crystalline shape of SPIONs and the amorphous shape of their polymer-

coating (highlighted in red) are seen at 5 nm scale 
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Table 2  Average size distribution of untreated and treated SPIONs 

 

Sample 
Untreated 

[nm] 

Treated 

[nm] 

Bare SPIONs 10.9 ± 0.2 12.5 ± 0.4 

Positively-charged SPIONs 11.8 ± 0.3 12.3 ± 0.3 

Negatively-charged SPIONs 12.2 ± 0.2 13.6 ± 0.2 

 

 

Table 3 Data on the O/C percentage ratios of untreated and treated SPIONs 

 
Samples Untreated Treated 

Bare SPIONs 1.7 1.9 

Positively-charged SPIONs 1.7 1.7 

Negatively-charged SPIONs 1.7 0.7 
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a) Bare SPIONs, before treatment 

		

b) Bare SPIONs, after treatment 

		

c) Positively-charged SPIONs, before treatment 

	

d) Positively-charged SPIONs, after treatment 

		

e) Negatively-charged SPIONs, before treatment 

		

 f) Negatively-charged SPIONs, after treatment 

		

Fig. 6 XPS O1s high resolution spectra of a,b) bare, c,d) positively and e,f) negatively charged 

untreated and treated SPIONs 
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In this study, contact angle measurements, TEM and FTIR analyses of treated and untreated SPIONs 

confirm the presence of a polymer coating resulting from functionalization with PICVD. The 

photochemical reaction in PICVD can create large molecules of the form CxHyOz, as well as water. As 

reported by (Dion et al. 2014), the coating has a structure similar to that of phenol formaldehyde, 

though this is strictly an approximation of the make-up of the highly cross-linked, polymer-like film. 

 

The wettability on the surface of the treated SPIONs shows the change of their surface polarity. The 

XPS analysis shows that the surface chemical composition of the treated SPIONs is different depending 

on the initial surface charge. The difference of the O/C ratios of the untreated and treated bare, 

positively charged and negatively charged SPIONs in their high resolution XPS spectra leads to the 

suggestion that surface functionalization of these nanoparticles were carried out differently depending 

on their surface neutrality or charge. Although wettability does not seem to be affected, the data 

indicates more oxygen on the surface of the bare SPIONs compared to carbon (as expect), whereas 

there was no preference for these atoms on the surface of the treated positively charged SPIONs and 

the inverse tendency, which is the increase in the O/C ratio, was observed for the treated negatively 

charged SPIONs. The bare SPIONs with no surface charge showed a better spatial arrangement of 

oxygen than carbon atoms due to available sites for the positioning of these atoms on their surface after 

surface treatment. The site availability of the bare SPIONs is due to the absence of functional groups on 

their surface during their synthesis before their surface treatment with PICVD. Therefore, both the 

surface charge and stereochemical may have effects on the polymeric coating of SPIONS with this 

technique. An extensive investigation is needed to determine these effects in the coating of these 

nanoparticles and their dispersibility in micelle-forming molecules, as well as the applications of these 

nanoparticles for magnetic data storage, polluting agent removal and catalysis of organic reactions. For 

example, in the case of biomedical applications, nanoparticle agglomeration can cause significant toxic 

effects, namely through accumulation in the spleen and liver. The agglomeration of nanoparticles is 

possible after their surface treatment. In this study, we focused specifically on the surface chemistry of 

SPIONs, but further investigations are needed to determine the impact of surface treatment by PICVD 

on nanoparticle agglomeration. 
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Conclusion 
Bare, positively and negatively charged SPIONs were treated by PICVD and their physicochemical 

properties due to their charge effect were determined. The significant increase in their contact angle 

with water indicated that their treatment with this technique made their surface non-polar.  TEM and 

FTIR analyses showed the presence of nanometric polymeric coating around the SPIONs attributable to 

PICVD surface modification. XPS analysis of untreated and treated SPIONs revealed the surface 

charge effect on the polymeric coating of the samples, affecting the resulting O/C ratio. The data 

presented here will be a versatile resource for further surface studies of these nanoparticles. The control 

of the ratio of functional groups on the surface of treated SPIONs can lead to the preparation of mixed-

monolayer nanoparticles for future experiments. Further investigation on the duration of the surface 

treatment of SPIONs with PICVD, coupled with modifying the core-size of the SPIONs before 

treatment, are warranted to assess the impact on the stability of the treated nanoparticles in different 

solvents (and therefore as an indication of performance in the intended applications).  

 

Acknowledgments 
We thank Professor Nick Virgilio from École Polytechnique de Montréal for access to the tensiometer. 

We also acknowledge the (CM)2 laboratory at École Polytechnique de Montréal for the TEM imaging 

of the samples. Finally, the authors would like to acknowledge the financial support of the National 

Science and Engineering Research Council of Canada (NSERC). The ARC (research contract AUWB-

2010—10/15-UMONS-5), the FNRS, the Walloon Region, the COST TD1004 and TD1402, the UIAP 

VII program and the Center for Microscopy and Molecular Imaging (CMMI, supported by the 

European Regional Development Fund and the Walloon Region) are thanked for their support. 

 

	

References 
Bloemen M, Stappen TV, willot P et al. (2014) Heterobifunctional PEG ligands for bioconjugation  

     reactions on iron oxide nanoparticles. Plos One 9 e109475 

Chang SY, Zheng N-Y, Chen C-S, Chen C-D, Chen Y-Y, Wang CRC (2007) Analysis of peptides and  

     proteins affinity-bound to iron oxide nanoparticles by MALDI MS. J Am Soc Mass Spectr 18:910– 

     918 

Chen CL, Zhang H, Ye Q, Hsieh WY, Hitchens TK, Shen HH, Liu L, Wu YJ, Foley LM, Wang SJ, Ho  



	

18	

 

     C (2011) A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance  

     imaging. Mol Imaging Biol 13:825–839 

Chen FF, Gerion D, Gray JW, Budinger TF (2009) Multimodal imaging probes for in vivo targeted and  

     non-targeted imaging and therapeutics. US Patent WO2009045579 A2  

Das M, Mishra D, Maiti TK, Basak A, Pramanik P (2008) Bio-functionalization of magnetite  

     nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate  

     nanoconjugates for cancer-specific targeting. Nanotechnol 19(41):415101 

De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W , Mullens J, Borghs G,  

     Maes G (2007) Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles  

     water-dispersible. Chem Mater 19:1821–1831 

Dion CAD, Raphael W, Tong E, Tavares JR (2014) Photo-initiated chemical vapor deposition of thin  

     films using syngas for the functionalization of surfaces at room temperature and near-atmospheric  

     pressure. Surface Coat Technol 244:98–108 

Eigler DM, Heinrich AJ, Loth S, Lutz CP: Antiferromagnetic storage device. United States Patent 

Patent N° US8,724,376 B2. 2014 

Fan C, Gao W, Chen Z, Fan H, Li M, Deng F, Chen Z (2011) Tumor selectivity of stealth multi- 

     functionalized superparamagnetic iron oxide nanoparticles. Int J Pharm 404:180–190 

Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable 

catalysts in the development of sustainable methodologies. Chem. Soc. Rev. 42:3371–3393 

Georgelin T, Moreau B, Bar N, Villemin D, Cabuil V, Horner O (2008) Functionalization of Fe2O3  

     nanoparticles through the grafting of an organophosphorous ligand. Sens Actuat B Chem 134:451– 

     454 

Hanini A, Schmitt A, Kacem K, Chau F, Ammar S, Gavard J (2011) Evaluation of iron oxide  

     nanoparticle biocompatibility. Int J Nanomed 6:787–794 

Hu X, Yu JC, Gong J (2007) Fast production of self-assembled hierarchical α–Fe2O3 nanoarchitectures.  

     J Phys Chem C 111: 11180–11185 

Jin H, Hong B, Kakar SS, Kang KA (2008) Tumor-specific nano-entities for optical detection and  

     hyperthermic treatment of breast cancer. Adv Exp Med Biol 614:275–284 

Johansson L-S, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies.	Surface  



	

19	

     Interf Analysis 36:1018−1022 

Kazemzadeh H, Ataei A, Rashchi F (2012) Synthesis of magnetite nanoparticles by reverse co- 

     precipitation. International J Modern Phys: Conference Series 5:160–167 

Misra D, Wörhoff K, Mascher P (2003) Dielectrics in Emerging Technologies: Proceedings of the  

     International Symposium. Electrochem Soc Proc 

Namvari M, Namazi H (2014) Clicking graphene oxide and Fe3O4 nanoparticles together: an efficient  

     adsorbent to remove dyes from aqueous solutions. Int J Environ Sci Technol 11:1527–1536  

Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide  

     nanoparticles by organic ligands. Monatsh Chem 139:183−195 

Nethaji S, Sivasamy A, Mandal AB (2013) Preparation and characterization of corn cob activated 

carbon coated with nano-sized magnetite particles for the removal of Cr(VI). Bioresour. Technol. 

134:94–100 

Obermayer D, Balu AM, Romero AA, Goessler W, Luque R, Kappe CO 2013) Nanocatalysis in 

continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of 

benzyl alcohol. Green Chem. 15:1530-1537 

Robinson I, Tung LD, Maenosono S, Wälti C, Thanh NTK (2010) Synthesis of core-shell gold coated  

     magnetic nanoparticles and their interaction with thiolated DNA.	Nanoscale 2:2624-2630 

Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin  

     Colloid Interface Sci 10:102–110 

Stanicki D, Boutry S, Laurent S, Wacheul L, Nicolas E, Crombez D, Elst LV, Lafontaine DLJ, Muller  

     RN (2014) Carboxy-silane coated iron oxide nanoparticles: a convenient platform for cellular and  

     small animal imaging. J Mater Chem B 2(4):387-397  

Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley Press  

Sun S, Zeng H (2002) Size-Controlled Synthesis of Magnetite Nanoparticles. J Am Chem Soc  

     124:8204–8205 

Uzun K, Çevik O, Şenel M, Sözeri H, Baykal A, Abasiyani MF, Toprak MS (2010) Covalent  

     immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide  

     nanoparticles.	J Nanopart Res 12:3057–3067 

Veiseh O, Gunn J, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug         

     delivery and imaging. Adv Drug Deliv Rev 62(3):284–304 



	

20	

Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization  

     of pure nanometer-sized Fe3O4 particles. Mater Sci Eng A 286:101–105 

Wang X, Liu L-H, Ramström O, Yan M (2009) Engineering nanomaterial surfaces for biomedical  

     applications. Exp Biol Med  234:1128−1139 

Wu W, He Q, Jiang C (2008) Magnetic Iron Oxide Nanoparticles: Synthesis and surface  

     functionalization strategies. Nanoscale Res Lett 3:397–341 


	2015_Javanbakht_Charge_effect_superparamagnetic_iron_oxide
	2015_Javanbakht_Charge_effect_superparamagnetic_iron_oxide

	2015_Javanbakht_Charge_effect_superparamagnetic_iron_oxide_erratum

