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RÉSUMÉ

Les métasurfaces électromagnétiques sont des structures bidimensionnelles d’épaisseur fine
par rapport à la longueur d’onde d’opération. Elles sont utilisées pour contrôler la diffusion
d’ondes électromagnétiques. De telles structures sont conventionnellement composées d’un
arrangement périodique de particules diffusantes, de taille plus petite que la longueur d’onde.
Ces particules sont conçues de façon à contrôler l’amplitude, la phase, la polarisation et la
direction de propagation des ondes réfléchies et transmises par les métasurfaces, lorsque
celles-ci sont illuminées par une onde incidente spécifique.

L’idée de contrôler la lumière avec des structures d’épaisseur fine n’est pas nouvelle et existe
depuis bien longtemps. Cependant, la compréhension mathématique et physique, ainsi que
les capacités technologiques requises pour fabriquer ce genre de structures complexes, par-
ticulièrement celles qui réalisent un contrôle avancé du champ électromagnétique, n’ont été
essentiellement disponibles que depuis les dix dernières années. En outre, malgré les progrès
récents, il y a un manque crucial d’une méthode de synthèse, qui soit à la fois rigoureuse et
universelle, et qui permette de traiter n’importe quel type de transformation électromagné-
tique. Il s’ensuit que l’objectif principal de ce travail est de développer un cadre général de
synthèse pour l’implémentation mathématique et pratique de métasurfaces, indépendamment
de la transformation électromagnétique prescrite.

Cette thèse présente une discussion détaillée de la synthèse mathématique de métasurfa-
ces, qui est basée sur des conditions aux limites rigoureuses s’appliquant à des interfaces
d’épaisseur nulle. La procédure de synthèse est un problème inverse qui fournit les suscepti-
bilités des métasurfaces en fonction des transformations électromagnétiques spécifiées. Dans
ce travail, nous considérons le cas général de métasurfaces bianisotropes possédant des termes
de susceptibilités à la fois tangentiels et normaux. La procédure de synthèse est alors séparée
en plusieurs cas particuliers, avec un ordre croissant de complexité, qui sont chacun traités de
manière individuelle. En plus de cela, la méthode de synthèse a également été étendue afin
de prendre en compte le cas de susceptibilités monoisotrope non-linéaire de second ordre.

La synthèse mathématique de métasurfaces est illustrée de manière théorique et numérique
avec plusieurs exemples qui incluent notamment le design de rotateurs de polarisation réci-
proques et non-réciproques, ainsi que des transformateurs d’ondes multiples. Une discussion
détaillée sur la théorie fondamentale des métasurfaces réfractives est également proposée.
Elle décrit différentes configurations de susceptibilités qui permettent de réaliser une trans-
formation réfractive. Pour chacune d’entre elles, l’efficacité de conversion de puissance entre
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l’onde incidente et l’onde réfractée est analysée d’un point de vue mathématique et physique.

En se basant sur les développements mathématiques de la méthode de synthèse, la réalisation
pratique des métasurfaces est alors abordée. La thèse présente deux différentes approches
pour l’implémentation des particules diffusantes composant les métasurfaces. L’une est basée
sur des particules faites d’une cascade de couches métallisées, l’autre sur des résonateurs dié-
lectriques. Ces deux types de structures présentent leurs propres avantages et inconvénients
en termes de pertes, de complexité de fabrication, de degrés de liberté et de tailles.

Finalement, la thèse présente plusieurs concepts et applications de métasurfaces, qui ont été
investigués et développés durant ce programme doctoral, et qui illustrent la mise en œuvre de
la procédure de synthèse mathématique et pratique. Parmi ces concepts et applications, nous
pouvons notamment citer: des métasurfaces diélectriques pour le contrôle de la dispersion
temporelle, la réalisation de lames demi-onde et quart d’onde, de séparateur de polarisations,
de générateur d’ondes possédant un moment angulaire orbital, des processeurs à lumière
cohérente, le routage d’ondes d’espace par l’utilisation d’ondes de surface, l’implémentation
d’un isolateur non-réciproque et non-gyrotrope, l’augmentation de l’efficacité lumineuse des
LEDs et le contrôle de la pression de radiation.
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ABSTRACT

An electromagnetic metasurface is a two-dimensional structure that is thin with respect to
the considered wavelength of operation and that may be used to control the scattering of elec-
tromagnetic waves. Such a structure is conventionally composed of a periodic arrangement
of engineered subwavelength scattering particles that enables one to control the amplitude,
phase, polarization and direction of propagation of the fields reflected and transmitted by
the metasurface, when the latter is illuminated by a specific incident field.

While the idea of controlling light with thin surfaces has been around for a very long time,
the mathematical and physical understanding as well as the technical capabilities required
to realize such complex structures, especially the ones that perform advanced control of the
fields, have only been available since the last decade. However, there has been a crucial lack
of a rigorous and universal synthesis technique that would apply to any field specification. It
follows that the main objective of this work is to provide a general synthesis framework for the
mathematical and practical implementation of metasurfaces, irrespectively of the prescribed
electromagnetic transformations.

The thesis presents an in-depth discussion on the mathematical synthesis of metasurfaces
that is based on rigorous zero-thickness sheet transition conditions. The synthesis procedure
is an inverse problem that yields the metasurfaces susceptibilities in terms of the fields cor-
responding to the specified electromagnetic transformations. We are considering the very
general case of fully bianisotropic metasurfaces with both tangential and normal susceptibi-
lity components. The synthesis procedure is then split into different particular cases, with
increasing order of complexity, that are individually addressed. Additionally, the synthesis
technique is also extended so as to include the case of monoisotropic second-order nonlinear
susceptibilities.

The mathematical synthesis of metasurfaces is theoretically and numerically illustrated with
several examples, which notably include the design of reciprocal and nonreciprocal polari-
zation rotators and multiple wave transformers. A detailed discussion on the fundamental
theory of refractive metasurfaces is proposed and which describes various susceptibility con-
figurations that allow one to achieve wave refraction. For each of these configurations, the
power conversion efficiency between the incident and refracted wave is also analyzed from a
mathematical and physical perspective.

Following the mathematical developments of the synthesis, the practical realization of meta-
surfaces is then addressed. The thesis discusses two different approaches for the implemen-
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tation of the metasurface scattering particles. One that is based on cascaded metallic layers
and one based on dielectric resonators. These two structures exhibit their own advantages
and disadvantages in terms of loss, fabrication complexity, degrees of freedom and sizes.

Finally, the thesis presents several metasurface concepts and applications, which have been
investigated and developed during this PhD program and that illustrate the implementation
of the mathematical and practical synthesis procedure. These concepts and applications
notably include metasurfaces for temporal dispersion engineering, half- and quarter-wave
plate operations, polarization beam splitting, orbital angular momentum generation, coherent
light processing, space-wave routing via surface waves, nonreciprocal nongyrotropic isolation,
LEDs emission enhancement and radiation pressure control.
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CHAPTER 1 Introduction

This thesis presents and discusses the mathematical synthesis, the practical realization and
some applications and concepts of electromagnetic metasurfaces, which are the two-dimensional
counterparts of metamaterials. In this introductory chapter, we will start with a brief over-
view of metamaterials. It will be followed by a review of the steps that led to the develop-
ments of metasurfaces. Based on these considerations, we will finally introduce the initial
motivation and the objectives of this work.

This work is based on a collection of papers whose complete list is provided in Appendix E.

1.1 What is a Metamaterial?

The term metamaterial was originally coined by Rodger M. Walser in 1999 in the context of a
DARPA1 Workshop [4]. It was proposed to describe a class of artificial materials that exhibit
electromagnetic properties that are beyond those conventionally available in nature [5–8].
According to this definition, it is clear that such kind of artificial structures have been realized
and used since long before the invention of the term metamaterial itself. Indeed, one of the
earliest known example of metamaterials is that of dichroic glass, which is notably used in
stained glass. The Lycurgus cup, which dates back to the 4th-century AD, is probably the
most well-known and ancient example of dichroic glass. In these ancient times, controlling
the reflection, transmission and absorption properties of glass was achieved by the addition
of various metallic powders during the glass manufacturing process [9]. Due to the lack
of light-matter interaction theory, these structures were essentially made by trial-and-error
experiments.

Coming back to a more recent epoch, soon after Maxwell established the theory of elec-
tromagnetism in 1865 [10], people tried to uncover ways of controlling the propagation of
electromagnetic waves. Maybe one of the earliest example is that of Bose artificial polari-
zation rotator, in the late 1890s, made of a twisted-jute structure which mimics the chiral
behavior of certain sugar solutions [11]. Other artificial chiral media include the spiral reso-
nating structures of Lindman in the 1910s and 1920s [12]. Later in the 1940s, Kock pioneered
the realization of artificial dielectrics by inserting resonating metallic elements in dielectric
layered media and implemented the first microwave delay lens [13]. In the meantime, Schel-
kunoff and Friss proposed to use split-ring resonators to artificially increase the permeability

1Defense Advanced Research Projects Agency
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of materials [14].

While up to that point, most artificial materials were made to control the permittivity and
permeability, extreme material parameters such as a refractive index less than unity were not
shown before the work of Brown in the 1950s [15] and then, in the 1960s, that of Rotman who
associated the electromagnetic behavior of a wire medium to that of an equivalent plasma [16].
Continuing on that path, Veselago theoretically predicted, in 1968, a completely new class of
materials where both the permittivity and the permeability are negative values leading to a
negative index of refraction [17]. The developments of artificial materials continued through
the 1980s and 1990s, notably with the realization of microwave absorbers and bianisotropic
media [8]. But it is not before 2001 that the concept of metamaterial really started to
attract major attention from the scientific community. Indeed, this rise in interest followed
the groundbreaking works of Smith [18]2, who, for the first time, experimentally achieved a
negative index of refraction, and that of Pendry [19], who revived the concept of negative
refraction (proposed by Veselago) to suggest the realization of a perfect lens. The interest
towards metamaterials grew even more when, in 2006, Pendry and Smith proposed and
realized the concept of electromagnetic cloaking based on transformation optics [20,21].

Although a general description of what a metamaterial is was already provided above, we
will now rigorously define the meaning of this term. A metamaterial is an artificial structure
made of an arrangement of engineered particles, sometimes refereed to as “meta-atoms” or
scattering particles [8]. The distance between these meta-atoms as well as their overall di-
mension must be much smaller than the wavelength such that a wave propagating through
the medium does not experience diffraction or Bragg scattering due to the granularity of the
structure. In that case, the metamaterial structure can be homogenized to obtain its corre-
sponding effective material parameters. Photonic crystals [22] and electromagnetic band gaps
structures [23] (with unit cell size comparable to the wavelength) thus do not qualify as meta-
materials since the electromagnetic field inside these structures cannot be averaged to obtain
homogenized effective constitutive parameters. From a general perspective, the exceptional
effective material parameters that are achievable with metamaterials are not only related to
the chemical composition of the scattering particles but also to their shape and orientation.
As such the scattering particles may be composed of dielectric or metallic materials, they
may be resonant or non-resonant elements, they may exhibit loss, gain and nonlinear effects
and may even contain electronic circuitry. Note that composite materials made by mixing
different materials together, and whose material parameters may be obtained from mixing
formulas such as the Maxwell Garnett equation, are not conventionally considered as meta-

2It is also in this work that the term “metamaterial” appeared for the first time in the literature.
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materials due to the fact that their electromagnetic properties only depend on the chemical
composition of the elements and not on their shape and orientation [24].

1.2 The Concept of Metasurfaces

The interest in metamaterials reached a peak in the first decade of the 21st century. Then,
due to their fabrication complexity, their bulkiness and weight, and their limitations in terms
of losses, frequency range and scalability, metamaterials became eventually less attractive.
It is at this moment that metasurfaces, the two-dimensional counterparts of metamaterials,
began to attract notable attention [25–28].

The idea of controlling electromagnetic waves with electromagnetically thin structures is
obviously not a new concept. The first example is probably that of Lamb, who studied the
reflection and transmission from an array of metallic strips, already back in 1897 [29]. Later
in the 1910s, Marconi used straight wires to realize polarization reflectors [30]. These first
kind of two-dimensional electromagnetic structures were later followed by a rich diversity of
various systems that emerged mainly with the developments of the radar technology during
World War II. Many of these systems date back to the 1960s and notably include: the Fresnel
zone plate reflectors (FZPR), illustrated in Fig. 1.1a, developed for radio transmitters [31]
and which are based on the concept of the Fresnel lens already demonstrated almost 200
hundred years ago. The frequency selective surfaces (FSS) developed as filters [32, 33] and
illustrated in Fig. 1.1d. The reflectarray antennas [34], designed as the flat counterparts of
parabolic reflectors, and which were initially fabricated using short-ended waveguides [35].
They were later progressively improved and the short-ended waveguides were replaced with
mircrostrip printable scattering elements in the late 1970s [36, 37], as shown in Fig. 1.1b.
The transmission counterparts of the reflectarrays are the transmitarrays which were used as
array lens systems and at least date back to the 1960s [38–40]. They were first implemented
by forming two interconnected planar arrays of dipole antennas, one for receiving and one
for transmitting, where each antenna on the receiver side was connected via a delay line
to an antenna on the transmit side, as depicted in Fig. 1.1c. The transmitarrays evolved
through the 1990s from interconnected antenna arrays to layered metallic structures that
were essentially the functional extensions of FSS [41–43] and the precursors of the current
metasurfaces. At that time, their efficiency was limited due to the inability to control the
transmission over a 2π-phase range while maintaining a high enough amplitude. Finally,
compact quasi-transparent transmitarrays or phase-shifting surfaces, able to cover a 2π-phase
range, were demonstrated in 2010 [44].

FSS, reflectarrays, transmitarrays and phase-shifting surfaces are the precursors of what we
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would call today: metasurfaces. Note that all structures discussed so far are used in the
context of space-wave transformations, however, metasurfaces may also be used for surface-
wave transformations. Indeed, patterned surfaces like, for instance, near-field plates [45–47]
or even impedance surfaces converting surface waves into space waves [48, 49] also qualify
as metasurfaces providing that their unit cell size is much smaller than the wavelength such
that Bragg scattering does not occur.

Source

(a)

Source

(b)

φ1

φ2

φ3

φ4

φ5

φ6

Source

(c)
Source

(d)

Figure 1.1 Examples of two-dimensional wave manipulating structures: (a) Fresnel zone plate
reflector, (b) reflectarray, (c) interconnected array lens and (d) frequency-selective surface.
Due to the structural configuration of (a) and (c), they do not qualify as metasurfaces. On
the other hand, the structures in (b) and (d) can be homogenized into effective material
parameters and thus correspond to metasurfaces.
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To this day, a myriad of metasurfaces have been reported in the literature and many more
metasurface structures and applications are expected to emerge in coming years. We provide
here a non-exhaustive list of some applications of metasurfaces. From a general perspective,
metasurfaces can be used to manipulate the polarization, the phase and the amplitude of
electromagnetic fields. However, early metasurfaces were only able to affect specific pro-
perties of the fields such as, for instance, the polarization. Many metasurfaces have been
realized to control the polarization of normally incident waves [50–57], in these examples,
linearly polarized waves can be transformed into circularly polarized waves or have their
polarization rotated using chiral scattering particles [58]. Another type of specific appli-
cation is the realization of absorbing surfaces [59–65], where, this time, the amplitude of
the field must be affected so that no reflection or transmission can occur. In addition to
the reflect/transmitarrays discussed above, there are more recent works that include meta-
surfaces able to introduce phase variations and that can thus manipulate the directions of
wave propagation [66–68]. Wavefront manipulation metasurfaces [69–79] can be used for va-
rious applications such as, for instance, generalized refraction, focusing or diverging devices,
phase compensation of electromagnetic sources, etc. Many of these phase manipulating me-
tasurfaces are essentially the planar counterparts of Fresnel type structures such as Fresnel
lenses [80] and blazed gratings [81, 82] and which are usually implemented in the optical
regime. More complex metasurfaces able to transform both phase and polarization have also
been realized recently. Notably, vortex beams possessing angular orbital momentum [83]
have been successfully generated [84–89]. Metasurfaces that produce holograms have also
been reported [90, 91] and even stable tractor beams [92]. Other kinds of exotic operations
can be realized, among others, nonreciprocal transformations [93–97], nonlinear interacti-
ons [98–100], analog computing [101,102] and spatial filtering [103–105].

One main drawback of metasurfaces, and metamaterials in general, is their limited bandwidth
as most of these structures are constituted of resonant scattering particles. Today, increasing
the bandwidth of metasurfaces is an active research topic and several examples have already
been reported [106–112]. One other recurrent problem with metal based metasurfaces is the
high optical losses in metal at optical frequencies [113,114], which consequently reduces their
attractiveness for optical applications. Recent works [115–118] have demonstrated that all-
dielectric metasurfaces (at optical or microwave frequencies), that are inspired from artificial
dielectric initially developed in the microwave regime [119], are a valid alternative to metal
based structures. This is because dielectric resonators do not suffer from high optical losses
as metallic structures do.

An important question that arises when considering metasurfaces (or metamaterials in gene-
ral) is how can such structures be synthesized? Initially, many methods were developed not to
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synthesize metamaterials but rather to find an equivalent representation of these structures in
terms of effective parameters. These methods, called homogenization techniques [120–127],
consist in converting the complex subwavelength structure of a metamaterial into an homo-
geneous slab of, for instance, effective permittivity and permeability that exhibits the same
reflection and transmission coefficients and propagation constant as the original metamate-
rial structure. In general, homogenization techniques provide direct relations between the
reflection and transmission coefficients of the metamaterial, obtained by experimental mea-
surements or electromagnetic simulations, and the effective parameters of the homogeneous
slab. Metasurface synthesis techniques are conceptually doing the opposite of the homoge-
nization techniques. They can be decomposed into two main steps. At first, the effective
parameters of the metasurface are obtained by specifying the incident, reflected and trans-
mitted fields. Secondly, the scattering particles of the metasurface are designed to correspond
to these effective parameters [128–139].

1.3 Motivation and Objectives

As seen above, the concept of metasurface has been around for at least the past 50 years,
mostly implemented in the form of FSS and reflect/transmitarrays. More recently, during the
past decade, there has been important research developments in the area of metamaterials,
and metasurfaces have emerged as better candidates than their 3D counterparts for control-
ling electromagnetic fields. This is because they are easier to fabricate, lighter, less lossy and
have a lower profile [25,26,67,127,132,140,141]. As a consequence, there is today a growing
interest towards the development of metasurfaces with always more complex electromagne-
tic transformation possibilities that surpass those of previous two-dimensional structures. A
complete control of the polarization, phase and amplitude of the reflected and transmitted
waves, which was not achievable before, is necessary for many applications. However, there
has been a lack of reliable and rigorous methods to synthesize these complicated structures.
Indeed, in most cases, structures like reflectarrays were designed based on very simple prin-
ciples such as far-field phase compensation [34], while optical thin films were often designed
based on complex amplitude transmittance or holographic methods [142]. These synthesis
methods are based on far-field and paraxial approximations, which is obviously not rigorous
in an electromagnetic sense as they ignore near-field contributions and the vectorial nature
of the fields. These methods are thus not universal and only apply in particular cases. Mo-
reover, they do not provide information about the material properties of the metamaterials
but rather on the effects, in terms of scattering behavior, that the structures apply on the
fields.
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From these considerations, it follows that the initial motivation for this project is to over-
come the limitations in terms of metasurface synthesis techniques. We point out that, since
the beginning of this work, a few metasurface synthesis techniques have been reported in
the literature. In this thesis, we will discuss the synthesis procedure developed in [128]
which yields the metasurface susceptibility tensors for specified electromagnetic transforma-
tions. Alternatively, the methods proposed by Grbic [131–134] and Eleftheriades [135–137]
describe the metasurface in terms of impedance tensors and it can be shown that they repre-
sent only a particular case of the general method proposed here. The method proposed by
Tretyakov [138,139] relates the waves reflected and transmitted from the metasurface to the
polarizabilities of a single scattering element in a rigorous fashion only in the case of normally
propagating waves3. In contrast, the method proposed here deals with waves of arbitrary
incident angles and arbitrary types. Finally, the method proposed by Salem [129, 130], is a
technique called the momentum transformation method, which is a spectral (k) method, that
is particularly suitable for paraxial wave problems. It can also handle full vectorial problems
but this involves extra complexity compared to the scalar case.

The main objectives of this work directly follow from the initial motivation discussed above.
In this thesis, we aim to: develop a complete framework that may be used to rigorously
synthesize metasurfaces, and use it to implement new kinds of electromagnetic field transfor-
mation metasurfaces for various applications. The synthesis framework can be divided into
two main steps. Firstly, a mathematical description of the metasurface must be obtained by
solving an inverse problem where all the fields around the metasurface (incident, reflected
and transmitted fields) are known and the electromagnetic properties, at each point of the
metasurface, must be found. The mathematical synthesis technique must be as universal as
possible meaning that the specified fields can have arbitrary amplitude, phase, polarization
and direction of propagation. Secondly, the metasurface material parameters and electro-
magnetic transfer functions (obtained from the first step of the synthesis) are discretized into
lattice sites, where each one of them corresponds to a unit cell to be implemented. Each of
these unit cells must then be physically implemented in order to build the final metasurface.
Therefore, this second part of the synthesis technique consists in finding appropriate and
convenient design rules to implement the scattering particles. This second step is usually the
most tedious as no universal and systematic techniques exist so far to relate the shape of
scattering particles to their effective parameters (or transmission and reflection coefficients)
and such analysis is usually performed via parametric simulations of well chosen structu-
res [78, 143–150].

3In the next chapter, we will provide more details and also compare these synthesis techniques to the one
proposed in this work.
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1.4 Thesis Contributions and Organization

The main contribution of this work is the metasurface synthesis framework that will be deve-
loped and discussed in Chapters 2 to 4. Due to the rigorous nature of its foundation, which
is directly derived from Maxwell equations, this metasurface synthesis technique provides the
most complete and detailed description of metasurfaces available to date in the literature.
It yields the metasurface material parameters, given in terms of susceptibility components,
as functions of specified electromagnetic transformations. The utilization of susceptibili-
ties provides an unprecedented physical perspective on the electromagnetic properties of the
metasurfaces, which was inaccessible with previous synthesis techniques. Moreover, It also
extends previously available synthesis techniques by taking into account normal and non-
linear susceptibility components, which opens up completely new research directions. The
combined information available from these three chapters provides the reader with all the
necessary tools required to design a metasurface, from the initial specifications in terms of
field transformations to the final physical structure as well as the measurement procedure.

In addition to this metasurface synthesis framework, Chapter 5 presents several other contri-
butions that consist in various metasurface concepts and applications. Among the most ori-
ginal are: the realization of a birefringent metasurface generating vortex waves with different
topological charge depending on the polarization of the illumination. The implementation
of spatial coherent processors that are able to control the metasurface transmitted wave am-
plitude, phase and direction of propagation based on a coherent superposition of an incident
input wave and an incident control wave. The design of a partially-reflecting metasurface
cavity enhancing the light extraction efficiency of light-emitting diodes (LEDs), which may
find practical and industrial applications in the lighting industry. And the prospective study
of the capabilities of metasurfaces to control electromagnetic radiation pressure, notably with
the objective of realizing metasurface “solar” sails.

The global organization of this thesis is as follows:

Chapter 2 mathematically introduces the concept of metasurfaces. A synthesis procedure is
derived based on rigorous zero-thickness sheet transition conditions, which yields the meta-
surface susceptibilities in terms of the specified fields. The synthesis technique is general and
applies to full bianisotropic susceptibility tensors that include tangential and normal suscepti-
bility components as well as second-order nonlinear terms. This chapter also presents several
examples that illustrate the capabilities of the synthesis technique.

Chapter 3 presents a detailed discussion on the synthesis of refractive metasurfaces. This
specific type of electromagnetic transformation is an excellent candidate to apply several
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of the concepts developed in Chapter 2. We will see and compare four different methods
available to synthesize refractive metasurfaces.

Chapter 4 discusses the practical implementation of metasurfaces as well as the measurement
procedure used to investigate the scattering properties of the realized structures. We present
two possible unit cell structures that are most commonly used to realize metasurfaces. One
is based on cascaded metallic layers and the other one is based on dielectric resonators.

Chapter 5 illustrates the application of the synthesis procedure. We present several meta-
surface concepts and applications, which include: electromagnetic wave plates, polarization
beam splitting, orbital angular momentum generation, spatial coherent processing, space-
wave routing via surface waves, nonreciprocal nongyrotropic isolation, LEDs emission en-
hancement and radiation pressure manipulation.

Chapter 6 highlights some of the limitations that are inherent to metasurfaces and to the
proposed synthesis technique. We will notably discuss and compare the discrepancies between
the scattering behavior of metasurfaces with non-negligible thicknesses and the expected
scattering behavior predicted by the zero-thickness model.

Chapter 7 concludes the thesis and proposes directions for future works.
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CHAPTER 2 Mathematical Synthesis Based on Susceptibility Tensors

In this chapter1, we present an extensive discussion on the mathematical synthesis of metasur-
faces. We consider that a metasurface is a two-dimensional electromagnetic discontinuity of
subwavelength thickness, t ! λ. The metasurface synthesis problem is illustrated in Fig. 2.1,
where the metasurface lies in the xy-plane at z � 0 and is of finite size with dimensions
Lx � Ly. Figure 2.1, shows a typical metasurface made of a nonuniform arrangement of
scattering particles (here made of planar metallic crosses) that transforms an incident wave
into specified reflected and transmitted waves.

x

z

y

z “ 0

Ly

Lx

ψtprq

χpρq “? t ! λ

ψiprq

ψrprq

Figure 2.1 The metasurface of subwavelength thickness to be synthesized lies in the xy-plane
at z � 0. The synthesis procedure consists in finding the susceptibility tensors, χpρq, in
terms of specified arbitrary incident, ψiprq, reflected, ψrprq, and transmitted, ψtprq, waves.

The objective of the synthesis procedure is to obtain the metasurface material parameters so
that the metasurface performs a specified monochromatic transformation prescribed in terms
of an arbitrary incident wave, ψiprq, an arbitrary reflected wave, ψrprq, and an arbitrary
transmitted wave, ψtprq. The synthesis procedure provides a solution that is expressed in
terms of the bianisotropic surface susceptibility tensors, χeepρq, χmmpρq, χempρq and χmepρq,
which respectively correspond to the electric, magnetic, electromagnetic and magnetoelectric
susceptibility tensors, and where ρ � xx̂� yŷ.

1This chapter is based on a modified version of [128,151–153].
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We will see that, although the synthesis procedure always yields a mathematical solution,
the resulting susceptibilities may not necessarily correspond to physically realizable scat-
tering particles. The difficulty in realizing the metasurface may stem from: rapid spatial
variations of the susceptibilities compared to the size of the scattering particles, the presence
of electric/magnetic gain/loss or even nonreciprocal features that are beyond the reach of
the current state-of-the-art technology. Nevertheless, in many cases it is possible to sacrifice
some of the specified design constraints so as to relax the requirements on the susceptibilities
and thus synthesize a structure that is physically implementable.

In this chapter, we will present and discuss the mathematical synthesis of metasurfaces,
which is only the first step in the broader framework of metasurface synthesis. Upon this
mathematical basis, we will address, in the forthcoming chapters, the second main step of
the synthesis, which consists in finding the appropriate geometries of the scattering particles.

Note that throughout this document, the time harmonic dependence ejωt is assumed and
omitted for conciseness.

2.1 Metasurface Boundary Conditions

Let us consider the metasurface depicted in Fig. 2.1 and ask the question: how can one obtain
its susceptibilities in terms of the specified fields? The operation described in this question
corresponds to solving an inverse problem, which consists in finding the material parameters
as functions of space so as to produce specific scattered fields under a specified illumination.
As such, this inverse problem has an infinite number of solutions, at least if far-field radiation
is concerned. However, even if near-field contributions are taken into account, we will see
that several different susceptibilities may produce the exact same scattered fields, as will be
demonstrated shortly. Additionally, the metasurface in Fig. 2.1 has a certain thickness and,
even if it is deeply subwavelength, it still consists of a thin slab of material with two distinct
interfaces. This makes the problem even more complicated since continuity at both interfaces
must be ensured. In order to simplify this complicated problem, we make the assumption
that the metasurface is an electromagnetic discontinuity of exactly zero-thickness and thus
consists only of a single interface. This assumption of zero-thickness is supported by the
fact that the metasurface is electromagnetically thin, but comes at the cost of a discrepancy
between the scattering response of the zero-thickness model and that of the thin metasurface
slab, to which we will come back later. Consequently, the synthesis problem reduces to
finding the susceptibilities of a polarizable zero-thickness sheet.

Now that we have decided to model the metasurface as a zero-thickness electromagnetic dis-
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continuity, we can again ask the question: how can one obtain the susceptibilities, in terms
of the specified fields, of an interface inducing both electric and magnetic field discontinui-
ties? It turns out that the conventional boundary conditions found in most electromagnetic
textbooks, that may allow relating the fields to the presence of the metasurface, do not ri-
gourously apply to this kind of polarizable interface, as pointed out by Schelkunoff [154]. To
illustrate this point, let us look, without loss of generality, at the specific example of the
discontinuity of the displacement vector D at an interface between two media. Gauss law
stipulates that

∇ �D � ρ, (2.1)

where ρ is the charge density per unit volume. Applying Gauss theorem to (2.1), by consi-
dering a volume V enclosed by a surface S around the interface, leads to½

V

∇ �D dV �
¿
S

D � n̂ dS �
½
V

ρ dV � ρs, (2.2)

where n̂ is the unit vector normal to S and ρs is the surface charge density. After simplifying
the surface contour integral of D, Eq. (2.2) reduces to

ẑ � D|0�z�0� � ρs, (2.3)

which is the conventional textbook boundary condition for the discontinuity of the displace-
ment vector D in the presence of an impressed surface charge density. There are two reasons
why Eq. (2.3) is not rigorous: the first one lies in the fact that the application of Gauss
theorem in (2.2) is valid only if D is continuous inside the volume V , which is obviously
not the case when ρs � 0. Note that (2.3) is correct away from the interface, i.e. up to
z � 0�, but fails to describe the behavior of the field at z � 0. The second reason is the
incompleteness of (2.3), which implies that D is perfectly continuous in the absence of im-
pressed surface charges but completely fails to consider the contribution of excitable dipole
or higher-order multipole moments. Therefore, the conventional boundary conditions are not
capable to correctly account for the effects of the metasurface.

Fortunately, rigorous boundary conditions, that apply to zero-thickness sheets, were first
developed by Idemen [155] and then applied to metasurfaces by Kuester et al. [127]. These
boundary conditions are conventionally referred to as the Generalized Sheet Transition Con-
ditions (GSTCs) and are derived in Appendix A for the sake of clarity and completeness of
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this work2. In the absence of impressed sources, the GSTCs read

ẑ � ∆H � jωP ‖ � ẑ �∇‖Mz, (2.4a)

∆E � ẑ � jωµ0M ‖ �∇‖

�
Pz
ε0



� ẑ, (2.4b)

ẑ � ∆D � �∇ � P ‖, (2.4c)
ẑ � ∆B � �µ0∇ �M ‖, (2.4d)

where the terms on the left-hand sides of the equations correspond to the differences of the
fields on both sides of the metasurface, which may be expressed as

∆Ψu � û � ∆Ψ
���0�
z�0�

� Ψu,t � pΨu,i � Ψu,rq, u � x, y, z, (2.5)

where Ψ represents any of the fieldsH , E,D orB, and where the subscripts i, r, and t denote
incident, reflected and transmitted fields, and P andM are the electric and magnetic surface
polarization densities, respectively. In the general case of a bianisotropic metasurface, these
polarization densities are related to the acting (or local) fields, Eact and Hact, by [157,158]

P � ε0Nαee �Eact � 1
c0
Nαem �Hact, (2.6a)

M � Nαmm �Hact � 1
η0
Nαmm �Eact, (2.6b)

where the αab terms represent the polarizabilities of a given scatterer, N is the number of
scatterers per unit area, c0 is the speed of light in vacuum and η0 is the vacuum impedance.
This is a microscopic description of the metasurface response which requires an appropriate
definition of the averaging operation as well as the coupling between adjacent scattering
particles. In this work, we use the concept of susceptibilities rather than the polarizabilities
to provide a macroscopic description of the metasurface, which allows a direct connection with
material parameters such as εr and µr. To bring about the susceptibilities, relations (2.6) can
be transformed by noting that the acting fields, at the position of a scattering particle, can be
defined as the average fields from which the scattered field of the considered scattering particle
has been removed [127], i.e. Eact � Eav �Escat. The contributions of the scattering particle
may be expressed by considering the particle as a combination of electric and magnetic dipoles
contained within a small disk. Then, the scattered fields from this disk can be related to P
and M by taking into account the coupling with adjacent scattering particles. Therefore,

2It is interesting to note that the GSTCs can also be obtained following the more traditional technique of
box integration, as demonstrated in [156].
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the acting fields are functions of the average fields and the polarization densities. Upon
substitution of this definition of the acting fields in (2.6), the resulting expressions of the
polarization densities become

P � ε0χee �Eav � 1
c0
χem �Hav, (2.7a)

M � χmm �Hav � 1
η0
χme �Eav, (2.7b)

where the average fields are defined as

Ψu,av � û �Ψav � Ψu,t � pΨu,i � Ψu,rq
2 , u � x, y, z, (2.8)

where Ψ corresponds to E orH . The constitutive relations with the convention used in (2.7)
are consequently given by

D � ε0E � P � ε0pI � χeeq �Eav � 1
c0
χem �Hav, (2.9a)

B � µ0pH �Mq � µ0pI � χmmq �Hav � 1
c0
χme �Eav, (2.9b)

where I is the identity matrix. In the general case of a volumetric medium, the susceptibilities
in (2.9) are dimensionless quantities. However, the surface susceptibilities that apply to zero-
thickness metasurfaces have a dimension of meter, as discussed in Appendix A.

2.2 Conditions of Reciprocity, Passivity and Loss

Before exploring the metasurface synthesis procedure, we shall first discuss the properties
of reciprocity, passivity and loss applying to time-invariant linear metasurfaces and which
will be precious for the forthcoming discussions. From a general perspective, the reciprocity
of a given system can be evaluated by considering the scattering interactions between an
arbitrary emitter and receiver and that system. If the position of the emitter and the receiver
can be interchanged without affecting the transmission between the two, then the system is
reciprocal. The Lorentz reciprocity theorem is the most conventional method to derive the
reciprocity conditions of an electromagnetic system. If the system consists of a bianisotropic
medium, the reciprocity conditions, that result from the Lorentz theorem, read [157,158]

χT
ee � χee, χT

mm � χmm, χT
me � �χem, (2.10)

where the superscripts T denotes the matrix transpose operation.
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We will now investigate how the metasurface susceptibility values can be related to gain or
to dissipation. As we will see later, the synthesized metasurface susceptibilities are generally
complex values, whose real and imaginary parts may represent gain or loss. In order to
precisely determine whether the metasurface is active or lossy, or even a combination of
both, we need to explicitly compute the bianisotropic Poynting theorem. Assuming the
convention ejωt, the time-average bianisotropic Poynting theorem is given by [157]

∇ � @SD � �@IJe
D� @

IJm
D� @

IP
D� @

IM
D
, (2.11)

where
@ � D denote the time-average operation, S is the Poynting vector and IJe, IJm, IP and

IM are loss (or gain) contributions emerging from the electric currents, magnetic currents,
electric polarization and magnetic polarization, respectively. If the metasurface is surrounded
by vacuum on both sides, then the terms in (2.11) read

@
S
D � 1

2 RepE �H�q, (2.12a)@
IJe

D � 1
4 Repjωε0E

� � pχee � χ�eeq �Eq, (2.12b)@
IJm

D � 1
4 Repjωµ0H

� � pχmm � χ�mmq �Hq, (2.12c)@
IP
D � 1

4 Re
�
jωε0pE� � pχee � χ:eeq �E � 2η0E

� � χem �Hq
�
, (2.12d)@

IM
D � 1

4 Re
�
jωµ0pH� � pχmm � χ:mmq �H � 2E� � χ:me �H{η0q

�
, (2.12e)

where : is the conjugate transpose operator. Relations (2.11) and (2.12) are derived in
Appendix B for completeness. The fields E and H in (2.12) are the fields acting on the
metasurface and can be replaced by the corresponding average fields. The term on the
left-hand side of (2.11) corresponds to the divergence of the power flow through an arbitrary
volume, which, in our case, surrounds the metasurface. If this term is zero, then the amplitude
of a wave going through the metasurface remains the same, which may a priori indicate that
the metasurface is passive and lossless. However, this is not necessarily the case since the
terms on the right-hand side of (2.11) may compensate each other such that gain and loss
perfectly cancel out, as will be shown thereafter. Therefore, it is in general necessary to
compute all the terms from (2.12b) to (2.12e) to determine whether the metasurface is active,
which is the case if these terms are negative, or lossy, in the case where they are positive. If
all these terms are zero, then the metasurface is passive and lossless.

By combining relations (2.12b) to (2.12e) and conditions (2.10), one obtains the conditions
that make a metasurface simultaneously passive, lossless and reciprocal. These conditions
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read
χ

T
ee � χ

�
ee, χ

T
mm � χ

�
mm, χ

T
me � χ

�
em. (2.13)

We see that the conditions in (2.10) and (2.13) establish relations between different susceptibi-
lity components, thus decreasing the number of degrees of freedom available to a metasurface
to control electromagnetic fields. We will see in the next section that this has the effect of
reducing the diversity of metasurface wave transformations.

2.3 General Solutions for Tangential Susceptibilities

The metasurface synthesis procedure consists in solving the GSTCs relations in (2.4) to
obtain the susceptibilities in (2.7), that are the unknown of this inverse problem, so that the
metasurface performs a desired electromagnetic transformation specified in terms of incident,
reflected and transmitted fields. According to the uniqueness theorem, Eqs. (2.4c) and (2.4d)
are redundant relations in the absence of impressed sources since the transverse components
of the fields are sufficient to completely describe the electromagnetic problem. Therefore, we
usually only consider relations (2.4a) and (2.4b) for the synthesis of metasurfaces.

As they are, the GSTCs form a set of coupled non-homogenous partial differential equations,
as evidenced by the presence of the spatial derivatives of the normal components of the
polarization densities in relations (2.4a) and (2.4b). As a consequence, solving the inverse
problem, in the most general case where all susceptibility components are considered, is
nontrivial and may require involved numerical analyses. It is therefore convenient to assume
that the metasurface does not possess normal susceptibility components such that Pz �
Mz � 0 irrespectively of the illumination. In this section, we will only consider cases where
Pz � Mz � 0, which leads to closed-form solutions of the synthesized susceptibilities; while
the more general case of nonzero normal susceptibilities is discussed in Sec. 2.5. Enforcing
that Pz � Mz � 0 may a priori seem to be an important restriction but, as we will see, it
does not have a major impact on the synthesis procedure besides the fact that it reduces the
number of available degrees of freedom of the metasurface. This restriction mostly affects the
realization of the scattering particles that may be polarizable in the normal direction, which
may ultimately alter the scattering response of the structure. However, it should be noted
that in the particular case where all the specified waves are propagating normally with respect
to the metasurface, then the excitation of normal polarization densities does not induce any
discontinuity of the fields. This is because, when all the specified waves propagate normally,
their corresponding electric and magnetic fields as well as the synthesized susceptibilities are
not functions of the coordinates x and y since no change in the direction of propagation is
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specified. In that case, the spatial derivatives of Pz andMz in Eqs. (2.4a) and (2.4b) are equal
to zero, thus inducing no discontinuities of the fields on both sides of the metasurface. This
means that the susceptibilities producing normal polarizations can be completely ignored
when the metasurface is synthesized for normally propagating waves. In this scenario, only
the tangential components of the susceptibilities should be considered.

Let us now simplify the GSTCs so as to obtain the final form of the synthesis relations.
Substituting (2.7) into (2.4a) and (2.4b), and dropping the spatial derivatives, leads to

ẑ � ∆H � jωε0χee �Eav � jk0χem �Hav, (2.14a)
∆E � ẑ � jωµ0χmm �Hav � jk0χme �Eav, (2.14b)

where k0 is the free-space wavenumber and where the susceptibility tensors only contain the
tangential susceptibility components. This system can also be written in matrix form to
simplify the synthesis procedure. The matrix equivalent of (2.14) is given by������

∆Hy

∆Hx

∆Ey
∆Ex

������

������
rχxxee rχxyee rχxxem rχxyemrχyxee rχyyee rχyxem rχyyemrχxxme rχxyme rχxxmm rχxymmrχyxme rχyyme rχyxmm rχyymm

������

������
Ex,av

Ey,av

Hx,av

Hy,av

�����, (2.15)

where the tilde symbol indicates that the susceptibilities in (2.14) have been normalized. The
relationship between the susceptibilities in (2.14) and those in (2.15) is������

χxxee χxyee χxxem χxyem

χyxee χyyee χyxem χyyem

χxxme χxyme χxxmm χxymm

χyxme χyyme χyxmm χyymm

������

������
j
ωε0

rχxxee
j
ωε0

rχxyee
j
k0
rχxxem

j
k0
rχxyem

� j
ωε0

rχyxee � j
ωε0

rχyyee � j
k0
rχyxem � j

k0
rχyyem

� j
k0
rχxxme � j

k0
rχxyme � j

ωµ0
rχxxmm � j

ωµ0
rχxymm

j
k0
rχyxme

j
k0
rχyyme

j
ωµ0

rχyxmm
j
ωµ0

rχyymm

�����. (2.16)

As it is, the system (2.15) contains 16 unknown susceptibilities for only 4 equations, which
means that it is heavily under-determined and thus cannot be solved directly. This is the basis
of two fundamental considerations. The first one is the fact that, to solve the system (2.15),
the number of independent unknowns should match the number of equations. Accordingly,
the number of independent unknowns must be reduced to 4 so as to have a full-rank system.
Since many different sets of 4 susceptibility components may be considered as valid candidates
to solve the system, we can assert that different combinations of susceptibilities produce the
exact same scattered fields. The second consideration is the fact that one can increase
the number of transformations instead of reducing the number of unknowns to 4. This
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means that the metasurface has the capability to simultaneously transform several sets of
incident, reflected and transmitted waves, providing that they are independent from each
other. Consequently, there are three main methods that may be considered to solve the
inverse synthesis problem: reducing the number of independent unknowns, increasing the
number of transformations or a combination of these two methods.

In order to reduce the number of unknowns, one may, for instance, enforce conditions on
the susceptibilities so that they depend on each other. These conditions may include the
reciprocity conditions in (2.10), or the passivity and losslessness conditions in (2.13). If these
conditions are imposed on the susceptibilities, then the number of independent variables is
reduced since several susceptibility components are related to each other. For instance, the
reciprocity conditions reduce the number of independent tangential susceptibilities from 16
to 10. However, this method may not be the most appropriate since the conditions that are
imposed on the susceptibilities may not be compatible with the specified transformation.

In general, the most appropriate approach to solve the system (2.15) is to match the num-
ber of unknown susceptibilities to the number of specified transformations. In many cases,
only one transformation is required and thus only 4 susceptibilities are used to synthesize
the metasurface. With 4 susceptibilities to select out of 16, the number of different possible
combinations is very large. However, most of these combinations of susceptibilities lead to
nonphysical or unpractical designs. As an illustration, we will present in Sec. 2.7.1 how rota-
tion of polarization can be achieved by considering different combinations of susceptibilities.
It is then obvious that the choice of susceptibilities depends on the requirements of the spe-
cified problem. Note that these considerations are naturally extendable to the cases where
more than one transformation is desired.

In the forthcoming discussions, we will only present a limited number of combinations of
susceptibilities for the sake of conciseness but without loss of generality. First, we will
start by considering the synthesis of a birefringent metasurface, which is one of the most
commonly used types of structure. Then, we will present an illustrative example of multiple
transformations.

Note that a single transformation between specified incident, reflected and transmitted waves
requires 4 susceptibilities only in the general case where these waves exhibit both x and y

polarization states. However, if only one of these two polarization states is considered, then
the system (2.15) reduces to 2 equations. In this scenario, only 2 susceptibilities instead of 4
are required to synthesize the metasurface.
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2.3.1 Synthesis of Birefringent Metasurfaces

We now consider the most simple and conventional case of metasurface synthesis. It consists
in synthesizing a monoanisotropic (χem � χme � 0) metasurface possessing only diagonal
nonzero susceptibility components, which corresponds to a birefringent structure [159]. For
such a metasurface, the system (2.15) reduces to������

∆Hy

∆Hx

∆Ey
∆Ex

������

������
rχxxee 0 0 0
0 rχyyee 0 0
0 0 rχxxmm 0
0 0 0 rχyymm

������

������
Ex,av

Ey,av

Hx,av

Hy,av

�����, (2.17)

which may be straightforwardly solved and yields, using (2.16), the following simple relations
for the 4 susceptibilities:

χxxee �
�∆Hy

jωε0Ex,av
, (2.18a)

χyyee �
∆Hx

jωε0Ey,av
, (2.18b)

χxxmm � ∆Ey
jωµ0Hx,av

, (2.18c)

χyymm � �∆Ex
jωµ0Hy,av

, (2.18d)

where, according to (2.5) and (2.8), ∆Hy � Hy,t � pHy,i � Hy,rq, Ex,av � pEx,t � Ex,i �
Ex,rq{2, and so on. By synthesis, a metasurface with the susceptibilities in (2.18) will exactly
produce the specified reflected and transmitted transverse components of the fields when the
metasurface is illuminated by the specified incident field. Since the longitudinal fields are
completely determined from the transverse components, according to the uniqueness theorem,
the complete specified electromagnetic fields are exactly generated by the metasurface.

Due to the orthogonality between x- and y-polarized waves, the susceptibilities in (2.18) can
be separated into two subsets corresponding to equations (2.18a) and (2.18d), and equati-
ons (2.18b) and (2.18c), respectively. These two sets of susceptibilities are able to indepen-
dently and simultaneously transform x- and y-polarized waves. Consequently, each subset al-
lows one to perform the simplest example of single transformation. If the two electric and the
two magnetic susceptibilities in (2.18) are equal to each other (χxxee � χyyee and χxxmm � χyymm),
then the metasurface is monoisotropic and accordingly performs the same operation for both
x- and y-polarized waves. If this is not the case, then the metasurface is monoanisotropic
(birefringent) and can perform the simplest case of double transformation. Note that we will
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see in the next section a more general case of multiple transformation that is not based on
the orthogonal separation of x- and y-polarized waves as it is the case here.

The system in (2.17) represents the most conventional way of synthesizing metasurfaces
performing single (or double by birefringence) transformation, but it is obviously not the
only one possible. One may for instance imagine a monoanisotropic metasurface with nonzero
off-diagonal components, which would be solved in the exact same fashion while performing
a different kind of electromagnetic transformation since it would correspond to a gyrotropic
structure. An example of such a gyrotropic metasurface will be presented in Sec. 2.7.1.

2.3.2 Multiple Transformations

We have just seen how a metasurface can be synthesized to perform a single transformation,
if the structure is monoisotropic, or a very particular case of double transformations, if
the structure is monoanisotropic. However, as mentioned in Sec. 2.3, the general system
of equations (2.15) has the capability to perform multiple transformations given its large
number of degrees of freedom, i.e. its 16 susceptibility components. Here, we will see how the
system (2.15) can be solved for several transformations including incident waves coming from
one side only or both sides of the metasurface. To accommodate for the additional degrees
of freedom, three additional wave transformations are added, so that (2.15) transforms to������

∆Hy1 ∆Hy2 ∆Hy3 ∆Hy4

∆Hx1 ∆Hx2 ∆Hx3 ∆Hx4

∆Ey1 ∆Ey2 ∆Ey3 ∆Ey4

∆Ex1 ∆Ex2 ∆Ex3 ∆Ex4

������

������
rχxxee rχxyee rχxxem rχxyemrχyxee rχyyee rχyxem rχyyemrχxxme rχxyme rχxxmm rχxymmrχyxme rχyyme rχyxmm rχyymm

������

������
Ex1,av Ex2,av Ex3,av Ex4,av

Ey1,av Ey2,av Ey3,av Ey4,av

Hx1,av Hx2,av Hx3,av Hx4,av

Hy1,av Hy2,av Hy3,av Hy4,av

�����,
(2.19)

where the subscripts 1, 2, 3 and 4 indicate the electromagnetic fields corresponding to four
distinct and independent sets of waves. As previously done, the susceptibilities can be obtai-
ned by matrix inversion conjointly with (2.16).

In order to illustrate the concept, we now consider a specific example of double transfor-
mations, which consists of synthesizing a monoanisotropic metasurface with full electric and
magnetic tangential susceptibility tensors. The corresponding system is, from (2.19), given
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by ������
∆Hy1 ∆Hy2

∆Hx1 ∆Hx2

∆Ey1 ∆Ey2

∆Ex1 ∆Ex2

������

������
rχxxee rχxyee 0 0rχyxee rχyyee 0 0
0 0 rχxxmm rχxymm

0 0 rχyxmm rχyymm

������

������
Ex1,av Ex2,av

Ey1,av Ey2,av

Hx1,av Hx2,av

Hy1,av Hy2,av

�����. (2.20)

We assume that the two transformations that we are considering possess fields with both x
and y polarizations. The solution of (2.20) is readily found by matrix inversion and, after
using (2.16), the resulting susceptibilities are

χxxee �
j

ε0ω

pEy1,av∆Hy2 � Ey2,av∆Hy1q
pEx2,avEy1,av � Ex1,avEy2,avq , (2.21a)

χxyee �
j

ε0ω

pEx2,av∆Hy1 � Ex1,av∆Hy2q
pEx2,avEy1,av � Ex1,avEy2,avq , (2.21b)

χyxee �
j

ε0ω

pEy2,av∆Hx1 � Ey1,av∆Hx2q
pEx2,avEy1,av � Ex1,avEy2,avq , (2.21c)

χyyee �
j

ε0ω

pEx1,av∆Hx2 � Ex2,av∆Hx1q
pEx2,avEy1,av � Ex1,avEy2,avq , (2.21d)

χxxmm � j

µ0ω

pHy2,av∆Ey1 �Hy1,av∆Ey2q
pHx2,avHy1,av �Hx1,avHy2,avq , (2.21e)

χxymm � j

µ0ω

pHx1,av∆Ey2 �Hx2,av∆Ey1q
pHx2,avHy1,av �Hx1,avHy2,avq , (2.21f)

χyxmm � j

µ0ω

pHy1,av∆Ex2 �Hy2,av∆Ex1q
pHx2,avHy1,av �Hx1,avHy2,avq , (2.21g)

χyymm � j

µ0ω

pHx2,av∆Ex1 �Hx1,av∆Ex2q
pHx2,avHy1,av �Hx1,avHy2,avq , (2.21h)

where the subscripts 1 and 2 stand for the first and the second wave set transformation,
respectively. Applying the conditions (2.10) and (2.13) to (2.21) indicates that in most cases
the metasurface will not be only active/lossy but also nonreciprocal. The same argument
applies to the more general case of the fully bianisotropic metasurface described by the
susceptibilities in (2.19) which may, depending on the choice of transformations, be nonreci-
procal and active/lossy. Note that the choice of using the susceptibility tensors χee and χmm

in (2.20) was arbitrary and other sets of susceptibilities, for instance including bianisotropic
components, may be better suited to perform the desired transformations. In the upcoming
Sec. 2.7.2, we will present an example of the application of relations (2.21).
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2.4 Relations with Scattering Parameters

So far, we have been only interested in the mathematical synthesis of metasurfaces, which
consists in finding the susceptibilities in terms of specified fields. We shall now investigate how
the synthesized susceptibilities may be related to the shape of the scattering particles that
will constitute the metasurfaces to be realized. Here, we will only present the mathematical
expressions that relate the susceptibilities to the scattering particles, while a more in depth
discussion on the realization of metasurface scattering particles will be presented in Chapter 4.

The conventional method to relate the scattering particle shape to equivalent susceptibilities
(or material parameters) is based on homogenization techniques. In the case of metamateri-
als, these techniques may be used to relate homogenized material parameters to the scattering
parameters of the scatterers. From a general perspective, a single isolated scatterer is not
sufficient to describe an homogenized medium. Instead, we shall rather consider a periodic
array of scatterers, which takes into account the interactions and coupling between adjacent
scatterers hence leading to a more accurate description of a “medium” compared to a single
scatterer. The susceptibilities, which describe the macroscopic responses of a medium, are
thus naturally well-suited to describe the homogenized material parameters of metasurfaces.
It follows that the equivalent susceptibilities of a scattering particle may be related to the
corresponding scattering parameters, conventionally obtained via full-wave simulations, of a
periodic array made of an infinite repetition of that scattering particle [132,150,160,161]. Be-
cause the periodic array of scatterers is uniform with subwavelength periodicity, the scattered
fields obey Snell’s law. More specifically, if the incident wave propagates normally with re-
spect to the array, then the reflected and transmitted waves also propagate normally. In most
cases, the periodic array of scattering particles is excited with normally propagating waves.
This allows one to rigorously obtain the 16 tangential susceptibility components in (2.19).
However, it does not provide any information about the normal susceptibility components of
the scattering particles. This is because normally propagating waves do not excite the normal
susceptibilities due to the purely tangential nature of their electromagnetic fields. Neverthe-
less, this method allows one to match the tangential susceptibilities of the scattering particle
to the susceptibilities found from the metasurface synthesis performed following the proce-
dure in Sec. 2.3 and that precisely yields the ideal tangential susceptibility components. It is
clear that the scattering particles may, in addition to their tangential susceptibilities, possess
nonzero normal susceptibility components. In that case, the scattering response of the me-
tasurface, when illuminated with obliquely propagating waves, will differ from the expected
ideal behavior prescribed in the synthesis. Consequently, the homogenization technique only
serve as an initial guess to describe the scattering behavior of the metasurface. Note that
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is possible to obtain all 36 susceptibility components (4 susceptibility tensors, each with 9
components) of a scattering particle but this would required solving the 4 GSTCs relations
for 9 independent sets of incident, reflected and transmitted waves, which is particularity
tedious and is thus avoided.

We will now derive the explicit expressions relating the tangential susceptibilities to the
scattering parameters in the general case of a fully bianisotropic uniform metasurface sur-
rounded by different media and excited by normally incident plane waves. Let us first write
the system (2.19) in the following compact form:

∆ � rχ � Av, (2.22)

where the matrices ∆, rχ and Av correspond to the field differences, the normalized suscepti-
bilities and the field averages, respectively. In order to obtain the 16 tangential susceptibility
components in (2.19), we will now define four transformations by specifying the fields on
both sides of the metasurface. Let us consider that the metasurface is illuminated from the
left with an x-polarized normally incident plane wave. The corresponding incident, reflected
and transmitted electromagnetic fields read

Ei � x̂, Er � Sxx11 x̂� Syx11 ŷ, Et � Sxx21 x̂� Syx21 ŷ, (2.23a)

H i � 1
η1
ŷ, Hr � 1

η1
pSyx11 x̂� Sxx11 ŷq, Ht � 1

η2
p�Syx21 x̂� Sxx21 ŷq, (2.23b)

where the terms Suvab , with a, b � t1, 2u and u, v � tx, yu, are the scattering parameters with
ports 1 and 2 corresponding to the left and right sides of the metasurface, respectively. The
medium of the left of the metasurface has the intrinsic impedance η1, while the medium on
the right has the intrinsic impedance η2. In addition to (2.23), three other cases have to be
considered, i.e. y-polarized excitation incident from the left (port 1), and x- and y-polarized
excitations incident from the right (port 2). Inserting these fields into (2.19), leads to the
following matrix ∆:

∆ �
�

�N2{η1 �N2 � S11{η1 �N2 � S21{η2 �N2{η2 �N2 � S12{η1 �N2 � S22{η2

�N1 �N2 �N1 �N2 � S11 �N1 �N2 � S21 N1 �N2 �N1 �N2 � S12 �N1 �N2 � S22

�
,

(2.24)
and, similarly, the matrix Av reads

Av � 1
2

�
I � S11 � S21 I � S12 � S22

N1{η1 �N1 � S11{η1 �N1 � S21{η2 �N1{η2 �N1 � S12{η1 �N1 � S22{η2

�
, (2.25)
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where the matrices Sab, I, N1 and N2 are defined by

Sab �
�
Sxxab Sxyab
Syxab Syyab

�
, I �

�
1 0
0 1

�
, N1 �

�
0 �1
1 0

�
, N2 �

�
1 0
0 �1

�
. (2.26)

Now, the procedure to obtain the susceptibilities of a given scattering particle is as follows:
firstly, the scattering particle is simulated with periodic boundary conditions and normal
excitation. Secondly, the resulting scattering parameters are used to define the matrices
in (2.24) and (2.25). Finally, the corresponding susceptibilities are obtained by matrix inver-
sion of (2.22).

Alternatively, it is possible to express the scattering parameters (for normal wave propaga-
tion) of a uniform metasurface with known susceptibilities by solving (2.22) for the scattering
parameters. This leads to the following matrix equation:

S �M
�1
1 �M2, (2.27)

where the scattering parameter matrix, S, is defined as

S �
�
S11 S12

S21 S22

�
, (2.28)

and the matrices M1 and M2 are obtained from (2.22), (2.24) and (2.25) by expressing the
scattering parameters in terms of the normalized susceptibility tensors. The resulting matrix
M1 reads

M1 �
�

N2{η1 � rχee{2 � rχem �N1{p2η1q N2{η2 � rχee{2 � rχem �N1{p2η2q
�N1 �N2 � rχme{2 � rχmm �N1{p2η1q N1 �N2 � rχme{2 � rχmm �N1{p2η2q

�
, (2.29)

and the matrix M2 reads

M2 �
� rχee{2 �N2{η1 � rχem �N1{p2η1q rχee{2 �N2{η2 � rχem �N1{p2η2qrχme{2 �N1 �N2 � rχmm �N1{p2η1q rχme{2 �N1N2 � rχmm �N1{p2η2q

�
. (2.30)

We now provide the expressions relating the susceptibilities to the scattering parameters (and
vice-versa) in the particular case of the monoanisotropic diagonal metasurface discussed in
Sec. 2.3.1. Moreover, we assume that the media on both sides of the metasurface are the same
and correspond to vacuum, i.e. η1 � η2 � η0. By definition, we know that this metasurface
is nongyrotropic and reciprocal. Therefore, we have that Sxyab � Syxab � 0 and that S21 � S

T
12.
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Solving (2.22) along with (2.16) leads to the following susceptibilities:

χxxee �
2j pTx �Rx � 1q
k0 pTx �Rx � 1q , (2.31a)

χyyee �
2j pTy �Ry � 1q
k0 pTy �Ry � 1q , (2.31b)

χxxmm � 2j pTy �Ry � 1q
k0 pTy �Ry � 1q , (2.31c)

χyymm � 2j pTx �Rx � 1q
k0 pTx �Rx � 1q , (2.31d)

where, for convenience, we have that Tx � Sxx21 and Rx � Sxx11 , and so on. Reversing these
relations so as to express the scattering parameters in terms of the susceptibilities leads to

Tx � 4 � χxxee χ
yy
mmk

2
0

p2 � jk0χxxee qp2 � jk0χ
yy
mmq , (2.32a)

Rx � 2jk0 pχyymm � χxxee q
p2 � jk0χxxee q p2 � jk0χ

yy
mmq , (2.32b)

for x-polarized waves, and

Ty � 4 � χyyeeχ
xx
mmk

2
0

p2 � jk0χ
yy
ee qp2 � jk0χxxmmq

, (2.33a)

Ry � 2jk0 pχxxmm � χyyee q
p2 � jk0χ

yy
ee q p2 � jk0χxxmmq

, (2.33b)

for y-polarized waves. It is interesting to note the reflectionless conditions that are revealed
from Eqs. (2.32b) and (2.33b) and which are respectively given by χyymm � χxxee and χxxmm � χyyee .
In order to illustrate the utilization of the relations between susceptibilities and scattering
parameters, we will see several examples where they are put into practice in the forthcoming
sections and chapters.

At this stage, one may wonder whether the expressions obtained above only apply to meta-
surfaces synthesized to transform incident, reflected and transmitted waves that are normally
propagating with respect to the metasurface, or whether they also apply for arbitrary field
transformations, which generally involves nonuniform metasurfaces? To answer this question,
let us consider the following four cases: 1) the metasurface is synthesized only for normally
propagating waves, 2) the metasurface is synthesized for obliquely propagating waves but
without changing the direction of wave propagation, i.e. the metasurface is uniform, 3) the
metasurface is synthesized to change the direction of wave propagation (e.g. refraction, colli-
mation, etc) but, at least, one of the specified wave propagates normally to the metasurface,
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and 4) the metasurface is synthesized to change the direction of wave propagation but none
of the specified waves propagate normally (e.g. negative refraction).

Case 1: the expressions derived above perfectly apply and the realized metasurface response
will be in exact agreement with the specified one.

Case 2: for illustration, let us consider the synthesis of a reflectionless uniform metasurface
that rotates the polarization of the incident wave, which impinges the metasurface at an angle
θi � θt � 30� from broadside. If the expressions above are used and the scattering particle
simulated with normal wave propagation, then the response of the realized metasurface for
the specified incidence angle of 30� will not correspond to the expected result. Indeed, as
said above, simulating all the scattering parameters with normally propagating waves and
solving (2.22) yields the exact tangential susceptibility components but does not provide any
information about the normal susceptibility components. Therefore, an obliquely impinging
wave may excite these normal polarizations, thus affecting the scattering response of the
metasurface. The second reason is due to non-negligible coupling between adjacent scattering
particles, which depends on the angle incidence of the excitation (spatial dispersion). This
coupling is thus different for normal and oblique wave propagation. In order to correctly
synthesize this metasurface, one should change relations (2.23) so as to include the angle of
wave propagation. Accordingly, the scattering particles must be simulated with the same
specified angle of wave propagation. Only then, would the metasurface yield the expected
scattering response.

Case 3: for illustration, let us consider the synthesis of a reflectionless metasurface that
refracts a normally incident plane wave at a given refraction angle θt. In that case, the
metasurface is nonuniform and the susceptibilities are thus functions of x and y on the
metasurface. Inserting these susceptibilities into the relations above will yield scattering
parameters that are themselves spatially varying. It is important to understand that these
scattering parameters do not represent the overall scattering behavior of the metasurface but
rather correspond to the local scattering parameters. Due to the nonuniformity of the struc-
ture, several different scattering particles have to be realized, each one of them exhibiting
the local scattering parameters corresponding to their position px, yq on the metasurface.
This is achieved by simulating each scattering particle individually with periodic boundary
conditions (PBC). Consequently, once they are all implemented and combined together to
form the final metasurface, the coupling between them differs from when they were simula-
ted with PBC. This leads to a scattering response that is different from the expected one,
irrespectively of whether the relations above (assuming normal wave propagation) are used
or any other one (assuming oblique wave propagation). In that case, the relations between
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the susceptibilities and the scattering parameters only serve as an initial guess to realize
the scattering particles, which then usually require to be further optimized so that the final
metasurface performs the expected response. In addition to this, the realized scattering par-
ticles may also exhibit nonzero normal susceptibilities, which further degrades the scattering
behavior of the metasurface. Since, in the example that is considered here, the incident wave
is normally impinging on the metasurface, the relations derived above provide a relatively
good initial guess to realize the metasurface scattering particles because the excitation of the
normal susceptibility components is limited.

Case 4: this case is a combination of the two previous ones since all the waves propagate
obliquely (and at different angles) with respect to the metasurface that is thus nonuniform.
If the specified incident, reflected and transmitted fields are all plane waves, then it would
be adequate to adjust the direction of wave propagation, to that of the specified incident
wave, in (2.23) as well as in the full-wave simulations. However, if the specified incident,
reflected and transmitted fields are not plane waves but arbitrary fields, then the relations
derived above are sufficient to obtain an initial approximation of the specified scattering
behavior that may require further optimization. This is because metasurfaces are usually
synthesized by assuming that the normal susceptibility components are zero, as was done
in Sec. 2.3. Therefore, simulating the scattering particles with normally propagating waves
ensures that their resulting tangential susceptibilities correspond to the desired ones obtain
from the synthesis. Then, the discrepancies in the final metasurface response may only come
from the presence of nonzero normal polarizations and coupling with adjacent unit cells. But
at least their tangential polarizations are the expected ones, which minimizes the errors in
the scattering behavior of the metasurface.

We point out the fact that, in general, the susceptibilities obtained from the synthesis are
complex quantities. According to the discussion in Sec. 2.2, we know that these complex
quantities may be related to loss and gain. More specifically, the susceptibilities in (2.18)
correspond to dissipation if their imaginary parts are negative, and gain if their imaginary
parts are positive. This is relevant to the implementation of metasurfaces because, in some
cases, the realization of the scattering particles is simplified by considering ideal structures
made of purely lossless dielectric material and metallic inclusions made of perfect electric
conductor (PEC). In that scenario, the susceptibilities retrieved with (2.31) are necessarily
purely real. Consequently, it would be impossible to realize the exact complex susceptibilities
obtain from the synthesis with such kind of “ideal” scattering particles.

There are, at least, three solutions to overcome this issue. The first one consists in using
lossy materials to approach, as closely as possible, the required susceptibility values, which
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is generally difficult since it would require precise control of the dissipation as function of
the position on the metasurface. The second solution consists in simply setting to zero the
imaginary parts of the synthesized susceptibilities and implementing only their remaining real
parts. In that case, the metasurface response will differ from the expected one as undesired
scattering will appear, which, depending on the application, may or may not be an issue.
The third solution is similar to the second one, in the sense that the imaginary parts of
the synthesized susceptibilities are set to zero, but the remaining real parts are optimized
so as to minimize the discrepancies between the expected response of the metasurface and
the approximated one. Typically, the optimization procedure consists in minimizing a cost
function of the following form [132]:

F � |Tspec � Tapprox|2 � |Rspec �Rapprox|2 , (2.34)

where the scattering parameters Tspec and Rspec are obtained from (2.32) or (2.33) using the
synthesized susceptibilities. While the parameters Tapprox and Rapprox are obtained from the
same equations but with the purely real susceptibilities that have to be optimized. The cost
function (2.34) is naturally extendable to the more general case of full scattering parameter
matrices.

2.5 Metasurfaces with Nonzero Normal Polarization Densities

The metasurface synthesis relations derived in Sec. 2.3 have been obtained with the assump-
tion that the considered metasurfaces do not possess normal susceptibility components. This
restriction was imposed to simplify the GSTCs since the spatial derivatives in (2.4) vanish
in the case of the absence of normal polarization densities. We will now discuss the case of
metasurfaces with nonzero normal polarization densities.

The general bianisotropic system of equations (2.4) consists of a total number of 36 unknown
susceptibilities for only 4 equations when full susceptibility tensors are considered, instead
of 16 unknown as was previously the case. This corresponds to a heavily under-determined
system, where these additional susceptibility components largely increase the number of
degrees of freedom available to control electromagnetic fields.

The synthesis of metasurfaces with nonzero normal polarization densities may be performed
following similar procedures as those already discussed in Sec. 2.3. As before, one needs to
balance the number of unknown susceptibilities to the number of available equations provided
by the GSTCs. Depending on the specifications, this may become more difficult with the
addition of normal susceptibility components since more transformations may be required to
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obtain a full-rank system. Additionally, if the specified transformations involve changing the
direction of wave propagation, then the system (2.4) becomes a coupled system of partial
differential equations in terms of the susceptibilities. This generally prevents the derivation
of closed-form solutions of the susceptibilities, which should rather be obtained numerically.
However, we will provide an example of a synthesis problem in Sec. 3.4 for the case of a
refractive metasurface, where the susceptibilities are obtainable in closed form.

Relations between susceptibilities and scattering parameters can also be obtained by fol-
lowing the procedure discussed in Sec. 2.4. If the susceptibilities are spatially varying in
the plane of the metasurface, then the scattering parameters are obtained by solving rela-
tions (2.4), which, as said above, form a set of coupled differential equations that may be
solved numerically. However, if the metasurface susceptibility functions are not spatially va-
rying, then Snell’s law applies and the scattering parameters can thus be obtained in closed
form. In that case, it is possible to derive relations similar to those in (2.24) and (2.25),
and (2.29) and (2.30), that apply for the most general case where the 36 susceptibilities are
considered. In Sec. 2.4, we were able to express the 16 susceptibilities in terms of scatte-
ring parameters by considering the 4 GSTCs equations along with 4 wave transformations:
x- and y-polarized excitations from port 1, and x- and y-polarized excitations from port
2. Now, if 36 susceptibilities are considered, we would need to specify 9 independent wave
transformations so as to form a full rank system with the 4 GSTCs equations. Although,
this is feasible, it is particularly cumbersome and is thus omitted here. Alternatively, we can
express the scattering parameters as functions of the susceptibilities. This is easier since,
in this scenario, the system of equations is always a full rank system made of 16 unknown
scattering parameters distributed among 4 wave transformations, as was the case for the de-
rivation of (2.29) and (2.30). Unfortunately, even if expressing the scattering parameters in
terms of the susceptibilities is easier than doing the opposite, the resulting relations cannot
be concisely written and are thus not reported here.

Instead, we provide the expressions of the reflection and transmission coefficients for the par-
ticular case of a monoanisotropic diagonal and uniform metasurface [162]. Its susceptibility
tensors are

χee �

���χ
xx
ee 0 0
0 χyyee 0
0 0 χzzee

��, χmm �

���χ
xx
mm 0 0
0 χyymm 0
0 0 χzzmm

��. (2.35)

We illuminate the metasurface such that the scattering occurs only in the xz-plane. Inser-
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ting (2.35) into (2.4) leads to the following reduced GSTCs relations:

�∆Hy � jωε0χ
xx
ee Ex, (2.36a)

∆Hx � jωε0χ
yy
eeEy � χzzmmBxHz, (2.36b)

∆Ey � jωµ0χ
xx
mmHx, (2.36c)

�∆Ex � jωµ0χ
yy
mmHy � χzzeeBxEz. (2.36d)

Note that the partial derivatives in (2.36b) and (2.36d) are only in the x-direction since the
scattering from this metasurface takes place in the xz-plane, and that they only apply to the
fields and not to the susceptibilities since the latter are not functions of space.

If this particular metasurface was illuminated by a normally incident plane wave, then the
susceptibilities χzzee and χzzmm would not be excited since Ez � Hz � 0 for normal propagation.
In that case, the scattering parameters are exactly the same as those in (2.32) and (2.33).
Therefore, we provide the reflection and transmission coefficients in the case of oblique inci-
dence. Making use of the fact that Bx Ñ �jkx and using relations similar to those in (2.23)
for the specification of the fields, the scattering parameters for p-polarized waves are

Tp � kzp4 � χxxee χ
yy
mmk

2
0 � χxxee χ

zz
eek

2
xq

p2j � χxxee kzqpχyymmk2
0 � χzzeek

2
x � 2jkzq , (2.37a)

Rp � 2jpχyymmk
2
0 � χzzeek

2
x � χxxee k

2
zq

p2j � χxxee kzqpχyymmk2
0 � χzzeek

2
x � 2jkzq , (2.37b)

and their counterparts for s-polarized waves are

Ts � kzp4 � χxxmmχ
yy
ee k

2
0 � χxxmmχ

zz
mmk

2
xq

p2j � χxxmmkzqpχyyee k2
0 � χzzmmk

2
x � 2jkzq , (2.38a)

Rs � � 2jpχyyee k
2
0 � χzzmmk

2
x � χxxmmk

2
zq

p2j � χxxmmkzqpχyyee k2
0 � χzzmmk

2
x � 2jkzq . (2.38b)

It can be easily verified that, for normal incidence, relations (2.37) and (2.38) respectively
reduce to (2.32) and (2.33) since, in that case, kz � k0 and kx � 0. Alternatively, by set-
ting χzzee � χzzmm � 0, relations (2.37) and (2.38) may be used to generalize relations (2.32)
and (2.33) so as to express the reflection and transmission coefficients of a uniform metasur-
face as functions of the incidence angle.
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2.6 Equivalence Between Surface and Volume Susceptibilities

The metasurface synthesis technique that has been developed so far uses the GSTCs relations
in (2.4) to obtain the susceptibilities of an idealized metasurface with exactly zero thickness.
The question that may arise is: can these ideal mathematical surface susceptibilities apply to
a real physical structure that necessarily has a nonzero thickness? The short answer to that
question is yes, as long as the thickness of the structure remains deeply subwavelength. As
the thickness increases, the electromagnetic response of the metasurface deviates more and
more from the expected response. To provide a more elaborate answer, we will evaluate the
discrepancies between the scattering response of a zero-thickness metasurface and that of a
thin metasurface. To do that, we shall first derive the approximate expressions that relate
the ideal surface susceptibilities to volumetric ones.

For simplicity but without loss of generality, let us consider the case of an isotropic and uni-
form metasurface possessing an electric scalar susceptibility, χee. The corresponding Maxwell-
Ampère equation reads

∇�H � jωε0p1 � χeeqE. (2.39)

Let us now consider the two following cases: where the metasurface is perfectly zero-thickness,
in which case we have that χee � χ2Dδpzq; and where the metasurface has a nonzero subwave-
length thickness t, in which case we have that χee � χ3DΠpz{tq, where Πpzq is the rectangular
function. These two cases are respectively depicted in Figs. 2.2a and 2.2b.

x

z

t “ 0

a

b

χee “ χ2Dδpzq

(a)

x

z

t ! λ

a

b

χee “ χ3DΠpz{tq

(b)

Figure 2.2 Representations of: (a) a zero-thickness metasurface and (b) a metasurface with
subwavelength thickness.
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Applying the Stokes’ theorem to (2.39) for the case in Fig. 2.2a gives¾
C

H � dl � jωε0

¼
S

r1 � χ2DδpzqsE � dS. (2.40)

Evaluating the integrals over the highlighted rectangle of dimensions a� b in Fig. 2.2a leads
to

pH�
x �H�

x qa � jωε0 pb� χ2DqEya, (2.41)

where it is assumed that a and b are very small compared to the wavelength. Applying again
the Stokes’ theorem to (2.39) for the case in Fig. 2.2b gives¾

C

H � dl � jωε0

¼
S

r1 � χ3DΠpz{tqsE � dS, (2.42)

which, after integration, reduces to

pH�
x �H�

x qa � jωε0 pb� χ3DtqEya. (2.43)

By comparing the expressions obtained in (2.41) and in (2.43), we can easily deduce that the
relation between χ2D and χ3D is

χ3D � χ2D

t
. (2.44)

We can now define the approximate expressions for the material parameters of the volumetric
metasurface given in terms of the synthesized surface susceptibilities, χ2D. For instance, the
relative permittivity is given by

εr � 1 � χ3D � 1 � χ2D

t
, (2.45)

where the division by the thickness t has the effect of “diluting the strength” of the susceptibi-
lity over the longitudinal extent of the metasurface. Note that the term χ2D{t is dimensionless
since the surface susceptibilities are expressed in meters. The developments provided above
are naturally extendable to all other cases of scalar and tensorial susceptibilities.

The fact that it is possible to relate the ideal surface susceptibilities obtained from the
synthesis to volumetric material parameters shows that this mathematical synthesis may also
be used to describe the behavior of thin metasurfaces. However, one should keep in mind
that the relation (2.45) is an approximation and is valid only when t ! λ. In Chapter 6, we
will come back to this issue and analyze the effect of a nonzero thickness on the scattering
behavior of metasurfaces.
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One direct application of the possibility to associate zero-thickness susceptibilities to volume-
tric material parameters is the simulation of the metasurface scattering behavior, which may
now be performed in commercial software simply by implementing the metasurface as a ma-
terial slab. Note that certain simulation software offer the option to simulate zero-thickness
structures, for instance by using impedance boundary conditions or other sorts of transi-
tion conditions, but they are usually not general enough to account for fields discontinuities
produced by fully bianisotropic metasurfaces. In the upcoming Sections 2.7.2, 5.8 and 6.2,
we will use this thin slab metasurface approximation to simulate the scattering behavior of
different metasurfaces.

Note that we have also developed more rigorous full-wave simulation tools to analyze the
response of metasurfaces [3, 163, 164]. These simulation tools consists of finite-difference
frequency- and time-domain (FDFD/FDTD) and spectral domain homemade codes that
emulate the presence of an exactly zero-thickness metasurface, thus allowing an accurate
evaluation of its scattering behavior.

2.7 Illustrative Examples

We will now illustrate the metasurface synthesis principles with three different examples. The
first one presents different combinations of susceptibilities performing the same operation of
polarization rotation, as an illustration of the single transformation technique addressed in
Sec. 2.3.1. The second example illustrates the application of the multiple transformation
technique discussed in Sec. 2.3.2 in the synthesis of a nonreciprocal metasurface. Finally, the
third example combines the concept of multiple transformations with nonzero normal suscep-
tibility components to realize a reciprocal metasurface with controllable angular scattering.

In addition to the these examples, Chapter 3 discusses in details the topic of refractive
metasurfaces and Chapter 5 provides several other transformation examples that may lead
to potential metasurface applications.

2.7.1 Reciprocal and Nonreciprocal Polarization Rotations

Let us consider the following synthesis problem: find the susceptibilities of a reflectionless
metasurface that rotates the polarization of a normally incident plane wave by an angle of
π{3. We specify that the incident wave is linearly polarized with an electric field making a
π{8 angle with respect to the x-axis, as shown in Fig. 2.3. The resulting transmitted wave
is thus polarized with an electric field making an angle of 11π{24. We assume that the
metasurface is surrounded on both sides by vacuum, i.e. η1 � η2 � η0.
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Figure 2.3 The polarization of a normally incident plane wave, linearly polarized at a π{8
angle with respect to the x-axis, is rotated by π{3. In the reciprocal case, the fields re-
trieve their initial polarization upon propagation along the negative z-direction, while in the
nonreciprocal case the fields experience a round-trip rotation of 2π{3.

The incident and transmitted electromagnetic fields corresponding to these specifications at
z � 0, respectively, read

Eipx, yq � x̂ cospπ{8q � ŷ sinpπ{8q, (2.46a)

H ipx, yq � 1
η0
r�x̂ sinpπ{8q � ŷ cospπ{8qs , (2.46b)

and

Etpx, yq � x̂ cosp11π{24q � ŷ sinp11π{24q, (2.47a)

Htpx, yq � 1
η0
r�x̂ sinp11π{24q � ŷ cosp11π{24qs . (2.47b)

We will now consider three different combinations of susceptibilities to realize the specified
transformation. This will illustrate how the same transformation may be achieved with
different sets of susceptibilities.

The first synthesis is performed with the susceptibilities of a birefringent metasurface given
in (2.18). From the definition of the difference of the fields in (2.5) and the average of the
fields in (2.8), the susceptibilities are readily obtained and read

χxxee � χyymm � �1.5048
k0

j, (2.48a)

χyyee � χxxmm � 0.88063
k0

j. (2.48b)
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As can be seen, the susceptibilities are not functions of position since the specified transfor-
mation does not affect the direction of wave propagation but only rotates the polarization
angle. We know from the discussion in Sec. 2.3.1 and also from relations (2.10) that the
susceptibilities in (2.48) correspond to a reciprocal metasurface. However, we also know
from (2.12) that, for the diagonal susceptibilities in (2.48), the presence of negative imagi-
nary parts correspond to absorption while the presence positive imaginary parts correspond
to gain. As a result, even though the synthesized metasurface is not gyrotropic, since only
the diagonal components of the monoanisotropic susceptibility tensors are considered, it is
still able to perform the specified rotation of polarization by reducing the amplitudes of Ex,i
and Hy,i while amplifying the amplitudes of Ey,i and Hx,i. Moreover, this metasurface is only
able to rotate the polarization angle by π{3 when the incident wave is polarized at a π{8
angle. If, for instance, the incident was only polarized along x, then only the susceptibili-
ties in (2.48a) would be excited and the resulting transmitted field would still be polarized
along x but with a reduced amplitude with respect to that of the incident wave due to the
loss induced by these susceptibilities. Consequently, the susceptibilities in (2.48) may not
correspond to the most practical implementation of a polarization rotating metasurface.

We shall now synthesize the same rotation of polarization transformation but, this time,
with a gyrotropic metasurface. To do so, we now consider the off-diagonal elements of a
monoanisotropic metasurface. Solving (2.15) by setting all the susceptibilities to zero at the
exception of χxyee , χyxee , χxymm and χyxmm yields the following closed-form relations:

χxyee �
�∆Hy

jωε0Ey,av
, (2.49a)

χyxee �
∆Hx

jωε0Ex,av
, (2.49b)

χxymm � ∆Ey
jωµ0Hy,av

, (2.49c)

χyxmm � �∆Ex
jωµ0Hx,av

, (2.49d)

which, upon substitution of the fields in (2.46) and (2.47), become

χxyee � χxymm � �1.1547
k0

j, (2.50a)

χyxee � χyxmm � 1.1547
k0

j. (2.50b)

It is important to note that, contrary to the susceptibilities in (2.48), the ones in (2.50) per-
form the specified π{3-rotation of polarization irrespectively of the initial polarization of the
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incident wave due to the gyrotropic nature of this metasurface. Additionally, the susceptibili-
ties in (2.50) correspond to a nonreciprocal metasurface, as can be verified using the recipro-
city conditions in (2.10). Therefore, the metasurface is a Faraday rotating surface [165,166],
which exhibits the same absolute direction of polarization rotation irrespectively of the di-
rection of wave propagation. However, contrary to conventional Faraday rotators [157], this
metasurface is also reflectionless due to the presence of both electric and magnetic gyrotropic
susceptibility components. Interestingly, we can see that this metasurface is also lossy and
active by applying the relations (2.12). This combination of gain and loss is such that the
overall operation is fully efficient, i.e. the loss is compensated by the gain. This metasurface
is more practical than the previously synthesized one but it requires the implementation of
nonreciprocal electric and magnetic materials, which may not be trivial to realize.

Finally, we now synthesize the metasurface by considering the full system in (2.19). To
solve this system, we do not specify the transformation by using fields, as done for the two
previous cases, but rather by using scattering parameters. The utilization of the scattering
parameters is here justified by the fact that all the waves are propagating normally with
respect to the metasurface, which exactly corresponds to the prescription of the scattering
parameters in (2.23). We assign ports 1 and 2 to the left- and right-hand sides of the
metasurface, respectively. Since the metasurface is reflectionless, we have that S11 � S22 � 0.
Moreover, we require it to be also reciprocal which leads to S21 � S

T
12. The matrix S21 is

straightforwardly defined from the specified π{3-polarization rotation angle and reads

S21 �
�

cos pπ{3q sin pπ{3q
� sin pπ{3q cos pπ{3q

�
�
�

1{2 ?
3{2

�?3{2 1{2

�
. (2.51)

Upon insertion of these definitions of the scattering parameters into (2.24) and (2.25), the
metasurface susceptibilities are directly obtained by matrix inversion of (2.22). This leads
to following nonzero susceptibilities:

χxxem � χyyem � � 2?
3k0

j, (2.52a)

χxxme � χyyme �
2?
3k0

j. (2.52b)

From these relations, we see that these susceptibilities correspond to a chiral bianisotropic
metasurface. As the previously synthesized gyrotropic metasurface, it performs the specified
π{3-rotation of polarization irrespectively of the incident wave polarization state. Moreover,
it has the additional advantage of being reciprocal, passive and lossless, as can be verified
with (2.13). This makes this chiral metasurface probably the most practical candidate for
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the realization of a polarization rotator.

Note that, in this section, we have considered only three different sets of susceptibilities to
perform the same transformation. There are other possible combinations of susceptibilities
that may be considered to perform this operation. However, most of them correspond to
unpractical structures that may be lossy, active, nonreciprocal and/or only perform the
specified transformation for the specified polarization state of the incident wave.

2.7.2 Multiple Nonreciprocal Transformations

Let us now look at an example of the application of the multiple transformation technique
presented in Sec. 2.3.2. We will consider a double transformation with a monoanisotropic
metasurface whose susceptibilities are given in (2.21) in terms of the specified fields.

The two transformations that are used to synthesize the metasurface are depicted in Figs. 2.4.
The first transformation, shown in Fig. 2.4a, consists of a normally incident plane wave being

x

z

θr “ 45˝

λ0
100

(a)

x

z

θi “ 45˝

λ0
100

(b)

Figure 2.4 Illustrations of the two specified transformations. (a) The normally incident plane
wave is fully reflected at a 45� angle. (b) The obliquely incident plane wave is fully absorbed.

fully reflected at a 45� angle. The second transformation, shown in Fig. 2.4b, consists in the
full absorption of an incident wave impinging on the metasurface at a 45� angle. For these two
transformations, the transmitted field is set to zero, while all the specified nonzero transverse
components of the electric fields at z � 0 are

Ei,1 �
?

2
2 px̂� ŷq, (2.53a)

Er,1 �
?

2
2 p� cos θrx̂� ŷqe�jkxx, (2.53b)

Ei,2 �
?

2
2 pcos θix̂� ŷqe�jkxx. (2.53c)

For the sake of conciseness, the susceptibility functions are not shown here. Nevertheless,
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we point out that the resulting susceptibilities correspond to a nonreciprocal structure which
exhibits complicated spatial variations of electric and magnetic loss and gain.

We now present full-wave simulations demonstrating the double transformation control capa-
bility of the synthesized metasurface. The simulations are performed in COMSOL in which
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Figure 2.5 COMSOL simulated absolute value of the total electric field (V/m) corresponding
to: (a) the transformation in Fig. 2.4a, and (b) the transformation in Fig. 2.4b.

the metasurface is implemented as a thin material slab of thickness t � λ0{100 with “diluted”
susceptibilities, as explained in Sec. 2.6. The simulation corresponding to the transformation
of Fig. 2.4a is shown in Fig. 2.5a, while the simulation corresponding to the transformation
of Fig. 2.4b is shown in Fig. 2.5b. As can be seen from the simulations, the metasurface
scattering behavior is in good agreement with the expected results, at the exception of some
negligible undesired scattering due to the non-ideal thickness of the metasurface.

In order to verify the nonreciprocal nature of this metasurface, we excite it with an incident
wave impinging on it at an angle θi � �45�, which corresponds to the reciprocal transforma-
tion of that in Fig. 2.5a. The corresponding simulation is shown in Fig. 2.6. A comparison
of the ratio of the power transfer between the normally incident wave and the obliquely re-
flected wave in Fig. 2.5a and the power transfer between the obliquely incident wave and the
normally reflected wave in Fig. 2.6, clearly shows that the metasurface is nonreciprocal as it
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exhibits more dissipation in the simulation depicted in Fig. 2.6 compared to that in Fig. 2.5a.
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Figure 2.6 COMSOL simulated absolute value of the total electric field (V/m) corresponding
to the reciprocal transformation of the one in Fig. 2.4a.

2.7.3 Controllable Angular Scattering

In this last example, we will look at another case of multiple transformations. More speci-
fically, we will discuss the synthesis and analysis of a metasurface with controllable angle-
dependent scattering [167–169].

For simplicity, we consider the case of a uniform metasurface, only transforming the phase
and the amplitude of the scattered waves. The metasurface is synthesized by specifying the
reflection and transmission coefficients for three different incidence angles which, by con-
tinuity, allows a relative smooth control of the angular scattering as function of the incidence
angle. The synthesis of a metasurface performing three transformations requires a number
of degrees of freedom which are here obtained by leveraging bianisotropy and making use of
normal susceptibilities.
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Ei,3

θt,1

θi,1

θi,3
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Ei,2

θt,3

Et,3

Et,2

x

z

Figure 2.7 Multiple scattering from a uniform bianisotropic metasurface.



40

Let us now consider the electromagnetic transformations depicted in Fig. 2.7 where p-
polarized incident plane waves are scattered, without rotation of polarization, by a biani-
sotropic reflectionless metasurface. In this transformation, the only electromagnetic field
components that are not zero are Ex, Ez and Hy and therefore only a few susceptibility
components will by excited by such fields. Consequently, the only susceptibilities that are
relevant to the problem of Fig. 2.7 are

χee �

���χ
xx
ee 0 χxzee

0 0 0
χzxee 0 χzzee

��, χem �

���0 χxyem 0
0 0 0
0 χzyem 0

��, (2.54a)

χme �

��� 0 0 0
χyxme 0 χyzme

0 0 0

��, χmm �

���0 0 0
0 χyymm 0
0 0 0

��, (2.54b)

where all the susceptibilities that are not excited by the fields have been set to zero for
simplicity. The susceptibility tensors in (2.54) contain a total number of 9 unknown com-
ponents. However, we are here interested in synthesizing a reciprocal metasurface, which
reduces the number of unknowns to 6 since, from the reciprocity conditions in (2.10), we
have that χxzee � χzxee , χxyem � �χyxme and χzyem � �χyzme.

In order to simplify the synthesis and the analysis, we specify that the metasurface is uniform
in the xy-plane. Accordingly, the susceptibilities are not functions of x and y and hence the
spatial derivatives on the right-hand sides of (2.4a) and (2.4b) only apply to the fields and
not to the susceptibilities through (2.7). This restriction means that the reflection and
transmission angles follow conventional Snell’s law, i.e. θr � �θi and θt � θi.

Let us now substitute the susceptibilities (2.54) into (2.4a) and (2.4b) with (2.7) and enforce
reciprocity. This leads to the two following equations:

∆Hy �� jωε0pχxxee Ex,av � χxzeeEz,avq � jk0χ
xy
emHy,av, (2.55a)

∆Ex �� jωµ0χ
yy
mmHy,av � jk0pχxyemEx,av � χzyemEz,avq

� χxzee BxEx,av � χzzeeBxEz,av � η0χ
zy
emBxHy,av.

(2.55b)

The system (2.55) contains 6 unknown susceptibilities. In order to solve it, we apply the
multiple transformation concept discussed in Sec. 2.3.2, which consists in specifying three in-
dependent sets of incident, reflected and transmitted waves. Moreover, since the metasurface
is perfectly uniform, we synthesize the metasurface using scattering parameters instead of
fields, as done for the chiral metasurface in Sec. 2.7.1. Thus, the reflection (R) and transmis-
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sion (T ) coefficients of the metasurface in Fig. 2.7 may be specified for three different angles
of incidence. By specifying the reflection and transmission coefficients for three specific an-
gles, one can achieve controllable quasi-continuous angular scattering since the response of
the metasurface for non-specified angles de facto corresponds to an interpolation of the three
specified responses.

To illustrate the concept, let us consider a reflectionless transformation (R � 0) where three
incident plane waves, impinging on the metasurface at θi,1 � �45�, θi,2 � 0� and θi,3 � �45�,
are transmitted with transmission coefficients T1 � 0.75, T2 � 0.5ej45� and T3 � 0.25 and
transmission angles θt � θi. The expressions relating the susceptibilities to the reflection and
transmission coefficients being extensively long, we do not provide them here. However, the
susceptibilities corresponding to the these specified scattering parameters are given by

χee �
1
k0

����2.46 � 0.08j 0 0.64j
0 0 0

0.64j 0 0.42 � 0.88j

��, χem � 1
k0

���0 1.74 � 0.68j 0
0 0 0
0 0.39 � 0.68j 0

��, (2.56a)

χme �
1
k0

��� 0 0 0
�1.74 � 0.68j 0 �0.39 � 0.68j

0 0 0

��, χmm � 1
k0

���0 0 0
0 1.02 � 1.45j 0
0 0 0

��.
(2.56b)

It can be easily verified that these susceptibility tensors satisfy the reciprocity conditi-
ons (2.10), but the complex values of the susceptibilities indicate the presence of both gain
and loss.

Now, to verify that the scattered waves have the specified amplitude and phase at the three
specified incidence angles and also to see the response at non-specified angles, we mathema-
tically analyze the scattering from the synthesized metasurface versus the incidence angle.
For this purpose, and as previously mentioned, relations (2.55) are solved to determine the
reflection and transmission coefficients versus θi. The resulting amplitude and phase of the
reflection and transmission coefficients are plotted in Figs. 2.8a and 2.8b, respectively. As
may be seen in these graphs, the metasurface exhibits the specified response in terms of both
coefficients at the three specified angles. Moreover, the transmission exhibits a continuous
amplitude decrease as θi increases beyond �50�.

Using the exact same synthesis procedure, we shall now look at another interesting example
which consists in the synthesis of a spatial angular phaser. In that case, the metasurface is
reflectionless, passive and lossless and exhibits a transmission phase shift, φ, that is function
of the incidence angle, i.e. T � ejφpθiq. Similarly as before, the three incident plane waves
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Figure 2.8 Reflection (dashed red line) and transmission (solid blue line) amplitude (a) and
phase (b) as functions of the incidence angle for a metasurface synthesize for the transmission
coefficients T � t0.75; 0.5ej45� ; 0.25u (and R � 0) at the respective incidence angles θi �
t�45�; 0�;�45�u.
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Figure 2.9 Transmission amplitude (a) and phase (b) as functions of the incidence angle for
a metasurface synthesize for the transmission coefficients T � te�j90� ; 1; ej90�u (and R � 0)
at the respective incidence angles θi � t�45�; 0�;�45�u.

impinge on the metasurface at θi,1 � �45�, θi,2 � 0� and θi,3 � �45� and are transmitted
with transmission coefficients T1 � e�jα, T2 � 1 and T3 � ejα, where α is a given phase shift.
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Solving relations (2.55) with these specifications yields the following nonzero susceptibilities:

χxzee � χzxee �
2
?

2
k0

tan
�α

2

	
. (2.57)

Since the metasurface only possesses these two susceptibilities, it is possible to obtain the
following simple angular dependent transmission coefficient:

T pθiq � �1 � 2
1 � j

?
2 sinpθiq tan

�
α
2
� , (2.58)

while the reflection coefficient is Rpθiq � 0.

In order to illustrate the angular behavior of the transmission coefficient in (2.58), it is
plotted in Figs. 2.9 for a specified phase shift of α � 90�. As expected, the transmission
amplitude remains unity for all incidence angles while the transmission phase is asymmetric
around broadside and covers about a 220�-phase range. It is interesting to note that the
susceptibilities χxzee and χzxee exhibit such kind of angular asymmetric behavior.

2.8 Synthesis and Analysis of Nonlinear Metasurfaces

So far, we have been only interested in purely linear metasurfaces, i.e. where the polarization
densities are linear functions of the electric and magnetic fields. Let us now investigate the
case of a metasurface with nonzero second-order nonlinear electric and magnetic susceptibi-
lity tensors [100,153,170–172]3. Second-order nonlinearity is a weak effect that is present in
non-centrosymmetric structures. For instance, we may find electric nonlinearities in certain
crystals [173], while non-negligible magnetic nonlinearities may be found in certain ferrof-
luids [174].

In the case that is considered here, the polarization densities in (2.7), which correspond to a
linear bianisotropic medium, transform into

P � ε0χ
p1q
ee �Eav � ε0χ

p2q
ee : EavEav, (2.59a)

M � χp1qmm �Hav � χp2qmm : HavHav, (2.59b)

where χp1q and χp2q correspond to the first-order (linear) and second-order (nonlinear) suscep-
tibility tensors, respectively. In order to simplify the synthesis and analysis of nonlinear me-
tasurfaces, we assume here that the metasurfaces are isotropic and that their corresponding
susceptibility tensors in (2.59) are of rank zero.

3This section is based on a slightly modified version of [153].
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To proceed with the metasurface synthesis, we substitute (2.59) into the time-domain coun-
terparts of the GSTCs in (2.4). We consider the time-domain instead of the frequency-domain
GSTCs because nonlinear materials generate new frequencies [173], which obviously cannot
be taken into account with a frequency-domain formulation. Let us now consider x-polarized
wave excitation, in which case the time-domain GSTCs become

�∆H � ε0χ
p1q
ee

B
BtEav � ε0χ

p2q
ee

B
BtE

2
av, (2.60a)

�∆E � µ0χ
p1q
mm

B
BtHav � µ0χ

p2q
mm

B
BtH

2
av, (2.60b)

where E and H are, respectively, the x-component of the electric field and the y-component
of the magnetic field. Note that we assume that the susceptibilities are not functions of time
and that they are dispersion-less4. This means that the time derivatives in (2.4), which apply
to the polarization densities, only affect the fields in (2.60) and not the susceptibilities.

The synthesis procedure consists in solving (2.60) so as to obtain the susceptibilities in terms
of the specified fields. As can be seen, the system (2.60) is a system of 2 equations in 4
unknown susceptibilities. To solve it, we may proceed as in Sec. 2.3.2 where we considered
two arbitrary transformations. The system in (2.60) may thus be transformed into the
following matrix system:������

�∆H1

�∆H2

�∆E1

�∆E2

������ � B
Bt

������
ε0Eav,1 ε0E

2
av,1 0 0

ε0Eav,2 ε0E
2
av,2 0 0

0 0 µ0Hav,1 µ0H
2
av,1

0 0 µ0Hav,2 µ0H
2
av,2

������ �

������
χp1qee

χp2qee

χp1qmm

χp2qmm

������ , (2.61)

where the subscripts 1 and 2 refer to the fields of two arbitrary independent transformations.
4While this condition may seem a priori unrealistic, we point out the fact that a nonlinear medium

generates all multiples of the excitation frequency, ω0. Therefore, the dispersion-less condition reduces
to having χpω0q � χp2ω0q � χp3ω0q � ..., which may be achieved with properly designed metamaterial
structures (at least for the first equality). Note that this condition is equivalent to the phase matching
condition conventionally used in nonlinear optics [173].
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By matrix inversion of (2.61), the susceptibilities are

χp1qee � � ∆H2
B
Bt
E2

av,1 � ∆H1
B
Bt
E2

av,2

ε0p BBtE2
av,1

B
Bt
Eav,2 � B

Bt
Eav,1

B
Bt
E2

av,2q
, (2.62a)

χp1qmm � � ∆E2
B
Bt
H2

av,1 � ∆E1
B
Bt
H2

av,2

µ0p BBtH2
av,1

B
Bt
Hav,2 � B

Bt
Hav,1

B
Bt
H2

av,2q
, (2.62b)

χp2qee � ∆H2
B
Bt
Eav,1 � ∆H1

B
Bt
Eav,2

ε0p BBtE2
av,1

B
Bt
Eav,2 � B

Bt
Eav,1

B
Bt
E2

av,2q
, (2.62c)

χp2qmm � ∆E2
B
Bt
Hav,1 � ∆E1

B
Bt
Hav,2

µ0p BBtH2
av,1

B
Bt
Hav,2 � B

Bt
Hav,1

B
Bt
H2

av,2q
. (2.62d)

These relations may a priori seem to be valid irrespectively of the specified fields. However,
this is not true in most cases. Indeed, let us consider a simple example where the specified
incident, reflected and transmitted fields are given by Ei � E0e

jpωit�kizq, Er � Rejpωrt�krzq

and Et � Tejpωtt�ktzq with different values of ωi, ωr and ωt for the two transformations.
Upon substitution of these fields into (2.62), the resulting susceptibilities become functions
of time. This result is incompatible with the assumption, made above to obtain (2.60),
that the susceptibilities were not time varying. Therefore, we cannot specify the fields of
the two transformations in (2.62) in a completely arbitrary fashion. We should rather find
the appropriate way to specify these fields such that the synthesized susceptibilities are time
independent. The question that one may ask is how should we specify these fields? To answer
this question, we will tackle the problem from a different perspective. Instead of performing
a synthesis, we will analyze the scattered fields from a known nonlinear metasurface. From
this analysis, we will be able to deduce the proper way to specify the fields in the synthesis.

We are now interested in analyzing the fields scattered from a nonlinear metasurface. To
computed these scattered fields, we assume for simplicity that the metasurface is uniform
and that it is illuminated by a normally incident plane wave. In that case, the metasurface
produces normally reflected and transmitted plane waves with reflection and transmission
coefficients that can be found by solving (2.60). However, the system in (2.60) is a set of
nonlinear nonhomogeneous first-order coupled differential equations which is difficult to solve
analytically. As will be shown shortly, we will solve it numerically but first, we will simplify it
so as to find an approximate analytical solution. In order to simplify the problem, we assume
that the metasurface to be analyzed has known susceptibilities such that the metasurface is
reflectionless. If the metasurface is known to be reflectionless, then the system (2.60) reduces
to a single equation which dramatically simplifies the resolution of the problem. For this
purpose, we need to find the reflectionless conditions in the case of a nonlinear metasurface.
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These conditions may be obtained from (2.62) by specifying that Er � Hr � 0 and using
E � �η0H since normal plane wave propagation is considered, where � corresponds to
waves propagating in the positive z-direction and vice-versa for �. As said above, we have to
consider two transformations to be able to solve the system (2.62). Therefore, let us consider
the two transformations illustrated in Figs. 2.10, where the two sets of waves propagate
either both in the positive z-direction, as in Fig. 2.10a, or both in the negative z-direction,
as in Fig. 2.10b. Note that a third case is also possible, where the waves Ψ1 and Ψ2 would

metasurface

x

z

y

Ψ1,i Ψ1,t

Ψ2,i Ψ2,t

(a)

metasurface

x

z

y

Ψ1,iΨ1,t

Ψ2,iΨ2,t

(b)

Figure 2.10 Two different approaches to synthesize a nonlinear metasurface. (a) Two incident
waves (Ψ1 and Ψ2), propagating in the positive z-direction, are transmitted by the metasur-
face. (b) Two incident waves, propagating in the negative z-direction, are transmitted by the
metasurface.

propagate in opposite directions. This scenario is not considered here since, in that case, it is
not possible to obtain the reflectionless conditions, as will be explained shortly. Solving (2.62)
for the case depicted in Fig. 2.10a and comparing the expressions of the electric and magnetic
susceptibilities reveals the following reflectionless conditions:

χp1qee � χp1qmm, (2.63a)
η0χ

p2q
ee � χp2qmm. (2.63b)

By the same token, the reflectionless conditions for the case depicted in Fig. 2.10b read

χp1qee � χp1qmm, (2.64a)
�η0χ

p2q
ee � χp2qmm. (2.64b)

Note that the only difference between (2.63) and (2.64) is the minus sign in the relation
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between the second-order susceptibilities. It may come as a surprise that different reflecti-
onless conditions are obtained for different directions of wave propagation. This is due to
the nonreciprocal nature of this metasurface, which is both nonlinear and asymmetric. This
asymmetry is due to the presence of the square of the fields in (2.60) and by considering
the relation between the electric and magnetic fields (E � �η0H), which depends on the di-
rection of wave propagation. It is this asymmetry that explains the difference between (2.63)
and (2.64), and thus, the nonreciprocal response of this metasurface.

Now that the reflectionless conditions have been obtained, we can proceed with the analysis of
the scattered fields from the nonlinear metasurface. For this purpose, we use the reflectionless
conditions in (2.63) which correspond to the transformation depicted in Fig. 2.10a. This
reduces the system (2.60) to a single independent equation, which upon substitution of the
difference of the fields, ∆E � Et � Ei, the average of the fields, Eav � 1

2pEt � Eiq, and the
average square of the fields, E2

av � EavE
�
av � 1

4pE2
i � EiE

�
t � EtE

�
i � E2

t q becomes

2χp1qee
B
BtEt � χp2qee

B
BtpEiE

�
t � EtE

�
i � E2

t q �
4η0

µ0
Et � 4η0

µ0
Ei � χp2qee

B
BtE

2
i � 2χp1qee

B
BtEi, (2.65)

where we assume that Ei � E0 cos pω0tq is a known excitation and Et is the transmitted field
that we are solving for. If E0, χp1qee and χp2qee are real quantities, the relation (2.65) becomes

χp2qee
B
BtE

2
t �

�
2χp1qee � 2E0 cos pω0tqχp2qee

� B
BtEt �

�
4η0

µ0
� 2ω0χ

p2q
ee E0 sin pω0tq



Et �

4η0

µ0
E0 cos pω0tq � ω0χ

p2q
ee E0 sin p2ω0tq � 2ω0χ

p1q
ee E0 sin pω0tq.

(2.66)

This differential equation may now be solved to obtain the transmitted field. But first,
let us recall the assumptions that were made to obtain Eq. (2.66). We have considered
an isotropic reflectionless and uniform nonlinear metasurface with purely real second-order
nonlinear electric and magnetic susceptibilities illuminated by a normally incident plane
wave. This reveals how difficult it is to analyze nonlinear metasurfaces and, despite all of
these assumptions, Eq. (2.66) does not possess any exact analytical solution.

Since it is not possible to find an exact solution to (2.66), we will now try to find an approx-
imate solution for the transmitted field using perturbation analysis [175]. This is justified if
we assume that the second-order susceptibilities are very small compared to the first-order
ones. Typically, assuming nonresonant excitation, we have that χp2q � 10�12χp1q [173]. As a
consequence of this assumption, we can approximate the expression of the transmitted field
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using a power series such that

Et � Et,0 � εEt,1 � ε2Et,2 � ... (2.67)

where ε is a small quantity which also applies to the susceptibilities as follows

χp1qee " χp2qee � ε. (2.68)

We can now solve recursively and individually each term of (2.67). Substituting (2.67)
and (2.68) into (2.66) and removing all terms containing ε, leads to the following equation

2χp1qee
B
BtEt,0 � 4η0

µ0
Et,0 � 4η0

µ0
E0 cos pω0tq � 2ω0χ

p1q
ee E0 sin pω0tq, (2.69)

which is only expressed in terms of the unknown Et,0 and does not contain any nonlinear
susceptibility. This equation thus corresponds to a linear reflectionless metasurface, whose
complex steady-state solution is

Et,0 � E0
2 � jk0χ

p1q
ee

2 � jk0χ
p1q
ee
ejω0t, (2.70)

which exactly corresponds to the expected transmitted field as previously found in (2.32)
if χxxee � χyymm. Note that the frequency of Et,0 is the same as that of the incident wave.
Now that the expression for Et,0 has been found, we can proceed by deriving the expression
for Et,1. This is achieved by inserting Et � Et,0 � εEt,1 into (2.66) along with (2.70), and
removing all terms proportional to ε2 (or higher powers). This operation transforms (2.66)
into

χp2qee
B
BtE

2
t,0 �

�
2χp1qee � 2E0 cos pω0tqχp2qee

� B
BtEt,0 �

�
4η0

µ0
� 2ω0χ

p2q
ee E0 sin pω0tq



Et,0

� 2χp1qee
B
BtEt,1 � 4η0

µ0
Et,1 � 4η0

µ0
E0 cos pω0tq � ω0χ

p2q
ee E0 sin p2ω0tq � 2ω0χ

p1q
ee E0 sin pω0tq,

(2.71)

which is a differential equation in Et,1 and contains the nonlinear susceptibility χp2qee . As
before, this equation can be easily solved and leads to the following steady-state solution

Et,1 � E0k0χ
p2q
ee

�
4 � 12E0 � 4jχp1qee k0pE0 � 1q � pχp1qee k0q2pE0 � 1q

4pχp1qee k0 � jqpχp1qee k0 � 2jq2

�
ej2ω0t, (2.72)

which, as can be seen, is at a frequency 2ω0 corresponding to a second-harmonic generation.
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We can now apply the same method that was used to obtain Et,0 and Et,1 to find the
expression of Et,2. We do not provide the differential equation that apply to Et,2 because it
is too lengthy. Instead, we only provide the corresponding steady-state solution which is

Et,2 � Ct,2
�p2j � 3χp1qee k0qejω0t � 3p2j � χp1qee k0qej3ω0t

�
, (2.73)

where Ct,2 is given by

Ct,2 �
jpχp2qee k0E0q2

�
4 � 12E0 � χp1qee k0pχp1qee k0 � 4jqpE0 � 1q�

2pχp1qee k0 � 2jq3pχp1qee k0 � jqpχp1qee k0 � 2jqp3χp1qee k0 � 2jq
. (2.74)

Contrary to Et,0, which is at frequency ω0, and Et,1, which is at frequency 2ω0, we see that
Et,2 is a superposition of two waves at frequencies ω0 and 3ω0. At this stage, it is important
to note that to ensure the validity of (2.70), (2.72) and (2.73), the following relations must
be satisfied: Et,0 " Et,1 " Et,2 and χp1qee " χp2qee according to the prescription of perturbation
theory. If we look at the dependence of Et,0, Et,1 and Et,2 on E0 and χp2qee , we see that the
transmitted field expressions are only valid for specific values of E0 and χp2qee , which limits
the generality of these expressions.

From these results, we can predict that the general scattering behavior of nonlinear meta-
surfaces corresponds to a superposition of waves with all multiples of ω0. Consequently, the
scattered field may be expressed as

Es �
8̧

n�1
Es,ne

jnω0t, (2.75)

where Es may represent the reflected or the transmitted electric field and where Es,n are
complex constants. This analysis of the scattering from nonlinear metasurfaces reveals the
form that the specified fields should take while performing the synthesis of such metasurfaces.
More specifically, the specified fields should contain all harmonics, according to (2.75), so that
the synthesized susceptibilities in (2.62) do not depend on time.

Now that the approximate solutions of the transmitted field have been obtained mathe-
matically, we will perform numerical simulations to validate our results. Let us consider
a metasurface designed with the reflectionless conditions given in (2.63), and the following
arbitrary parameters: E0 � 1.5 V/m, χp1qee � 0.1 m and χp2qee � 0.04 m2/V. To perform the
numerical simulations, we use a 1D FDTD scheme that was specifically designed to simulate
zero-thickness metasurfaces [3]. This code was adapted to take into account second-order
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nonlinear susceptibilities, as explained in Appendix D5.

We start by exciting the metasurface with a plane wave propagating in the positive z-
direction. The corresponding simulation results are shown in Fig. 2.11a. The simulation
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Figure 2.11 FDTD simulations of a nonlinear metasurface assuming the following parameters:
E0 � 1.5 V/m, χp1qee � 0.1 m and χp2qee � 0.04 m2/V. In (a), the metasurface is illuminated
from the left, while in (b) it is illuminated from the right. The normalized Fourier transform
of the transmitted field of (a) is plotted in (c), while the one corresponding to (b) is plotted
in (d).

is performed using a scattered-field region (SF) and a total-field region (TF) and the source
is placed at the boundary between these two regions, while the metasurface lies in the cen-
ter of the simulation window. If we look at the SF region in Fig. 2.11a, we see that the
reflected electric field is zero, which demonstrates the expected reflectionless nature of this
metasurface. Figure 2.11c presents the time-domain Fourier transform of the transmitted
field in Fig. 2.11a, which is normalized to E0. We can clearly see the predicted generation of

5Note that normalized constants are used in all following simulations and thus c0 � ε0 � µ0 � f0 � 1.
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harmonics whose amplitudes decrease as ω increases.

To evaluate the nonreciprocal response of this metasurface, we perform another simulation
where the incident plane wave is now impinging on the metasurface from its right-hand side.
Accordingly, we have changed the position of the SF and TF regions. The corresponding
simulation result is plotted in Fig. 2.11b. The presence of a nonzero electric field in the SF
region confirms that this metasurface is only reflectionless from one side but not from the
other. Moreover, the time-domain Fourier transform of the corresponding transmitted field,
which is shown in Fig. 2.11d, reveals that the frequencies that are odd multiples of ω0 are
transmitted, while the even multiples of ω0 are strongly suppressed. Since the metasurface is
lossless (purely real susceptibilities), we can infer that the frequencies that are even multiples
of ω0 are thus mostly reflected. The generation of transmitted waves, with corresponding
frequencies that are even multiples of the excitation frequency, is thus a nonreciprocal process
since Sω0Ñ2nω0

21 � Sω0Ñ2nω0
12 , where n � 1, 2, 3, ...

Next, we are interested in comparing the theoretical results obtained in Eqs. (2.70), (2.72)
and (2.73) to FDTD simulations. To perform this comparison, we consider two different
metasurfaces that are both reflectionless with conditions as in (2.63). For these two metasur-
faces, we compare the amplitudes of the three first harmonics, corresponding to frequencies
ω0, 2ω0 and 3ω0, that are found from (2.70), (2.72) and (2.73) to those obtained from the
time-domain Fourier transforms of FDTD simulations. We point out that, to compute the
theoretical amplitude of the harmonic at frequency ω0, we have to consider both Eqs. (2.70)
and (2.73). To these two metasurfaces, we attribute specific values of E0 and χp1qee while the
value of χp2qee is swept over a specified range. Note that the values of these different terms
cannot be selected arbitrarily because the FDTD simulation equations may lead to nonphy-
sical results, as explained in Appendix D. We have consequently chosen values that lead to
physical responses and also made sure that χp1qee ¡ χp2qee so as to satisfy the prescription of
perturbation theory in (2.68).

In the case of the first metasurface, we specify that E0 � 1.5 V/m and χp1qee � 0.1 m while
χp2qee is swept between r0, 0.04s m2/V. The resulting amplitudes of the three first harmonics
are plotted in Fig. 2.12a, where the solid blue lines correspond to perturbation analysis
approximations and the red dashed lines correspond to FDTD simulations. For the second
metasurface, we specify that E0 � 10 V/m and χp1qee � 0.3 m while χp2qee is swept between
r0, 0.01s m2/V; the corresponding results are plotted in Fig. 2.12b. For the two metasurfaces,
we see that the theoretical results are in good agreement with those of the FDTD simulations.
We also note that large values of χp2qee increase the discrepancies between the two methods,
which is expected since perturbation theory leads to inaccurate results if the conditions that
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Figure 2.12 Comparisons between the amplitude of the three first normalized harmonics
computed from the analytical expressions found using perturbation analysis (solid blue lines)
and FDTD simulations (dashed red lines). The following parameters are used: (a) E0 �
1.5 V/m, χp1qee � 0.1 m and (b) E0 � 10 V/m, χp1qee � 0.3 m.

χp1qee " χp2qee is not respected. Additionally, the theoretical results are necessarily affected
by the fact that Eq. (2.67) is truncated such that all terms beyond Et,2 are not taken into
consideration.

It should be noted that the FDTD simulations in both Figs. 2.11 and 2.12 show that the
metasurface is lossless and passive as evidenced by power conservation, i.e

°8
n�1 |Epωnq|2 �

|E0|2. However, this is not the case for the perturbation analysis expressions due to their
truncation, as can be notably seen in Fig. 2.12b where

°3
n�1 |Epωnq|2 ¡ |E0|2 for values of

χp2qee that are close to 0.01.



53

2.9 Comparison with Other Metasurface Synthesis Techniques

In parallel to the work developed in this thesis, other metasurface synthesis techniques were
being investigated, as already pointed out in Chapter 1. We will here briefly compare these
techniques to the one presented in this document.

We shall start with the synthesis techniques developed by Grbic [131–134] and Eleftheria-
des [135–137,176], which are essentially equivalent to each other. They treat the metasurface
discontinuity as an excitable sheet of electric and magnetic surface currents. In that case,
the electromagnetic fields on both sides of the metasurface can be related to each other using
impedance boundary conditions (IBC). Using the same notation as in (2.4), the IBC read

ẑ � ∆H � Z
�1
e �Eav, (2.76a)

∆E � ẑ � Zm �Hav, (2.76b)

where Ze and Zm are the metasurface electric and magnetic impedance tensors, respectively.
These relations were later extended to include bianisotropy in the form of magnetoelec-
tric coupling tensors. A comparison between the bianisotropic extensions of (2.76) and the
GSTCs based boundary conditions in (2.14), reveals that these two sets of relations are es-
sentially equivalent to each other besides the convention used for the material parameters. It
should be noted that the IBC relate the transverse components of the fields, accordingly the
tensors Ze and Zm are 2 � 2 matrices. However, the susceptibility tensors in (2.7) are 3 � 3
matrices since they include normal components. Consequently, the GSTCs relations (2.4),
which include the spatial derivatives of the normal polarization densities, are more general to
describe the discontinuities of the fields in the presence of a metasurface than the IBC. The
fact that normal components are not taken into account in the IBC reduces the number of
available degrees of freedom, as discussed in Sec. 2.5, and thus prevents the implementation
of certain transformation specifications such as, for instance, the metasurface with control-
lable angular scattering presented in Sec. 2.7.3. Moreover, the use of polarization densities
and susceptibilities, instead of impedances, allows a more direct extension of the GSTCs so
as to include nonlinearities, as done in Sec. 2.8.

Let us now discuss the synthesis technique that was developed by Tretyakov [138,139]. This
synthesis technique is distinct from the GSTCs based technique developed here because it re-
lates the fields scattered by the metasurface to the polarizabilities of single scattering particles
instead of material parameters like the susceptibilities. This makes this synthesis technique
particularly interesting since the polarizabilities can be related to the physical dimensions of
scattering particles, at least when the latter present relatively simple geometries. Therefore,



54

it is possible, to some extent, to relate the fields scattered by the metasurface to the shapes
of its scatterers.

Now, we briefly summarize the main steps of the synthesis technique in [138, 139] so as
to compare it to the GSTCs based technique of this thesis. In the most general case, the
metasurface is formed by a periodic array of bianisotropic scattering particles described in
terms of polarizability tensors. When the metasurface is illuminated, the effect of each
scattering particle can be associated to electric and magnetic dipole moments, which are
given by

p � αee �Eloc � αem �H loc, (2.77a)
m � αme �Eloc � αmm �H loc, (2.77b)

where Eloc and H loc are the local fields acting on each individual scattering particle. These
local fields may be expressed as functions of the incident field by considering the coupling
between adjacent scattering particles, which leads to

Eloc � Einc � βe � p, (2.78a)
H loc �H inc � βm �m, (2.78b)

where βe and βm are electric and magnetic coupling tensors [138]. Inserting (2.78) into (2.77)
and solving for the dipole moments, leads to

p � α̂ee �Einc � α̂em �H inc, (2.79a)
m � α̂me �Einc � α̂mm �H inc, (2.79b)

where the dipole moments are only expressed in terms of the incident fields and where the
terms α̂ correspond to effective polarizability tensors. Next, the reflected and transmitted
fields from the metasurface may be found by considering that the metasurface is a periodic
array of electric and magnetic dipole moments. In the far-field, the reflected and transmitted
waves can thus be respectively expressed as

Er � �jω2S � rη0p� ẑ �ms, (2.80a)

Et � Einc � jω

2S � rη0p� ẑ �ms, (2.80b)

where S is the surface area of the array unit cells. Finally, the relations between the scattered
fields from the metasurface and the effective polarizabilities are obtained by combining (2.80)
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with (2.79) and making use of the fact thatH inc � ẑ�Einc{η0 for plane waves. The synthesis
procedure then consists in specifying the desired incident, reflected and transmitted electric
fields and then solving for the polarizabilities. Alternatively, it is straightforward to find
the scattered fields from a metasurface with known scattering particles since the reflected
and transmitted fields are already decoupled in (2.80), which is not the case of the GSTCs
relations. Computing the scattered fields from a known metasurface using the GSTCs usually
requires to resort to involved numerical analyses since the reflected and transmitted fields
cannot be conveniently decoupled from each other, except when the metasurface is uniform
in which case we can use the method discussed in Sec. 2.4.

To illustrate how the particle dimensions can be related to the scattered fields, we shall con-
sider the case of a metasurface composed of omega scattering particles like the one depicted
in Fig. 2.13. This structure is made of a thin conducting wire and its overall size is subwa-
velength. It is possible to find approximate polarizabilities corresponding to this scattering

x

y
z

l0

r 0

d0

Figure 2.13 Representation of an omega particle.

particle if we assume that the wire diameter d0 is very small such that d0 ! l0, r0. In that
case, the polarizabilities are given by [158]

αee � αxxee x̂x̂� αzzee ẑẑ, (2.81a)
αmm � αyymmŷŷ, (2.81b)
αme � αyxmeŷx̂, (2.81c)
αem � �αT

me. (2.81d)

Further analysis, which are detailed in [158], allows one to find approximate expressions
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relating the terms in (2.81) to the parameters r0 and d0 of the omega particle. Now, we see
how the desired scattered fields can be easily specified in (2.80) and then directly related to
the parameters r0 and d0, providing of course that the specified transformation is compatible
with the available degrees of freedom of the omega particle.

Both the GSTCs based synthesis technique and the polarizability based synthesis technique,
which was briefly presented here, have their own advantages and disadvantages. The pola-
rizability based synthesis technique has the advantage of being able to relate, in a relative
simple fashion, the specified fields to the scattering particle shapes. Which would be more
complicated to achieve with the GSTCs technique. However, the latter is more rigorous
than the former. Indeed, the coupling tensors β in (2.78) are approximate and only apply in
the case of normal plane wave incidence [177]. Similarly, relations (2.80) correspond to the
approximate electric fields, radiated by an array of electric and magnetic dipole moments,
that are obtained by neglecting near-field contributions. In contrast, the GSTCs apply for all
directions of wave propagation and the near-field contributions are not neglected. Finally, the
GSTCs technique has the advantage that the susceptibilities resulting from the synthesis can
be directly related to material parameters like the permittivity and the permeability. This
allows one to easily simulate the behavior of the metasurface under any illumination and
especially for incident waves that deviate from the specified one. Such kind of metasurface
scattering analysis would be more difficult to achieve with the polarizability based technique.

Even though these two synthesis techniques are relatively distinct from each other, it is
possible to relate the effective polarizabilities to the susceptibilities that are used in this
work. The corresponding relations are provided in Appendix C.

2.10 Summary

In this chapter, we have developed and discussed the mathematical synthesis of metasurfaces.
We started by simplifying the metasurface inverse problem by assuming that the metasur-
face is a zero-thickness electromagnetic discontinuity. This allows the derivation of rigorous
boundary conditions, the GSTCs, from which stems the metasurface synthesis procedure.

We have seen how the susceptibilities may be expressed in terms of the specified fields and how
this led to the conclusion that a fully bianisotropic metasurface has the capability to perform
several wave transformations. The relations between fields and susceptibilities enabled us to
then derive the relations between the scattering parameters and the susceptibilities, which is
a crucial step towards the physical realization of metasurfaces.

A few examples have been presented to illustrate the implementation of the synthesis techni-
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que, and many more will be presented in the forthcoming chapters. Notably, the next chapter
proposes an extensive discussion on the particular case of refractive metasurfaces.

Next, we have extended the range of possible metasurface electromagnetic transformations
by taking into account the presence of second-order nonlinearities. We have seen how the
reflectionless conditions can be obtained and how they differ depending on the direction of
wave propagation, which is related to the nonreciprocal nature of nonlinear materials. The
topic of nonlinear metasurfaces is vast and definitively requires further investigation, as this
work only scratched the surface.

Finally, we have compared different synthesis techniques that have been develop mostly in
parallel to the work that is presented here. In general, the GSTCs synthesis technique is more
rigorous as it does not require any assumption in terms of field specifications. However, this
synthesis technique may be more complicated for the practical realization of metasurfaces
since it is generally more difficult to relate the scattering particle shapes to the susceptibilities.
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CHAPTER 3 Fundamental Theory of Refractive Metasurfaces

We have seen, in the previous chapter, how a metasurface can be synthesized from the spe-
cified electromagnetic fields using the susceptibilities. We will now discuss various aspects of
the synthesis technique and also present an alternative approach to the mathematical design
of metasurfaces. As a basis for the discussion, we will consider the topic of refractive meta-
surfaces. As we will see, this type of electromagnetic transformation is a perfect candidate
to illustrate how the synthesis method works as well as to put into practice several of the
concepts developed previously.

In the first two sections, we will discuss the synthesis of a monoanisotropic (i.e. only described
by the susceptibility tensors χee and χmm) refractive metasurface and evaluate its transmission
efficiency. It will be demonstrated that the efficiency of such a kind of transformation is
inherently limited and leads to the design of a lossy structure.

Then, we will present an alternative approach to the design of refractive metasurfaces that has
the advantage of being fully efficient. We will see that only an asymmetric, and consequently
bianisotropic, metasurface can allow “perfect” refraction1. Finally, we will discuss a more
exotic case where the metasurface possesses nonzero normal susceptibility components.

3.1 Monoanisotropic Refractive Metasurfaces: Two Synthesis Approaches

For the purpose of this discussion let us assume that the refraction transformation involves
x-polarized waves and takes place in the xz-plane with a monoanisotropic metasurface, the
relevant susceptibilities, repeated from (2.18), are given by

χxxee �
�∆Hy

jωε0Ex,av
, (3.1a)

χyymm � �∆Ex
jωµ0Hy,av

. (3.1b)

These susceptibilities correspond to a rigorous description of the material parameters that
perform the specified transformation between the incident, reflected and transmitted waves.
It is however interesting to note that the susceptibilities may also be defined from reflection
and transmission coefficients, as discussed in Sec. 2.4. In that case, the susceptibilities,

1Here the term “perfect” refers to a fully efficient transformation and which does not produce spurious
diffraction.
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repeated from (2.31), are given by

χxxee �
2j pTx �Rx � 1q
k0 pTx �Rx � 1q , (3.2a)

χyymm � 2j pTx �Rx � 1q
k0 pTx �Rx � 1q . (3.2b)

We see that with relations (3.1) and (3.2), there are two different ways of synthesizing a
metasurface. The metasurface can be rigorously synthesized in terms of tangential electro-
magnetic fields with relations (3.1), or approximatively synthesized in terms of transmission
and reflection coefficients with relations (3.2).

Since the susceptibilities may be obtained from relations (3.1) or from relations (3.2), one
may ask the question: what is the difference between these two synthesis methods? To
answer the question, we will compare them in three different ways. First, we will compare
how the resulting susceptibility functions differ from each other in the case of a refractive
metasurface. Then, from the synthesized susceptibilities, we will compare the corresponding
reflection and transmissions coefficients. Finally, we will compare their scattering response
by performing full-wave simulations.

For the purpose of this discussion, the metasurface is specified to be reflectionless. The
electric and magnetic fields at the metasurface (z � 0) have the general following form:

Ea � Aa

�
x̂
kz,a
k0

� ẑkx,a
k0



e�jkx,ax and Ha � Aa

η0
ŷe�jkx,ax, (3.3)

where a � i, t, r denotes the incident, transmitted and reflected waves, respectively, A is their
amplitude and η0 is the intrinsic impedance of the surrounding medium (considered here to be
vacuum) associated with the wavenumber k0. The transverse and longitudinal wavenumbers
are defined by kx,a � k0 sin θa and kz,a � k0 cos θa, respectively. In this example, the reflected
wave is specified to be zero so Ar � 0. In order to obtain the metasurface susceptibilities with
the first metasurface synthesis method, which is based on relations (3.1), the fields in (3.3)
are inserted into (3.1). This leads to

χxxee � 2j
�

Ate
jkx,ix � Aie

jkx,tx

Aikz,iejkx,tx � Atkz,tejkx,ix



, (3.4a)

χyymm � 2j
k2

0

�
Atkz,te

jkx,ix � Aikz,ie
jkx,tx

Atejkx,ix � Aiejkx,tx



. (3.4b)

We will now use the second synthesis method, which is based on relations (3.2), to synthesize
the same refraction transformation. However, the relations (3.2) were initially derived in
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Sec. 2.4 to relate the susceptibilities to the scattering parameters of normally propagating
waves. Therefore, it may then seem inappropriate to use such relations for the synthesis
of a metasurface that changes the direction of wave propagation. While these relations are
rigorous for the case of normal wave propagation, they may nevertheless be applied in the
case of oblique wave propagation. In that latter case, these relations lead to approximate
material parameters because they do not rigorously describe the electromagnetic transforma-
tion corresponding to a change in the direction of wave propagation, especially when large
refraction angles are required.

To define the reflection and transmission coefficients in (3.2), we may resort to the complex
amplitude transmittance method [159], if the reflection coefficient is zero, or alternatively
to the momentum transformation technique [130], if the reflection coefficient is not zero.
In our case, the metasurface is specified to be reflectionless meaning that Rx � 0 in (3.2),
which leads to χxxee � χyymm. Making use of the complex amplitude transmittance method, the
transmission coefficient is defined as

Tx � Ψt

Ψi
, (3.5)

where Ψi and Ψt are respectively the phase profiles of the incident and the transmitted waves
on the metasurface plane. The phase profile of the incident wave is Ψi � e�jkx,ix, while that
of the transmitted wave is Ψt � e�jkx,tx. Inserting these definitions into (3.5) reduces (3.2)
to

χxxee � χyymm � 2
k0

tan
�
kx,t � kx,i

2 x



. (3.6)

We will now compare the differences between the synthesized susceptibilities obtained with
the rigorous relations (3.4) to those obtained with the approximate relations (3.6). We as-
sume that the incident and transmission angles are θi � 20� and θt � 45�, respectively. For
this set of angles, we heuristically specify that Ai � At � 1. The corresponding real (solid
blue lines) and imaginary (dashed red lines) parts of the electric and magnetic susceptibilities
are plotted in Figs. 3.1, where Figs. 3.1a and 3.1c correspond to the first synthesis method
while Figs. 3.1b and 3.1d correspond to the second synthesis method. There are two main
differences between these two synthesis methods. The first one lies in the fact that both
electric and magnetic susceptibilities are equal to each other in (3.6), which is not the case
with the rigorous relations in (3.4). The second important difference is that the susceptibili-
ties in (3.6) are purely real, while those in (3.4) are complex. We know from the discussion
in Sec. 2.2, that the imaginary parts of the susceptibilities are responsible for loss or gain.
Therefore, the approximate synthesis method leads to a purely passive and lossless metasur-
face, which is not the case of the rigorous method. In the next section, we will explain why
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Figure 3.1 Susceptibilities of a refractive metasurface transformation with an incidence angle
of θi � 20� and a refraction angle of θt � 45�. The solid blue lines correspond to real parts
while the dashed red lines correspond to imaginary parts. The susceptibilities in the left are
obtained with the first method, while those in the right are obtained with the second method.

the susceptibilities of the rigorous method in (3.4) present nonzero imaginary parts. We will
notably see that the incident power flow through the metasurface is not equal to the trans-
mitted power flow [178,179], leading to undesired absorbtion. Also note that the periodicity
of the susceptibilities in the x-direction is larger than λ0, suggesting that this metasurface
should be easily implementable with simple scattering particles.

Now that the susceptibilities found from the two methods have been compared, let us compare
their corresponding scattering parameters. It was found in the previous chapter that the
transmission and reflection coefficients for a monoanisotropic metasurface can be expressed
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as

Tx � 4 � χxxee χ
yy
mmk

2

p2 � jkχxxee qp2 � jkχyymmq , (3.7a)

Rx � 2jk pχyymm � χxxee q
p2 � jkχxxee q p2 � jkχyymmq . (3.7b)

To obtain the scattering parameters of the first synthesis method, we substitute the suscep-
tibilities in (3.4) into (3.7). The resulting amplitude and phase of the transmission and
reflection coefficients are respectively plotted in Figs 3.2a and 3.2c, where the solid blues
lines correspond to the transmission coefficient and the dashed red lines to the reflection
coefficient. For the second synthesis method, the transmission and reflection coefficients are
those already specified in (3.5) and are given by Tx � ejpkx,i�kx,tqx and Rx � 0, respectively.
For comparison, their corresponding amplitude and phase are plotted in Figs. 3.2b and 3.2d.

From these plots, it is worth noting that the scattering behavior of these refractive meta-
surfaces can be associated to that of equivalent amplitude and phase gratings. Notably, the
first synthesis method leads to a metasurface whose scattering behavior may be described
by the combined effect of a nonuniform amplitude and phase grating, while the second synt-
hesis method leads to a phase-gradient metasurface with uniform unit transmission. The
fact that the reflection coefficient that is plotted in Fig. 3.2a is nonzero may a priori appear
contradictory given the prescription of zero reflection specified to obtain relations (3.4). Ho-
wever, remember that the scattering parameters are computed based on the assumption of
rectilinear propagation, which obviously does not correspond to the present example. The
actual reflection produced by the susceptibilities in (3.4) is rigorously zero, and the nonzero
reflection parameter in Fig. 3.2a is an artifact of the mapping between the rectilinear scatte-
ring parameters and the physical problem. It is important to understand that the reflection
and transmission coefficients only apply locally and thus do not rigorously describe the over-
all scattering behavior of the metasurface when the latter is nonuniform. This is because
finding the scattered fields from a nonuniform metasurface necessarily implies solving a diffe-
rential system of equations since, in Maxwell equations, the electric and the magnetic fields
are related to each other via spatial derivatives. Therefore, looking at the metasurface as
an equivalent amplitude and phase grating may only be used as a rough approximation to
evaluate its responses, except in the specific case where the metasurface is uniform. However,
it may still be deduced from Fig. 3.2a that the metasurface is lossy, as evidenced by the fact
that |Tx|2�|Rx|2   1. In the next section, we will explain why the metasurface is lossy, while
it was initially synthesized with the prescription that the amplitude of the transmitted wave
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Figure 3.2 Transmission (solid blue line) and reflection (dashed red line) coefficients for a
refractive metasurface transformation with an incidence angle of θi � 20� and a refraction
angle of θt � 45�. The top and bottom plots correspond to the amplitude and phase of these
coefficients, respectively. The plots on the left are obtained with the first method, while the
ones on the right are obtained with the second method.

is the same as the amplitude of the incident wave.

The last comparison between the two synthesis methods consists in analyzing their respective
scattering behavior via full-wave simulations. For this purpose, we use a finite-difference
frequency-domain (FDFD) scheme that we have developed for the specific objective of si-
mulating zero-thickness metasurfaces [163]. The full-wave simulation corresponding to the
first synthesis method is shown in Fig. 3.3a, while that of the second method is shown in
Fig. 3.3b. As can be seen, both metasurfaces refract the incident beam at a 45� angle without
any reflection. In Fig. 3.3b, we see the presence of an undesired diffraction order, which is due
to the non-rigorousness of relations (3.6) to synthesize this refractive transformation. Thus,
one may think that the result in Fig. 3.3a is necessarily better than the one in Fig. 3.3b.
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However, this is not the case. Indeed, the transmission efficiency, which is defined as the
ratio between the power transmitted in the desired direction (here at 45�) and the incident
power, is not the same for the two methods. The transmission efficiencies are computed by
measuring the field right before and after the metasurfaces in Figs. 3.3, which leads to about
75% for the first method and 97% for the second one. It may come as a surprise that the

-10 -5 0 5 10

-5

0

5

-1

-0.5

0

0.5

1

z{
λ

0

x{λ0
(a)

-10 -5 0 5 10

-5

0

5

-1

-0.5

0

0.5

1

z{
λ

0
x{λ0

(b)

Figure 3.3 Full-wave simulated real part of the Hzη0 component obtained using: (a) the
first synthesis method with susceptibilities as in (3.4), (b) the second synthesis method with
susceptibilities as in (3.6).

rigorous synthesis method leads to a worse efficiency than the approximate method, but this
may be explained by the fact that the metasurface in Fig. 3.3a is lossy, as said above.

From the three comparisons between the two synthesis methods presented above, we can
conclude that the second synthesis is in many cases preferred over the first one for its imple-
mentation simplicity and better efficiency, even though the latter is more rigorous than the
former. There are two reasons that make the physical implementation of the second synthesis
method easier: the fact that the metasurface is passive and lossless and that the transmission
coefficient has a unit amplitude and only a phase variation. Therefore the only purpose of
the scattering particles is to provide specific phase shifts. The rigorous synthesis technique
requires the implementation of nonuniform loss, which is practically difficult to achieve. Note
that several of the metasurfaces that will be presented in Chapter 5 have been synthesized
based on this second synthesis technique.

3.2 Inefficiency of Monoanisotropic Refractive Metasurfaces

We will now investigate in more details the reasons that make monoanisotropic refractive
metasurfaces inherently inefficient, if synthesized with either of the two methods, and lossy,
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if synthesized using the first method. As can be seen in Figs. 3.1a and 3.1c, both electric
and magnetic susceptibilities are complex functions and their respective imaginary parts is
negative indicating a lossy structure according to the discussion in Sec. 2.2. It can be easily
verified that the required transformation is lossy by considering relations (2.12). While
relations (2.12d) and (2.12e) are zero due to the monoanisotropic and diagonal nature of the
metasurface susceptibility tensors, relations (2.12b) and (2.12c) are not zero indicating the
presence of power dissipation (or generation). Relations (2.12b) and (2.12c) are plotted in
Fig. 3.4 versus the x-direction on the metasurface plane for the specified fields of the refractive
transformation discussed above. Figure 3.4 shows the electric (solid blue line), magnetic
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Figure 3.4 Metasurface surface power density including the electric (solid blue line) and mag-
netic (dashed red line) contributions (corresponding to eqs. (2.12b) and (2.12c), respectively)
when Ai � At � 1. Note that positive values correspond to loss and negative values to gain.

(dashed red line) and total (solid black line) surface power density on the metasurface. The
fact that all curves in Fig. 3.4 are real and positive reveals that the metasurface is purely
lossy. The presence of the observed loss might come as a surprise especially when considering
that the specified incident and transmitted fields have the same amplitude (Ai � At � 1).

In this transformation, the presence of loss can be explained [178] by considering the simple
geometrical description shown in Fig. 3.5. What might be confusing when considering plane
waves is obvious when considering finite size beams: the beamwidth of the incident beam,
Li, is not the same as the beamwidth of the transmitted beam, Lt, except in the trivial
case where θi � θt. Additionally, the Poynting vector of the incident wave, Si, and that of
the transmitted wave, St, are the same since Ai � At. The fact that the beamwidths are
different but the Poynting vectors are the same means that the total incident power, defined2

as Pi � SiLi, is generally not the same as the transmitted power, Pt. This translates into a
2Since we are considering a 2D problem, we omit the dimension of the metasurface in the y-direction, as

it is the same for the incident and transmitted waves.
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Figure 3.5 Representation of the different beamwidths between the incident and transmitted
waves.

transmission efficiency, η, given by

η � Pt

Pi
� StLt

SiLi
� |t|2 cos θt

cos θi
. (3.8)

where the coefficient t is the amplitude ratio defined as t � At{Ai . The power dissipated or
produced by the metasurface, Pm, is easily obtained as the difference of the incident power
and the transmitted power

Pm � Pi � Pt � |Ai|2 cos θi � |At|2 cos θt, (3.9)

which can also be written as
Pm � Pip1 � ηq. (3.10)

It is clear, from equation (3.8), that the coefficient t as well as the angles θi and θt play a
major role in determining the transmission efficiency of the metasurface. If θt ¡ θi (as in
the example considered here), the metasurface remains purely lossy (both electrically and
magnetically) as long as the coefficient t is limited to the range 0 ¤ |t| ¤ 1. The metasurface
is naturally more and more lossy as |t| decreases to 0.

In our example, t � 1 which gives a power efficiency of η � 75.25% and the total dissipated
power by the metasurface can be obtained by integrating both electric and magnetic contri-
butions (corresponding to the black line in Fig. 3.4) over the size of the metasurface. Note
that this efficiency is exactly the same as the one that was computed in the simulation of
Fig. 3.3a. Increasing the value of t beyond 1 will increase the efficiency but at the cost of
having a partially active metasurface. In the particular case where t � a

cos θi{ cos θt, the
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efficiency (3.8) is always equal to η � 1 and consequently Pm � 0. But even if the total
dissipated or produced power by the metasurface is zero, the metasurface is actually a com-
bination of alternating electric gain and loss and magnetic loss and gain such that electric
and magnetic contributions perfectly cancel each other, as illustrated in Fig. 3.6. It is there-
fore wrong to assume that, because Pm � 0, the metasurface is passive and lossless because,
as illustrated here, the metasurface would actually be simultaneously active and lossy. It is
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Figure 3.6 Metasurface surface power density including the electric (solid blue line) and mag-
netic (dashed red line) contributions (corresponding to eqs. (2.12b) and (2.12c), respectively)
when t �a

cos θi{ cos θt. Note that positive values correspond to loss and negative values to
gain.

important to note that, in the case where θt   θi, the metasurface is purely passive (but
lossy) when t � cos θi{ cos θt [178].

Now, let us come back to the transmission and reflection coefficients that are plotted in
Fig. 3.2. As may be seen in Fig. 3.2a, the absolute value of the transmission coefficient
oscillates around 87%, which, converted in terms of transmitted power, is very close to the
previously calculated power efficiency of η � 75.25% � p87%q2. In the same figure, the
absolute value of the reflection coefficient oscillates around 13%.

There is a last point that we would like to address. At the end of Sec. 2.4, we have proposed
to simplify the realization of metasurfaces by setting the imaginary parts of the synthesized
susceptibilities to zero. This has the effect of ignoring the loss (or gain) that would normally
be induced by the susceptibilities. The question that may be asked is how would this affect
the efficiency of the metasurface? Assume that only the real values of the susceptibilities
were to be realized instead of the complex ones shown in Figs. 3.1a and 3.1c. In that case, the
amplitude of the new transmission coefficient (which is not shown here) would be very close
to full and quasi-uniform transmission while the phase profile of the transmission coefficient
would remain unaltered compared to that computed from the exact susceptibilities presented
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in Figs. 3.2c. Since the transmission phase has not been changed from the exact one, the
approximate metasurface performs a transformation that essentially follows the specification,
with the exception of undesired diffraction orders due to the nullification of the imaginary
parts of the susceptibilities. In fact, the scattering behavior of such a metasurface would
resemble that of a metasurface synthesized with the second synthesis method. It results that,
whether a lossy structure is implemented or an altered version of it where only the real values
of the susceptibilities are implemented, the total power being transmitted into the desired
direction may change substantially. In practice, it is often the latter case that is preferred
as it corresponds to an easier structure to realize because the metasurface is essentially only
affecting the phase of the incident wave while keeping its amplitude constant.

3.3 Perfectly Refracting Bianisotropic Metasurfaces

Up to now, we have seen how the efficiency of a monoanisotropic refractive metasurface is
limited due to the inherent presence of loss or undesired scattering. There exists, however, an
alternative approach to realize passive, lossless and fully efficient refractive metasurfaces [180–
185]. As shown notably in [180], a monoanisotropic metasurface is a symmetric structure
(with respect to the longitudinal direction) and thus, exhibits the same impedance matching
from both sides. But since the waves on both sides of the metasurface propagate in different
directions, the metasurface can only be matched for one of these two waves. By reciprocity,
this limits the overall efficiency of the structure. The alternative approach is to consider
a bianisotropic metasurface, which is asymmetric due its nonzero magnetoelectric coupling
coefficients. This asymmetry is due to the fact that a bianisotropic medium is spatially
dispersive [158]. Consequently, waves propagating in opposite directions induce different
responses from the medium. In that case, the waves on both sides of the metasurface can
both be matched, which maximizes the efficiency of the transformation.

In the following lines, we will synthesize a bianisotropic refractive metasurface and show
that it allows perfect refraction, i.e. a power transmission efficiency of η � 1. Let us
consider the bianisotropic GSTCs relations in (2.15). For a refractive metasurface, rotation
of polarization is not required, thus the nonzero susceptibility components considered for
the synthesis are the diagonal components of χee and χmm and the off-diagonal components
of χem and χme. The introduction of nonzero magnetoelectric coupling coefficients doubles
the number of unknown susceptibilities. This means that the multiple wave transformation
technique described in Sec. 2.3.2 is used here to obtain the following fully determined system
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of equations: ������
∆Hy1 ∆Hy2

∆Hx1 ∆Hx2

∆Ey1 ∆Ey2

∆Ex1 ∆Ex2

������

������
rχxxee 0 0 rχxyem

0 rχyyee rχyxem 0
0 rχxyme rχxxmm 0rχyxme 0 0 rχyymm

������

������
Ex1,av Ex2,av

Ey1,av Ey2,av

Hx1,av Hx2,av

Hy1,av Hy2,av

�����, (3.11)

where the second transformation is the reciprocal of the first one. Assuming that the re-
fraction takes places in the xz-plane and that the waves are all p-polarized, the system (3.11)
reduces to �

∆Hy1 ∆Hy2

∆Ex1 ∆Ex2

�
�
�rχxxee rχxyemrχyxme rχyymm

�
�
�
Ex1,av Ex2,av

Hy1,av Hy2,av

�
. (3.12)

An illustration of the first and second transformations is presented in Figs. 3.7a and 3.7b,
respectively. Note that the subscripts i and t respectively refer to the incident and transmit
sides of the metasurface rather than the incident and transmitted waves. The electromagnetic
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Figure 3.7 Representation of the two transformations used to solve system (3.12). (a) First
transformation corresponding to the fields in (3.13), (b) second transformation corresponding
to the fields in (3.14).

fields on the incident and transmit sides of the metasurface, assuming that the medium on
both sides is vacuum, and that correspond to the first transformation read

Ex1,i � kz,i
k0
e�jkx,ix, Ex1,t � At

kz,t
k0
e�jkx,tx, (3.13a)

Hy1,i � e�jkx,ix{η0, Hy1,t � Ate
�jkx,tx{η0, (3.13b)

where At is the amplitude of the wave on the transmit side. The fields corresponding to the
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second transformation read

Ex2,i � �kz,i
k0
ejkx,ix, Ex2,t � �At

kz,t
k0
ejkx,tx, (3.14a)

Hy2,i � ejkx,ix{η0, Hy2,t � Ate
jkx,tx{η0. (3.14b)

Now the metasurface susceptibilities can be obtained by substituting (3.13) and (3.14)
into (3.12) and considering (2.16). Solving for the susceptibilities yields

χxxee � � 4At sinpxpkx,i � kx,tqq
At cospxpkx,i � kx,tqqpkz,i � kz,tq � kz,i � kz,tA2

t
, (3.15a)

χyymm � � 4kz,ikz,tAt sinpxpkx,i � kx,tqq
k2

0 pAt cospxpkx,i � kx,tqqpkz,i � kz,tq � kz,i � kz,tA2
t q
, (3.15b)

χxyem � 2j
k0

�
At cospxpkx,i � kx,tqqpkz,i � kz,tq � kz,i � kz,tA

2
t

At cospxpkx,i � kx,tqqpkz,i � kz,tq � kz,i � kz,tA2
t

�
, (3.15c)

χyxme � �2j
k0

�
At cospxpkx,i � kx,tqqpkz,i � kz,tq � kz,i � kz,tA

2
t

At cospxpkx,i � kx,tqqpkz,i � kz,tq � kz,i � kz,tA2
t

�
. (3.15d)

Comparing the values for χxyem and χyxme, we see that the metasurface is nonreciprocal3 for
an arbitrary value of At. However, we are here interested in the synthesis of a reciprocal
metasurface, which is the case only when At �

a
kz,i{kz,t �

a
cos θi{ cos θt. Note that this

condition on At is equivalent to equalizing the normal power flow (Pi � Pt) for the waves
on both sides of the metasurface and also corresponds to the case discussed above where the
monoanisotropic metasurface has an efficiency η � 1 with a combination of active and lossy
elements, as was shown in Fig. 3.6. With this definition of At, relations (3.15) reduce to

χxxee �
4 sinpαxq

β cospαxq � ?
β2 � γ2 , (3.16a)

χyymm � β2 � γ2

4k2
0

4 sinpαxq
β cospαxq � ?

β2 � γ2 , (3.16b)

χxyem � �χyxme �
2j
k0

γ cospαxq
β cospαxq � ?

β2 � γ2 , (3.16c)

where β � kz,i � kz,t, γ � kz,i � kz,t and α � kx,t � kx,i. It can be easily verified that
the bianisotropic refractive metasurface with the susceptibilities in (3.16) corresponds to a
reciprocal, passive and lossless structure based on the conditions (2.13). As an illustration,
the susceptibilities in (3.16) are plotted in Figs. 3.8 for the same incident and transmitted
angles as in the previous sections, i.e. θi � 20� and θt � 45�, respectively. Because χxxee and

3The reciprocity conditions given in (2.10) stipulate that χxyem � �χyxme.
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χyymm are proportional to each other only the electric susceptibility is presented in Fig. 3.8a,
similarly only χxyem is plotted in Fig. 3.8b.
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Figure 3.8 Bianisotropic refractive metasurface susceptibilities: (a) χxxee and (b) χxyem for an
incidence angle of θi � 20� and a refraction angle of θt � 45�.

Now that the susceptibilities for bianisotropic refractive metasurfaces have been obtained,
we are interested in their conversion into scattering parameters, which is a necessary step for
the physical implementation of metasurfaces. The scattering parameters for a bianisotropic
metasurface surrounded by vacuum, with susceptibilities as in (3.11) and for x-polarized
waves are obtained from (2.27) and read

S21 � χxxee χ
yy
mmk

2
0 � p2j � χxyemk0qp2j � χyxmek0q

2jk0pχxxee � χyymmq � χxyemχ
yx
mek2

0 � 4 � χxxee χ
yy
mmk2

0
, (3.17a)

S12 � χxxee χ
yy
mmk

2
0 � p2j � χxyemk0qp2j � χyxmek0q

2jk0pχxxee � χyymmq � χxyemχ
yx
mek2

0 � 4 � χxxee χ
yy
mmk2

0
, (3.17b)

S11 � 2jk0 pχyymm � χxxee � χyxme � χxyemq
2jk0 pχxxee � χyymmq � χxyemχ

yx
mek2

0 � 4 � χxxee χ
yy
mmk2

0
, (3.17c)

S22 � 2jk0 pχyymm � χxxee � χxyem � χyxmeq
2jk0 pχxxee � χyymmq � χxyemχ

yx
mek2

0 � 4 � χxxee χ
yy
mmk2

0
. (3.17d)

It is interesting to note that a bianisotropic metasurface has different reflection coefficients
for its two sides, i.e. S11 � S22, which is not the case of a monoanisotropic metasurface, as
can be verified by setting to zero χxyem and χyxme in (3.17). The fact that S11 � S22 means
that bianisotropy is related to longitudinal asymmetry, i.e. the metasurface does not “look”
the same from both sides. Thus, the scattering particles composing the metasurface will be
required to present such kind of asymmetry. Now the scattering parameters corresponding
to the bianisotropic refractive metasurface are obtained by inserting (3.16) into (3.17), which



72

leads to

S21 � S12 � jk0
?
β2 � γ2

jk0β cos pαxq � pk2
0 � kz,ikz,tq sin pαxq , (3.18a)

S11 � jk0γ cos pαxq � pk2
0 � kz,ikz,tq sin pαxq

jk0β cos pαxq � pk2
0 � kz,ikz,tq sin pαxq , (3.18b)

S22 � � jk0γ cos pαxq � pk2
0 � kz,ikz,tq sin pαxq

jk0β cos pαxq � pk2
0 � kz,ikz,tq sin pαxq . (3.18c)

As expected, the metasurface scattering parameters are reciprocal (S21 � S12) and the two
reflection coefficients are different from each other (S11 � S22). The scattering parameters
in (3.18) are plotted for illustration in Figs. 3.9. As can be seen in Fig. 3.9a, the amplitudes
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Figure 3.9 (a) Amplitude and (b) phase of the transmission S21 � S12 (solid blue lines) and
reflection S11 (dashed red lines) and S22 (dotted green line) coefficients from (3.18) for an
incidence angle of θi � 20� and a refraction angle of θt � 45�.

of both reflection coefficients are the same (|S11| � |S22|), hence the reason why only |S11| is
displayed in the figure, and are not zero. Note that in Fig. 3.9a we have that |S21|2�|S11|2 � 1,
which, as expected, shows that the bianisotropic metasurface is lossless.

Finally, to close the loop, one may compare the scattering parameters in Figs. 3.2 to those
in Figs. 3.9. As can be seen in Fig. 3.9a, the transmission coefficient is almost 1 like the one
in Fig. 3.2b. Moreover, both transmission phases are the exactly the same. Therefore, the
bianisotropic metasurface has almost the same scattering parameters as those of a monoani-
sotropic metasurface synthesized with the second method. In fact, if the reflection coefficient
in Fig. 3.2a is ignored, these two metasurfaces would essentially behave identically. We now
see that the second synthesis method, in addition to being easier to realize compared to the
first method and to the bianisotropic one, also provides a very good response that is very
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close to that of the bianisotropic structure, which is the best that is possible to achieve.

We have realized two different bianisotropic refractive metasurfaces to validate the results
developed above. However, since this project involves several other people, the details are
not reported here but may be found in [186].

3.4 Refractive Metasurfaces with Normal Susceptibility Components

Let us finally investigate a fourth metasurface synthesis approach to implement a refractive
transformation. We consider the case of a monoanisotropic metasurface with nonzero nor-
mal susceptibilities. With the electromagnetic fields of the refractive transformation given
by (3.3), the only relevant susceptibility components are

χee �

���χ
xx
ee 0 χxzee

0 0 0
χzxee 0 χzzee

��, χmm �

���0 0 0
0 χyymm 0
0 0 0

��, (3.19)

where the susceptibilities components that do not play a role in this transformation have
been set to zero. As already explained in Sec. 2.5, normal susceptibility components involve
the spatial derivatives in the GSTCs relations (2.4). The GSTCs thus form a system of
coupled differential equations. In most cases, this system requires numerical analysis to be
solved, however, in the particular case of a refractive metasurface, we can solve it analytically
and obtain closed-form solutions of the susceptibilities. In this example, we also require the
metasurface to be reciprocal, which, from (2.10), means that χzxee � χxzee .

Inserting (3.19) into (2.4) with χzxee � χxzee leads, after simplification, to

∆Hy � �jωε0pχxxee Ex,av � χxzeeEz,avq, (3.20a)
∆Ex � �jωµ0χ

yy
mmHy,av � BxrχxzeeEx,av � χzzeeEz,avs. (3.20b)

Similarly to the case of the bianisotropic metasurface discussed before, we have a system
of 2 equations in 4 unknowns. In order to solve this system of equations, we proceed by
considering 2 wave transformations, exactly as done in Figs. 3.7. This transforms (3.20) into
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∆Hy1 � �jωε0pχxxee Ex1,av � χxzeeEz1,avq, (3.21a)
∆Hy2 � �jωε0pχxxee Ex2,av � χxzeeEz2,avq, (3.21b)
∆Ex1 � �jωµ0χ

yy
mmHy1,av � BxrχxzeeEx1,av � χzzeeEz1,avs, (3.21c)

∆Ex2 � �jωµ0χ
yy
mmHy2,av � BxrχxzeeEx2,av � χzzeeEz2,avs. (3.21d)

We can now directly obtain χxxee and χxzee by linearly solving Eqs. (3.21a) and (3.21b). These
susceptibilities are thus given by

χxxee �
j

ωε0

p∆Hy,2Ez1,av � ∆Hy,1Ez2,avq
pEx2,avEz1,av � Ex1,avEz2,avq , (3.22a)

χxzee �
j

ωε0

p∆Hy,1Ex2,av � ∆Hy,2Ex1,avq
pEx2,avEz1,av � Ex1,avEz2,avq . (3.22b)

In order to obtain the two remaining unknown susceptibilities, we start by expressing χyymm

from (3.21d), which leads to

χyymm � �∆Ex2 � BxrχxzeeEx2,av � χzzeeEz2,avs
jωµ0Hy2,av

. (3.23)

Then, substituting (3.23) into (3.21c) gives the following differential equation in χzzee :�
Hy1,av

Hy2,av
Ez2,av � Ez1,av



Bxχzzee �

�
Hy1,av

Hy2,av
BxEz2,av � BxEz1,av



χzzee � ∆Ex1

� BxrχxzeeEx1,avs � ∆Ex2
Hy1,av

Hy2,av
� BxrχxzeeEx2,avsHy1,av

Hy2,av
,

(3.24)

where χxzee is known from (3.22b). Even though this differential equation is rather complicated,
it is possible to obtain a closed-form solution in the case of a refractive transformation. Let
us use the definition of the fields for the 2 wave transformations that are respectively given
in (3.13) and (3.14) with Ai � At � 1. In that case, the resulting susceptibilities are given
by

χxxee � 2 kx,t � kx,i
kx,ikz,t � kx,tkz,i

tan
�
kx,i � kx,t

2 x



, (3.25a)

χxzee � 2 kz,t � kz,i
kx,ikz,t � kx,tkz,i

tan
�
kx,i � kx,t

2 x



, (3.25b)

χzzee � sec
�
kx,i � kx,t

2 x


2
�
C � 2x pkz,i � kz,tq

pkx,i � kx,tq �
sin rpkx,i � kx,tqxspk2

z,i � k2
z,tq

pkx,i � kx,tqpkx,ikz,t � kx,tkz,iq

�
, (3.25c)
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χyymm ��
sec

�
kx,i�kx,t

2 x
	4

4pkx,i � kx,tqk2
0

!
2pk2

x,i � kx,ikx,t � k2
x,tqrCpkx,i � kx,tq � 2xpkz,t � kz,iqs

� 2kx,ikx,trCpkx,i � kx,tq � 2xpkz,t � kz,iqs cosrpkx,i � kx,tqxs
� p4kx,ikz,i � 6kx,tkz,i � 6kx,ikz,t � 4kx,tkz,tq sinrpkx,i � kx,tqxs
� pkx,tkz,i � kx,ikz,tq sinr2pkx,i � kx,tqxs

)
,

(3.25d)

where C is an integration constant. We see an unexpected result: the susceptibilities χzzee and
χyymm are both linearly dependent on x. This is due to the fact that the 2 transformations
in Figs. 3.7 are the reciprocal of each other and also to the integration operation required
to solve (3.24). This result may a priori seem wrong and contradictory since the specified
fields are plane waves while two of the resulting susceptibilities are linearly varying along
x. However, the correct way to evaluate the interaction of an incident plane wave with a
metasurface possessing the susceptibilities in (3.25) is through the GSTCs relations in (3.20).
More specifically, the linear dependencies on x of the susceptibilities χyymm and χzzee cancel each
other when inserted into (3.20b).

Using relations (2.13), we see that the metasurface is perfectly passive and lossless since the
susceptibilities in (3.25) are purely real. This is unexpected since the electromagnetic fields
were specified with Ai � At � 1, which means that the power flow through the metasurface
is not conserved and thus that the efficiency is limited by relation (3.8). Therefore, we can
assert that the susceptibilities in (3.25) are not physically consistent since energy conservation
is not satisfied. Note that if the amplitude of the transmitted wave was increased so as to
satisfy the conservation of power, as done in Sec. 3.3, then it can easily be shown that
the metasurface becomes active. At this point, we have to conclude that, while the steps
followed to obtain the result provided by relations (3.25) seem mathematically correct, the
final susceptibilities are physically wrong. We can thus ask the question: is it physically
possible to synthesize a refractive metasurface with normal susceptibility components? And
if yes, what susceptibilities components should be considered?

3.5 Summary

In this chapter, we have applied several of the concepts that were first developed in Chapter 2.
As a basis for the discussion, we have selected the particular topic of refractive metasurfaces,
which provides a simple but nonetheless rich and insightful study case.

We have seen that a monoanisotropic metasurface can be synthesized rigorously, by specifying
the exact fields, or approximatively, by specifying the scattering parameters. The rigorous
synthesis method leads to a lossy design that performs the expected transformation with a
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reduced transmission efficiency. The approximate synthesis method leads to a lossless design
that presents undesired scattering but an overall better transmission efficiency. In terms of
practical realization, the approximate synthesis method has the advantage of being easier to
implement since it is lossless and exhibits a flat amplitude transmission.

Next, we have seen that the only way to synthesize a perfectly efficient refractive metasurface
is by using bianisotropy. In that case, the metasurface is not only passive, lossless and
reciprocal but it also presents a “pure” refractive transformation, i.e. without undesired
scattering.

Finally, we have discussed the case of a monoanisotropic refractive metasurface with nonzero
normal susceptibility components. We have realized that the resulting susceptibilities are
not physically consistent, which casts doubt on whether or not it is possible to synthesize
refractive metasurfaces with normal susceptibility components.
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CHAPTER 4 Practical Realization & Measurement

In the two previous chapters, we have been interested in the mathematical description and
synthesis of metasurfaces, which allow one to find the metasurface susceptibilities and cor-
responding scattering parameters from the specified electromagnetic transformation(s) given
in terms of incident, reflected and transmitted fields. In this chapter1, we will discuss the
physical realization of metasurfaces, which is the second main step in the general framework
of metasurface synthesis.

The conventional procedure to realize a metasurface, which is not trivial, may be decomposed
into four main steps. Firstly, the metasurface susceptibilities are obtained from the initial
specified fields. They are then usually simulated using commercial software or FDFD/FDTD
codes to verify that they perform the expected transformation. In some cases, it is required
to adjust the susceptibilities by changing the initial specified fields so as to achieve the most
optimal transformation. Once the optimal susceptibilities are obtained, the corresponding
scattering parameters are computed using (2.32) and (2.33), for birefringent metasurfaces,
or (2.22) in a more general case.

Secondly, the scattering parameter functions (which are continuous functions) are spatially
discretized using a square lattice in the xy-plane with subwavelength resolution and where
each discrete point corresponds to a scattering particle (or unit cell) to be implemented. This
step requires to either choose a specific unit cell size, which is generally in a range between
λ0{2 and λ0{10, or to know a priori the lateral size of the unit cells, which may be the case
when one has already a database of scattering particle responses2. In all cases, it is impor-
tant that the unit cell lateral size be less than λ0 to avoid generating undesired diffraction
orders [159], ensuring the homogeneity of the metasurface and also properly sampling the
scattering parameter functions according to the Nyquist criterion. Ideally, the smaller the
unit cells, the better. But the smaller they are, the less the interact with the exciting field,
which limits their minimum size to about λ0{10. Below that limit, it is difficult to achieve
resonance and thus the control of the electromagnetic field is limited because of the limited
range of values that the metasurface material parameters may take.

Thirdly, full-wave simulations of unit cells, whose shapes will be discussed later, are performed
using commercial software, which yield their scattering parameters. For each lattice site, the
shapes of the unit cells are tuned until their scattering parameters match those found from

1This chapter is based on [151,187].
2For instance, we have been using the same type of unit cell (with λ0{5 lateral size) for several different

metasurfaces.
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the previous step. These simulations are done assuming periodic boundary conditions (PBC)
even if the metasurface to be implemented is nonuniform (scattering parameters are varying
functions of x and/or y). In this latter case, local periodicity is assumed meaning that the
metasurface must exhibit slowly varying spatial features and that consequently the coupling
between adjacent unit cells in the final structure is comparable to that in the perfectly
periodic environment of the simulation software. However, when the metasurface exhibits
very rapid spatial variations compared to the free-space wavelength, the assumption of local
periodicity is not valid anymore and the coupling between adjacent unit cells may be very
different when the unit cell is inserted into the final nonuniform metasurface compared to
when it is simulated with PBC. In such a case, the electromagnetic response of the realized
metasurface will not correspond to the expected result. Therefore, it is in general difficult
(or even impossible) to realize metasurfaces with very rapid spatial variations compared to
the size of the unit cells.

Finally, once all unit cells have been obtained from the full-wave simulations, one can simulate
the entire structure (or only a part of it if the scattering parameters are periodic functions)
to analyze the electromagnetic response of the metasurface. In most cases, the response will
slightly differ from the expected result, which is likely to be due to the error induced because
of the local periodicity assumption. In such a case, the unit cells may be further tuned
via parametric analysis or standard optimization techniques to improve the response of the
metasurface and achieve a better agreement with the initial specifications.

In the following two sections, we present two different unit cell structures that may be used
to realize metasurfaces. The first one consists in cascaded metallic layers, while the second
one is based on dielectric resonators.

4.1 Scattering Particles Based on Cascaded Metallic Layers

In this section, we present the design of unit cells based on cascaded metallic layers. It
must be noted that the following developments are based on well known microwave theory
concepts already used since the 1950s, notably for the implementation of frequency selective
surfaces (FSS) [32]. More recently, these concepts have been adopted for the realization of
metasurfaces [85, 133, 134, 146, 188–190] and they are concisely reported here for the sake of
completeness of this work.

Most metasurfaces designed to be used in the microwave regime are composed of one or several
layers of metallic patterns separated by dielectric substrates. This technology may also be
considered at optical frequencies but the additional plasmonic loss due to the metallic parts
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as well as the complexity of fabrication make it less attractive compared to other alternatives
like the fully dielectric unit cell structure that will be discussed in the next section. The
condition, to be able to realize a fully functional metasurface, is that its unit cell scattering
parameters cover a 2π-phase range while being able to maintain a constant transmission (or
reflection) amplitude, which is usually equal to 1 to maximize efficiency. However, it was
shown that metasurfaces using one single metallic layer cannot fundamentally achieve full
transmission and 2π-phase coverage [148]. This limitation is due to the limited number of
degrees of freedom that are provided by a single-layer structure. It naturally follows that
increasing the number of metallic layers increases the number of degrees of freedom, which
may contribute to improve the bandwidth as well as the achievable transmission or reflection
phase coverage. A remarkable and important case is that of a three metallic layer structure,
and more specifically the particular case where the two outer layers are the same. This
three-layer structure is the simplest one that provides a full transmission and a 2π-phase
coverage3 [85, 133, 134, 146, 188–190]. This kind of structure is symmetric with respect to
the longitudinal direction and is therefore limited to the implementation of monoanisotropic
metasurfaces. A unit cell with three different layers would be asymmetric and thus would
allow the realization of bianisotropic metasurfaces, as discussed in Sec. 3.3, at the cost of
a more complicated design. Note that the overall thickness of the three-layer structure
remains deeply subwavelength. For most practical applications, this kind of three metallic
layer structure is sufficient but more layers may be considered as a mean to increase the
bandwidth [32] at the cost of extra loss, weight and implementation complexity.

It can be easily verified, using microwave theory concepts, that cascading three metallic layers
(with similar outer layers) is sufficient to realize a transmission coefficient of 0 ¤ |T | ¤ 1
with a 2π-phase coverage. For a given polarization, each metallic layer can be described by
an impedance layer and each of the two dielectric spacers by an equivalent transmission line.
The entire structure can then be analyzed using the ABCD matrix technique [191] as such�

A B

C D

�
�
�

1 0
Y1 1

�
�
�

cospβdq jηd sinpβdq
j sinpβdq

ηd
cospβdq

�
�
�

1 0
Y2 1

�

�
�

cospβdq jηd sinpβdq
j sinpβdq

ηd
cospβdq

�
�
�

1 0
Y1 1

�
,

(4.1)

where β is the propagation constant along the z-direction and d and ηd are the thickness and
the impedance of the dielectric substrates, respectively. The terms Y1 and Y2 correspond to
the admittances of the outer layers and the middle layer, respectively. Finally, the ABCD

3Similar considerations naturally apply for the reflection coefficient if the metasurface is used in reflection.
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matrix (4.1) can be converted into scattering parameters using the following relation [191]�
S11 S12

S21 S22

�
� 1

2A�B{η0 � Cη0

�
B{η0 � Cη0 2

2 B{η0 � Cη0

�
. (4.2)

To illustrate how the transmission coefficient, S21, changes as function of Y1 and Y2, we plot
it in Figs. 4.1. These two figures are obtained by substituting (4.1) into (4.2) and plotting
the amplitude and phase of S21 versus the imaginary parts of Y1 and Y2 for arbitrary values
of β, ηd and d. We assume here that the unit cell is perfectly lossless and passive, thus
RepY1q � RepY2q � 0. These figures reveal that it is possible to cover a 2π-phase range while
maintaining full transmission (see the solid black line in the two figures).
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Figure 4.1 (a) Transmitted power (|S21|2) and (b) phase for the three cascaded metallic layers
versus the imaginary parts of the impedance of Y1 and Y2. The black line indicates that full
transmission can be achieved and that the corresponding phase varies between 0 and 2π.

The question that arises now is what kind of shape should the metallic layers have to realize
the unit cells? There are several different shapes that have been investigated over time [32]
but the one we have used for the vast majority of our metasurfaces is the Jerusalem cross.
A generic Jerusalem cross with all its tunable dimensions is shown in Fig. 4.2a, while an
illustration of a unit cell made with three cascaded crosses is shown in Fig. 4.2b.

The characteristic shape of the Jerusalem cross provides a relatively independent control
of x and y polarizations, which simplifies the realization of the scattering particles. More
specifically, the independent control of both x and y polarization is achieved by considering
that tuning the parameters Bx, Wx and Ly mostly affects y-polarized waves and, parameters
By, Wy and Lx mostly affects x-polarized waves. With this kind of shape, there is an
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Figure 4.2 Representations of (a) a generic Jerusalem cross with the dimensions that can be
modified. (b) A unit cell with three metallic (PEC) Jerusalem crosses separated by dielectric
slabs, the outer layers are identical.

important capacitive coupling between adjacent unit cells. This coupling has the effect
of increasing the response of the scattering particles, thus enabling the implementation of
unit cells with smaller transverse and longitudinal dimensions with respect to the operating
wavelength [32,192]. However, this comes at the cost of a more complex structure to realize
due to the large number of tunable parameters. The coupling between adjacent unit cells
also has the disadvantage of making the implementation of nonuniform metasurfaces more
difficult because the overall response of the metasurface is more sensitive to the variations of
shape of adjacent unit cells.

We are now interested in finding the exact dimensions, shown in Fig. 4.2a, of the Jerusalem
cross of the outer and middle layers, to which we will now refer to as layers 1 and 2, respecti-
vely. There are two main methods that are considered here to design these layers. The first
method consists in inserting the required scattering parameters found from the synthesis into
Eqs. (4.1) and (4.2) and solving these relations so as to obtain the corresponding required
admittance of each layer.
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However, even if it is possible to obtain the admittance of each individual layer, there is
unfortunately no direct and analytical method to relate the dimensions of layers 1 and 2 to
the admittances Y1 and Y2. The conventional method consists in simulating each layer indi-
vidually using PBC to obtain its corresponding scattering parameters. From the simulated
scattering parameters, the corresponding admittance of the layer can be found using (4.2)
with rA,B;C,Ds � r1, 0;Y, 1s and solving for Y . Then, by iterative tuning, the Jerusalem
cross dimensions are modified until the layer admittance matches the required one found
from the previous steps. While this method is useful because it simplifies the realization of
the unit cells by allowing one to design each layer separately, it is rigorous only in absence of
longitudinal evanescent coupling between the metallic layers since the ABCD matrix method
only takes into account zeroth-order propagating waves4. And, unfortunately, the unit cell
total thickness is in the order of λ0{10, which means that the longitudinal coupling between
the layers is non-negligible. Nevertheless, this method may still be used to obtain an initial
structure, which would then require further numerical optimizations to achieve the specified
response.

In order to evaluate the effect of coupling between the metallic layers, we have compared the
error between the scattering parameters obtained from simulations of the entire three-layer
unit cells and the scattering parameters obtained by first simulating each layer individually (to
obtain admittances Y1 and Y2) and then combining them together using Eqs. (4.1) and (4.2) to
obtain the overall scattering parameters of the three layer structure. This error is computed
from the difference between the scattering parameters of these two methods obtained from
thousands of simulations. The corresponding normalized mean error is plotted in Fig. 4.3
versus the total unit cell thickness which ranges between λ0{10 and 10λ0 and for three different
relative permittivity of commercially available dielectric substrates (εr � 3, 6.15 and 10.2).
The results in Fig. 4.3 reveal that the error due to the coupling may generally be lowered
by decreasing the relative permittivity of the dielectric substrate and/or by increasing its
thickness.

Instead of trying to realize the unit cells by using the admittances of individual layers, we
may alternatively consider another method, which consists in simulating the entire three-layer
structure and tuning the dimensions of the layers until the required scattering parameters,
found from the synthesis, are obtained. From an electromagnetic perspective, we can con-
sider that the interactions between the exciting wave and the three metallic layers generate
equivalent electric and magnetic responses. In the frequency range of interest, the unit cell
is small compared to the wavelength and thus only presents dipolar electric and magnetic re-

4Higher diffraction orders or evanescent waves are not considered in the ABCD method.
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Figure 4.3 Normalized mean error between scattering parameters obtained by simulating
entire three-layer unit cells and scattering parameters obtained by simulating each layer
individually. The error is given versus the unit cell thickness and the relative permittivity of
commercially available dielectric substrates.

sonances. Higher-order multipolar resonances occur at higher frequencies where the unit cell
size approaches that of the wavelength. Thus, the metasurface can be seen as an equivalent
array of electric and magnetic dipole moments. The complete control of the transmission
amplitude and phase that the unit cell provides is achieved by the superposition of the fields
scattered by the electric and magnetic dipolar resonances, as formulated in (2.80). In the
case of the three-layer unit cell, the structure is symmetric in the longitudinal direction. We
can thus analyze the behavior of the structure using even/odd mode analysis. The odd mode
resonance is achieved when the surface currents induced by the incident wave are equal and
opposite on the outer layers. In that case, the total current is zero on the middle layer.
Such a current distribution corresponds to an equivalent magnetic dipole moment. Since the
current is null on the middle layer, this layer does not play a role in the magnetic response of
the structure [133]. The even mode resonance is achieved when the same current distribution
is excited on the three layers, thus corresponding to an equivalent electric dipole moment.
Practically speaking, this means that layers 1 are modified first, to tune the magnetic re-
sponse, and then layer 2 is modified to adjust the electric response of the structure. Usually,
a few optimization iterations are required to design one unit cell.

We will now illustrate the effects of changing the physical dimensions of layers 1 and 2 on the
unit cell scattering parameters. For this purpose, we consider a unit cell whose dimensions
correspond to those of “Cell 3” that are provided in Table 5.4. To see how changing layers 1
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and 2 affects the scattering parameters of this unit cell, we perform three different simulations
whose results are reported in Figs. 4.4. The first simulation is performed with the exact same
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Figure 4.4 CST simulations of three different unit cells. The solid blue lines correspond to
the simulations of “Cell 3”, whose dimensions are given in Table 5.4. The plots (a) and (b)
correspond to the amplitude of Sxx21 and Syy21 , respectively. The plots (c) and (d) are the real
parts of χxxee and χyymm, respectively. For the dotted red lines, Lx of layers 1 is change to 5 mm.
For the dashed black lines, Lx of layer 2 is change to 4.4 mm.

dimensions as those in Table 5.4, and the corresponding results are plotted in solid blue lines
in the figures. For the second simulation, the dimensions Lx of the layers 1 are increased from
4.25 mm to 5 mm, the corresponding results are plotted in dotted red lines in the figures.
For the third simulation, the dimension Lx of layer 2 is increased from 3.75 mm to 4.4 mm,
the corresponding results are plotted in dashed black lines in the figures.

We expect that these variations of dimensions will mostly affect the x-polarized transmission
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coefficient, Sxx21 , while leaving unchanged the y-polarized transmission coefficient, Syy21 . The
amplitudes of these scattering parameters are plotted in Figs. 4.4a and 4.4b, respectively. We
see that the scattering parameters of this unit cell, which was originally realized to exhibit
full transmission (|Sxx21 | � |Syy21 | � 1) at 10 GHz, have experienced very different variations.
As expected, the parameter Sxx21 has drastically changed, while the parameter Syy21 remains
almost unaffected over the selected frequency range. To reveal the effects of these dimensional
changes on the electric and magnetic responses of the unit cell, we convert the scattering
parameters in Fig. 4.4a into the corresponding electric and magnetic susceptibilities using
relations (2.31a) and (2.31d). For the three simulations, the resulting real parts of χxxee are
plotted in Fig. 4.4c, while the real parts of χyymm are plotted in Fig 4.4d. We clearly see that
changing layers 1 has a strong effect on the magnetic resonance and a non-negligible effect
on the electric resonance (see the red dotted lines). On the other hand, changing layer 2
only affects the electric resonance, which is expected due to the longitudinal symmetry of
the structure. In both cases, we have increased the dimensions Lx of the middle and outer
layers, which translates in an increase of the capacitive coupling between adjacent unit cells
and thus a decreases in the corresponding electric and/or magnetic resonance frequency.

Most of the metasurfaces made with metallic scattering particles that will be presented in
Chapter 5 have been realized for an operating frequency around 10 GHz. At this frequency,
the transverse dimension of the unit cell is d � 6 mm (� λ0{5). For the fabrication, we are
using a commercially available dielectric substrate: Rogers RO3003 with a relative permitti-
vity of εr � 3 and a loss tangent of tan δ � 0.001. The unit cells are made by gluing together
two substrates with a thickness of 1.52 mm each, leading to an overall metasurface thickness
of 3.04 mm (� λ0{10). For the gluing process, we use a 3M 9458 adhesive tape with an
approximate thickness of 25,4 micrometers and a relative permittivity of 3 that is deposited
on one of the two dielectric substrates. Then, the substrates are pressed together for about
30 minutes at a temperature of 40� C. Note that, due to the very approximate thickness and
permittivity of the glue, it is not taken into account in the numerical simulations of the unit
cells.

4.2 Scattering Particles Based on Dielectric Resonators

In addition to the aforementioned metallic unit cells, the realization of the metasurface scat-
tering particles may be achieved by considering purely dielectric resonators without any
metallic part. As previously discussed, one essential requirement to achieve full transmis-
sion (or reflection) and a 2π-phase coverage, is the presence of both electric and magnetic
resonances, which are naturally occurring in dielectric resonators [193, 194]. For this rea-
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son, dielectric resonators have been widely used to realize metasurfaces [115, 116, 195, 196].
A dielectric metasurface is, as before, a uniform (or nonuniform) two-dimensional array of
dielectric resonators, where the thickness of the metasurface and the period of the unit cells
in the array are both subwavelength.

Dielectric unit cells are particularly attractive in the optical regime, where they are more
easily realizable compared to the cascaded metallic layer structure discussed above and also
exhibit no plasmonic loss thanks to the absence of metallic inclusions. A typical unit cell is
shown in Fig. 4.5a where the resonator is a dielectric cylinder of circular cross section with
permittivity εr,1 placed on a dielectric slab with permittivity εr,2 (usually silica) for mecha-
nical support [118,196–199]. Other types of particle shapes are naturally also possible. This
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Figure 4.5 Representations of two dielectric metasurface unit cell designs. In (a), the conven-
tional optical regime design, where a dielectric resonator of permittivity εr,1 is placed on a
dielectric substrate of permittivity εr,2. In (b), our unit cell design for the microwave region,
where the resonators are held together by dielectric connections.

includes 90�-symmetric shapes like squares, which (like cylinders) present the same behavior
for x- and y-polarized waves. But also 90�-asymmetric shapes, such as ellipses and rectangles,
which allow a complete and independent control of the two orthogonal polarizations [116].
An additional advantage of dielectric unit cells is that they have much less physical parame-
ters to adjust compared to the Jerusalem cross, which effectively simplifies the optimization
procedure to achieve a specified response but comes at the cost of less degrees of freedom.

We have also proposed an alternative implementation of dielectric metasurfaces, which is de-
signed to be used in the microwave regime [200,201]. In the proposed design, the resonators
are not placed on a substrate, they are rather held together with dielectric connections, as
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depicted in Fig. 4.5b. This design has the advantage of being easy to fabricate since the
fabrication process essentially consists in laser cutting a pattern mask. An additional advan-
tage of this structure is that it is immune to the presence of multiple reflections occurring
inside the supporting slab, as it is the case of the structure in Fig. 4.5a. In general and for
simplicity, we assume that all resonators have the same thickness, which can be achieved
by gluing together several slabs of commercially available dielectric substrates. The gluing
process is the same as the one explained in the previous section. An example of such struc-
ture is depicted in Fig. 4.6, which shows a fabricated metasurface made of several patterned
dielectric slabs. The disadvantage of the dielectric connections is that they affect the elec-

Unit cell

Figure 4.6 Example of a fabricated dielectric metasurface with interconnected resonators
made of four stacked dielectric slabs glued together.

tromagnetic behavior of the resonators. In order to minimize these effects, these connections
are made very small with respect to the operating wavelength. In that case, their presence
has negligible effect on the polarization that is orthogonal to them, e.g. Ex in Fig. 4.5b.
However, their effects on the polarization that is parallel to them cannot be ignored but can
be compensated by numerical optimizations.

For both structures in Figs. 4.5, the physical dimensions of the unit cells are obtained using
the same approach as for the cascaded metallic layer structure discussed above. Each unit cell
is simulated assuming PBC. Its dimensions are tuned until the desired scattering parameters
are obtained, which in general requires a few optimization iterations.

The various advantages of dielectric metasurfaces may play an important role in the deve-
lopment of metasurfaces designed to work at multiple frequencies or over extended frequency
bands. Traditionally, the bandwidth of transmit arrays or FSS may be increased by cascading
several layers [32] at the cost of having thicker, more complex and more lossy structures. A
potential alternative lies in the use of highly coupled dielectric resonators, which are easier to
design and less lossy compared to metallic structures. The idea consists in placing resonating
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particles close to each other so as to increase mutual coupling and consequently generate new
resonant frequencies. Thus, the coupling between the resonators can be used as an additional
degree of freedom to tune the frequency response of metasurfaces [112].

A disadvantage of dielectric resonators is that, to achieve a small unit cell lateral size and
thickness, a high difference between the dielectric permittivity of the particle and that of the
surrounding medium is required. This means that metasurfaces with rapid spatial variations
compared to the free-space wavelength can only be realized using high permittivity resonators,
which may not be easily available. As a comparison, the lateral size and thickness of the
metallic unit cells used in this work are about λ0{5 and λ0{10, respectively; while the dielectric
unit cell counterparts are about λ0{1.1 and λ0{3.3, respectively, for resonators of relative
permittivity εr � 10.2 surrounded by air.

4.3 Measurement Setup

In order to measure the responses of metasurfaces, we use the home-made measurement se-
tup that is show in Fig. 4.7. It consists of a rotating arm used to attach the exciting horn
antenna. The arm can rotate from �90� to 90� around the center where the metasurface is

Figure 4.7 Metasurface measurement setup. The photograph on the left shows the rotating
arm with a horn antenna, the metasurface holder with a metasurface in the middle and, on
the left-hand side, we see the three-axis stage. The photograph on the right is a close-up view
of the scanning waveguide probe mounted on the three-axis stage with absorbers to reduce
scattering from metallic parts.

placed. The arm is long enough so that the metasurface lies in the far-field of the antenna.
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The metasurface holder is covered with microwave absorbers at the exception of a small
aperture in the center where the metasurface is screwed, with plastic screws, to a plastic
frame. On the other side of the setup, a three-axis (x, y and z) stage allows a waveguide
probe to scan the entire space in the transmit side of the metasurface. Additionally, the
exciting antenna and the scanning probe are both attach onto rotary stages that allow an
easy control of the transmitter and receiver polarizations, respectively. The measurements
are performed by scanning with a waveguide probe rather than simply measuring the line-of-
sight scattering parameters with two conventional antennas because most metasurfaces that
have been realized are nonuniform and thus change the direction of wave propagation. Scan-
ning the transmit side of the metasurface thus allows one to effectively obtain all important
information about the transmitted waves directions of propagation, amplitude, phase and
polarizations through plane wave expansion methods [202, 203]. Note that the waveguide
probe, that is used to measure the transmitted field, has a specific directivity. It is generally
recommended to compensate for the effect of the waveguide probe transfer function, which
distorts the measured fields. In most cases, it is possible to use probe corrections techniques
that are notably detailed in [203]5

The rotating arm as well as the three-axis stage are both connected to a vector network
analyzer (VNA) that measures the scattering from the metasurface. The motions of the
rotating arm and the three-axis stage are controlled with an home-made Visual Basic software
that is also connected to the VNA to acquire data. The overall measurement process is
completely automatic.

Note that all metasurfaces that will be presented in the next chapter have been measured
with this measurement setup.

4.4 Summary

In this chapter, we have first discussed the physical realization of metasurfaces. We propose
two main methods to implement the scattering particles. The first one consists in using
metallic unit cells made by cascading metallic layers, which have the shape of Jerusalem
crosses. The second on consists in using dielectric resonators which typically take the shape
of cylinders with elliptical cross section. In both cases, the metasurface can be seen as an
array of electric and magnetic dipole moments. Finding the exact shape of the unit cells thus
requires controlling the resonance frequencies of both the electric and magnetic resonances
so that the unit cell exhibits the required reflection/transmission amplitude and phase. This

5See section 17.2.4B.
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is achieved by iterative full-wave simulations and optimizations.

Finally, we have described the metasurface measurement setup. Since most metasurfaces,
that will be presented in the next chapter, are changing the direction of wave propagation, a
simple line-of-sight measurement is not sufficient to properly investigate the scattering beha-
vior of these structures. Consequently, we measure the near-field on a plane on the transmit
side of the metasurface using a waveguide probe. This provides an accurate evaluation of the
scattering response of these metasurfaces.
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CHAPTER 5 Advanced Concepts and Applications

In this chapter, we present several metasurface concepts and applications that have been rea-
lized or investigated during the course of this PhD program. The metasurfaces presented here
have been synthesized and realized using the synthesis framework developed from Chapter 2
to Chapter 4, which are themselves based on previously published works [128,151,187].

We will start by discussing the implementation of dielectric metasurfaces for temporal disper-
sion engineering [200,201]. Then, birefringent metasurfaces [204,205], able to independently
control orthogonally polarized waves, will be presented [187, 206]. Different birefringent
wave transformers are proposed which include: a half-wave plate [115, 207, 208], a quarter-
wave plate [209, 210], a polarization beam splitter [211–213] and an orbital angular momen-
tum [66, 84, 85, 214, 215] generator. These different operations are illustrated in Figs. 5.1.

Half-Wave Plate Quarter-Wave Plate

Polarization Beam Splitter OAM Generation

Figure 5.1 Illustrations of some birefringent metasurface transformations.

We next present the implementations of two coherent spatial processors [216, 217] and of a
metasurface system that transforms space waves into surface waves [218,219]. The mathema-
tical synthesis of a nonreciprocal and nongyrotropic metasurface is also discussed [220, 221]
and the conceptual emission enhancement of light-emitting diodes (LEDs) is briefly addres-
sed [2, 222]. Finally, we will investigate the capabilities of metasurfaces to control radiation
pressure in order produce repulsive, attractive lateral and rotational optical forces.
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5.1 Temporal Dispersion Engineering

Dispersion engineering consists in manipulating the temporal content of time-domain sig-
nals and thus requires the capability to control the frequency response of materials or sys-
tems [223]. A direct application of dispersion engineering is real-time analog signal processing
(R-ASP) [224]. A typical example of a R-ASP system is that of phasers [225], which are inte-
grated guided-wave components. Metasurfaces performing real-time signal processing could
therefore be the spatial counterparts of integrated phaser [151, 200, 201]1. For such an ap-
plication, the metasurface should exhibit a broadband flat transmission amplitude (ideally
close to full-transmission) and a controllable frequency-dependent phase response or, equi-
valently, a frequency-dependent group delay2. The idea of using metasurfaces for dispersion
engineering stems from the recent developments of broadband metasurfaces able to perform,
for instance, broadband: wavefront manipulations [89], dispersion compensation [118, 226],
matching [227] and quarter and half-wave operations [228,229].

Here, we propose the concept of a broadband all-dielectric metasurface for real-time analog
signal processing, as discussed in [151,200,201], which is implemented in the microwave region
using the design approach discussed in Sec. 4.2. This concept is inspired by previous works
on all-dielectric metasurfaces in the optical regime [115,118,196–199,230–233].

From the discussion in Sec. 4.2, we know that dielectric resonators exhibit both electric and
magnetic resonances. In general, these two resonances do not occur at the same frequency
and the overall response of the dielectric resonator metasurface is not broadband, as will
be shown shortly. However, by varying the physical dimensions of the resonators as well
as the ratio between the relative permittivity of the resonators and that of the surrounding
medium, it is possible to tune these resonances so that they occur at the same frequency. In
which case, if the two resonances have the same strength and dispersion and are associated
with orthogonal dipole moments in the transverse plane of the metasurface, reflection may
be totally suppressed. This is due to perfect destructive interference of the waves scattered
by the electric and magnetic resonances in the incident side of the metasurface, and their
constructive interference at the transmit side of it [194]. In this case, if lossless material is
considered, the transmission is theoretically 100% and flat over a wide bandwidth. Moreover,
the transmission phase covers a full 2π range around the resonance frequency. It must be
noted that, in general, the electric and magnetic resonances have different dispersions [227],
which leads to non-ideal constructive/destructive interferences on both sides of the metasur-

1This section is based on a slight modified version of [201].
2The group delay is defined as τ � �Bφpωq{Bω, where φpωq is the transmission phase-shift across the

metasurface.
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face and thus the transmission amplitude is not perfectly flat over the bandwidth of interest.
If the dielectric loss of the resonators is neglected, this small variation in transmission does
not drop below -2 dB, as can be seen in Fig. 5.2, which represents the transmission, reflection
and group delay responses of a typical broadband dielectric metasurface tuned such that its
electric and magnetic resonances occur at around the same frequency.
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Figure 5.2 Rigorous coupled wave analysis (RCWA) of a typical broadband dielectric meta-
surface. The plots show the transmission and reflection coefficients as well as the transmission
phase and the transmission group delay, respectively.

5.1.1 Matched Dispersion Response

We now investigate the frequency response of broadband metasurfaces by considering that
its electric and magnetic resonances can be modeled using a Lorentzian model [159]. For the
purpose of this study, we assume that the metasurface is made of a uniform array of isotropic
dielectric resonators and without dielectric connections used for mechanical support. In that
case, a normally incident plane wave impinging on the metasurface is normally reflected and
transmitted with reflection and transmission coefficients, as obtained in (2.32), which are

Rpωq � 2jk0 pχmmpωq � χeepωqq
p2 � jk0χeepωqq p2 � jk0χmmpωqq , (5.1a)

T pωq � 4 � χeepωqχmmpωqk2
0

p2 � jk0χeepωqqp2 � jk0χmmpωqq , (5.1b)

where χeepωq and χmmpωq are the frequency-dependent electric and magnetic susceptibilities,
respectively, and k0 is the free-space wavenumber. From (5.1a), we know that the metasurface
is reflectionless if χmmpωq � χeepωq for all ω. We may now assume that the susceptibilities
follow a Lorentzian dispersion profile [159] such that

χeepωq �
2Aω2

p

pω2
0 � ω2q � jγω

, (5.2)
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where A is the amplitude, γ is a damping factor, ω0 is the resonance frequency and ωp

is the plasma frequency. Substituting (5.2) into (5.1b) leads to the following transmission
coefficient:

T pωq � pω2
0 � ω2q � jpAk0ω

2
p � ωγq

pω2
0 � ω2q � jpAk0ω2

p � ωγq , (5.3)

and the reflection coefficient is Rpωq � 0.

It can be easily verified that if the dielectric metasurface is perfectly lossless (γ � 0), then the
amplitude of the transmission coefficient in (5.3) is 100% and flat over a broad bandwidth.
Additionally, the transmission phase, φpωq, exhibits a 2π variation around the resonance
frequency.
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Figure 5.3 Effect of the resonance frequency and loss on the real and imaginary parts of
the susceptibilities as well as the amplitude and phase transmission of a metasurface formed
by a 2D square array of dispersion-matched Lorentz oscillators. Top row, varying resonance
frequencies (γ � 15�108 rad/s, ω0 � 2πr10.5 11 11.5s�109 rad/s), and, bottom row, varying
loss coefficient γ (γ � r5 10 15s � 108 rad/s, ω0 � 2π11 � 109 rad/s). In all cases, A � 10�4

and ωp � 2π11 � 109 rad/s.

In order to illustrate the effects of changing the resonance frequency, ω0, and the absorption
coefficient, γ, on the susceptibilities in (5.2) and the coefficient in (5.3), we perform several
simulations, whose corresponding results are plotted in Fig. 5.3. In the two figures on the
left, the solid lines correspond to the real parts of the susceptibilities, while the dashed lines
correspond to their imaginary parts. The amplitude of the transmission coefficient is plotted
in the two middle figures, while the corresponding transmission phase is plotted in the two
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remaining ones. We see that as γ increases, the transmission amplitude decreases around the
resonance frequency. Moreover, the frequency variation of the transmission phase becomes
sharper as γ is increased.

5.1.2 Simulations and Experimental Demonstrations

In order to analyze the scattering response of a dielectric metasurface, we have first simulated
a metasurface with unmatched electric and magnetic resonances, i.e. χeepωq � χmmpωq.
The specified frequency range is from 10 to 12 GHz, which corresponds to that in Fig. 5.3.
Referring to the dimensions in Fig. 4.5b, the metasurface is designed with the following
parameters: thickness t � 5.08 mm (� λ0{5.4), radius r0 � 5.5 mm (� λ0{5) and unit cell
period ax � ay � 21.5 mm (� λ0{1.2). We have chosen a commercially available dielectric
substrate which is Rogers RO3210 with a relative permittivity of εr � 10.2 and a loss tangent
of tan δ � 0.0027. Note that the dielectric connections holding the resonators together are
not considered here.

The corresponding simulation results are shown in Figs. 5.4. The amplitude and phase of
the transmission and reflection coefficients are plotted on the top of Figs. 5.4a, while the
corresponding susceptibilities, obtained with (2.31), are plotted at the bottom. We see that
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Figure 5.4 Simulated unmatched metasurface. (a) Top, transmission (solid blue line) and
reflection (dashed red line) coefficients on the left and, transmission phase on the right.
Bottom, real part of the retrieved electric (red line) and magnetic (blue line) susceptibilities
on the left and corresponding imaginary parts on the right. (b) Electric and magnetic field
distributions in the electric and magnetic resonances, respectively. All results are computed
using HFSS.



96

the susceptibilities effectively follow a Lorentzian type resonance model and that the electric
and magnetic resonances do not occur at the same frequency. A closer inspection reveals
that the corresponding resonances are at ωe � 2π10.9 � 109 rad/s and ωm � 2π10.8 �
109 rad/s, respectively. Moreover, note that the two susceptibilities do not exhibit the same
dispersion response. In that case, the metasurface is unmatched and thus presents relatively
low transmission in the frequency range of interest. To see the responses of the resonators,
the electric and magnetic fields are shown in Fig. 5.4b at frequencies ωe and ωm, where we
can clearly see that the fields are unbalanced.
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Figure 5.5 Simulated matched metasurface. (a) Top, transmission (solid blue line) and re-
flection (dashed red line) coefficients on the left and, transmission phase on the right. Bottom,
real part of the retrieved electric (red line) and magnetic (blue line) susceptibilities on the left
and corresponding imaginary parts on the right. (b) Electric and magnetic field distributions
when the electric and magnetic resonances overlap (ω � ωe � ωm � 10.6 � 109 rad/s). All
results are computed using HFSS.

Let us now investigate the case of a metasurface with overlapping electric and magnetic
resonances. To achieve this result, the radius of the resonators has been increased to r0 �
5.775 mm (� λ0{4.7). The corresponding simulations are shown in Figs. 5.5, where, as
before, the transmission and reflection coefficients are plotted on top of Figs. 5.5a, while the
corresponding susceptibilities are plotted at the bottom. As can be seen, the resonance occurs
at ω � ωe � ωm � 2π10.6 � 109 rad/s. Despite the fact that the dispersion of the electric
and magnetic resonances are slightly different, the matching is good and the transmission
coefficient is almost flat over a large bandwidth. The presence of the dip in the transmission
at the resonance frequency can be explained by the inherent dielectric loss and the unequal
dispersion of the two resonances. Note that, even without loss, it is generally difficult to
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achieve perfect matching because of the different dispersions [227].

The simulations presented so far, notably in Figs. 5.5, illustrate that a dielectric resonator
metasurface can achieve a broadband transmission (close to unity) while covering a 2π-phase
range. Such a dielectric metasurface, with matched resonances, has been realized based on
the microwave design discussed in Sec. 4.2 and whose structure is depicted in Fig. 4.5b. The
fabricated metasurface has essentially the same parameters as those of the previously designed
dielectric structures, at the exception that r0 � 4.95 mm (� λ0{4.95) and ax � ay � 20 mm
(� λ0{1.4). Additionally, the resonators of this metasurface are held together by dielectric
connections of width w � 2.54 mm (� λ0{11). The metasurface thickness t � 5.08 mm
is achieved by stacking together four 1.27-mm thick Rogers RO3210 dielectric slabs. This
metasurface has been optimized to factor in the presence of the dielectric connections, hence
the reason why it has different dimensions than the metasurface whose simulations are plotted
in Fig. 5.5. A picture of the fabricated metasurface is shown in Fig. 4.6.

This metasurface has been simulated with two different techniques and measured so as to
evaluate its scattering response. One simulation was performed with CST, while the other
one with a home-made rigorous coupled-wave analysis (RCWA) code [1, 234]. The resulting
transmission and reflection coefficients amplitude and phase are plotted in Figs. 5.6a and 5.6b,
respectively. In all cases, the excitation is x-polarized, i.e. perpendicular to the dielectric
connections. From these results, we can deduce that the matching is good leading to a high
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Figure 5.6 Transmission amplitude and phase of the metasurface in Fig. 5.40. Full-wave
results are also shown for comparison, computed using CST Microwave Studio and Rigorous
Coupled-Wave Analysis Technique [1], where an infinite 2D array is assumed.

transmission extending over the entire frequency band. The presence of a -4 dB dip in the
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transmission, at the resonance frequency ωe � ωm � 2π10.8 � 109 rad/s, is caused by the
combined effects of dielectric loss and unequal dispersions. Comparing the simulated results
to the measured response, we see that the resonance frequency is down-shifted by about
3%. This small discrepancy may be explained by errors introduced in the fabrication of the
structure.

Overall, the fabricated metasurface demonstrates that the design in Fig. 4.5b can effectively
achieve the expected broadband response that is required to achieve dispersion engineering.
This is the case when the excitation polarization is perpendicular to the dielectric connections,
in which case, the latter have negligible effects on the response of the metasurface.

The capability to control the dispersion and thus the group delay, in order to realize real-
time processors, may be achieved by cascading several dielectric metasurfaces with different
resonators exhibiting different Lorentzian responses [151,200,201]. An example is illustrated
in Fig. 5.7, where three metasurfaces with different dispersion are cascaded to shape the
overall frequency response of the system.

Frequency ω

χ
pω

q

t « λ

M1

M2

M3

Ey

k

Ex

Figure 5.7 Conceptual idea of cascading several dielectric metasurfaces for dispersion engi-
neering.

The concept of metasurface based dispersion engineering presented here has been demon-
strated, in the microwave regime, with the simple dielectric design of Fig. 4.5b. This concept
can naturally be implemented in the optical regime with the more conventional type of die-
lectric structure of Fig. 4.5a. It is worthwhile noting that a more sophisticated control of the
transmission can be obtained by using more complex shapes for the resonators such as, for
instance, elliptical resonators that would allow an anisotropic control of the dispersion.



99

5.2 Electromagnetic Wave plates

An electromagnetic wave plate is a structure that can be described by nonzero monoani-
sotropic diagonal susceptibility tensors, which corresponds to birefringence. This kind of
structure induces different phase shifts for orthogonal polarizations. We will consider the
case of normal wave propagation with respect to the metasurface which exhibits phase re-
tardations of φx and φy for x and y polarizations, respectively. It is common to characterize
wave plates by the phase shift difference, ∆φ � |φx � φy|, that they induce. In this section3,
we will present the implementations of half-wave plates, ∆φ � π, and quarter-wave plates,
∆φ � π{2. Figures 5.8 illustrate the operation of these two wave plates when illuminated by
a linearly polarized plane wave. The half-wave plate rotates by 90� the polarization of linearly
polarized waves, or changes the handedness of circularly polarized waves. The quarter-wave
plate is a linear-to-circular polarization converter [159].

(a) (b)

Figure 5.8 Operation of (a) a half-wave plate and (b) a quarter-wave plate.

It is important to note that we are not specifying any change in the direction of wave pro-
pagation. This means that the metasurfaces are perfectly uniform structures. Consequently,
their implementation is drastically simplified since only one unit cell has to be realized and
repeated periodically. We will present the realization of half- and quarter-wave plates desig-
ned with the dielectric unit cell structure discussed in Sec. 4.2 as well as the metallic unit
cell structure discussed in Sec. 4.1.

5.2.1 Dielectric Implementation

In Sec. 5.1, dielectric metasurfaces were used to perform dispersion engineering and it was
demonstrated that such structures can control the phase while maintaining a good transmis-
sion efficiency over a large bandwidth. We now use the same kind of unit cell to achieve
an anisotropic control of the transmission phase for x and y polarizations. The cylindrical

3This section is based on a slight modified version of [187,201].
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resonators used so far are not well suited for such kind of transformations since they are iso-
tropic structures due to their inherent geometrical symmetries. We will instead use dielectric
resonators with elliptical cross-section, which provides enough degrees of freedom to perform
the required transformations. However, this comes at the cost of reduced bandwidth due
to the impossibility to control both polarizations while matching the electric and magnetic
resonances at the same frequency.

The dielectric half- and quarter-wave plates have been designed for an operating frequency
of 18 GHz. After numerical optimizations in CST to take into account the presence of the
dielectric connections, the dimensional parameters common to the two structures are: a unit
cell size of 14.9 mm (� λ0{1.1), a thickness of 5.08 mm (� λ0{3.3) obtained by stacking
together two Rogers RO3210 substrates of thickness 2.54 mm each, and a connection width
of 1.25 mm (� λ0{13.3). In what follows, the dimensions of the ellipses are specified in terms
of their major axis (a) and minor axis (b) that are in the x- and y-direction, respectively. The
resonators are held together with dielectric connections that extend in the y-direction. For
both structures, the resonators are tuned such that the transmission coefficients for x- and
y-polarized waves have equal amplitude and specific phase shift difference as given above.

The realized half-wave plate metasurface is shown in Fig. 5.9a. After full-wave optimizations,
it was found that the dimensions of the elliptical resonators are: a � 4.5 mm (� λ0{3.7) and
b � 3.7 mm (� λ0{4.5). The metasurface was then measured and the resulting normalized4

transmitted power for x and y polarizations are respectively plotted, in solid blue line and
dashed red line, in Fig. 5.9b. The measured phase difference between the two polarizations is
plotted in Fig. 5.9c. From these results, we can see that at 18.4 GHz, the amplitude of both
transmission coefficients is the same and is equal to -1 dB, while the phase shift difference is
∆φ � π. This means that the metasurface effectively performs the half-wave plate operation
with a small frequency up-shift with respect to the initial specification.

The realized quarter-wave plate metasurface is shown in Fig. 5.10a. After full-wave opti-
mizations, it was found that the dimensions of the elliptical resonators are: a � 5.4 mm
(� λ0{3.1) and b � 3.7 mm (� λ0{4.5). The metasurface was then measured and the re-
sulting normalized transmitted power for x and y polarizations are respectively plotted, in
solid blue line and dashed red line, in Fig. 5.10b. The measured phase difference between the
two polarizations is plotted in Fig. 5.10c. From these results, we can see that at 18.1 GHz,
the amplitude of both transmission coefficients is the same and is equal to -1 dB, while the
phase shift difference is ∆φ � π{2. This means that the metasurface effectively performs

4The normalization is computed by dividing the measured transmission with the metasurface by the
measured transmission without the metasurface.
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Figure 5.9 Half-wave plate dielectric metasurface (a) picture of the structure. Measurements
for (b) normalized transmitted power Txx (solid blue line) and Tyy (dashed red line), and (c)
phase difference between the two polarizations.

the quarter-wave plate operation with a small frequency up-shift with respect to the initial
specification.
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Figure 5.10 Quarter-wave plate dielectric metasurface (a) picture of the structure. Measure-
ments for (b) normalized transmitted power Txx (solid blue line) and Tyy (dashed red line),
and (c) phase difference between the two polarizations.

In the two realized metasurfaces of Figs. 5.9 and 5.10, we see that the transmission coef-
ficients are not flat in the selected frequency band, contrary to the dielectric metasurface
with cylindrical resonators discussed in the previous section. This is because it is in gene-
ral impossible to tune the dimensions of the elliptical resonators such that the electric and
magnetic resonances overlap at the same frequency for both polarizations. Notice also how
the x- and y-polarized transmission coefficients differ from each other due to the anisotropy
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of the resonators and also to the presence of the dielectric connections in the y-direction.

5.2.2 Metallic Implementation

Wave plates performing the same operations are now realized with metallic scattering par-
ticles with a specified operation frequency of 10 GHz. Following the procedure described
in Sec. 4.1, the dimensions of the Jerusalem crosses of the half-wave plate metasurface unit
cell are given in Table 5.1, where OL denotes the dimensions of the outer layers and ML
the dimensions of the middle layer according to Fig. 4.2a. The corresponding fabricated

Table 5.1 Geometrical dimensions (in mm) for the unit cell of the metasurface in Fig. 5.11a.
OL denotes the outer layers and ML the middle layer.

Layer Lx Ly Wx Wy Ax Ay Bx By
OL 4 4.75 0.5 0.5 0.5 0.5 3.25 2.25
ML 5 5 0.5 0.25 0.25 0.75 2.25 3.5

metasurface is shown in Fig. 5.11a. It is made of 24� 24 unit cells, which corresponds to an
aperture of about 5λ0 � 5λ0. The holes on the left- and right-hand sides of the metasurface
are used to screw it to the measurement setup as discussed in Sec. 4.3.

(a) (b)

Figure 5.11 Fabricated (a) half-wave plate and (b) quarter-wave plate.

To evaluate the transmission properties of this metasurface, we have measured the x- and y-
polarized transmission coefficients that are plotted in Fig. 5.12a in solid blue line and dashed
red line, respectively. In these figures, the measured transmission coefficients are normali-
zed with respect to a reference transmission measurement performed without metasurface.
The corresponding transmission phase difference between the two polarization is shown in
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Figure 5.12 Half-wave plate metasurface measurements for (a) normalized transmitted power
Txx (solid blue line) and Tyy (dashed red line), and (b) phase difference between the two
polarizations.

Fig 5.12b. From these measurements, we see that the amplitudes of the transmission coeffi-
cients are very close to unity around the desired frequency of operation, revealing the very
good transmission efficiency of this structure. The required ∆φ � π phase-shift difference
occurs at 10.25 GHz, which is slightly up-shifted with respect to the desired operating fre-
quency of 10 GHz. From Figs. 5.12a and 5.12b, we can deduce that the cross-polarization
conversion efficiency of this metasurface is about 95% at 10.25 GHz for a -3-dB bandwidth
of about 10%.

The fabricated quarter-wave plate metasurface which is shown in Fig. 5.11b has been realized
with the same procedure as that of the previous metasurface. The physical dimensions of its
Jerusalem crosses are reported in Table 5.2.

Table 5.2 Geometrical dimensions (in mm) for the unit cell of the metasurface in Fig. 5.11b.
OL denotes the outer layers and ML the middle layer.

Layer Lx Ly Wx Wy Ax Ay Bx By
OL 5 5 0.5 0.75 0.5 0.5 3 2.75
ML 2.75 5 0.5 0.75 0.25 0.5 2.75 1.75

To evaluate the scattering response of this metasurface, we have performed the exact same
measurements that we did for the half-wave plate metasurface. Accordingly, the normalized
x- and y-polarized transmission coefficients are plotted in Figs. 5.13a in solid blue line and
dashed red line, respectively, while the phase-shift difference between the two polarizations is
plotted in Fig. 5.13b. As was the case for the half-wave plate metasurface, the transmission
coefficients of the quarter-wave plate metasurface approach unity at 10 GHz which exactly
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Figure 5.13 Quarter-wave plate metasurface measurements for (a) normalized transmitted
power Txx (solid blue line) and Tyy (dashed red line), and (b) phase difference between the
two polarizations.

corresponds to the specified frequency of operation. At the same frequency, the phase-shift
difference is ∆φ � π{2, which confirms the quarter-wave plate operation of this metasur-
face. From the results presented in Figs. 5.13, it is possible to evaluate the linear-to-circular
conversion efficiency which is 94% at 10 GHz with a -3-dB bandwidth of about 12%.

5.3 Polarization Beam Splitter

The polarization beam splitting (PBS) metasurface that is discussed here is part of the
more general framework of generalized birefringent reflecting and refracting structures which
perform independent control of the reflection and transmission angles and amplitudes of
orthogonally polarized waves [187,206]5. As an example, the case of reflectionless birefringent
refraction is illustrated in Fig. 5.14, where two incident plane waves with perpendicular and
parallel polarization, respectively, are refracted to arbitrary independent directions. The
general case of reflectionless refraction that is illustrated in Fig. 5.14 is not simple to realize
since the periodicity of the susceptibility functions for both polarizations is not same if
the incidence and refraction angles are different for the two polarizations. We will therefore
consider a simplified problem where x- and y-polarized incident waves are normally impinging
on the metasurface, which refracts them in the xz-plane at angles �θt. This beam splitting
operation is thus perfectly symmetric leading to the same susceptibility periodicity for the
two polarizations. In order to implement this metasurface, we have used the second synthesis
technique following the procedure elaborated in Sec. 3.1, which consists in synthesizing the
metasurface using transmission coefficients. In that case, the transmissions coefficients for x

5This section is based on a slight modified version of [187].
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and y polarizations are obtained using (3.5), which leads to Txpxq � e�jk0 sin θtx and Typxq �
ejk0 sin θtx. The metasurface is thus a double phase-gradient structure with periods Px �
Py � λ0{ sin θt. In order to realize the metasurface, the periodic susceptibility functions are
discretized to form 8 unit cells that will be implemented with the metallic scattering particles
of Sec. 4.1. We have chosen the operating frequency to be 10 GHz for which the unit cell
transverse size is λ0{5. The size and the number of unit cells per period directly dictate the
achievable refraction angle, which, in our case, is θt � arcsin p5{8q � 38.7�.

According to the specified transmission coefficients, each of the 8 unit cells forming a period
of the susceptibility functions, must exhibit unit transmission amplitudes and different phase
retardations for x and y polarizations, which are respectively denoted as φx and φy. The
corresponding transmission phases are given in Table 5.3 for the 8 unit cells. Note that the
absolute phase shift of a single unit cell is irrelevant, only the phase shift difference between
adjacent unit cells (here 45�) matters. As can be seen in Table 5.3, the supercell (formed by

Table 5.3 Transmission phase shifts (in degrees) for x and y polarizations of the 8 unit cells
forming the PBS metasurface.

1 2 3 4 5 6 7 8
φx 0 45 90 135 180 225 270 315
φy 315 270 225 180 135 90 45 0

the 8 unit cells) has an asymmetric phase progression meaning that the unit cells number
5, 6, 7 and 8 have opposite x and y phase shifts as the unit cells number 4, 3, 2 and 1,
respectively. This means that the 4 last unit cells are simply the 90�-rotated versions of
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the first 4 unit cells. Consequently, the realization of this metasurface is greatly simplified
because only half of the unit cells need to be found by full-wave simulations.

These 4 unit cells have been realized following the procedure in Sec. 4.1 and their correspon-
ding dimensions are given in Table 5.4.

Table 5.4 Geometrical dimensions (in mm) for the first four unit cells of the PBS metasurface.
OL denotes the outer layers and ML the middle layers.

Lx Ly Wx Wy Ax Ay Bx By

Cell 1 OL 5.5 4 0.5 0.625 0.5 0.5 4.875 2.25
ML 5.5 5.5 0.375 1.125 0.5 0.5 1.375 2.875

Cell 2 OL 5.25 4.25 0.625 0.5 0.5 0.5 4.125 3
ML 5.75 3.5 0.5 0.375 0.5 0.5 0.5 1.375

Cell 3 OL 4.25 4.75 0.625 0.25 0.5 0.5 4.25 3
ML 3.75 5.25 0.5 0.375 0.5 0.5 2.25 4.5

Cell 4 OL 3.75 3.5 0.125 0.125 0.5 0.5 2.25 4.375
ML 5.5 5.25 0.375 1.125 0.5 0.5 4.75 0.125

In order to verify the beam splitting operation of the PBS metasurface, full-wave simulations
are performed. The supercell is simulated in CST assuming periodic boundary conditions
and normally incident plane wave illumination polarized along x or y. The simulation re-
sults are presented in Figs. 5.15a and 5.15b for the two respective polarizations. As can be
observed, the x-polarized refraction result agrees well with the expected response. However,
the y-polarized transformation does not agree well with the expectation as evidenced by the
presence of an interference pattern on the transmit side of the metasurface caused by unde-
sired diffraction orders. This effect may be explained by the presence of spurious coupling
between adjacent unit cells. While the coupling affects both polarizations, it turns out that
it is more damaging to the y polarization than the x polarization. It has to be noted that
the metasurface is nonuniform only in the x-direction while being perfectly uniform in the
y-direction, this asymmetry in the structure is hypothesized to be the cause of the different
behavior of the two polarizations.

To reduce the damaging effect that the coupling has on the y-polarized wave and thus achieve
a better response, we have modified the metasurface such that the same nonuniformity is
present in both x- and y-directions. Consequently, the metasurface is now periodic in these
two directions instead of being periodic only in the x-direction. Accordingly, the supercell is
now made of 8�8 unit cells instead of 1�8. Because of this modification, the beam splitting
operation does not occur in the xz-plane anymore but on a plane rotated by 45� with respect
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Figure 5.15 Full-wave simulations, assuming periodic boundary conditions, of the PBS meta-
surface supercell. (a) An x-polarized normally incident plane wave is impinging from left to
right on the metasurface that refracts it upward. (b) A y-polarized normally incident plane
wave is impinging from left to right on the metasurface that refracts it downward.

to the z-axis. Moreover, the period of the phase gradients is reduced to P � 8λ0{p5
?

2q,
which changes the transmission angle to θt � 62.1� for an operating frequency of 10 GHz.

The realized metasurface is shown in Fig. 5.16 where the supercell is highlighted by the
black square. Note the sinusoidally varying pattern in the diagonal direction indicating the

Figure 5.16 Fabricated polarization beam splitting metasurface. The supercell made of 8� 8
unit cells is highlighted by the black square.

direction of the phase gradients and thus the direction of beam splitting. The metasurface
is made of 24� 24 unit cells, which corresponds to a repetition of 9 supercells. Even though
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the supercell is now made of 64 unit cells, it is still made of a repetition (and/or rotation) of
the same 4 unit cells given in Table 5.4.

Due to the large electrical size of the supercell, it was not practically possible to perform
full-wave simulations. The metasurface was instead characterized only via measurements. A
horn antenna was used to generate the normally incident waves while a probe was scanning
the near-field over a plane parallel to the metasurface in the transmission region. Near-field
to far-field transformation [203] was then used to evaluate the transmission response of the
metasurface. The measured x and y polarization transmissions, in the diagonal plane of the
metasurface, are plotted in Fig. 5.17a as a dashed blue line and a solid red line, respectively.
Note that the curves have been normalized with respect to the y-polarized transmission.
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Figure 5.17 PBS metasurface (a) measured normalized transmitted power (dB) for x-
polarization (dashed blue line) and y-polarization (solid red line), and (b) transmission power
efficiency.

As can be seen, the metasurface effectively separates the two polarizations which are refracted,
with almost identical amplitude, at about �60� and �60� from broadside, respectively. The
frequency corresponding to the results in Fig. 5.17a is about 10.4 GHz and the transmission
power efficiency, defined as the ratio between the transmitted power in the desired direction
and the incident power, is about 70%. The efficiency of the metasurface versus frequency
is plotted in Fig. 5.17b. The reasons for which the metasurface efficiency does not exceed
70% can be explained partly by the presence of dielectric and ohmic loss in the unit cells as
well as from undesired refraction orders (either in reflection or in transmission) that are due
to the spurious coupling of the unit cells. For instance, zeroth diffraction orders are clearly
visible in the measurements shown in Fig. 5.17a.
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5.4 Orbital Angular Momentum Generator

There are two kinds of angular momentum of light, the most familiar one is spin angular
momentum, which is related to circular or elliptical polarization, and the second one is orbital
angular momentum (OAM), which is related to the spatial distribution of the field taking
the form of a helical wavefront [235,236]. Typically, a light beam possessing OAM as a phase
profile, in the transverse plane, that is proportional to ejmφ, where φ is the azimuthal angle
in cylindrical coordinates and m P Z is the topological charge. OAM beams have attracted
attention due to their capabilities to manipulate nanoparticles [237] as well as their potential
application for telecommunications [238]. In that latter case, OAM light has the advantage
of possessing a virtually infinite number of states (topological charges) compared to circular
polarization which exhibits only two possible states (LHCP and RHCP).

We present here a metasurface that is able to generate OAM beams when illuminated by
a normally incident linearly polarized plane wave6. Depending on the polarization of the
incident wave, OAM beams with opposite topological charges are generated. There exists
several types of OAM beams that could be generated and the most common one is the Bessel
beam, which corresponds to the solution of the wave equation in cylindrical coordinates.
However, Bessel beams have the disadvantage of being either radially or azimuthally polarized
making the generation of two OAM beams with a single metasurface difficult. For this reason,
the OAM beams that are generated by the metasurface are not Bessel beams but rather
Hypergeometric Gaussian (HyG) beams which are solutions of the paraxial wave equation
and are linearly polarized [239].

The metasurface is synthesized so as to transform an x-polarized normally incident plane
wave into an HyG wave of topological charge m � �1 and y-polarized normally incident
plane wave into an HyG wave of topological charge m � �1. The electric field of an HyG
wave, in cylindrical coordinates, reads [239]

Epρ, φ, zq � Γ
�
1 � |m| � p

2
�

Γp|m| � 1q
j|m|�1ζ |m|{2ξp{2

rξ � js1�|m|{2�p{2 e
jmφ�jζ � 1F1

�
�p2 , |m| � 1; ζrξ � js

ξrξ � js


, (5.4)

where 1F1pa, b;xq is the confluent hypergeometric function, Γpxq is the gamma function,
p ¥ �|m| is a real parameter, and where ζ � ρ2{pw2

0rξ � jsq, ξ � z{zR w0, with w0 being the
beam waist and zr the Rayleigh range given by zr � πw2

0{λ.
As an illustration, the amplitude and phase of the HyG beam, for m � �1, are plotted in
Figs. 5.18a and 5.18b, respectively.

6This section is based on a slight modified version of [187].
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Figure 5.18 Hypergeometric Gaussian wave (a) amplitude and (b) phase for parameters
p � 1, m � �1, w0 � λ and ξ � 1. The metasurface simplified phase patterns for x
and y polarizations are given in (c) and (d) for topological charges m � �1 and m � �1,
respectively.

Because the spatial distribution of the HyG field is not periodic in the transverse plane, a
large number of unit cells has to be implemented contrary to the PBS metasurface, discussed
in the previous section, which was realized with a repetition of only 4 unit cells. Moreover,
the amplitude of the HyG wave is nonuniform which further complicates the realization of
the unit cells.

In order to overcome these difficulties, we discretize the phase profiles of the two OAM beams
with only four phase samples for simplicity. For a metasurface made of 24�24 unit cells, the
corresponding transmission phase shifts for x and y polarizations are respectively plotted in
Figs. 5.18c and 5.18d. Moreover, we assume that the metasurface transmission coefficients
for x and y polarizations are given by |Txpx, yq| � |Typx, yq| � 1 instead of following the
profile in Fig. 5.18a. Despite the fact that this approximation might a priori seem extreme,
it turns out that the main properties of an HyG beam may be obtained by only implementing
its phase evolution. For instance, the null amplitude at the center of the wave is achieved by
destructive interferences due to the phase rotation around the center. Moreover, the orbital
angular momentum information is contained not in the amplitude but rather in the phase
of the beam. These considerations justify the assumption that only the phase profile of the
transmitted waves should be implemented while their respective amplitude can be assumed
to be uniform and equal to 1.

In order to know how many unit cells are required to realize the metasurface, we combine
together the phase shifts in Figs. 5.18c and 5.18d. This results in the pattern presented
in Fig. 5.19a, which represents the 24 � 24 unit cells of the metasurface and where each
color corresponds to a specific unit cell having unique phase shift for x and y polarizations.
Figure 5.19a reveals that the total number of different unit cells composing the metasurface
is 16. It is interesting to note that the unit cells in the highlighted regions 1, 2 and 3 are
quarter-wave plates, half-wave plates and isotropic wave plates (where φx � φy), respectively.
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Table 5.5 Geometrical dimensions (in mm) for 10 of the unit cells of the metasurface in
Fig. 5.19b. OL denotes the outer layers and ML the middle layers. The numbers in the first
column correspond to the phase shifts pφx, φyq for x and y polarizations, respectively.

pφx, φyq Layer Lx Ly Wx Wy Ax Ay Bx By

(45,45) OL 5 5 0.5 0.5 0.5 0.5 3.5 3.5
ML 4.75 4.75 0.75 0.75 0.5 0.5 3.5 3.5

(45,135) OL 5 4.75 0.5 0.5 0.5 0.5 3.25 3.25
ML 4.75 4.75 0.25 1 1 0.5 2.5 3.75

(45,225) OL 4.75 5 0.75 0.5 0.25 0.25 2.75 4.25
ML 4.5 2.75 0.25 0.5 0.5 0.75 1.75 3.25

(45,315) OL 4.75 4 0.5 0.5 0.5 0.5 2.25 3.75
ML 4.75 5 0.25 0.5 0.5 0.5 3 2.75

(135,135) OL 4.75 4.75 0.5 0.5 0.5 0.5 3.25 3.25
ML 4.75 4.75 0.5 0.5 0.75 0.75 2.75 2.75

(135,225) OL 4.75 5 0.5 0.75 0.5 0.5 3 3
ML 2.75 4.5 0.5 0.75 0.25 0.75 3.25 1.75

(135,315) OL 4 4.75 0.5 0.5 0.5 0.5 3.25 2.25
ML 5 4.75 0.5 0.25 0.5 0.75 2.5 3

(225,225) OL 4.75 4.75 0.75 0.75 0.5 0.5 3.25 3.25
ML 2.75 2.75 0.75 0.75 0.25 0.25 1.75 1.75

(225,315) OL 4 4.75 0.5 0.5 0.5 0.5 2.75 1.5
ML 5 2.75 0.75 0.25 0.5 0.25 1.75 4.25

(315,315) OL 4 4 0.5 0.5 0.5 0.5 2.25 2.25
ML 5 5 0.25 0.25 0.5 0.5 3 3

A closer inspection of the phase profiles reveals that 6 out of the 16 unit cells correspond to
rotated version of each other and thus the metasurface requires the implementation of only
10 unique unit cells. The dimensions of these 10 unit cells are given in Table 5.5 and the
fabricated metasurface is shown in Fig. 5.19b.

The OAM multiplexing metasurface has an electrical size that is too large to be practically
simulated, as was the case for the PBS metasurface discussed in the previous section. To be
able to objectively assess the performance of the fabricated metasurface, we have compared
the metasurface measured transmitted fields to the expected transmitted fields produced by
an ideal metasurface illuminated by the horn antenna. This was achieved by first measuring
the radiated reference field of the exciting horn antenna at the position of the metasurface
(but without metasurface). Then, the expected ideal transmitted fields of the metasurface
were calculated using the antenna reference field and assuming ideal transmission of flat and
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Figure 5.19 (a) Representation of the 16 different types of unit cells composing the OAM
generator metasurface. Each color represents a unit cell with specific phase shifts for x and
y polarizations. The unit cells in regions 1 are quarter-wave plates, the ones in regions 2 are
half-wave plates and the ones in regions 3 are isotropic. (b) Fabricated metasurface.

unity amplitude and phase profiles as in Figs. 5.18c and 5.18d. The results are reported in
Figs. 5.20 and 5.21 which respectively correspond to x and y polarizations. In these two
figures, plots (a) and (b) are the expected transmitted fields amplitude and phase and the
corresponding measured transmissions, with the metasurface, are shown in plots (c) and (d).
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Figure 5.20 x-polarized simulated (a) amplitude and (b) phase of the expected metasurface
scattered field by taking into account the radiation of the horn antenna. Corresponding
measured (c) amplitude and (d) phase of the metasurface scattered field.

The measured results are in good agreements with the simulated results. The topological
charges of m � �1 and m � �1 are achieved with a power transmission efficiency near
80% at 10 GHz. Finally, the transmission efficiency of the metasurface was evaluated for
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Figure 5.21 y-polarized simulated (a) amplitude and (b) phase of the expected metasurface
scattered field by taking into account the radiation of the horn antenna. Corresponding
measured (c) amplitude and (d) phase of the metasurface scattered field.

a frequency band between 8 and 12 GHz. The result is reported in Fig. 5.22. The results
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Figure 5.22 OAM multiplexing metasurface transmission efficiency.

presented in Figs. 5.21 and 5.20 as well as in Fig. 5.22 indicate that the response of the OAM
is in good agreement with the expected results.

5.5 Coherent Spatial Light Processors

We now present the concept of metasurface spatial processors [151]7 that may be seen as a
functional extension of both the Mach-Zehnder interferometer [159] and the transistor [240].
As these devices, this metasurface spatial processor can perform switching and amplifying
operations under the application of an external control signal. However, it additionally
provides the capabilities of performing these operations remotely, using an electromagnetic

7This section is based on a slight modified version of [151,216].
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control wave, and of providing a whole range of metasurface spatial wave transformations
such as, for instance, refraction and beam shaping.

The remote nature of the control in this metasurface device contrasts with the local control of
previously reported tunable metasurfaces based on electrically tuned scattering particles [241–
244], while its Mach-Zehnder and transistor functionalities are totally distinct from those of
previously reported optically controlled nonlinear metasurfaces [245,246].

The metasurface spatial processor modulates the input wave via a coherently superimposed
control wave, as done in [69] where the addition of coherent wave on the transmit side of
the metasurface is used to suppress undesired reflected or transmitted waves. Similarly, the
devices proposed in [247, 248] are also based on coherent superposition of input and control
waves. However, they require a thin absorbing plasmonic layer and contra-propagating input
and control waves to achieve the required electromagnetic control, and this operation is
restricted to waves propagating normally to the surface. In our case, the metasurface is a
bianisotropic structure allowing arbitrary input/control waves and the metasurface has the
advantage of exhibiting spatial control of the output wave.

The metasurface spatial processor concept is represented in Figs. 5.23c and 5.23d, while the
operation of a conventional transistor is represented in Fig. 5.23a and that of an integrated
Mach-Zehnder interferometer in Fig. 5.23b. The metasurface spatial processor is associated
to the operation of a transistor in the sense that the input wave illuminating the metasurface
plays the role of the DC bias (Fig. 5.23c) of the transistor. This input wave opens an
“electromagnetic channel” which can be modulated by the application of a control wave
(Fig. 5.23d) that modifies the wave transmitted by the metasurface, in a similar fashion as
the DC bias of a transistor opens its semiconductor channel that is next modulated by the
application of a dynamic voltage (Fig. 5.23a). The Mach-Zehnder interferometer may be
used as an optical modulator as well as an optical switch. The operation consists in first
splitting the input wave into two beams, one being the reference and the other one having
a controllable phase shift (φ). Then, the two beams are recombined coherently to form the
output wave as a modulated version of the input wave.

In addition to the previously mentioned operation, the coherent superposition of the input
wave and the control wave on the metasurface allows for a sophisticated spatial control scat-
tered waves with a great diversity of possible transformations. For instance, the application
of the control wave may be used to deflects the transmitted wave, as shown in Figs. 5.23c
and 5.23d. Note that the operation example in Figs. 5.23c and 5.23d only represents a
particular spatial processing operation. In general, the superposition of the input and con-
trol waves can manipulate the amplitude, the phase, the polarization, and the direction of
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Figure 5.23 Metasurface spatial processor as a conceptual functional extension of both (a) the
transistor and (b) the Mach-Zehnder interferometer. (c) Unmodulated metasurface spatial
processor transforming an input wave into an arbitrary output wave. (d) Metasurface spatial
processor in the modulated regime, where the output wave is modified by a control wave
interfering on the metasurface with the input wave.

refraction of the reflected and transmitted waves in an almost arbitrary fashion.

5.5.1 Switch-Modulator Design

To illustrate the metasurface spatial processor concept, we present the case of a switch-
modulator processor. In this device, the switching operation is achieved by destructive in-
terference between the input wave pEiq and the control wave pEcq while linear modulation is
obtained by tuning the phase of the control wave. In this scenario, assuming that the waves
propagate along the z-direction with propagation constant k0, the complex amplitude of the
transmitted wave pEtq changes according to

Et � E�
i � E�

c � ejk0z � ejk0z�jφ � 2ejk0z�jφ{2 cos
�
φ

2



, (5.5)

where E�
i and E�

c , here assumed to have both unit amplitude, are the transmitted waves
due to Ei and Ec, respectively, in the transmit side of the system, and where φ is the phase
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difference between E�
i and E�

c . The amplitude of the transmitted wave therefore spans the
range between 0 and 2, which, in the latter limit, corresponds to a gain of 2 compared to the
amplitude of the transmitted wave when only Ei is illuminating the metasurface.

In a very general case, the input wave and the control may impinge on the metasurface under
different angles, which means that the metasurface must be able to transform the two waves
independently of each other. Therefore, these two waves must have mutually orthogonal
polarizations on the incident side of the metasurface. However, since they must interfere
on the transmit side, their polarization must match after transmission by the metasurface.
Consequently, the polarization of the control wave is rotated by the metasurface to match
that of the input wave. In such circumstances, the metasurface differently affects the x and
y polarizations (birefringence) and rotates one polarization without affecting the other one
(anisotropic chirality).

In order to realize this operation, two metasurface configuration are considered. The first
configuration, shown in Fig. 5.24a, represents the simplest case, where the input wave and
the control wave are both normally incident on the metasurface. As may be seen in the
figure, on the incident side of the metasurface, the control wave is p-polarized while the
input wave is s-polarized. The metasurface is designed to pass both waves with the same
transmission coefficient to ensure complete power extinction or maximal amplification. On
the transmit side, the polarization of the control wave is rotated so that both transmitted
waves are s-polarized to interfere. In this scenario, the phase difference between E�

i and E�
c

is such that the control wave suppresses transmission by destructive interference pφ � πq.
The second configuration, shown in Fig. 5.24b, performs the same operation but for the case
of an obliquely impinging control wave, that spatially separates the input and control wave
sources, as may be required in practical systems.

An important consequence of the designs in Figs. 5.24 is that their efficiency is inherently
limited by reciprocity. This may be understood by considering a normally incident s-polarized
wave impinging on the metasurface from the right in Fig. 5.24a, as shown in Fig. 5.25.
Because the metasurface transforms the input and control waves with the same transmission
coefficient, by design specification, the power of the incident wave in Fig. 5.25 equally splits
into two orthogonally polarized waves. Therefore, using the concept of scattering parameters
and denoting the left-hand side of the metasurface as port 1 and its right-hand side as port
2, the tensorial backward transmission coefficient S12 reads

S12 �
��Spp12 Sps12

Ssp12 Sss12

��
?

2
2

��0 �1

0 1

�, (5.6)
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Figure 5.24 Representations of two illustrative switch-modulator metasurface spatial proces-
sors. In (a), the input and control waves are both normally incident on the metasurface. The
polarization of the control wave is rotated by 90� to match the polarization of the input wave.
A π-phase shift is imposed between the two transmitted waves so that they cancel out by
destructive interference. In (b), the control wave is obliquely impinging on the metasurface,
to avoid the unpractical collocation of the input and control wave sources.

where Spp12 corresponds to the backward transmission coefficient from parallel to parallel
polarization, Sps12 corresponds to the backward transmission coefficient from perpendicular
to parallel polarization, etc. Note that the phase difference φ can be either present in the
control wave or induced by the metasurface, as is here the case (minus sign in Sps12). It follows,
by reciprocity, that the transformation in Fig. 5.24a is given by

S21 � S
T

12 �
��Spp21 Sps21

Ssp21 Sss21

��
?

2
2

�� 0 0

�1 1

�, (5.7)

where T is the transpose operator. This reveals that the device has a power efficiency that is
limited to 50% and that undesired scattering is unavoidable if the metasurface is reciprocal
and lossless. Similar considerations apply in the oblique incidence case of Fig. 5.24b. Note
that this constraint may be alleviated in future by using nonreciprocal metasurfaces [96,97].

Now, we will discuss the implementation of the two structures in Figs. 5.24. These metasur-
faces have been simulated, realized and measured and the corresponding results are presented
in the two following sections.
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Figure 5.25 Normally incident s-polarized wave impinging on the metasurface in Fig. 5.24a
from the right (negative z-direction). The incident wave is transformed, by design, into two
mutually orthogonal waves with equal amplitude.

5.5.2 Normally Incident Control

For the transformation in Fig. 5.24a, the metasurface is uniform in the xy-plane since no
change in the direction of wave propagation is specified. To synthesize this metasurface
and find its susceptibilities, one may specify the fields or, alternatively, use the scattering
parameter approach with (2.22) since the metasurface is uniform and that the waves are all
propagating normally to the surface. The latter method is used here since the transmission
parameters are already provided in (5.6) and (5.7). In addition to those, the reflection
coefficient tensors have the form

S11 �
?

2
2

�� 0 eiφps

eiφsp 0

�, S22 �
��eiφpp 0

0 0

�, (5.8)

where φab (a, b � s, p) are reflection phases corresponding to the specified polarizations, which
may be left as free parameters since they are not essential for the required transformations.
The metasurface susceptibilities can be straightforwardly found by inserting the scattering
parameters (5.6), (5.7) and (5.8) into (2.22). The corresponding metasurface is fully biani-
sotropic, with 16 nonzero susceptibility tensor elements (or less depending on the values of
φps, φsp and φpp), which are omitted here for briefness.

The periodically repeated scattering particle required to satisfy the specifications has been
implemented using a metallic unit cell for an operating frequency of 16 GHz. It is worth
noting that because the metasurface is bianisotropic, the unit cell is necessarily asymmetric
in the longitudinal direction, as discussed in Sec. 3.3. Therefore, the Jerusalem crosses of
the three metallic layers are different from each other. The corresponding dimensions of the
Jerusalem crosses are reported in Table 5.6 and the realized metasurface is shown in Figs. 5.26
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along with a representation of a unit cell. As seen in Fig. 5.26a, the middle Jerusalem cross

Table 5.6 Geometrical dimensions (in mm) for the unit cell of the metasurface in Fig. 5.26a.
The layers order goes in the positive z-direction.

d Lx Ly Wx Wy θ Ax Ay Bx By
Layer 1 8 4 4 1 1 0 0 0 - -
Layer 2 8 4 6 1.5 1.5 45� 0 0 - -
Layer 3 8 6.8 5 1.6 1.5 0 0 0 - -

(a) (b)

Figure 5.26 Switch-modulator spatial metasurface processor with normally incident control
wave (Fig. 5.24a). (a) Three-layer unit cell designed for an operating frequency of 16 GHz.
(b) Fabricated structure, composed of 17 � 18 unit cells, on the measurement setup.

is rotated by 45� with respect to the outer layers so as to produce the chirality that is required
to rotate the polarization of the control wave.

The numerical simulations of the metasurface in Fig. 5.26b are plotted in Fig. 5.27, where the
metasurface lies at z � 0. In this set of figures, the plots on the left correspond to s-polarized
waves, while the plots on the right correspond to p-polarized waves. In plots (a) and (b),
the metasurface is illuminated only by the control wave. In plots (c) and (d), only the input
wave illuminates the metasurface. And in plots (e) and (f), both input and control waves are
superimposed. The arrows indicate the direction of wave propagation.

Figure 5.27b shows the control wave (initially p-polarized) that is normally incident onto
the metasurface. Since the metasurface rotates the polarization of this wave by 90�, none
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Figure 5.27 Full-wave simulation of the structure in Fig. 5.26b. S-polarized fields are plotted
on the left, p-polarized fields on the right. The metasurface is located in the plane z � 0. In
(a) and (b) only the control wave is present. In (c) and (d) only the input wave is present.
In (e) and (f) both waves are superimposed.

of its p-polarized component is transmitted. We see in Fig. 5.27a that the control wave is
effectively transformed into s-polarization, almost half of it being reflected and the other half
being transmitted. Figure 5.27c shows the input wave (initially s-polarized) impinging on the
metasurface, with half of it being transmitted without rotation of polarization and the other
half being reflected with p-polarization, as shown in Fig. 5.27d. One should notice that, the
input and control waves on the right-hand sides of Figs. 5.27a and 5.27c have both the same
amplitude but opposite phases. As a result, as the two waves simultaneously impinge on the
metasurface, they destructively interfere at the output so as to suppress power transmission,
as evidenced in Fig. 5.27e. Note that, when these two waves are incident on the metasurface,
the p-polarized transmission is also suppressed, as can be seen in Fig. 5.27f.
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The corresponding experimental results are presented in Fig. 5.28a, where the s-polarized
transmission is measured when the metasurface is illuminated by the input wave, the control
wave and the combination of the two, respectively. The spatial metasurface switch exhibits an
isolation of over 35 dB, as evidenced by the dashed-dot black line. The corresponding spatial
metasurface amplification results, obtained by tuning the phase of the control signal for
constructive interference at the output, is only shown here in the case of perfect constructive
interference (dotted green line). In this case, a maximum gain of 2 (or 6 dB) is achieved.
Figure 5.28b shows the bandwidth of this metasurface in the aforementioned three different
operation states: ON state (only input wave), OFF state (destructive interference) and gain
state (constructive interference). Note that the apparent asymmetric behavior of the OFF
and gain states is the result of the logarithmic scale which makes the OFF state converge to
�8 for an ideal destructive interference.
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Figure 5.28 Measured s-polarized transmission for the metasurface of Fig. 5.26b with the
metasurface illuminated by the input wave (solid blue line), the control wave (dashed red line),
the destructive (dashed-dot black line) and constructive (dotted green line) superpositions
of the two, respectively, at 16 GHz. (b) ON state (input wave only), OFF state (destructive
interference) and gain (constructive interference). All curves are normalized with respect to
the ON state at 16 GHz.

5.5.3 Obliquely Incident Control

The oblique control transformation in Fig. 5.24b can be synthesized following the same
procedure as that described for the previous case. However, the design of this metasurface
is more complicated since it must change the direction of propagation of the control wave
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but not that of the input wave. Consequently, the metasurface is now nonuniform (but still
periodic), which leads to more complicated bianisotropic susceptibility tensor functions.

In order to realize the metasurface, the spatially periodic scattering parameters corresponding
to the required transformation are discretized to form a supercell made of four unit cells.
Following the second synthesis approach discussed in Sec. 3.1, each of the four unit cells
induces a different transmission phase shift for the control wave so that it gets normally
transmitted across the metasurface. Accordingly, the phase shift between adjacent unit
cells is π{2 so that the four unit cells cover a complete phase cycle. It turns out that due
to symmetries, the two first unit cells correspond to the 90� counterparts of the two last
unit cells, which simplifies the implementation of the metasurface. The dimensions of the
two realized unit cells are given in Table 5.7, while the fabricated metasurface as well as a
representation of the supercell are shown in Figs. 5.29. Note that the operation frequency is
12 GHz. At this frequency and for this unit cell size, the incidence angle of the control wave
is 50�.
Table 5.7 Geometrical dimensions (in mm) for the first two unit cells of the metasurface in
Fig. 5.29a. The layers order goes in the positive z-direction.

d Lx Ly Wx Wy θ Ax Ay Bx By

Cell 1
Layer 1 8 4.5 4.5 0.5 0.5 0 0.25 0.25 2 3
Layer 2 8 6 8 1 1 45� 0 0 - -
Layer 3 8 5.5 5.5 0.5 0.5 0 0.25 0.25 2 3

Cell 2
Layer 1 8 4.5 4.5 0.5 0.5 0 0.25 0.25 2 2
Layer 2 8 7 3 1 1 45� 0 0 - -
Layer 3 8 5.5 5.5 0.5 0.5 0 0.25 0.25 2 3

From Table 5.7 we can easily deduce the dimensions of the third and fourth unit cells. They
respectively share the same dimensions as those of the first and second unit cells at the
exception that their respective layer 2 is rotated by 90�. Thus, the dimensions of the unit
cells 3 and 4 can be easily obtained by using θ � �45� (instead of θ � 45�) for the layer 2 of
unit cells 1 and 2, respectively. Since these unit cells are simulated in a perfectly periodic and
uniform environment, it is thus expected that the final metasurface exhibits some undesired
scattered fields compared to the expected ideal specifications because of spurious coupling
between adjacent unit cells.

The numerical simulations of the metasurface are presented in Fig. 5.30, where the plots on
the left correspond to s-polarized waves and the plots on the left correspond to p-polarized
waves. As before, plots (a) and (b) correspond to control wave illumination only. Plots (c)
and (d), input wave illumination only. And in plots (e) and (f), both input and control waves
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(a) (b)

Figure 5.29 Switch-modulator spatial metasurface processor with obliquely incident control
wave (Fig. 5.24b). (a) Representation of the supercell composed of four unit cells, the struc-
ture is realized for an operating frequency of 12 GHz. (b) Fabricated structure, with 17� 18
unit cells, on the measurement setup. The black box indicates where the supercell is on the
metasurface and how it is periodically repeated.

are superimposed. The arrows indicate the direction of wave propagation.

The control wave (initially p-polarized) is obliquely incident on the metasurface with a 50�

angle, as shown in Fig. 5.30b. Since the metasurface rotates the polarization of the control
wave, almost no p-polarized component is transmitted (at the exception of a small parasitic
transmission and reflection). In Fig. 5.30a, we see that the control wave is effectively trans-
formed into s-polarization and that almost half of the wave is normally transmitted while
the other half is normally reflected. In Fig. 5.30c, the input wave (initially s-polarized) is
incident on the metasurface and half of it is transmitted without rotation of polarization.
The other half of the input wave is mostly reflected at a 50� angle with p-polarization, as
shown in Fig. 5.30d.

One should notice that, on the right-hand side of Figs. 5.30a and 5.30c, the input wave and
the control wave have both the same amplitude but opposite phases. When the two waves are
simultaneously impinging on the metasurface, the results is a cancellation of all s-polarized
transmitted power, as shown in Fig. 5.30e.

Finally, the experimental results are presented in Fig. 5.31a, where the metasurface is illu-
minated by the input wave (solid line), the control wave (dashed line) and the combination
of the two (dashed-dot line, for the destructive interference case, and dotted line, for the
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Figure 5.30 Full-wave simulation of the structure in Fig. 5.29b. S-polarized fields are plotted
on the left, p-polarized fields on the right. The metasurface is located in the plane z � 0. In
(a) and (b) only the control wave is present. In (c) and (d) only the input wave is present.
In (e) and (f) both waves are superimposed.

constructive interference case). As before, an isolation of over 35 dB is obtained as well as
a gain of 6 dB in the direction of propagation. Figure 5.31b shows the bandwidth of this
metasurface in the three different operation states: ON state (only incident wave), OFF state
(destructive interference) and gain state (constructive interference).

The expected responses of the two metasurfaces are in very good agreement with the corre-
sponding simulated and measured responses.
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Figure 5.31 Measured s-polarized transmission for the metasurface of Fig. 5.29b with the
metasurface illuminated by the input wave (solid blue line), the control wave (dashed red line),
the destructive (dashed-dot black line) and constructive (dotted green line) superposition of
the two, respectively, at 12 GHz. (b) Measured bandwidth for the ON state (only input
wave), OFF state (destructive interference) and gain (constructive interference). All curves
are normalized with respect to the ON state at 12 GHz.

5.6 Space-Wave Routing via Surface Waves

All the metasurface presented so far as well as the vast majority of metasurface designs and
applications reported to date have been restricted to isolated metasurfaces, i.e. single me-
tasurface structures performing specific electromagnetic transformations. In order to extend
the range of these transformations, we propose the concept of a metasurface system, namely
a combination of several metasurface structures collectively exhibiting properties that would
be unattainable with a single metasurface. Specifically, we present a metasurface system
composed of three juxtaposed metasurfaces, that routes space-wave beams, between different
locations, via surface waves. Such a system may be used, for instance, to laterally shift or
modulate the beamwidth of scattered waves8.

In this section, we will first introduce the concept of space-wave routing via surface waves
in a metasurface system. Then, we will discuss the synthesis technique for the design of
such a system, which will be used to demonstrate system routing in an “electromagnetic
periscope”. Finally, two additional potential applications, namely a compact beam expander
and a multi-wave refractor, will be presented.

8This section is based on a slightly modified version of [218].
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5.6.1 Space-Wave Routing Concept

The fundamental idea, which is depicted in Fig. 5.32, consists in converting an incoming space
wave into a surface wave, propagating this surface wave between two points along a desired
path, and then converting it back, with possible other transformations, into an outgoing
space wave. This concept may be used to laterally shift reflected or transmitted waves
(electromagnetic periscope), modulate the width of beams, or enable multiple refraction, in
a very compact fashion, as will be discussed thereafter. In the system depicted in Fig. 5.32, the

s-polarized beam
p-polarized beam

Metasurface

x

z

Figure 5.32 Concept of a metasurface system performing the operations of space-wave routing
via surface waves for p-polarized beams and generalized refraction for s-polarized beams.

metasurface is assumed to be monoanisotropic diagonal, and hence birefringent, allowing for
the independent control of s and p polarizations. The metasurface system may be designed,
for instance, to route p-polarized waves and refract (or perform any another transformation
on) s-polarized waves.

We shall now describe the space-wave routing concept in more details. Let us consider
the optical system depicted in Fig. 5.33a, which consists of a dielectric waveguide with two
prisms placed at different locations above it. This system may be used to perform the routing
operation described in Fig. 5.32. Assume that an input beam Ψin is impinging on the left
prism at an angle θ ¡ θc, where θc is the angle of total internal reflection. An evanescent wave
with wavenumber kx, corresponding to that of the incident wave, is formed between the prism
and the waveguide due to total internal reflection. This evanescent wave then couples to a
waveguide mode with matched kx, and the resulting wave propagates along the waveguide
in the x-direction. The amount of coupling between the incident space wave and the guided
wave is proportional to the distance d between the prism and the waveguide, and is usually
less than unity, leading to a nonzero reflected wave Ψr. Farther along the waveguide, the
guided wave is transformed back into an output space wave Ψout by the second prism by the
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(b)

Figure 5.33 Representations of two optical systems performing the same wave routing opera-
tion. (a) Combination of two prisms and a dielectric waveguide. (b) Composite metasurface,
including two spatially modulated metasurfaces placed at the ends of a guiding metasurface.

reverse mechanism.

We introduce here the metasurface system depicted in Fig. 5.33b to perform the same ope-
ration in a much more compact (purely planar) and (ideally) perfectly reflectionless fashion.
This system consists of three different metasurfaces juxtaposed to each other. The input
space wave is coupled into a guided surface wave by a spatially modulated metasurface.
The middle metasurface is a surface-wave guiding structure that propagates the guided wave
in the x-direction. Finally, another spatially modulated metasurface transforms the guided
wave back into a space wave at the other end of the system.

5.6.2 Metasurface System Synthesis

Exact Synthesis Based on GSTCs

The metasurface system introduced above can be rigorously synthesized using the GSTCs
method so as to provide the exact medium parameters performing the transformation de-
picted in Fig. 5.33b. As said above, the metasurface system is birefringent and may conse-
quently be described by the susceptibility relations given in (2.18).

Let us now synthesize the space-wave to surface-wave transformation performed by the first
metasurface in Fig. 5.33b. Let us assume a p-polarized wave (E P xz-plane and H ‖ ŷ), to
be routed (Fig. 5.32), which corresponds to the synthesis relations (2.18a) and (2.18d). In
this case, the tangential electromagnetic fields, at z � 0, are

Ex,a � Aa
kz,a
k0

e�jkx,ax and Hy,a � Aae
�jkx,ax{η0, (5.9)

where A is a complex constant, kx and kz are the tangential and longitudinal wavenumbers,
respectively, η0 and k0 are the impedance and wavenumber of free space, respectively, and the
subscript a � i, r, t denotes the incident, reflected and transmitted waves, respectively. We
shall consider the transformation of an incident space wave with Ai � 1 and kx,i � k0 sin θi,
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where θi � 45� is the incidence angle, into a surface wave with At � 0.728 and kx,t � 1.2k0.
The corresponding longitudinal k-component is found as kz,a �

b
k2

0 � k2
x,a which, in the

case of the transmitted wave, is an imaginary quantity corresponding to wave evanescence
perpendicular to the metasurface and surface-wave propagation in the x-direction. The
value 0.728 was derived to ensure a purely passive (although lossy) reflectionless (Ar � 0)
metasurface9.

Finite-difference frequency-domain (FDFD) simulations [163] are used to analyze the response
of the synthesized metasurface. Figure 5.34a shows how an obliquely incident Gaussian beam
is transformed into a surface wave on the transmit side of the metasurface. Note that the
transformation in Fig. 5.34a is “perfect” in the sense that no parasitic diffraction order is
present. However, the surface wave only exists in the region where the Gaussian beam
illuminates the metasurface and does not propagate farther along the structure. This is
because the metasurface was synthesized assuming an incident plane wave illuminating the
entire structure and not just a small portion of it, as is the case with a Gaussian beam.
Consequently, the surface wave is restricted to the region within the waist of the incident
beam and cannot propagate beyond its excitation zone as it is not an eigen-mode of this
metasurface. The generation of spurious diffraction orders is suppressed by the lossy nature
of the metasurface.
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Figure 5.34 Finite-difference frequency-domain (FDFD) simulations showing the real part of
Hy in the case of (a) the conversion of a space wave into a localized surface wave, (b) the cou-
pling of the surface wave into a guided wave that propagates along a juxtaposed metasurface,
and (c) the propagating surface wave is then transformed back into a space wave.

In order to propagate the surface wave farther along the surface, it is necessary to introduce
a discontinuity in the metasurface or, in other words, to place a second metasurface next to

9This proviso was found by inserting (5.9) into (2.18) with specified parameters Ai, kx,a and kz,a and
solving for At such that Impχxxee q, Impχyymmq   0. This shows that the space wave cannot be transformed into
a surface wave without dissipation.
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the first one, as shown in Fig. 5.33b. Thus, the first metasurface is synthesized as a space-
wave to surface-wave transformer to convert the incident wave into a guided wave, while
the second metasurface is synthesized as a surface-wave guiding structure, to route the wave
along the overall structure. This operation is achieved, considering the juxtaposed (first and
second) metasurface system as a composite metasurface, by specifying the fields as follows.
The incident field is defined with the parameters Ai � Up�x � 5λ0q and kx,i � k0 sin θi

(θi � 45�), where Upxq is the unit step function. The unit step function is used here to create
a discontinuity in the incident field at the position �5λ0 on the metasurface. Additionally, we
set At � 0, Ar � 0.728 and kx,r � 1.2k0

10. Inserting these field specifications into (2.18) and
performing an FDFD simulation for an incident Gaussian beam impinging on the metasurface
at the position �7λ0 yields the result presented in Fig. 5.34b. As can be seen, the surface wave
effectively couples into the second metasurface where it now propagates as a guided wave.
Note that the presence of the discontinuity between the two metasurfaces introduces some
spurious scattering of the incident wave, which could be avoided using a smooth transition.
At this stage, it is important to point out the fact that a metasurface can theoretically
support a guided wave that would exist only on one of its two sides, as seen in Fig. 5.34b.
This is rather unconventional since most guided waves generally exhibit evanescent fields
on both sides of the interface, as it is the case for surface plasmon polaritons [159]. It is
therefore speculated that a bianisotropic metasurface could support different guided waves
(with different propagation constants) on its two sides due to its longitudinal asymmetry.

Finally, the energy carried by the surface wave is extracted and transformed back into a space
wave by the third metasurface in Fig. 5.33b upon specifying a nonzero transmitted wave with
parameters At � 0.6 � expr4px� 6.5λ0q2{5s and kx,t � k0 sin θt, where the transmission angle
is chosen here to be θt � 0. The simulation result is shown in Fig. 5.34c.

To synthesize the second metasurface so that it also refracts the s-polarized wave, as shown in
Fig. 5.32, one would simply need to insert the s-counterpart of (5.9) into (2.18b) and (2.18c),
as conventionally done for generalized refractive metasurfaces. In this case, assuming a non-
zero transmission angle, the metasurface becomes globally nonuniform in the x-direction,
although it is seen as perfectly uniform to the p-polarized wave (birefringence). For con-
ciseness, we will ignore the synthesis of the s-polarized transformation in what follows to
concentrate only on the synthesis of the p-polarized transformation.

The electric and magnetic susceptibilities of the composite metasurface corresponding to the
simulation in Figs. 5.34c, are plotted in Fig. 5.35a and 5.35b, respectively. The conversion

10In this second example, the surface wave is placed on the reflection side of the metasurface to later permit
an easier design of the third metasurface.
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from space wave to surface wave occurs in the portion of the metasurface where x   �5λ0. In
this region, the metasurface (first metasurface) is spatially varying and exhibits nonuniform
loss as evidenced by the oscillating negative imaginary parts of the susceptibilities. From
x � �5λ0 to approximatively x � 0, the metasurface (second metasurface) supports the
propagation of a surface wave. It is interesting to note that, in this region, the metasurface
is perfectly uniform, passive and lossless, with susceptibilities given by the following simple
relations χxxee � 2j{kz,r and χyymm � 2jkz,r{k2

0, where kz,r is the purely imaginary propagation
constant of the surface wave in the longitudinal direction. Finally, starting from x ¡ 0, the
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Figure 5.35 Electric (a) and magnetic (b) susceptibilities corresponding to the transformation
presented in Fig. 5.34c. The solid blue lines are the real parts while the dashed red lines are
the imaginary parts.

metasurface (third metasurface) becomes spatially varying again, allowing part of the energy
conveyed by the surface wave to progressively leak out to form the space wave. Here, the
susceptibilities have values oscillating between positive and negative imaginary parts. This
indicates that the metasurface is successively varying between gain and loss. The presence
of loss, as in the first part of the metasurface, is generally required to suppress undesired
diffraction orders. The presence of active regions, corresponding to gain in the last part of the
metasurface, is due to the way the fields were specified in the synthesis. Indeed, the surface
wave (reflected wave) was specified with constant amplitude over the entire metasurface,
including in the third region, and it is therefore not surprising that gain is required in the
region where the transmitted space wave is generated and where it draws power from the
surface wave. The metasurface could be made perfectly passive by specifying a surface wave
with progressively decreasing amplitude as its energy is being leaked out. In that case, the
third metasurface would actually act as a leaky-wave antenna.
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Simplified Synthesis Based on Phase-Gradient and Guiding-Wave Structures

The GSTCs-based metasurface synthesis technique yields the exact susceptibilities perfor-
ming the specified transformation. However, the resulting susceptibilities may, in some situ-
ations, be difficult to realize. For instance, the metasurface described by the susceptibilities
in Figs. 5.35 presents spatially varying electric and magnetic losses which may be challenging
to implement. Moreover, the generation of the transmitted space wave also requires gain as
is evidenced by the positive imaginary parts of the susceptibilities on the right-hand side of
Figs. 5.35. For these reasons, we next propose an alternative synthesis method for space-wave
to surface-wave transformations performed by the two end metasurfaces in Fig. 5.33b. This
method will result in a slightly different design that will be much easier to realize but comes
at the cost of a lower efficiency.

The waveguiding structure (second metasurface in Fig. 5.33b) will be realized using the
susceptibilities found previously since these susceptibilities are exact and easy to realize,
as seen in Fig. 5.35. However, the structure will require some optimization to account for
deviations from the ideal response due to its nonzero thickness. This may be achieved by
following design procedures routinely used in the implementation of slow-wave structures [249,
250], as will be discussed thereafter.

In order to transform the incident space wave into a surface wave with a specific propagation
constant along the metasurface, we will use here a simple phase-gradient structure which
is equivalent to the second synthesis approach discussed in Sec. 3.1. Let us consider the
generalized law of refraction [66], that can be expressed, using the transverse wavenumber
of the incident and refracted waves and the effective wavenumber of the phase gradient-
structure, K, as

kx,t � kx,i �K, (5.10)

where K � 2π{P with P being the phase-gradient period of the metasurface. This period
is designed such that the specified incident wave is refracted at a specified angle, i.e. P �
λ0{psin θt,spec � sin θi,specq. From (5.10), we express the normalized transverse wavenumber of
the transmitted wave as a function of K and the incidence angle as

kx,t
k0

� sin θi � K

k0
, (5.11)

which allows one to determine the transverse wavenumber for any incidence angle θi. As
an illustration, relation (5.11) is plotted in Fig. 5.36 as a function of the incidence angle for
the specified angles θi,spec � 0 and θt,spec � 45�. The region in blue, where |kx,t{k0|   1,
corresponds to space-wave modes. Outside of this region, |kx,t{k0| is larger than 1 and the
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Figure 5.36 Normalized transverse wavenumber of the transmitted wave versus incidence
angle according to Eq. (5.11) for a phase-gradient metasurface designed with the specified
angles θi,spec � 0 and θt,spec � 45�.

longitudinal wavenumber kz,t �
a
k2

0 � k2
x,t is therefore imaginary, corresponding to evanes-

cent waves. This shows that a simple phase-gradient metasurface can be used as a converter
between a space wave and a surface wave when the metasurface wavenumber K and the
incidence angle θi are properly chosen [251–253].

The three-metasurface system in Fig. 5.33b may therefore be realized as follows. The first
metasurface is designed as a phase-gradient metasurface with increasing phase in the positive
x-direction; this positive phase ramp increases the momentum of the incident wave (in the
x-direction) so as to transform it into a surface wave. The second metasurface is designed
to support the propagation of a surface wave with the same wavenumber. Finally, the third
metasurface is again designed as a phase-gradient structure but this time with increasing
phase in the negative x-direction, which reduces the momentum of the surface wave and
hence transforms it back into a space wave.

5.6.3 The “Electromagnetic Periscope”

For the realization of the metasurface system, and particularly the realization of the space-
wave to surface-wave converters (metasurfaces 1 and 3), we use, for simplicity, the approxi-
mate synthesis technique presented in Sec. 5.6.2, rather than the exact but more problematic
technique based on GSTCs.

A schematic of the metasurface system is presented in Fig. 5.37. The figure shows the
conceptual operation of the structure with momentum “push” (K1) and momentum “pull”
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(K2) induced by the first and last metasurfaces, respectively, and the surface-wave guidance
in the middle metasurface. We shall now design the metasurface system for the following
specifications: input angle θin � 30� and output angle θout � �7.2�.

x

z

θin “ 30˝ pkx “ k0{2q

kx,sw “ 9k0{8

θout “ ´7.2˝

pkx “ ´k0{8q

K1 “ 5k0{8

K2 “ ´5k0{4

Figure 5.37 Schematic representation of the electromagnetic periscope metasurface system.

The first phase-gradient metasurface, transforming the input p-polarized space wave into a
surface wave, is implemented with a supercell of 8 unit cells of size λ0{5 with transmission
phases ranging from 0 to 2π. The corresponding metasurface wavenumber is K1 � 2π{P1 �
2π{p8λ0{5q � 5k0{8. Then, for the specified input wave with θin � 30�, corresponding
to kx,in � k0{2, one finds, using (5.10) with kx,i � kx,in and K � K1, the surface-wave
wavenumber to be kx,sw � kx,t � 9k0{8, which corresponds to the x-wavenumber across the
entire metasurface system.

Upon this basis, the third metasurface is designed as follows. The output angle of θout � �7.2�

corresponds to kx,out � �k0{8. We apply (5.10) with kx,i � kx,sw � 9k0{8 and kx,t � kx,out �
�k0{8, which yields K2 � �5k0{4. Since |K2{K1| � 2, P2 � P1{2, and hence, still assuming
λ0{5 unit cells, the supercell includes now 4 unit cells. This metasurface may for instance be
identical to the first metasurface where every two unit-cell rows have been removed.

The p-polarization surface-wave guiding structure, in the middle of the metasurface system,
may also be realized as a metasurface, for compatibility with its phase-gradient neighbours,
instead of as a traditional waveguiding structure. In addition, to allow the s-polarization
generalized refraction operation depicted in Fig. 5.32, this structure must be completely
transparent, and could therefore not be implemented in the form of a conventional waveguide.
As explained previously, the metasurface is designed using the p-polarization susceptibilities
already found with the exact synthesis method. In the current design, we consider the
particular case of s-polarization normal transmission, leading to global uniformity.

The overall metasurface system, composed of the three juxtaposed metasurfaces, is imple-



134

mented with metallic scattering particles, as discussed in Sec. 4.1. The thickness of the
structure is λ0{10 and each unit cell has a transverse size of λ0{5�λ0{5 for an operation fre-
quency of f � 10 GHz. For the two phase-gradient metasurfaces, the scattering parameters
of each unit cell are assumed to simply consist of a phase transmission coefficient, T � ejφ,
where the phase shift φ depends on the unit cell position within the supercell. To realize this
supercell, we use the same unit cells as those obtained for the polarization beam splitting
metasurface discussed in Sec. 5.3. For this metasurface, half of the 8 unit cells are rotated
versions of the remaining ones. Consequently, the dimensions of the 4 unique unit cells are
already given in Table 5.4. The third metasurface is made of a supercell of 4 unit cells. The
corresponding dimensions are obtained as follows: the first and second unit cells are the same
as the 90�-rotated versions of cells 2 and 4 in Table 5.4, while the third and fourth unit cells
correspond to cells 3 and 1 in Table 5.4, respectively.

For the waveguiding metasurface, the susceptibilities given above are first converted into
scattering parameters using (2.32). Because this metasurface is uniform (as seen by a p-
polarized wave), in contrast to the phase-gradient metasurfaces, only one unit cell has to be
designed. Once the dimensions of the Jerusalem crosses corresponding to the susceptibilities
have been found, the unit cell is optimized using an eigen-mode solver with the goal to
achieve a wavenumber of kx,sw � 9k0{8 at the operation frequency of f � 10 GHz. The final
dimensions of the unit cell for this metasurface are given in Table 5.8.

Table 5.8 Geometrical dimensions (in mm) for the unit cell of the metasurface in Fig. 5.11b.
OL denotes the outer layers and ML the middle layer.

Layer Lx Ly Wx Wy Ax Ay Bx By
OL 5.5 4 0.5 1 0.5 0.5 2.25 2.25
ML 5 5 0.25 1 0.5 0.5 3.75 -

The dispersion curve for the fundamental mode of the optimized waveguiding structure is
plotted in Fig. 5.38. Note that the horizontal axis represents the x-wavenumber normalized to
the free-space wavenumber, so that the figure shows only the slow-wave region (kx,sw{k0 ¡ 1).
Comparing the two insets in the figure shows that the field distribution of this fundamental
mode is essentially identical, and hence compatible, with the field distributions of the two
phase-gradient metasurfaces. Since the metasurfaces have been in addition designed to all
exhibit the same polarization and wavenumber, it may be inferred that the coupling between
them is maximized, as desired.

The realized metasurface system is shown in Fig. 5.39. Due to limitation of our fabrication
process, the three metasurfaces have been realized separately rather than as a single entity



135

1 1.2 1.4 1.6 1.8 2

5

6

7

8

9

10

11

12

13

kx,sw “ 9k0{8
Metasurfaces

1 and 3

x

y

kx,sw{k0

Fr
eq

ue
nc

y
(G

H
z)

Figure 5.38 Dispersion curve and magnetic field distribution (absolute value at 10 GHz) for
the fundamental mode of the waveguiding metasurface. The separate inset represents the
excited fields in the surrounding phase-gradient metasurfaces (also at 10 GHz).

and have then been screwed to a plastic frame (at the back and hence not visible in Fig. 5.39)
to form the overall metasurface system. Each metasurface is made of 24� 24 unit cells, cor-
responding to a size of 4.8λ0�4.8λ0. The dimensions of the system are 45 cm�15 cm�3 mm.

Figure 5.39 Fabricated metasurface system corresponding to Fig. 5.32. The metasurfaces from
the left to the right perform the following operations on the p-polarized wave: space-wave
to surface-wave transformation, surface-wave propagation, and surface-wave to space-wave
transformation. At the same time, the central metasurface is perfectly transparent to s-
polarized waves. The difference between the phase-gradients of the two end metasurfaces is
clearly visible.

The measurement of the metasurface system was performed using the experimental setup
depicted in Fig. 5.40. The input side of the metasurface system is covered everywhere by
absorbers except for a small aperture allowing the illumination of the first metasurface on
the left. A high-gain X-band horn antenna illuminates the structure at the input side while
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a waveguide probe scans the metasurface system at the output side in the near-field region.
The near-field is measured in the middle of the metasurface system in Fig. 5.39 along the
x-direction. The measured near-field will be first Fourier-transformed to compute the spatial
(k-domain) spectrum, and hence identify the modes excited at the output side of the system,
and next propagated in the xz-plane by the angular spectrum technique [202], so as to verify
the periscope operation of the system.

Horn antenna

Microwave absorber

Waveguide probe
x

z

Figure 5.40 Side view of the configuration of the metasurface system measurement setup.

The modes excited along the overall structure, as the probe scans the entire x-dimension
of the system, are revealed in Fig. 5.41a, which plots the normalized x-Fourier transform
of the output near-field measured along the x-direction using the setup of Fig. 5.40. The
mode excited at the output of the metasurface system with the highest amplitude is a surface
wave of wavenumber kx,sw � 9k0{8 corresponding to the wavenumber of the specified surface-
wave mode. The reason why this mode is dominant is because it is excited along the entire
structure, being first generated on the first metasurface, next guided by the second one and
eventually radiated by the third one. The mode excited with the next higher intensity is
the space-wave mode at kx,t � k0{2, which corresponds to the input wave impinging the
metasurface at θin � 30�. The third largest peak lies in the negative side of the horizontal
axis and corresponds to the specified transmitted space wave with wavenumber kx,t � �k0{8
generated by the third metasurface.

Figure 5.41b shows the modes excited only at the output side of the third metasurface, when
the near-field probe scans only on that part of the system. As expected, the two strongest
modes correspond to the specified transmitted space wave with kx,t � �k0{8 and the specified
surface wave with kx,t � 9k0{8.
Next, we compute the field scattered by the metasurface system by applying the angular
spectrum propagation technique [202] to the near-field measured along the entire structure.
To clearly see the propagation of the expected transmitted space wave with kx,t � �k0{8,
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Figure 5.41 Normalized x-Fourier transform (kx-domain) of the output near-field measured
along the x-direction at 1 cm from the metasurface in the z-direction (Fig. 5.40). (a) Scanning
across the entire metasurface system. (b) Scanning only across the third metasurface. The
regions highlighted in blue correspond to the space wave region.

we ignore the contribution of the input wave, which generates important spurious scattering,
as is visible in Fig. 5.41a around kx,t{k0 � 0.5. This is achieved by first taking the Fourier
transform of the near-field, yielding the data in Fig. 5.41a, and next setting to zero all the
modes excited in the region 0.2   kx,t{k0   0.8 in Fig. 5.41a to remove the contributions
from the input wave. Then, the field is propagated along the z-direction following the usual
procedure of the angular spectrum propagation technique. The resulting scattered field on the
transmit side of the metasurface is plotted in Fig. 5.42, where the metasurface system lies at
z � 0 and extends from x � �22.5 cm to x � 22.5 cm. In this figure, we can see the presence
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Figure 5.42 Absolute value of the transmitted electric field (Ex component) obtained by
angular spectrum propagation. The metasurface system is at z � 0 and extends from x �
�22.5 cm to x � 22.5 cm.
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of a strong surface wave near the structure close to z � 0. In the region around x � �10 cm,
we see some scattering which is due to the discontinuity between adjacent metasurfaces. In
the region around x � 10 cm, we see a beam emerging from the metasurface system and
being deflected towards the left. This beam corresponds to the specified transmitted space
wave with θout � �7.2�.

In order to better understand the result shown in Fig. 5.42, we next analyze the spatial
power distributions of the surface wave (kx,sw � 9k0{8) and of the transmitted space wave
(kx,out � �k0{8) along the metasurface system. From the data plotted in Figs. 5.41, it is
possible to extract the power distribution of the different modes over the metasurface system.
This is achieved by first isolating the modes of interest in the data of Fig. 5.41a by setting to
zero everything except the relevant regions (appropriate peaks) – for example leaving only
the peak centered at kx,t � 9k0{8 to isolate the surface wave – and then taking the inverse
Fourier transform to generate the spatial distribution of the mode. The results are presented
in Fig. 5.43, where the power distribution of the surface wave is represented by the solid
black line and that of the space wave by the dashed red line.
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Figure 5.43 Normalized power distribution of the surface-wave mode (solid black line) and
of the transmitted wave (dashed red line) over the metasurface system. The two vertical
dashed black lines indicate the separation between the three metasurfaces.

As one moves along the x-axis, the power distribution of the surface wave (solid black curve)
first increases, following the power distribution of the exciting horn antenna, which points
at the junction between the first and second metasurfaces. At this point, it reaches a cor-
responding maximum. Then, it decreases as the wave propagates along the waveguiding
metasurface while experiencing metallic and dielectric dissipation losses. Finally, it further
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decreases on the third metasurface due to combined dissipation and radiation losses.

The power level of the transmitted space wave (dash red curve) is relatively high at the
junction between the first and second metasurfaces, which is explained by spurious scattering
of the incident wave at this discontinuity, similarly to the undesired scattering apparent in
Figs. 5.34b and 5.34c. Then, this power rapidly decreases along the second metasurface,
as expected from the fact that this surface does not radiate. Along the third metasurface,
the power of the space wave progressively increases as it progressively leaks out due to the
interaction between the surface wave and the phase-gradient of the metasurface.

The experimental results presented above are in good agreement with the expected response
of the metasurface system, with the exception of a relatively low efficiency of about 10%. This
low efficiency is due to a combination of effects that include surface-wave dissipation loss,
scattering at each of the two metasurface discontinuities, the limited coupling of the incident
wave which is effectively converted to a surface wave, and the imperfect conversion between
space wave and surface wave (and vice-versa) due to the simplified synthesis technique used
for the implementation of the phase-gradient metasurfaces. Several of these issues may be
addressed by further optimization. In addition, in the current design, the guided wave exists
on both sides of the middle metasurface. This means that, upon interaction with the phase-
gradient metasurface on the right, the transmitted space wave is actually leaking out on
both sides of the metasurface system, which further decreases the efficiency. This may be
avoided by considering longitudinally asymmetric (bianisotropic) metasurfaces that would
only radiate the transmitted wave on one side of the metasurface system.

5.6.4 Other Potential Applications

The concept of space-wave routing via surface waves may lead to a diversity of other potential
applications. As an illustration, we will discuss two of them in this section.

Compact Beam Expander

An optical beam expander is a device that is used in telescopes or microscopes: it increases
(or decreases) the lateral size of the incoming beam. The simplest way to realize such a device
is to cascade two thin lenses of different focal lengths. We propose here an alternative beam
expanding system, based on the concept of space-wave routing via surface waves. Compared
to the lens system, this routing system presents two significant advantages. First, it uses a
single (composite) metasurface instead of two lenses. Second, in contrast to the lens system,
it does not require any separation distance, where such a distance at optical frequencies
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represents several thousands of wavelengths, and hence leads to a very compact system.

We present here two different beam expander designs, both increasing the beamwidth of the
incident beam by a factor 3. One performs a direct conversion (without any lateral shift)
while the other one performs an offset (laterally shifted) beam expansion. The direct beam
expander is made of three metasurfaces, the middle one transforming the incident beam into
two contra-propagating surface waves that are then both transformed back into space waves
by the two end metasurfaces. The simulation showing this direct expansion is presented in
Fig. 5.44a. As may be seen in this plot, the presence of the two metasurface discontinuities
induces non-negligible spurious scattering.
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Figure 5.44 FDFD simulations of a beam expander with (a) direct transformation and (b) off-
set transformation. The metasurface system is designed to increase the beamwidth of the
incident wave by a factor 3.

The simulation of the offset beam expander is shown in Fig. 5.44b. The system is identical
to that of Fig. 5.34c except that both the incident and transmitted angles are now normal
to the surface. For the two structures in Figs. 5.44, the beam expansion of the transmitted
wave is about three times that of the incident wave. Consequently, the amplitude of the
transmitted wave is also three times less.

Multi-Wave Refractor

The capability to route beams via surface waves may also be leveraged to implement a
multi-wave refractor, i.e. system performing several refractive transformations with a single
metasurface system, in contrast to a conventional metasurface that can only perform two
independent refraction transformations, one for an x-polarized wave and one for a y-polarized
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wave. The proposed system is realized by inserting a metasurface at the Fourier plane of an
optical 4f-system. A 4f-system is generally used as a spatial filter where a mask is placed at
the Fourier plane to filter out certain spatial components of the incident wave [159]. Here,
the metasurface placed at the Fourier plane is not used to filter out spatial components but,
instead, to shift the spatial components of the incident waves to other regions of the Fourier
plane, which effectively changes the direction of propagation of the transmitted waves. The
concept is depicted in Fig. 5.45a, where two input beams, Ψ1 and Ψ2, are transformed in
terms of their spectral contents in the 4f-system.

Ψ1

Ψ2

x

z

(a)

Metasurface plane

Path 1

Path 2 y

x

(b)

Figure 5.45 Multi-wave refractor concept. (a) A 4f-system, with 2 routing metasurface sy-
stems in its Fourier plane, refracts the input waves Ψ1 and Ψ2 into different directions.
(b) Representation of the metasurface at the Fourier plane of (a) with the two optical routes
shifting the waves Ψ1 and Ψ2 to different locations in the Fourier plane.

In the figure, the first lens focalizes the two beams at different locations in the Fourier plane,
where a metasurface system is placed. This metasurface system consists of two “optical
routes”, as shown in Fig. 5.45b, each composed of three different metasurfaces successively
transforming the incident space wave into a surface wave, guiding this surface wave along
the Fourier plane to the appropriate pkx, kyq point, and transforming it back into a space
wave in the desired direction. In this example, the two beams have been shifted along the
negative x-direction in the Fourier plane. Their respective momentum along x has therefore
been decreased. Consequently, the two beams exit the system, collimated by the second
lens, with transmission angle depending on the points to which they have been shifted in
the Fourier plane. Such a metasurface system might be populated with several additional
“optical routes” so as to achieve even more refraction transformations.
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5.7 Nonreciprocal Nongyrotropic Metasurface

All metasurfaces presented so far in this chapter are reciprocal structures, we are now in-
terested in extending the range of applications of the synthesis technique to the topic of
nonreciprocal metasurfaces11. Nonreciprocal devices are at the basis of many applications
such as isolators and circulators. Here, we will discuss the synthesis of a nonreciprocal and
nongyrotropic (no rotation of polarization) metasurface that acts as a one-way screen.

Nonreciprocity can be achieved by breaking the time reversal symmetry of the system that is
considered. There are several methods available to do that, which are notably based on: the
magneto-optical effect used in Faraday isolators, nonlinearity or even time modulation. Most
of these methods however present certain drawbacks like, for instance, being bulky, requiring
magnet or distorting the field by rotation of polarization. The metasurface that is discussed
here has the advantage of not requiring any magnet, of being lighter and more compact than
conventional magneto-optical systems and, additionally, does not induce any distortion of
the field such as rotation of polarization. In this section, we will address the susceptibility
synthesis of this metasurface and establish its equivalence with a moving medium. Note that
the physical realization of the metasurface is not discussed here, since I was not the main
investigator of this work, but it is presented in details in [220].

To synthesize a nonreciprocal nongyrotropic metasurface, one needs to control the trans-
mission and reflection coefficients from both sides of the metasurface. This means that the
synthesis must be performed for two sets of waves and such that no rotation of polarization
takes place. In that case, the metasurface may be synthesize in the exact same fashion as
done for the perfectly refracting metasurface discussed in Sec. 3.3. Consequently, to achieve a
nonreciprocal nongyrotropic response the metasurface needs to be bianisotropic. The meta-
surface is synthesized assuming normally propagating waves with respect to the metasurface
and for any polarization. However, to illustrate the synthesis procedure, we will, in a first
place, consider only x-polarized waves and later include both x and y contributions. Since
normal wave propagation is considered, it is convenient to express the susceptibilities not
in terms of the fields but rather directly in terms of the scattering parameters, as done in
Eqs. (3.17) where the scattering parameters are expressed in terms of bianisotropic suscep-
tibility components. Reversing relations (3.17) to obtain the susceptibilities in terms of the

11This section is based on a slightly modified version of [220,221].
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scattering parameters leads to

χxxee �
2j
k0

�
S11 � S21S12 � S22 � S11S22 � 1
S21 � S12 � S21S12 � S11S22 � 1



, (5.12a)

χyymm � 2j
k0

�
S21S12 � S22 � S11 � S11S22 � 1
S21 � S12 � S21S12 � S11S22 � 1



, (5.12b)

χxyem � 2j
k0

�
S11 � S22 � S21 � S12

S21 � S12 � S21S12 � S11S22 � 1



, (5.12c)

χyxme �
2j
k0

�
S22 � S11 � S21 � S12

S21 � S12 � S21S12 � S11S22 � 1



. (5.12d)

The nonreciprocal nongyrotropic transformation that we are interested in is depicted in
Fig. 5.46 where the incident wave Ψ1,i is transmitted with a transmission coefficient S21

while the incident wave Ψ2,i is fully absorbed (S12 � 0) by the metasurface. Moreover, the

metasurface

x

z

y

Ψ1,i Ψ1,t

Ψ2,i

Figure 5.46 Operation of the nonreciprocal nongyrotropic metasurface. The forward propa-
gating wave Ψ1 is transmitted with transmission coefficient S21 � Ψ1,t{Ψ1,i. The backward
propagating wave Ψ2 is fully absorbed by the metasurface (S12 � 0).

metasurface is reflectionless from both sides leading to S11 � S22 � 0. Using these definitions
of the scattering parameters, relations (5.12) reduce to

χxxee � �2j
k0

�
1

S21 � 1



, (5.13a)

χyymm � �2j
k0

�
1

S21 � 1



, (5.13b)

χxyem � �2j
k0

�
S21

S21 � 1



, (5.13c)

χyxme � �2j
k0

�
S21

S21 � 1



. (5.13d)
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By the same token used to derive relations (5.12) and (5.13), one can obtain the equivalent
relations corresponding to y-polarized waves and which define the susceptibilities χyyee , χxxmm,
χyxem and χxyme. The final susceptibility tensors for both x- and y-polarized waves are given by

χee � � 2j
k0pS21 � 1q

�
1 0
0 1

�
, χmm � � 2j

k0pS21 � 1q

�
1 0
0 1

�
, (5.14a)

χem � 2jS21

k0pS21 � 1q

�
0 1
�1 0

�
, χme �

2jS21

k0pS21 � 1q

�
0 �1
1 0

�
. (5.14b)

Using relations (2.10), one can easily verify that the susceptibility tensors (5.14a) are recipro-
cal while the susceptibility tensors (5.14b) are nonreciprocal. In fact, the only way to achieve
a nonreciprocal nongyrotropic response is through the magnetoelectric coupling coefficients.
This is because nongyrotropy requires χee and χmm to be diagonal tensors which necessarily
satisfies the reciprocity conditions.

As can be seen, the susceptibilities in (5.14a) are complex values which, assuming that
|S21| ¤ 1, correspond to loss according to (2.11) and more specifically relations (2.12b)
and (2.12c). However, the susceptibilities in (5.14b) correspond to loss or to gain depending
on the direction of wave propagation, as evidenced by the presence of E and H in the last
term of (2.12d) and (2.12e). For instance, assuming x-polarized waves propagating in the z-
direction, the components of (5.14a) correspond to loss while the corresponding components
of (5.14b) correspond to gain, since both Ex and Hy have the same sign at z � 0, such that
gain and loss combine together so as to produce the expected transmission coefficient S21.
In the case of x-polarized waves propagating in the negative z-direction, the components
of (5.14a) still correspond to loss while those of (5.14b) now also correspond to loss, since
Ex and Hy have opposite sign at z � 0, effectively cancelling the transmission (S12 � 0).

The realization of a nonreciprocal nongyrotropic metasurface would therefore require the
implementation of a lossy/active structure with nonreciprocal magnetoelectric coupling. Such
a structure would be particularly difficult to realize in practice. In [220], we have fabricated
a structure that exhibits the expected nonreciprocal nongyrotropic response using a surface-
circuit-surface architecture that consists of two patch-antenna arrays connected to each other
with transistors which act as unilateral devices. This structure is based on the same principle
as the interconnected array lens of Fig. 1.1c.

In the following subsection, we will see how the metasurface, given by the susceptibility
tensors in (5.14), may be alternatively implemented via a moving medium.
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5.7.1 Equivalence with a Moving Metasurface

From a general perspective, a nonreciprocal medium can be characterized by the properties
of its medium parameter tensors. The nonreciprocal behavior of the metasurface discussed
above stems from the susceptibility tensors (5.14b) which are antisymmetric. This classifies
this kind of nonreciprocal structure as a moving medium [254]. We will see in the following
lines how this equivalence comes about and compute what should be the required medium
permittivity, permeability and velocity so as to achieve the specified scattering parameters
given above.

For simplicity, it is convenient to express the metasurface medium parameters using the
following constitutive relations

D � ε �E � ξ �H , (5.15a)

B � ζ �E � µ �H , (5.15b)

instead of those given in (2.9). The equivalence between (2.9) and (5.15) is given by

ε � ε0pI � χeeq, µ � µ0pI � χmmq, (5.16a)

ξ � χem{c0, ζ � χme{c0. (5.16b)

We will now proceed to show that the medium parameters in (5.14) correspond to those of a
moving uniaxial medium as seen by an observer in a rest frame of reference [157]. A uniaxial
medium has the following medium parameters

�
ε
1
ξ
1

ζ
1
µ1

�
�

�����������

ε1 0 0 0 0 0
0 ε1 0 0 0 0
0 0 εz 0 0 0
0 0 0 µ1 0 0
0 0 0 0 µ1 0
0 0 0 0 0 µz

����������
, (5.17)

where the primes denote the moving frame of reference and where εz and µz can take arbitrary
values. We assume that the motion is only in the positive z-direction. Because the medium
is moving, a coupling occurs between the electric and magnetic components such that this
uniaxial medium becomes bianisotropic for an observer at rest, which can be verified using
the Lorentz transform operation [157]

C � L
�1
6 � C 1 � L6, (5.18)
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where the matrices C and C
1
respectively correspond to the medium parameters in the rest

frame of reference and in the moving frame of reference and L6 is the Lorentz matrix. The
matrices C and C

1
can be expressed as follows12

C �
�
c0pε� ξ � µ�1 � ζq ξ � µ�1

�µ�1 � ζ µ�1{c0

�
, (5.19)

and the matrix L6 as

L6 � γ

�����������

1 0 0 0 �β 0
0 1 0 β 0 0
0 0 1{γ 0 0 0
0 β 0 1 0 0
�β 0 0 0 1 0
0 0 0 0 0 1{γ

����������
, (5.20)

where γ � 1{?1 � β2, β � v{c0, with v the velocity of the medium and c0 the speed of light
in vacuum. The medium parameters in the rest frame of reference can then be obtained by
inserting (5.17) into (5.18) using (5.19) and (5.20), which leads to

�
ε ξ

ζ µ

�
�

�����������

ε 0 0 0 ξ 0
0 ε 0 �ξ 0 0
0 0 εz 0 0 0
0 �ξ 0 µ 0 0
ξ 0 0 0 µ 0
0 0 0 0 0 µz

����������
. (5.21)

We can now compare the parameters in (5.21) to those in (5.14). This comparison reveals that
there is a perfect match between the parameters of a nonreciprocal nongyrotropic metasurface
and a uniaxial moving metasurface as seen from a rest frame of reference. Note that since
the metasurface in (5.14) is reflectionless, we have that ε � µ and ξ � ζ in (5.21).

From this point, we are interested in finding the values of ε1 and µ1 in (5.17), as well as
the velocity v, such that the parameters in (5.21) take the same values as those in (5.14).
This is accomplished by solving (5.18) to obtain ε1, µ1 and v in terms of ε, µ and ξ. The

12C
1

is found using the primed tensors given in (5.17).
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corresponding solutions read

ε1 � µ1 � �
c2

0 pξ2 � εµq � 1 �
b
pc2

0 pξ2 � εµq � 1q2 � 4c2
0ξ

2

2c2
0µ

, (5.22a)

v �
c2

0 pξ2 � εµq � 1 �
b
pc2

0 pξ2 � εµq � 1q2 � 4c2
0ξ

2

2ξ . (5.22b)

By making use of (5.14) and (5.16), the uniaxial moving metasurface parameters are thus
readily obtained as functions of the bianisotropic metasurface susceptibilities in (5.14). We
see from the expressions in (5.22) that ε1 and v may in general both be complex values. The
corresponding real and imaginary parts of χ1 � ε1{ε0 � 1 are plotted in Figs 5.47a and 5.47b
versus S21, respectively. Similarly, the real and imaginary parts of v are plotted in Figs 5.47c
and 5.47d versus S21, respectively.
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Figure 5.47 Moving uniaxial metasurface medium parameters and velocity versus S21 and for
an arbitrary value of k0 � 125 m�1. (a) Real and (b) imaginary parts of χ1 � ε1{ε0 � 1. (c)
Real and (d) imaginary parts of v.

The results in Figs. 5.47 may be interpreted as follows: if S21 � 0, then the structure is
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reciprocal and fully absorbs the incident waves from both sides, therefore v � 0 and χ1 has
purely negative imaginary value (loss). If S21 � 1, we see that χ1 � 0 and v � c0. In that
case, the forward propagating wave would simply fully transmit through a “moving vacuum”,
while the backward propagating wave would never be able to catch-up with it, since it moves
at the speed of light, and thus never pass through. If 0   S21   1, both χ1 and v are
complex. The physical meaning of an imaginary velocity is not clear at this point but one
may speculates that it plays a role in the partial absorption of the forward propagating wave.
Note that the transmission through a moving metasurface (or similarly through a moving
material slab) does not involve any Doppler effect, and thus does not change the frequency
of the wave, if the medium on both sides of the metasurface is the same, which is the case
here [255].

5.8 LEDs Emission Enhancement

This work aims at increasing the light emission of light-emitting diodes (LEDs) using one
or several metasurfaces. LEDs are composed of a semiconductor P-N junction that emits
light due to electron-hole recombinations when a suitable bias voltage is applied. As most
LEDs have a Lambertian type radiation pattern, a metasurface could be used to obtain a
more directive radiation pattern. Moreover, due to the higher refractive index of the P-N
junction compared to the surrounding medium, LEDs suffer from total internal reflection
(TIR) which traps part of the light emitted by the junction inside the active region, thus
dramatically decreasing the light extraction efficiency. Metasurfaces could consequently be
used to reduce the TIR and increase the light extraction efficiency of LEDs. This work is part
of a collaboration in which several other people are involved, I will therefore only present a
brief description of this project, while more information may be found in [2, 222,256].

As an initial guess, that is used to simplify the metasurface synthesis, the LED junction is
assumed to be a monochromatic single-photon source and is modelled as an embedded electric
dipole in a reflector-backed material slab, as shown in Fig. 5.48a. The dipole is placed in
the center of the slab of permittivity εr � 6.0 (corresponding to GaN), thickness t � 900 nm
and operating wavelength λ0 � 490 nm (blue light). In Fig. 5.48a, the blue lines represent
the light rays whose first interaction is with the top interface (GaN – air) while the red lines
represent the light rays that are first reflected by the bottom interface (PEC). As can be
seen, the difference of refractive indices between the GaN and the air is causing most of the
light to be trapped inside the slab since the critical angle is only θc � 24.1�.

There are three different metasurface configurations that have been considered to enhance
the light emission efficiency of the structure in Fig. 5.48a. The first configuration is shown in
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(a) (b)

(c) (d)

Figure 5.48 Different LED models. (a) Bare LED structure with a single dipole emitter
embedded in GaN slab with a back-reflector. (b) Reflectionless metasurface, placed on top of
the GaN slab, that collimates the dipole fields. (c) Same configuration but with a partially
reflective metasurface that forms a Fabry-Pérot cavity. (d) Double metasurface cavity, the
metasurface at the top interface is partially reflective while that at the bottom interface is
fully reflective.

Fig. 5.48b and consists of a single reflectionless metasurface, placed at the interface between
GaN and air, which collimates all incident fields coming either directly from the dipole source
or from the reflection from the back reflector. The second configuration forms a partially
reflective metasurface cavity (PRMC) and is shown in Fig. 5.48c where the metasurface is
partially reflective and normally transmits and normally reflects the dipole fields with a given
reflection coefficient. The normally reflected plane wave from the metasurface undergoes
multiple reflections inside the cavity. For each reflection, part of the energy is normally
transmitted into a plane wave. Consequently, the junction becomes a Fabry-Pérot cavity that,
depending on its thickness, effectively increases the light extraction efficiency. Finally, the
third configuration, which is also a PRMC, is shown in Fig. 5.48d where now two metasurfaces
are used. The bottom one normally reflects the dipole fields, while the metasurface on the
top is partially reflective as the one in Fig. 5.48c. The details of the metasurface synthesis
for the three designs in Fig. 5.48 are not presented here but may be found in [2].

Full-wave simulations were performed using COMSOL to compare the difference in light
emission between the bare structure of Fig. 5.48a and the double metasurface structure of
Fig. 5.48d. The simulated energy flux density of the bare structure is shown in Fig. 5.49a,
where most of the light is trapped inside the slab and very little escapes, as expected. The
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simulation result for the double metasurface structure is shown in Fig. 5.49b, where now
almost all the light is allowed to escape. The measured enhancement of the light extraction
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Figure 5.49 COMSOL simulated energy flux densities for a dipole emitter embedded in a slab
of GaN. (a) Same configuration as in Fig. 5.48a. (b) Same configuration as in Fig. 5.48d.
Original images from [2].

efficiency between Figs. 5.49a and 5.49b was found to be as much as a factor of 4 [2].

Note that the designs in Figs. 5.48c and 5.48d improve not only the light extraction efficiency
but also the spontaneous emission rate (SER) of the source, which also plays a role in the
overall efficiency of the LED. The improvement of the SER comes as a consequence of light
confinement near the dipole emitter that is due to the reflection from the metasurface(s) and
which increases the local density of states [2].

The three configurations in Figs. 5.48 behave differently and their performance, in terms
of the improvement of the light emission efficiency, may vary significantly. Moreover, the
design constraints and the feasibility of the metasurfaces also greatly differ. Therefore, these
different metasurface systems must be optimized, via full-wave simulations, and compared
to each other so as to find the most appropriate design to meet the project specifications.
It must be noted that the designs described above are valid when the LED is modeled as
a single dipole emitter, while a more realistic model for the LED would be to consider an
emitting layer made of randomly placed and randomly polarized dipole sources each emitting
with arbitrary phases. Consequently, further investigations will be required to find the best
possible designs and the corresponding results and fabricated LED structures will be the
topic of future works.
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5.9 Metasurface “Solar Sail” for Radiation Pressure Control

Solar sail is a spacecraft propulsion method based on radiation pressure. Although the force
exerted by light upon scattering by an object is very small, such a force is sufficient for
propulsion if the scattering area is sufficiently large. This technology may, one day, allow
humanity to travel among the stars [257]. However, solar sails are, as of now, restricted to
the generation of repulsive forces, which limits the spacecraft range of motion.

In this work, we extend the range of operation of usual solar sails by introducing metasurface
solar sails. We propose to leverage the electromagnetic transformation capabilities of meta-
surfaces to control radiation pressure. While most studies on optical forces have been so far
restricted to the manipulation of forces acting on small particles [92,258–261], our goal here
is to design a metasurface system, which consists of a metasurface attached to an object to
be moved (e.g. satellite), and whose motion can be controlled by the illumination emerging
either from a star or from high-power lasers. Different forces may then be obtained by chan-
ging the polarization and/or wavelength of the illumination. It follows that the most optimal
situation would be to control the motion of a spacecraft in the vicinity of the earth using
high-power lasers emitted either from the earth or from other spacecrafts such as satellites.
In what follows, we propose a prospective study on the capabilities of metasurfaces to control
radiation pressure.

5.9.1 Electromagnetic Force on a Stationary Object

An electromagnetic wave carries both energy and momentum. When it is scattered or ab-
sorbed by an object, the latter is subjected to a force as a consequence of the conservation
of momentum law, which reads [262]

f � εµ
BS
Bt � ∇ � T em, (5.23)

where f is the volume force density, S is the Poynting vector and T em is the Maxwell stress
tensor, which is itself given by

T em �DE �BH � 1
2IpD �E �B �Hq, (5.24)

where I is the identity tensor and E,D,B and H correspond to the total electromagnetic
fields. Let us assume, for simplicity, that the object is not moving and hence that the total
field (incident and scattered fields) around the object is not changing with time. In that
case, the time derivative of the Poynting vector in (5.23) vanishes. By making use of Gauss
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integration law, the time-averaged force acting on the object is thus given by

xF y �
»
V

∇ � xT emy dV �
¾
S

xT emy � n̂ dS, (5.25)

where n̂ is the unit vector normal to the surface surrounding the object and x�y denotes the
time-average operation. Assume now that the object to be moved is the metasurface system
surrounded by vacuum that is depicted in Fig. 5.50. The forces acting on this metasurface,
which is located at z � 0 in the xy-plane, are calculated using (5.25). The surface integration
in (5.25) is performed on two planar surfaces, which are located at z � 0� and z � 0� and
for which n̂ � �ẑ and n̂ � �ẑ, respectively.

Fx

Fz

Fy

Illumination

Fφ

Fφ

Fφ
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y

z

Figure 5.50 Proposed metasurface solar sail with two lateral forces (�Fx and �Fy), a repul-
sive/attractive force (�Fz) and three rotational forces (�Fφ). Credit: NASA.

Let us now assume that the interactions between the incident, reflected and transmitted
waves and the metasurface take place only in the xz-plane. The forces that an incident plane
wave, impinging at an angle θi from broadside, exert on the metasurface are found from (5.25)
to be

xFxyi � 1
2ε0E

2
0LxLy cos pθiq sin pθiq, (5.26a)

xFzyi � 1
2ε0E

2
0LxLy cos pθiq2, (5.26b)

where E0 is the amplitude of the wave. Similarly, the forces due to the reflected and trans-
mitted waves may be straightforwardly deduced from (5.26) to be xFxyr � �xFxyi and
xFzyr � xFzyi, and xFxyt � �xFxyi and xFzyt � �xFzyi.
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In order to evaluate the forces in a more realistic scenario, we also consider the case of Gaus-
sian illumination. Let us consider a 2D Gaussian beam with a Gaussian profile E 9 e�r

2{w,
where w is related to the half-maximum beamwidth, L, through L � 2

a
w lnp2q. The forces

that are exerted on the metasurface are again found from (5.25) and read

xFxyi � E2
0ε0Ly
4k2

0

?
wi sinpθiq

�
2Lx

?
wi cospθiqe�L2

x cospθiq2{p2wiq �
?

2πpk2
0 � wiqErf

�Lx cospθiq?
2wi

	�
,

(5.27a)

xFzyi � E2
0ε0Ly

?
wi

8k2
0

�
2Lx

?
wi cosp2θiqe�L2

x cospθiq2{p2wiq (5.27b)

�
?

2π
�
k2

0 � pk2
0 � wiq cosp2θiq

�
secpθiqErf

�Lx cospθiq?
2wi

	�
,

where Erfpxq is the error function. In the case of a 3D Gaussian illumination, the forces are
directly found to be

xFxyi
3D �

c
π

2Erf
�
Ly?

2



xFxyi

2D, (5.28a)

xFzyi
3D �

c
π

2Erf
�
Ly?

2



xFzyi

2D, (5.28b)

where the terms with the subscripts “2D” refer to the forces in (5.27). With these expressions,
we now have the tools required to numerically investigate the different field configurations to
achieve the desired forces.

5.9.2 Radiation Pressure Control with Metasurfaces

We are now interested in finding what should be the incident, reflected and transmitted
waves, acting on the metasurface system in Fig. 5.50, so as to generate repulsive, attractive,
lateral and rotational forces. The four different field configurations to achieve these forces
are presented in Figs. 5.51, where they respectively correspond to the operations of: specular
reflection, wave combination, negative refraction and Bessel beam generation (for in-plane
rotation). In what follows, we will investigate in more details the electromagnetic behavior
of these different cases.

Repulsive Force

Achieving a repulsive force with a flat structure is rather easy. The maximal repulsive force is
simply obtained with a perfectly reflective surface [202]. Consider the illustration in Fig. 5.51a
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Figure 5.51 Four different field configurations corresponding to: (a) a repulsive force, (b) an
attractive force, (c) a lateral force and (d) an in-plane rotational force.

where an obliquely incident wave is specularly reflected with reflection coefficient |R| � 1.
In that case, the force acting on the object is only in the z-direction since the contributions
along x of the incident and reflected waves cancel each other. When plane wave illumination
is considered, the longitudinal force is, from (5.26b), given by

xFzy � xFzyi � xFzyr � 2xFzyi � ε0E
2
0LxLy cos pθq2. (5.29)

The same procedure can be used to obtain the force due to a 2D Gaussian illumination
using (5.27b). Note that in that specific case of specular reflection, the beamwidth of the
incident and reflected Gaussian beams are equal since θi � θr and thus wi � wr. To illustrate
the differences between the repulsive forces obtained with a plane wave illumination and with
a Gaussian illumination, we plot these forces as functions of the incidence angle in Fig. 5.52
with the following parameters: E0 � 120π V/m, Lx � Ly � 9 m, λ0 � 500 nm and wi � 8.
We see that both illuminations lead to the same force profile. As expected, the force due to
the Gaussian illumination is smaller than the one due to the plane wave illumination since, in
the former case, less energy is impinging on the metasurface. The maximum force is naturally
obtained when the incident wave is normally impinging on the metasurface.

Attractive Force

A metasurface can be subjected to an attractive force if the incident waves are transformed
into transmitted waves with momentum in the z-direction larger than that of the incident
waves. This change of momentum results in a negative longitudinal force. Consider the
reflectionless transformation depicted in Fig. 5.51b, where the metasurface combines two
incident waves both impinging with opposite incidence angles. Here, we are using two incident
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Figure 5.52 Repulsive forces exerted on a perfectly reflective surface assuming plane wave
illumination (solid blue line) and Gaussian illumination (dashed red line) with wi � 8.

waves propagating with opposite kx wavenumber so as to avoid any force in the x-direction.
Moreover, we assume that the metasurface is fully efficient. To achieve this specification, the
two incident waves must be orthogonally polarized and thus be treated independently from
each other by the metasurface. Indeed, if the two incident waves had the same polarization,
then the metasurface would act as a beam combiner or, if used in its reciprocal operation
state, as a beam splitter. In that case, the efficiency would necessarily be limited to at best
50%, as was already discussed for the metasurface in Fig. 5.25. Therefore, the only way
to efficiently realize the operation in Fig. 5.51b is to consider two orthogonally polarized
incident waves being normally refracted by the metasurface, which should be bianisotropic
as discussed in Sec. 3.3 for maximum efficiency.

Considering the discussion in Sec. 3.2, we know that the beamwidth of the incident waves is
smaller than that of the transmitted waves when θi ¡ θt. Note that the opposite situation,
i.e. when θi   θt, is illustrated in Fig. 3.5. Accordingly, the relation between these beam-
widths is wt � wi cospθtq2{ cospθiq2, while, to satisfy power conservation, the relation between
the amplitude of the waves is Et � E0

a
cospθiq{ cospθtq, where Et is the amplitude of the

transmitted waves.

Taking into account these considerations, the attractive force exerted on the bianisotropic
metasurface by the two incident plane waves and as function of the incidence angle, with
θt � 0� for maximum force, is given by

xFzy � �2LxLyε0E
2
0 cos pθiq sin

�
θi

2


2

. (5.30)
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Interestingly, the maximum attractive force is achieved when θt � 0� and θi � 60�. The cor-
responding attractive force for Gaussian illumination is found, using the same considerations
as the ones made above, to be

xFzy �E
2
0ε0Ly

?
wi sec pθiq2

2k2
0

�
Lx
?
wi cospθiqpcospθiq cosp2θiq � 1qe�L2

x cospθiq2{p2wiq

�
?

2π
�
2wip1 � cospθiqq � k2

0 � pk2
0 � wiq cosp2θiq

�
sin

�
θi

2


2

Erf
�Lx cospθiq?

2wi

	�
.

(5.31)

The relations (5.30) and (5.31) are now plotted for comparison in Fig. 5.53 and with the same
parameters as those used before. As can be seen in the figure, the maximum attractive force,
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Figure 5.53 Attractive forces exerted on the metasurface assuming plane wave illumination
(solid blue line) and Gaussian illumination (dashed red line) with wi � 8.

in the case of Gaussian illumination, is shifted towards higher incidence angles compared to
the case of plane wave illumination. This may be understood by first understanding why,
in the plane wave illumination case, the maximum force is at θi � 60�. The force exerted
on the metasurface is, by conservation of momentum, due to a change in the direction of
wave propagation. Intuitively, the maximum attractive force should thus be obtained when
θi � 90� and θt � 0�. However, as θi increases, less and less energy is passing through the
metasurface until, eventually, no power passes through when θi � 90�. The combination of
these two effects is the reason why the maximum attractive force is at θi � 60�. Now let
us consider Gaussian illumination. In that case, even for relatively large incidence angles,
most of the incident power still remains within the surface area of the metasurface due to the
Gaussian profile and thus the confined nature of the field amplitude of this illumination. This
effectively shifts the maximum force towards θi � 90�. Obviously, the smaller the beamwidth
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(wi), the more confined is the incident power and thus the more important is the shift.

The plots in Fig. 5.53 represent the forces exerted on the metasurface for specified incidence
angles. The question that arises now is: how would these forces be affected if the metasurface
was illuminated by incident waves impinging at angles that are different from the specified
incidence angle used to synthesize the metasurface? In order to evaluate this effect on the
longitudinal force, we have performed 2D FDFD simulations with five different metasurfaces
synthesized with the following specified incidence angles: θi,spec � t15�, 30�, 45�, 60�, 75�u. To
maximize the refraction efficiency, the metasurfaces are bianisotropic, according to the dis-
cussion in Sec. 3.3, and the corresponding susceptibilities are obtained from relations (3.16).
The simulation results are plotted in Fig. 5.54. Note that in the simulations, the metasurfaces
are illuminated with Gaussian illumination with a beamwidth that is smaller (wi � 1) than
the one used in Fig. 5.53 where wi � 8.
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Figure 5.54 Attractive forces exerted on five different metasurfaces when the incidence angle
deviates from the specified incidence angle used in the synthesis. The dashed black line
corresponds to the longitudinal force for specified incidence angles, it is the same as the one
plotted in Fig. 5.53 but with wi � 1.

As can be seen, the attractive force is more important when θi,spec is large, as expected. We
can also see that the simulation results are in good agreement with the expected values at the
points where θi � θi,spec (corresponding to the dashed black line). Moreover, the acceptance
angle, defined as the total angle variation from the specified incidence angle under which the
metasurface is still subjected to an attractive force, is particularly important. This means
that the generation of an attractive force, with such metasurfaces, is robust to a deviation
from the specified illumination. Note that, to obtain the results in Fig. 5.54, we have assumed
that the incidence angles of the two incident waves are the same meaning that the force along
the x-direction is zero for all angles.
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Lateral Force

The realization of only a lateral force requires that the longitudinal momentum of the waves,
on both sides of the metasurface, vanishes while the variation of momentum in the lateral
direction (e.g. x-direction) is maximized. This may be achieved with the negative refractive
transformation depicted in Fig. 5.51c where the incidence and transmission angles are equal
to each other. Because these two angles are the same, the beamwidth as well as the amplitude
of both incident and transmitted waves are the same. As before, the time-averaged forces
acting on the metasurface are computed and the resulting longitudinal force is xFzy � 0 while
the lateral force is, from (5.26a), readily found to be

xFxy � 1
2ε0E

2
0LxLy cos pθiq sin pθiq � 1

2ε0E
2
0LxLy cos pθtq sin pθtq � 1

2LxLyε0E
2
0 sin 2θ, (5.32)

where θt � �θi. It is interesting to note that this force reaches a maximum for θ � 45�. The
lateral force for Gaussian illumination can be obtained following the same procedure but
with (5.27a) and by setting wt � wi. The lateral forces acting on the metasurface for plane
wave and Gaussian illuminations are plotted in Fig. 5.55 versus specified incidence angles.
As was the case for the attractive force discussed above, we see that the maximum of the
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Figure 5.55 Lateral forces exerted on the metasurface assuming plane wave illumination (solid
blue line) and Gaussian illumination (dashed red line) with wi � 8.

force, in the case of Gaussian illumination, is shifted towards larger incidence angles. The
explanation for this effect is the same as the one given previously.

Let us now evaluate the behavior of this metasurface when the incidence angle deviates from
the specified one. We consider five different metasurfaces synthesized for the following spe-
cified incidence angles: : θi,spec � t15�, 30�, 45�, 60�, 75�u. The susceptibilities are obtained,



159

assuming monoisotropic metasurfaces, with the exact relations in (2.18) and read

χee � 2
kz

tan pkxxq, (5.33a)

χmm � 2kz
k2

0
tan pkxxq. (5.33b)

This specific case of negative refraction is the only situation where the susceptibilities (2.18)
lead to purely real and thus passive, lossless and fully efficient refractive metasurfaces. FDFD
simulations are used to evaluate the forces acting on these five metasurfaces under Gaussian
illumination for varying incidence angles and the results are plotted in Figs. 5.56. We see that
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Figure 5.56 Forces exerted on five different metasurfaces when the incidence angle deviates
from the specified incidence angle used in the synthesis. (a) Lateral forces and (b) longitudinal
forces. The dashed black line corresponds to the lateral force for specified incidence angles,
it is the same as the one plotted in Fig. 5.55 but with wi � 1.

the longitudinal forces are zero only when θi � θi,spec. When the incidence angle deviates from
the specified one, then the longitudinal forces are either repulsive or attractive. Similarly,
the curves corresponding to the lateral forces in Fig. 5.56a cross the dashed black line at
the expected values precisely when θi � θi,spec, except for the metasurface synthesized for
θi,spec � 75�. This may be explained by the fact that, for such large angles, undesired
scattering occurs in our simulation scheme due to the way the incident wave is numerically
generated.
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In-Plane Rotational Force

Generating an in-plane rotational force, corresponding to a rotation of the metasurface in
the xy-plane, may be realized with the transformation of an incident plane wave into a
transmitted wave possessing angular momentum. The conservation of angular momentum
will result in a rotation of the metasurface in the opposite direction than that of the beam.
A common example of such beam, is the Bessel beam with topological charge m � 0. For
simplicity, we consider the transformation of a normally incident plane wave into a normally
transmitted TM-polarized (Hz � 0) Bessel beam of order m, as depicted in Fig. 5.51d. The
longitudinal electric field of the Bessel beam is given, in cylindrical coordinates, by [235]

Ezpρ, φq � Aejmφe�jkzzJmpkρρq, (5.34)

where A is a complex constant, m is the order of the Bessel beam, kz and kρ are the longi-
tudinal and transverse wavenumbers, respectively. From (5.34), all the field components can
be computed and the corresponding rotational force due to the transmitted Bessel beam and
which acts on the metasurface is found, by applying (5.25), to be

xFφyt � �A
2kzmε0

2k2
ρ

¼
S

Jmpkρρq2
ρ

ρdρdφ. (5.35)

It is possible to obtain a closed form expression of the force by performing the integration
in (5.35) over a circular surface. Accordingly, we next assume that the metasurface has a
circular shape of radius r. In that case, the rotational force due to the transmitted wave is

xFφyt � �A
2kzm

?
πpkρrq2mε0Γ

�
m� 1

2
�2

Γpm� 1qΓpm� 3
2qΓp2m� 1q 2F3

�
m� 1

2 ,m� 1
2;m� 1,m� 3

2 , 2m� 1;�k2
ρr

2


,

(5.36)
where Γpxq is the gamma function and 2F3pa, b;xq is a generalized hypergeometric function.
Note that because the incident wave is a plane wave, the only contribution to the rotational
force is due to the transmitted wave. In (5.36), the parameter A must be determined so as to
satisfy power conservation between the power of the incident plane wave and the power of the
transmitted Bessel beam. This is achieved by integrating the z-component of the Poynting
vector of the Bessel beam over the circular area of the metasurface to find the transmitted
power. The parameter A is then found by equalizing the incident power to the transmitted
power.

In order to evaluate the rotational force that would be exerted on the metasurface, we have
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Figure 5.57 Rotational forces for Bessel beams of different topological charges and cone angles.

plotted relation (5.36) for m � 1, 2, 3, 4, 5 versus the Bessel beam cone angle13, α. The
radius of the metasurface is such that the total surface area is the same as that of the
rectangular metasurfaces of dimensions Lx�Ly discussed previously, the radius is thus given
by r �a

LxLy{π. The corresponding results are plotted in Fig. 5.57.

As expected, the rotational force is proportional to the topological charge since the latter is
directly related to the angular momentum. Due to the complex nature of this transformation,
we have not investigated the variation of the rotational force under different incidence angles
since it would involve 3D FDFD simulations. More thorough evaluation are thus left for
potential future works.

5.10 Summary

In this chapter, we have presented and discussed nine metasurface concepts and applications.

We have proposed to use metasurfaces for real-time signal processing and, more specifically,
use them to implement the spatial counterparts of phasers, which were so far limited to
integrated guided-wave components. Accordingly, we have realized dielectric metasurfaces,
which exhibit broadband and flat transmission response while still providing a frequency
dependent group delay, which is necessary for the implementation of temporal dispersion en-
gineering systems. These metasurfaces have been realized based on a new design architecture
consisting of dielectric resonators held together by dielectric connections and meant to be
used in the microwave regime. The fabricated structures were found to perform the expected
operation.

13This angle is used to define the transverse and longitudinal wavenumbers of the Bessel beam, i.e. kρ �
k0 sin pαq and kz � k0 cos pαq.
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We have then been interested by the concept of birefringent metasurfaces. We have first reali-
zed electromagnetic half- and quarter-wave plates with both dielectric and metallic scattering
particles. They respectively perform the operations of rotation of polarization and linear-
to-circular polarization conversion. Since these metasurfaces are perfectly uniform, their
resulting scattering performance were not affected by spurious coupling between adjacent
unit cells and the realized wave plates thus exhibit very good transmission efficiencies. Two
other types of birefringent metasurfaces were also designed. One to perform the operation
of polarization beam splitting, the other one to generate orbital angular momentum (OAM)
with topological charge depending on the polarization of the illumination. The polarization
beam splitting metasurface was designed to spatially separate s- and p-polarized normally
incident plane waves. The refraction angles for the two polarizations were chosen to be the
same for simplicity. It follows that the metasurface had to be nonuniform but still perfectly
periodic with same phase-gradient periods for the two polarizations. The OAM generating
metasurface was designed to transform s- and p-polarized normally incident plane waves into
hypergeometric Gaussian beams with topological charge m � �1 and m � �1, respectively.
Due to the particular field distribution of the hypergeometric Gaussian beams, the birefrin-
gent metasurface had to be nonuniform and also aperiodic, which made its implementation
more complicated. However, it was found that many unit cells were in fact exhibiting the
same scattering responses of the previously realized wave plate structures thus reducing the
number of unit cells to be designed. The measured responses of the fabricated metasurfa-
ces, performing the beam splitting and OAM generation operations, were in good agreement
with the expected responses but suffered from lower transmission efficiencies, compared to
the wave plate structures, because of non-negligible spurious coupling between the unit cells
due to their nonuniformity.

Next, we have introduced the concept of coherent spatial light processing based on bianiso-
tropic metasurfaces. The general idea consists in a bianisotropic metasurface that combines
two orthogonally polarized incident waves, an input wave and a control wave, into a single
transmitted wave with a unique polarization state. By varying the amplitude and phase
of the control wave, it is thus possible to affect the field distribution on the transmit side
of the metasurface. This allows one to control the amplitude, phase, polarization and di-
rection of propagation of the transmitted wave. We have used this concept to realize two
slightly different coherent modulators, one where both the input and the control waves are
normally impinging on the metasurface, and one where the control wave is obliquely inci-
dent thus spatially separating the position of the input and control wave sources. In both
cases, the phase of the control wave was used to modulate the transmitted wave amplitude
by constructive/destructive interference. The two fabricated metasurfaces were in very good
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agreement with the expected results.

Then the concept of space-wave routing via surface waves was introduced as an extension of
the synthesis method to the particular cases of: space-wave conversion into surface waves and
surface-wave guidance. These two cases are not conventional since most metasurface structu-
res are generally used in reflection or in transmission and thus do not to perform surface-wave
transformations. Additionally, this concept also introduces the idea of metasurface systems
where several metasurfaces are required to perform a specific electromagnetic transformation.
To illustrate the concept, we have realized a three-metasurface system that acts as an “elec-
tromagnetic periscope” by first transforming an incident space wave into a surface wave that
is guided along the structure over a given distance and is then re-transformed into a space
wave. The resulting scattering performance of the fabricated system were in relatively good
agreement with the expected behavior but the system suffered from a low efficiency, which
is due to several effects such as: dissipation loss, undesired scattering, imperfect coupling
and leakage from both sides of the structure due to its longitudinal symmetry. Nevertheless,
this concept opens up an interesting avenue for future research, which may consists in deve-
loping efficient space-wave to surface-wave conversion, the potential capability of controlling
several surface waves simultaneously with a bianisotropic metasurface and a susceptibility
description of leaky-wave radiation.

Then, the topics of nonreciprocal nongyrotropic metasurfaces and LEDs emission enhance-
ment were introduced. Since these projects involve many other people, they were only briefly
discussed. Accordingly, we have first presented the concept of a nonreciprocal nongyrotropic
metasurface, which consists in a one-way screen that does not alter the polarization state
of the incident wave. We have seen that this operation may be achieved either with a bia-
nisotropic nonreciprocal metasurface, or with a monoisotropic uniaxial moving metasurface.
Then, we have succinctly introduced our proposed concept for the emission enhancement
of LEDs using single or double metasurface cavities. This project may find applications in
the lighting industry as well as in the research area of single-photon sources and quantum
emitters.

Finally, we have proposed a prospective study on the capabilities of metasurfaces to cont-
rol radiation pressure. Different field configurations were mathematically and numerically
investigated so as to achieve repulsive, attractive, lateral and rotational forces.
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CHAPTER 6 Fundamental Limitations

6.1 Limitations of Metasurfaces

Metasurfaces, and metamaterials in general, are composed of metallic or dielectric subwave-
length resonant particles. This fact results in several drawbacks and limitations. Metallic
structures usually present high losses especially at optical frequencies. Resonant particles
have limited bandwidth, which prevents the implementation of broadband applications. Mo-
reover, it is difficult to design resonant particles that are much smaller than the wavelength
because the smaller the particles are, the less they interact with the incident field and, con-
sequently, the less they can control it. For this reason, metasurfaces having susceptibilities
with very rapid spatial variations over subwavelength distances (e.g. refractive metasurface
with very large angle of refraction) may not be implementable since the required unit cell
size would be so small, to satisfy Nyquist criterion, that the scattering particles would not
resonate. For instance, the metallic scattering particles discussed in Sec. 4.1 have a transverse
size of λ0{5. Reaching smaller unit cell size, while maintaining a strong control in terms of
transmission phase and amplitude of the incident field, is challenging.

Metasurfaces have been presented as 2D reductions of volume metamaterials and are conse-
quently less bulky, less lossy and easier to fabricate. The synthesis technique presented in this
document shows that a metasurface has the capability to mathematically transform an arbi-
trary incident fields into arbitrary reflected and transmitted fields. But, does the reduction
from 3D metamaterials to 2D metasurfaces imply reduced processing power or functionali-
ties? Is there anything that a metasurface cannot do, due to its reduced dimensionality, that
a 3D metamaterial can achieve? One example could be the electromagnetic cloaks (used
in transmission) that require the object to be hidden to be surrounded by a metamaterial
structure to bend the light around it and thus, metasurfaces would not be appropriate in
such a situation. Another example is that of beam expanders (or telescopes), usually used
in optics [159] to increase the width of an incident Gaussian beam. Such systems would
also be difficult to realize with a metasurface. Although a possible implementation has been
presented in Sec. 5.6.4, it provides an optical transfer function that is much more limited
in terms of acceptance angle than its 3D optical counterpart. In general, metasurfaces are
limited to perform only the specified transformations. In other words, if the incident field
deviates from the initial specifications, then the scattering behavior of the metasurface de-
teriorates rapidly. Therefore, metasurfaces exhibit accurate responses only for the specified
incident field. Note that this is true for metamaterials (both 2D and 3D) in general since they
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suffer from spatial dispersion due to the fact that the coupling between scattering particles
depends on the direction of wave propagation. However, this issue of being dependent on
the specified fields is more problematic to metasurfaces due to the way they are designed,
i.e. the susceptibilities are, from the synthesis technique, directly dependent on the specified
fields. Whereas 3D metamaterial are not necessarily synthesized in terms of specified fields
but rather to provide specific values of permittivity and permeability and thus depend less
on the initial specifications.

We now consider the following synthesis example: find the susceptibilities of a metasurface
performing the operation of an optical analog processing system. This example is used to
illustrate the disadvantage brought by the reduced dimensionality of metasurfaces as well
as the scattering behavior dependence on the specified incident field. The optical analog
processing operation is synthesized based on Fourier optics principles [142]. An optical analog
processing system, often referred to as a 4f-system, is composed of two identical lenses placed
one after the other. The distance between the two lenses corresponds to the sum of their focal
length. Each lens successively performs the spatial Fourier transform of the light emerging
from an object placed at the input plane of the system, one focal length away from the first
lens. The overall system thus performs two successive Fourier transforms. At the center of
the system lies the Fourier plane where the Fourier components of the object are accessible
and can be controlled by using a mask. Since the mask can block or attenuate certain
spatial components of the input field, such a system effectively acts as a spatial filter. The
output field corresponds to the input field convolved with the Fourier transform of the mask
function. It is easy to show that this system can be implemented with a zero-thickness
metasurface but with important limitations. Assume that the metasurface is synthesized
with the susceptibilities in (2.18). Here, for simplicity only the component χxxee is presented.
The corresponding spatial filtering metasurface is given by

χxxee �
�∆Hy

jωε0Ex,av
� 2j
ωε0

Ht
y �H i

y

Et
x � Ei

x

� 2j
ωε0

FtMu �H i
y �H i

y

F tMu � Ei
x � Ei

x

, (6.1)

where M is a mask function and is a function of x and y. The presence of convolution
products in (6.1) shows that the susceptibilities are inherently proportional to the specified
incident field. As a consequence, the metasurface acts as a spatial filtering device but only for
the specified incident field, so that different incident fields result in different transformations
in contrast to what happens in an optical 4f-system that performs the same filtering operation
independently of the incident beam.

These limitations might seem to be detrimental to the future of metasurfaces. However
solutions exist to overcome some of these difficulties. For example, the problems arising
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due to the reduced dimensionality of metasurfaces can be mitigated by cascading several
metasurfaces instead of using just one. In that case, an optical system that has a length
of several focal lengths, like the 4f-system for example, corresponding to several thousand
of wavelengths could be implemented with a length of only a few tens of wavelengths using
metamaterials [102]. The issues caused by the high losses of metallic scattering particles and
limited bandwidth of resonant structures could be addressed by using dielectric resonators
and highly coupled particles as done, for instance, in [112].

6.2 Limitations of the Synthesis Technique

6.2.1 Absorbing Metasurface

The mathematical synthesis technique presented in this document is certainly powerful but
its main drawback is that it describes a zero-thickness metasurface, a fictitious interface
that obviously cannot be exactly realized. In general, we have assumed that if the physical
metasurface is very thin compared to the free-space wavelength, then it is accurately modeled
by the GSTCs. In this section, we will see an example which illustrates the divergence between
the ideal model and the reality.

When the synthesis technique is used to model a subwavelength-thick metasurface, the
GSTCs provide relatively accurate results only to some extent. The GSTCs are, by de-
finition, intended to deal with discontinuities. Consequently, a material slab (even deeply
subwavelength) can not be accurately modeled by such continuity conditions and must rather
be analyzed as a two-interface problem using the usual boundary conditions. Usually when
ideal susceptibilities, obtained using the synthesis technique, are associated to a subwave-
length metasurface, discrepancies appear between the simulated metasurface response and
the expected response.

In order to evaluate the discrepancies introduced by the metasurface thickness, a simple
numerical experiment is next conducted. A metasurface is synthesised to absorb a normally
incident plane wave. The incident plane wave has an electric field defined by Ei � x̂e�jk0z

and the transmitted plane wave has an electric field defined by Et � x̂Te�jk0z, where the
transmission coefficient T can vary between 0 and 1. Inserting these fields into (2.18a)
and (2.18d) yields

χ � χxxee � χyymm � 2j
k0

pT � 1q
pT � 1q (6.2)

Since similar relations can be obtained for y-polarized waves, the susceptibilities in (6.2) can
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be easily converted into the isotropic electric permittivity, εr � 1 � χee{t, and the isotropic
magnetic permeability, µr � 1 � χmm{t, where t is the thickness of the metasurface, as
explained in Sec. 2.6.

Electromagnetic simulations are performed using COMSOL for different values of T and the
results are reported in Fig. 6.1. As can be seen, for T ¡ 0.5 the simulated transmission is in
good agreement with the specification. But for T   0.5 a discrepancy appears, increasing as
T is reduced to 0.
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Figure 6.1 The dashed red line corresponds to the specified transmission coefficient. The
solid blue line corresponds to the simulated transmission coefficients for a metasurface of
thickness t � λ0{100.

In order to understand the results presented in Fig. 6.1, the problem is analyzed as a two-
interface problem where the surrounding medium 1 is vacuum with parameters

n1 � 1, Z1 �
c
µ0

ε0
, (6.3)

and where medium 2, corresponding to the metasurface, can be defined easily by noting
that the electric and magnetic susceptibilities are equal to each other, as shown in (6.2).
Consequently, we have that

n2 �
a
p1 � χ{tq2 � 1 � χ

t
, Z2 �

c
µ0

ε0

d
1 � χ{t
1 � χ{t � Z1. (6.4)

The transmission coefficient, T21, from medium 1 to medium 2 and the reflection coefficient,
R, inside the metasurface are given by

T21 � 2Z2

Z1 � Z2
� 1, R � Z1 � Z2

Z1 � Z2
� 0. (6.5)
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Here we see that the metasurface is reflectionless as initially specified. Since there is no
reflection within the metasurface, the transmitted amplitude simply reads

|Ttrs| � |e�jk0n2t| � |e�jk0t||e�jk0χ| � exp
�

2pT � 1q
pT � 1q

�
(6.6)

The expression (6.6) precisely agrees with the simulated results (solid blue line) of Fig. 6.1.
It is clear that as T decreases to 0, the total transmission from the subwavelength-thick
metasurface converges to e�2 � 13.5%. This simple example illustrates how the GSTCs fail
to accurately model the response of this metasurface. For this very specific case, where only
normal incidence and transmission are considered, it is possible to modify the ideal suscepti-
bilities of the zero-thickness metasurface such that the response of the subwavelength-thick
metasurface exactly matches the response of the zero-thickness one. If the ideal susceptibility,
χ, is defined from (6.2), then the “corrected” susceptibility is

χcorr � χ
f

t
, (6.7)

where f is a correcting factor. Following the same procedure as used from (6.3) to (6.6)
with (6.7) instead of (6.2), the factor f can be found and equation (6.2) becomes

χcorr � χ
lnT
2t

T � 1
T � 1 � j lnT

k0t
. (6.8)

The corrected susceptibility (6.8) gives the expected transmission coefficient |Ttrs| � |T |.
From (6.8), we see that the corrected susceptibility of the subwavelength-thick metasurface
is proportional to the natural logarithm of T meaning that, as T decreases to 0, the electric
and magnetic susceptibilities both converge to �j8 whereas the ideal susceptibilities (6.2)
converge to �2j{k0. The important difference between (6.2) and (6.8) illustrates how im-
plementing the ideal susceptibilities can become impracticable when the thickness of the
metasurface is taken into account and how much the corrected susceptibilities diverge from
the ideal ones.

The particular example presented here yields the simple corrected expression (6.8) but in
general no analytical forms would exist for the corrected susceptibilities. One possibility
that has been considered, to reduce the aforementioned discrepancies, is to derive boundary
conditions of higher orders than the GSTCs. As they stand, the GSTCs only account for a
zeroth order discontinuity meaning that only the discontinuities of the fields are taken into
account but not the discontinuities of the derivatives of the fields. Higher order boundary
conditions that take into considerations the first derivative of the fields may therefore yield
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more accurate results. The derivation of higher-order GSTCs will be addressed in the next
chapter.

6.2.2 Refractive Metasurface

We have seen how a thin metasurface slab fails to properly perform the expected transfor-
mation in the case of normally propagating waves. We will now briefly discuss the case of
refractive metasurfaces with nonzero thicknesses and see how their performance compares
with expected results.

For illustration, let us consider the case of a normally incident Gaussian beam being refracted
at different angles θt by reflectionless metasurfaces. The metasurfaces are synthesized using
the exact susceptibility method discussed in Sec. 3.1 and where the electromagnetic fields
are expressed as in (3.3). The metasurfaces are then simulated in COMSOL as material
slabs of thickness t. The metasurface slab parameters are defined as εr � I � χee{t and
µr � I � χmm{t, as explained in Sec. 2.6.

We consider four different transformations where θt � r20�, 30�, 45�, 60�s and for metasurface
thicknesses ranging between t � λ0{100 to t � 4λ0. For each simulation, the amplitude of
the refracted wave is computed by taking the Fourier transform of the magnetic field along a
line on the transmit side of the metasurface and isolating the contribution that corresponds
to the expected angle of transmission. The resulting scattered field amplitudes (normalized
to the incident wave amplitude) are plotted in Fig. 6.2.

This figure first reveals that the metasurface thickness does not play a substantial role as long
as t   λ0{5. This is expected since, as long as the metasurface remains deeply subwavelength,
the effect that the metasurface exerts on the electromagnetic field is the same, independently
of the value of t. This is because the slab parameters have been obtained by “diluting”
the surface susceptibilities over the metasurface thickness. Thus, increasing the thickness
of the metasurface means decreasing its material parameters and vice-versa. The second
information that may be obtained from the figure is that, for the four different specified
refraction angles and for thin (t   λ0{5) metasurfaces, the amplitude of the desired refracted
waves remain the same with Ht{H0 � 0.55 whereas the expected ideal value should rather
be Ht{H0 � 1. The reasons for this low efficiency will be detailed shortly. The fact that all
transmitted angles have the same transmission amplitude is expected since, as discussed in
Sec. 3.2, only the transmitted power is expected to change for different angles of transmission
while the transmission amplitude remains the same.

Figure 6.2 also reveals that for a “thick” (t � λ0) metasurface, the larger the refraction angle,
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Figure 6.2 Normalized magnetic field amplitude of the refracted wave versus the metasurface
thickness for refraction angles of 20� (solid blue line), 30� (dotted green line), 45� (dashed
red line) and 60� (dashed-dot black line).

the less is the amount of energy going into the desired diffraction order. To understand why
this happens, we show the simulations corresponding to θt � 45� and t � r1{100, 1, 2, 4sλ0

in Figs. 6.3. The refraction transformation in Fig. 6.3a is relatively close to the expected
result. We can see that the refracted wave has a smaller beamwidth compared to the inci-
dent one, as expected from the discussion in Sec. 3.2. However, the amplitude is less than
expected and we also see the presence of undesired diffraction orders. When the metasur-
face thickness is increased to t � λ0, as in Fig. 6.3b, more diffraction orders appear which
further decreases the efficiency, as already pointed out in Fig. 6.2. The two extreme cases of
Figs. 6.3c and 6.3d illustrate one of the issue that exists with thick metasurfaces. In these two
figures, we see the presence of periodically repeating vertical lines inside the metasurfaces.
These vertical lines correspond to wave scattering inside the metasurfaces due to susceptibi-
lities with very large values. Indeed, a refractive metasurface exhibit periodically repeating
susceptibilities with values approaching infinity as evidenced in Figs. 3.1. This is verified by
noting that the period of the susceptibility functions, for the transformation of Figs. 6.3, is
P � λ0{ sin θt �

?
2λ0, which exactly corresponds to the period of the vertical lines that is

visible in Figs. 6.3c and 6.3d. Therefore, the incident wave impinging on the metasurface
starts to transform into the desired transmitted wave right at the top interface. The waves
inside the metasurfaces that propagate obliquely scatter on the regions of high susceptibility
values. This is notably visible in Fig. 6.3d where we can see the wave zigzagging inside the
metasurface. Consequently, the major reasons for the generation of spurious diffraction or-
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Figure 6.3 Normalized magnetic field simulated with COMSOL for refractive (θt � 45�)
metasurfaces of thickness: (a) t � λ0{100, (b) t � λ0, (c) t � 2λ0 and (d) t � 4λ0.

ders is the scattering occurring inside the metasurfaces themselves due to interactions with
the periodic material which constitutes them.

To better understand what is going on inside the metasurface, we further analyze the case
presented in Fig. 6.3b, where θt � 45� and t � λ0. The magnetic field is measured along
several line cuts for different position along z inside the metasurface. For each line cut, the
Fourier transform of the field is used to obtain the spatial harmonics existing at that corre-
sponding z-position. The corresponding result is shown in Fig. 6.4a, where the amplitude of
the spatial harmonics, normalized to that of the incident wave, is plotted versus the norma-
lized x-wavenumber as well as the position inside the slab ranging from z � 0 (metasurface
top interface) to z � λ0 (metasurface bottom interface).

The evolutions of the spatial harmonic corresponding to the incident wave (kx{k0 � 0) and
the spatial harmonic corresponding to the desired refracted wave (kx{k0 �

?
2{2) are plotted

in Fig. 6.4b in solid blue line and dashed red line, respectively.

We see from these two figures, that the amplitude of the incident wave decreases exponentially
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Figure 6.4 Spatial harmonics amplitude inside the refractive metasurface of Fig. 6.3b as
function of the position along the z-direction. (a) All the spatial harmonics with x-
wavenumber in the range �3 ¤ kx{k0 ¤ 3. (b) Spatial harmonic corresponding to kx{k0 � 0
(incident wave) in solid blue line and spatial harmonic corresponding to kx{k0 �

?
2{2 (re-

fracted wave) in dashed red line.

as it propagates inside the metasurface with parts of its energy being transferred to the
desired refracted wave. However, due to the scattering inside the metasurface, these two
waves also couple to undesired spatial harmonics notably those corresponding to kx{k0 �

?
2

and kx{k0 � �?2{2 and, to a lesser extent, to surface wave modes, i.e |kx{k0| ¡ 1. Moreover,
all the spatial harmonics propagating inside the metasurface experience attenuation due to
the lossy nature of this structure, as discussed in Sec. 3.2. Therefore, the combined effects
of coupling into undesired modes and attenuation due to loss explain the low efficiency that
was achieved in Figs. 6.3. Unfortunately, It is difficult to evaluate the exact impact of the
metasurface thickness on the efficiency of the transformation since the coupling mechanism
between the different modes is particularly complex and depends on the value of t and θt.

6.3 Summary

In this chapter, we have first seen that the reduction from 3D metamaterials to 2D meta-
surfaces reduces loss, weight, bulkiness and fabrication complexity but comes at the cost of
reduced electromagnetic transformation capabilities and higher dependance on the illumi-
nation specifications. Moreover, metamaterial structures, whether they are 3D or 2D, are
inherently dependant on the electromagnetic responses of their constituting scattering par-
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ticles, which are subwavelength resonators and are thus limited in terms of bandwidth and
suffer from temporal and spatial dispersion.

Next, we have presented two examples to illustrate the discrepancies between the expected
scattering responses and the simulated ones when the zero-thickness susceptibilities are ap-
plied to thin material slabs. There are two main sources of discrepancies: going from a
single interface to two interfaces, and increasing the thickness. If the transformation does
not change the direction of wave propagation, then the slab thickness has no additional effect
beyond the initial change, as is the case of the absorber that was presented above. Note
that transformations like rotation of polarization or wave retardation are not affected by the
nonzero thickness due to the susceptibility “dilution” process. However, if the direction of
wave propagation is affect by the metasurface, then important undesired scattering occurs,
which increases with increasing thickness.
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CHAPTER 7 Conclusions and Future Works

In this thesis, we have presented an extended discussion on the mathematical synthesis and
practical realization of electromagnetic metasurfaces. The work developed throughout this
document is based on a collection of several published papers that have been extended and
modified to form a coherent text. The main goal of this work was to provide the reader with
a metasurface synthesis framework which is as comprehensive as possible.

Metasurfaces were introduced in Chapters 1 and 2 as thin electromagnetic discontinuities
being the two-dimensional reductions of 3D metamaterials. In order to simplify the mat-
hematical synthesis problem and obtain the susceptibilities of the metasurface in terms of
the specified fields, the metasurface was assumed to be of exactly zero-thickness. Upon this
basis, Chapters 2 introduced a rigorous metasurface synthesis method based on susceptibility
tensors. The method can be used to perform any electromagnetic transformation, without
needing to resort to case-specific synthesis techniques. In most cases, the technique provides
closed-form expressions for selected electric and magnetic susceptibility components to theo-
retically treat electromagnetic transformations where the incident, reflected and transmitted
waves can be specified arbitrarily. We have notably seen that several different combinations
of susceptibilities produce the exact same scattered fields. Another important consideration
which was pointed out is the fact that a fully bianisotropic metasurface has enough degrees
of freedom to simultaneously transform several independent sets of incident, reflected and
transmitted waves. Chapter 2 also discussed the conversion from susceptibilities to scattering
parameters, which is of fundamental importance for the practical realization of metasurfaces.
Finally, we have proposed an extension of the synthesis technique to include second-order
nonlinear susceptibility tensors and provided the reflectionless conditions of nonlinear meta-
surfaces with corresponding full-wave scattering analyses.

Chapter 3 put into practice and further detailed several of the concepts previously developed
and discussed in Chapter 2. In this chapter, we have investigated the synthesis of mono-
anisotropic and bianisotropic refractive metasurfaces. We have seen that monoanisotropic
metasurfaces lead to lossy and relatively inefficient transformations, while perfect refraction
can be achieved with bianisotropic metasurfaces. We provided another method to perform
the synthesis of metasurfaces, which consists in specifying the transformation in terms of
scattering parameters instead of exact electromagnetic fields. This alternative synthesis met-
hod, while not being perfectly rigorous when a change in the direction of wave propagation
is required, still provides a good efficiency that approaches that of bianisotropic refractive
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metasurfaces.

Chapter 4 addressed the practical realization of metasurfaces. We have presented two dif-
ferent candidates for the implementation of the metasurface scattering particles: unit cells
composed of cascaded metallic layers, and dielectric resonators. Both structures present their
own advantages and disadvantages in terms of loss, fabrication complexity, unit cell size and
number of available degrees of freedom to control the electromagnetic fields.

Chapter 5 presented a collection of several metasurface concepts and applications, among
which many structures have been fabricated and measured. Dielectric resonator metasurfa-
ces were implemented to engineer the temporal dispersion of spatial structures and electro-
magnetic wave plates. Metasurfaces with metallic scattering particles were then fabricated
to perform various operations such as: wave plate transformations, polarization beam sepa-
ration, orbital angular momentum generation, coherent spatial beam modulation and space
wave to surface wave conversion. Additionally, we have also discussed other concepts such
as: the synthesis of a nonreciprocal nongyrotropic metasurface and metasurfaces controlling
radiation pressure. Finally, we have briefly presented the topic of metasurface cavities to
enhance the light emission of single-photon sources or light-emitting diodes, which is still an
on going research project involving several other people.

Finally, Chapter 6 developed on the inherent limitations of metasurfaces as well as the limi-
tations of the synthesis technique. We have seen that the main drawbacks of metasurfaces
are: their limited bandwidth due to the resonant nature of the scattering particles, the mi-
nimal size of the unit cells which prevents the realization of rapid spatial variations of the
susceptibility functions and, to some extent, the fact that their ideal scattering behavior is
mostly limited to the specified excitation.

Overall, metasurfaces are part of a very rich area of research that may lead to a wealth of
possible new concepts and applications. While this work covers a large number of topics
related to the synthesis and realization of metasurfaces, there remain several major research
topics that need to be tackled and investigated. Here, we provide a non-exhaustive list of
proposed future research directions:

 Increasing the bandwidth of metasurfaces and enabling the capabilities of multi-wavelength
transformations. This is one of the most important improvements that is required for
the realization of many practical metasurface applications.

 Developing better models to relate the shape of the scattering particles to their material
parameters. The realization of the metasurface scattering particles is always a tedious
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and time-consuming task. Any improvement, either in the mathematical modelling of
scatterers or in the numerical simulation performance of commercial software, would
be welcome for large scale developments of metasurface systems.

 Investigating in more depth the topic of nonlinear metasurfaces, which is still a re-
latively new and almost unexplored area of research and which definitively deserves
further theoretical and experimental developments. For instance, one could perform an
experimental verification of the nonreciprocal and reflectionless scattering behavior of
the second-order electric and magnetic nonlinear metasurfaces discussed in Chapter 1.

 Deriving a complete synthesis procedure for the conversion of space waves to surface
waves that would be more efficient than the one used in this work and that would also
provide the exact susceptibilities of leaky-wave type metasurfaces. Indeed, the GSTCs
based synthesis of the space wave to surface wave metasurface system concept discussed
in Chapter 5 is limited and requires a complicated combination of gain and loss. Thus,
it may be possible to find a more adequate way to perform the synthesis that would
not lead to such intricate susceptibility functions.

 Improving the metasurface boundary conditions so as to take into account higher-order
multipole moments and thus achieve a more accurate description of the metasurface
response. Multipole moments may provide additional degrees of freedom and a better
control of the electromagnetic fields in certain situations. This particular topic is further
discussed in the next section.

7.1 Boundary Conditions of Higher-Order

The generalized sheet transition conditions (GSTCs) used to derive the synthesis method
described in this document are developed assuming that the metasurface induces discon-
tinuities of the fields but not discontinuities of the field derivatives. As such they correspond
to zeroth-order boundary conditions and may only account for induced dipolar moments.

To illustrate a situation where these zeroth-order GSTCs lead to unpractical susceptibility
results, we provide a simple example. Let us consider the synthesis of a reflectionless meta-
surface that exhibits a transmission phase shift, φ, when illuminated by a normally incident
plane wave. For this specific case of normally propagating waves, we can rigorously use
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relations (2.31) to obtain the susceptibilities, which read

χee � χmm � � 2
k0

tan
�
φ

2



. (7.1)

We directly see that when φ � π, the susceptibilities become infinite. It is not really surprising
that such an abrupt and complete phase reversal leads to infinite susceptibilities since we
are considering zeroth-order discontinuities. In which case, the fields at the metasurface are
proportional to a Dirac delta distribution, which is symmetric around the discontinuity. It
would therefore seem more appropriate to consider first-order boundary conditions where the
fields at the metasurface are proportional to the first derivative of a Dirac delta distribution,
which is asymmetric around the discontinuity.

Accordingly, we will now derive the first-order boundary conditions which apply to zero-
thickness interfaces. The following derivations are based on the same principles that were
already used to derive the GSTCs in Appendix A and which are based on the work of
Idemen [155].

Assume that each term in Maxwell equations can be written in the following form:

fpzq � tfu � f0δpzq � f1δpzq1, (7.2)

where at z � 0, the position of the metasurface, each term and its first derivative can be both
discontinuous. This means that the terms fk are all zero for k ¥ 2 whereas, for the GSTCs,
they were all zero for k ¥ 1. The boundary conditions are ultimately given by (A.9) but one
first needs to recursively solve the compatibility relations (A.10). Solutions must be found
for k � 1 and inserted into the relations for k � 0 and finally substituted into the boundary
conditions (A.9). Knowing that all terms are zero for k � 2, relations (A.10) expressed for
k � 1 yields

ẑ �H1 � 0, ẑ �E1 � 0, ẑ �D1 � 0, ẑ �B1 � 0. (7.3)

Using D � ε0E � P and B � µ0pH �M q along with (7.3), one can find the tangential
components of D and B and the normal component of E and H , which read

D1,‖ � ε0E1,‖ � P1,‖ � P1,‖, (7.4a)

B1,‖ � µ0H1,‖ � µ0M1,‖ � µ0M1,‖, (7.4b)

H1,z � 1
µ0
B1,z �M1,z � �M1,z, (7.4c)
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E1,z � 1
ε0
D1,z � 1

ε0
P1,z � � 1

ε0
P1,z. (7.4d)

Inserting (7.4) into the compatibility relations (A.10) for k � 0 yields

ẑ �H0 � jωP1,‖ �∇‖ �M1,z, (7.5a)

ẑ �E0 � �jωµ0M1,‖ �∇‖ � 1
ε0
P1,z, (7.5b)

ẑ �D0 � �∇‖ � P1,‖, (7.5c)

ẑ �B0 � �∇‖ � µ0M1,‖. (7.5d)

The same method used to go from (7.3) to (7.4) is applied here with (7.5), which gives

D0,‖ � ẑ � jωε0µ0M1,‖ � ẑ �∇‖ � P1,z � P0,‖, (7.6a)

B0,‖ � �ẑ � jωµ0P1,‖ � ẑ �∇‖ � µ0M1,z � µ0M0,‖, (7.6b)

H0,z � �∇‖ �M1,‖ �M0,z, (7.6c)

E0,z � �∇‖ � 1
ε0
P1,‖ � 1

ε0
P0,z. (7.6d)

Finally, all the required k � 0 components are defined with (7.5) and (7.6). The boundary
conditions can be directly obtained by substituting them into (A.9), which leads to

ẑ � rrHss � jω
�
ẑ � jωε0µ0M1,‖ � ẑ �∇‖ � P1,z � P0,‖

�� ẑ �∇‖
�
∇‖ �M1,‖ �M0,z

�
,

(7.7a)
ẑ � rrEss � jω

�
ẑ � jωµ0P1,‖ � ẑ �∇‖ � µ0M1,z � µ0M0,‖

�� ẑ �∇‖
1
ε0

�
∇‖ � P1,‖ � P0,z

�
,

(7.7b)
ẑ � rrDss � �∇‖ �

�
ẑ � jωε0µ0M1,‖ � ẑ �∇‖ � P1,z � P0,‖

�
, (7.7c)

ẑ � rrBss � �µ0∇‖ �
�
M0,‖ � ẑ � jωP1,‖ � ẑ �∇‖ �M1,z

�
. (7.7d)

Relations (7.7) are the boundary conditions of first order. They can be compared to the
GSTCs of zeroth-order given in (A.14). One can easily verify that if all terms with subscript
1 (corresponding to k � 1) are dropped, relations (7.7) will reduce to (A.14). Similarly
to what has been done to obtain relations (2.14), the normal component of P and M
can be dropped yielding boundary conditions expressed only in terms of tangential surface
polarization densities

ẑ � rrHss � jω
�
ẑ � jωε0µ0M1,‖ � P0,‖

�� ẑ �∇‖
�
∇‖ �M1,‖

�
, (7.8a)
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ẑ � rrEss � jω
�
ẑ � jωµ0P1,‖ � µ0M0,‖

�� ẑ �∇‖
1
ε0

�
∇‖ � P1,‖

�
, (7.8b)

ẑ � rrDss � �∇‖ �
�
ẑ � jωε0µ0M1,‖ � P0,‖

�
, (7.8c)

ẑ � rrBss � �µ0∇‖ �
�
M0,‖ � ẑ � jωP1,‖

�
. (7.8d)

Compared to (2.14), the last term of relations (7.8a) and (7.8b) contain spatial derivatives.
Meaning that solving (7.8) may be more involved than the usual GSTCs.

At this stage, we know that P 0 and M 0 may take the general form of (2.7). However, the
exact form that P 1 and M 1 should take remains unknown. As a consequence, this work
deserves further investigation not only to properly define all the relevant quantities in (7.7)
but also to evaluate the usefulness of the boundary conditions in (7.7) compared to those
in (2.4).
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APPENDIX A Distribution Based Generalized Sheet Transition Conditions

In this appendix, we provide a comprehensive derivation of the generalized sheet transition
conditions. The following work is based on [127,128,155]. Note that an alternative derivation
of the GSTCs is also proposed in [156]. A function fpzq that is discontinuous up to the N th

order at z � 0 may be expressed in the sense of distributions as

fpzq � tfpzqu �
Ņ

k�0
fkδ

pkqpzq. (A.1)

In this relation, tfpzqu and °N
k�0 fkδ

pkqpzq are the regular and singular parts of fpzq, respecti-
vely. The regular part is defined for z � 0 in the sense of usual functions as

tfpzqu � f�pzqUpzq � f�pzqUp�zq, (A.2)

where Upxq is the unit step function and f�pzq denote the parts of fpzq in the regions z » 0.
The singular part, defined at z � 0, is a Taylor-type series, where δpkqpzq is the kth derivative
of the Dirac delta function, and fk is the corresponding weighting coefficient, which is z-
independent.

The function fpzq in (A.1) represents here any of the quantities in Maxwell equations. Since
these equations involve spatial derivatives, the question arises as how to compute the z-
derivative of fpzq. Since fk does not depend on z, taking the z-derivatives of the singular
part of (A.1) only increases the derivative order of the Dirac delta function, from k to k� 1.
On the other hand, the derivative of the regular part, given by (A.2), involves the derivative
of Up�q, which may be expressed in the sense of distributions, in connection with a test
function φ, as

xU 1, φy � � xU, φ1y � xδ, φy , (A.3)

where x�, �y represents the functional inner product. In (A.3), the first equality was obtained
by integrating by part and taking into account the fact that φ has a finite support, while the
second equality follows from setting the lower bound of the integral to zero for eliminating
U , using the fact that the primitive of φ1 is φ, by definition, and again that φ has a finite
support, and finally applying the sifting property of the Dirac delta function according to
which φp0q � xδ, φy. In other words, the derivative of the unit step function is the Dirac
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delta function. Therefore, using (A.3), the z-derivative of (A.2) is obtained as

d

dz
tfpzqu �  

f 1�pzqUpzq � f 1�pzqUp�zq
(� rf�p0q � f�p0qsδpzq � tf 1u � rrf ss δpzq, (A.4)

where tf 1u (curl bracket term in the second equality) represents the regular part of the
derivative of fpzq, defined at z � 0, and the term rrf ss (square bracket term in the second
equality) represents the singularity, at z � 0. Remember that the unit of δpzq is pzq�1 since³�8
�8

δpzqdz � 1 is dimensionless.

Rigorous GSTCs can now be derived using (A.1) and (A.4). The derivation is performed
here only for Maxwell-Ampère equation, as the derivations for the other Maxwell equations
are essentially similar. Maxwell-Ampère equation in the monochromatic regime reads

∇�H � J � jωD. (A.5)

Expressing H in the form (A.1) and using the transverse-longitudinal decomposition ∇ �
∇‖ � ẑ B

Bz
transforms the left-hand side of (A.5) into

∇�H � ∇‖ � tHu � ẑ � B
Bz tHu �

Ņ

k�0
∇‖ �Hkδ

pkqpzq �
Ņ

k�0
ẑ � B

BzHkδ
pkqpzq. (A.6)

In the right-hand side of (A.6), the second term can be evaluated using (A.4) while the
derivative in the last term only affects the Dirac delta function sinceHk does not depend on
z. Therefore, Eq. (A.6) becomes

∇�H � ∇‖�tHu� ẑ�
" B
BzH

*
� ẑ�rrHss δpzq�

Ņ

k�0
∇‖�Hkδ

pkqpzq�
Ņ

k�0
ẑ�Hkδ

pk�1qpzq,
(A.7)

where the first two terms and the last two terms are the regular and singular parts, respecti-
vely.

Substituting (A.7) along with the (A.1) expressions of D and J into (A.5) finally transforms
Maxwell-Ampère equation into

∇‖ � tHu � ẑ �
" B
BzH

*
� ẑ � rrHss δpzq �

Ņ

k�0
∇‖ �Hkδ

pkqpzq �
Ņ

k�0
ẑ �Hkδ

pk�1qpzq

� tJpzqu �
Ņ

k�0
Jkδpkqpzq � jω tDpzqu � jω

Ņ

k�0
Dkδ

pkqpzq,

(A.8)
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where tJpzqu is a volume current, measured in (A/m2), while Jk represents surface currents,
measured in (A�mk�1) since the unit of δpkqpzq is (1/mk�1). One may now equate the terms
of the same discontinuity orders, i.e. of same Dirac derivative orders, in this equation and
in the other three corresponding Maxwell equations1. The result is, for the terms of order
δp0qpzq � δpzq,

ẑ � rrHss �∇‖ �H0 � J0 � jωD0, (A.9a)

ẑ � rrEss �∇‖ �E0 � �K0 � jωB0, (A.9b)

ẑ � rrDss �∇‖ �D0 � ρ0, (A.9c)

ẑ � rrBss �∇‖ �B0 � m0, (A.9d)

and, for the terms of order δpkqpzq with k ¥ 1,

ẑ �Hk�1 �∇‖ �Hk � Jk � jωDk, (A.10a)

ẑ �Ek�1 �∇‖ �Ek � �Kk � jωBk, (A.10b)

ẑ �Dk�1 �∇‖ �Dk � ρk, (A.10c)

ẑ �Bk�1 �∇‖ �Bk � mk. (A.10d)

Equations (A.9) are the universal boundary conditions for monochromatic waves at a planar
surface at rest, while Eqs. (A.10) are compatibility relations that must to be recursively app-
lied to determine the unknown terms in (A.9) [155]. Note, letting z Ñ 0 in the regular parts
of (A.9), the presence of additional terms compared to the case of conventional boundary
conditions (e.g. Eq. (A.9a), where rrHss � rHpz � 0�q �Hpz � 0�qs and J0 is the sheet
surface current, includes the additional terms ∇‖ �H0 and jωD0).

Let us now specialize to the case of interest: an infinitesimal sheet discontinuity in free space.
This means that the quantities Jk, Kk, ρk and mk exclusively reside at z � 0, so that
Jk � Kk � ρk � mk � 0 for k ¥ 1, meaning that only the term k � 0 survives in the
series (A.1) for these quantities. However, the situation is different for the fields Ek, Ek, Dk

andBk, since these fields exist also at z � 0. Strictly, N Ñ 8 for these fields. However, since
the discontinuity is purely concentrated at z � 0, the Taylor-type series in (A.1) includes
only a small number of significant terms, and the series can be safely truncated at some value
of N . Choosing some value for N (e.g. N � 2), Eqs. (A.10) may be solved recursively for
k � N to k � 1, with Dk � εEk and Bk � µHk. This procedure reduces the compatibility

1Rigorously, the Dirac delta function disappears upon integrating over z terms of equal discontinuity
order.
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relations to

ẑ �H0 � 0, (A.11a)
ẑ �E0 � 0, (A.11b)
ẑ �D0 � 0, (A.11c)
ẑ �B0 � 0. (A.11d)

One may now introduce the electric and magnetic polarization densities, P and M, respecti-
vely, to account for the action of the scattering particles forming the metasurface. For this
purpose, the standard constitutive relations D � ε0E � P and B � µ0pH �M q are in a
form that properly models the first order surface discontinuity in (A.9), namely

D0 � ε0E0 � P 0, (A.12a)

H0 � 1
µ0
B0 �M 0, (A.12b)

where P 0 andM 0 represent the (first-order) electric and magnetic surface polarization den-
sities, respectively. In the absence of sources (J0 � K0 � ρ0 � m0 � 0), substitution
of (A.12) and application of (A.11) transforms (A.9) into

ẑ � rrHss � jωD0 �∇‖ �H0 � jωP 0,‖ �∇‖ �M 0,n, (A.13a)

ẑ � rrEss � �jωB0 �∇‖ �E0 � �jωµ0M 0,‖ � 1
ε0
∇‖ � P 0,n, (A.13b)

ẑ � rrDss � �∇‖ �D0 � �∇‖ � P 0,‖, (A.13c)

ẑ � rrBss � �∇‖ �B0 � �µ0∇‖ �M 0,‖, (A.13d)

where the subscripts ‖ and n denote transverse and normal components, respectively.

Using the relation ∇‖ � pẑψq � �ẑ � ∇‖ψ and the difference notation (2.5), Eqs. (A.13)
finally take the form

ẑ � ∆H � jωP ‖ � ẑ �∇‖Mz, (A.14a)

∆E � ẑ � jωµ0M ‖ �∇‖

�
Pz
ε0



� ẑ, (A.14b)

ẑ � ∆D � �∇ � P ‖, (A.14c)
ẑ � ∆B � �µ0∇ �M ‖. (A.14d)
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APPENDIX B Bianisotropic Poynting Theorem

In the following lines, we present a step-by-step derivation of the time-average bianisotropic
Poynting theorem in terms of susceptibility tensors. Even though the Poynting theorem is well
documented in the literature [157, 262, 263], it is important to present a detailed derivation
of this theorem, using the same conventions and material parameters (susceptibilities) used
throughout this document, for the completeness and self-consistency of this work.

The Maxwell-Faraday and the Maxwell-Ampère equations, assuming the presence of electric
current sources Je and magnetic current sources Jm, are respectively given by

∇�E � �Jm � BB
Bt , (B.1a)

∇�H � Je � BD
Bt , (B.1b)

with the bianisotropic constitutive relations defined by

B � µ0pH �M q, M � χmm �H � 1
η0
χme �E, (B.2a)

D � ε0E � P , P � ε0χee �E � 1
c0
χem �H . (B.2b)

Pre-Multiplying (B.1a) by H and (B.1b) by E and subtracting both equations yields

H � p∇�Eq �E � p∇�Hq � �E � Je �H � Jm �E � BDBt �H � BBBt . (B.3)

The left-hand side of (B.3) may be simplified using the following vectorial identity:

H � p∇�Eq �E � p∇�Hq � ∇ � pE �Hq, (B.4)

where the cross product E�H corresponds to the Poynting vector S. This transforms (B.3)
into

∇ � S � �E � Je �H � Jm �E � BDBt �H � BBBt . (B.5)

The two last terms of (B.5) may be further simplified so as to obtain the final form of the
bianisotropic Poynting theorem. Here, we show only the derivations for �E � BD

Bt
but very

similar considerations can be made about �H � BB
Bt
. Using the fact that D � ε0E � P , we
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have that
�E � BDBt � �E � BBtpε0E � P q � �ε0E � BBtE �E � BBtP . (B.6)

Splitting each term into two equal parts and rearranging them leads to

�E � BDBt � �1
2ε0E � BBtE � 1

2E � BBtP � 1
2ε0E � BBtE � 1

2E � BBtP . (B.7)

Further slight manipulations of the terms on the right-hand side of (B.7) as well as the
addition of the two following extra terms: 1

2P � B
Bt
E � 1

2P � B
Bt
E, which is a neutral addition

since these two terms cancel each other, leads to

�E � BDBt � �1
2E �

B
Btε0E� 1

2E �
B
BtP � 1

2
B
BtE �ε0E� 1

2
B
BtE �P � 1

2E �
B
BtP � 1

2P � BBtE, (B.8)

which, by grouping together the two first, middle and last terms, reduces to

�E � BDBt � �1
2E � BBtpε0E � P q � 1

2
B
BtE � pε0E � P q � 1

2

�
E � BBtP � P � BBtE



. (B.9)

Again making use of D � ε0E � P , we have that

�E � BDBt � �1
2E � BBtD � 1

2
B
BtE �D � 1

2

�
E � BBtP � P � BBtE



. (B.10)

Finally, grouping together the two first terms yields

�E � BDBt � �1
2
B
BtpE �Dq � 1

2

�
E � BBtP � P � BBtE



. (B.11)

As said above, very similar considerations can be made for the term �H � BB
Bt

in (B.5) which
becomes

�H � BBBt � �1
2
B
BtpH �Bq � µ0

2

�
H � BBtM �M � BBtH



. (B.12)

Now substituting (B.11) and (B.12) into (B.5) allows one to express the bianisotropic Poyn-
ting theorem as

Bw
Bt �∇ � S � �IJe � IJm � IP � IM, (B.13)

where w is the energy density, S is the Poynting vector and IJe, IJm, IP and IM correspond
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to work done on “charges”. These quantities are respectively defined by

w � 1
2 pE �D �H �Bq (B.14a)

IJe � E � Je (B.14b)
IJm �H � Jm (B.14c)

IP � 1
2

�
E � BBtP � P � BBtE



(B.14d)

IM � µ0

2

�
H � BBtM �M � BBtH



(B.14e)

For the purpose of this work, it is more useful to look at the time-average version of (B.13)
which is given by ABw

Bt
E
�∇ � @SD � �@IJe

D� @
IJm

D� @
IP
D� @

IM
D
, (B.15)

where x�y corresponds to the time-average operation. For time-harmonic fields, it is straig-
htforward to show that xBw

Bt
y � 0 and that

@
S
D � 1

2 RepE �H�q. The terms
@
IJe

D
and@

IJm
D
may be expressed as functions of the electric and magnetic susceptibility tensors by

first considering that J e � σe �E and Jm � σm �H . And, secondly, by considering that the
electric and magnetic conductivity tensors read

σe � �ωε0 Impχeeq �
jωε0

2 pχee � χ�eeq, (B.16a)

σm � �ωµ0 Impχmmq �
jωµ0

2 pχmm � χ
�
mmq, (B.16b)

leading to

@
IJe

D � 1
2 RepE� � Jeq � 1

2 RepE� � σe �Eq � 1
4 Re

�
jωε0E

� � pχee � χ
�
eeq �E

�
, (B.17a)@

IJm
D � 1

2 RepH� � Jmq � 1
2 RepH� � σm �Hq � 1

4 Re
�
jωµ0H

� � pχmm � χ
�
mmq �H

�
.

(B.17b)

Now, the terms
@
IP
D

and
@
IM

D
in (B.15) are expressed in the frequency domain, which

transforms the time-derivatives in (B.14d) and (B.14e) into B
Bt
Ñ jω. Consequently, these
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terms become

@
IP
D � 1

4 Re rE� � pjωP q � P � � pjωEqs � 1
4 Re rjωpE� � P � P � �Eqs , (B.18a)@

IM
D � µ0

4 Re rH� � pjωM q �M� � pjωHqs � 1
4 Re rjωµ0pH� �M �M� �Hqs . (B.18b)

Substituting P and M in (B.18) by their definition given in (B.2) transforms (B.18) into

@
IP
D � 1

4 Re rjωε0pE� � pχee �E � η0χem �Hq �E � pχee �E � η0χem �Hq�qs , (B.19a)@
IM

D � 1
4 Re rjωµ0pH� � pχmm �H � χme �E{η0q �H � pχmm �H � χme �E{η0q�qs .

(B.19b)

Finally, rearranging and simplifying the terms in (B.19) leads to

@
IP
D � 1

4 Re
�
jωε0pE� � pχee � χ:eeq �E � 2η0E

� � χem �Hq
�
, (B.20a)@

IM
D � 1

4 Re
�
jωµ0pH� � pχmm � χ:mmq �H � 2E� � χ:me �H{η0q

�
, (B.20b)

where the operator : corresponds to the transpose conjugate operation. The final expression
of the time-average bianisotropic Poynting theorem for time-harmonic fields is given by

∇ � @SD � �@IJe
D� @

IJm
D� @

IP
D� @

IM
D
, (B.21)

where
@
IJe

D
,
@
IJm

D
,
@
IP
D
and

@
IM

D
are respectively provided in (B.17) and (B.20).

The physical interpretation of (B.21) is that the amount of loss or gain that an electromag-
netic field experiences when propagating through a volume of a given medium is related to
the difference of electromagnetic energy entering and existing that volume. If the medium
is perfectly lossless and passive, the divergence of the average Poynting vector is zero, i.e.
∇ � @SD � 0, meaning that the amount of electromagnetic energy entering and exiting the
medium is equal. In the case of a lossy medium, there is more energy entering than leaving
the volume leading to ∇ � @SD   0 and vice-versa for a gain medium where ∇ � @SD ¡ 0.
Note that the fact that ∇ � @SD � 0 is a necessary but not sufficient condition to assert that
the medium is passive and lossless since compensation between the terms on the right-hand
side of (B.21) may occur.

By substituting (B.17) and (B.20) into (B.21), we obtain an alternative form of the Poynting
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theorem which reads

∇ � @SD �� 1
4 Re

�
jωpε0E

� � p2χee � χ�ee � χ:eeq �E � µ0H
� � p2χmm � χ�mm � χ:mmq �H

� 2k0E
� � pχme � χ

:
emq �Hq

�
.

(B.22)

The general conditions for passivity and losslessness can be easily obtained from (B.22).
Assuming that the medium is also reciprocal1, these relations read

χ
T
ee � χ

�
ee, χ

T
mm � χ

�
mm, χ

T
me � χ

�
em. (B.23)

1The reciprocity conditions are given by χT
ee � χee, χ

T
mm � χmm, χ

T
me � �χem.
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APPENDIX C Relations Between Susceptibilities and Polarizabilities

Here, we provide the expressions that relate the susceptibilities, used throughout this work,
and the polarizabilities, which are at the basis of the synthesis technique developed by the
group of Prof. Sergei Tretyakov1. The susceptibilities and the polarizabilities are related to
each other through the expressions of the microscopic electric and magnetic dipole moments,
p and m, and the surface polarization densities, P and M , as P � p{S and M � m{S,
where S is the unit cell area. The first step is to express the difference and the average of
the fields on both sides of the metasurface using the formalism in [264]. We have that the
backward radiated fields from the metasurface induced dipole moments are

Eback,p � �jω2Sη0p, Eback,m � jω

2Sn�m, (C.1)

where the normal vector n � �ẑ. Similarly, the forward radiated fields are

Eforw,p � �jω2Sη0p, Eforw,m � �jω2Sn�m. (C.2)

The electric fields on both sides of the metasurface are respectively given by

E|z�0� � Einc �Eback,p �Eback,m, (C.3a)
E|z�0� � Einc �Eforw,p �Eforw,m. (C.3b)

Noting that, for plane waves propagating along z, the magnetic field may be expressed as
H � �n�E{η0, which leads to

H |z�0� � �n� Einc

η0
� n� Eback,p

η0
� n� Eback,m

η0
, (C.4a)

H |z�0� � �n� Einc

η0
� n� Eforw,p

η0
� n� Eforw,m

η0
. (C.4b)

1The following relations have never been published and were originally derived by Viktar Asadchy who, at
the time of writing, was pursing a PhD in electromagnetics under the supervision of Prof. Sergei Tretyakov
in Aalto University.
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Finally, upon insertion of (C.1) and (C.2) into (C.3) and (C.4), the average fields are

Eav � 1
2 pE|z�0� � E|z�0�q � Einc � jωη0

2S p, (C.5a)

Hav � 1
2 pH |z�0� � H |z�0�q �H inc � jω

2Sη0
m. (C.5b)

Now that the average fields have been obtained as functions of the induced dipole moments,
we may use the microscopic constitutive relations to relate the polarization densities to the
polarizabilities. The microscopic constitutive relations, expressed in terms of the incident
electromagnetic field and the effective polarizabilities, read [264]

p � α̂ee �Einc � α̂em �H inc, (C.6a)
m � α̂me �Einc � α̂mm �H inc. (C.6b)

Substituting (C.5) into (C.6) and making use of the fact that P � p{S and M � m{S,
leads to

P � S � α̂ee �
�
Eav � jωη0

2 P



� α̂em �

�
Hav � jω

2η0
M



, (C.7a)

M � S � α̂me �
�
Eav � jωη0

2 P



� α̂mm �

�
Hav � jω

2η0
M



. (C.7b)

This linear system of equations may be solved so as to express P andM as functions of the
effective polarizabilities as

P � C
�1
p �

�
α̂ee �Eav � α̂em �Hav � α̂em

jω

2η0
�
�
SIt � α̂mm

jω

2η0


�1

�
�
α̂me �Eav � α̂mm �Hav

	�
,

(C.8a)

M � C
�1
m �

�
α̂me �Eav � α̂mm �Hav � α̂me

jωη0

2 �
�
SIt � α̂ee

jωη0

2


�1

�
�
α̂ee �Eav � α̂em �Hav

	�
,

(C.8b)

where It is the tangential unit dyadic and the tensors Cp and Cm read

Cp � SIt � α̂ee
jωη0

2 � ω2

4 α̂em �
�
SIt � α̂mm

jω

2η0


�1

� α̂me, (C.9a)

Cm � SIt � α̂mm
jω

2η0
� ω2

4 α̂me �
�
SIt � α̂ee

jωη0

2


�1

� α̂em. (C.9b)
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In (C.8), the polarization densities, P andM , have been expressed in terms of the microsco-
pic effective polarizabilities. They can now be related to the macroscopic susceptibilities via
the constitutive relations used throughout this work and which are given by

P � ε0χee �Eav � χem
1
c0
�Hav, (C.10a)

M � χmm �Hav � χme
1
η0
�Eav. (C.10b)

Finally, the susceptibilities can be expressed as functions of the polarizabilities by inser-
ting (C.8) into (C.10) and associating the terms that multiply the average electric and mag-
netic fields in both equations. This leads to the following relations

χee �
1
ε0
C
�1
p �

�
α̂ee � jω

2η0
α̂em �

�
SIt � α̂mm

jω

2η0


�1

� α̂me

�
, (C.11a)

χem � c0C
�1
p �

�
α̂em � jω

2η0
α̂em �

�
SIt � α̂mm

jω

2η0


�1

� α̂mm

�
, (C.11b)

χme � η0C
�1
m �

�
α̂me � jωη0

2 α̂me �
�
SIt � α̂ee

jωη0

2


�1

� α̂ee

�
, (C.11c)

χmm � C
�1
m �

�
α̂mm � jωη0

2 α̂me �
�
SIt � α̂ee

jωη0

2


�1

� α̂em

�
. (C.11d)

We see that the polarizabilities are related to the susceptibilities in a non-straightforward
fashion. As can be seen, for instance, the purely electric susceptibility, χee, is related to all
bianisotropic polarizabilities except in the case where the magnetoelectric coupling tensors,
α̂em and α̂me, are zero.
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APPENDIX D Nonlinear Metasurface Simulation in Finite-Difference
Time-Domain

Here, we present how the metasurface 1D finite-difference time-domain (FDTD) simulation
scheme developed in [3] may be modified to account for nonlinear susceptibility components.
We use the exact same conventions as in [3] to avoid any possible confusion.

This FDTD scheme consists in using traditional FDTD update equations everywhere on the
simulation grid at the exception of the nodes that are before and after the metasurface. For
these specific nodes, the update equations are modified, using the GSTCs relations, to take
into account the effect of the metasurface. The conventional FDTD 1D equations, for a Yee
grid, are given by

H
n� 1

2
x piq � H

n� 1
2

x piq � ∆t
µ0∆z

�
En
y pi� 1q � En

y piq
�
, (D.1a)

En
y piq � En�1

y piq � ∆t
ε0∆z

�
H
n� 1

2
x piq �H

n� 1
2

x pi� 1q
	
, (D.1b)

where i and n correspond to the cell number and time coordinates and ∆z and ∆t are their
respective position and time step. In the FDTD scheme, the metasurface is inserted at a
virtual node in between the positions i � nd and i � nd � 1, corresponding to a position
between an electric and a magnetic node, as depicted in Fig. D.1. To take into account
the effect of the metasurface, a virtual electric node is created right before the metasurface
(at i � 0�) and a virtual magnetic node is created right after the metasurface (at i � 0�).
From (D.1), the update equations for Hn� 1

2
x pndq and En

y pnd�1q are connected to these virtual
nodes via the following relations

H
n� 1

2
x pndq � H

n� 1
2

x pndq � ∆t
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�
, (D.2a)
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, (D.2b)

where the value of the electric and magnetic fields at the virtual nodes are obtained from the
GSTCs relations given by

∆Hx � ε0χ
p1q
ee

B
BtEy,av � ε0χ

p2q
ee

B
BtE

2
y,av, (D.3a)

∆Ey � µ0χ
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B
BtHx,av � µ0χ

p2q
mm

B
BtH

2
x,av. (D.3b)
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Hx

Ey

x

z
y

Hxpnd ´ 1q Hxpndq Hxpnd ` 1q Hxpnd ` 2q

Eypndq Eypnd ` 1q Eypnd ` 2q

metasurface

Figure D.1 1D FDTD Yee grid with a metasurface placed in between the nodes. The two
small circles, before and after the metasurface, represent the electric and magnetic virtual
nodes, respectively. Original image from [3].

Note that, to remain consistent with the developments in [3], the GSTCs are here given for
y-polarized waves instead of x-polarized waves as in (2.60). Using (D.3), the expression of
the electric and magnetic fields at the virtual nodes in (D.2) read
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where the average electric field is defined by

En
y,av �

En
y pndq � En

y pnd � 1q
2 , (D.5)

and similarly for the average magnetic field. Substituting (D.4) along with (D.5) into (D.2)
leads to two quadratic equations that may be independently solved to obtain the final update
equations. These two quadratic equations yield, each one of them, two possible solutions but
only one of the two corresponds to a physical behavior. The two solutions that produce
physical results are

H
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2
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where the discriminant ∆h is given by
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and the discriminant ∆e is given by
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(D.8)

Because of the square roots in (D.6), the update equations may lead to nonphysical behaviors
depending on the values of the two discriminants. This limits the range of allowable values
that the susceptibilities and the amplitude of the incident field may take.
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