UNIVERSITE DE MONTREAL

API FAILURES IN OPENSTACK CLOUD ENVIRONMENTS

SEYED POOYA MUSAVI MIRKALAEI
DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

AOUT 2017

(© Seyed Pooya Musavi Mirkalaei, 2017.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé :

API FAILURES IN OPENSTACK CLOUD ENVIRONMENTS

présenté par : MUSAVI MIRKALAEI Seyed Pooya

en vue de 'obtention du diplome de : Maitrise és sciences appliquées

a été diment accepté par le jury d’examen constitué de :

M. ANTONIOL Giuliano, Ph. D., président
M. KHOMH Foutse, Ph. D., membre et directeur de recherche
M. DESMARAIS Michel C., Ph. D., membre

1ii

DEDICATION

This thesis is dedicated to my parents and my familly.

iv

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere appreciation to my supervisor Dr. Foutse Khomh
for the continuous support of my Master study and for his patience, motivation, and immense

knowledge.

My sincere thanks also goes to Prof. Bram Adams who gave me co-guidance on writing my
first scientific paper and how to be persistent on the work. Bram, I was lucky to work with you.
I do not know how to say thanks to you. And my special thanks to Prof. Yann-Gaél Guéhéneuc
who taught me the fundamentals of the empirical study in software engineering. I have learned
a lot from you professors in the Department of Computer and Software Engineering. My

studies would not have been possible without your helps.

Besides my advisor and my professors, I would like to thank the rest of my thesis commit-
tee : Dr. Giuliano Antoniol, Dr. Foutse Khomh and Dr. Michel Desmarais for accepting my

invitation to be jury members.

RESUME

Des histoires sur les pannes de service dans les environnements infonuagiques ont fait les
manchettes récemment. Dans de nombreux cas, la fiabilité des interfaces de programmation
d’applications (API) des infrastructures infonuagiques étaient en défaut. Par conséquent,
la compréhension des facteurs qui influent sur la fiabilité de ces APIs est importante pour
améliorer la disponibilité des services infonuagiques. Dans cette these, nous étudions les
défaillances des APIs de la plateforme OpenStack ; qui est la plate-forme infonuagique a code
source ouvert la plus populaire a ce jour. Nous examinons les bogues de 25 modules contenus
dans les 5 APIs les plus importantes d’OpenStack, afin de comprendre les défaillances des
APIs infonuagiques et leurs caractéristiques. Nos résultats montrent que dans OpenStack, un
tiers de tous les changements au code des APIs a pour objectif la correction de fautes; 7% de
ces changements modifiants I'interface des APIs concernés (induisant un risque de défaillances
des clients de ces APIs). Grace a 'analyse qualitative d’un échantillon de 230 défaillances
d’APIs et de 71 défaillances d’APIs ayant eu une incidence sur des applications tierces, nous
avons constaté que la majorité des défaillances d’APIs sont attribuables a de petites erreurs
de programmation. Nous avons également observé que les erreurs de programmation et les
erreurs de configuration sont les principales causes des défaillances ayant une incidence sur
des applications tierces.

Nous avons mené un sondage aupres de 38 développeurs d’OpenStack et d’applications tierces,
dans lequel les participants étaient invités a se prononcer sur la propagation de défaillances
d’APIs a des applications tierces. Parmi les principales raisons fournies par les développeurs
pour expliquer 'apparition et la propagation des défaillances d’APIs dans les écosystemes
infonuagiques figurent : les petites erreurs de programmation, les erreurs de configuration, une
faible couverture de test, des examens de code peu fréquents, et une fréquence de production
de nouvelles versions trop élevé.

Nous avons exploré la possibilité d’utiliser des controleurs de style de code, pour détecter
les petites erreurs de programmation et les erreurs de configuration tot dans le processus de
développement, mais avons constaté que dans la plupart des cas, ces outils sont incapables
de localiser ces types d’erreurs.

Heureusement, le sujet des rapports de bogues, les messages contenues dans ces rapports,
les traces d’exécutions, et les délais de réponses entre les commentaires contenues dans les

rapports de bogues se sont avérés tres utiles pour la localisation des fautes conduisant aux
défaillances d’APIs.

vi

ABSTRACT

Stories about service outages in cloud environments have been making the headlines recently.
In many cases, the reliability of cloud infrastructure Application Programming Interfaces
(APIs) were at fault. Hence, understanding the factors affecting the reliability of these APIs
is important to improve the availability of cloud services. In this thesis, we investigate API
failures in OpenStack ; the most popular open source cloud platform to date. We mine the
bugs of 25 modules within the 5 most important OpenStack APIs to understand API failures
and their characteristics. Our results show that in OpenStack, one third of all API-related
changes are due to fixing failures, with 7% of all fixes even changing the API interface,
potentially breaking clients. Through a qualitative analysis of 230 sampled API failures,
and 71 API failures that impacted third parties applications, we observed that the majority
of API-related failures are due to small programming faults. We also observed that small
programming faults and configuration faults are the most frequent causes of failures that
propagate to third parties applications. We conducted a survey with 38 OpenStack and third
party developers, in which participants were asked about the causes of API failures that
propagate to third party applications. These developers reported that small programming
faults, configuration faults, low testing coverage, infrequent code reviews, and a rapid release
frequency are the main reasons behind the appearance and propagation of API failures.
We explored the possibility of using code style checkers to detect small programming and
configuration faults early on, but found that in the majority of cases, they cannot be localized
using the tools. Fortunately, the subject, message and stack trace as well as the reply lag
between comments included in the failures’ bug reports provide a good indication of the cause

of the failure.

vii

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGMENTS iv
RESUME v
ABSTRACTo vi
TABLE OF CONTENTS oot vii
LIST OF TABLES ix
LIST OF FIGURES o oo, X
LIST OF ANNEXES xi

CHAPTER 1 INTRODUCTION
1.1 Research Objectives 2
1.2 Thesis Plan

W

CHAPTER 2 BACKGROUND
2.1 Cloud computing
2.2 Publiccloudo
2.3 Privatecloud
24 Hybrid Cloud
2.5 Hypervisor o e
2.6 TaaS
2.7 PaaS
2.8 SaaS
2.9 AWS . e
2.10 OpenStack

2.11 Contalners

N 3 3 O O O O O ot ot Ot Ot Ot

2.12 Containers vs VIS o . o o

CHAPTER 3 LITERATURE REVIEW
3.1 API Changes

viii

3.2 Failure Characterization 8
3.3 API Failures in the Cloud 9
3.4 Mining Software Repositories (MSR) 11
3.5 Our Goal and Motivation. L 11
CHAPTER 4 METHODOLOGY AND DESIGN 13
4.1 Case Study Setup 1 13
4.1.1 Studied Systemso 13
4.1.2 Data Extraction 14
4.1.3 Explanatory Model oL 16
4.2 Case Study Setup 2 18
4.2.1 Fault Type Identification 18
4.2.2 Apply Code Style Checkers 19
4.2.3 SUIVEY 19
CHAPTER 5 CASE STUDY RESULTS 21
5.1 (RQ1) How often are APIs changed to fix API failures? 21
5.2 (RQ2) What are the most common types of API failures and faults? 22
5.3 (RQ3) What are the bug fixing characteristics of the different fault types? . 25
5.4 (RQ4) What are the main factors explaining the bug fixing process of small
programming faults?o 30
5.5 (RQ5) What type of faults are the most impactful? 32
5.6 (RQ6) Are code style checkers able to localize the faults behind the API failures ? 33
5.7 (RQT7) Why do faults propagate from OpenStack to third-party software? . . 34
CHAPTER 6 THREATS TO VALIDITY 37
6.1 Construct validity threats 0L 37
6.2 Internal validity threats 37
6.3 Threats to external validity 0. 38
CHAPTER 7 CONCLUSION e 39
7.1 Summary of the Results 39
7.2 Future Work 40
REFERENCES e 41

ANNEXES . . o 46

TABLE 4.1
TABLE 4.2
TABLE 4.3
TABLE 5.1

TABLE 5.2
TABLE 5.3
TABLE 5.4
TABLE 5.5
TABLE 5.6

LIST OF TABLES

Characteristics studied oo
Confusion Matrix
Descriptive statistics of the APIs.
Analysis of the 25 most important modules in OpenStack. TC :Total
Commits, MSC : Method Signature Changes, NMSC : Non Method
Signature Changes, FB : Fixing Bugs. All percentages are relative to
TC.
Prevalence of API fault types
Prevalence of API failure types
Decision tree top-node analysis score of metrics after 100 iterations. .
Fault types found that affected third parties.

Test case statistics.

X

14
18
19

FIGURE 1.1

FIGURE 1.2
FIGURE 1.3
FIGURE 4.1
FIGURE 5.1
FIGURE 5.2
FIGURE 5.3
FIGURE 5.4
FIGURE 5.5
FIGURE 5.6
FIGURE 5.7
FIGURE 5.8
FIGURE 5.9
FIGURE 5.10
FIGURE 5.11
FIGURE 5.12
FIGURE 5.13
FIGURE 5.14

FIGURE 5.15
FIGURE 5.16
FiGurk B.1

LIST OF FIGURES

A sample of a third party program (e.g., Docker) calling OpenStack
APIs [53].
Overview of our approach for answering RQ1, RQ2, RQ3 and RQ4 . .
Overview of our approach to answer RQ6, RQ7 and RQ8..

Overview of our approach for answering RQ4

Bug No.1362221-Small programming fault.
Bug No.1362985-Major programming fault.
Bug No.1354500-Configuration fault.
Bug No.1339235-Race condition.
Bug No.1370191-Deadlock condition
Bug No.1333177-Data format fault
Bug No.1272114-Improper log message

Developer activity (number of commits in the whole data set).
Developer experience (number of commits before fixing current fault).
Call distance (number of modules in the stack trace).

Code churn (size of fix).

Bug activation in number of days.

Performance measurements for 100 iterations.

Do you think Small faults are the most common faults in the OpenStack
ecosystem™? L.
Which API fault have you experienced most?

Why do faults propagate from OpenStack to third party software ?

SUIVEY . . o o o

17
25
25
25
26
27
27
27
28
28
28
29
29
29

35
35
35

Annexe A

Annexe B

LIST OF ANNEXES

CO-AUTHORSHIP
SURVEY

xi

CHAPTER 1 INTRODUCTION

An Application Programming Interface (API) is a set of public methods [1] that is meant to be
used by other software applications. For example, cloud APIs are provided by a cloud platform

to enable applications in the cloud to interact with, deploy or manage the platform [6].

In general, cloud applications are divided into three parts : Software as a Service, known
as SaaS, (e.g., Gmail), Platform as a Service, known as PaaS (e.g, CloudFoundry) and In-
frastructure as a Service, known as IaaS such as Amazon Web Services! as a closed source
and OpenStack as one of the popular open source in this context [47]. In PaaS, the sys-
tem’s provider determines how the application infrastructure should operate [49]. PaaS uses
container tools (e.g., Docker) to build and deploy applications [51] on the cloud platforms
such as OpenStack. Containers are a method of virtualization that allows to run applications
and their dependencies in resource-isolated processes. Tools such as Docker take advantages
of TaaS APIs (Figure 1.1) to accomplish their tasks, e.g., the creation of containers and other

deployment activities [50] [52].

In practice, cloud platforms experience outages [55] and it is unavoidable. Too often, develo-
pers experience API call failures that threaten the reliability and availability of their cloud
apps. Failures of cloud apps generally result in big economic losses as core business activities
now rely on them [9]. For example, on December 24, 2012, a failure of Amazon web services
caused an outage of Netflix cloud services for 19 hours. An outage of Google in 2013 brought
down the Internet traffic by 40% [56], and Amazon Web Services outage brought down Quora,
Reddit, FourSqure, part of the New York Times website, and almost 70 other sites [57] [59]
in 2011. Hence, understanding factors affecting the reliability of cloud APIs is important to

improve the availability of cloud services.

Lu et al. [7] who investigated API failures in Amazon EC2 services classified their causes in
three categories : development, physical and interaction faults. There have also been studies
that have attempted to detect faults (e.g., [9] [15] [16]) responsible for these API failures.
However, to the best of our knowledge, the analysis and characterization of the causes (faults)

of API failures have not been studied so far.

G) G | 2N

[o (2)deploy Contajng |
e

‘\\\
Jsend request

\ OpenStack APIs / \ Virtual machine /

FIGURE 1.1 A sample of a third party program (e.g., Docker) calling OpenStack APIs [53].

API R " N
(Git) \ Change Extraction RQ1

Mailing Characteristic Extraction » | RQ3
List

i Random -
APIL Sampling
Bug Related To Related Sa$n3c:es » RQ2
APT Failures i
EFaiIure Extraction
Explanatory Model > RQ4

FIGURE 1.2 Overview of our approach for answering RQ1, RQ2, RQ3 and RQ4

1.1 Research Objectives

In this thesis, we quantitatively examined API failures in OpenStack. We consider as API
failure any run-time problem related to the interface or implementation of an API, caused
by API designers or implementers, eventually causing an outage of a service. Additionally,
we qualitatively analyze the causes of API failures by mining the source code from which
the failures originated, as well as their fixes. Moreover, we aim to find out why and which
faults in OpenStack mostly are causing failures that impact third parties applications. By
third parties, we mean containers (e.g., Dockers) that uses the OpenStack APIs. Specifically,

we address the following research questions :

(RQ1) How often are APIs changed to fix API failures?

1. http ://www.aws.com

If affected Detect Fault E »| RQ1

third parties ~ Type . 7

iFault Type dentification | . :
Y
Apply code

style checker > RQ2

Design Broadcast in N
Survey communities » RQ3

FI1GURE 1.3 Overview of our approach to answer RQ6, RQ7 and RQ8.

A quantitative study of the 25 most important modules in OpenStack shows that (a) A
median of 23% of API changes are related to the API interface (b) A median of 7% of all
APT interface changes are due to the fixing of a failure and (¢) Of all the API changes that
do not alter the API interface, a median of 24% are due to the fixing of a failure. In total,

we observed that one third of changes to the API are due to fixing failures.
(RQ2) What are the most common types of API failures and faults ?

Based on our analysis of 230 randomly selected fixes, we classify the causes of the API failures
into seven categories including : small programming faults (56%), major programming faults
(14%), configuration faults (14%), race conditions (5%), deadlock conditions (5%), improper
log message faults (4%) and data format faults (3%). We also observed that db errors (16%),
test errors (15%), network errors (10%), deployment errors (4%) and security errors (4%) are

the most frequent symptoms of failures.
(RQ3) What are the bug fixing characteristics of the different fault types?

The small programming faults are fixed by developers with less development activity in
comparison to major programming faults. We also found that there is no significant difference
in call distance between major programming faults and configuration faults. We observed that
small programming faults do not take less time to fix in comparison to major programming
faults. Furthermore, there is no difference in developer experience (who fixed) between small

programming, configuration and major programming faults.

(RQ4) What are the main factors explaining the bug fixing process of small

programming faults ?

We developed a composite model of a Naive Bayesian and Decision Tree classifier that takes
into account features such as subject, message, stack trace and reply lag from issue report. We
noticed that the subject, message and stack trace information, and the number of developers
working on a fix for a failure as well as the reply lag are the most important characteristics

of failures caused by small programming faults.
(RQ5) What type of faults are the most impactful ?

Small faults again dominate. We found that 60% of failures that affect third parties ap-
plications are due to small programming faults. The other faults behind these failures that
propagate to third parties applications are major faults (25%), configuration (12%), deadlock
(1%), improper log message (1%), data format (1%) and race (0%).

(RQ6) Are code style checkers able to localize the faults behind the API failures ?

Code style checkers are powerful developers’ assistants which are able to recommend refacto-
ring points and check for errors that are violating code conventions. Based on our observation
they could not localize the faults behind the studied API failures. The faults that were fixed
did not fall into the problematic blocks suggested by the code style checkers. The reason is
that these faults are so tied to the logic of the program that developers implemented at the

time, according to the business situations or requirements.
(RQT7) Why do faults propagate from OpenStack to third-party software ?

Our observations and a survey of 38 OpenStack and third party developers, team leaders and
architects, suggest that (1) low testing coverage, (2) infrequent code reviews, and (3) a rapid

release frequency, are the main reasons behind the propagation of API failures.

1.2 Thesis Plan

Chapter 2 presents background in the area of cloud computing, its tools and terminology.
Chapter 3 outlines literature review in the areas of software reliability, focusing on APIs in
cloud and non-cloud environments, failure characterization, mining software repositories and
followed by our goal in this thesis. Chapter 4 includes the design methodology ; our two case
study setups and the overall layout by which we perform empirical studies on the API failures
and faults taxonomy, and the impact of API failures in OpenStack cloud environments. It
also explains the machine learning models that we built for the study. In Chapter 5 we present
our findings. Chapter 6 presents the limitations and threats to the validity of our work and

finally in Chapter 7, we conclude our work and outline some avenues for future works.

CHAPTER 2 BACKGROUND

In this chapter, we discuss concepts essential to the comprehension of this thesis.

2.1 Cloud computing

“Cloud computing refers to both the applications delivered as services over the Internet and
the hardware and systems software in the data centers that provide those services' [46]. Cloud
computing has enabled industries to get their applications up and running faster. In fact, In
cloud computing, I'T and end-users can access cloud resources such as servers, networks and
applications via the Internet, following the Pay-As-You-Go model in which users can pay

only for the amount of computing services that they might need.

2.2 Public cloud

In public cloud, a service provider makes resources, such as applications and storage, available
to the general public over the Internet. This type of cloud computing is often criticized in

terms of data exposure and security concerns.

2.3 Private cloud

Private clouds are similar to public clouds, but a private cloud is dedicated to a single
organization. Security issues are less likely to happen in comparison to public cloud. This

solution is suitable for protecting sensitive and valuable data.

2.4 Hybrid Cloud

A combination of public and private cloud allowing work loads to move between private and
public cloud. Important and sensitive data can be stored in a private cloud while less-critical
computations can be in a public cloud. Hybrid cloud is a solution for dynamic or highly

changeable work loads.

2.5 Hypervisor

A hypervisor which is known as virtual machine monitor (VMM) is a software, firmware or

hardware that enables creating and running virtual machines.

2.6 IaaS

Infrastructure as a service (IaaS) is a form of cloud computing that provides virtualized
computing resources over the Internet. The best known example is Amazon Elastic Compute
Cloud (EC2), which provides a variety of instances that customers can lease to deploy their

applications.

2.7 PaaS

Platform as a service (PaaS) is a category of cloud computing that offers a platform to
customers, allowing them to develop and manage applications without the complexity of
building and maintaining the infrastructure associated with launching the applications. The
key benefit of PaaS is that users can focus only on the development and deployment of their
applications. Microsoft Azure is the best known example of such services in cloud. Other

examples of PaaS providers include Heroku, Google App Engine, and Red Hat’s OpenShift.

2.8 SaaS

Software as a Service (SaaS) offers all the functions of an application through a Web browser,
not a locally-installed application. SaaS tends to eliminate tasks concerning servers, storage,
application development and common concerns of IT. GMail by Google is the best known

example of SaaS.

2.9 AWS

Amazon Web Services (AWS) ! is a comprehensive cloud computing platform and infrastruc-

ture provided by Amazon Inc.

1. https ://aws.amazon.com/

2.10 OpenStack

OpenStack? is an open source cloud infrastructure that controls large pools of compute,
storage, and networking resources which all are managed through a dashboard giving ad-
ministrators control while giving power to their users to provision resources through a web
interface. In fact OpenStack lets you build an Infrastructure-as-a-Service (IaaS) cloud that
runs on commodity hardware. The long-term goal of open stack is to produce a ubiquitous
open source cloud computing platform that meets the needs of public and private cloud provi-
ders regardless of their size. These days OpenStack is being widely used by many organization

in their private clouds.

2.11 Containers

A container is a stand-alone, executable package of a piece of software that includes everything
needed to run the application inside : code, runtime, system tools, system libraries, settings.
In fact containers’ goal are application isolation and they do it by providing an abstract
OS to the apps inside them. Containerized software will always run the same, regardless of
the environment. Containers isolate software from its surroundings and help reduce conflicts
between teams running different software on the same infrastructure. Containers use cloud

infrastructure APIs to process their functions. An example of a container tools is Docker.

2.12 Containers vs Vms

Virtualization has a significant role in the cloud computing. It enables creating virtual re-
sources, such as computer server, storage device, or an operating system. A virtual machine
provides an abstract machine that uses device drivers targeting the abstract machine, while
a container provides an abstract operating system. Applications running in a container envi-
ronment share an underlying operating system, while VM systems can run different operating
systems. If you want run multiple copies of a single app, maximum amount of particular ap-
plications on a minimum of servers, say PostgreSQL, you use a container. If you need to run
multiple applications on servers or have a wide variety of OS you’ll want to use VMs. And if

security is number one for your company, then stay with VMs.

2. https ://openstack.org/

CHAPTER 3 LITERATURE REVIEW

In this chapter, we discuss related works and explain how these works are different from our

work.

3.1 API Changes

Nowadays, frameworks are widely used in modern software development to reduce both deve-
lopment costs and time. Software frameworks and libraries change their APIs as they evolve.
Dig et al. [1] studied five well known open source systems (Eclipse, Log4J, Struts, Mortgage
and JHotDraw) in order to understand how APIs change. Their goal was to allay the burden
of reuse on maintenance efforts. For each component under the study they chose two major
releases that held large architectural changes. The advantages of choosing major releases as
comparison points are : (1) the large number of changes between two major releases, and (2)
the documentation of these changes, which allow for a detailed analysis of the API changes.
Dig et al. [1] report that changes that break existing applications are not random and 80%

of these changes are due to refactorings.

Wu et al. [43] studied the Apache and Eclipse open source projects to understand API
changes and usages. They developed a tool named ACUA to analyse and classify the API
changes and usages in 22 framework releases from the Apache and Eclipse ecosystems as
well as their client programs. Their data set included 11 framework releases, which represent
20,399 classes, 171 internal client programs including 95,273 classes, and 42 third-party client
programs, composed of 26,227 classes. They found that (1) Missing interfaces are rare and
new releases of frameworks often experience missing classes and methods and this affects
client programs more often than other API changes. (2) On average, 35% of client’s classes
and interfaces use the APIs of a framework. (3) Refactorings help reduce the API usages in
the client programs. (4) Client programs can encapsulate 14% and 8% of APIs in Apache
and Eclipse frameworks. This encapsulation helps reduce the APT usages. (5) Apache internal

programs showed that API changes and encapsulable API-injection usages are correlated.

3.2 Failure Characterization

Gray [2] examined the root cause of a sample of failures reported at Tandem Computers
Inc., over a period of seven month. The sample set included more than 2,000 systems and

represents over 10,000,000 system hours or over 1,300 system years. His analysis shows that

administration and software are the major causes of system failures. He also pointed out that
a software product often undergoes soft faults and a transaction mechanism combined with
persistent process-pairs can provide a fault-tolerant state in executions, which can reduce the

faults of a software.

Oppenheimer et al. [3] performed a qualitative study on a mature internet portal (Online),
a global content hosting service (Content), and a mature read-mostly service (ReadMostly).
In their analysis they found that improvement in the tools related to maintenance activities
would decrease time to diagnose and repair problems. All of these services were geographi-
cally distributed and use commodity hardware and networks. They extracted more than 500
component failures and analyzed the causes of the failures along with effectiveness of various
techniques for preventing and mitigating these failures. They found that (1) in two of the
three studied services, the operator error is the largest cause of failures (2) operator error
is the largest contributor to the time to repair in two of the three services, (3) configura-
tion errors are the largest category of operator errors, (4) failures in front-end software are
significant, and (5) more extensive online testing could reduce failure rates in at least one

service.

Li et al. [4] studied bugs in Microsoft Bing’s data analytic jobs, which were written in SCOPE
[5]. They investigated not only major failure types, failure sources, and fixes, but also de-
bugging practices. They found that (1) 84.5% of the failures are caused by defects in data
processing rather than defects in code logic. (2) Table-level failures (22.5%) are caused by
developers’ mistakes and frequent data-schema changes while row-level failures (62%) are
mainly caused by exceptional data. (3) 93% of bug fixes do not change data processing logic,
and (4) 8% of failures have their root causes far from the failure-exposing stage, making their

debugging hard.

3.3 API Failures in the Cloud

The closest work to our work that categorizes failures in a cloud environment is the work
of Lu et al. [7]. They studied nearly 900 issues related to API failures from Amazon EC2
forums. They classified the causes of failures into three categories : development, physical and
interaction. They found that (1) 60% of failures are due to “stuck" API calls or unresponsive
calls. (2) 12% of cases of failures are due to slow responsive API calls which included un-
successful calls with unclear error messages, missing output, wrong output, and unexpected
output. (4) 9% of failures were pending for a period of time and when they were called again

they were successful.

10

Lu et al. also conducted another study about the performance of APIs in the cloud. They first
observed API issues during the development of their commercial disaster recovery software,
i.e., Yuruware Bolt, which heavily relied on APIs to perform disaster recovery operations.
They extracted 2,087 cases of API failures from a wide range of sources (a broader investiga-
tion than their previous empirical study [7] which only covered 922 cases). A large percentage
of the cases were inevitable latency or timing failures, i.e., stuck API calls and slow responses
which can not be reduced in a large system. They gathered failure reports from several pu-
blic sources including the Amazon EC2 discussion forum as well as technical analysis of API
issues during outages from reputable sources such as Amazon outage reports, Netflix tech-
nical blogs, and Availability Digest. In total, they classified the 2,087 API failures into two
sub-types : content failures (55% of API issues) and timing failures (45% of API issues).

Distributed data-intensive systems are the building blocks of many internet software services.
Distributed systems are widely used and are considered production quality. These systems
can fail and do so sometimes catastrophically, where users might experience an outage or
data loss. Ding et al. [55] studied 198 randomly real world failures in five widely used, data-
intensive distributed systems; Cassandra and HBase (two NoSQL distributed databases),
Hadoop Distributed File System (HDFS), Hadoop MapReduce (a distributed data analytic
framework), and Redis (an inmemory key-value store supporting master/slave replication).
Their goal was to better understand how errors evolve into application failures and eventually

some of them evolve into service-wide catastrophic failures.

They found that the error logs of these systems contain enough data on both the errors
and the input events enabling the diagnostic process and the reproduction of the failures.
From a testing point of view, the failures required only 3 nodes or fewer to be reproduced
which is a good news since these services normally need a large number of nodes to run.
They concluded that the majority of catastrophic failures could easily have been prevented

by performing simple testing even without an understanding of the software design.

Gunawi et al. [17] performed a quantitative and qualitative analysis of cloud issues. They
conducted rather a large comprehensive study of the deployment and development issues of
the most important cloud systems; Hadoop, MapReduce, HDFS, HBase, Cassandra, Zoo-
Keeper and Flume. They reviewed 21,399 issues from bug repositories (1/1/2011-1/1/2014)
and they performed a deep analysis of 3655 “vital" issues, i.e., the issues that affected de-
ployments activities. For each vital issue, they analyzed the patches and all the developer’s
answers, and classify them in eight categories : security, reliability, availability, performance,
scalability, data consistency, topology and QoS. They also considered hardware failures such

as disks, memory, network and processors. Examples of the reason for hardware failures are

11

mentioned as stop, corrupt or limp. In their findings, they could categorize the issues by
a variety of bug types such as optimization, configuration, error handling, data race, hang,
space, load and logic bugs. Gunawi et al. [17] also studied the bug issues by implication such
as performance, failed operations, performance problems, data loss, component downtime,
staleness, and corruption. Additionally, they measured the impact of bugs as single machine,

multiple machine or the whole cluster.

3.4 Mining Software Repositories (MSR)

Mining Software Repository (MSR) has been widely used over the past decade in software
engineering. Researchers have proposed techniques that augment traditional software engi-
neering data and tools, to solve important and challenging problems, such as bug detection,

code reuse, and—or process improvements Hassan [12].

For example, Tian et al. [13] have proposed a classification model that takes advantage of both
textual and source code features to identify defect fixes out of all submitted commits, instead
of manual inspection which might missed many data. Ibrahim et al. [26] used a composite
data mining approach to determine the main factors that drive developers to contribute to

a particular discussion thread based on a corpus of historical thread discussions.

In this thesis, we leverage similar MSR techniques to analyze artifacts from OpenStack repo-
sitories, in order to better understand the reasons behind API failures and the propagation

of these failures in the OpenStack ecosystem.

3.5 Our Goal and Motivation

Our overall goal in this work is to understand the failures and sources of faults in the OpenS-
tack cloud platform, that have been propagated and impacted third parties, using mining
software repository techniques. To achieve this goal, we perform an empirical study of OpenS-
tack bug reports including those issues related to failures by considering the stack traces and
third parties components within bug repositories’ contents. We also survey OpenStack and
third party developers, to obtain their opinion about the causes of API failures that propagate
to third party applications.

There are several factors that motivated us to pursue this goal. First, understanding the type
of API failures and faults could help make OpenStack practitioners aware of development
pitfalls to be avoided, and the results could give them insights for better debugging techniques.

Second, by performing a survey and analysing the participants’ feedbacks on the impact of

12

these faults, more specifically, the reasons behind the propagation of API faults could draw
the attention of developers, team leaders, architects and testers towards these faults, hence

potentially helping to identify them early.

13

CHAPTER 4 METHODOLOGY AND DESIGN

In this chapter, we describe our two case studies : (1) for RQ1 to RQ4 and (2) for RQ5 to
RQ7.

4.1 Case Study Setup 1

In this section, we describe the studied systems, and present our data extraction and analysis

approach. Figure 1 shows our approach to answer the research questions.

4.1.1 Studied Systems

OpenStack is an open source cloud infrastructure project launched by Rackspace Hosting and
NASA in 2010. It is governed by a consortium of organizations who have developed multiple
components that together build a cloud computing platform. OpenStack is an “Infrastructure
as a Service" platform. This means that users can deploy their own OS or applications on

top of OpenStack to virtualize resources like storage, networking and computing.

OpenStack hosts its bug repository on launchpad!. When a bug is reported related to an
API failure, a user would normally put the stack trace of the exception into the bug report
message. Then, the bug would be triaged by a developer in order to evaluate whether it is
valid or not and a priority to that bug would be assigned as well. At the end, when a patch or
a fix has been reviewed, a link to the corresponding git commit is added to the corresponding

bug report. We selected OpenStack as the case study system based on the following criteria :

Criterion 1 : Accessibility
Since OpenStack is an open source project, its source code, bugs and stack traces are available
online?. OpenStack is the most popular open source cloud platform, rivaling commercial

competitors like Amazon and Microsoft in popularity and feature set.

Criterion 2 : Traceability

The bug repository is linked with the review system through a hyperlink to review environ-
ment (Gerrit), and it is also possible to link to the resulting bug fix in the version control
system (git). Since we want to do a qualitative study on the files in which an API failure has
been fixed in order to understand the causes of the analyzed failures, this well-established

linkage is a must for our research.

1. https ://bugs.launchpad.org
2. https ://github.com/openstack

14

TABLE 4.1 Characteristics studied

Dimension Metric Unit Description & Rationale
Whether the developers have talked (mentioned the bug id) about
talked__in_ mailing list BOOLEAN this bug in the mailing list or not. Such bugs likely are more
. important or complex to fix.
importance b £ ot b Number of times that the status of a bug has been changed.
number_of_times_bug NUMBER ‘When a bug status changes frequently it indicates difficulty for
__status__changed A .
developers to make a decision on it.
severity NUMBER Shows how critical a bug is for a project.
number__of people_affected NUMBER Number of users affected by this bug.
The experience of the most recent developer who fixes the bug,
. based on the number of commits that he has made before
developer_experience NUMBER the current FIX. More complicated defects might need
fixing process more experienced developers.
Number of commits that the developer has done across
developer__activity NUMBER our whole data set. Simple bugs might not need more
active developers.
number__of developer A bug might require several developers during its life cycle,
. NUMBER P i
__working__on__bug indicating its difficulty.
bug activation_in_days NUMBER number of days to close the bugs as fixed.
The subject, message left by the reporter and exception
symptom subject__message and_ stack_ trace String thrown by the API.
ymp This characteristic indicates the symptoms of a failure.
. The number of modules existing in an exception.
call_distance NUMBER As this number increases, it might be more possible to have errors.
The more experienced in leaving comments, based on the
commenter__experience NUMBER number of comments the more helpful a discussion could be,
reducing the risk of defects slipping through.
comment__count NUMBER. The more gomm.ents are posted for an issue,
the more risk might be involved.
The number of lines of comments on an issue may indicate that
comment_ length NUMBER the discussed commit
has a high likelihood of introducing a bug.
The average time in between comments can be related to
reply_lag NUMBER the risk of a bug.
Normally, risky ones get faster replies to comments.
code__churn NUMBER Size of bug fix.
bug fix Average number of developers that changed the fixed file before.
ndev NUMBER Different developers modifying the same file might lead to
misunderstanding.
) Average time (#days) since the last change.
age NUMBER More recent clganges)are more likely to be error-prone.
The number of unique changes to modified files.
nue NUMBER more files have been changed, the more opportunities for defects.

In order to select the most important APIs for our study, we queried Amazon for the most
popular books related to OpenStack, resulting in 143 records. We reviewed the top 3 books
[21] [22] [23] and concluded that Nova, Swift, Heat, Neutron and Keystone are the five
most significant APIs. Books have been considered before in empirical studies on SE [18],

especially in cases where popularity, experience or terminology of practitioners are required.

4.1.2 Data Extraction

In order to access the bug and source code change data of OpenStack, we mined the official
launchpad as well as the data set provided by Gonzalez-Barahona et al. [19]. In launch-
pad, we manually investigate the cause of the failures (faults), while we use the data set of
Gonzalez-Barahona et al. [19] to perform our quantitative study such as exploring the faults’
characteristics. This data set has 221,671 commits from 2010-05 to 2015-02 in the scmlog
table. Its most important columns are revision (the hash id of the commit), committer id
(the id of the person that made the commit), date and the message (the text that the deve-
loper writes at the time of commit). It also has 55044 bug reports starting from 2010-07 to
2015-02. The most important columns of this table are issue (the bug number), type (the de-

15

cision status), summary (subject of the bug), description, status (whether it is Fixed Release,
Invalid or etc.), priority (High, Low or etc.) and submitted_on (the date that is reported).
Finally, there are 88842 emails starting from 2010-11 to 2015-02. It has two most important
columns : subject and message body. Since recent data has a lower chance of being fixed
than older data, we limited the data to 2015-02, in order to assure that we have more stable

resolved issues.

Change Extraction. For RQ1, we focus on the 5 most important API git repositories;
Nova, Swift, Heat, Neutron and Keystone. For each API, we fetched the 5 most important
modules. The programming language in OpenStack is Python and a module is a file (.py)
containing Python definitions and statements. We compared the differences between each
pair of consecutive commits of these modules to understand whether any changes related to
method signature occur or not, such as removing or adding parameter or even a deleting

method. If yes, we then checked whether the change happened for fixing a bug.

To know whether a commit is fixing a bug, we looked for “bug", “fix",“defect" and “patch"
keywords inside the commit messages. A similar approach to determine defect-fixing changes
has been used in other work [29] [30].

Failure Extraction. For this aim, we first use the data set of Gonzalez-Barahona et al. [19]
to fetch all fixed bugs for the year 2014. To further understand the causes of these failures
(“faults"), we then consider the subject, message and stack traces of the thrown exceptions
because they contain symptoms (side effects) of the failure and help understand better the
causes. We manually studied some bugs related to APIs and we understood that 90% of
bug reports related to API failures contain api and traceback keywords inside. Hence, we
performed a query to search for those bugs containing “api" and “traceback" within the body

of the bug messages. This resulted in 923 reports related to 135 projects.

Because investigating all of these reports is a time consuming task, we performed a statisti-
cal sampling with a 95% confidence level and a confidence interval of 5.5% to see how many
samples we need to study [24]. As such, we randomly selected 230 samples out of the 923
reports. Through these samples, we distinguished between bugs related to failures in OpenS-
tack APIs or client application programming failures. We were conservative and we studied
the developers’ and commenters’ messages to ensure that a bug is relevant to an OpenStack
API failure. We removed any unrelated bug from the list and randomly replaced it by another
bug. In launchpad, given the traceability between bug repository, review system and version
control system, we tracked each sampled bug’s review and fixes to analyze the differences

between the version before and after fix.

Characteristic Extraction. Table 1 shows the independent metrics and the rationale why

16

we select them to be used in RQ3 and RQ4 to build an explanatory model of small program-
ming faults, which are the most common kind of faults found in our analysis results. The
table shows 4 different dimensions of information available during the resolution of a cloud
API bug. We used bug, e-mail and source code repositories to extract the characteristics.
Amongst these metrics, the code churn, the number of developers working on a bug, ndev,
age, nuc and whether a bug is discussed in the mailing list are not in the bug reports, but are
extracted from source code and mail repository. The Call distance represents the number
of modules (files) called between the calling module until and API module raising a failure.
Our definition for experience is the number of commits that the developer has done before
in the control version system (git) before fixing the current bug [20], while developer activity

is the total number of commits the developer has done across our whole data set.

4.1.3 Explanatory Model

In this section, we describe our approach for constructing our explanatory model in RQ4

from the sample of 230 bugs.

Composite Data Mining Approach. While RQ2 analyzes and classifies failures, RQ3
builds an explanatory model to understand the important characteristics of the bug fixing
process of API failures caused by small programming faults as opposed to other faults. Since
a Decision Tree classifier does not have good support for the “String" data type and we want
to include textual subject, message and stack trace content into our model, we use a Naive

Bayesian classifier to deal with these fields of a bug report.

As shown in Figure 2, we use a composite model, similar to Ibrahim et al. [26], which involves
two data mining approaches. First, we apply a Naive Bayesian classifier (as used by spam
filters) [39] on the bug subject, message and stack trace content to determine how much this
information is relevant to small programming faults. Second, we add the calculated Bayesian
score (probability) to the other characteristics of Table 1 as the input to a Decision Tree

classifier.

The Naive Bayesian classifier. Similar to a spam filter, this classifier takes the subject,
message and stack trace from the training corpus. In fact, the Naive Bayesian classifier divides
the content into tokens and counts the occurrences of each token. These counts are used to
determine the probability of each token to be an indicator of the fault type. Finally, it gives
a score indicating whether a whole string is relevant to small programming faults. The closer

the score is to 1, the higher the probability that the content will be relevant.

The Decision Tree classifier. Our Decision Tree classifier takes the bug subject, message

17

Training Test
Data Data

Subject and stack trace £
2 e
= o
3 ~8
a Naive Bayesian 2 o
ey B 332
] Classifier b
@ —
=3 » 2
2 . ~
@ Apply trained
I+ model
a
Adding score Naive Naive Adding score
< Bayesian Bayesian S >
Score Score 2
&
2
S
S
o o
S 3
¢
o
o
=
>
Classify]
Decision Tree >
Classifier

4

FI1GURE 4.1 Overview of our approach for answering RQ4

and stack trace score from the Naive Bayesian classifier algorithm as input instead of the
original string data, together with the other characteristics discussed before. We use a Deci-
sion Tree classifier as a machine learning algorithm, since this classifier offers an explainable
model explicitly showing the main factors that affect a fault type, while many of the other ma-
chine learning techniques produce black box models that do not describe their classification

decisions. We have used the C4.5 algorithm [28] to create our Decision Tree.

Evaluation of the Model. To validate our model, similar to the strategy used by Macho
et al. [41], we use an 80-20 split. To this aim, we divide the studied bugs into two parts :
the training corpus-containing 80% of the data (randomly selected) and the testing corpus-
containing the remaining 20%. The training corpus is used to build the classification model,
while the testing corpus is used to test the accuracy of the model. This process is repeated
100 times to get more robust measurements. To this aim, we build a confusion matrix at each
iteration to measure the performance of our model. The confusion matrix looks like Table
4.2.

Based on the confusion matrix, we evaluate our explanatory model using the metrics below :

— Precision (P) : Proportion of failures correctly classified as small programming faults

(a) over all failures classified as small programming faults (a+c), i.e., p= %

— Recall (R) : Proportion of failures correctly classified as small programming faults

18

TABLE 4.2 Confusion Matrix

classified as

Actual category | Small fault | Not small fault
Small fault a b

Not small fault c d

(a) over all failures that are caused by small programming faults (a-+b), i.e., R = -4

— F-Measure : The harmonic mean of precision and recall, i.e., F = 2, Brecision—recall
’ ’ precision+recall

— Area Under Curve (AUC) : The range of AUC is [0,1], with a large value indicating
better model performance than random guessing and a value of 0.5 indicates that the

classifier is no better than random guessing.

4.2 Case Study Setup 2

Figure 1.3 shows our overall approach for studying the faults that impact the third parties.

4.2.1 Fault Type Identification

For RQ1, we looked at OpenStack [52] official website and we found out that Docker,
Kubernetes, and Apache Mesos are the recommended containers. Then we went through their
bug repositories to check if we can find out any bugs that originates from one of OpenStack
APIs. We searched several terms and keywords to see if we are able to find out any clues.
Unfortunately it was not possible. We encountered several failures that were reported to
be related to underlying layers within OpenStack APIs, but we could not track them to
Openstack, because there were no links that could lead us to see the origins of those failures
and their causes. We did the same for other containers bug repositories and we got a similar
result. Therefore, we made the decision to check inside OpenStack bug repository ? since we
were able to study the faults directly inside the source code. We first manually searched
several key words including container names and API failure. The best key words that we
found to track affected third parties is including the name of the container beside the name
of the API with the term “trace" (e.g, “Docker heat api trace"), we included quote to reduce
false positives. Similar approaches are used in Tourani et al. [60]. We repeated these steps for
the 10 most important OpenStack APIs. Our reference for the most important OpenStack
APIs is according to their official website [54] which includes : Nova, Neutron, Swift, Cinder,
Keystone, Glance, Horizon, Heat, Ceilometer, and Sahara. Table 4.3 shows some descriptive
statistics of these APlIs.

3. http ://bugs.launchpad.org

19

TABLE 4.3 Descriptive statistics of the APIs.

Domain # Commits # Contributors #Github stars # Releases Project start date

Nova compute technologies 45000+ 860+ 1900+ 140+ May 28, 2010
Neutron network 17000+ 550+ 820+ 120+ Aug 8, 2011
Swift storage system 6500+ 245+ 1470+ 70+ Dec 19, 2012
Cinder storage service 12000+ 350+ 100+ 500+ May 3, 2012
Keystone security 11500+ 360+ 340+ 120+ Feb 15, 2012
Glance disk image services 5800+ 300+ 380+ 110+ Jan 3, 2012
Horizon dashboard 12400+ 500+ 850+ 100+ Jan 12, 2011
Heat orchestratation of applications 13400+ 300+ 300+ 100+ Mar 13, 2012
Ceilometer events and metering 5900+ 260+ 240+ 90+ Mar 15, 2013
Sahara data processing 5700+ 160+ 160+ 90+ Mar 11, 2013

Finally, we removed all duplicated bug reports as well as those bugs that had no links to the

review system or git repository.

In addition to fault type identification, we paid special attention to the test cases as well.
We tried to investigate if along with fixes developers performed any actions on related test
cases, i.e, any test cases were added and/or modified. If there were no files in the commit
relevant to the tests found, we searched for the possible corresponding test cases of the classes
and methods in the related project by going to its CVS(git) repository. If no test cases were

found, we marked it as “no test case".

4.2.2 Apply Code Style Checkers

Code style checkers are tools that check for errors in codes, tries to enforce a coding standard
and looks for code smells. Since the bug repository of OpenStack is linked to its code review
system, i.e, commenters leave links inside issues’ threads in bug repository which directs
readers to the code review page. From the code review page, we can track committed fixes

(faults) inside the VCS (git) of OpenStack and locate the faulty versions.

Inside the faulty source codes, we noticed that there are four different programming lan-
guages; Python, Ruby, Unix Shell and Infrastructure-as-code. For Python source codes we
used pylint 4 to find out the smelly code blocks and codes not regulating the python standards
styles, for Ruby we used reek ?, for Shell scripts we used ShellChecker ¢ and for Infrastructure-

as-code we used Puppeteer 7 [61] code style checkers respectively.

4.2.3 Survey

For RQ3, we conducted a survey in order to obtain feedbacks from practitioners on our

findings, and more importantly to obtain their opinion about the reasons behind the propa-

4. http ://www.pylint.com

5. https ://github.com/troessner/reek

6. http ://www.shellcheck.net

7. https ://github.com/tushartushar/Puppeteer

20

gation of API failures. We designed a questionnaire® to survey both OpenStack and third
parties’ developers, architects and team leaders. The questionnaire has both closed-ended
(where participants had to choose an answer from a set of given options) and open-ended
(asking participants to write their own responses) questions. We grouped the questions the-
matically and ordered them from the more generic to the more specific. Participants were able
to skip any questions and could end the survey at any time. We sent out the questionnaire to
both OpenStack and third parties’ application developers by using their official Website and
mailing list®. The survey took place between the 15th of February and March 15th, 2017.

8. https ://goo.gl/forms/ecLTAQeGfjwgJj342
9. openstack@lists.openstack.org

21

CHAPTER 5 CASE STUDY RESULTS

In this section, we report and discuss the results for each research question.

5.1 (RQ1) How often are APIs changed to fix API failures?

Motivation. Due to different activities such as re-engineering, refactoring [1] and bug fixing,
libraries and frameworks often need to change. In the simplest case, only the implementation
of API methods needs to be fixed. Such changes are safe for API clients. However, changes
to an API’s signature would be problematic for the applications that are consuming them.
For example, consider a case in which a client application is calling a public method from an
API to accomplish a transaction on a user’s account. If this method in the API changes, a
failure would be raised by the API noting that this method does not exist within that API,
which leads the end-user of that service to suffer from the malfunctioning. In the worst case,

the end-user might even make a decision to change his service provider.

Hence, this question aims to understand the rate of API change for fixing failures in a
popular cloud platform like OpenStack. In this RQ, we investigate changes of both API

method signature and implementation.

Approach. We developed a Groovy! script and used the JGit? library to calculate the
following metrics for the 25 most important modules of the 5 most popular OpenStack APIs :
Total Number Commits, Number of Method Signature Changes and Number of Method
Signature Changes For Bug Fixing. We then distinguished between changes affecting the
API signature and others.

Findings. In total, 31% (one third) of all commits fixes API failures. We found
that a median value of 23% of the sampled API changes is devoted to signature
changes. Table 3 shows how this percentage fluctuates from 2% (keystone/common /utils.py)
to 15% (swift/common/utils.py). A median value of 7% of all commits changes the method
signature during the resolution of an API failure. On the other hand, the remaining 77%
commits not changing method signature have a median value of 24% for fixing failures as

well.

Our finding that 7% of API commits changes an API’s signature to fix a failure confirms

the result of Wu et al. [43], who analyzed and classified API changes and usages from 22

1. http ://www.groovy-lang.org/
2. http ://www.eclipse.org/jgit/

22

framework releases in Apache and Eclipse ecosystems. Wu et al. [43] found a median value
of 11% for the changes of API method signature. They considered such changes as rare. Our
finding that one third of API changes are related to (the fixing of) API failures prompts us

to the next research question.

5.2 (RQ2) What are the most common types of API failures and faults ?

Motivation. This RQ analyzes what API failures are the most common, as well as what are
the most popular causes (“faults") of these failures. This information is useful for developers
and clients alike, to better understand the failures that they are experiencing as well as to

have an indication of the possible faults responsible for the failures.

Approach. We conduct a qualitative study to manually evaluate the bug reports as well as
bug fixes of API failures during the year 2014 in OpenStack projects. We adopted a “Card Sor-
ting" technique to classify the symptoms and causes of the failures in 230 randomly selected
reports (see section 2.2). The “Card Sorting" technique [32] is an approach that systemati-
cally derives structured information from qualitative data. This technique is commonly used
in empirical software engineering when qualitative analysis and taxonomies are needed. For
example, Bacchelli et al. [34] used this technique to analyze code review comments, while
Hemmati et al. [35] used it to study survey discussions [37]. We used Google Keep? as a tool

for this purpose, since it allows to search through cards and can export them into a text file.

To that end, we first read each bug report’s stack trace to analyze the reported symptoms,
i.e., the exception or main error (e.g., “DbError Exception"). Second, we analyzed the cor-
responding bug fix changes. For example, when a developer added try-catch, he added this
kind of changes as a new card “adding try-catch'. We also added the symptom of each bug
in the same card as we classified its fault (cause). After analyzing all sampled defect reports,
we started clustering the cards into related topics. We did one clustering for the symptoms,

and one for the faults.

As initial inspiration for the fault clusters, we used the IEEE standard classification for
software anomalies * and Orthogonal Defect Classification (ODC) . However, we soon realized
that these classifications are too coarse-grained. For instance, we found a race condition as
a main cause of a failure, which is a much more detailed category than the IEEE Standard’s
“logic fault" and “Timing/Serialization" category in ODC. Hence, we started to classify the

faults in as much detail as possible.

3. http ://keep.google.com
4. http ://standards.ieee.org/findstds/standard/1044-2009.html
5. http ://researcher.watson.ibm.com /researcher/files/us-pasanth/ODC-5-2.pdf

23

TABLE 5.1 Analysis of the 25 most important modules in OpenStack. TC :Total Commits,
MSC : Method Signature Changes, NMSC : Non Method Signature Changes, FB : Fixing
Bugs. All percentages are relative to TC.

API Module Name TC AT MSC B NII\:/I]SC
engine/service.py 469 129 (27%) | 60 (12%) 123 (26%)
Heat engine/resource.py 433 139 (32%) | 49 (11%) 79 (18%)
(2012-2015) db/sqlalchemy/api.py 214 15 (7%) 9 (4%) 56 (26%)
api/openstack/v1/stacks 129 22 (17%) 5 (3%) 21 (16%)
common/wsgi.py 116 10 (8%) 5 (4%) 37 (31%)
identity/core.py 212 71 (33%) 27 (12%) 55 (25%)
Keystone ser\'zice.py 143 15 (10%) 12 (8%) 55 (38%)
(2012-2015) assignment /backends/ldap.py 118 24 (20%) 7 (5%) 33 (27%)
common /utils.py 105 15 (14%) 3 (2%) 38 (36%)
common/controller.py 114 31 (27%) 15 (13%) 28 (24%)
compute/manager.py 2775 | 843 (30%) | 195 (7%) 468 (16%)
Nova db/sqlalchemy /api.py 1972 | 194 (9%) 23 (1%) 319 (16%)
(2010-2015) compute/api.py 1867 | 664 (35%) | 146 (7%) 268 (14%)
api/ec2/cloud.py 776 197 (25%) | 23 (2%) 120 (15%)
virt/Tbvirt/driver.py 1803 | 472 (26%) | 194 (10%) | 343 (19%)
db/db_base_plugin_v2.py 204 | 58 (28%) | 20 (9%) | 76 (37%)
Neutron | Plugins/openvswitch/agent/ 197 | 47 (23%) | 20 (14%) | 74 (37%)
(2012-2015) ovs__neutron__agent.py
agent/13/agent.py 129 34 (26%) 7 (5%) 34 (26%)
db/13_db.py 120 [32 (32%) | 15 (12%) | 47 (39%)
plugins/ml2/drivers/openvswi/ 95 25 (26%) 11 (11%) 27 (28%)
agent/ovs neutron agent.py
common/utils.py 345 53 (15%) 13 (15%) 46 (13%)
Swift obj/server.py 212 25 (11%) 9 (4%) 28 (13%)
(2010-2015) proxy /controllers/obj.py 165 22 (13%) 12 (7%) 33 (20%)
container /server.py 140 11 (7%) 5 (3%) 19 (13%)
common/db.py 111 22 (19%) 8 (%) 9 (8%)
Median 23% 7% 24%
Total Median 31%

Findings. We obtained almost 30 categories of API faults, which we could group
into 7 higher level categories. However, we noticed that in many cases, a bug fix only
touches a couple of lines in one file, making simple logic changes like inverting logical condi-
tions, fixing typos in variable names or adding a new catch exception. Since such changes
only touched one file, and the changes were minor, we created one category for this and called
it “small programming faults". To clarify more, Figure 5.1 shows a sample of this fault type,

where the developer changes the default value of a variable to another value.

Contrary to small programming faults, we observed that many fixes involved several files
and/or multiple parts of files are touched by the developers. We created a category for this
and we called it “major programming faults". We include method signature changes (interface
faults) into this group as well. Figure 5.2 shows a sample of this kind of faults where a
developer changes the method signature by adding more parameters. While enumerating
the samples for major programming faults, we separately counted the statistics for method
signature changes to see whether there exists any aligned statistics with our previous result
for RQ1 on the five most important APIs.

24

“Configuration faults" is another category of causes of API failures, where a wrong value is
set in a configuration file. Figure 5.3 shows a bug that is fixed by the correction of a value

in a configuration file.

As mentioned earlier, we faced “race condition faults" where a variable is accessed concur-
rently by multiple threads. Also, similar to this fault, we faced “deadlock condition faults"
where a process or thread locks an object and other process or thread is not able to access this
object. Since these kinds of faults are difficult to identify, we were conservative and we read
the commit messages to make sure what the cause of the failure is exactly about. Figure 5.4

and 5.5 show these categories.

“Data format faults" cover situations in which an incorrect data type was given to a method
or the data was not in a correct format. Figure 5.6 shows how a developer fixes defects related

to a data encoding issue.

“Improper log message" corresponds to cases where a wrong message or inappropriate log is
sent to the users. This makes problem diagnostics and resolution difficult for users. Figure 5.7
shows that the developer tries to give a more appropriate message by modifying data in the

output text string. Table 5.2 summarizes the different categories obtained.

As Table 5.2 shows, there are 7 major categories of fault type in our findings :
Small programming faults, configuration faults, major programming faults, race
condition, deadlock condition, improper log message and data format fault. Small
programming faults are the most common type of API faults, followed by major

programming and configuration faults.

In Table 4, we can see the proportion of each category. It is clear that almost half of the
causes are related to small programming faults. In other words, the majority of API fai-
lures were caused by a trivial programming mistake. The next most common type of fault
are major programming faults, which are 4 times less common, but are caused by more se-
rious programming issues. Configuration faults typically are easier to fix, depending on the

understanding of the cloud configuration.

Surprisingly, the number of method signature changes in our sample data (part of major
programming faults) is about 6%, which is aligned with the median number of method

signature changes found in RQ1 for the 25 important modules, i.e., 7%.

The most common API failures are database and test failures. Table 5.3 shows the

different types of failures and their percentages.

25

class Rbd(Image):
SUPPORTS_CLONE = True

def _ init (self, instance=None, disk name=None, path=None, **kwargs):
super(Rbd, self)._ init_ ("block™, "rbd", is_block dev=True)
if path:
try:
self.rbd_name = path.split('/")[1]
except IndexError:
raise exception.InvalidDevicepath(path=path)

class Rbd(Image):
SUPPORTS_CLONE = True

def _ init_ (self, instance=None, disk_name=None, path=None, **kwargs):
| super(Rbd, self)._ init_("block”, "rbd", is_block_dev=False)
if path:

FI1GURE 5.1 Bug No.1362221-Small programming fault.

def dvr_vmarp_table update(self, context, pert id, action):
"""Notify the L3 agent of VM ARP table changes.

Provide the details of the VM ARP to the L3 agent when
a Nova instance gets created or deleted.

port_dict = self._core_plugin._get_port(context, port_id)
def dvr_vmarp_table_update(self, context, mac_address, ip_address,
subnet_id, router id, action):
"""Notify the L3 agent of VM ARP table changes.

Provide the details of the VM ARP to the L3 agent when
2 Nova instance gets created or deleted.

FIGURE 5.2 Bug No0.1362985-Major programming fault.

Patch Set 12 [¥]
+10¢ ... skipped 41 common lines ... +108
pyOpensSSL»=0.11

Required by openstack.common libraries
six>=1.7.0

oslo.db>=0.2.0 # Apache-2.0
0slo.i18n>=0.1.@ # Apache-2.0
oslo.messaging>=1.4.0.0a3

retrying>=1.2.2 # Apache-2.0
osprofiler>=0.3.0

F1GURE 5.3 Bug No.1354500-Configuration fault.

5.3 (RQ3) What are the bug fixing characteristics of the different fault types?

Motivation. Understanding how different API fault types are being fixed could help software
organisations improve their fault triaging process (e.g., faults can be assigned to developers
more adequately), their code review process (faults that require complex changes to the code
could be scrutinized more deeply), and the allocation of their maintenance resources. In this

RQ, we analyze possible differences in characteristics of different fault types.

Approach. Using the tool that we developed to answer RQ1, we find the commits that fix
the failures studied in RQ2. The characteristics that we investigate are described in Table

1 and are obtained from bug reports, bug fix commits and developer emails. Overall, we

26

stop_instance and the _sync_power_states periodic task to try and fix a
Paceé between stopping the instance via the API where the task_state is
set to powering-off, and the periodic task seeing the instance
power_state as shutdown in _sync_instance_power_state and calling the
stop API again, at which point the task_state is already None from the

FIGURE 5.4 Bug No.1339235-Race condition.

TABLE 5.2 Prevalence of API fault types

Fault Type Percentage
Small programming fault 56%
Configuration fault 14%
Major programming fault 14%
Race condition 5%
Deadlock condition 1%
Improper log message 1%
Data format fault 3%

are interested in all characteristics related to the resolution of faults, i.e., symptoms, the
importance of the failure, the fixing process and the eventual fix. Because small programming,
major programming and configuration faults have more occurrences than the other faults,

we focus only on the differences of these three fault types.

Findings. There is a significant difference in the activity of developers fixing
small and major programming faults. Results show that small programming faults
require less active developers than major programming faults. The Mann-Whitney u test [36]
yielded a statistically significant difference. Hence, we reject the null-hypothesis (i.e., “There
is no significant difference in the activity of developers fixing small and major programming
faults"), accepting the alternative hypothesis that there is a significant difference between

both distributions.

A related null hypothesis is about the amount of experience of developers (Table 5.1 for the de-
finition of exprience) attempting to fix API failures. In particular, we believed that developers
with low experience fix small programming faults. Therefore, we created a null-hypothesis
“There is no significant differences between developer experience in small programming and
major programming faults'. A Mann-Whitney U test with the p-value = 0.22 was not able
to reject. This implies that we found no proof of significant difference in terms of
experience of developers who fix small faults and developers who fix major faults.

Figure 10 and Figure 11 show the boxplot of experience and developer activity metrics.

As Figure 12 shows, we understand that there would be a significant difference in the call
distance between configuration and major programming faults. However, a Mann-Whitney U
test with alpha value of 0.01 between major and configuration faults is not able to reject the

null-hypothesis (p-value=0.05), hence, there exists no significant differences in terms

27

B_retry_on_deadlock
def service_update(context, service_id, values):
session = get_session()
with session.begin():
service_ref = _service_get(context, service id,
with_compute_node=False, session=session)
service_ref.update(values)

return service_ref

F1GURE 5.5 Bug No.1370191-Deadlock condition

def _ init (self, **kwargs):
| meter_id = "%s+%s’ % (kwargs['resource_id'], kwargs['name’])
meter_id is of type Unicode but base64.encodestring() only accepts
strings. See bug #1333177
meter_id = base64.encodestring(meter_id.encode(utf-8"))
kwargs[‘meter_id'] = meter_id
super(Meter, self)._ init_ (**kwargs)

FIGURE 5.6 Bug No.1333177-Data format fault

except ValueError as vex:
LOG.error(_("Failed to parse %(dir)s/%(name)s') % {
‘dir’': env_dir, ‘name’: env_name})
LOG.exception(vex)
except IOError as ioex:
LOG.error(_("Failed to read %(dir)s/%(name)s’) % {
‘dir': env_dir, 'name’: env_name})
LOG.exception(ioex)

except ValueError as vex:
LOG.error(_('Failed to parse %(file_path)s') % {
‘file_path': file_path})
LOG.exception(vex)
except IOError as ioex:
LOG.error(_('Failed to read %(file_path)s') % {
'file_path': file_path})
LOG.exception(ioex)

FI1GURE 5.7 Bug No.1272114-Improper log message

of call distance. This indicates that major programming faults have no longer call distance
in comparison to configuration faults. The Mann-Whitney U statistical test did not show
any significant difference between small programming faults and configuration faults either.
This implies that any fault type can occur in an API with any number of modules inside and

there is no correlation between this number and the occurrence of a specific fault type.

As Figure 13 shows, the code churn of major programming faults is significantly
higher than the other two categories. This is expected, since in our fault type classifi-
cations, we considered bug fixes involving larger code changes as well as method signature

changes as major faults.

Surprisingly, small programming faults do not take significantly less time to be
fixed than major programming faults. According to Figure 14, we see no significant
differences between different kinds of faults, specifically the small and major programming
faults. One conjecture might be that, despite the small sizes of bug fixes, small programming

faults can still be difficult to detect and diagnose.

28

3
o o 2 o
o [e} e} _
1
D e— :
o ' i
o ' |
< ! ! o
' ' o |
| | o
! ' ~—
S = :
® i g
: R Q 8 !
o i : o i
S ! o R '
N S i |
© | ° :
T 1
8 | | H |
1 1 1
-~ 1 I
1 1
1
1
; i
o - _:_ —_— —_— o - T 1
T I I T T 1
small config major small config major

FIGURE 5.8 Developer activity (number offigurg 5.9 Developer experience (number of

commits in the whole data set). commits before fixing current fault).
o
S o
8 ° °
s4 8 0
o | i T
o | :
o _ — —
| | |
small config major

FIGURE 5.10 Call distance (number of modules
in the stack trace).

400 600 800 1000

200

o
o
o
6 i
!

4§f o
,—A—l T T
I I I
small config major

FIGURE 5.11 Code churn (size of fix).

()]

29

o
o
L() —
N
o
o
S 4
N
o
o o
<] R ©
1 A E—
i i
1 1
o ! |
o — ! 1
- i —_— T
! i
1
|
o |
Yo}
1 1 1
o - . . .
T T T
small config major

FI1GURE 5.12 Bug activation in number of days.

o

® |
o

0.7

0.5 0.6
|

0.4

o
1
| - R —
i ! i '
| H | '
i ! 1 ,
! ' :
] |
i | |
i | | E
1 | 1
| | 1
1 —_—
— :
.
o
o © o
T T T T
Precision Recall F-Measure AUC

FIGURE 5.13 Performance measurements for
100 iterations.

30

TABLE 5.3 Prevalence of API failure types

Symptom Percentage
db error 16%
test error 15%
network error 10%
deployment error 4%
security error 4%
Other(vm error, volume error, task error, etc.) 56%

TABLE 5.4 Decision tree top-node analysis score of metrics after 100 iterations.

Dimension Metric Score
talked__in_ mailing_list 55
number_of times_bug

0

importance 7stat.us7changed
severity 34
number__of people_ affected 61
developer__experience 0
developer__activity 42

fixing process i;%?ﬁ;&fgﬁi\{i;per 193
bug_ activation__in__days 35
subject__message and__stack_trace 99
call distance 35

symptom commenter__experience 62
comment__count 30

comment_ length 60

reply_lag 124

code__churn 53

ndev 40

bug fix age o1
nuc 46

5.4 (RQ4) What are the main factors explaining the bug fixing process of small

programming faults ?

Motivation. Until now, we have found that almost half of the causes of the failures are
related to small programming faults. We have gathered various characteristics of these faults
showing that despite requiring a simple fix, they might actually take as long to be resolved
as major programming faults. Now we are interested to know the major factors in the bug
fixing process of such failures. If one would be able to predict for a given reported bug, either
right after the bug is reported or during the bug fixing process (when more data becomes
available about the bug fixing process), that a bug likely is due to a small programming fault,
bug fixing could be planned differently than in case a deadlock or major programming fault

is to be expected.

Unfortunately, we do not have sufficient manually classified failures (see RQ2) to build and

evaluate a prediction model. Hence, we focus on an explanatory model.

Approach. First, we randomly select 80% of all 230 samples and we train a Naive Bayes clas-

31

sifier based on it. Since an imbalanced training set creates suboptimal results, we examined
two approaches to balance the data. We did re-weighting and re-sampling (under-sampling
and over-sampling) using Weka [27]. For re-weighting, we used AdaBoostM1 algorithm. We
compared the output of both balancing techniques. The best results were obtained when
we did re-sampling using under-sampling. In that case, our classifier was trained well and

outperformed the other cases.

Second, we give the remaining 20%, i.e., test set, to the Naive Bayes trained model in order
to generate the Naive Bayes score. Then we give the training set with the Naive Bayes score
and the other characteristics to a Decision Tree learner. Finally, we apply this model to the
testing set. We repeat these iterations 100 times. This type of validation has been used in

several studies, such as Pinzger et al. [42].

In order to identify the most impactful variables in the model, we use top-node analysis
[38]. For each of our 100 iterations, we parse the Decision Tree and we create a hash table
of metrics for the nodes on levels 0, 1 and 2 of the tree. For each level, we assign a weight
starting from 3 to 1 for levels 0 to 2 respectively, since a metric appearing at level 0 has the
highest discriminatory power of all metrics. At the end, we multiply the frequency of each
metric in a level by the weight of that level and we sum all the multiplications to obtain the
score for that metric. For example, out of 100 iterations, the metric “ndev" has appeared 9
times in level 0, 5 times in level 1 and 3 times in level 2. We calculate the score for “ndev'
like : 9*3 + 5*2 + 3*1 = 40. The higher the resulting score, the more important the metric

would be for the explanatory models.

Findings. Our explanatory composite model shows that (1) the number of developers
working on a bug, (2) subject, message and stack trace information, and (3) reply

lag are the main factors explaining small programming faults.

Table VI shows the most important metrics after running 100 times our model. It clearly
shows that, the metric number_of developers_ working on_ bug is the most important me-
tric in the top-node analysis of the decision tree with a score of 193. Our analysis on the tree
showed that if the number of developers working on a bug increases, the more likely the fault
type would be a major programming fault. Also, we can see that the text variables (subject,
message and stack trace) are amongst the most important factors. It demonstrates that the
text content of a bug can be a good indicator to distinguish between small faults and other
faults. Since the subject, message and stack trace information is available from the moment a
bug is reported, this can open the door for actual prediction of whether an API failure would
be easy to fix. Furthermore, the reply lag metric indicates that the average time between

bug report comments is another most important factor determined by our model for small

32

programming faults. We also observe that the number of times bug status changed ne-

ver appeared in any iteration. The same goes for developer_ experience, which confirms our

findings in RQ3.

5.5 (RQ5) What type of faults are the most impactful ?

Motivation. In our previous research questions, we could classify the cause of failures into
seven categories. Yet we do not know which type of faults are the most impactful one. In this
research question, we consider a fault to be highly impactful if it affects third-party appli-
cations. Detecting Impactful faults is important because this knowledge will help managers

and team leads identify faults that should be fixed in priority.

Approach. In section 4.2.1 we described how we extracted and prepared the fault data set. In
total we extracted 136 bugs (from the beginning of issue repository until 17-December-2016).
For containers, Kubernetes and Apache Mesos, we only found 3 issues for which we did not
have a link to the fixes, so we continued only with reported issues on the Docker container.
While studying them, we removed duplicate bugs and as a result of this pre-processing, only
89 unique bugs remained. We removed the false positive ones, i.e, the ones for which the link
to the review system and git did not worked or did not have any fix (i.e., 18 bugs). Finally,
we obtained 71 bugs to analyse. We followed the same methodology as RQ2, i.e., card-sorting
techniques [62], to categorize the faults impacting third-party applications.

Findings. We found that 43/71 bugs (60%) are due to the small faults that affect other
third-party applications. Table 5.5 shows our findings on the type of faults impacting
third-party applications. We see that major and configuration faults are the second
and third most frequent causes of failures. Small faults are those that happen inside
one file and are related to the small changes in the logic of the program. We examined these
small faults and observed that they often concern : (1) variables re-assignments, (2) exception
handling, (3) inversion of the logics, and (4) shifting of statements from one part into another

part of the code.

We also noticed that at least one third (23/71) of the faults is related to Infrastructure-
as-code files (i.e., puppet files). The OpenStack puppet modules are used to deploy related
codes in OpenStack environments [63]. This was expected because puppet modules are the

ones that receive more calls from third parties, i.e., containers, in the deployment activities.

As described in section 4.2.1, while we were investigating for fault types, we were interested
in analysing test cases as well. We found that developers did not pay enough attention

to test cases. Table 5.6 shows our findings. We normally faced four behaviours : (1) No

33

TABLE 5.5 Fault types found that affected third parties.

Fault Type Number
Small faults 43
Configuration 9
Major faults 17
Deadlock 1
Improper log message 1

Race

Data format 1
Total 71

test case (42/71=60%), (2) only some new test cases added (12/71=17%), (3) only some test
cases modified according to the fix (15/71=21%), and (4) new test cases added along with
modifying the existing ones (2/71=2%).

TABLE 5.6 Test case statistics.

Status Number
No test case 42
New test cases added 12
Existing test cases modified 15
New test cases added and existing ones modified 2
Total 71

5.6 (RQ6) Are code style checkers able to localize the faults behind the API

failures ?

Motivation. A number of studies have shown that code smells have high correlation with
faulty code. Code smells are not bugs but bad practices in the design and implementation.
In this research question, we set out to investigate whether the faulty codes in our samples
contained code smells or were violating some coding standards of the programming language
in which they were written. If a correlation between APT faults and code smells/code style
violations exist, developers and maintainers will be able to leverage code smell detection
tools and—or code style checkers to identify and refactor areas in the code where the faults

are likely to occur ; potentially reducing the risk of API fault occurrences.

Approach. We apply code style checkers on the code containing the faults (i.e, those versions
before fixes) investigated in RQ5. We found that in our samples there exists 4 different types
of programming languages ; Python, Shell scripting, Ruby and Infrastructure-as-code (Puppet

34

file). For each we worked with its own code style checker as described in section 4.2.2. The

code style checkers were also able to detect certain code smells.

Findings. In total, code style checkers were not able to detect API faults. Only
in very few (2/71) cases, code style checker could identify the problems. For example, we
found a case where developers did not prepare the code with try/catch and one tool (i.e.,
pylint) could identify it and we found a fix of an API fault related to that part of the code.
In other cases, unfortunately, the tools were not able to localize the faults. The tools could
detect scripts having code smells; most of them (47/71) had either lazy smells or big class
smells. Other different smells such as unused “imports", “unused methods", were also found.
Infrastructure-as-code files were without smells and only in 2 cases the tools detected the
Dense Structure smell. But these tools were not able to identify the small faults, i.e, the
location of the faults. One reason is that small faults are related to the logic of the program.
For example, we found a case where a developer shifted one “if statement" from outside of a

loop into the inner side of the loop. The tools could not capture this change.

5.7 (RQT7) Why do faults propagate from OpenStack to third-party software ?

Motivation Understanding the reasons behind the propagation of faults could help develo-

pers and maintainers improve debugging, review and testing activities.

Approach. We designed a survey (section 4.2.3) to obtain practitioners’ feedback on our
result and gather their opinions about the reasons for the propagation of API faults. We asked
participants about the reasons behind faults propagations from OpenStack to third-party
software, and if there are mechanisms in their projects to prevent faults from propagating to
other third parties consuming the APIs. We also asked who fixes the faults that propagated
from OpenStack to a third-party software. Finally, we ask them about mechanisms that could
prevent faults from propagating to third-party applications consuming OpenStack APIs.

Figure B.1 shows our questionnaire content.

Findings. In total, we received 38 responses from which 14 were incomplete, i.e., participants

did not answered some of the questions.

86.1% of participants (Figure 5.14) believed that small faults are the most com-
mon faults in OpenStack APIs which confirms the results of our quantitative

analysis.

Figure 5.15 shows that small faults, configuration and major faults are the most expe-

rienced ones by the participants.

In a question we asked “why do faults propagate from OpenStack to third-party software ?'

35

@ Yes
@ No
@ Maybe

FIGURE 5.14 Do you think Small faults are the
most common faults in the OpenStack ecosys-
tem 7

40

30
20
10

0

&
o‘ o

Number of voted

a qa“°
‘Qa\\ &\%" @9@
Fault Types

F1GURE 5.15 Which API fault have you expe-
rienced most 7

30

25
20
10
5
0 = - R

o W o

Number of votes
>

FiGURE 5.16 Why do faults propagate from
OpenStack to third party software ?

36

and the options to select were : lack of code review, development is done in an intensive
situation and with rapid release, lack of enough developer’s experience, management issues

by team leaders, business requirements are not provided appropriately, and others.

Figure 5.16 shows that intensive development with rapid release and lack of code

review are the two most voted factors regarding the propagation of faults.

62% announced that they do not have any mechanism to prevent faults from propagating. The
rest (28%) announced that they attempt to prevent fault propagation by enforcing testing,

code reviews and-or a QA process.

Responses to the question “when a bug is propagated, who fixes it 7" : 58% of participants
reported that they file an issue in the OpenStack issue tracking system. The rest of partici-
pants indicated that the fault is fixed internally by their team, and a pull request is initiated
to the OpenStack repository. They also mentioned that an issue report is opened in the issue

tracking system of OpenStack.

In our closed-answered questions, we did not included “lack of test cases" as one of the factors
for the appearance of faults, but when we asked in the last question “What do you think
could prevent bug propagation to consumers of OpenStack APIs?" all participants mentioned
that more test cases and code reviews should be done. Two participants suggested
that the OpenStack development team includes developers of third-party APIs in the code

review process.

71.1% of participants to the survey were OpenStack developers, 13.2% were Docker develo-
pers, 10.5% were software architect and the rest were team leaders or developers that were
not working on OpenStack/Docker projects. These participants had between 3 and 10 years

of software development experience.

37

CHAPTER 6 THREATS TO VALIDITY

In this section, we discuss the threats to validity of our study following common guidelines

for empirical studies [45].

6.1 Construct validity threats

concern the relation between theory and observation. Our metrics might not reflect all cha-
racteristics related to failures and we could include more metrics specifically related to source

code or even the review process of bug fixes.

To measure the number of API failures with impact on third parties, we performed queries on
OpenStack issue repository. Certainly, there were false positive records among these results,
as discussed before, while the applied search queries might not return all possible cases. To
mitigate this limitation, we used a rough name-based search approach with terms including

the third-party application names and manually analyzed the results.

6.2 Internal validity threats

concern other possible explanations for some of our observations. Since this study contains
a qualitative study, there may be some human factors and subjectivity in the categorization
analysis. Even though the candidate performed the qualitative study, he frequently checked
cases with other co-investigators to double-check when in doubt. Moreover, in the fault cate-
gorization, the unknown and unresolved issues were not taken into account, since such issues
are either not reproducible, not popular or important for the OpenStack project as a whole,

or just too simple (typos in documentation, etc.).

On the other hand, the survey participants may be biased. We tried to allay this risk by
designing structured and semi-structured questions. However, more participants should be

considered to further reduce this risk.

In our quantitative study, our criteria to select the most important modules is based on
the most frequently changed module, i.e, the most committed module file in git repository is
considered the most important one in each API. This raises concerns that the most committed

ones not necessarily reflect the most important ones.

On the other hand, we used heuristics on bug report messages and keywords to identify stack
traces related to the APIs. One concern is that it is not 100% reflecting all related API stack

38

traces. Another concern is related to the bug activation in days. There are bugs that generally
would be treated very soon but are closed at a specific time of each month with other bugs.
Therefore, these days of the bug activation are not reflecting a 100% correct time for fixing

the failures.

Another internal validity threat is related to our choice of code style checkers. Further analysis

with different code style checkers is desirable.

6.3 Threats to external validity

concern the possibility to generalize our results. Since we have only studied one large open
source infrastructure in the cloud, we cannot generalize our findings to other open and closed
source (e.g., Google, Amazon, and Microsoft) projects. Moreover, since Git is a pliable version
control system that can be used in various installments, we also need to take care when
extending our results to other projects using Git. Therefore, more case studies on other

projects are needed.

To find out the impactful faults we included most 10 important APIs in OpenStack, one
of the most popular cloud infrastructure. We have also limited our study to open-source
projects. Still, these APIs represent different domains and various project sizes. Table 4.3
shows a summary of the studied systems, their domain and their size. Nevertheless, further

validation on a larger set of APIs, considering closed source projects are needed.

39

CHAPTER 7 CONCLUSION

7.1 Summary of the Results

In this thesis, we conducted an empirical study to investigate the API failures in a cloud
environment such as OpenStack-an open source cloud-infrastructure. First, we studied the
source code repository to find out the percentage of changes in the APIs that were aimed
for fixing bugs. We also included method signature changes in our study since this type of
modifications to an API make it fragile and creates serious problems for other projects. We
observed that a median value of 31% (one third) of all changes fix API failures, where 24%

includes non-method signature changes and 7% include method signature changes.

Second, during a qualitative study, on a random sample of fixed bugs from a variety of
OpenStack projects, we explored the root causes of the failures by analyzing bug reports and
fixes. Based on our observation, we found seven categories of causes (faults) for API failure :
small programming faults, major programming faults, configuration faults, race conditions,
deadlock conditions, data format faults and improper log message faults. Our finding indicates
that the majority of the causes is due to small programming faults (56%), whereas a) the
developers who have fixed the bugs are less active in the project in comparison to major
programming faults, b) the time to fix these kinds of faults does not differ from other types

of faults and c) the developer experience for these types of faults does not differ either.

The major programming faults category comprises two subcategories : method signature
changes as well as changes in which multiple files have been touched. Limited to our samples,
our statistics showed that major programming faults are 14% of all existing fault types,
whereas only 6% of these major faults include method signature changes, confirming the

result of our quantitative study.

Third, our explanatory model showed that metrics such as subject, message and stack trace
information, number of developers working on a fix for a failure and reply lag within the
comments are the main factors in small programming faults. These results open the door for

the prediction of whether a newly submitted API failure will be easy to fix.

Our findings in a qualitative empirical study about the impact of API failures in OpenStack
cloud environments show that (1) small faults are the most common faults that impact the
ecosystem, (2) code style checkers are not able to localize the small faults while it is still
in the middle of the development, because small faults are generally related to the logic

of the program, (3) our test case analysis demonstrates that Open I, mnvb vcStack suffers

40

from a lack of stable and robust test cases and (4) our survey of almost 40 OpenStack and
third-party developers confirms that small faults are frequent in the OpenStack ecosystem.
Developers believe that more test cases and code reviews are needed to prevent small faults

from propagating in the OpenStack ecosystem.

7.2 Future Work

We have to mention that we use Decision Trees to build our models, but other techniques
such as Support Vector Machines (SVM) and Logistics Regression should be studied and
compared. Also, additional characteristics should be explored in our model, because they
might improve the performance of our model. Finally, we would like to collect more samples

and more metrics in order to predict API failures in cloud environments.

1]

[10]

[11]

41

REFERENCES

Danny Dig, and Ralph Johnson. “How do APIs evolve ? A story of refactoring." Journal

of software maintenance and evolution : Research and Practice 18.2 (2006) : 83-107.

J. Gray. “Why do computers stop and what can be done about it"? Symposium on

Reliability in Distributed Software and Database Systems,

D. Oppenheimer, A. Ganapathi, and D. A. Patterson. “Why do Internet services fail,
and what can be done about it?" In Proceedings of the 4th conference on USENIX
Symposium on Internet Technologies and Systems, USITS’03, pages 1-15, 2003

S. Li, T. Xiao, H. Zhou, H. Lin, H. Lin, W. Lin, and T. Xie. “A characteristic study on
failures of production distributed data-parallel programs". In Proc. International Confe-
rence on Software Engineering (ICSE 2013), Software Engineering in Practice (SEIP)
track, May 2013

Chaiken, Ronnie, et al. “SCOPE : easy and efficient parallel processing of massive data
sets." Proceedings of the VLDB Endowment 1.2 (2008) : 1265-1276.

Dana Petcu, Ciprian Craciun, and Massimiliano Rak. “Towards a cross platform cloud

APIL" 1st International Conference on Cloud Computing and Services Science. 2011.

Qinghua Lu, Liming Zhu, Len Bass, Xiwei Xu, Zhanwen Li, and Hiroshi Wada. “Cloud
API issues : an empirical study and impact." In Proceedings of the 9th international
ACM Sigsoft conference on Quality of software architectures, pp. 23-32. ACM, 2013.

Qinghua Lu, et al. “A Tail-Tolerant Cloud API Wrapper." IEEE Software 32.1 (2015) :
76-82.

Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber and John Grundy, “Experience Re-
port : Anomaly Detection of Cloud Application Operations Using Log and Cloud Metric
Correlation Analysis" Proceedings of the 26th IEEE International Symposium on Soft-
ware Reliability Engineering (ISSRE '15), IEEE, Gaithersburg, Maryland, November
2015

A. E. Hassan and T. Xie, “Software intelligence : The future of mining software enginee-
ring data," in Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, ser. FoSER ’10. New York, NY, USA : ACM, 2010, pp. 161-166

T. Zimmermann. “Mining workspace updates in cvs'. In Proceedings of the Fourth Inter-
national Workshop on Mining Software Repositories, MSR '07, pages 11-14, Washington,
DC, USA, 2007. IEEE Computer Society

[12]

[13]

[14]

[15]

42

Hassan, Ahmed E. “The road ahead for mining software repositories." Frontiers of Soft-
ware Maintenance, 2008. FoSM 2008.. IEEE, 2008.

Y. Tian, J. Lawall, and D. Lo. Identifying linux bug fixing patches. In Proceedings of
the 34th International Conference on Software Engineering, ICSE 12, pages 386-396,
Piscataway, NJ, USA, 2012. IEEE Press

Kamei, Yasutaka, et al. “Studying just-in-time defect prediction using cross-project mo-
dels." Empirical Software Engineering 21.5 (2016) : 2072-2106.

LZ Xiwei Xu et al. “Error diagnosis of cloud application operation using Bayesianian

networks and online optimisation." 11th European Dependable Computing Conference
(EDCC). 2015.

Min Fu et al. “Process-oriented recovery for operations on cloud applications." Procee-

dings of the 4th annual Symposium on Cloud Computing. ACM, 2013.

H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T.Do, et al., “What
bugs live in the cloud? : A study of 3000+ issues in cloud systems" presented at the
Proc. of the ACM Symposium on Cloud Computing, Seattle, WA, USA, 2014.

Karan Aggarwal, Tanner Rutgers, Finbarr Timbers, Abram Hindle, Russ Greiner, and
Eleni Stroulia. “Detecting duplicate bug reports with software engineering domain know-
ledge." In 2015 TEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pp. 211-220. IEEE, 2015.

Gonzalez-Barahona Jesus, Gregorio Robles, Daniel Izquierdo-Cortazar, “The Metrics-
Grimoire Database Collection", 12th Working Conference on Mining Software Reposito-

ries, Florence, Italy, 2015

Audris Mockus, and David M. Weiss. "Predicting risk of software changes." Bell Labs
Technical Journal 5.2 (2000) : 169-180.

Dan Radez, OPenStack Essentials, Demystify the cloud by building your own private
OpenStack cloud. Copyright(©)2015 Packt Publishing.

Kevin Jackson, Cody Bunch, Egle Sigler,OpenStack Cloud Computing Cookbook Third
Edition. Over 110 effective recipes to help you build and operate OpenStack cloud com-

puting, storage, networking, and automation
http ://www.openstack.org
G. Kalton, Introduction to survey sampling. Sage Publications, Inc, September 1983.

Tony A. Meyer, and Brendon Whateley. “SpamBayes : Effective open-source, Bayesian
based, email classification system." CEAS. 2004.

2]

[27]

[28]

[29]

[30]

[31]

[32]

[36]

[37]

43

Walid M. Ibrahim et al. “Should I contribute to this discussion?." Mining Software
Repositories (MSR), 2010 7th IEEE Working Conference on. IEEE, 2010.

[an H. Witten, and Eibe Frank. Data Mining : Practical machine learning tools and

techniques. Morgan Kaufmann, 2005.

Quinlan, J. Ross. C4. 5 : programs for machine learning. Elsevier, 2014.

Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi.
A large-scale empirical study of just-in-time quality assurance. IEEE Trans. Softw. Eng.,
39(6) :757-773, 2013

S. Kim, E. J. Whitehead, and Y. Zhang. Classifying software changes : Clean or buggy 7
IEEE Trans. Softw. Eng., 34(2) :181-196, 2008

J. Nam, S. J. Pan, and S. Kim. Transfer defect learning. In Proc. Int’l Conf. on Softw.
Eng. (ICSE’13), pages 382-391, 2013

M. B. Miles and A. M. Huberman, Qualitative data analysis : an expanded sourcebook,
2nd ed. Thousand Oaks, Calif. : Sage Publications, 1994, includes indexes

L. Barker. “Android and the linux kernel community."
http ://www.steptwo.com.au/papers/kmc whatisinfoarch/, May 2005
A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code re-

view," in Proceedings of the 2013 International Conference on Software Engineering, ser.

ICSE’13. Piscataway, NJ, USA : IEEE Press, 2013, pp. 712-721.

Hadi Hemmati, Sarah Nadi, Olga Baysal, Oleksii Kononenko, Wei Wang, Reid Holmes,
and Michael W. Godfrey. “The msr cookbook : Mining a decade of research." In Mining
Software Repositories (MSR), 2013 10th IEEE Working Conference on, pp. 343-352.
IEEE, 2013.

Myles Hollander, Douglas A. Wolfe, and Eric Chicken. Nonparametric statistical me-
thods. John Wiley & Sons, 2013.

Mini Shridhar, Bram Adams, and Foutse Khomh. “A qualitative analysis of software
build system changes and build ownership styles." Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement. ACM,
2014.

Ahmed E. Hassan and Ken Zhang. “Using decision trees to predict the certification
result of a build." 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE’06). IEEE, 2006.

Tony A. Meyer and Brendon Whateley. “Spambayes : Effective open-source, bayesian
based, email classification system." in Proceeding of the First Conference on Email and
Anti-Spam (CEAS), 2004.

[40]

[41]

[42]

[43]

[44]

[54]
[55]

44

Ron Kohavi. “A study of cross-validation and bootstrap for accuracy estimation and
model selection." Tjcai. Vol. 14. No. 2. 1995.

Christian Macho, Shane McIntosh, and Martin Pinzger. “Predicting Build Co-Changes
with Source Code Change and Commit Categories." 2016 IEEE 23rd International Confe-
rence on Software Analysis, Evolution, and Reengineering (SANER). Vol. 1. IEEE, 2016.

Martin Pinzger, Nachiappan Nagappan, and Brendan Murphy. “Can developer-module
networks predict failures ?." Proceedings of the 16th ACM SIGSOFT International Sym-

posium on Foundations of software engineering. ACM, 2008.

Wei Wu, Foutse Khomh, Bram Adams, Yann-Gaél Guéhéneuc, and Giuliano Antoniol.
“An exploratory study of api changes and usages based on apache and eclipse ecosys-

tems." Empirical Software Engineering (2015) : 1-47.

Jens Dietrich, Kamil Jezek, and Premek Brada. “Broken promises : An empirical study
into evolution problems in java programs caused by library upgrades." Software Main-
tenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evo-
lution Week-IEEE Conference on. IEEE, 2014.

R. K. Yin, Case Study Research : Design and Methods - Third Edition, 3rd ed. SAGE
Publications, 2002

Armbrust, Michael, et al. “A view of cloud computing." Communications of the ACM

53.4 (2010) : 50-58.2
http ://www.openstack.org

Qian, Ling, et al. “Cloud computing : An overview." IEEE International Conference on

Cloud Computing. Springer Berlin Heidelberg, 2009.

Lawton, George. “Developing software online with platform-as-a-service technology."

Computer 41.6 (2008).

Bernstein, David. “Containers and cloud : From Ixc to docker to kubernetes." IEEE
Cloud Computing 1.3 (2014) : 81-84.

https ://www.youtube.com/watch 7v=a08UAShNBWS&
https ://wiki.openstack.org/wiki/Magnum

https ://github.com/MarouenMechtri/Docker-containers-deployment-with-OpenStack-
Heat

https ://www.openstack.org/software/project-navigator/

Yuan, Ding, et al. “Simple Testing Can Prevent Most Critical Failures : An Analysis of
Production Failures in Distributed Data-Intensive Systems." OSDI. 2014.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

45

Google outage reportedly caused big drop in global traffic.
http ://www.cnet.com/news/googleoutage-reportedly-caused-big-drop-inglobal-traffic/.

Why Amazon’s cloud titanic went down. http ://money.cnn.com/ 2011/04/22/techno-

logy/amazon__ec2_ cloud_ outage/index.htm.

Ocariza, Frolin, et al. “A study of causes and consequences of client-side JavaScript

bugs." IEEE Transactions on Software Engineering (2016).

Musavi, Pooya, Bram Adams, and Foutse Khomh. “Experience Report : An Empirical
Study of API Failures in OpenStack Cloud Environments." Software Reliability Engi-
neering (ISSRE), 2016 IEEE 27th International Symposium on. IEEE, 2016.

Tourani, Parastou, Bram Adams, and Alexander Serebrenik. “Code of conduct in open

source projects." (2016).

Sharma, Tushar, Marios Fragkoulis, and Diomidis Spinellis. “Does your configuration
code smell 7." Proceedings of the 13th International Conference on Mining Software
Repositories. ACM, 2016.

Miles, Matthew B., and A. Michael Huberman. Qualitative data analysis : An expanded
sourcebook. sage, 1994.

https ://github.com/puppetlabs/puppetlabs-openstack.

46

ANNEXE A CO-AUTHORSHIP

Earlier versions of the work in this thesis were published follows.

— Pooya Musavi, Bram Adams, Foutse Khomh, Experience Report : An Empirical
Study of API Failures in OpenStack Cloud Environments, Proceedings of the 27"
International Symposium on Software Reliability Engineering (ISSRE), pages 424-
434, 2016, Ottawa, Canada.

The following publications are not directly related to the material presented in this thesis,

but were produced in parallel to the research performed for this thesis.

— Amir Saboury, Pooya Musavi, Foutse Khomh, Giulio Antoniol, An empirical study
of code smells in JavaScript projects, Proceedings of the 24" IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER), pages 294-
305, 2017.

— Rodrigo Morales, Aminata Sabane, Pooya Musavi, Foutse Khomh, Francisco Chi-
cano, Giuliano Antoniol, Finding the Best Compromise Between Design Quality and
Testing Effort During Refactoring, Proceedings of the 25°¢ IEEE International Confe-
rence on Software Analysis, Evolution, and Reengineering (SANER), pages 24-35,
2016.

47

ANNEXE B SURVEY

7/312017 A Survey on the API Failures in OpenStack Cloud Environments

A Survey on the API Failures in OpenStack Cloud
Environments

In this survey, we aim to get feedback from developers who have contributed in OpenStack API
development or have used/are using OpenStack APIs in their business contexts. We have done 2
research studies to understand failures in the OpenStack ecosystem, specifically the faults behind these
failures. In both studies, we have mined a number of bug fixes and examined how developers fix bugs in
Openstack. Overall, we have identified 7 types of API faults :

(1) Small faults: which contains small changes within one file only. Normally includes variable re-
assignment, preparing statements with try/catch, shifting one statement from one place into another
place and inverting a logic. For example changing the statement inside an 'if statement'(if(a) to if('a) or
inside 'while', e.g developers changed while(true) to while(false).

(2) Major changes: Contains 2 types: (a) changing the method signature (public methods) by
adding/removing parameters or changing parameter types (b) Changing multiple files in order to remove
the bug.

(3) Configuration: correcting a key-value in a config file

(4) Race errors: asynchronization issues. Some variables are shared and multiple threads are trying to
access and change them.

(5) Deadlock: multithreading and weak management on resource allocation. One thread allocates a
resource while not releasing it and at the same time other threads are being blocked.

(6) Data format error: The format of data was corrected, e.g., by adding 64 encoding.

(7) Improper log message: the message sent to the user was a mistake and developers only changed the
display message. In fact the logic had no problem.

By investigating the bugs from the third parties tools such as Docker in OpenStack issue repository,
again we found that small faults are the most common faults happening inside OpenStack APIs.

Based on this classification, which is done by SWAT and MCIS lab in Polytechnique Montreal, could you
please give us your feedback and answer the following questions?

We appreciate your collaboration in advance.

1. (1) What is your role in OpenStack ecosystem?
Mark only one oval.

| am a software developer in the Openstack project
| am a software developer in the Docker project

| am a software team leader

| am a software architect

| am a Software developer but not an OpenStack/Docker developer

https://docs.google .com/forms/d/14JdaCttvLnCwWmoy IG7TB5dE2P_XaCK9_bQOIMXI_JsQ/edit 13

48

7/3/2017 A Survey on the API Failures in OpenStack Cloud Environments
2. (2) How many years of experience do you have in software development?
Mark only one oval.

Less than 1 year
Between 1 and 3 years
Between 3 and 10 years

More than 10 years

3. (3) Based on our classification, do you think Small faults are the most common faults in the
OpenStack ecosystem?

Mark only one oval.

Yes
No
Maybe

4. (4) Based on our classification, which API faults have you experienced most?
Check all that apply.

Small faults
Configuration faults
Major faults

Race faults
Deadlock faults
Data format faults

Improper log message

5. (5) In your opinion, why does Small faults happen?
Check all that apply.

Lack of enough code review

Development is done in an intensive situation with rapid release
Lack of enough developer's experience

Management issues by the team leaders

Business requirements are not provided or defined appropriately

Other

6. (6) In your opinion, why does faults propagate from OpenStack to third party software?
Check all that apply.

Lack of enough code review

Development is done in an intensive situation with rapid release
Lack of enough developer's experience

Management issues by the team leaders

Business requirements are not provided or defined appropriately

Other

https://docs.google.com/forms/d/14JdaCttvLnCwWmoy 1G7BSdE2P_XaCK9_bQOIMXI_JsQ/edit 2/3

49

7/3/2017 A Survey on the API Failures in OpenStack Cloud Environments

7. (7) Is their a mechanism in your project to How do you make sure that bugs not propagate to
other third parties consuming the APIs?

8. (8) When a bug is propagated from OpenStack to a third party software, who fixes the bug?

9. (9) What do you think could prevent bug propagation to consumers of OpenStack APIs?

Powered by
E Google Forms

https://docs.google.com/forms/d/14JdaCttvLnCwWmoy 1 G7B5dE2P_XaCK9_bQOIMXI_JsQ/edit 3/3

FIGURE B.1 Survey

	DEDICATION
	ACKNOWLEDGMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ANNEXES
	1 INTRODUCTION
	1.1 Research Objectives
	1.2 Thesis Plan

	2 BACKGROUND
	2.1 Cloud computing
	2.2 Public cloud
	2.3 Private cloud
	2.4 Hybrid Cloud
	2.5 Hypervisor
	2.6 IaaS
	2.7 PaaS
	2.8 SaaS
	2.9 AWS
	2.10 OpenStack
	2.11 Containers
	2.12 Containers vs Vms

	3 LITERATURE REVIEW
	3.1 API Changes
	3.2 Failure Characterization
	3.3 API Failures in the Cloud
	3.4 Mining Software Repositories (MSR)
	3.5 Our Goal and Motivation

	4 METHODOLOGY AND DESIGN
	4.1 Case Study Setup 1
	4.1.1 Studied Systems
	4.1.2 Data Extraction
	4.1.3 Explanatory Model

	4.2 Case Study Setup 2
	4.2.1 Fault Type Identification
	4.2.2 Apply Code Style Checkers
	4.2.3 Survey

	5 CASE STUDY RESULTS
	5.1 (RQ1) How often are APIs changed to fix API failures?
	5.2 (RQ2) What are the most common types of API failures and faults?
	5.3 (RQ3) What are the bug fixing characteristics of the different fault types?
	5.4 (RQ4) What are the main factors explaining the bug fixing process of small programming faults?
	5.5 (RQ5) What type of faults are the most impactful?
	5.6 (RQ6) Are code style checkers able to localize the faults behind the API failures?
	5.7 (RQ7) Why do faults propagate from OpenStack to third-party software?

	6 THREATS TO VALIDITY
	6.1 Construct validity threats
	6.2 Internal validity threats
	6.3 Threats to external validity

	7 CONCLUSION
	7.1 Summary of the Results
	7.2 Future Work

	REFERENCES
	ANNEXES

