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RÉSUMÉ 

Le but de cette recherche est de concevoir, fabriquer et tester un artefact 3D optimisé pour estimer 

la performance des machines-outils à cinq axes lors de leur application en tant que machine de 

mesure de coordonnées. Les machines-outils à cinq axes sont normalement utilisées pour usiner 

divers composants industriels et elles sont de plus en plus utilisées pour mesurer directement les 

brutes lors du montage et les pièces usinées. L'évaluation de la capacité métrologique de la 

machine-outil à l'aide d'une sonde à déclenchement par effleurement nécessite un artefact calibré 

en 3D qui offre aux sondes diverses possibilités d'accès. Sur la base de la configuration de la table 

de machine-outil, la flèche de l'artefact sous charge gravitationnelle variable doit être estimée. Un 

artefact hémisphérique, baptisé artefact dôme, qui contient plusieurs billes de précision tout autour 

d'une structure en Invar est proposée. L'effet de la modification de la direction de la gravité sur les 

coordonnées de ses billes est quantifié et en partie corrigée. Finalement, l’artefact est utilisé pour 

évaluer la performance en métrologie des coordonnées d'une machine-outil horizontale de 

topologie wCBXfZYt en mode à cinq axes. 
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ABSTRACT 

The aim of this research is to develop a 3D artefact to evaluate the performance of a five axis 

machine tool for coordinate metrology. Five-axis machine tools are normally used for machining 

various industrial components with complex geometry to provide tight tolerances while achieving 

high productivity. However, they are increasingly used for on-machine probing to measure the 

machined work pieces. Evaluation of the machine tool metrological capability when using a touch 

trigger probe requires a 3D calibrated artefact that provides various probing directions accessibility. 

For many machine tools, this means that the artefact maybe re-oriented relative to local gravity. As 

a result, the artefact deflection under varying gravitational loading is measured. A hemispherical 

artefact, integrating several precise balls, is designed and fabricated of Invar, a thermo-invariant 

material, to reduce thermally induced deformations. The effect of changing gravity direction and 

clamping on the balls coordinates are quantified by probing the artefact on a coordinate measuring 

machine. A compliance model is proposed to correct the effect of gravity. The artefact is used to 

evaluate the coordinate metrology performance of a wCBXfZYt topology horizontal machine tool 

in five-axis mode. 
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CHAPTER 1 INTRODUCTION: 

1.1 General introduction   

Computerized numerical control (CNC) machines are developed to fabricate various industrial 

parts with complex geometry at high production rate and accuracy. Accuracy is a critical 

performance criteria for machine tools to verify their ability to fabricate various parts according to 

customer requirements and geometrical tolerances. Using high speed machining, special cutting 

tools, automatic tool changers and holders, advanced CAD/CAM software to provide optimized 

tool paths and decreasing intervention by human operators are important points to increase the 

production rate. CNC machines with five or more axes have considerable capability to produce 

complex parts in a single or very few setups, but increasing the number of axes, such as rotary and 

linear axes, further degrades the accuracy of the machine. 

In modern production lines, quality control processes on the machined part are conducted offline, 

following machining, to check and verify the conformity of the product. For a machined part these 

criteria usually include geometrical dimensions, tolerances and surface quality. Coordinate 

measuring machines (CMMs) fitted with touch trigger probes or optical scanners are generally used 

to check the part geometric conformity. CMM machines are designed and used in such a way that 

they have higher accuracy and precision compared with machine tools. As an example, they are 

often located and used in a temperature controlled and clean areas. One limitation of using CMMs 

is the need to remove the part form the machine tool to take it to the CMM. This takes time and it 

becomes costly to reset the part supposed to be reworked on, on the machine tool. For such reasons, 

there is growing interest in conducting coordinate metrology on the machine tool. 

1.2 Problem definition 

Advanced manufacturing process requires geometry and dimension control using coordinate 

measuring machines. The problem is that the application of this type of machines, increases the 

production cost and time. In some cases the work-piece must be measured several times during 

different machining steps, which means that extra effort must be taken to bring the work-piece 

back and install it on the machine tool after measuring. In addition to wasting time and increasing 

cost, removing the work-piece from the machine tool, putting it on the CMM and then bringing it 
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back to the machine tool which is probably located in different environmental conditions, would 

affect the measuring results. Moreover, resetting the machine tool and work-piece at the same exact 

position might be impossible and is highly error-prone. Using machine tools as coordinate 

measuring machine is considered as a bridge between the machining and measuring process to have 

timely data to improve the machining precision.  

1.3 Research questions 

Considering the necessity of on-machine measurement in advanced manufacturing process, the 

main questions of this research project are: 

How to evaluate the coordinate measuring performance of a machine tool? 

What type of standard part or artefact is needed to evaluate the machine tool performance? 

Which characterizations are necessary for a probable artefact? 

1.4 Objectives: 

Increasing fabrication speed and decreasing time and cost of fabrication process is the main goal 

in advanced manufacturing, therefore, conducting coordinate metrology on the machine tool could 

save time and money; it means that in this case machine tools such as CNC  milling machines can 

be used as a CMM machine. To do a reliable evaluation of the machine tool coordinate measuring 

performance, an artefact by which all machine tool rotary axes are involved in the measuring 

process is needed.  So the objectives of this project are: 

- to design and fabricate an artefact considering all technical requirements 

- to estimate the stability and repeatability of the fabricated artefact 

- to measure the artefact on both CNC machine tool and CMM and compare the results 

- to evaluate the coordinate measuring performance of a 5-axis milling machine 

- to calculate the expanded measurement uncertainty  

1.5 Materials 

One of the most important points is the material that the intended artefact is made of. To evaluate 

the coordinate measuring performance of the machine tool, the artefact should be measured on both 
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CMM and CNC machine. In other words, artefact should be calibrated on the CMM before being 

measured on the CNC. Because of the different environmental condition these two machines are 

located in, the thermal expansion affects the measuring results. To reduce the thermal induced 

deviation effects, it is necessary to use a material with low coefficient of thermal expansion. On 

the other hand, the artefact should be ideally rigid, tough and stable. So, a carbon style alloy named 

Invar (FeNi36) which has the thermal expansion coefficient near to zero is used.   
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CHAPTER 2 LITERATURE REVIEW 

Five-axis machine tools are the most common machines for machining various industrial parts with 

complex geometry. The machine tool ability to provide a wide range of accessibility for the cutting 

tool relative to the work piece enables them to fabricate parts with more complex geometry and 

offers a significant reduction in the machining process time. In manufacturing processes, 

machining and measuring are two essential key steps to fabricate precise products. Manufacturers 

wish to reduce the cost of inspection. The process of measuring the product on the CNC machine 

during or after the machining process, called On Machine Measurement (OMM), has been 

developed to provide a fast, reliable and timely measurement. So, measuring process can be 

conducted without moving the product from the machine tool to the coordinate measuring machine. 

Like any other machine, machine tools involve some shortcomings and imperfections on their 

performances which may lead to overall machine inaccuracy and deficiency in machined part 

dimensions and geometry. Moreover, these machine tools weaknesses inevitably affect On Machine 

Measurement performance of machine tools. Since the evaluation of the coordinate metrology 

capability in five axis mode of a wCBXfZYt topology machine tool is of interest, in this chapter, a 

brief description of multi-axis machine tools errors, as a perquisite for machine modeling, are presented 

and followed by an introduction about errors evaluation and measurement approaches and then on-

machine-measurement explanation. 

2.1 Machine tool errors 

The term ‘error’ is defined as “the difference between the actual response of a machine to a command 

issued according to the accepted protocol of that machine's operation and the response to that command 

anticipated by the protocol” (Hocken, 1980). Errors caused by different sources which affect the 

machine accuracy. These errors are classified into two categories including quasi-static errors and 

dynamic errors. Quasi-static errors are related to the machine tool structure, its components weight and 

thermally induced strain through the whole structure and components. On the other hand, dynamic 

errors are associated with the machine motion functions; usually depend on machining conditions 

during machining process such as spindle error motions, machine vibration, servo control etc. (Hocken, 

1980).  
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2.2 Machine errors description 

Many researcher studied machine tools geometrical errors to evaluate the accuracy and the 

precision of machine tools and to improve and to compensate them. Various instruments and 

methods are developed to calibrate machine tools.  

Schwenke et al. (Schwenke et al., 2008) presented a general view of different sources of machine 

tool geometry errors including kinematic errors, thermo-mechanical errors, load, dynamic forces 

and motion control. They also presented some fundamental errors components. For example, for a 

nominally linear motion there are six motion error components including two tilt error motion, roll 

error motion, two straightness errors motion and a positioning error (Figure 2.1 A). Each rotary 

axis also has six errors motion including two radial errors motion; the axial error motion, the 

angular position error and two tilt errors motion (Figure 2.1 B). 

                       

a       b 

Figure 2.1: A) Component errors of horizontal Z axis according to ("ISO 230-1: Test Code for 

Machine Tools. Geometric Accuracy of Machines perating Under No-Load or Finishing 

Conditions, ISO, Geneva.," 1996) B) Location errors of C axis average line (Schwenke et al., 

2008) 

On the other hand, for each liner axis there are two squareness errors and the zero position error 

(Figure 2.2). Similarly, for a rotary axis there are also two translational errors in addition to the 

ones of a linear axis as shown in Figure 2.2 
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Figure 2.2: Link errors of a linear axis, Z  ("ISO 230-1: Test Code for Machine Tools. Geometric 

Accuracy of Machines perating Under No-Load or Finishing Conditions, ISO, Geneva.," 1996) 

2.3 Volumetric error 

All geometrical errors related to machine tools including motion errors and link errors affect the 

relative position of the tool inserted on the machine spindle and the work-piece hold on the machine 

table. This discrepancy is presented as the term “volumetric error” referring to the resulting error 

in position and orientation of the machine tool end effector (tool or stylus tip) related to the 

workpiece or feature to be machined or measured. Volumetric error is defined in the working space 

of the machine tool and can be measured using calibrated artifacts or telescoping ball-bar. 

Volumetric errors affect both the machining and metrological performance of the machine tool. 

So, to evaluate the machine tool on-machine-measuring performance volumetric errors should be 

taken into consideration. 

The volumetric errors include two main categories. Firstly, dynamic errors caused by the machine’s 

servo motors and secondly, static or geometric errors include the joints and links geometric errors 

caused by imperfect geometry of the guideways and structural components, etc. (R. J. Hocken, 

1980) . 

Slamani et al. (Slamani et al., 2010) presented a technique to assess a machine tool volumetric 

errors including both the dynamic and static errors and then compared the influence of geometric 

errors and dynamic errors at different machining feed rates. 
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2.4 Error evaluation approaches and devices 

There are generally two approaches to evaluate machine errors. One approach is direct 

measurement which is used to measure an individual axis errors one at a time such as positioning 

errors, straightness errors and angular errors for a single axis and squareness error between two 

axes. The indirect approach measures the effect of combined errors which are then decoupled 

through mathematical modeling. Different common standard parts and devices are now presented 

for calibration and errors estimation of machine tools and CMMs. 

Standard artifacts such as straightedges, line scales (Guideline, 1986) or step gages and even 

multidimensional artifacts like ball plates and laser-based methods are the common direct 

measurement methods. 

Step gauges are mostly used to check linear positioning errors and to conduct verification and 

acceptance tests on CMMs (Abbaszadeh-Mir, Mayer, Cloutier, & Fortin, 2002). 

Laser interferometer systems are also common systems specially to calibrate the MTs. As an 

example Castro et al. (Castro & Burdekin, 2003) presented a method for evaluating the positioning 

accuracy of machine tools and coordinate measuring machines (CMM) under dynamic condition 

using a laser interferometer which is capable of performing dynamic calibration. Another approach 

for mapping of geometric errors of machine tools and CMMs used a single tracking interferometer 

based on interferometric displacement measurements between fixed reference points on the base 

and fixed offset points on the spindle (Schwenke, Franke, & Hannaford, 2005). Generally, all laser 

interferometers are so sensitive to environmental condition and their first setup is time consuming. 

On the other hand, contour measurement (Sciammarella, 2013), multi-lateration measurement 

(Zou, 2016) and chase-the-ball measurement (Bringmann & Knapp, 2006), (Ezedine, Linares, 

Sprauel, & Chaves-Jacob, 2016) are some examples of indirect measurement approaches. Ball bar 

methods such as telescopic magnetic ball bar are common methods to verify geometric errors in 

both MTs and CMMs. There are two common types of magnetic ball bars including fix and 

telescopic. The general simulation and theory to identify five-axis machine tool geometrical errors 

by using telescopic magnetic ball bar is explained by Abbaszadeh-Mir (Abbaszadeh-Mir et al., 

2002), in this method the distance between a ball rigidly attached to the spindle and another ball 

rigidly attached to the workpiece table are measured, then by considering the machine tool 

geometry a Jacobian matrix is calculated which is then used to estimate the errors parameters. 
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Either calibrated, partially calibrated or un-calibrated artifacts may be used in indirect methods. 

Machine tool geometric error parameters can be defined by using a reconfigurable un-calibrated 

artefact and developing a mathematical model to remove the effects of unknown artefact geometry 

by compensating them (Erkan, Mayer, & Dupont, 2009). RUMBA method presented by T. Erkan 

et al. (Erkan, Mayer, & Dupont, 2011) uses several un-calibrated master balls fixed on the rotary 

table to identify both the position and the orientation axes errors and some other motion errors of 

a 5-axis MT by measuring relative position between balls and machine tool work-piece table. 

Plate type artefacts are also used commonly to measure positioning errors of machine too. Plate 

type artefacts such as ball plate (Liebrich, Bringmann, & Knapp, 2009), (Guenther, Stobener, & 

Goch, 2016), hole plate (Lee & Burdekin, 2001) and cone plate are developed based on measuring 

holes, balls or cones center distances. In general, hole plates accessibility are more limited than 

ball plate accessibility and they are used often for 2-D measuring, on the other hand, they are less 

sensitive and more reliable in term of plate bending. The design of the ball plate is highly sensitive 

to the clamping system and force, causing significant mechanical deformation that directly affects 

the position of spheres which are supposed to be fixed (Lee & Burdekin, 2001). To verify CMM 

performance, calibration is applied by using reversal technique and then probing on four different 

positions on the machine; by calculating the residual between measured and calibrated position of 

each ball on the CMM. 

Bringmann et al. presented a new measuring artefact consisting of a standard 2D-ball plate that can 

be relocated to achieve a pseudo 3-D artefact providing a fast and reliable method to test and 

calibrate 3 axis machine tools and CMM (Bringmann & Kung, 2005). Using kinematic coupling 

in this project provided a reliable repeatability for the artefact measurement. In order to eliminate 

the effect of CMM geometrical errors artefact should be calibrated by probing in different 

horizontal and vertical positions. (Liebrich et al., 2009) 

Generally, using ball-artefact based methods for the purpose of machine tool calibration and to 

evaluate the machine metrological performance could be proposed as an alternative for time 

consuming methods such as laser interferometer, provided that a sufficient probing method be 

defined to measure the balls center. The common method is using machine-integrated touch trigger 

probes, but in this case numerous touches are needed to determine a ball center which is relatively 

time consuming, thus self-centering probe system (Yague et al., 2009) is developed using a 
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specifically designed ball-measuring 3D probe which is able to measure each ball center only in 

one measuring step. This new probe concept includes 3 linear probes positioned in a three 

orthogonal styli configuration. The negative point of this approach is that because of its huge 

configuration the probing accessibility is reduced. 

Recently, Bringmann et al. (Bringmann & Kung, 2005) presented an artefact for machine 

calibration and explained some necessary conditions to take into consideration for the development 

of an artefact to minimize measuring steps and operation time, including: 

-the device should provide accessibility to measure deviation through all 3 linear axes; 

-the artefact target points should be distributed uniformly through the whole machine tool 

workspace; 

-the uncertainty of the measurement device should be considerably less than the tolerance for the 

geometric machine deviations. 

2.5 On-Machine measurement 

The technique of on-machine measurement allows the machine tool to be used for both machining 

and inspection purposes with the aim of reducing the total cost and cycle time. By using on-

machine measurement approach as a simple alternative mechanism for verifying part geometry the 

inspection capability information generated by on-machine acceptance processes can be available 

for designers that help them to create a design-for-inspect ability environment (Pancerella, 

Hazelton, & Frost, 1995). 

Probing errors of a touch probe and positioning errors of the machine tool, inevitably affect the 

measuring results. So to obtain true measuring results achieved by on-machine measurement these 

errors should be taken into account or compensated (Choi, Min, & Lee, 2004). Generally there are 

two different techniques for on-machine measurement, the first method which is more popular is 

using a touch trigger probe similar to what is used on CMMs, and the second one recently 

developed are non-contact techniques. 

A vision-based on-machine measurement system is a recently developed method to improve 

manufacturing productivity. It is a visual probe that enables the machine tool itself to be applied as 

a CMM to measure and inspect a workpiece (Xia, Han, Lu, & Xia, 2015). It is composed of a visual 
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probe and some software to process the measuring and inspection data. The auto-focus function of 

the visual probe was realized using the astigmatic method. 

On-machine measurement is very demanded in large components machining because usually to 

hold these components during machining special fixtures are needed. Removing from the machine 

tool and then fixturing for loading on a CMM, parts dimensions can be changed enough for a good 

part to be rejected. There are different approaches to achieve traceable large volume metrology 

(LVM) processes in different fields of large volume manufacturing. Integration of the measurement 

process into large machine tools seems to be an ideal solution to improve the quality and reduce 

waste material and a better conformance with the tolerances required. Especially the development 

of one clamping set up allows machining and measuring in the same coordinate system and 

consequently improves the product quality (Schmitt, 2013). 

To improve the productivity of large-parts manufacturing a new on-machine procedure is presented 

by Uekita (Uekita & Takaya, 2016) which consists of a laser tracker as the length-measurement 

apparatus, a probing unit, and a length-calibrating artefact to establish a traceable and automated 

measuring procedure. The machine tool volumetric errors should be taken in to account to achieve 

the exact dimension for the target part.   
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CHAPTER 3 PROCESS FOR THE RESEARCH PROJECT AND 

METHODOLOGY 

To meet the increasing demand for parts with high precision, precise machine tools with measuring 

capability are sought. The objective of this thesis is to evaluate the machine tool coordinates 

measuring performance by using a newly designed 3-D artefact named dome artefact. The 

following steps describe the outline of undertaken steps to fulfill this objective: 

3.1 Artefact design: 

- Design a new 3-D artefact based on a pseudo hemisphere shape;  

- Made the artefact of Invar to reduce the effect of thermal expansion. 

3.2 Measuring the artefact on a Coordinate Measuring Machine (CMM): 

- Evaluating the CMM measurement repeatability. 

- Evaluating the measurement repeatability for various clamping torque.(Clamped 

measurement repeatability) 

- Evaluating the effect of various artefact orientations relative to local gravity.  

- Defining a compliance model to reduce the effect of gravity in different orientations. 

3.3 Transferring the artefact to the Machine tool  

- Calculating the position of each ball relative to machine tool work piece table using 

simulator program. 

- Implementing on-machine measurement non-involving machine tool rotary axes to 

simulate the CMM configuration. 

- Comparing the on-machine measurement results and the calibrated model to evaluate the 

machine tool coordinate measuring performances for various B and C indexations. 

3.4 Defining the measurement uncertainty: 

- CMM measurement repeatability 
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- Artefact geometry repeatability 

- Clamping geometry repeatability 

- Gravity compliances model 
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CHAPTER 4 ARTICLE 1: A BALL DOME ARTEFACT FOR 

COORDINATE METROLOGY PERFORMANCE EVALUATION OF A 

FIVE AXIS MACHINE TOOL  

J.R.R. Mayer (2)*, Heidarali Hashemiboroujeni, accepted in CIRP Annals Manufacturing Technology 

2017 

4.1 Abstract: 

Five-axis machine tools are increasingly used for coordinate metrology on workpieces at various 

stage of machining. Evaluation of the metrological capability in five axis mode using a probed 

reference artefact requires accessibility from various probing directions. When rotary axes handle 

the artefact its deflection under varying gravitational loading is also a concern. A 3D artefact is 

proposed consisting of a kinematically mounted Invar structure dome holding 25 precision balls. 

The effect of changing gravity on its geometry is quantified and it is then used to evaluate the 

coordinate metrology capability in five axis mode of a wCBXfZYt topology machine tool. 

Key words: Machine tool, Measurement; Accuracy 

 

4.2 Introduction 

Touch trigger probes, and now scanning probes, are used on machine tools for such tasks as table 

and workpiece locating prior to machining and compensation for tool and workpiece deflection 

using intermittent probing [1]. Assessing the conformity of a finished part using the machine tool 

as a coordinate measuring machine is also of interest. In [2] the uncertainty was estimated for a 

particular measuring task by measuring a calibrated workpiece with a 80 mm hole when using the 

three linear axis of a machine considering the impact of thermal effects. Recent standards suggest 

estimating measurement uncertainty using a calibrated workpiece similar to the one of interest [3] 

or using a virtual model and simulations [4]. A general artefact was proposed, and its uncertainty 

estimated, for testing and calibrating a three axis machine tools using a pseudo 3D grid built from 

a kinematically relocated 2D ball plate [5]. In [6] the individual probing on a single ball for a 

number of rotary axes indexations on a five-axis machine tool are assembled into a common 

reference frame to analyse the apparent out-of-sphericity and size. When machining a part using 
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the rotary axes of a five axis machine tool it is likely that verifying such tolerance as positioning 

also requires combining measurements made for different indexations of the rotary axes. On a 

coordinate measuring machine (CMM) whenever there is a change in the indexation of the probe 

head the stylus tip centre position changes relative to the machine reference frame. As a result it is 

necessary to re-measure the centre coordinates of a reference sphere which position does not 

change relative to the part being measured. On a five-axis machine rotary axes may change the 

orientation of the workpiece relative to the x, y and z axes of the machine tool. Unless at least three 

spheres fixed relative to the workpiece are re-measured for each such re-indexation, it is necessary 

to use computations to express all stylus tip touch positions into a common reference frame rigidly 

connected to the last axis of the workpiece branch such as the workpiece, workpiece table or the 

last axis frame. Such calculations require the position of the stylus tip relative to the spindle as well 

as the kinematic model of the machine, either using nominal geometric parameters values or 

calibrated ones [6]. 

4.3 The ball dome artefact 

The tested five-axis horizontal machine tool has two rotary axes holding the workpiece and a 

wCBXfZYt topology. A maximum number of balls must be accessible for probing for the full 

range of motion of the two rotary axes. The artefact uses arcs of equal thickness but slightly 

different radii, and balls, on constant length stems, located on a quasi-hemisphere. All balls are 

accessible for the full B-axis range of -90≤b’≤+90, by rotating the C-axis. The fabricated ball 

dome artefact is shown in Figure 4.1. 
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Figure 4.1: Photos of the ball dome artefact (left) and loaded on the C-axis of the machine tool 

ready for probing (right) 

It was anticipated that the three main factors affecting the artefact geometry would be thermal 

expansion due to the machine workspace temperature, non-repeatable deformation from clamping 

and finally the elastic deformation of the artefact under varying gravitational forces due to the 

rotation of the C-axis on this horizontal machine tool. 

In order to limit thermal expansion and distortion, the artefact structure is made of Invar. The balls 

and short stems are made of steel. The artefact is kinematically fixtured to the machine table via a 

supplemental steel mounting plate fitted with three V-supports. The artefact has three similarly 

located steel hemispheres. The fixturing forces are applied, using screws and a controlled 

tightening torque, near the kinematic supports in order to limit deflection in the artefact structure. 

The artefact structure uses three semi-circular arches joined at both ends to a common ring and 

attached together at their mid-points.  

This paper presents the design, calibration and use of the ball dome artefact to quantify the ability 

of a machine tool for coordinate metrology in five-axis mode. 

4.4 Ball dome artefact calibration and evaluation 

A number of test were conducted on a Mitutoyo Legex 910 with a Renishaw TP7M probe and a 50 

mm long probe extension bar model PEM1, a stylus length of 150 mm and a stylus tip of 6 mm 

diameter. In accordance with ISO10260-2:2001 the CMM has a P value of 1.3 µm and a maximum 

E value of 2.9 µm for the used volume. The tests have three objectives. The first objective is to 
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assess the repeatability of the CMM measuring process. The second objective is to quantify the 

repeatability of the geometry of the artefact, i.e. the relative position of the balls of the dome, in 

the clamped state so that it can be calibrated on a CMM and then unclamped, moved to the machine 

tool and re-clamped. The third objective is to quantify the variation in the position of the dome 

balls when the table, and artefact, are rotated in a way that changes the direction of gravity. 

The artefact has 25 balls on its dome and three more on its base ring. Another four balls are directly 

attached to the interface plate for a total of 32 balls. Four setups were studied: 

- Horizontal position (H): the artefact is clamped on the workpiece table horizontally i.e. 

table normal pointing upwards relative to gravity; 

- Horizontal position rotated (HR): as for H but the whole assembly (artefact and table) is 

rotated by 90 around a vertical axis. This should not alter the assembly but changes the association 

of the CMM systematic errors with the various balls; 

- Vertical position (V): the assembly is tilted so that the table normal is perpendicular to 

gravity i.e. as on the machine tool; 

- Vertical position rotated (VR): the assembly is rotated by 90 around a horizontal axis, 

which is similar in action to a C-axis rotation on the machine tool, so that the action of gravity 

changes again relative to the artefact. 

4.5 Measurement repeatability 

Let’s say a ball center coordinate measurement is pi,j,k where i, j and k are the identifiers for the 

ball, setup and repetition respectively. Measurement of all Ni=32 balls was repeated Nk=3 times 

for all four setups. For each ball and each setup a mean ball position is calculated. Then standard 

deviations are calculated for each ball and setup and finally a pooled standard deviation is 

calculated for each setup separately and for all setups together.  



 
kN

i,j i,j,k
k 1

1

N k

p p ;   i,j,k i,j,k i,jp p p ;  i,j,k i,j,kd p  (1) 

 





 




 



k i

i

N N
2 2

ki,j,k d,i,j
1 1

d,i,j p,d,j N
k

k
1

(N 1)

;
(N 1)

(N 1)

k i

i

d s

s s . (2) 



17 

Table 4.1 shows that the largest pooled deviations for a setup and the overall pooled standard 

deviations are 0.59 and 0.53 µm respectively. 

Table 4.1: Repeatability of measurements as pooled standard deviations (in µm)  

 

 

 

4.6 Clamping repeatability 

The clamped geometry repeatability is essential so that the artefact can be pre-calibrated clamped 

and then transferred to a machine tool and re-clamped. The clamped geometry repeatability is 

verified by comparing the two sets of ball center coordinates for two successive clamped states as 

follows: mount on the kinematic receptacle, clamp, measure, unclamp, remove and remount, re-

clamp, re-measure. A 3D rigid body cloud point fit is conducted using the method described in [8] 

adapted to minimize the sum of the square of the coordinate differences between the two sets of 

points as follows: 

 
 



  


2

, ,secargmin

, , , , ,

i first clamping i ond clampingp p

x y z
. 

(3) 

Three tests were conducted using different tightening torques for the kinematic mount screws 

(visible in Figure 4.1 (left)). Controlled tightening torques of 10 and 5 lb-ft were tested. The 

detailed results in Table 4-2 are calculated using similar equations to (1) and (2) for each torque 

level. The worse change amongst the 28 artefact balls and amongst the two torques was 2.2 µm 

and the worse pooled standard deviation was 0.58 µm. 

Table 4.2: Repeatability of the clamped geometry of the ball dome artefact: maximum distance and 

pooled standard deviation (in µm) 

  

 

 

Setup 

 H HR V VR Overall 

Sp,d 0.46 0.57 0.59 0.49 0.53 

                                     Torque 10 (lb-ft) 5 (lb-ft) 

Maximum distance, dH,Max 2.2 1.8 

Pooled s, sp,d 0.58 0.43 
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4.7 Gravitational loading 

On many five axis machine tools the rotary axes may alter the orientation of the mounted artefact 

relative to local gravity. This effect is quantified as a systematic error represented by the ball center 

shift and its norm for each ball between setups. The ball coordinates are in a reference frame 

constructed from three of the four balls attached directly to the interface plate which three balls are 

expected to be much less affected by gravity. The setups are compared in two pairs: H and V, and, 

V and VR. As an example the V-H values are obtained as follows:  



     
iN

i,V-H i,V i,H i,V-HV-H
i 1

1
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N i
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   
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1

1
;

Ni i
d p d d

. 
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The results in Table 3 indicate that the largest changes in the position of a ball relative to the table 

occurred between the vertical rotated and vertical setups and reach average and maximum values 

of 6.5 and 9.3 µm respectively.  shows that the change in the direction of gravity from -z to -y for 

the setup V-H causes the expected slight shift of the balls towards +z and -y. The rotation from V 

to VR is around an axis perpendicular to gravity and is similar to a C-axis rotation by 90 on the 

target machine. In this case, the direction of gravity changes from -y to -x. Figure 4-3 shows that 

the change is primarily in the xy plane and is consistent with the change in the direction of gravity 

direction. 

Table 4.3: Change in the position of the balls of the clamped artefact under changing orientation 

relative to gravity (in µm) 

 

 

 

 

 

 

Compared setups 

 V_H VR_V 

Average jd  4.7 6.5 

 xp  -0.5 -3.4 

 yp  -3.8 4.9 

 zp  2.1 -0.6 
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Table 4.3 (cont’d): Change in the position of the balls of the clamped artefact under changing 

orientation relative to gravity (in µm) 

 

 

 
 
 

 

 
 

Figure 4.2: Change in ball positions when moving the table and artefact form a horizontal to a 

vertical orientation (V-H). For the H and V setups gravity points towards –z and –y respectively 

(errors  vectors 20000) 

 

Maximum,  7.4 9.3 

 
-1.5 -4.7 

 
-7.0 8.0 

 1.8 -0.7 
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Figure 4.3: Change in ball positions when moving the table and artefact form by 90 while 

remaining in the vertical orientation (VR-V).  For VR and V gravity points in –x and –y 

respectively (errors  vectors 20000) 

Given that gravity has a significant systematic effect, and awaiting stiffeners to be added to the 

artefact, corrections were applied using compliances individually estimated for each ball on the 

basis of these observations.  Such corrections are applied to the mean H setup results to predict the 

actual geometry of the artefact when mounted and rotated on the machine tool. 

Considering the CMM performance, the artefact measurement repeatability on the CMM, the 

clamped geometry repeatability and the gravitational correction, the expanded combined 

uncertainty on the calibrated center position of the balls center relative to a reference frame fixed 

to the machine table, and after clamping, mounting in the vertical position and rotation around the 

C-axis is estimated at 5.3 µm (k=2). 

4.8 Five-axis coordinate metrology 

Each ball is probed to establish its center coordinates and the corresponding axes positions (x, y, 

z, b and c) are recorded. For x=y=z=0 the stylus tip center is nominally positioned at the intersection 

of the B and C axes. In this work the functional point [9] is the position of the stylus tip calculated 

relative to a reference frame attached rigidly to the workpiece frame but with its origin on the C-

axis and its z-axis corresponding to the C-axis. The ability to measure geometrically coherent 

positions in this frame is relevant to the ability of the machine to conduct five-axis metrology. The 

position of the stylus tip in this last workpiece branch axis frame, here the C-axis frame, is 

calculated as follows: 

  C C B X f Z
B X f Z Ytipp T T T T T t

 
(6) 
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where 

              

T TC C C C
tip x y z x y z, , , 1 ; , , , 1p tip tip tip t t t t

. 
(7) 

[9]), nominal axis motion and intra-axis errors (called error motion in [9]) the homogenous 

transformation matrices of Equation (6) are expanded as follows as an example for axis Y: 


N AA A N
0 0A N A N A

0 0

Y YZ Z Y
Y Y Y Y YT T T T T

 (8) 

with 0, N and A standing for ‘zero motion’,  ‘nominal’ and ‘actual’ respectively. These four sub-

matrices are as follows: 
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where R is a 3x3 rotation matrix. Error notation is as in [9]. 

4.9 Machine tool performance for five-axis metrology 

The artefact was clamped in the horizontal position in the machine pallet changer area and then 

automatically loaded vertically in the machine working area onto the C-axis as shown in Figure 1 

(right). A number of tests were conducted which gradually increased the involvement of the rotary 

axes in the measurement process. A total of 613 ball centers were measured in about 15 hours. For 

each test all machine tool measured (MTM) positions of the ball dome artefact balls center 

coordinates are calculated and brought to a common frame using Equation (6) assuming zero inter- 

and intra-axis errors. They are then compared to the CMM measured ones using cloud point fitting 

in order to only consider the geometry of the artefact. The distances between the CMM and MTM 

ball centers are calculated and the maximum and average values are presented in Table 4.4. 
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The tool is nominally defined by its length, as measured using a tool setting instrument, and zero 

lateral offsets are assumed. Looking at the results for the nominal tool, in the first two columns, it 

is noticeable that results are best, 7.9 µm at worst, when all measurements are made without 

combining information from different angular positions of the rotary axes. In this case, the five 

axis machine tool is used as a three axis machine. For b=0 and combining data from all three 

angular positions of the C-axis (i.e. 0°, 90°, 180° and 360°) the worst case error increases to 19.8 

µm. In this case, in addition to any error from the C-axes, different volumetric errors due to the 

XYZ-axes are associated to a ball when it is re-measured for a new angular position of the C-axis. 

For constant, but non zero, angular positions of the B-axis from -90° to +90° the errors generally 

increase and vary between 15.8 to 151.3 µm. This is attributed to a large EX(0B)C (B to C cross-

axis offset) on this machine. This error creates an offset on the ball center coordinates which 

changes direction in the artefact frame (attached to the C-frame) with angular positions of the C-

axis. Using two opposite values of the B-axis from +/-10 to +/-90 results in larger errors, up to 

162.8 µm.  

The third and fourth column results are calculated using an estimated tool definition obtained by 

processing all the available data as in the RUMBA method [10] but only estimating the ball 

positions and the tool length and lateral offsets. The objective being to find the ball and tool 

positions which best explain the gathered machine axis position corresponding to the stylus tip 

being at the centers of the balls. The ball positions are assumed unknown for this estimation. Then, 

only the tool value is retained for further processing using Equation (6). Results in suggest that the 

tool definition has no effect when the rotary axes are not involved in the measuring process. For 

b=0 and combining data from all three angular positions of the C-axis the average error is reduced 

by a half from 11.7 µm down to 5.7 µm. When using a single non-zero B-axis angular position and 

all three C-axis angular positions the results are sometimes better sometimes worst especially for 

negative B values. When using two opposite values of the B-axis from +/ 10  to +/ 90  and when 

using all available data the new tool value produces a better MTM geometry for the artefact. It is 

thought that the estimated tool attempts to correct the effect of the large EX(0B)C value which is 

most of the time, but not always, helpful. 
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Table 4.4: MTM versus CMM coordinates (in µm) for various combinations of rotary axes angular 

positions using the measured probing tool length or an estimated probe definition 

Rotary axes 

angular positions 

Tool length 

Measured(M) Estimated (E) ME 

B C dmax dave dmax dave dmax dave 

0° 0° 5.9 3.5 5.9 3.5 0.0 0.0 

0° 90° 4.5 2.8 4.5 2.8 0.0 0.0 

0° 180° 7.1 4.0 7.1 4.0 0.0 0.0 

+10° 0° 5.7 3.2 5.7 3.2 0.0 0.0 

-10° 0° 7.9 4.3 7.9 4.3 0.0 0.0 

0° All 19.8 11.7 13.9 5.7 5.9 6.0 

+10° All 15.8 10.4 11.3 5.4 4.5 5.0 

-10° All 18.2 11.8 12.7 6.6 5.5 5.2 

+30° All 24.1 14.7 37.2 25.9 -13.1 -11.2 

-30° All 16.2 9.3 37.7 26.4 -21.5 -12.3 

+60° All 96.2 80.3 94.6 79.3 1.6 1.0 

-60° All 68.3 49.0 103.5 81.5 -35.2 -32.5 

+90° All 151.3 130.8 124.2 106.2 27.1 24.6 

-90° All 105.1 83.3 133.6 107.5 -28.5 -24.2 

+/-10° All 29.1 20.7 25.2 19.1 3.9 1.6 

+/-30° All 62.9 53.6 61.8 49.6 1.1 4.0 

+/-60° All 127.4 99.9 120.0 92.5 7.4 7.2 

+/-90° All 162.8 119.7 127.6 107.0 35.2 12.7 

All All 151.5 60.2 121.2 55.9 30.3 4.3 

Figure 4.4 and Figure 4.5 show the amplified volumetric error vectors at each ball for the b=0, 

c=0, 90, 180, 360 pairs and for all b and c angular position pairs respectively. Note that errors 

are 20 times less amplified in Figure 4.5. Errors on Figure 4.5 are dominated by the cross-axis 

offset which effect is in the XZ plane of the machine frame but due to the C-axis rotation changes 

direction in the artefact frame. 
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4.10 Conclusion 

The ball dome artefact supporting 25 balls on a quasi-hemispherical envelop was fabricated of 

Invar and fixtured using kinematic supports. The repeatability of clamping and deflection due to a 

changing gravity vector were quantified and found to be on average of the order of 0.6 and 6.5 µm 

respectively. A detailed analysis of the effect of tilting the artefact from a horizontal to a vertical 

orientation suggests that adding stiffness could further reduce gravity induced errors. However, 

ball specific corrections were applied based on the observed compliances. Artefact ball center 

uncertainty once mounted on the machine tool is estimated at 5.3 µm (k=2). The new artefact 

allows the full range of rotary axis motion of the wCBXfZYt machine to be used in evaluating the 

machine for up to five axis coordinate metrology. When using only the linear axes of the machine 

tool a worst case measurement error of 7.9 µm is obtained. This value increases to 19.8 µm when 

the C-axis is involved but can be reduced to 13.9 µm when an estimated tool definition is used to 

process the data. The worst case error increases to 162.8 µm when both the C- and B-axis are used.  

This is attributed to the presence of a large EX(OB)C error on the machine tested. 
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Figure 4.4: Differences between the MTM and CMM dome artefact ball centers  using four axis 

(X, Y, Z and C-axis) and an estimated tool; 10000 

 

 
 

Figure 4.5: Differences between the MTM and CMM dome artefact ball center positions when 

using all five axes and an estimated tool; 500 
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CHAPTER 5 COMPLEMENTARY TECHNICAL DETAILS  

This chapter, a complementary explanation to the materials and methods provided in the paper 

presented in chapter 4 is provided. 

Using an artefact supposed to be calibrated on a CMM is considered to evaluate the metrology 

performance of a five-axis horizontal machine tool by comparing the coordinates measured on the 

CMM with the ones achieved by the machine tool.  

In order to have a reliable measurement, the geometrical stability of the artefact under different 

clamping conditions and the effect of gravity on the artefact structure under varying gravitational 

directions should be taken into consideration. 

5.1 Artefact stability 

Coordinate measuring machines often are located and used in temperature controlled and clean 

areas. On the other hand, a machining shop or where ever a machine tool is working in, ordinary 

does not have that level of standards for environment considerations. Moreover, the machine tool 

operation, regardless of cutting or milling process, generates heat and thermal flow by itself, so 

stabilizing the machine tool temperature during the machining or measuring is impracticable. To 

reduce the effect of thermally induced deformation on the artefact geometry there would not be 

any choices unless using a thermo-invariant material. As explained in the paper the material which 

is used in this research is Invar, also known generically as FeNi36 (64FeNi in the US), which is a 

nickel–iron alloy notable for its uniquely low coefficient of thermal expansion (CTE or α). The 

name Invar comes from the word invariable, referring to its relative lack of expansion or 

contraction with temperature changes.  

As it is explained the artefact is supposed to be measured and calibrated on a coordinate measuring 

machine and then be transferred to the machine tool to be measured again, which needs clamping, 

unclamping, picking up, transferring and putting back the artefact. So the artefact measurement 

repeatability is critical parameter to take into account while transferring the artefact. To provide a 

reliable installation approach that allows the artefact to be located at the exact position, some 

kinematic joints are used include 3 standard hemispheres which are supposed to be seated on 3 

standard V-blocks (Figure 5.2). Using kinematical coupling is a common way to provide a reliable 

and repeatable positioning.  
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The first model is designed and simulated on NX-Unigraphics (Figure 5.1) and then it is imported 

to Catia to provide an integrated model for machining. 

 

Figure 5.1: The artefact model designed on NX 

 

Figure 5.2: Three V-blocks attached to the base plate to provide a stable seat place for the artefact 

As artefact is going to be used on a horizontal milling machine which has a vertical work-piece 

table, the artefact should be hold and fixed on the machine vertical table to prevent falling down, 

so clamping the artefact is unavoidable (Figure 5.4). Because of elastic intrinsic quiddity of metals, 

the artefact structure especially the ring part will be deformed under clamping force which causes 
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deviation on whole artefact configuration, so the effects of clamping on various positions and 

different clamping forces are evaluated. 

 

Figure 5.3: Clamps configuration 

Optimized torque volume not only is able to hold the artefact properly on the kinematic joints to 

provide reasonable measurement repeatability, but also minimizes the elastic deformation caused 

by clamping force. 

 

Figure 5.4: Artefact clamped on the base plate in horizontal position 
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Another important factor that affects the artefact stability is the gravitational force, in other word, 

the artefact weight. The coordinate measuring machine which is used for this research project is 

Mitutoyo Legex 910 which has a horizontal work-piece table. Ordinary, the artefact is supposed to 

be placed on the machine table horizontally to be probed. On the other hand, the machine tool 

subjected is a horizontal five axis machine tool which has a vertical work piece table, so the artefact 

is supposed to be placed in vertical direction. In this research, by using an auxiliary table placed 

vertically on the main CMM table, a similar configuration as the machine tool work piece table is 

replicated for the CMM. So by putting the artefact on this new vertical table, the CMM will be able 

to probe and measure the artefact while it is located in vertical position (Figure 5.5). Then, by 

comparing the results come from probing the artefact in both horizontal and vertical positions on 

the CMM, the artefact stability considering re-orientation relative to local gravity is evaluated.  

 

Figure 5.5: Artefact located in vertical position 

5.2 Artefact design: 

In geometrical point of view, the intended artefact for this research is designed pretty large to cover 

a major portion of machine tool working space. Also, it is extended almost uniformly relative to 

machine tool rotary axis (C axis).  

The designed hemisphere artefact includes a base ring which holds 3 Semi-circular arcs with 

different radius which are attached together at the midpoint (Figure 5.6) where they pass exactly 
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over each other without considerable offset, means that the radius differences equal to the arcs 

thickness. So, balls installed on the arcs with the same stem length will be located on different 

distances from the ring center point. 

 

Figure 5.6: Attaching the arcs together in the mid-point 

To have target points which are supposed to be probed, 25 standard stainless steel balls are installed 

on the arcs equally spaced, 9 balls on each arc, and the center ball is shared between 3 arcs. In 

designing the artefact, it is tried to provide the maximum number of balls accessible to probe for a 

maximum range of motion of the both machine tool rotary axis. Figure 5.8 shows the machine tool 

workpiece table and the artefact. 
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Figure 5.7: Five-axis machine tool (wCBXFZYSt) as a kinematic chain 

 

Figure 5.8: The artefact located on the machine tool table 
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As it is mentioned, estimating the effects of clamping force is also interested. To be able to observe 

the clamping effect directly on the ring, 3 balls are directly installed on the ring to be probed. By 

using 3 kinematic V-blocks and 3 truncated and threaded balls, artefact placed on the base plat 

which is attached directly to the machine tool table (pallet) using four bolts. According to the test 

procedure, the artefact is probed on both clamping and unclamping positions, as well as both 

horizontal and vertical positions. In all these positions, it is supposed that the base plate which is 

attached to the machine table is stable and rigid and can be used as a measuring reference. So by 

defining four points on the base plat, a reference coordinate system is defined (3 points to define 

the reference frame and one point reserved to check). These points actually are the center of balls 

which are attached to the base plate in a rectangular position relative to each other. After defining 

the coordinate reference frame, all other balls center coordinate relative to the machine tool or 

CMM frame will be transferred into this new defined common reference frame.  

5.3 Measurement uncertainty: 

Uncertainty (of measurement) parameter, associated with the result of a measurement, that 

characterizes the dispersion of the values that could reasonably be attributed to the measurand 

(Standardization, 2008). 

Uncertainty of a measurement comprises many components. Some of these components may be 

evaluated from the statistical distribution of the results of series of measurements and can be 

characterized by experimental standard deviations. The other components which also can be 

characterized by standard deviations are evaluated from assumed probability distributions based 

on experience or other information. 

In this case, CMM measurement repeatability is quantified and the measurement uncertainty is 

defined. Moreover, uncertainties of the artefact repeatability and clamping repeatability are 

determined as well. The artefact is measured several times at the same configuration, then the 

average position for each ball is calculated, so the residual is defined as the deviation between 

measurand position and the average position. By calculating the standard deviation of those 

residuals the uncertainty value is achieved. 

Other parameter that is interested is the effect of gravity, in other words, the effect of gravity while 

the artefact is located on various orientations relative to local gravity direction. By comparing the 
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balls coordinate measured on the CMM while it is measured on different positions such as 

horizontal, horizontal rotated, vertical and vertical rotated, a compliance model is proposed to 

correct the effect of gravity. It means that by calculating the compliances parameters in X, Y and 

Z directions arranged in a matrix form and considering the C axis rotation angle and the reference 

model comes from horizontal probing, the calibrated model for vertical position in various C axis 

indexations will be estimated. The uncertainty of the compliance model is also calculated by 

calculating the standard deviation of residual between the estimated model and measured model 

for vertical and vertical rotated positions. 

At the end, considering the CMM performance uncertainty, the artefact measurement uncertainty, 

the clamping repeatability uncertainty and the uncertainty characterized for gravity compliances, 

the total uncertainty for balls position measuring is calculated. 

5.4 Results: 

In this section, all the measuring results which are used in the paper (Chapter 4) are presented in 

details.  

5.4.1 CMM vertical and horizontal probing: 

The maximum absolute deviation and maximum deviation for each X, Y and Z directions as well 

as average deviation for 3 times probing results while the artifact located at the same position are 

presented in Table 5.1. 

Table 5.1: Maximum and average deviation 

Maximum deviation 

(Milimeter) 
Horizontal 

Horizontal 

rotated 
Vertical Vertical rotated 

X 0.0003 0.0006 -0.0009 0.0016 

Y -0.001 0.0008 -0.0030 -0.0001 

Z 0.0006 -0.0009 -0.0016 -0.0003 

R 0.0017 0.0014 0.0036 0.0016 

Average deviation 0.00046 0.00057 0.00059 0.00049 

The average and maximum deviations between horizontal and vertical positions; and between 

rotated and non-rotated positions are presented in Table 5.2 and Table 5.3. 
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Table 5.2: Average deviation 

deviation (Milimeter) X Y Z R 

Between horizontal and vertical -0.0005 -0.0038 0.0021 0.0047 

horizontal and horizontal rotated -0.0031 0.0043 -0.0004 0.0058 

vertical and vertical rotated -0.0034 -0.0049 -0.0006 0.0065 

 

Table 5.3: Maximum deviation 

Maximum Deviation (Milimeter) X Y Z R 

Between horizontal and vertical -0.0015 -0.007 -0.0018 0.0074 

horizontal and horizontal rotated -0.0068 0.0062 0.0019 0.0094 

vertical and vertical rotated -0.0047 0.008 -0.0007 0.0093 

The maximum clamping repeatability in the horizontal position for clamping torques of 5 lb-ft and 

10 lb-ft are 0.0018 and 0.0022 millimeters respectively. The deflections caused by the artefact re-

orientation relative to local gravity are on average 0.0055 millimeters. However, by calculating the 

gravity compliances, some specific corrections were applied. By Considering the CMM 

performance, the artefact measurement repeatability, the clamped geometry repeatability and the 

gravitational compliances, the expanded combined uncertainty for the artefact balls center 

measurement is estimated at 0.0053 millimeters. 

5.4.2 Machine tool probing: 

After probing and measuring the artefact on the coordinate measuring machine and calculating 

repetition, deviation and uncertainty of the measurement results, artefact is measured on the 

machine tool and results are analyzed and compared with calibrated model. Due to the artefact 

geometry a wide range of rotary axes motions of the machine tool are accessible to evaluate the 

machine performance for up to five axes on-machine coordinate metrology.  

To compare the machine tool measuring results with CMM results two different processes are 

followed. In the first approach, by considering the artefact geometry in horizontal, horizontal 
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rotated, vertical and vertical rotated positions, the average balls coordinate are calculated and 

considered as the calibrated model to compare with machine tool results. In the second approach, 

by considering the gravitational compliances, the compensated calibrated model is defined and 

used to compare with machine tool results. In both cases, calculation based on both nominal tool 

and estimated tool are done separately. Table 5.4 and Table 5.5 present the deviation for various 

machine tool indexations based on average calibrated model and compensated calibrated model 

respectively. 
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Table 5.4: Machine tool deviation results based on the average calibrated model 

 

Indexation 

Tool-twists-nominal Tool-twists-estimated 

Maximum 

(mm) 

Average (mm) Maximum 

(mm) 

Average (mm) 

B: all,  C: all 0.1523 (mm) 0.0569 0.1207 0.0528 

B: 0,  C: all 0.0176 0.0095 0.0110 0.0043 

B: 0,  C: 0 0.0075 0.0034 0.0075 0.0034 

B: 0,  C: 90 0.0090 0.0031 0.0090 0.0031 

B: 0,  C: 180 0.0090 0.0036 0.0090 0.0036 

B: 0,  C: 360 0.0068 0.0032 0.0068 0.0032 

B: +10,  C: 0 0.0083 0.0032 0.0083 0.0032 

B: +10,  C: all 0.0164 0.0088 0.0099 0.0039 

B: -10,  C: 0 0.0079 0.0043 0.0079 0.0043 

B: -10,  C: all 0.0180 0.0099 0.0121 0.0056 

B: +-10,  C: all 0.0302 0.0196 0.0286 0.0187 

B: +30,  C: all 0.0246 0.0149 0.0377 0.0261 

B: -30,  C: all 0.0125 0.0063 0.0350 0.0257 

B: +-30,  C: all 0.0611 0.0534 0.0599 0.0495 

B: +60,  C: all 0.0975 0.0801 0.0959 0.0791 

B: -60,  C: all 0.0665 0.0486 0.1031 0.0815 

B: +-60,  C: all 0.1266 0.0999 0.119 0.0923 

B: +90,  C: all 0.1505 0.1298 0.1233 0.1053 

B: -90,  C: all 0.1023 0.0833 0.1311 0.1075 

B: +-90,  C: all 0.1630 0.1195 0.1268 0.1065 
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Table 5.5: Machine tool deviation results based on the compensated model 

 

indexation 

Tool-twists-nominal Tool-twists-estimated 

Max Ave Max Ave 

B: all,  C: all 0.1515 (mm) 0.0602 0.1212 0.0559 

B: 0,  C: all 0.0198 0.0117 0.0139 0.0059 

B: 0,  C: 0 0.0059 0.0035 0.0059 0.0035 

B: 0,  C: 90 0.0045 0.0028 0.0045 0.0028 

B: 0,  C: 180 0.0071 0.004 0.0071 0.004 

B: +10,  C: 0 0.0057 0.0032 0.0057 0.0032 

B: +10,  C: all 0.0158  0.0104 0.0113 0.0054 

B: -10,  C: 0 0.0079 0.0043 0.0079 0.0043 

B: -10,  C: all 0.0182  0. 118 0.0127 0.006 

B: +-10,  C: all 0.0291  0.0207 0.0252 0.0191 

B: +30,  C: all 0.0241  0.0147 0.0372 0.0259 

B: -30,  C: all 0.0162 0.0093 0.0377 0.0264 

B: +-30,  C: all 0.0629  0.0536 0.0618 0.0496 

B: +60,  C: all 0.0962  0.0803 0.0946 0.0793 

B: -60,  C: all 0.0683  0.049 0.1035 0.0815 

B: +-60,  C: all 0.1274  0.0999 0.120 0.0925 

B: +90,  C: all 0.1513  0.1308 0.1242 0.1026 

B: -90,  C: all 0.1051  0.0833 0.1336 01075 

B: +-90,  C: all 0.1628  0.1197 0.1276 0.107 
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CHAPTER 6 GENERAL DISCUSSION  

6.1 Discussion 

This thesis presented the dome artefact to evaluate on-machine measurement performance of a 5-

axis machine tool. Some probing tests are conducted to calibrate the artefact, to estimate the 

measurement repeatability and uncertainty of the artefact geometry, to calculate the gravity 

compliances and finally to evaluate the machine tool coordinate measuring performance. 

It is observed that when the artefact is remeasured after taking it up and putting it back at the same 

position, the measuring results changed. This maximum deviation is quantified as the artefact 

geometry repeatability was 0.0017 and 0.0036 millimeters in horizontal and vertical positions 

respectively (Table 5.1). 

Clamping and unclamping the artefact also provide some deviation which is calculated as the 

clamping repeatability. Repeatability of the clamped geometry of the ball dome artefact while it is 

clamped by applying 10 lb-ft and 5 lb-ft is 0.0022 and 0.0018 millimeters respectively, which is 

verified by comparing two sets of ball center coordinates for two successive clamped states as 

follows: mount the artefact on the kinematic receptacle, clamp by applying specified tightening 

torque for the kinematic mount screws, measure, unclamp, remove and remount, re-clamp by 

applying the same torque, re-measure. 

The other main deviation which is observed in this research is the deviation caused by the artefact 

rotation relative to the local gravity vector. The maximum deviation is observed between vertical 

and vertical rotated position and reaches 0.009 millimeters which is larger than deviation between 

horizontal and vertical positions which reaches 0.007 millimeters. These values quantify the 

expected deformation of the artefact under the influence of its weight while rotating around the 

machine tool C-axis.  By calculating a compliance model for the gravity effect, some of this 

deformation can be compensated. 

Considering the probing process done on the machine tool, the machine tool metrology 

performance as a 3-axis machine, when the C axis is fixed in various distinct indexations, is 

quantified with the maximum deviation which reaches 0.0090 millimeters for C equals either 90° 

or 180°  while it is 0.0075 millimeters for C equals 0°, regardless of which tool-twist model either 

nominal or estimated is used for the tool (Table 5.4). The maximum deviation in these cases will 
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be reduced to 0.0045, 0.0071 and 0.0059 millimeters for C equals 90°, 180° and 0° respectively if 

the artefact compensated model achieved by applying the gravity compliances is used instead of 

the artefact average calibrated model achieved by calculating the average balls coordinate 

considering the horizontal, vertical and vertical rotated positions (Table 5.5). So in the optimal state 

considering just 3 linear axes involved in the machine tool performance (B=0 and C=0), 0.0059 

millimeters deviation is observed comparing the machine tool probing results and  the artefact 

compensated model (Table 5.5). Considering all the probing results while the B axis is fixed but C 

axis has different rotation values (B=0 and C=all), the maximum deviation considering the average 

calibrated model reaches 0.017 and 0.011 millimeters for nominal tool and estimated tool 

respectively (Table 5.4). On the other hand, considering the artefact compensated model in this 

case, the corresponding deviations are 0.020 and 0.014 millimeters (Table 5.5), it means that in 

case of collecting all probing results come from different C angles, using the compensated model 

is not an effective idea to reduce the deviation. But using estimated model instead of nominal model 

for the tool decreases the deviation around 30 percent. 

Small rotation of B axis like +10 or -10 will not increase significantly the achieved deviation; 

however further increment of B indexation causes lager deviation. The other point is that the 

machine has better metrology performance in negative indexation for B axis than positive 

indexations, means less errors. Combination of large B indexations and C axis rotation brings larger 

deviations. It is confirmed that when both B and C axes are involved in the machine operation, the 

machine tool volumetric error will be increased of about 0.160 and 0.130 millimeters in the case 

of (B=±90, C=all) considering the nominal and estimated tool respectively, that weakens the 

machine tool metrology performance (Table 5.4) and (Table 5.5). 
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CHAPTER 7 CONCLUSION AND RECOMENDATIONS 

 

7.1 Conclusion 

For the artefact geometry repeatability, the maximum deviation in horizontal and vertical positions 

are 0.0015 and 0.0035 millimeters respectively so to promote the artefact repeatability, reinforcing 

the artefact will be considered for the future works. The maximum deviation between different 

artefact orientations, observed between vertical and vertical rotated positions, is more than 0.009 

millimeters, leads us to define gravity compliance to calculate a calibrated model for different 

orientations. 

 Regarding the machine tool coordinate measuring performance, using compensated model instead 

of the average model decreased the maximum deviation from 0.0075 to 0.0059 millimeters for the 

B=0, C=0 indexation. Using the estimated tool instead of the nominal tool decreased deviations 

when there is more than one indexation on probing procedure. So generally, using the compensated 

model instead of the average model achieves less deviation results for various indexations. Using 

the estimated tool instead of the nominal tool when the rotary axes are involved also is a key point 

to reduce the deviation but has no effect when the rotary axes are not involved in the measuring 

process. 

When using just the linear axes of the machine tool, a worst case measurement error of 0.0059 

millimeters is obtained. This value increases to 0.0198 millimeters when the C-axis is involved but 

can be reduced to 0.0139 millimeters when an estimated tool definition is used to process the data. 

The worst case error increases to 0.1628 millimeters when both the C and B axes are used. This is 

attributed to the presence of a large EX(OB)C error on the machine tested. 

7.2 Recommendations for future works 

Regarding the deviations observed for different balls on the arcs, on the ring and even for the balls 

on the interface plate on different horizontal and vertical positions and different machine tool B 

and C indexations, the following subjects are suggested for future works;   

 Reinforcing the artefact structure by adding stiffeners could further reduce gravity induced 

errors. 
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 Estimating the effect of various clamping torques to optimize the artefact clamping, to 

provide the maximum stability and minimum deformation. 

 Measuring the artefact in various thermal conditions to study the effects of thermal 

expansion on the artefact geometry and machines performance. 

 Removing the clamps after taking the artefact from the CMM environment to the machine 

tool shop to let strain hysteresis caused by thermal deviation is released. 

 Optimizing the compliance model estimation and calculation. 

 Studying the effect of the gravity on machining and measuring processes of an ordinary 

work piece by a horizontal machine tool. 

 Providing a general compliance model for any kind of work pieces based on their weight, 

geometry and clamping or fixturing condition. 

 Suggesting optimized clamping and fixturing for machining and measuring work pieces. 
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