
Titre:
Title: Restructuring Source Code Identifiers

Auteurs:
Authors: Laleh Mousavi Eshkevari

Date: 2010

Type: Rapport / Report

Référence:
Citation:

Eshkevari, Laleh Mousavi (2010). Restructuring Source Code Identifiers. Rapport
technique. EPM-RT-2010-11.

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: http://publications.polymtl.ca/2660/

Version: Version officielle de l'éditeur / Published version
Non révisé par les pairs / Unrefereed

Conditions d’utilisation:
Terms of Use: Autre / Other

Document publié chez l’éditeur officiel
Document issued by the official publisher

Maison d’édition:
Publisher: École Polytechnique de Montréal

URL officiel:
Official URL: http://publications.polymtl.ca/2660/

Mention légale:
Legal notice:

Tous droits réservés / All rights reserved

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213621270?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://publications.polymtl.ca/2660/
http://publications.polymtl.ca/2660/
http://publications.polymtl.ca/

EPM–RT–2010-11

RESTRUCTURING SOURCE CODE IDENTIFIERS

Laleh Mousavi Eshkevari
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

Septembre 2010

EPM-RT-2010-11

Restructuring Source Code Identifiers

Laleh Mousavi Eshkevari
Département de génie informatique et génie logique

École Polytechnique de Montréal

Septembre 2010

2010
Laleh Mousavi Eshkevari
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2010
Bibliothèque nationale du Canada, 2010

EPM-RT-2010-11
Restructuring Source Code Identifiers
par : Laleh Mousavi Eshkevari
Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/

) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique :

biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue.htm

http://www.polymtl.ca/biblio/catalogue.htm�

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Restructuring Source Code Identifiers

by

Laleh Mousavi Eshkevari

A proposal submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Département de génie informatique et génie logiciel

September 2010

http://www.polymtl.ca/
http://www.veneraarnaoudova.ca/
http://www.polymtl.ca/gigl/

Abstract

In software engineering, maintenance cost 60% of overall project lifecycle costs of any

software product. Program comprehension is a substantial part of maintenance and

evolution cost and, thus, any advancement in maintenance, evolution, and program un-

derstanding will potentially greatly reduce the total cost of ownership of any software

products. Identifiers are an important source of information during program under-

standing and maintenance. Programmers often use identifiers to build their mental

models of the software artifacts. Thus, poorly-chosen identifiers have been reported in

the literature as misleading and increasing the program comprehension effort. Identi-

fiers are composed of terms, which can be dictionary words, acronyms, contractions, or

simple strings. We conjecture that the use of identical terms in different contexts may

increase the risk of faults, and hence maintenance effort. We investigate our conjecture

using a measure combining term entropy and term context-coverage to study whether

certain terms increase the odds ratios of methods to be fault-prone. We compute term

entropy and context-coverage of terms extracted from identifiers in Rhino 1.4R3 and

ArgoUML 0.16. We show statistically that methods containing terms with high entropy

and context-coverage are more fault-prone than others, and that the new measure is only

partially correlated with size. We will build on this study, and will apply summarization

technique for extracting linguistic information form methods and classes. Using this

information, we will extract domain concepts from source code, and propose linguistic

based refactoring.

Contents

Abstract i

List of Figures iv

List of Tables v

1 Introduction 1

2 Motivation and Problem Statement: Identifiers and Refactoring 3

3 Methodology 5
3.1 RQ1: Identifiers with Anomalies . 5
3.2 RQ2: Linguistic-based Feature Identification 6
3.3 RQ3: Linguistic-based Refactoring . 6
3.4 RQ4: Evaluation of Program Comprehension and Visual Effort 7

4 RQ1: Identifiers with Anomalies 9
4.1 Background . 9

4.1.1 Data Extraction . 9
4.1.2 Term Entropy . 10
4.1.3 Term Context Coverage . 10
4.1.4 Aggregated Metric . 11

4.2 Case Study . 12
4.2.1 Case Study’s Research Questions 12
4.2.2 Analysis Method . 13
4.2.3 Execution . 15

4.2.3.1 Parsing . 15
4.2.3.2 Identifier Splitting . 16
4.2.3.3 Mapping Faults to Entities 16
4.2.3.4 Mapping Entities to Entropy and Context Coverage . . . 16

4.2.4 Results . 17
4.2.4.1 RQ1.1 – Metric Relevance 17
4.2.4.2 RQ1.2 – Relation to Faults 18

4.2.5 Discussion . 20
4.2.5.1 LSI subspace dimension 20
4.2.5.2 Java Parser . 20

ii

Contents iii

4.2.5.3 Statistical Computations 21
4.2.5.4 Object-oriented Metrics 21

4.2.6 Threats to Validity . 21
4.3 Conclusion . 23

5 RQ2: linguistic feature identification 25

6 Research Plan 28
6.1 RQ1, (Summer 2010 - Fall 2010): . 28
6.2 RQ2, (Winter 2011 - Summer 2011): . 28
6.3 RQ3, (Fall 2011): . 29
6.4 RQ4, (Winter 2012 - Summer 2012): . 29

7 Related work 30
7.1 Entropy and IR-based Metrics . 30
7.2 Metrics and Fault Proneness . 31
7.3 Identifiers and Program Comprehension 31
7.4 Refactoring . 32
7.5 Text Summarization . 33

8 Conclusion 35

Bibliography 36

List of Figures

3.1 UML activity diagram illustrating our methodology. 8

4.1 Summary of all results for different versions of ArgoUML and Rhino. . . . 23

5.1 JHotDrow, method findPoint in class ShortestDistanceConnector 26
5.2 Summarization of method findPoint in class ShortestDistanceConnector . 27

iv

List of Tables

4.2 Correlation test for ArgoUML v0.16 and Rhino v1.4R3. 17
4.3 Linear regression models for Rhino v1.4R3 and ArgoUML v0.16. 18
4.4 ArgoUML v0.16 and Rhino v1.4R3 logistic regression models. 18
4.5 ArgoUML v0.16 confusion matrix. 19
4.6 Rhino v1.4R3 confusion matrix. 19
4.7 ArgoUML v0.16 confusion matrix. 19
4.8 Rhino v1.4R3 confusion matrix. 19
4.9 Odds change due to LOC (numHEHCC=1) and numHEHCC(LOC=10)

for ArgoUML v0.16 and Rhino v1.4R3. 20

v

Chapter 1

Introduction

Software maintenance is defined as the modification of a software product after delivery

to correct faults, improve performance (or other attributes) or to adapt the product to a

modified environment (ANSI/IEEE standard 1219-1998). The objective of maintenance

is to enhance and optimize an existing system while preserving its integrity [1]. The

initial step of software maintenance is program comprehension and it demands effort

and time, initially to understand the software system and then to identify possible

problems to be fixed while providing a remedy for them without affecting the overall

behavior of the system. Thus any advancement in maintenance, evolution, and program

understanding will potentially greatly reduce the total cost of ownership of any software

products.

Many studies in the domain of software engineering used object-oriented metrics, such

as Chidamber and Kemerer (CK) metrics suite [2], to evaluate software quality [3, 4],

maintenance efforts [5–8], to predict faults [9–11] and change proneness [12]. These

metrics are calculated based on the structural data extracted from source code.

We believe that linguistic data extracted from source code might also help to improve

code quality. Indeed, several studies showed the impact of identifiers on program com-

prehension (e.g., [13–15]) and code quality [16].

Most of the refactoring proposed in the literature aim to improve code quality via code

restructuring. To the best of our knowledge, the only work on linguistic refactoring

is by Caprile et al. [13]. They proposed refactoring based on compliance of terms in

identifiers with standard lexicon and grammars. The authors analyze method names in

isolation, i.e, without considering the identifiers used in the body of the method.

We build on this work and use the linguistic information extracted from method body

for refactoring. To do so, we apply summarization techniques. In natural languages,

1

Chapter 1. Introduction 2

summarization is used to identify the main topics of a given document while minimizing

the redundancy. We apply this technique on method body to extract important topics

and use them to propose refactoring for identifiers in method names and–or method

bodies. For example, by comparing method name with the topics extracted we can verify

if the method name is appropriate or it should be refactored in to reflect those topics.

Therefore, our objective is to identify refactoring opportunities, that is, places where

linguistic refactoring can be performed. Moreover, we plan to apply such refactorings

on code and investigate the impact of refactoring on program comprehension. We believe

that linguistic refactoring will enhance program comprehension.

The remaining part of this proposal is organized as follows: In Chapter 2 we discuss

the problem and motivation behind this research and the research questions. Chapter 3

describes the proposed methods to address the research questions. Chapter 4 presents

the details of our method for addressing first research question. Chapter 5 presents

an example where summarization technique is applied on a method body. Chapter 6

defines current and future activities with respect to this research. In Chapter 7 we

discuss related work, and finally Chapter 8 provides conclusion and future work.

Chapter 2

Motivation and Problem

Statement: Identifiers and

Refactoring

Identifiers are among the most important sources of information to understand source

code [13, 14]. Haiduc and Marcus [15] studied several open-source programs and found

that about 40% of the domain terms were used in the source code. Unfortunately,

in collaboration environments the probability of having two developers use the same

identifier for different entities is between 7% and 18% [17]. Thus, naming conventions

are crucial for improving the source code comprehensibility. Furthermore, applying

meaningful and consistent names for source code identifiers can improve the precision

of information retrieval (IR) techniques in traceability links recovery between artifacts

of different types. Finally, software systems with well-defined identifiers are easier to

debug as the program is easer to read and understand.

Identifiers must be sufficiently distinctive yet must relate to one another and to the

context in which they appear [14]. We concur with Deißenböck and Pizka’s observation

that proper identifiers improve quality and that identifiers should be used consistently

[14].

We consider an identifier as an anomaly if it has frequency higher than a certain defined

threshold, it is used in different context, or it contains terms that are synonym or

polysemy. The reason is that we believe such identifiers increase the developers effort

to understand the role of the associated identifier, which ultimately may lead to faults.

For the purpose of this research, the context and the frequency will be taken to account

as criteria for considering an identifier as an anomaly. We would like to investigate if

3

Chapter 2. Motivation and problem statement 4

there is a relation between entities containing identifiers with anomalies and their fault

proneness and change proneness. Moreover, we would like to automatically identify

such identifiers. We believe that summarization techniques will enable us to extract

the characteristic and functionality of entities (e.g., methods, attributes). Using the

information gained through summarization, we then plan to refactor entities names

toward names that better reflect their functionality.

Thus high level research question can be summarized as: How to pinpoint identifiers

with anomalies and suggest linguistic-based refactoring of such identifiers.

This research question can be divided into the following research questions:

• RQ1: How to identify identifiers with anomalies? We define metric to identify

identifier with anomalies and investigate the relation between fault proneness and

identifier anomalies.

• RQ2: How to identify linguistic feature implemented by methods in the system?

We analyze whether identifiers in method signature and body can be used to derive

the feature implemented by the method.

• RQ3: How to define linguistic refactoring based on feature identified? This research

question relates to the previous question. We are interested to see if we can suggest

refactoring strategies based on the feature identified for methods.

• RQ4: Do the proposed linguistic refactoring strategies improve program compre-

hension and visual effort? We are interested to evaluate whether the there is a

significant difference in comprehensibility and visual effort between the original

and refactored code

Chapter 3

Methodology

We plan to answer the research questions defined in the Chapter 2 in the following steps:

3.1 RQ1: Identifiers with Anomalies

We present a novel measure based on linguistic data and an empirical study to verify

our if we can pinpoint identifiers with anomalies. The novel measure quantifies terms

from two aspects: term entropy and context-coverage. Term entropy is derived from

entropy in information theory and measures the “physical” dispersion of a term in a

program, i.e., the higher the entropy, the more scattered the term is across entities.

Term context-coverage is based on an Information Retrieval method and measures the

“conceptual” dispersion of the entities in which the term appears, i.e., the higher the

context coverage of a term, the more unrelated are the entities containing it.

We perform an empirical study relating terms with high entropy and high context-

coverage to the fault-proneness of the methods and attributes in which they appear. We

analyze two widely studied open source programs, ArgoUML1 and Rhino2 because sets

of manually-validated faults for these two programs exist in the literature. We show

that there is a statistically significant relation between the “physical” and “conceptual”

dispersion of terms and fault proneness.
1http://argouml.tigris.org/
2http://www.mozilla.org/rhino/

5

Chapter 3. Methodology 6

3.2 RQ2: Linguistic-based Feature Identification

We draw inspiration from previous works on text summarization [18, 19] techniques.

As explained in [19], the goal of summarization activity is to identify the main topics

of a given document while minimizing redundancy. Program features are implemented

via methods. Depending on the granularity of a feature, one method or a group of

method implement it. We believe that by analyzing the vocabulary of the identifiers

and comments used in a method body, we can extract the feature that the method

implements. Summarization techniques enable us to identify important topics in method

body, and those topics enable us to infer feature implemented in the method.

Natural language text summarization is consist of two steps: (1) decomposing a text into

a term by sentence matrix and (2) applying an appropriate technique (e.g., IR or LSA

techniques) for selecting candidate sentences. In our case, each method represents a doc-

ument, while split identifiers of the method (e.g., names of variables, method calls, user

defined types, formal and actual parameters, comments) correspond to terms. State-

ments, method signature and the comments will correspond to sentences. Therefore, a

method can be transformed into term by sentence matrix, where each element ai,j in the

matrix is the weighted frequency of term i in sentence j. We would like to distinguish

the terms according to the role that the corresponding identifier plays in the method.

That is, to give more weights to terms coming from identifiers that are part of formal

parameters and return statement.

By applying LSA technique on term by sentence matrix we can identify important

topics. We plan to combine techniques used in [13, 20] (explained in detail in Chapter

7) to infer the feature implemented in method body by analyzing those identified topics.

We proceed by labeling each method with the identified feature. Moreover, we plan

to evaluate the precision of our topic extraction technique by conducting an empirical

study on a system that has proved to have good internal quality, and consistent identifier

naming (e.g., JHotDraw3), and ask experts to validate the results of our technique.

The objective would be to verify if topics identified by our techniques match the ones

identified by experts.

3.3 RQ3: Linguistic-based Refactoring

Once methods are labeled with feature, we would like to provide recommendations for

refactorings. We conjecture that identifiers (if selected wisely) should reflect the re-

sponsibility and characteristic of the entity that they are labeling. Moreover, it is a
3http://www.jhotdraw.org/

http://www.jhotdraw.org/

Chapter 3. Methodology 7

general rule that a method name should reflect its responsibility. The topics and the

feature identified in the previous step will enable us to evaluate the appropriateness

of the method name and to provide suggestions for better naming in case the original

name is not well suited. The same approach can be used for refactoring class names.

Moreover, we can also identify possibility for structural refactoring. For example, by

analyzing the topics extracted from a method body, we can evaluate the degree to which

these topics are related. In other words, we can evaluate the cohesion of a method and

suggest extract method as a possible solution to increase the cohesion.

3.4 RQ4: Evaluation of Program Comprehension and Vi-

sual Effort

Finally, we would like to evaluate if the proposed refactoring strategies indeed increase

code comprehension. To verify if the comprehensibility is improved, we plan to perform

an experiment and ask experts to evaluate the degree of comprehensibility before and

after refactoring. Subjects will be given two fragments of code (before and after refac-

toring) and will be asked to identify the purpose of the code only by reading the code.

Moreover, we are interested in evaluating the effort of comprehension for code before

and after refactoring. We will apply eye tracking techniques to evaluate visual effort.

Visual effort will be computed as the amount and duration of eye movements (e.g., eye

fixation) needed to read a given piece of a code and to be able to identify the purpose

of the code. The goal of this study is to see if there is a significant difference in visual

effort between the original and the refactored code. We expect to have less visual effort

in refactored code than in the original code.

The expected contributions of this work can be summarized as following:

• A novel measure characterizing the “physical” and “conceptual” dispersions of

terms.

• An empirical study showing the relation between the proposed measure and entities

fault proneness.

• Extracting domain concepts from source code, which can improve establishing

traceability links between requirements and implementation.

• Suggesting refactoring for method names toward semantic information that is im-

plicit in method bodies.

• Evaluating the impact of this refactoring on program comprehension.

Chapter 3. Methodology 8

Figure 3.1: UML activity diagram illustrating our methodology.

Figure 3.1 illustrate our methodology that we will now detail in next chapters.

Chapter 4

RQ1: Identifiers with Anomalies

This section describes the details our method for answering the RQ1. It is a preliminary

study and it is accepted for the next International Conference on Software Maintenance-

ERA Track [21]. First, the necessary background will be discussed, then the details of

the study will be explained.

4.1 Background

With no loss of generality, we focus on methods and attributes because they are “small”

contexts of identifiers. Moreover, we consider attributes because they are often part

of some program faults, e.g., in Rhino they participate to 37% of the reported faults.

However, the computation can be broaden by using classes or other entities as contexts

for identifiers.

4.1.1 Data Extraction

We extract the data required to compute term entropy and context-coverage in two

steps. First, we extract the identifiers found in class attributes and methods, e.g., names

of variables and of called methods, user defined types, method parameters. Extracted

identifiers are split using a Camel-case splitter to build the term dictionary, e.g., getText

is split into get and text. Future work includes using a more versatile algorithm to extract

terms from identifiers, such as in Madani et al. [22]. We then apply two filters on the

dictionary. We remove terms with a length less than one because their semantics is

often unclear and because they most likely correspond to loop indexes (e.g., I, j, k).

Next, we prune terms appearing in a standard English stop-word list augmented with

programming language keywords.

9

Chapter 4. Identifiers with Anomalies 10

Second, the linguistic data is summarized into a m× n frequency matrix, i.e., a term-

by-entity matrix. The number of rows of the matrix, m, is the number of terms in

the dictionary. The number of columns, n, corresponds to the number of methods and

attributes. The generic entry ai,j of the term-by-entity matrix denotes the number of

occurrences of the ith term in the jth entity.

4.1.2 Term Entropy

Let us suppose a source of information that can emit four symbols, A, B, C, or D. We

may have no prior knowledge of symbol frequency and, thus, need to observe emitted

symbols to increase our knowledge on the distribution of the symbols. Once we observed

a symbol, we gained some information, our uncertainty decreased and, thus, we increased

our knowledge about the distribution of the symbols.

Shannon [23] measures the amount of uncertainty, or entropy, of a discrete random

variable X as:

H(X) = −
∑
x∈κ

p(x) · log(p(x))

where p(x) is the mass probability distribution of the discrete random variable X and

κ is its domain.

We consider terms as random variables with some associated probability distributions.

We normalize each row of the term-by-entity matrix so that each entry is in [0, 1] and

the sum of the entries in a row is equals to one to obtain a probability distribution for

each term. Normalization is achieved by dividing each ai,j entry by the sum of all ai,j

over the row i. A normalized entry âi,j is then the probability of the presence of the

term ti in the jth entity. We then compute term entropy as:

H(ti) = −
n∑

j=1

(âi,j) · log(âi,j) i = 1, 2, . . . ,m

With term entropy, the more scattered among entities a term is, the closer to the uniform

distribution is its mass probability and, thus, the higher is its entropy. On the contrary,

if a term has a high probability to appear in few entities, then its entropy value will be

low.

4.1.3 Term Context Coverage

While term entropy characterizes the “physical” distribution of a term across entities,

context-coverage measures its “conceptual” distribution in the entities in which the term

Chapter 4. Identifiers with Anomalies 11

appears. In particular, we want to quantify whether a same term is used in different

contexts, i.e., methods and–or attributes, with low textual similarity. Thus, the context

coverage of term tk (where k = 1, 2, . . . ,m) is computed as the average textual similarity

of entities containing tk:

CC(tk) = 1− 1(
|C|
2

) ∑
i = 1 . . . |C| − 1

j = i + 1 . . . |C|
ei, ej ∈ C

sim(ei, ej)

where C = {el|ãk,p 6= 0} is the set of all entities in which term tk occurs and sim(ei, ej)

represents the textual similarity between entities ei and ej . The number of summations

is

(
|C|
2

)
because sim(ei, ej) = sim(ej , ei). A low value of the context coverage of a

term means a high similarity between the entities in which the term appears, i.e., the

term is used in consistent contexts.

To compute the textual similarity between entities, we exploit LSI, a space reduction-

based method widely and successfully used in IR [24]. In particular, LSI applies a factor

analysis technique to estimate the “latent” structure in word usage trying to overcome

the main deficiencies of IR methods, such as synonym and polysemy problems. In

particular, the non-normalized term-by-entity LSI projection into the entities subspace

ãi,j captures the more important relations between terms and entities. The columns of

the reduced term-by-entity matrix represent entities and can be thought of as elements

of a vector space. Thus, the similarity between two entities can be measured by the

cosine of the angle between the corresponding vectors.

4.1.4 Aggregated Metric

In our current work, we use the variable numHEHCC (“number of high entropy and

high context coverage”), associated with all entities, to compute correlation, build linear

as well as logistic models and contingency tables throughout the following case study:

numHEHCC(Ej) =
m∑

i=1

aij · ψ(H(ti) ≥ thH ∧ CC(ti) ≥ thCC)

where aij is the frequency in the term-by-entity matrix of term ti and entity Ej (j =

1, 2, . . . , n) and ψ() is a function returning one if the passed Boolean value is true and

zero otherwise.

Chapter 4. Identifiers with Anomalies 12

Thus, numHEHCC represents the overall number of times any term with high entropy

(value above thH) and high context coverage (value above thCC) is found inside an

entity.

4.2 Case Study

We performed a first case study of the term entropy and context-coverage measures fol-

lowing the Goal-Question-Metrics paradigm [25]. The goal of the study is to investigate

the relation (if any) between term entropy and context-coverage, on the one hand, and

entities fault proneness, on the other hand. The quality focus is a better understand-

ing of characteristics likely to hinder program comprehension and to increase the risk

of introducing faults during maintenance. The perspective is both of researchers and

practitioners who use metrics to study the characteristic of fault prone entities.

The context of the study is two open-source programs: Rhino, a JavaScript/ECMAScript

interpreter and compiler part of the Mozilla project, and ArgoUML, a UML modeling

CASE tool with reverse-engineering and code-generation capabilities. We selected Ar-

goUML and Rhino because (1) several versions of these programs are available, (2) they

were previously used in other case studies [26, 27], and (3) for ArgoUML (from version

0.10.1 to version 0.28) and for Rhino (from version 1.4R3 to version 1.6R5), a mapping

between faults and entities (attributes and methods) is available [27, 28].

4.2.1 Case Study’s Research Questions

Entropy and context coverage likely capture features different from size or other classical

object-oriented metrics, such as the CK metrics suite [2]. However, it is well-known that

size is one of the best fault predictors [29–31] and, thus, we first verify that numHEHCC

is somehow at least partially complementary to size.

Second, we believe that developers are interested in understanding why an entity may be

more difficult to change than another. For example, given two methods using different

terms, all their other characteristics being equal, they are interested to identify which

of the two is more likely to take part in faults if changed.

Therefore, the case study is designed to answer the following research questions:

• RQ1.1 – Metric Relevance: Do term entropy and context-coverage capture char-

acteristics different from size and help to explain entities fault proneness? This

Chapter 4. Identifiers with Anomalies 13

question investigates if term entropy and context-coverage are somehow comple-

mentary to size, and thus, quantify entities differently.

• RQ1.2 – Relation to Faults: Do term entropy and context-coverage help to

explain the presence of faults in an entity? This question investigates if entities

using terms with high entropy and context-coverage are more likely to be fault

prone.

Fault proneness is a complex phenomenon impossible to capture and model with a single

characteristic. Faults can be related to size, complexity, and–or linguistic ambiguity of

identifiers and comments. Some faults may be better explained by complexity while

other by size or linguistic inconsistency of poorly selected identifiers. Therefore, we do

not expect that RQ1.1 and RQ1.2 will have the same answer in all version of the two

programs and will be universally true. Nevertheless, as previous authors [13, 14, 16, 32],

we believe reasonable to assume that identifiers whose terms have with high entropy and

high context-coverage hint at poor choices of names and, thus, at a higher risk of faults.

4.2.2 Analysis Method

To statistically analyze RQ1.1, we computed the correlation between the size measured

in LOCs and a new metric derived from entropy and context-coverage. Then, we esti-

mated the linear regression models between LOCs and the new metric. Finally, as an

alternative to the Analysis Of Variance (ANOVA) [33] for dichotomous variables, we

built logistic regression models between fault proneness (explained variable) and LOCs

and the proposed new metric (explanatory variables).

Our goal with RQ1.1 is to verify whether term entropy and context-coverage capture

some aspects of the entities at least partially different from size. Thus, we formulate the

null hypothesis:

H01: The number of terms with high entropy and context-coverage in an

entity does not capture a dimension different from size and is not useful to

explain its fault proneness.

We expect that some correlation with size does exist: longer entities may contain more

terms with more chance to have high entropy and high context-coverage.

Then, we built a linear regression model to further analyze the strength of the relation

in term of unexplained variance, i.e., 1−R2. This model indirectly helps to verify that

entropy and context-coverage contribute to explain fault proneness in addition to size.

Chapter 4. Identifiers with Anomalies 14

Finally, we performed a deeper analysis via logistic regression models. We are not

interested in predicting faulty entities but in verifying if entropy and context-coverage

help to explain fault proneness. The multivariate logistic regression model is based on

the formula:

π(X1, X2, . . . , Xn) =
eC0+C1·X1+···+Cn·Xn

1 + eC0+C1·X1+···+Cn·Xn

where Xi are the characteristics describing the entities and 0 ≤ π ≤ 1 is a value on the

logistic regression curve. In a logistic regression model, the dependent variable π is com-

monly a dichotomous variable, and thus, assumes only two values {0, 1}, i.e., it states

whether an entity took part in a fault (1) or not (0). The closer π(X1, X2, . . . , Xn) is to

1, the higher is the probability that the entity took part in a fault. An independent vari-

able Xi models information used to explain the fault proneness probability; in this study

we use a metric derived from term entropy and the context-coverage, numHEHCC, and

a measure of size (LOCs) as independent variables.

Once independent variables are selected, given a training corpus, the model estimation

procedure assigns an estimated value and a significance level, p-value, to the coefficients

Ci. Each Ci p-value provides an assessment of whether or not the ith variable helps to

explain the independent variable: fault proneness of entities.

Consequently, we expect that the logistic regression estimation process would assign a

statistically relevant p-value to the coefficient of a metric derived from term entropy and

context coverage, i.e., lower than 0.05 corresponding to a 95% significance level.

With respect to our second research question (RQ1.2) we formulate the following null

hypothesis:

H02: There is no relation between high term entropy and context coverage of

an entity and its fault proneness.

We use a prop-test (Pearson’s chi-squared test) [33] to test the null hypothesis. If term

entropy and context coverage are important to explain fault proneness, then the prop-

test should reject the null hypothesis with a statistically significant p-value.

To quantify the effect size of the difference between entities with and without high

values of term entropy and context coverage, we also compute the odds ratio (OR) [33]

indicating the likelihood of the entities to have such high values for our metric. OR

is defined as the ratio of the odds p of a fault prone entity to have high term entropy

and high context coverage to the odds q of this entity to have low entropy and context

coverage: OR = p/(1−p)
q/(1−q) . When OR = 1 the fault prone entities can either have high or

low term entropy and context coverage. Otherwise, if OR > 1 the fault prone entities

Chapter 4. Identifiers with Anomalies 15

have high term entropy and high context coverage. Thus, we expect OR > 1 and a

statistically significant p-value (i.e., again 95% significance level).

4.2.3 Execution

We download several versions of Rhino for which faults were documented by Eaddy et al.

[27] from the Mozilla Web site1. Versions of ArgoUML were downloaded from the Tigris

Community Web site2. We selected the version of ArgoUML that has the maximum

number of faulty entities (ArgoUML v0.16.) and one of the versions of Rhino, (Rhino

v1.4R3).

The selected version of ArgoUML consists of 97,946 lines of Java code (excluding com-

ments and blank lines outside methods and classes), 1,124 Java files, and 12,423 methods

and fields. Version 1.4R3 of Rhino consists of 18,163 lines of Java code (excluding com-

ments and blank lines outside methods and classes), 75 files, 1,624 methods and fields.

To create the term-by-entity matrix, we first parse the Java files of Rhino and ArgoUML

to extract identifiers. We obtain terms by splitting the identifiers using a Camel-case

split algorithm. We compute term entropy and context coverage using the approach

presented in the previous section. We finally use existing fault mappings [27, 28] to tag

methods and attributes and relate them with entropy and context coverage values. The

following paragraphs detail each step.

4.2.3.1 Parsing

We used Java grammar 1.5 and JavaCC3 to generate a Java parser that extracts the

identifiers. To verify the grammar, we have parsed 11 versions of Rhino and 11 versions

of ArgoUML with our parser, Table 4.1 shows the number of files which were not parsed

using our parser for each version. Other versions of Rhino (1.5R5, 1.6R1, 1.6R2, 1.6R3,

1.6R4, 1.6R5) and ArgoUML (0.18.1, 0.20, 0.22, 0.24, 0.26, 0.26.2, 0.28) with 636 and

11,062 number of files respectively, all files were parsed.

For our case study we excluded the file which was not parsable. Since the percentage

of files not been parsed using our parser for each version was less than 0.08 percent we

have decided to proceed with our parser instead of using existing parsers.
1https://developer.mozilla.org/
2http://argouml.tigris.org/
3https://javacc.dev.java.net/

Chapter 4. Identifiers with Anomalies 16

System Total num-
ber
of Java files

Number of
files not
parsed

Percentage

Rhino1.4R3 75 1 0.01
Rhino1.5R1 100 3 0.03
Rhino1.5R2 105 2 0.02
Rhino1.5R3 104 2 0.02
Rhino1.5R4.1 107 1 0.01
ArgoUML0.10.1 777 64 0.08
ArgoUML0.12 850 64 0.08
ArgoUML0.14 1077 57 0.05
ArgoUML0.16 1124 53 0.04

Table 4.1

4.2.3.2 Identifier Splitting

Identifier splitting is done in three steps : First, the identifiers are split on digits and

special characters. Second, they are further split on lowercase to uppercase. Third, they

are split on uppercase to lowercase (before the last uppercase letter). After splitting the

identifiers to terms, we have applied two filters: first we have omitted the terms which

have the length equal or less than two, then the terms are further filtered through stop

words. The stop word list is a standard list to which we added Java specific terms and

keywords.

4.2.3.3 Mapping Faults to Entities

We reuse previous findings to map faults and entities. For Rhino the mapping of faults

with entities was done by Eaddy et al. [27] for 11 versions of Rhino. We obtain the

mapping which corresponds to Rhino v1.4R3 by extracting, for each fault, its reporting

date/time4 and its fixing date/time. Then, we keep only those faults which fall under

one of the following two cases: (i) the reporting date of the fault was before the release

date of v1.4R3 and its fixing date was after the release date of the same version, (ii) the

reporting date of the fault is after the release date of v1.4R3 and before the release date

of the next version (v1.5R1). As for ArgoUML, we also use a previous mapping between

faults and classes [28]. For each class marked as faulty, we compare its attributes and

methods with the attributes and methods of the same class in the successive version and

keep those that were changed and mark them as faulty.

4.2.3.4 Mapping Entities to Entropy and Context Coverage

We identify entities with high term entropy and context coverage values by computing

and inspecting the box-plots and quartiles statistics of the values on all Rhino versions
4https://bugzilla.mozilla.org/query.cgi

Chapter 4. Identifiers with Anomalies 17

Table 4.2: Correlation test for ArgoUML v0.16 and Rhino v1.4R3.
System Correlation p-values
ArgoUML 0.4080593 ≺ 2.2e− 16
Rhino 0.4348286 ≺ 2.2e− 16

and the first five versions of ArgoUML. The term context coverage distribution is skewed

towards high values. For this reason we use 10% highest values of term context coverage

to define a threshold identifying the high context coverage property. In other words,

standard outlier definition was not applicable to context coverage. We do not observe

a similar skew for the values of term entropy and, thus, the threshold for high entropy

values is based on the standard outlier definition (1.5 times the inter-quartile range above

the 75% percentile). We use the two thresholds to measure for each entity, the number

of terms characterized by high entropy and high context coverage that it contains.

4.2.4 Results

We now discuss the results achieved aiming at providing answers to our research ques-

tions.

4.2.4.1 RQ1.1 – Metric Relevance

Table 4.2 reports the results of Pearson’s product-moment correlation for both Rhino

and ArgoUML. As expected, some correlation exists between LOC and numHEHCC

plus the correlation is of the same order of magnitude for both programs.

Despite a 40% correlation a linear regression model built between numHEHCC (de-

pendent variable) and LOC (independent variable) attains an R2 lower than 19% (see

Table 4.3). The R2 coefficient can be interpreted as the percentage of variance of the

data explained by the model and thus 1 − R2 is an approximations of the model un-

explained variance. In essence Table 4.3 support the conjecture that LOC does not

substantially explain numHEHCC as there is about 80% (85%) of Rhino (ArgoUML)

numHEHCC variance not explained by LOC. Correlation and linear regression models

can be considered a kind of sanity check to verify that LOC and numHEHCC help to

explain different dimensions of fault proneness.

The relevance of numHEHCC in explaining faults, on the programs under analysis, is

further supported by logistic regression models. Table 4.4 reports the interaction model

built between fault proneness (explained variable) and the explanatory variables LOC

and numHEHCC. In both models, MArgoUML and MRhino, the intercept is relevant as

Chapter 4. Identifiers with Anomalies 18

Table 4.3: Linear regression models for Rhino v1.4R3 and ArgoUML v0.16.
Variables Coefficients p-values

Rhino (R2 = 0.1891)
Intercept 0.038647 0.439
LOC 0.022976 ≺ 2e− 16

Argo (R2=0.1665)
Intercept -0.0432638 0.0153
LOC 0.0452895 ≺ 2e− 16

Table 4.4: ArgoUML v0.16 and Rhino v1.4R3 logistic regression models.
Variables Coefficients p-values

MArgoUML

Intercept -1.688e+00 ≺ 2e− 16
LOC 7.703e-03 8.34e− 10
numHEHCC 7.490e-02 1.42e− 05
LOC:numHEHCC -2.819e-04 0.000211

MRhino

Intercept -4.9625130 ≺ 2e− 16
LOC 0.0041486 0.17100
numHEHCC 0.2446853 0.00310
LOC:numHEHCC -0.0004976 0.29788

well as numHEHCC. Most noticeably in Rhino, the LOC coefficient is not statistically

significant as well as the interaction term (LOC : numHEHCC). This is probably a

fact limited to Rhino version 1.4R3 as for ArgoUML both LOC and the interaction term

are statistically significant. In both models MArgoUML and MRhino the LOC coefficient

is, at least, one order of magnitude smaller than the numHEHCC coefficient, which

can partially be explained by the different range of LOC versus numHEHCC. On

average in both programs method size is below 100 LOC and most often a method

contains one or two terms with high entropy and context coverage. Thus, at first glance

we can safely say that both LOC and numHEHCC have the same impact in term

of probability. In other words, the models in Table 4.4 clearly show that LOC and

numHEHCC capture different aspects of the fault proneness characteristic. Base on

the reported results we can conclude that although some correlation exists between

LOC and numHEHCC, statistical evidence allows us to reject, on the programs under

analysis, the null hypothesis H01 .

4.2.4.2 RQ1.2 – Relation to Faults

To answer RQ1.2, we perform prop-tests (Pearson’s chi-squared test) and test the null

hypothesis H02 . Indeed, (i) if prop-tests revel that numHEHCC is able to divide the

population into two sub-populations and (ii) if the sub-population with positive values

for numHEHCC has an odds ratio bigger than one, then numHEHCC may act as a risk

indicator. For entities with positive numHEHCC it will be possible to identify those

Chapter 4. Identifiers with Anomalies 19

Table 4.5: ArgoUML v0.16 confusion matrix.
ArgoUML numHEHCC ≥ 1 numHEHCC = 0 Total
Fault prone 381 1706 2087
Fault free 977 9359 10336
Total 1358 11065 12423
p-value ≺ 2.2e− 16
Odds ratio = 2.139345

Table 4.6: Rhino v1.4R3 confusion matrix.
Rhino numHEHCC ≥ 1 numHEHCC = 0 Total
Fault prone 6 8 14
Fault free 172 1438 1610
Total 178 1446 1624
p-value = 0.0006561
Odds ratio = 6.270349

Table 4.7: ArgoUML v0.16 confusion matrix.
ArgoUML numHEHCC ≥ 2 numHEHCC = 1 Total
Fault prone 198 183 381
Fault free 511 466 977
Total 709 649 1358
p-value = 0.9598
Odds ratio = 0.9866863

Table 4.8: Rhino v1.4R3 confusion matrix.
Rhino numHEHCC ≥ 2 numHEHCC = 1 Total
Fault prone 3 3 6
Fault free 75 97 172
Total 78 100 178
p-value = 1
Odds ratio = 1.293333

terms leading to high entropy and high context coverage, identifying also the contexts

and performing refactoring actions to reduce entropy and high context coverage.

Tables 4.5 and 4.6 show the confusion matrices for ArgoUML v0.16 and Rhino v1.4R3,

together with the corresponding p-value and odds ratios. As the tables show, the null

hypothesis H02 can be rejected.

We further investigate, with Tables 4.7 and 4.8, the relation between numHEHCC and

odds ratio. These contingency tables compute the odds ratio of entities containing two or

more terms with high entropy and high context coverage with those entities which only

contain one high entropy and high context coverage term. They are not statistically

significant, but the odds ratio is close to one, which seems to suggest that the real

Chapter 4. Identifiers with Anomalies 20

Table 4.9: Odds change due to LOC (numHEHCC=1) and numHEHCC(LOC=10)
for ArgoUML v0.16 and Rhino v1.4R3.

Changing variable ∆ Odds change ArgoUML Odds change Rhino

LOC
1 1.007448705 1.003657673
10 1.077034036 1.037184676
50 1.449262781 1.200274163

numHEHCC

1 1.074742395 1.270879652
2 1.155071215 1.61513509
10 2.056097976 10.99117854
50 36.74675785 160406.2598

difference is between not containing high entropy and high context coverage terms and

just containing one or more. The results allow us to conclude, on the analyzed programs,

that there is a relation between high term entropy and context-coverage of an entity and

its fault proneness.

4.2.5 Discussion

We now discuss some design choices we adopted during the execution of the case studies

aiming at clarifying their rationale.

4.2.5.1 LSI subspace dimension

The choice of LSI subspace is critical. Unfortunately, there is not any systematic way

to identify the optimal subspace dimension. However, it was observed that in the ap-

plication of LSI to software artifacts repository for recovering traceability links between

artifacts good results can be achieved setting 100 ≤ k ≤ 200 [34, 35]. Therefore, follow-

ing such a heuristic approach, we set the LSI subspace dimension equal to 100.

4.2.5.2 Java Parser

We developed our own Java parser, using a Java v1.5 grammar, to extract identifiers

and comments from source code. Our parser is robust and fast (less than two minutes

to parse any version of the studied programs, in average) but when applied, few files

could not be parsed. Unparsed files include those developed on earlier versions of both

ArgoUML and Rhino because of the incompatibility between the different versions of

Java grammar.

Chapter 4. Identifiers with Anomalies 21

4.2.5.3 Statistical Computations

All statistical computations were performed in R5. The computations took about one

day for both programs, where the most expensive part of the computation in terms of

time and resources was the calculation of the similarity matrix. We believe that neither

extensibility nor scalability are issues: this study explains the fault phenomenon and is

not meant to be performed on-line during normal maintenance activities. In the course

of our evaluation, we realized that the statistical tool R yields different results when

used in different software/hardware platforms. We computed the results of our analysis

on R on Windows Vista/Intel, Mac OS X (v10.5.8)/Intel, and RedHat/Opteron, and we

observed some differences. All results provided in this paper have been computed with

R v2.10.1 on an Intel computer running Mac OS. We warn the community of using R

and possibly other statistical packages on different platforms because their results may

not be comparable.

4.2.5.4 Object-oriented Metrics

We studied the relation between our novel metric, based on term entropy and context

coverage, and LOC, which is among the best indicator of fault proneness [29–31] to show

that our metric provides different information. We did not study the relation between

our metric and other object-oriented metrics. Of particular interest are coupling metrics

that could strongly relate to term entropy and context coverage. However, we argue,

with the following thought-experiment, that term entropy and context coverage, on the

one hand, and coupling metrics, on the other hand, characterize different information.

Let us assume the source code of a working software system, with certain coupling values

between classes and certain entropy and context coverage values for its terms. We give

this source code to a simple obfuscator that mingles identifiers. The source code remains

valid and, when compiled, results in a system strictly equivalent to the original system.

Hence, the coupling values between classes did not change. Yet, the term entropy and

context coverage values most likely changed.

4.2.6 Threats to Validity

This study is a preliminary study aiming at verifying that our novel measure, based on

term entropy and context coverage, for two known programs (ArgoUML v0.16 and Rhino

1.4R3), is related to the fault proneness of entities (methods and attributes) and, thus,

is useful to identify fault prone entities. Consider Table 4.9; for a fixed numHEHCC

5http://www.r-project.org/

Chapter 4. Identifiers with Anomalies 22

value (one) an increase of ten for LOC will not substantially change the odds (7.7%

for ArgoUML; 3.7% for Rhino6) while an increase of 50 increases the odds but not

significantly (44.9% for ArgoUML; 20% for Rhino) in comparison to the variation of

numHEHCC (for a fixed value of LOC=10). For instance, in the case of ArgoUML

for a fixed size of entities, one unit increase of numHEHCC has almost the same odds

effect than an increase of 10 LOCs. In the case of Rhino, for a fixed size of entities, one

unit increase of numHEHCC has more effect than an increase of 50 LOCs. Table 4.9

suggests that indeed an entity with ten or more terms with high entropy and context

coverage dramatically change the odds and, thus, the probability of the entities to be

faulty. Intuition as well as reported evidence suggest that term entropy and context

coverage are indeed useful.

Threats to construct validity concern the relationship between the theory and the obser-

vation. These threats in our study are due to the use of possibly incorrect fault classi-

fications and–or incorrect term entropy and context coverage values. We use manually-

validated faults that have been used in previous studies [27]. Yet, we cannot claim

that all fault prone entities have been correctly tagged or that fault prone entities have

not been missed. There is a level of subjectivity in deciding if an issue reports a fault

and in assigning this fault to entities. Moreover, in the case of ArgoUML, we used the

mapping of faults to classes provided in [28]. In order to map the faults to entities

we compared faulty classes with their updated version in the consecutive release, and

we marked as faulty those entities that were modified. However, the changes could be

due to a maintenance activity other than fault fixing, such as refactoring. Our parser

cannot parse some Java files due to the incompatibility between the different versions

of Java grammar, but errors are less than 4.7% in the studied program and thus do

not impact our results. Another threat to validity could be the use of our parser to

compute the size of entities. In the computation we took into account the blank lines

and comments inside method bodies. We also used a threshold to identify “dangerous”

terms and compute numHEHCC. The choice of threshold could influence the results

achieved. Nevertheless, analyses performed with other thresholds did not yield different

or contrasting results.

Threats to internal validity concern any confounding factor that could influence our

results. This kind of threats can be due to a possible level of subjectiveness caused by the

manual construction of oracles and to the bias introduced by the manual classification of

fault prone entities. We attempt to avoid any bias in the building of the oracle by reusing

a previous independent classification [27, 28]. Also, we discussed the relation and lack
6Although the coefficient for LOC is not significant, it was taken into account for the calculation of

odds.

Chapter 4. Identifiers with Anomalies 23

Figure 4.1: Summary of all results for different versions of ArgoUML and Rhino.

thereof between term entropy and context coverage and other existing object-oriented

metrics.

Threats to external validity concern the possibility of generalizing our results. The study

is limited to two programs, ArgoUML 0.16 and Rhino 1.4R3. Results are encouraging but

it pays to be cautious. Preliminary investigation on the ten ArgoUML and eleven Rhino

releases show that numHEHCC is complementary to LOC for fault explanation. The

results of both ArgoUML and Rhino are summarized in Figure 4.1. Overall, although

the approach is applicable to other programs, we do not know whether or not similar

results would be obtained on other programs or releases. Finally, although we did not

formally investigate the measures following the guidelines of measurement theory [36],

we derived them from well-known definitions and relations and we plan to study their

formal properties as part of our future work while addressing the threats to external

validity.

4.3 Conclusion

We presented a novel measure related to the identifiers used in programs. We introduced

term entropy and context-coverage to measure, respectively, how rare and scattered

across program entities are terms and how unrelated are the entities containing them.

We provide mathematical definitions of these concepts based on terms frequency and

combined them in a unique measure. We then studied empirically the measure by

relating terms with high entropy and high context-coverage with the fault proneness

of the entities using these terms. We used ArgoUML and Rhino as object programs

Chapter 4. Identifiers with Anomalies 24

because previous work provided lists of faults. The empirical study showed that there

is a statistically significant relation between attributes and methods whose terms have

high entropy and high context-coverage, on the one hand, and their fault proneness,

on the other hand. It also showed that, albeit indirectly, the measures of entropy and

context coverage are useful to assess the quality of terms and identifiers.

Future work includes empirical studies of the relations between high entropy and con-

text coverage with other evolution phenomena, such change proneness. It also includes

using the measures to provide hints to the developers on the best choice of identifiers

while programming. We also plan to relate numHEHCC and other term entropy and

context coverage derived metrics with a larger suite of object-oriented metrics and study

interaction between OO metrics and metric proposed in this work.

Chapter 5

RQ2: linguistic feature

identification

As explained in Chapter 3 for the RQ2 our goal is to identify the important topics that

are implicit in the method body. For identifying such topics we will apply summarization

technique. After reading summary of a given text written in natural language, we are

able to identify its domain as well as its important topics. However, we are not yet able

to infer the title of the text just by reading its summary. As title of a text introduce the

domain and the focus of the text, we expect that the title and the body of the summary

share a lot of terms. We believe that the same fact should hold when summarizing

method body. It is important to note that understanding method summary is more

challenging than understanding summaries in natural language as the sentences in the

summary are the program statements. But we have to take in to account that these

statements contain the mosts important topics of the method. To verify if indeed this is

the case, we applied summarization technique on a method body. We choose JHotDrow

as it has good internal quality and consistent identifier naming. In this system we select

method findpoint in class ShortestDistanceConnector, as this method is one of the

large method in the system. Figure 5.1 illustrates the method body.

We applied the summarization technique proposed by Gong et al. [19] in the following

steps:

1. Decompose method body into a term by sentence matrix.

2. Apply Singular Value Decomposing (SVD) technique to decompose the term by

sentence matrix into three matrix: singular value matrix, right and left singular

vector matrix.

25

Chapter 5. linguistic feature identification 26

Figure 5.1: JHotDrow, method findPoint in class ShortestDistanceConnector

3. Set k (number of sentences to be added to the summary) to 1.

4. Select a column vector (sentence) in the right singular matrix whose kth element

is the largest.

5. Add this column vector (sentence) to the summary.

6. If k reaches a predefined number stop, otherwise increment k and go to step 4.

We set k to ten and fifteen and the candidates sentences are shown in Figure 5.2. The

order of sentences in the figure shows their importance. On the one hand terms such

as height, length, top, bottom, geom, and figure suggest that the context is related to

geometry. One the other hand, we can infer from terms such as shortest, find, and

connection that the context should be related to graph. When analyzing the method

manually, we can see that the method return the start or end dimension of a figure based

on a condition. The summarized sentences infer a context close to the actual purpose of

method, but we need a way to highlight terms such as find, start, and end to correctly

Chapter 5. linguistic feature identification 27

Figure 5.2: Summarization of method findPoint in class ShortestDistanceConnector

identify the purpose of method. It is an on going work, and we plan to apply different

techniques such as the ones proposed in [18, 37] to find the technique that works the best

for our purpose. Moreover, we plan to apply different weighting methods (e.g. Binary

weight, term frequency inverse document frequency (tf-idf) weight) for the terms in the

term by sentence matrix.

Chapter 6

Research Plan

In the following a detail plan for completing the study will be proposed.

6.1 RQ1, (Summer 2010 - Fall 2010):

This research question investigates the relation between source code identifiers and fault

proneness of entities. We address this research question in two steps:

• Study the relation between terms extracted from source code identifiers and fault

proneness.

Publication: V. Arnaoudova, L. Eshkevari, R. Oliveto, Y.-G. Guéhéneuc, and G.

Antoniol, ”Physical and Conceptual Identifier Dispersion Measures and Relation to

Fault Proneness,” in Proceedings of the 26th International Conference on Software

Maintenance (ICSM’10) - ERA Track. IEEE Computer Society, 2010.

• Compare physical and conceptual dispersion to other metrics used for fault expla-

nation.

Possible publication: IEEE Transactions on Software Engineering (TSE).

6.2 RQ2, (Winter 2011 - Summer 2011):

The objective of this research question is to extract topic(s) from method bodies and to

infer the features implemented via methods. We address this research question in the

two following steps:

28

Chapter 6. Plan 29

• Topics and feature extraction.

Possible publication: International Conference on Software Maintenance (ICSM)

2011.

• Conduct an empirical study with software developers to evaluate the proposed

feature extraction technique.

Possible publication: Empirical Software Engineering Journal.

6.3 RQ3, (Fall 2011):

This research question deals with defining linguistic refactoring. The following journal

will be target for addressing this research question.

• Catalog of linguistic refactoring.

Possible publication: Journal of Systems and Software

6.4 RQ4, (Winter 2012 - Summer 2012):

This research question evaluates the impact of proposed refactoring (previous research

question) on program comprehension and visual effort. The following two steps we will

address this research question.

• Conduct an experiment to evaluate visual efforts when reading code before and

after refactoring. Possible publication: International Conference on Software

Maintenance (ICSM) 2012.

• Conduct an experiment with software developers to evaluate program comprehen-

sion. Subject will be given two versions of a system (before and after refactoring)

and asked explain the purpose of a given code.

Possible publication: International Conference on Software Engineering (ICSE)

2012.

Chapter 7

Related work

Our study relates to Information Retrieval (IR), fault proneness, and the quality of

source code identifiers.

7.1 Entropy and IR-based Metrics

Several metrics based on entropy exist. Olague et al. [38] used entropy-based metrics

to explain the changes that a class undergoes between versions of an object-oriented

program. They showed that classes with high entropy tend to change more than classes

with lower entropy. Yu et al. [39] combined entropy with component-dependency graphs

to measure component cohesion. Entropy was also used by Snider [40] to measure the

structural quality of C code by comparing the entropy of legacy program with that of a

rewrite of the same program aimed at producing a well-structured system. The rewritten

program had a much lower entropy that the legacy program.

IR methods have also been used to define new measures of source code quality. In [41]

Etzkorn et al. presented a new measure for object-oriented programs that examines

the implementation domain content of a class to measure its complexity. The content

of methods in a class has also been exploited to measure the conceptual cohesion of a

class [42–44]. In particular, IR methods were used to compute the overlap of seman-

tic information in implementations of methods, calculating the similarities among the

methods of a class. Applying a similar LSI-based approach, Poshyvanyk and Marcus

[45] defined new coupling metrics based on semantic similarity. Binkley et al. [32] also

used VSM to analyze the quality of programs. Split identifiers extracted from entities

were compared against the split identifiers extracted from the comments of the entities:

the higher the similarity, the higher the quality of the entities. The metric was also

30

Chapter 7. Related work 31

applied to predict faults and a case study showed that the metric is suitable for fault

prediction in programs obeying code conventions.

7.2 Metrics and Fault Proneness

Several researchers studied the correlations between static object-oriented metrics, such

as the CK metrics suite [2], and fault proneness. For example, Gyimóthy et al. [29]

compared the accuracy of different metrics from CK suite to predict fault-prone classes

in Mozilla. They concluded that CBO is the most relevant predictor and that LOC

is also a good predictor. Zimmermann et al. [46] conducted a case study on Eclipse

showing that a combination of complexity metrics can predict faults, suggesting that

the more complex the code is, the more faults in it. El Emam et al. [47] showed that the

previous correlations between object-oriented metrics and fault-proneness are mostly due

to the correlations between the metrics and size. Hassan [48] observed that a complex

code-change process negatively affects programs. He measured the complexity of code

change through entropy and showed that the proposed change complexity metric is a

better predictor of faults than other previous predictors.

7.3 Identifiers and Program Comprehension

Marcus [15] studied several open-source programs and found that about 40% of the do-

main terms were used in the source code. Unfortunately, in collaborative environments,

the probability of having two developers use the same identifiers for different entities is

between 7% and 18% [17]. Thus, naming conventions are crucial for improving the source

code understandability. Butler et al. [16] analyzed the impact of naming conventions

on maintenance effort, i.e., on code quality. They evaluated the quality of identifiers in

eight open-source Java libraries using 12 naming conventions. They showed that there

exists a statistically significant relation between flawed identifiers (i.e., violating at least

one convention) and code quality.

The role played by identifiers and comments on source code understandability has been

empirically analyzed by Takang et al. [49], who compared abbreviated identifiers with

full-word identifiers and uncommented code with commented code. They showed that

(1) commented programs are more understandable than non-commented programs and

(2) programs containing full-word identifiers are more understandable than those with

abbreviated identifiers. Similar results have also been achieved by Lawrie et al. [50].

These latter studies also showed that, in many cases, abbreviated identifiers are as useful

Chapter 7. Related work 32

as full-word identifiers. Recently, Binkley et al. [51] performed an empirical study of the

impact of identifier style on code readability and showed that Camel-case identifiers allow

more accurate answers. Recently Sharif et al. replicated the same study with different

types of subjects [52]. The result of their study indicates that there is no difference

between the two styles in terms of accuracy. However, a significant improvement in time

and visual effort was reported for underscored identifiers.

Hill et al. proposed a technique for static code search [20]. Natural language phrases are

created for each program entities (e.g. methods, fields, and constructors). These phrases

are returned as a result of a query if the query words have the same order as the words

in the phrases. The authors present their algorithm for phrase extraction technique.

The extraction process consists of four steps: (1) the entity name is split to space

delimited phrase, (2) then entity name will be categorized as noun phrase, verb phrase,

or prepositional phrase, (3) verb, direct/indirect object and prepositions are identified for

verb phrases (4) additional phrases are created based on the arguments of methods. The

authors performed an empirical study to compare the proposed approach to an existing

work in terms of efforts and effectiveness. The results of empirical study showed that

the newly developed technique significantly outperforms the existing work. Kuhn et

al. apply information retrieval technique to extracts topics form source code identifiers

and comments. The authors combined LSA and clustering techniques for semantic

clustering of source code entities (e.g., packages, methods, classes). First similarity

between the entities is computed and then the entities are clustered based on their

similarity values. These clusters partition the source code in to different topics. The

authors proceed by applying LSA techniques in each cluster to label the clusters by the

most relevant topic. The authors then used visualization technique to identify parts

of source code implementing those topics. Packages in the system are visualized as

rectangular each containing small squares corresponding to classes. Classes are colored

differently based on the cluster they belong to. They applied their technique on several

software systems from different application domain and programming languages. The

results of their study showed the effectiveness of their approach for providing knowledge

about an unfamiliar system to the developers.

7.4 Refactoring

Refactoring is proposed by Martin Fowler [53] and is defined as a change made to the

structure of a system without changing its observable behavior. Refactoring is a trans-

formation activity. The main idea is to redistribute classes and class features (attributes,

methods) across the class hierarchy in order to improve readability and maintainability

Chapter 7. Related work 33

and to facilitate future adaptations and extensions. It is done in small steps that are

interleaved with tests and is not bound to implementation. Different types of refactoring

is proposed by the author, for example: Composing methods, Moving features between

objects, Making method calls simpler, etc. Although structural refactoring performed at

code level improves code quality, we believe that linguistic refactoring can also improve

code quality specifically program comprehension.

Caprile et al. proposed a semi-automatic approach for refactoring identifiers [13]. To

refactor an identifier, first it is split to its terms and then each term is mapped to its

standard form based on a dictionary of standard form and a synonym dictionary. In cases

where a term cannot be map to a term in neither of the dictionaries human intervention

is needed. This process is referred to as lexicon standardization. In the next step,

arrangement of the terms in the identifier is standardized based on a grammar proposed

by the authors. This grammar works only for function identifiers (methods, functions,

or procedures names). According to this grammar a function is categorized into one

of the three groups of: action, property checker, and transformation. Thus, a function

identifier has specific term arrangement based on the category to which the function

belongs. The authors applied the proposed technique on a file compression application

called gzip that is written in C and on a Java program implementing the user interface

of the tool they developed. The result of study showed that function identifiers were

refactored to more meaningful standard forms. In this work vocabulary of the method

signature was used for refactoring. However, we believe that linguistic information that

contains in the method body should be taken into account as well.

7.5 Text Summarization

Gong and Liu [19] proposed two methods for text summarization. In both methods, a

given document is transformed into a term by sentence matrix. The first method, which

is based on IR technique, select candidate sentences for summary with the highest rel-

evance score. The relevance score for each sentence is the result of an inner product of

the sentence vector (column of term by sentence matrix) and the whole matrix (doc-

ument). The second method applies Latent Semantic Analysis for selecting sentences

for summary. Sentences with the largest index value with the most important singular

value are selected for summary. The authors showed that these techniques have the

same performance when their results were compared against the summarization of three

human evaluators.

Steinberger and Jezek [18] proposed an LSA based technique for text summarization.

Moreover, they proposed a technique to evaluate the quality of the summaries. The same

Chapter 7. Related work 34

authors recently extended the above mentioned work to update document summarization

[37]. The idea behind this work is to compare a new set of documents (to be summarized)

with an older versions (that already have summaries), and mark topics in the corpus as:

novel, significant, or redundant. Then, an updated version of a previous summary can

be created by selecting sentences that contains just the novel and significant topics.

Similarly, Kireyev [54] proposed an LSA based technique for text summarization and

update summaries. In [55] Haiduc et al. used text summarization technique for program

comprehension. The main purpose of this study is to support developers during program

comprehension activity by extracting knowledge from code. However, we process this

knowledge and use it for suggesting linguistic refactoring.

Chapter 8

Conclusion

In software engineering, maintenance cost 60% of overall project lifecycle costs of any

software product. Program comprehension is a substantial part of maintenance. Identi-

fiers are among the most important sources of information for program comprehension

activity. Hence, naming conventions are crucial for improving the source code compre-

hensibility. We introduced term entropy and context-coverage to measure, respectively,

how rare and scattered across program entities are terms and how unrelated are the

entities containing them. We perform an empirical study on two open source softwares,

ArgoUML and Rhino, to investigate the relation between terms with high entropy and

high context-coverage and the fault proneness of the entities using those terms. The em-

pirical study showed that there is a statistically significant relation between attributes

and methods whose terms have high entropy and high context-coverage, on the one

hand, and their fault proneness, on the other hand.

The result of this empirical study motivates us to investigate linguistic refactoring.

Identifier names if selected wisely should reflect the responsibility and characteristic of

the entity they are labeling. We plan to first apply summarization techniques to extract

important topics implicit in the method body. Next, by analysis these topics we plan

to identify linguistic refactorings. For example, renaming a method name based on

the topics extracted, as these topics suggest the characteristic and responsibility of the

method. Finally we will perform an empirical study to evaluate if proposed refactoring

can indeed improve program comprehension and visual effort.

35

Bibliography

[1] Keith H. Bennett and Václav T. Rajlich. Software maintenance and evolution: a

roadmap. In Proceedings of the International Conference on Software Engineering

(ICSE) track on The Future of Software Engineering, 2000.

[2] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object-Oriented Design.

IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[3] Jagdish Bansiya and Carl G. Davis. A Hierarchical Model for Object-Oriented

Design Quality Assessment. IEEE Transactions on Software Engineering, 28(1):

4–17, 2002.

[4] Kuljit Kaur Chahal and Hardeep Singh. Metrics to Study Symptoms of Bad Soft-

ware Designs. Software Engineering Notes, 34(1):1–4, 2009.

[5] Geert Poels and Guido Dedene. Evaluating the Effect of Inheritance on the Modi-

fiability of Object-Oriented Business Domain Models. In Proceedings of the 5th Eu-

ropean Conference on Software Maintenance and Reengineering. IEEE Computer

Society, 2001.

[6] Lutz Prechelt, Barbara Unger, Michael Philippsen, and Walter Tichy. A Controlled

Experiment on Inheritance Depth as a Cost Factor for Code Maintenance. Journal

of Systems and Software, 65(2):115–126, 2003.

[7] R. Harrison, S. Counsell, and R. Nithi. Experimental Assessment of the Effect of

Inheritance on the Maintainability of Object-Oriented systems. Journal of Systems

and Software, 52(2-3):173–179, 2000.

[8] Melis Dagpinar and Jens H. Jahnke. Predicting Maintainability with Object-

Oriented Metrics- An Empirical Comparison. In Proceedings of the 10th Working

Conference on Reverse Engineering (WCRE), page 155. IEEE Computer Society,

2003.

[9] Hector M. Olague, Letha H. Etzkorn, Sampson Gholston, and Stephen Quattle-

baum. Empirical Validation of Three Software Metrics Suites to Predict Fault-

Proneness of Object-Oriented Classes Developed Using Highly Iterative or Agile

36

Bibliography 37

Software Development Processes. IEEE Transactions on Software Engineering, 33

(6):402–419, 2007.

[10] Hector M. Olague, Letha H. Etzkorn, Sherri L. Messimer, and Harry S.Delugach.

An Empirical Validation of Object-Oriented Class Complexity Metrics and Their

Ability to Predict Error-Prone Classes in Highly Iterative, or Agile Software: A

Case Study. Journal of Software Maintenance and Evolution, 20(3):171–197, 2008.

[11] S. Kanmani, V. Rhymend Uthariaraj, V. Sankaranarayanan, and P. Thambidu-

rai. Object-Oriented Software Quality Prediction Using General Regression Neural

Networks. Software Engineering Notes, 29(5):1–6, 2004.

[12] A. Gunes Koru and Jeff (Jianhui) Tian. Comparing high-change modules and mod-

ules with the highest measurement values in two large-scale open-source products.

IEEE Transaction on Software Engineering, 31(8):625–642, 2005.

[13] B. Caprile and P. Tonella. Restructuring Program Identifier Names. In Proceedings

of the 16th IEEE International Conference on Software Maintenance, pages 97–107,

San Jose, California, USA, 2000. IEEE CS Press.

[14] F. Deissenboeck and M. Pizka. Concise and Consistent Naming. Software Quality

Journal, 14(3):261–282, 2006.

[15] S. Haiduc and A. Marcus. On the Use of Domain Terms in Source Code. In

Proceedings of the 16th IEEE International Conference on Program Comprehension,

pages 113–122. IEEE CS Press, 2008.

[16] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Relating Identifier

Naming Flaws and Code Quality: An Empirical Study. In Proceedings of the 16th

Working Conference on Reverse Engineering, pages 31–35. IEEE CS Press, October

2009.

[17] G. Butler, P. Grogono, R. Shinghal, and I. Tjandra. Retrieving Information From

Data Flow Diagrams. In Proceedings of the 2nd Working Conference on Reverse

Engineering, pages 84–93. IEEE CS Press, 1995.

[18] Josef Steinberger and Karel Jezek. Text summarization and singular value decompo-

sition. In Proceedings of 3rd International Conference on Advances in Information

Systems (ADVIS), pages 245–254, 2004.

[19] Yihong Gong and Xin Liu. Generic text summarization using relevance measure

and latent semantic analysis. In Proceedings of the 24th annual international ACM

SIGIR conference on Research and development in information retrieval, pages 19–

25, 2001.

Bibliography 38

[20] Emily Hill, Lori Pollock, and K. Vijay-Shanker. Automatically capturing source

code context of nl-queries for software maintenance and reuse. In Proceedings of

the 31st International Conference on Software Engineering (ICSE), pages 232–242.

IEEE Computer Society, 2009.

[21] Venera Arnaoudova, Laleh Eshkevari, Rocco Oliveto, Yann-Gaël Guéhéneuc, and

Giuliano Antoniol. Physical and Conceptual Identifier Dispersion: Measures and

Relation to Fault Proneness. In Proceedings of the 26th IEEE International Con-

ference on Software Maintenance- ERA Track, 2010.

[22] Nioosha Madani, Latifa Guerrouj, Massimiliano Di Penta, Yann-Gaël Guéhéneuc,

and Giuliano Antoniol. Recognizing words from source code identifiers using speech

recognition techniques. In Proceedings of the 14th European Conference on Software

Maintenance and Reengineering, 2010.

[23] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Series in

Telecommunications John Wiley & Sons., 1992.

[24] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. In-

dexing by latent semantic analysis. Journal of the American Society for Information

Science, 41(6):391–407, 1990.

[25] V. Basili, G. Caldiera, and D. H. Rombach. The Goal Question Metric Paradigm,

Encyclopedia of Software Engineering. John Wiley and Sons, 1994.

[26] Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso, and Mas-

similiano Di Penta. An empirical study on the evolution of design patterns. In Pro-

ceedings of the 6th joint meeting of the European Software Engineering Conference

and the ACM SIGSOFT symposium on the Foundations of Software Engineering

(ESEC-FSE), pages 385–394, New York NY USA, 2007. ACM Press.

[27] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg, Gail C.

Murphy, Nachiappan Nagappan, and Alfred V. Aho. Do crosscutting concerns cause

defects? IEEE Transaction on Software Engineering, 34(4):497–515, 2008.

[28] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano Di

Penta. An empirical study on the maintenance of source code clones. Empirical

Software Engineering, 15(1):1–34, Jan 2010.

[29] Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical validation of object-

oriented metrics on open source software for fault prediction. IEEE Transactions

on Software Engineering, 31(10):897–910, 2005.

Bibliography 39

[30] L. Briand, J. Wüst, John W. Daly, and V. Porter. Exploring the relationships

between design measures and software quality in object-oriented systems. Journal

of Systems and Software, 51:245–273, 2000.

[31] Yuming Zhou and Hareton Leung. Empirical analysis of object-oriented design

metrics for predicting high and low severity faults. IEEE Transactions on Software

Engineering, 32(10):771–789, 2006.

[32] David Binkley, Henry Feild, Dawn Lawrie, and Maurizio Pighin. Software fault

prediction using language processing. In Proceedings of the Testing: Academic and

Industrial Conference Practice and Research Techniques - MUTATION, pages 99–

110, Washington, DC, USA, 2007. IEEE Computer Society.

[33] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures

(fourth edition). Chapman & All, 2007.

[34] A. Marcus and J. I. Maletic. Recovering documentation-to-source-code traceability

links using latent semantic indexing. In Proceedings of 25th International Conference

on Software Engineering, pages 125–135, Portland, Oregon, USA, 2003.

[35] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability links in

software artefact management systems using information retrieval methods. ACM

Transactions on Software Engineering and Methodology, 16(4), 2007.

[36] N.E. Fenton and S.L Pfleeger. Software Metrics: A Rigorous and Practical Approach

(2nd Edition). Thomson Computer Press, Boston, 1997.

[37] Josef Steinberger and Karel Ježek. Update summarization based on latent semantic

analysis. In Proceedings of the 12th International Conference on Text, Speech and

Dialogue (TSD), pages 77–84, Berlin, Heidelberg, 2009. Springer-Verlag.

[38] Hector M. Olague, Letha H. Etzkorn, and Glenn W. Cox. An entropy-based ap-

proach to assessing object-oriented software maintainability and degradation - a

method and case study. In Software Engineering Research and Practice, pages

442–452, 2006.

[39] Yong Yu, Tong Li, Na Zhao, and Fei Dai. An approach to measuring the component

cohesion based on structure entropy. In Proceedings of the 2nd International Sym-

posium on Intelligent Information Technology Application, pages 697–700, Wash-

ington, DC, USA, 2008. IEEE Computer Society.

[40] Greg Snider. Measuring the entropy of large software systems. Technical report,

HP Laboratories Palo Alto, 2001.

Bibliography 40

[41] L. H. Etzkorn, S. Gholston, and W. E. Hughes. A semantic entropy metric. Journal

of Software Maintenance: Research and Practice, 14(5):293–310, 2002.

[42] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and N. Chrisochoides. Modelling

class cohesion as mixtures of latent topics. In Proceedings of 25th IEEE International

Conference on Software Maintenance, pages 233–242. IEEE CS Press, 2009.

[43] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the conceptual co-

hesion of classes for fault prediction in object-oriented systems. IEEE Transactions

on Software Engineering, 34(2):287–300, 2008.

[44] S. Patel, W. Chu, and R. Baxter. A measure for composite module cohesion. In

Proceedings of 14th International Conference on Software Engineering, pages 38–48,

Melbourne, Australia, 1992. ACM Press.

[45] D. Poshyvanyk and A. Marcus. The conceptual coupling metrics for object-oriented

systems. In Proceedings of 22nd IEEE International Conference on Software Main-

tenance, pages 469 – 478, Philadelphia Pennsylvania USA, 2006. IEEE CS Press.

[46] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects for

eclipse. In Proceedings of the 3rd International Workshop on Predictor Models in

Software Engineering, May 2007.

[47] K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai. The confounding effect of class

size on the validity of object-oriented metrics. IEEE Transaction on Software En-

gineering, 27(7):630–650, July 2001.

[48] Ahmed E. Hassan. Predicting faults using the complexity of code changes. In

Proceedings of the 31st International Conference on Software Engineering (ICSE),

pages 78–88. IEEE Computer Society, 2009.

[49] A. Takang, P. Grubb, and R. Macredie. The effects of comments and identifier

names on program comprehensibility: an experiential study. Journal of Program

Languages, 4(3):143–167, 1996.

[50] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? a study

of identifiers. In Proceedings of 14th IEEE International Conference on Program

Comprehension, pages 3–12. IEEE CS Press, 2006.

[51] D. Binkley, M. Davis, D. Lawrie, and C. Morrell. To CamelCase or Under score.

In Proceedings of 17th IEEE International Conference on Program Comprehension.

IEEE CS Press, 2009.

Bibliography 41

[52] Bonita Sharif and Jonathan I. Maletic. An eye tracking study on camelcase and

under score identifier styles. International Conference on Program Comprehension,

pages 196–205, 2010.

[53] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, Boston, MA, USA, 1999.

[54] Kirill Kireyev. Using latent semantic analysis for extractive summarization. In

Proceedings of Text Analysis Conference (TAC), 2008.

[55] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. Supporting program compre-

hension with source code summarization. In Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering (ICSE), pages 223–226, 2010.

	EPM-RT-2010-11_Eshkevari
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	2 Motivation and Problem Statement: Identifiers and Refactoring
	3 Methodology
	3.1 RQ1: Identifiers with Anomalies
	3.2 RQ2: Linguistic-based Feature Identification
	3.3 RQ3: Linguistic-based Refactoring
	3.4 RQ4: Evaluation of Program Comprehension and Visual Effort

	4 RQ1: Identifiers with Anomalies
	4.1 Background
	4.1.1 Data Extraction
	4.1.2 Term Entropy
	4.1.3 Term Context Coverage
	4.1.4 Aggregated Metric

	4.2 Case Study
	4.2.1 Case Study's Research Questions
	4.2.2 Analysis Method
	4.2.3 Execution
	4.2.3.1 Parsing
	4.2.3.2 Identifier Splitting
	4.2.3.3 Mapping Faults to Entities
	4.2.3.4 Mapping Entities to Entropy and Context Coverage

	4.2.4 Results
	4.2.4.1 RQ1.1 -- Metric Relevance
	4.2.4.2 RQ1.2 -- Relation to Faults

	4.2.5 Discussion
	4.2.5.1 LSI subspace dimension
	4.2.5.2 Java Parser
	4.2.5.3 Statistical Computations
	4.2.5.4 Object-oriented Metrics

	4.2.6 Threats to Validity

	4.3 Conclusion

	5 RQ2: linguistic feature identification
	6 Research Plan
	6.1 RQ1, (Summer 2010 - Fall 2010):
	6.2 RQ2, (Winter 2011 - Summer 2011):
	6.3 RQ3, (Fall 2011):
	6.4 RQ4, (Winter 2012 - Summer 2012):

	7 Related work
	7.1 Entropy and IR-based Metrics
	7.2 Metrics and Fault Proneness
	7.3 Identifiers and Program Comprehension
	7.4 Refactoring
	7.5 Text Summarization

	8 Conclusion
	Bibliography

