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Ecole Polytéchnique de Montréal
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ABSTRACT

The existing software engineering literature has empirically shown that a proper

choice of identifiers influences software understandability and maintainability. In-

deed, identifiers are developers’ main up-to-date source of information and guide

their cognitive processes during program understanding when the high-level docu-

mentation is scarce or outdated and when the source code is not sufficiently com-

mented.

Deriving domain terms from identifiers using high-level and domain concepts

is not an easy task when naming conventions (e.g., Camel Case) are not used or

strictly followed and–or when these words have been abbreviated or otherwise trans-

formed. Our thesis aims at developing a contextual approach that overcomes the

shortcomings of the existing approaches and maps identifiers to domain concepts

even in the absence of naming conventions and–or the presence of abbreviations.

We also aim to take advantage of our approach to enhance the predictability of the

overall system quality by using identifiers when assessing software quality.

The key components of our approach are: dynamic time warping algorithm

(DTW) used to recognize words in continuous speech, string-edit distance between

terms and words as a proxy for the distance between the terms and the concepts

they represent, plus words transformations rules attempting to mimic the cognitive

processes of developers when composing identifiers with abbreviated forms.

To validate our approach, we apply it to identifiers extracted from different

open source applications to show that our method is able to provide a mapping of

identifiers to domain terms, compare it with the two families of approaches that

to the best of our knowledge, exist in the literature with respect to an oracle that

we have manually built. We also enrich our technique by using domain knowledge

and context-aware dictionaries to analyze how sensitive are the performances of

our approach to the use of contextual information and specialized knowledge.

Keywords: Identifier Splitting, Program Comprehension, Linguistic

Analysis, Software Quality.
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CHAPTER 1

INTRODUCTION

1.1 Research Context: Program Comprehension and Software Quality

There is a general consensus among researchers [CT99,CT00,DP05,LFB06,EH-

PVS09] on the usefulness of identifier to improve software quality, program com-

prehension, and program understandability. Indeed, researchers have studied the

usefulness of identifiers to recover traceability links, measure conceptual cohesion

and coupling [MPF08, PM06], and, in general, as an asset that can highly affect

source code understandability and maintainability [TGM96, LMFB07, LMFB06].

Researchers have also studied the quality of source code comments and the use

of comments and identifiers by developers during their understanding and mainte-

nance activities [LMFB06,FWG07,JH06]. They all concluded that identifiers can

be useful if carefully chosen to reflect the semantics and the role of the named

entities that they are intended to make up and that “it is the semantics inherent

to words that determine the comprehension process”. Stemming from Deißenböck

and Pizka observation on the relevance of terms in identifiers to drive program com-

prehension, almost all previous works attempted to segment identifiers by splitting

them into component terms and words to guide the cognitive process using these

identifier fragments. Indeed, identifiers are often composed of terms reflecting do-

main concepts [LMFB06], referred to as “hard words”. Hard words are usually

concatenated to form compound identifiers, using the Camel Case naming conven-

tion, e.g., drawImage, or underscore, e.g., draw image. Sometimes, no Camel Case

convention or other separator (e.g., underscore) is used. Also, acronyms and ab-

breviations may be part of any identifier, e.g., drawimg or cntrapplicationgid. The

component words draw, application, the abbreviations img, cntr, and the acronym

gid (i.e., group identifier) are referred to as “soft-words” [LFB06]. Unlike Java

developers who often relies on the use of English and the Camel Case convention,
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which is a practice of creating identifiers by concatenating terms with capitalized

first letter e.g., drawImage to create identifiers, C programs usually concatenate

terms into identifiers using an underscore as separator, e.g., draw image. In ad-

dition, C coding standards such as the Indian Hill coding standards or the GNU

coding standards do not enforce Camel casing.

These practices, Camel Case and underscore concatenations, lead to the devel-

opment of a family of algorithms to segment identifiers into component substrings.

These algorithms have in common the assumption that the Camel Case convention

and–or an explicit separator are used systematically to create identifiers. Recently,

a more complex strategy is implemented by the Samurai tool [EHPVS09], it relies

on a lexicon and uses greedy algorithms plus strings frequency tables to identify

terms composing an identifier. However, the above mentioned approaches have

some limitations. First, they are not always able to associate identifier substrings

to words or terms, e.g., domain-specific terms or English words, which could be

useful to understand the extent to which the source code terms reflect terms in

high-level artifacts [LDOZ06]. Second, they do not deal with word transforma-

tions, e.g., abbreviation of pointer into pntr. It is the reason that motivated us

to develop a new approach aiming at improving over the existing techniques in

terms of correctly mapping source code identifiers to concepts even in the absence

of naming conventions or the presence of abbreviations. A second purpose of this

project is to take advantage of the results of this approach to understand how could

identifiers be used as a metric to enhance the prediction of the overall system qual-

ity. The idea is to combine structural measures involving coupling and cohesion

with informal information that is, in our case, identifiers to predict the quality of

a software system.

In the next section, we will enumerate the main problems that we wish to

address during the accomplishment of this research project.
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1.2 Problem Statement: Identification of Concepts based on Identifiers

In the following, we will interchangeably use the terms concept and domain

term due to the fact that our approach deals with concepts that could be design

or domain level concepts.

We formulate our problem statement as follows:

How to build a contextual approach able to automatically derive domain terms

and, thus, concepts based on the analysis of source code identifiers even in the ab-

sence of naming conventions and–or the presence of truncated/abbreviated words?

A study of related work highlighted the following problems, among which, some

have already been addressed and others are stated as research directions.

Problem 1. There is a little research work that treats the problem of mapping

source code identifiers to domain terms. To the best of our knowledge, only two

families of approaches are available. The first is essentially based on the presence

of naming conventions (e.g., Camel Case) and explicit separators such as the un-

derscore. The second approach uses greedy algorithms and a scoring function that

relies on word frequencies, mined from the source code to determine likely splittings

of identifiers.

Problem 2. The only existing approach that segments same case identifiers

belongs to the latter family [EHPVS09]. It is called “Samurai” and assumes that an

identifier is composed of words used (alone) in some other parts of the system. The

main weakness of this technique is its system-dependent frequency tables that could

lead to different splittings for the same identifier depending on the tables. Tables

built from different programs may lead to different results. Also, if an identifier

contains terms with frequencies higher than the frequency of the identifier itself,

Samurai may split it into several terms not necessarily reflecting the most obvious

split.

Problem 3. Existing techniques that map source code identifiers to domain

terms do not deal with abbreviations and acronyms that constitute additional forms

of identifiers used by some developers when writing code.
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Problem 4. The two families of approaches stated above do not show how close

is a match (a split) to the unknown string (identifier to split). This estimation of

similarity between the identifier to split and the resulting split could be very useful

to understand the extent to which source code identifiers reflect terms in high-level

artifacts.

Problem 5. The use of upper ontologies like WordNet by our first proposed

approach called DECOS [MGD+10] leads, in some cases, to multiple candidate

splits for the same identifier. As a term carries a single meaning in the context

where it is used, it would be possible to incorporate context and specialized knowl-

edge in our technique to see how sensitive are its performances to the use of such

contextual information.

Problem 6. One of the main limitations of previous approaches is their in-

ability to deal with abbreviations and word transformations when mapping identi-

fiers to concepts. DECOS addressed this shortcoming by automatically generating

a thesaurus of abbreviations via transformations applied in the context of a hill

climbing search. These word transformations attempt to mimic the cognitive pro-

cesses of developers when composing identifiers with abbreviated forms. However,

our approach has a non-deterministic component in the way in which word trans-

formation rules are applied and in the way in which the candidate words to be

transformed are selected. Thus, the risk of choosing an inappropriate term among

two having the same distance is not negligible.

Problem 7. DECOS is almost always able to find a splitting in a reasonable

time, i.e., within 2 minutes in case of a dictionary composed of 3,000 words. Yet,

we are aware that the computation speed could be optimized. As we apply a hill

climbing algorithm, in which a transformed word is added to the dictionary if and

only if it reduces the global distance, the invocation of the procedure dedicated

for the optimal matching computation will be done twice when the best candidate

(word having the min distance) is added to the considered dictionary.

Problem 8. To evaluate the performances of our approach in term of the

percentage of correctly segmented identifiers and to compare it with alternative
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ones, it is necessary to have an oracle. Our experience in attempting to build and

use an oracle has shown that this task is non trivial especially for a large set of

projects (hundreds of GNU projects from which we sampled some identifiers).

Problem 9. The existing software engineering literature reports empirical

evidence on the relation between various characteristics of a software system and

software quality. A recent study [MPF08] has shown that informal information

such us comments and identifiers, if combined with existing structural cohesion

metrics, proves to be a better predictor of faulty classes when compared to different

combinations of structural cohesion metrics. Since our method of deriving domain

terms based on identifiers reveals the degree to which an identifier reflects the

real context in which it is used, it would be interesting to expose the problem

of integrating identifiers as a metric when predicting the overall software system

quality.

1.3 Proposed Solutions: DECOS and TIDIER

Our global contribution consists in providing a new technique for detecting

concepts based on the analysis of source code identifiers. The first approach that

we have proposed is called DECOS (Detection of Concepts based on Source Code

Identifiers) and relies on the use of dictionaries. DECOS associates identifiers

to terms and words; words belonging to either a full English dictionary or to a

domain-specific or an application-specific dictionary. Our second proposed solution

is called TIDIER (Term IDentifier RecognIzER). TIDIER is a contextual approach

for mappings identifiers to concepts, it is an extension of DECOS that incorporates

specialized knowledge and contextual information. Both DECOS and TIDIER

overcome the shortcomings of the existing tools and provide results that could

be exploited further to improve the prediction of the quality of a given software

system. This claim is justified by the percentages of precision and recall obtained

by the two proposed approaches (DECOS and TIDIER) in comparison with those

attained by previous approaches (Camel Case splitter and Samurai). Details about
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correctness of mappings, precision and recall achieved by our techniques will be

discussed in Chapter 4 and Chapter 6 that respectively show the results obtained

by DECOS and TIDIER.

For each problem stated in the previous section, we propose the following solu-

tions:

Solution 1. To overcome the limitations of previous approaches, we propose a

novel approach called DECOS that can automatically map identifiers composed of

transformed words such as abbreviations and acronyms to domain terms regardless

of the kind of separators.

Solution 2. Unlike Samurai which is a contextual approach that maps identi-

fers to concepts by mining the frequency of potential substrings from source code,

DECOS relies on the use of dictionaries. It uses a dictionary containing words

and terms belonging to an upper ontology, to the application domain, or both.

In addition, our approach also uses context-aware dictionaries and dictionaries en-

riched with specialized knowledge. Examples of dictionaries that can be used for

our purpose are, for example, WordNet (which contains around 90,000 entries) or

dictionaries used by spell checkers, such as a-spell (which contains around 35,000

English words in a typical configuration). Each dictionary word may be associated

to a set of known abbreviations in a way similar to a thesaurus. For example, the

pointer entry in the dictionary can be associated to abbreviations pntr, ptr found

as terms composing identifiers. Thus, if pntr is matched, the algorithm can expand

it into the dictionary term pointer.

Solution 3. To deal with word abbreviation and transformation, the proposed

approach assumes that there is a limited set of (implicit and–or explicit) rules

applied by developers to create identifiers. It, therefore, implements a number

of words transformation rules that we discuss in detail in the Chapter 3. The

transformations are applied to dictionary words in the context of a hill climbing

search [MF04].

Solution 4. The proposed approach shows how close is the match to the

unknown string (identifier to split). In fact, it is based on the dynamic time warping
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(DTW) algorithm that is able to provide a distance between an identifier and a

set of words in a dictionary even if there is no perfect match between substrings in

the identifier and dictionary words; for example, when identifiers are composed of

abbreviations, e.g., getPntr, filelen, or DrawRect. The DTW algorithm accepts the

match as it identifies those dictionary words closest to identifier substrings. This

estimation of similarity between the identifier and the resulting split could be very

useful to understand the extent to which identifiers embedded in a given program

reflect terms in high level artifacts.

Solution 5. To see how sensitive are the performances of our technique to the

use contextual information and specialized knowledge in different dictionaries, we

have built context-aware dictionaries. Similarly to Enslen approach, these contex-

tual dictionaries contain function level, source code file level, and application level

identifiers. We have used also an application dictionary, plus specialized knowl-

edge: a dictionary based on the application dictionary augmented with domain

knowledge (abbreviations, acronyms, and C library functions) in addition to the

small and complete English dictionaries. The use of C library functions is justified

by the fact that our contextual approach TIDIER deals with identifiers belonging

to C applications. The dictionaries used will be detailed in Chapter 5.

Solution 6. To increase the accuracy of our results and to obtain the max-

imum number of appropriate candidates (terms composing an identifier), we will

improve the heuristics used for choosing dictionary words to be transformed and

word transformations, possibly by coupling our approach with the strategy de-

rived from [EHPVS09], i.e., favoring words already used in the same context or by

enhancing our fitness function based mainly on the string-edit-distance.

Solution 7. The string-edit distance used by our technique has a cubic com-

plexity in the number of characters in the identifier (sayM), words in the dictionary

(say T ), and maximum number of characters composing dictionary words (say N).

For each word in the dictionary, we must compute as many distances as there are

cells to fill the distance matrix, with a complexity of O(M ×N). Since there are T

dictionary words, the overall complexity is O(T ×M ×N). An increase of perfor-
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mance could be achieved by saving the first edit-distance computation and, in the

context of the hill climbing, recomputing only cells where the distance improves.

Solution 8. To evaluate the performances of the proposed approach and to

compare it with alternative ones, it is necessary to have an oracle, i.e., for each iden-

tifier, we will have a list of terms obtained after splitting it and, wherever needed,

expanding contracted words. For example, a possible oracle for counterPntr would

be counter pointer, obtained by splitting the identifier after the seventh character

and after mapping the abbreviation Pntr to pointer. Ideally, a perfect oracle could

exist; however, because its creation was infeasible to achieve for the hundreds of

GNU projects (e.g., wordnet, ispell, Internet) from which we sampled the identi-

fiers, the oracle has been produced by two of other researchers and validated by

another researcher to avoid bias and subjectivity. Thus, DECOS and TIDIER are

compared against previous approaches with respect to a manually built oracle that

helps evaluating the performance of the proposed solutions in terms of correctly

mappings identifiers to concepts.

Solution 9. To take advantage of this research work in the enhancement of the

prediction of the quality of a given software system, we propose to include a node

called “identifiers” as a metric in the Software Quality Understanding through

the Analysis of Design (SQUAD) quality model [Kho09]. We believe that com-

bining such an informal information with the structural cohesion metrics already

integrated by the developers of this quality model would help in improving the pre-

diction of the quality of the analyzed software systems as it has been proven by An-

drian Marcus, Denys Poshyvanyk and Rudolf Ferenc in their seminal work [MPF08].

Once the metric “identifiers” is taken into account by SQUAD, we perform experi-

mental studies to analyze the effect of such informal information on the prediction

of the quality of software systems.
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1.4 Methodology

To answer our global research question, we propose a solution based on the

string-edit distance between terms and words to quantify how close are words, rep-

resenting concepts, to such terms and, thus, provide a measure of the likelihood

that the terms refer to some words. To deal with abbreviations, our proposed tech-

niques use a thesaurus of words and abbreviations and apply word transformation

rules in the context of a hill-climbing search.

Some abbreviations are well-known and can thus be part of the thesaurus. In

such case, each row of the thesaurus contains a word and its possible synonyms,

e.g., directory and dir. Some other abbreviations may not appear in the thesaurus

because they are too domain and–or developer specific. To cope with such abbrevi-

ations, our approach find the best segmentation using a string-edit distance and a

greedy search. The transformation rules are applied in the context of a hill-climbing

algorithm that iterates over all words and all transformation rules to obtain the

best split—i.e., a zero distance—or until a termination criterion is reached.

In a nutshell, our approach relies on input dictionaries and a distance function to

segment (if necessary) simple and composed identifiers and associate the resulting

terms with words in the dictionaries, even if the terms are truncated/abbreviated.

Dictionaries may include English words and–or technical words, e.g., microproces-

sor and database (in the computer domain), or known acronyms, e.g., afaik (in the

Internet jargon).

we propose and follow a methodology where the tree main phases are as follows:

1. Building a thesaurus: To map terms or transformed words composing iden-

tifiers to dictionary words, we build a thesaurus of words and abbreviations.

One possibility to build such a thesaurus would be to merge different spe-

cific or generic dictionaries, such as those of spell checkers, e.g., i-spell which

contains about 35,000 words, or of upper ontologies, e.g., WordNet, which

contains about 90,000 entries. Yet, to reduce the computation time, we build

smaller dictionaries, e.g., dictionaries containing the most frequently-used
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English words only as well as specialized dictionaries containing acronyms

and known abbreviations.

2. Building an oracle: To validate our approach, we need an oracle. This

means that for each identifier, we will have a list of terms obtained after

segmenting it and, wherever needed, adding contracted words. The oracle is

produced as follows: (i) a splitting of each sampled identifier, and expanded

abbreviations is produced independently by two researchers (ii) for all cases

where there is a different splitting/expansion, we hold a discussion meeting

and a consensus is reached. We perform the manual analysis of our approach

relying on various sources of information of the projects, ranging from source

code comments to user manuals.

3. Validation: To evaluate our approach, we apply it to derive concepts from

identifiers of different systems and open source projects. In fact, we first apply

our technique to JHotDraw and Lynx using an English dictionary composed

of 3,000 words. Then, we apply it to a set of 1,026 C identifiers randomly

extracted from a corpus of 340 open source programs using a single English

dictionary of 2,600 words and also various dictionaries: a dictionary of about

2,800 words, the previous dictionary augmented with domain knowledge, i.e.,

about 700 domain terms, acronyms, and well-known abbreviations, a full En-

glish dictionary of 175,000 words, contextual dictionaries, i.e., dictionaries

built using terms from the same function, file, or program, and contextual

dictionaries augmented with domain knowledge. Our empirical study com-

pares the three approaches (ours, Camel Case splitter and Samurai) on their

splitting correctness (with respect to the oracle), and on their precision, re-

call, and F-Measure.

3. Performing empirical studies: To analyze the effect of source code iden-

tifiers on the prediction of the overall system quality, we propose to take

into account identifiers when assessing software quality. The idea is to add

a new metric that represents identifiers to Software Quality Understanding
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through the Analysis of Design (SQUAD) model considered as a Bayesian

quality model that does not combine informal information such as identifiers

and comments with structural metrics when evaluating software quality. The

Bayesian network used by SQUAD includes information on classes partici-

pating in design patterns, antipatterns, and code smell to assess the quality

of systems. Bayesian networks are probability graphs used for the evaluation

and the prediction of software quality. Each node of a bayesian network is a

metric taken into account when predicting the overall system quality. These

metrics (nodes) involve cohesion, coupling, and inheritance, etc. Once iden-

tifiers are added as a metric to the Bayesian network of SQUAD, we could

design experiments to study the impact of using identifiers when evaluating

quality. In fact, one research direction could be to analyze the effect of in-

troducing non well-formed identifiers on the quality of a given system. A

non-well formed identifier could be an identifier for which TIDIER is not

able to find a split especially that our analysis method showed that TIDIER

outperforms previous approaches of mapping identifiers to concepts. Thus,

SQUAD model would be run taking into consideration not only structural

metrics but also identifiers. By doing so, we could verify the possibility of

enhancing the prediction of software quality based on identifiers and deduce

how important is the use of meaningful identifiers for the improvement of

quality of systems.

1.5 Proposal Outline

This proposal will begin with a background literature review in Chapter 2.

Three areas related to our research are surveyed, including program comprehension,

software quality, and traceability recovery. However, the focus is mostly on the

investigation of identifiers in these three areas. Chapter 2 will also describe two

state-of-the-art and state-of-the-practice approaches to map identifiers to domain

terms.
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In Chapter 3, we will present DECOS, our first proposed approach for detecting

concepts represented by source code identifiers, explain its main components, and

discuss the challenges with dealing with abbreviations.

In Chapter 4, we will report the results obtained by DECOS, and describe the

case study that we have performed for validation and performance analysis of our

technique.

In Chapter 5, we will introduce TIDIER, our tool designed for the automatic

derivation of domain terms, and focus mainly on the contextual aspect that we

have tried to introduce in our approach by the use of contextual information and

specialized knowledge.

In Chapter 6, we will detail the empirical validation of our technique and com-

pare it against previous approaches, with respect to the oracle that we have man-

ually built.

In Chapter 7, we will conclude our proposal and recall our main contributions.

In Chapter 8, we will enumerate our research directions, and detail our research

plan in terms of research schedule and publication plan.



CHAPTER 2

RELATED WORK

The important role of identifiers in program understanding, traceability recov-

ery, feature and concept location motivates the large body of relevant work. In this

chapter, we state the most relevant contributions to identifier splitting and present

a description of the previous techniques that map source code identifiers to domain

concepts.

2.1 Program Comprehension

In [BMW93], Biggerstaff et al. define comprehension of the code, they wrote :

“A person understands a program when he or she is able to explain the program,

its structure, its behavior, its effects on its operation context, and its relationships

to its application domain in terms that are qualitatively different from the tokens

used to construct the source code of the program”. Therefore, mapping of source

code identifiers to domain terms is important when comprehending programs.

In [SIS02], Sulaiman reported that developers and maintainers face the chal-

lenging task of understanding of the system when the code is not sufficiently docu-

mented. Understanding of a legacy system is a time consuming activity especially

when documentation is out-dated or does not exist. Hence, software maintainers

must study the source code of the software systems.

Guidelines for the production of high-quality identifiers have been provided by

Deißenböck et al. [DP05]. The authors highlighted that proper identifiers improve

software quality. They believe that it is essential that identifiers and comments

contain the concept that they represent. They introduced two rules for creating

well-formed identifiers: conciseness and consistency. To verify the conciseness and

consistency of identifiers, they provided a mapping from identifiers to the domain of

concepts. The results of their study showed that inconcise or inconsistent identifiers
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cause a complexity in comprehension of source code.

Takang et al. [TGM96] empirically analyzed the role played by identifiers and

comments on source code comprehensibility. They conducted experiments to com-

pare abbreviated identifiers to full-word identifiers and uncommented code to com-

mented code. They had as subjects 89 undergraduates in computer science who

studied a program for 50 minutes and used both an objective and subjective means

of assessing comprehensibility. They tested different hypotheses:

1. Commented programs were more understandable than non-commented ones.

2. Programs that contain full identifiers are more understandable than those

with abbreviations.

3. The combined effect of comments and full identifiers was more understandable

than either independently.

The results of this study showed that commented programs are more under-

standable than non-commented programs and programs containing full-word iden-

tifiers are more understandable than those with abbreviated identifiers.

Lawrie et al. [LMFB07] studied the effect of identifier structure on developers’

ability to manipulate code. They studied two hypotheses:

1. Well-constructed abbreviations and full natural-language identifiers help source

code comprehension when compared to less informative identifiers.

2. Well-constructed abbreviations and full natural-language identifiers lead to

better programmer recall than less informative identifiers.

The results of their empirical study showed that full-word identifiers lead to the

best program comprehension.

Lawrie et al. [LMFB06] studied the effect of identifiers (three levels of identifier

quality that are full-words, abbreviations, and single letters) in source code com-

prehension. They investigated two hypotheses: first, schooling and people with

more work experience comprehend the source code better. Second, gender plays a
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great role in confidence but not comprehension of the source code. They considered

that if using full words identifier helps program comprehension over the abbrevi-

ated identifiers, then it is recommended to build tools that extract information

from identifiers; for example, applying a standard dictionary. Their study showed

that better comprehension is achieved when full word identifiers are used rather

than single letter identifiers as measured by description rating and confidence in

understanding.

Lawrie et al. also presented an approach and a tool named QALP (Quality As-

sessment using Language Processing) relying on the textual similarity between re-

lated software artifacts to assess software quality [LMFB07,LMFB06]. The QALP

tool leverages identifiers and related comments to characterize the quality of a pro-

gram. Their empirical study conducted with 100 programmers showed that full-

words as well as recognizable abbreviations led to better comprehension. These

results suggest that the identification of words composing identifiers, and, thus, of

the domain concepts associated with them could contribute to a better compre-

hension.

Binkley et al. [BDLM09] investigated the use of different identifier separators

in program understanding. They found that the Camel Case conventions led to

better understanding than underscores and, when subjects are properly trained,

that they performed faster with identifiers built using the Camel Case convention

rather than with underscores.

Other works [CT00,MMM03] investigated the information carried by the terms

composing identifiers, their syntactic structure and quality. The existence of “hard

terms” that encode core concepts into identifiers was the main outcome of the study

by Anquetil et al. [AL98].

An in-depth analysis of the internal identifier structure was conducted by Caprile

et al. [CT99]. They reported that identifiers are chosen to convey relevant informa-

tion about the role and properties of the program entities that they label. They also

observed that identifiers are often the starting point for program comprehension,

especially when high-level views, such as call graph, are available.
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Caprile et al. [CT00] proposed a semiautomatic technique for the restructuring

of identifiers with the goal of improving their meaningfulness and making identifiers

self descriptive.

Methods related to identifier refactoring were suggested by Demeyer et al.

[DDN00]. The authors proposed heuristics for detecting refactorings by calculat-

ing metrics over successive versions of a system. To validate their approach, they

performed three case studies for which multiple versions are available with the

aim of investigating how information of identifying refactoring helps in program

comprehension.

De Lucia et al. [LDOZ06,DDO10] proposed COCONUT, a tool highlighting to

developers the similarity between source code identifiers and comments and words

in high-level artifacts. They empirically showed that this tool is helpful to improve

the overall quality of identifiers and comments.

Researchers [JH06, LMFB06, FWG07] have also studied the quality of source

code comments and the use of comments and identifiers by developers during un-

derstanding and maintenance activities. They all concluded that identifiers can

be useful if carefully chosen to reflect the semantics and role of the named enti-

ties. Structure of the source code and comments help program comprehension and

therefore reduce maintenance costs.

Fluri et al. [FWG07] examined the question whether source code and associated

comments are really changed together along the evolutionary history of a software

system. They developed an approach to map code and comments to observe their

co-evolution over multiple versions and investigated three open source systems: Ar-

goUML, Azureus, and Eclipse JDT Core. Their study focused on the ratio between

the source code and comments over the history of projects and the entities that are

most likely to be commented, e.g., classes, methods, and control statements. They

noticed that comment density, the percentage of comment lines in a given source

code base, is a good predictor of maintainability and hence survival of a software

project. Specifically, they observed whether the comment density remains stable

over time and whether developers maintain a strong commenting discipline over
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a project’s lifetime. Regarding the comment ratio over a project’s lifetime, they

found that it does not stay at a stable value.

Jiang and Hassan [JH06] studied source code comments in the PostgreSQL

project over time. They measure how many header comments and non-header

comments were added or removed to PostgreSQL over time. Header comments

are comments before the declaration of a function; whereas non-header comments

are all other comments residing in the body of a function or trailing the function.

They discovered that apart from the initial fluctuation due to the introduction of

a new commenting style; the percentage of functions with header and non-header

comments remains consistent throughout the development history. They reported

that the percentage of commented functions remains constant except for early

fluctuation due to the commenting style of a particular active developer. A crucial

role is recognized to the program lexicon and the coding standards in the so-called

naturalization process of software immigrants [SH98].

2.2 Software Quality

In this section, we focus not only on research works on software quality but also

those accomplished in traceability recovery due to their relation with the area of

software quality and source code identifiers.

Some researchers [ACC+02,MACHH05,MM03] reported the use of identifiers

to recover traceability links. They believe that analysis of the identifiers and com-

ments can help to associate high-level concepts with program concepts and vice-

versa because they capture information and developers’ knowledge while writing

the code. Thus, how meaningful identifiers are could be a quality program indica-

tor.

Antoniol et al. [ACC+02] used an Information Retrieval (IR) method to recover

traceability links between source code and free text documents. They applied both

a probabilistic and a vector space information retrieval model in two case studies

to trace C++ and Java source code units, manual pages, and functional require-
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ments. A premise of their work is that programmers use meaningful names for

program items, such as functions, variables, types, classes, and methods. The

authors believe that the application-domain knowledge that programmers process

when writing the code is often captured by the mnemonics of identifiers; therefore,

the analysis of these mnemonics can help to associate high-level concepts with pro-

gram concepts and vice-versa. They proposed a two-phase approach: first they

prepared the document for retrieval by indexing its vocabulary extracted from the

document; second they extracted and indexed a query for each source code com-

ponent by parsing the source code component and splitting the identifiers to the

composed words. With this method, Antoniol et al. computed the similarity be-

tween queries and documents and returned a ranked list of documents for each

source code component. Recovering traceability links between source and docu-

mentation reveals the extent to which source code reflects design requirements and

thus help developers improve the quality of their programs.

De Lucia et al. [DFOT07] used LSI to identify cases of low similarity between

artifacts previously traced by software engineers. Their technique relied on the

use of textual similarity to perform an off-line quality assessment of both source

code and documentation, with the objective of guiding a software quality review

process because the lack of textual similarity may be an indicator of low quality

of traceability links. In fact, poor textual description in high-level artifacts, or

of meaningless identifiers or poor comments in source code, may point to a poor

development process and unreliable traceability links.

Textual similarity between methods within a class, or among methods belonging

to different classes, has been used to define new measures of cohesion and coupling,

i.e., the Conceptual Cohesion of Classes proposed by Marcus et al. [AD05] and

the Conceptual Coupling of Classes proposed by Poshyvanyk et al. [PM06], which

bring complementary information with respect to structural cohesion and coupling

measures.

In [AD05], Marcus et al.proposed a new measure, named the Conceptual Co-

hesion of Classes (C3), for the cohesion of classes in Object Oriented software
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systems. C3 is based on the analysis of unstructured information embedded in the

source code involving comments and identifiers and is inspired by the mechanisms

used to measure textual coherence in cognitive psychology and computational lin-

guistics. The reported results show that combining C3 with existing structural

cohesion metrics proves to be a better predictor of faulty classes when compared

to different combinations of structural cohesion metrics such as cohesion, coupling,

etc. Therefore, identifiers could be helpful when predicting the quality of a given

system.

Similar results were obtained by Poshyvanyk et al. [PM06] who suggested the

CoCC metric (COnceptual Coupling of Classes) to capture the coupling among

classes based on semantic information obtained from source code identifiers and

comments. Their case study showed that the conceptual measure captures new

dimensions of coupling, which are not captured by existing coupling measures.

Antoniol et al. [ACC+02] observed that most of the application-domain knowl-

edge that developers possess when writing code is captured by identifier mnemonics.

They wrote that “[p]rogrammers tend to process application-domain knowledge in

a consistent way when writing code: program item names of different code regions

related to a given text document are likely to be, if not the same, at least very

similar”. Thus, how readily the semantics inherent to identifiers can be extracted

is of key importance.

Abebe et al. [AHM+08] analyzed how the source code vocabulary changes dur-

ing evolution. They performed an exploratory study of the evolution of two large

open source software systems. The authors observed that the vocabulary and the

size of a software system tend to evolve the same way and that the evolution of the

source code vocabulary does not follow a trivial pattern. Their work was motivated

by the importance of having meaningful identifiers and comments, consistent with

high-level artifacts and with the domain vocabulary during the life of a program.

Hence, meaningfulness of identifers reflects quality of software programs.
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2.3 Derivation of Concepts

We present a description of two state-of-the-art and state-of-the-practice ap-

proaches to split identifiers into terms. These approaches are the Camel Case

splitter, and Samurai by Enslen et al. [EHPVS09].

2.3.1 Camel Case Splitter

Camel Case Splitter is an approach that assumes the use of the Camel Case

naming convention or the presence of an explicit separator. Camel Case is a naming

convention in which a name is formed of multiple words that are joined together as

a single word with the first letter of each of the multiple words capitalized so that

each word that makes up the name can easily be read. The name derives from the

hump or humps that seem to appear in any Camel Case name. For example, the

words FirstYearTeaching or numberOfBugs use camel case rules. The Camel Case

splitter splits identifiers according to the following rules:

RuleA: Identifiers are split by replacing underscore (i.e., “ ”), structure and

pointer access (i.e., “.” and “->”), and special symbols (e.g., $) with the

space character. A space is inserted before and after each sequence of digits.

For example, counter pointer4users is split into counter, pointer, 4, and users

while rmd128 update is split into rmd, 128, and update;

RuleB: Identifiers are split where terms are separated using the Camel Case con-

vention, i.e., the algorithm splits sequences of characters when there is a

sequence of lower-case characters followed by one or more upper-case char-

acters. For example, counterPointer is split into counter and Pointer while

getID is split into get and ID;

RuleC: When two or more upper case characters are followed by one or more

lower case characters, the identifier is split at the last but one upper case

character. For example, USRPntr is split into USR and Pntr;
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Default: Identifiers composed of multiple terms that are not separated by any of

the above separators are left unaltered. For example, counterpointer remains

as it is.

Based on these rules, identifiers such as FFEINFO kindtypereal3, apzArgs, or

TxRingPtr are split into FFEINFO kindtypereal, apz Args and Tx Ring Ptr, respec-

tively. This approach cannot split FFEINFO or kindtypereal into terms, i.e., the

acronym FFE followed by INFO and the terms kind, type, and real.

We have implemented this technique as a baseline for comparison. In our imple-

mentation, we do not model cases in which developers assigned a specific meaning

to some characters, e.g., the digits 2 and 4 could stand for the terms to and for,

respectively as in the identifiers peer2peer and buffer4heap. Furthermore, digits

sequences and single character are pruned out.

2.3.2 Samurai Splitter

Samurai approach [EHPVS09] is an automatic approach and tool to split iden-

tifiers into sequences of terms by mining terms frequencies in a large source code

base. It relies on two assumptions:

1. A substring composing an identifier is also likely to be used in other part of

the program or in other programs alone or as part of other identifiers.

2. Given two possible splittings of a given identifier, the split that more likely

represents the developer’s intent partitions the identifier into terms occurring

more often in the program. Thus, term frequency is used to determine the

most likely splitting of identifiers.

Samurai also exploits the context of identifier. It mines term frequency in the

source code and builds two term frequency tables: a program-specific and a global

frequency table. The first table is built by mining terms in the program under

analysis. The second table is made by mining the set of terms in a large corpus of

systems.
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Samurai ranks alternative splits of a source code identifier using a scoring func-

tion based on the program-specific and global frequency tables. This scoring func-

tion is at the heart of Samurai. It returns a score for any term based on the two

frequency tables representative of the program-specific and global term frequencies.

Given a term t appearing in the program p, its score is computed as follows:

Score(t, p) = Freq(t, p) +
globalFreq(t)

log10(AllStrsFreq(p))
(2.1)

where:

• p is the program under analysis;

• Freq(t, p) is the frequency of term t in the program p;

• globalFreq(t) is the frequency of term t in a given set of programs; and

• AllStrsFreq(p) is the cumulative frequency of all terms contained in the

program p.

Using this scoring function, Samurai applies two algorithms, the mixedCaseSplit

and the sameCaseSplit algorithm. It starts by executing the mixedCaseSplit algo-

rithm, which acts in a way similar to the Camel Case splitter but also uses the fre-

quency tables. Given an identifier, first, Samurai applies RuleA and RuleB from

the Camel Case splitter: all special characters are replaced with the space charac-

ter. Samurai also inserts a space character before and after each digit sequence.

Then, Samurai applies an extension of RuleC to deal with multiple possible splits.

Let us consider the identifier USRpntr. RuleC would wrongly split it into US

Rpntr. Therefore, Samurai creates two possible splits: US Rpntr and USR pntr.

Each possible term on the right side of the splitting point is then assigned a score

based on Equation 2.1 and the highest score is preferred. The frequency of Rpntr

would be much lower than that of pntr, consequently the right split is obtained by

splitting USRpntr into USR and pntr.

Following this first algorithm, Samurai applies the sameCaseSplit algorithm to

find the split(s) that maximize(s) the score when splitting a same-case identifier,
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such as kindtypereal or FFEINFO. The terms in which the identifier is split can

only contain lower-case characters, upper-case character, or a single upper-case

character followed by same-case characters.

The starting point for this algorithm is the first position in the identifier. The

algorithm considers each possible split point in the identifier. Each split point would

divide the identifier into a left-side and a right-side term. Then, the algorithm

assigns a score for each possible left and right term and the split is performed

where the split achieves the highest score. (Samurai uses a predefined lists1 of

common prefixes (e.g., demi, ex, or maxi) and suffixes (e.g., al, ar, centric, ly, oic)

and the split point is discarded if a term is classified as a common prefix or suffix.)

Now, Let us consider, for example, the identifier kindtypereal, and assum that

the first split is kind and typereal. Because neither kind nor typereal are common

prefix/suffix, this split is kept. Now, if we further assume that the frequency of

kind is higher than that of kindtypereal (i.e., of the original identifier) and that the

frequency of typereal is lower than that of kindtypereal. Then, the algorithm keeps

kind and it attempts to split typereal as its frequency is lower than that of the

original identifier. When it will split typereal into type and real, the score of type

and real will be higher than the score of the original identifier kindtypereal and of

typereal and, thus, typereal will be split into type and real. Because the terms kind,

type, and real have frequencies higher than that of kindtypereal, the obtained split

corresponds to the expected result.

The main limitation of Samurai is its frequency tables. These tables could lead

to different splittings for the same identifier depending on the tables from different

systems. Tables built from different programs may lead to different results. Also,

if an identifier contains terms with frequencies higher than the frequency of the

identifier itself, Samurai may split it into several terms not necessarily reflecting

the most obvious split.

1http://www.cis.udel.edu/~enslen/Site/Samurai_files/



CHAPTER 3

DECOS

In this chapter, we introduce DECOS, our novel approach for mapping source

code identifiers to concepts. First, we describe our technique and state its main

components: DTW, string edit distance, and word transformation rules. Then, we

detail each of these components in isolation.

3.1 Approach Description

Our global contribution consists in providing a new approach for detecting con-

cepts represented by source code identifiers. The approach is supposed to overcome

the shortcomings of the existing tools and to provide accurate results that could

be exploited further to improve the prediction of the quality of a given software

system.

Our first contribution tried to address some of the research questions stated in

Chapter 1 by developing a novel technique that segments identifiers into composing

words and terms. The approach is based on a modified version of the dynamic

time warping (DTW) algorithm proposed by Ney for connected speech recognition

[Ney84] (i.e., for recognizing sequences of words in a speech signal) and on the

Levenshtein string edit-distance [Lev66]. It further assumes that there is a limited

set of (implicit and–or explicit) rules applied by developers to create identifiers and

therefore uses words transformation rules, plus a hill climbing algorithm [MF04] to

deal with word abbreviation and transformation. Word transformation rules that

programmers can apply involve dropping all vowels (e.g., pointer becomes pntr),

and dropping one or more characters (e.g., pntr becomes ptr).

Our goal is to provide a meaning to simple and composed identifiers, even in

presence of such truncated/abbreviated words, e.g., objectPrt, cntr or drawrect, by

associating identifier (substrings) to terms and words; words belonging to either a
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full English dictionary or to a domain-specific or an application-specific dictionary.

The approach takes as input two artifacts (i) the set of identifiers to be segmented

into words and terms and (ii) a dictionary containing words and terms belonging

to an upper ontology, to the application domain, or both. Examples of dictionaries

used by our first approach are, for example, WordNet or dictionaries used by spell

checkers, such as a-spell. Each dictionary entry my be matched to a sequence of

known abbreviations in a way similar to a thesaurus. For example, the counter

word in the dictionary can be associated to abbreviations cntr, ctr found as terms

forming identifiers. Thus, if cntr is matched, the algorithm can expand it into

the dictionary term counter. The overall idea is to identify near optimal matching

between substrings in identifiers and words belonging to the dictionary, using an

approach inspired by speech recognition.

3.2 Approach Components

The key components of our identifier segmentation algorithm are DTW, word

transformation rules, and hill climbing algorithm. In the next sections, we will

present each component of our approach and shed light on the main advantages

and drawbacks of applying DTW for identifier splitting.

3.2.1 Dynamic Programming Algorithm

Dynamic time warping (DTW) is an algorithm that was conceived for time

series alignment. It measures similarity between two sequences which may vary in

time or speed and analyze data which can be represented linearly. The distance

between two series after warping is calculated. This distance measures how well the

features of a new unknown sequence match those of reference template. DTW relies

on a dynamic technique to compare point by point two series by building a matrix.

It will build this matrix staring from bottomleft corner i.e., the beginning of the

time series. Each neighboring cell in the matrix is taken and the previous distance

is added to the value of the local cell. The value in the topright cell contains the
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8 r ∞ 6 5 4 3
7 e ∞ 5 4 3 4
6 t ∞ 4 3 2 3
5 n ∞ 3 2 5 6
4 i ∞ 2 3 4 5
3 o ∞ 1 2 3 4
2 p ∞ 0 1 2 3
1 0 ∞ ∞ ∞ ∞

p n t r
1 2 2 2 5

Figure 3.1: Single word edit distance example

distance between the two strings that has the shortest path in this matrix (Lachlan

2007). One of its well known applications has been automatic speech recognition,

to cope with different speaking speeds.

Speech recognition is the ability of a machine or a program to recognize almost

anybody’s speech words and phrases in spoken language. Its applications include

call routing, speech-to-text, voice dialing and voice search. The term “speech recog-

nition” is sometimes used interchangeably with “voice recognition”. However, the

two terms have different meanings. In fact, speech recognition is used to identify

words in spoken language. However, voice recognition is a biometric technology

used to identify a particular individual’s voice. In this research study, we have

performed our identifier splitting via an adaptation of the connected speech recog-

nition algorithm proposed by Ney [Ney84] that, in turns, extends to connected

words the isolated word DTW [SC78] algorithm.

3.2.2 String Edit Distance

The string-edit distance between two strings, also known as Levenshtein dis-

tance [Lev66], is the number of operations required to transform one string into

another. The most common setting considers the following edit operations: char-

acter deletion, insertion, and substitution. Specifically each insertion and deletion

are assumed to increase the distance between the two strings by one, whereas a

substitution (i.e., a deletion followed by one insertion) increases it by two [CLR90].
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Let us assume that we must compute the edit distance between the strings

pointer and pntr. Their edit distance is three, as the characters o, i, and e must be

removed from pointer or, alternatively, added to pntr.

The main problem in computing the string-edit distance is the algorithm ef-

ficiency. A naive implementation is typically exponential in the string length.

A quadratic complexity implementation can be easily realized using dynamic pro-

gramming, and the algorithm is then often referred to as the Levenshtein algorithm.

The Levenshtein algorithm computes the distance between a string s of length N

and a string w of length M as follows.

First, a distance matrix D of (N + 1) × (M + 1) cells is allocated; in our

example, 8 × 5, i.e., the lengths of pointer and pntr plus one. The cells in the

first column and first row are initialized to a very high value but for cell (1, 1),

which is initialized to zero. (This allocation and initialization strategy simplifies

the algorithm implementation).

Matrix D can be seen as a Cartesian plane, and strings s and w, i.e., pointer

and pntr, as places along the plane axes starting from the second cells, as shown

in Figure 3.1.

The computation proceeds column by column starting from cell (1, 1). The

distance in cell D(i, j) is computed as a function of the previously computed (or

initialized) distances in cells D(i− 1, j), D(i−, j − 1), and D(i, j − 1). At the end

of the process, the cell (N + 1,M + 1) contains D(N + 1,M + 1), which is the

minimum edit distance.

c(i, j) =

⎧⎨
⎩

1 if s[i] �= w[j]

0 if s[i] = w[j]

D(i, j) = min[D(i− 1, j) + c(i, j), // insertion

D(i, j − 1) + c(i, j), // deletion

D(i− 1, j − 1) + 2 ∗ c(i, j)] // match
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Columns

1 2 3 4 5 6 7 8 9

4 r ∞ 2 3 2 1 3 3 4 3
3 t ∞ 1 2 1 2 3 3 3 4
2 p ∞ 0 1 2 3 2 3 4 3
1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s p n t r c n t r

w
o 5 r ∞ 4 4 3 2 3 3 2 1

R 4 t ∞ 3 3 2 3 3 2 1 2
3 n ∞ 2 2 3 3 2 1 2 3
2 c ∞ 1 2 3 2 1 2 3 3
1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

p n t r c n t r

Minimal ∞ 2 3 2 1 2 3 1 1
Distance

Figure 3.2: Multiple words edit distance example

Unfortunately, the Levenshtein algorithm is not suitable to split identifiers be-

cause it only computes the distance between two given strings, not between the

terms in a string (i.e., identifier terms) and some other strings (i.e., dictionary

words). The details of Ney’s algorithm are available in [Ney84].

We implemented an extension of the Levenshtein algorithm based on Ney’s

adaptation. This extension requires a dictionary (or a thesaurus) of known words

(referred to as speech template in [Ney84,SC78]).

Let us suppose that we have the identifier pntrcntr and that our dictionary

contains only the two words ptr and cntr, abbreviations of pointer and counter,

respectively. The global minimum distance between the identifier pntrcntr and the

dictionary entries ptr and cntr is calculated as follows. Initialization of distance

matrices is performed as described above for the Levenshtein algorithm, except

that one matrix is created for each word in the dictionary, as shown in Figure 3.2.

Once Column 2 is computed for all words in the dictionary as in the Levenshtein

algorithm, a decision is taken on the minimum distance contained in cell (2,4) for

ptr and (2,5) for cntr. This minimum distance is equal to two in Figure 3.2 and

the corresponding best term, i.e., ptr, is then recorded.

At the beginning of column three computation (i.e., to calculate (3, 2)), the



29

algorithm checks if it is less costly to move from one of cells (1, 2), (1, 3), (2, 2) or

instead, if is cheaper to assume that a string was matched at column two (previ-

ous column) with the distance cost recorded in the minimum distance array (i.e.,

two). In the example, for both dictionary words, the algorithm decides to insert

a character, i.e., move to the next column (along the x axis), as previous values

are lower, i.e., zero for ptr and one for cntr. However, when the column of the

character c of pntrcntr is computed (column six), the minimum distance recorded

for dictionary terms at column five is one, as ptr just needs a character insertion to

match pntr. Thus, the computation propagates the minimum distance in column

five for ptr, i.e., ptr matches pntr with distance one or in other words the algorithm

detected that the word ptr ends at column five. Because the character c is matched

in cntr, the distance one is propagated to cell (6, 2). The last part of the identifier

pntrcntr matches cntr. Thus, when all columns are computed, the lowest distance

is one. Distance matrices and the minimum distance array allow to compute the

minimum edit distance between the terms in the identifier and the two words, and

thus split the identifier.

3.2.3 Word Transformation Rules

The previous techniques that derive concepts from identifiers do not deal with

word transformations, e.g., abbreviation of image into img. To overcome this

shortcoming, we have developed a set of transformation rules attempting to mimic

the cognitive processes of developers when composing identifiers with abbreviated

forms. These abbreviated forms may be not part of the dictionary and need to be

either generated from existing dictionary entries or added to it. Moreover, several

words may have the same (minimum) distance from the substring to be matched

when matching a substring of the identifier to the dictionary words to determine

which candidate must be selected (the word having the minimum distance from

the substring).

Let us consider the identifier fileLen and suppose that the dictionary contains

the words length, file, lender, and ladder. Clearly, the word file matches with zero
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distance the first four characters of fileLen, while both length and lender have a

distance of three from len, because their last three characters could be dropped.

Finally, the distance of ladder to len is higher than that of other words because

only l matches. Thus, both length and lender should be preferred over ladder to

generate the missing dictionary entry len.

To choose the most suitable word to be transformed, we use the following heuris-

tic. We select the closest words, with non-zero distance, to the substring to be

matched and repeatedly transform them using transformation rules chosen ran-

domly among six possible rules. This process continues until a transformed word

matches the substring being compared or when transformed words reach a length

shorter than or equal to three characters. The available transformation rules are

the following:

• Delete all vowels: All vowels contained in the dictionary word are deleted,

e.g., pointer → pntr;

• Delete Suffix: suffixes—such as ing, tion, ed, ment, able—are removed from

the word, e.g., improvement → improve;

• Keeping the first n characters only: the word is transformed by keeping the

first n characters only, e.g., rectangle → rect for n = 4;

• Delete a random vowel: one randomly chosen vowel from the word is deleted,

e.g., number → numbr;

• Delete a random character: i.e., one randomly-chosen character is omitted,

e.g., pntr → ptr.

The transformations are applied in the context of a hill-climbing search. Hill

climbing is a heuristic which belongs to the family of local search. The algorithm

[MF04] searches for a (near) optimal solution of a problem by moving from the

current solution to a randomly chosen, nearby one, and accepts this solution only if
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it improves the problem fitness (the distance in our case). The algorithm terminates

when there is no moves to nearby solutions improving the fitness.

In the following, we will describe the steps of the hill climbing algorithm that

we have used to deal with words transformations. In this algorithm, a transformed

word is added to the dictionary if and only if it reduces the global minimum dis-

tance.

1. Based on the current dictionary, we (i) split the identifier using DTW as

previously explained in this chapter, (ii) compute the global minimum dis-

tance between the input identifier and all words contained in the dictionary,

(iii) associate to each dictionary word a fitness value based on its distance

computed in step (ii). If the minimum global distance in step (ii) is zero, the

process terminates successfully; else

2. From dictionary entries with non-zero distance obtained at step (1), we ran-

domly select one word having minimum distance and then:

(a) We randomly select one transformation not violating transformation

constraints, apply it to the word, and add the transformed word to

a temporary dictionary;

(b) We split the identifier via DTW and the temporary dictionary and com-

pute the minimum global distance. If the added transformed word re-

duces the global distance, then we add it to the current dictionary and

go to step (1); else

(c) If there are still applicable transformations, and the string produced in

step (a) is longer then three characters, we go to step (a);

3. If the global distance is non-zero and the iteration limit was not reached,

then, we go to step (1), otherwise the program exit with failure.

In steps (a) and (b), our algorithm attempts to explore as much as possible of

neighboring solutions by applying word transformations.
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Thus, hill climbing, DTW and word transformation rules are the key compo-

nents of our identifier segmentation algorithm.

3.3 Discussion

One of the limitations of DECOS is the usage of complex techniques inspired

from dynamic programming and speech recognition techniques. In fact, DTW has

several advantages and drawbacks when applied for identifier splitting. Among its

advantages, we can state:

• DTW algorithm provides a distance between an identifier and a set of words

in a dictionary even if there is no perfect match between substrings in the

identifier and dictionary words; for example, when identifiers are composed

of abbreviations, e.g., getPntr, filelen, or DrawRect. It accepts a match by

identifying the dictionary words closest to identifier substrings;

• DTW algorithm has the ability of performing an alignment when matching

words from the dictionary, thus it is able to work even when the word to be

matched is preceded or followed by other characters, e.g., xpntr. It is therefore

better than, for example, applying only the Levenshtein edit distance;

• DTW algorithm shows how close the match is to the unknown string by

assigning a distance to matched substrings. For example, if we consider the

identifier fileLen, we would discover that file matches the first four characters

with a zero distance (thus distance = 0) and that length matches the five to

seven characters (at distance = 3);

• The algorithm can favor the matching of the longest words, with respect to

multiple words composing the longest one if the dictionary is sorted. Thus,

the identifier copyright would be matched to the word copyright rather than to

the composition of words copy and right, which also belong to the dictionary.

However DTW has also some disadvantages:
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• The first disadvantage is its intrinsic quadratic complexity of a single match

with a cubic cost when we consider a dictionary;

• The second drawback is the non-determinism in the way in which words to be

transformed are chosen. This can be justified by the fact that sentence syntax

and semantics are not involved as matching is done at the character level.

A typical case of this non determinism is the identifier fileLen for which the

substring length should be preferred over lender instead of choosing between

the two as DTW does;

• DTW can not disambiguate complex situations leading to optimal non-zero

distance split. Indeed, it is immediate to recognize the component words im-

age and edges in the identifier imagEdges. However, image and edges match

the identifier with a distance of 1 because the E character is shared by both

terms in the identifier and, thus, the optimal minimum cost is 1 and not

0. The proposed approach deals with similar disadvantages by transforming

words and running multiple times the DTW algorithm to build multiple can-

didate splittings. Clearly, any developer would use syntax and semantics as

well as her knowledge of the domain and context implicitly: even if imag is

not a well-formed English word, she will correctly split imagEdges into image

and edges.

We share with previous works the goal of automatically splitting identifiers

into component terms. However, we do not assume the use of neither Camel

Case conventions nor a set of known prefixes or suffixes. In addition, DECOS

automatically generates a thesaurus of abbreviations using transformation rules

attempting to mimic the developers’ cognitive processes when building identifiers.

In the next chapter, we will report the results obtained by DECOS, and describe

the case study that we have performed for validation and performance analysis of

our technique.



CHAPTER 4

DECOS RESULTS

This chapter shows in detail the empirical study that we have performed to

evaluate the performance of DECOS in terms of correctly mapping identifiers to

concepts, the research questions that we have addressed and the splitting results

that we have obtained. It also reveals the threats to validity related to our case

study.

4.1 Case Study: Correctness of Mapping Identifiers

To examine the behavior of the first suggested approach, we have conducted an

empirical study having the following definition:

The goal of this study is to analyze the proposed identifier splitting approach,

with the purpose of evaluating its ability to adequately identify dictionary words

composing identifiers, even in presence of word transformations or abbreviations.

The quality focus is the precision and recall of the approach when identifying

words composing the identifiers with respect to manually-built oracles.

The perspective is of researchers, who want to evaluate an approach for iden-

tifier splitting, that can be used as a means to assess the quality of source code

identifiers, i.e., the extent to which they would refer to domain words or in general

to meaningful words, e.g., words belonging to a requirements’ dictionary.

The context consists of a dictionary and identifiers extracted from the source

code of two software systems, JHotDraw and Lynx. The dictionary contains about

2,500 words extracted from a glossary found on the Internet 1, 500 most frequent

English words 2, plus terms and words contained in Lynx and JHotDraw. JHotDraw

3

1http://www.matisse.net/files/glossary.html
2http://www.world-english.org/
3http://www.jhotdraw.org
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Table 4.1: Main characteristics of the two analyzed systems

Metrics JHotDraw Lynx
Analyzed Releases 5.1 2.8.5
Files 155 247
KLOCs 16 174
Identifiers (> 2 chars) 2,348 12,194

is a Java framework for drawing 2D graphics. The project started in October

2000 with the main purpose of illustrating the use of design patterns in a real

context. Lynx 4 is known as “the textual Web browser”, i.e., it is a free, open-

source, text-only Web browser and Gopher client for use on cursor-addressable,

character cell terminals. Lynx is entirely written in C. Its development began in

1992 and it is now available on several platforms, including Linux, UNIX, and

Windows. Table 4.1 reports some relevant figures about the two systems that we

analyzed.

4.2 Research Questions

The main research questions that we have addressed are as follows:

1. Research Question 1 (RQ1): What is the percentage of identifiers cor-

rectly split by DECOS? This research question investigates the overall perfor-

mance of our approach, comparing the results with the oracle that we have

manually built.

2. Research Question 2 (RQ2): How does DECOS perform compared with

the Camel Case splitter? This research question compares the performance

of the proposed approach with the simple Camel Case splitter, specifically

the capability of correctly splitting identifiers and of mapping substrings to

dictionary words.

4http://lynx.isc.org/
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3. Research Question 3 (RQ3): What percentage of identifiers containing

word abbreviations is DECOS able to map to dictionary words? This research

question evaluates the ability of the proposed approach to map identifier

substrings to dictionary words when these substrings represent abbreviations

of dictionary words.

4.3 Analysis Method

The above research questions aim at understanding if DECOS helps in decom-

posing identifiers. Thus, we implicitly assume that, given an identifier, there exists

an exact subdivision of this identifier into terms and words that, possibly after

transformations and once concatenated, compose the identifier. First, we limited

our analysis to identifiers longer than or equal to three characters: 2,348 in JHot-

Draw and 12,194 in Lynx. We have explicitly split identifiers containing digits, e.g.,

name4Tag into name and tag and sent2user into sent and user, because our ap-

proach cannot map 2 to the word to and 4 to for, which are the intended meanings

of these terms.

To evaluate our approach, we selected the 957 JHotDraw and 3,085 Lynx com-

posed identifiers for which it was possible to define a segmentation. We excluded

from our analysis identifiers that were composed of one single English word, and

identifiers for which it was not possible to clearly identify a splitting into dictio-

nary words and an expansion of abbreviations. Examples of identifiers belonging

to such a category are some identifiers extracted from Lynx source code, e.g.,

gieszczykiewicz, hmmm, ixoth, pqrstuvwxyz, or tiocgwinsz. The 957 (3,085, respec-

tively) identifiers were manually segmented into composing substring mapped into

words and terms, thus, creating oracles for JHotDraw and for Lynx.

RQ1 aims at answering a preliminary research question about the applicability

and usefulness of the proposed approach. To answer RQ1, we followed a two-steps

approach. First, we executed the proposed algorithm in a single iteration mode

and with no transformations. Thus, only identifiers composed of dictionary words
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are split with zero distance. Not-split identifiers, i.e., with splitting distance not

equal to zero, were fed into the second phase. In the second phase, we applied

our approach with an upper bound of 20,000 iterations, i.e., 20,000 dictionary

word transformations and DTW splits. We chose 20,000 iterations as we noticed

that after such a number of iterations, the approach was almost always able to

find a splitting in a reasonable time, i.e., within 2 minutes with our dictionary

composed of 3,000 words. After automatic splitting have been performed, results

are compared against the oracle, to compute the percentage of correctly segmented

identifiers.

In phase two, we only included those identifiers that were not split in phase one

and for which the composing substrings were longer than or equal to three char-

acters, as shorter substrings were conservatively considered as spurious characters,

pre-/post-fix or errors, thus penalizing our approach. Also, matching such short

identifiers by performing transformations of dictionary words would not be feasible

as too many dictionary words, after a sequence of transformations, would match

the (short) substrings. For example, in the identifier fpointer the character f can

be generated by any dictionary words containing the letter f. Much in the same

way, the substring ly in Lynx identifiers such as lysize can be expanded to several

different words.

RQ2 aims at performing a comparison of DECOS with the Camel Case split-

ting approach. We implemented a basic Camel Case identifier splitting algorithm

and compared its results with the manually-built oracle. To statistically compare

percentage of correct splittings performed by the proposed approach with those

of the Camel Case splitter, we use Fisher’s exact test [She07] and tested the null

hypothesis H0: the proportions of correct splittings obtained by the two approaches

are not significantly different.

To quantify the effect size of the difference between the two approaches, we

also computed the odds ratio (OR) [She07] indicating the likelihood of an event to

occur, defined as the ratio of the odds p of an event occurring in one sample, i.e.,

the percentage of identifiers correctly split by our approach (experimental group),



38

Table 4.2: Percentage of correct classifications (RQ1)

Systems Identifiers
Exact Splittings

Errors
Single Iteration Multiple Iterations

JHotDraw 957 891 (93%) 920 (96%) 37
Lynx 3,085 2,169 (70%) 2,901 (94%) 217

to the odds q of it occurring in the other sample, i.e., the percentage of identifiers

correctly split by the Camel Case splitter (control group): OR = p/(1−p)
q/(1−q)

. An

odds ratio of 1 indicates that the event is equally likely in both samples. OR > 1

indicates that the event is more likely in the first sample (proposed approach) while

an OR < 1 indicates the opposite (Camel Case splitter).

RQ3 aims at assessing the ability of DECOS to find identifiers splittings when

component substrings are obtained by means of dictionary word transformations,

such as in rectpntr using pntr instead of pointer and rect in place of rectangle. RQ3

is addressed similarly to RQ1, comparing identifiers matched in phase two (as

explained for RQ1) with the subset of the identifiers in the oracle that, according

to our manual classification, contained abbreviations.

4.4 Study Results

This section reports results of the empirical study with the objective of address-

ing the already mentioned research questions.

RQ1: What is the percentage of identifiers correctly split by DECOS?

Table 4.2 reports for JHotDraw and Lynx the results of the identifier splittings

obtained with our approach. In particular, the third column reports the number of

identifiers exactly split in a single step, i.e., with DTW distance zero and matching

the oracle. Results indicate that, for both systems, a large percentage of identifiers

have been created via simple concatenations of dictionary words. In fact, 93%

of JHotDraw identifiers, and 70% of Lynx identifiers have been exactly split into

dictionary words within a single iteration of our algorithm.

The fourth column cumulates results of the third columns with the number
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Table 4.3: Performance of the Camel Case splitter

Systems Correct Splitings Errors
JHotDraw 674 83
Lynx 361 2,524

of composed identifiers made of dictionary words abbreviations split with zero

distance within 20,000 iterations. In other words, the fourth columns shows the

numbers and percentages of all the correctly-split identifiers. Finally, the fifth

column shows the number of identifiers that were not exactly split or for which the

splitting did not match the oracle.

Wrong splittings were due to identifiers containing acronyms or short abbrevia-

tions. For example, we believe that it is impossible to identify correctly component

words of the acronyms such as afaik, imho, or foobar. For different reasons, we also

believe that it is impossible to find the exact splittings of identifiers such as fsize;

even if we consider that the context of the identifiers fsize could be reasonably as-

sociated with both concepts of file size and figure size depending on the JHotDraw

code region where it is used, even though the letter f really means that the field is

private.

Overall, about 96% of JHotDraw identifiers and 93% of Lynx identifiers were

correctly segmented with zero distance. These results support our claim and con-

clusion that a very large fraction (above 90%) of identifiers can be exactly split by

using our approach.

RQ2: How does DECOS compares to the Camel Case splitter?

Table 4.3 summarizes results of Camel Case splitting. Not surprisingly, the

Camel Case approach works well on JHotDraw. Indeed, Java coding guidelines and

identifier construction rules tend to promote Camel Case splitting and JHotDraw

developers carefully followed coding standards and identifier creation rules. As

the second line of the same table shows, this is not the case of Lynx, the C Web

browser. Indeed, C coding standards such as the Indian Hill5 coding standards or

5http://www.chris-lott.org/resources/cstyle/
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Table 4.4: JHotDraw: results and statistics for selected identifiers in ten splits at-
tempts. 25%, 50% and 75% indicate the first, second (median), and third quartiles
of the results distribution respectively

Identifiers Successes Min. 25 % 50 % 75 % Max. Split I Split II
borddec yes 208 617 1,346 1,938 8,831 bord decimal bord decision
anchorlen yes 154 689 1,220 3,097 7,056 anchor length anchor lender
drawrect yes 29 779 2,385 4,877 8,629 draw rectangle
drawroundrect yes 77 6,509 10,300 17,403 19,173 draw round rectangle
fillrect yes 898 3,549 5,942 10,932 12,659 fill rectangle
javadrawapp yes 86 480 972 4,582 6,965 java draw apply java draw append
netapp yes 76 788 1,529 4,183 7,394 net apply net append
newlen yes 176 534 600 704 2,503 new length new lender
nothingapp yes 90 305 1,425 4,803 9,956 nothing apply nothing application
addcolumninfo yes 457 1,296 1,806 2,631 4,146 add column information add column inform
addlbl yes 43 793 1,130 3,498 4,843 add label
casecomp yes 124 327 437 938 1,836 case compare case complete

serialversionuid No serial version did
selectionzordered No selection ordered
jhotdraw No hot draw
fimagewidth No him age width
fimageheight No him age height
writeref No write red

the GNU coding standards6 do not enforce Camel casing.

When comparing the performances of DECOS (see Table 4.2, considering results

after the second phase, i.e., the third column) with those of the Camel Case split-

ting (see Table 4.3), the Fisher’s exact test indicated no significant (or marginal)

difference for JHotDraw (p-value = 0.1) with a OR = 1.3, i.e., the proposed ap-

proach has chances of correctly splitting an identifier 1.3 more times than the Camel

Case splitter. For Lynx, differences are statistically significant (p-value < 0.001)

and we have an extremely high OR=60, i.e., chances of our approach to correctly

split identifiers are 60 times higher than the Camel Case splitter.

Therefore, we conclude that DECOS performs better than Camel Case splitter

on both systems and significantly better on Lynx.

RQ3: What percentage of identifiers containing word abbreviations

is DECOS able to map to dictionary words?

Table 4.2 and 4.4 reports results aimed at addressing RQ3. The fourth and

fifth columns of Table 4.2 show that a substantial fraction of identifiers containing

abbreviations can be split into dictionary words that originate such abbreviations.

6http://www.gnu.org/prep/standards/
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More precisely, 44% and 70% of JHotDraw and Lynx identifiers containing abbre-

viations were correctly split into component words. The percentage of success for

the two systems is quite different and the reason is the different ways in which

identifiers have been composed. Indeed, in Lynx, very short prefixes are much

more frequent and cryptic than in JHotDraw. In particular, Lynx prefixes, such

as ly, ht, or hta, make it hard to produce correct splittings without a specialized

dictionary in which such prefixes are added with, possibly, the proper expansion.

Thus, a solution could be to augment dictionaries used by DECOS with domain

knowledge, i.e., acronyms, and well-known abbreviations.

4.5 Threats to Validity

Threats to construct validity concern the relation between the theory and the

observation. Here, this threat is mainly due to mistakes in the oracles. Indeed, we

cannot exclude that errors are still present in the oracles, despite the corrections

made and explained above. However, the discovered errors were less than 1% of

the number of identifiers contained in the oracles, thus the presence of some errors

would not greatly affect our results. Nevertheless, as the intent of the oracles is

to explain identifiers semantics, we cannot exclude that a part of identifiers could

have been split in different ways by the developers that originally created them.

Threats to internal validity concern any confounding factor that could influence

our results. In particular, these threats can be due to subjectiveness during the

manual building of the oracles. We attempted to avoid any bias in the oracles by

using the same oracles and simple string matching when comparing Camel Case

splitter with our approach. Furthermore, both oracles were built by the same

researcher and manually verified by other two people. Whenever a disagreement

was detected, a majority vote was taken. The size of the oracle was chosen large

enough to ensure that even an error of a few percent in splits would not have

affected algorithm comparison.

Threats to Conclusion validity concern the relationship between the treatment
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and the outcome. Identifiers split exactly into dictionary words in a single iteration

may sometime be split in a different way from the developers’ intent. However, we

do not claim any relation between the splitting produced and the semantics of

the identifiers; this relation is left to the developers’ judgment and experience.

We limit ourselves to comparing our approach with the Camel Case splitter and

validating the quality of computed splittings with respect to the oracles. Conclusion

validity may play a role when we compared the effectiveness in detecting word

abbreviations. To limit such a threat, we manually inspected all splittings produced

with multiple iterations and word transformations.

Threats to external validity concern the possibility of generalizing our results.

The study is limited to two systems: JHotDraw and Lynx. Yet, our approach

is applicable to any other system. However, we cannot claim that similar results

would be obtained with other systems. We have compared our approach with a

Camel Case splitter but cannot be sure that their relative performances would

remain the same on different systems. However, the two systems correspond to

different domains and applications, have different sizes, are developed by different

teams, with different programming languages. We believed this choice mitigates

the threats to the external validity of our study.

4.6 Conclusion

To conclude this chapter, we have proposed DECOS: an approach inspired by

Ney’s extension of DTW algorithm to map identifiers to domain terms. DECOS

uses word transformation rules and hill climbing heuristic to infer a segmentation

in identifiers composed of dictionary words and also of word abbreviations.

We have applied DECOS to split identifiers of two systems, developed with

different programming languages, and belonging to different application domains:

JHotDraw and Lynx. Results have been evaluated comparing the obtained split-

tings with the manually-built oracles. They showed that DECOS outperforms a

simple Camel Case splitter.
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In particular, for Lynx, the Camel Case splitter was able to correctly split only

about 18% of the identifiers versus 93% with our approach. On JHotDraw, the

Camel Case splitter exhibited a correctness of 91% while our approach ensured

96% of correct results. DECOS was also able to map abbreviations to dictionary

words, in 44% and 70% of cases for JHotDraw and Lynx, respectively.

To deal with the challenge of mapping C identifiers to concepts, we propose

TIDIER that we present in the next Chapter.



CHAPTER 5

TIDIER: EXTENSION OF DECOS

In this chapter, we present TIDIER, our contextual approach of identification

of concepts in source code. TIDIER is based on the same components of DECOS,

it deals with C identifiers and uses context when mappings identifiers to concepts.

The first section of this chapter introduces TIDIER, the second is devoted to the

way we have built our thesaurus of words and abbreviations and the last one briefly

recalls a typical run of TIDIER and some of its limitations.

5.1 TIDIER Contributions

DECOS was extended into TIDIER (Term IDentifier RecognIzER), an approach

and tool that implements the components previously described in Chapter 3. TI-

DIER overcomes the limitations of Camel Case splitting and Samurai, in particular

for C programs. In fact, Camel Case splitting and Samurai have very good per-

formance when applied on Java programs because Java developers usually adhere

strictly to the Camel Case convention. However, these approaches are not effective

on C identifiers [MGD+10,EHPVS09].

This work extends our previous approach [MGD+10] with several contributions

among which we can state:

1. A detailed description of our tool, TIDIER which is an extension of DECOS;

2. An extensive validation of TIDIER on identifiers randomly extracted from a

large set of C programs;

3. Comparison of TIDIER with the two existing approaches: Camel Case split-

ter and Samurai (the comparison is detailed in Chapter 6);

4. Evidence on the relevance of contextual information as well as specialized

knowledge in the splitting process.
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The main research questions that we have address are the following:

1. Research Question 1 (RQ1): How does TIDIER compare with alternative

approaches, Camel Case splitting and Samurai, when C identifiers must be

split?

2. Research Question 2 (RQ2): How sensitive are the performances of TI-

DIER to the use of contextual information and specialized knowledge in dif-

ferent dictionaries?

3. Research Question 3 (RQ3): What percentage of identifiers containing

word abbreviations is TIDIER able to map to dictionary words?

To answer these research questions, we analyzed a set of 340 open source pro-

grams: 337 programs from the GNU repository, two operating systems (the Linux

Kernel release 2.6.31.6 and FreeBSD release 8.0.0), and the Apache Web server re-

lease 2.2.14. We extracted identifiers (including function, parameter, and structure

names) and comments from these programs. We manually built an oracle of 1,026

identifiers randomly extracted from the 340 programs and not being plain English

words or well-known terms. The oracle was built by two other researchers because

of the large number of applications that we had to deal with.

Using this oracle, we report evidence of the superiority of TIDIER over Camel

Case splitting and Samurai for C identifiers (RQ1). We show the usefulness to TI-

DIER of contextual information and specialized knowledge (RQ2). We also provide

supporting evidence that TIDIER also successfully split identifiers abbreviations

in about 48% of cases (RQ3).

As in Chapter 3, in the following we will refer to any substring in a compound

identifier as a term while an entry in a dictionary (e.g., the English dictionary) will

be referred to as a word. We recall that a term may or may not be a dictionary

word and carries a single meaning in the context where it is used while a word

may have multiple meanings (upper ontologies like WordNet1 associate multiple

1http://wordnet.princeton.edu



46

meanings to words).

The goal of TIDIER is to split program identifiers using high-level and domain

concepts by associating identifier terms to domain specific words or to words be-

longing to some generic English dictionary. It relies on input dictionaries and a

distance function to split (if necessary) simple and composed identifiers and as-

sociate the resulting terms with words in the dictionaries, even if the terms are

truncated/abbreviated. Dictionaries may include English words and–or techni-

cal words, e.g., microprocessor and database (in the computer domain), or known

acronyms, e.g., afaik (in the Internet jargon). The distance function measures how

close a given identifier term is to a dictionary word and, thus, how well the concepts

associated to the dictionary words are conveyed by the identifier.

C Developers sometimes compose identifiers using abbreviations, this is proba-

bly an heritage of the past when certain operating systems and compilers limited

the maximum length of identifiers. For example, a developer may use the term

dir instead of the word directory, ptr or pntr instead of pointer, or net instead of

network.

TIDIER aims at segmenting identifiers into terms and recovering the original

non abbreviated words. For this reason, it uses a thesaurus rather than English

and–or domain dictionaries. A thesaurus entry, a word, in TIDIER is the original

word followed by the list of abbreviated terms. For example, when the abbreviation

ptr is detected TIDIER knows that this is actually an abbreviation of pointer. In

this chapter, we use the terms dictionary and thesaurus interchangeably to indicate

a list of words each one with, possibly, an associated list of abbreviations.

Overall, the current implementation of TIDIER takes as input an identifier

and a thesaurus and uses a simple string-edit distance to determine whether it is

possible to split the identifier into a number of terms that have a small (or zero)

distance with dictionary words.

Some abbreviations are well-known and can thus be part of the thesaurus. In

such case, each row of the thesaurus contains a word and its possible synonyms,

e.g., directory and dir. Some other abbreviations may not appear in the thesaurus
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because they are too domain and–or developer specific. To cope with such abbre-

viations, TIDIER behaviors similarly to the first approach. It assumes that there

is a limited set of rules applied by developers to create identifiers and uses words

transformation rules, plus a hill climbing algorithm to deal with word abbrevia-

tion and transformation. The hill climbing algorithm iterates over all words and

all transformation rules to obtain the best split—i.e., a zero distance—or until a

termination criterion (the transformed word is equal or less than 3 characters) is

reached.

TIDIER is not able to deal with missing information or to generate abbrevia-

tions in all cases. If the identifiers use terms belonging to a specific domain, whose

words are not present in the thesaurus, TIDIER cannot split and associate these

terms with words.

Similarly, TIDIER cannot identify the words composing acronymse.g., afaik,

cpu, ssl, or imho because it cannot associate a single letter from the acronym with

the corresponding word because for any letter, there exist thousands of words with

the same string-edit distance, e.g., the c of cpu has the same distance with central

and with any other word starting with c.

The main components of TIDIER are therefore the string edit Levenshtein

distance, word transformation rules, and the thesaurus of words and abbreviations

that will be the topic of the next section.

5.2 TIDIER Main Component: Thesaurus of Words and Abbreviations

The thesaurus used by TIDIER plays a crucial role for the quality of results.

It is built with accordance to the steps described in the methodology section of

Chapter 1. In this part, the focus is on the kind of dictionaries used to build it:

1. Small English dictionary referred to as “English Dictionary”: an English

dictionary built from the 1000 most frequent English words, the 250 most

frequent technical words (from Oxford dictionary) and 275 most frequent

business words (from Oxford dictionary) plus words from a glossary found on
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the Internet2. Overall, this dictionary includes 2,774 words.

2. Small English dictionary, plus specialized knowledge: this dictionary consists

of the English Dictionary plus: (i) a set of 105 acronyms used in computer

science (e.g., ansi, dom, inode, ssl, url), (ii) a set of 164 abbreviations collected

among the authors used when programming in C (e.g., bool for boolean, buff

for buffer, wrd for word), and (iii) a set of 492 C library functions (e.g.,

malloc, printf, waitpid, access). This dictionary includes the union of the

2,774 English words plus 761 abbreviations and C functions, for a total of

3,535 distinct words.

3. Complete English dictionary referred to as “WordNet”: a complete English

dictionary extracted from the WordNet upper ontology database and from

the GNU i-spell spell-checker. This dictionary includes 175,225 words.

4. Context-aware dictionaries: similarly to Enslen et al. [EHPVS09], dictio-

naries containing function level, source code file level, and application level

identifiers. We built these dictionaries using words appearing in the context

where the identifiers are located.

5. Application dictionary, plus specialized knowledge: a dictionary based on

the application dictionary augmented with domain knowledge (abbreviations,

acronyms, and C library functions).

The abbreviations used to describe specialized knowledge were collected with

no prior knowledge about the identifiers to be split. The rationale of including

abbreviations is to identify terms not contained in the English Dictionary but

that are likely to be contained in identifiers and that could not be expanded into

English words because their distance from the words they represent is too large.

For example, the identifier ipconfig contains the term ip, which means “internet

protocol”. It would be impossible for any algorithm to guess that i stands for

2http://www.matisse.net/files/glossary.html
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internet and p for protocol. Widely-used abbreviations are introduced to make the

search faster as it would be useless and time consuming to generate well-known

abbreviations. C library terms are introduced because, often, they correspond to

jargon or domain-specific words and C program identifiers contain these terms. For

example, functions wrapping known C functions often contain terms such as printf,

socket, flush, and so on, as in the Linux identifiers threads fprintf, seq printf, or,

in the Apache Web server, snprintf flush or apr socket create.

The context-aware dictionaries are built by tokenizing source code, extracting

identifiers and comment terms and saving them into specialized context-aware dic-

tionaries at the level of functions, files, or programs. These list of terms need to

be pruned of strings not corresponding to English words or technical terms be-

fore being considered usable dictionaries; in TIDIER the filtering is done by string

comparison with the WordNet dictionary.

As the splitting output depends on TIDIER dictionaries, they must be carefully

validated. To validate a dictionary, we perform a manual validation for small dictio-

naries or highly-specific dictionaries, such the abbreviations. For large dictionaries,

we filter words using a trusted reference dictionary, such as WordNet.

5.3 Typical Run of TIDIER

A typical run of TIDIER can be described as follows. First, wherever possible,

identifiers are split using explicit separators, namely special characters, e.g., “ ”,

“.”, “$”, “->”, and the Camel Case convention. (A description of the Camel

Case splitter is given in Chapter 2). Then, TIDIER applies transformations and

computes the distance between the identifier and the thesaurus words by using a

hill climbing search. For a given identifier and a given dictionary, the edit distance

assigns a distance to each thesaurus word as well as the positions where it begins

and ends in the identifier. The edit distance is the fitness function guiding the hill

climbing search following the same steps detailed in Chapter 3.



CHAPTER 6

TIDIER RESULTS

This chapter is devoted to the case study that we have conducted to analyze

the results of our second contribution. First, we describe our case study, then we

discuss how we have built our oracle and dictionaries. The third section states the

research questions that we have addressed. The fourth part concerns the study

design and is followed by a section dedicated to our analysis method. Finally, we

conclude this chapter with a conclusion about TIDIER.

6.1 Case Study: Precision and Recall

Similarly to the first case study, the goal of this one is to analyze TIDIER

with the purpose of evaluating its ability to adequately recognize dictionary words

composing identifiers, even in presence of abbreviations and–or acronyms. The

quality focus is the precision and recall of the approach when identifying words

composing identifiers with respect to a manually-built oracle and to alternative

identifier-splitting approaches. The perspective is of researchers, who want to un-

derstand how the approach for identifier splitting can be used as a means to assess

the quality of source code identifiers, i.e., the extent to which they would refer

to domain terms or in general to meaningful words, e.g., words belonging to a

requirements’ dictionary.

Differently form the context of our first case study, the context here consists

of a set of 1,026 composed identifiers randomly sampled from the source code of

337 GNU1 projects, the Linux Kernel2 2.6.31.6, FreeBSD3 8.0.0, and the Apache

Web server4 2.2.14. The GNU project was launched in 1984 with the ultimate goal

1http://www.gnu.org/
2http://www.kernel.org/
3http://www.freebsd.org/
4http://www.apache.org/
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Table 6.1: Main characteristics of the 340 projects for the sampled identifiers

GNU Projects (337 Projects)
C C++ .h Java

Files 57,268 13,445 39,257 14,811
Size (KLOCs) 25,442 2,846 6,062 3,414
Terms 26,824 – 17,563 –
Identifiers 1,154,280 – 619,652 –
Oracle Identifiers 927 – 26 –

Linux Kernel
C C++ .h Java

Files 12,581 – 11,166 –
Size (KLOCs) 8,474 – 1,994 –
Terms 19,512 – 13,006 –
Identifiers 845,335 – 352,850 –
Oracle Identifiers 73 – 4 –

FreeBSD
C C++ .h Java

Files 13,726 128 7,846 15
Size (KLOCs) 1,800 128 8,016 4
Terms 21,357 – 12,496 –
Identifiers 634,902 – 278,659 –
Oracle Identifiers 20 – 0 –

Apache Web Server
C C++ .h Java

Files 559 – 254 –
Size (KLOCs) 293 – 44 –
Terms 6,446 – 3,550 –
Identifiers 33,062 – 11,549 –
Oracle Identifiers 11 – 0 –

to provide a free, open source operating system and environment. GNU projects

include well-known tools, such as the GCC compiler, parser generators, shells,

editors, libraries, and textual utilities just to name a few. Most code of the GNU

project is written in C, with a few C++ program (e.g., groff). Linux is the well-

known operating system widely adopted on servers and, in recent years, used as a

desktop alternative to proprietary operating systems. The Linux Kernel is entirely

written in C with additional utilities written mostly in scripting languages, such as

Bash or TCL/TK. FreeBSD is another freely available operating systems; as the

name suggest it derives from the BSD branch of the Unix tree. The Apache Web

server is a free and open-source Web server; it is adopted by public and private

organizations for its robustness, speed, and security as well as its large community

of developers. It is entirely developed in C. The main characteristics of these

programs are listed in Table 6.1.
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6.2 Research Questions

The study reported in this chapter addresses the following research questions:

1. Research Question 1 (RQ1): How does TIDIER compare with alterna-

tive approaches, Camel Case splitting and Samurai, when C identifiers must

be split? This research question analyzes the performance of TIDIER and

compares it with alternative approaches, a Camel Case splitter and an im-

plementation of Samurai.

2. Research Question 2 (RQ2): How sensitive are the performances of TI-

DIER to the use of contextual information and specialized knowledge in dif-

ferent dictionaries? This research question analyzes the performances of TI-

DIER in function of different dictionaries.

3. Research Question 3 (RQ3): What percentage of identifiers containing

word abbreviations is TIDIER able to map to dictionary words? This research

question evaluates the ability of TIDIER to map identifier terms with dictio-

nary words when these terms represent abbreviations of dictionary words.

6.3 Analysis Method

Before introducing our analysis method, we present the planning and study

design related to the empirical study that we have performed.

The main independent variable of our study is the kind of splitting algorithm

being used. There are three different values for this factor:

1. Camel Case splitter;

2. Samurai approach;

3. TIDIER approach.

The second independent variable is the used dictionary (or set of used dictio-

naries), among those defined in Section 5.2. Thus, we have a number of possible
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treatments equals to the number of different dictionaries plus two, i.e., the two

alternative approaches: Camel Case splitter and Samurai.

The first dependent variable considered in our study is the correctness of the

splitting/mapping to dictionary words produced by the identifier-splitting approach

with respect to the oracle. As a first, coarse-grained measure, we use a Boolean

variable meaning that the splitting is correct (true) or not (false).

Let us suppose that we define the correct splitting of the identifier cntrPtr

as counter and pointer ; if the studied approach produces exactly the expected

splitting, then the correctness is evaluated as true, else it is false, e.g., counter and

ptr. The weakness of this correctness measure is that it only provides a Boolean

evaluation of the splitting. If the split is almost correct, i.e., most of the terms are

correctly identified, then correctness would still be zero.

To overcome the limitation of the correctness measure and provide a more

insightful evaluation, we use the precision and recall measures. Given an identifier

si to be split, oi = {oraclei,1, . . . oraclei,m} the splitting in the manually-produced

oracle, and ti = {termi,1, . . . termi,n} the set of terms obtained by an approach, we

define precision and recall as follows:

precisioni =
|ti ∩ oi|
|ti| , recalli =

|ti ∩ oi|
|oi|

To provide an aggregated, overall measure of precision and recall, we use the

F-Measure, which is the harmonic mean of precision and recall:

F−Measure =
2 · precision · recall
precision+ recall

The part devoted to our analysis method try to address the research questions

formulated in 6.2.

RQ1 and RQ2 concern the comparison of the correctness, precision, recall, and

F-Measure of the different approaches and of variations of TIDIER when using

different dictionaries. Thus, the analysis method is the same for both research

questions.
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We test the differences among different approaches using the Fisher’s exact test

because correctness is a categorical measure. We test the following null hypothesis

H0: the proportion of correct splittings, p1 and p2, between two approaches do not

significantly change.

To quantify the effect size of the difference between any two approaches, we

also compute the odds ratio (OR) similarly to our first approach.

Precision, recall, and F-Measure are compared using a non-parametric test for

pairwise median comparison, specifically the Wilcoxon paired test. We use a paired

test as our samples are dependent, as we compute, for each identifier, the precision,

recall and F-Measure for the different approaches. The Wilcoxon test tests whether

the median difference between two approaches is significantly different from zero:

H0 : μd = 0, where μd is the median of the differences.

We quantify the effect size of the difference using the Cohen d effect size for

dependent variables, defined as the difference between the means (M1 and M2),

divided by the standard deviation of the (paired) differences between samples (σD):

d =
M1 −M2

σD

The effect size is considered small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8,

and large for d ≥ 0.8 [Coh88]. We chose the Cohen d effect size because it is

appropriate for our variables (in ratio scale) and because the different levels (small,

medium, and large) are easy to interpret.

As both the Fisher’s exact test and the Wilcoxon paired test are executed

multiple times to compare the various approaches and dictionaries, significant p-

values must be corrected. We used the Holm correction [Hol79], which is similar to

the Bonferroni correction, but less stringent. It works as follows: (i) the p-values

obtained from multiple tests are ranked from the smallest to the largest, (ii) the

first p-value is multiplied by the number of tests performed (n), and is deemed to

be significant if it is less than 0.05, and (iii) the second p-value is multiplied by
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Table 6.2: Descriptive statistics of F-Measure

Method Dictionary 1Q Median 3Q Mean σ
CamelCase 0.00 0.40 1.00 0.44 0.43
Enslen 0.00 0.50 1.00 0.49 0.42
TIDIER English dictionary 0.00 0.29 0.67 0.38 0.41

English dict. + domain kn. 0.29 0.67 1.00 0.60 0.39
WordNet 0.00 0.40 0.80 0.43 0.40
Function 0.00 0.00 0.00 0.13 0.27
File 0.00 0.00 0.57 0.30 0.37
Application 0.00 0.50 1.00 0.52 0.40
Application + domain kn. 0.50 1.00 1.00 0.72 0.36

n− 1, and so on.

For RQ3, we identified a set of abbreviations used in the sampled identifiers

and computed the percentage of these abbreviations that were correctly mapped

to dictionary words. We identified the set of likely abbreviations in our sample as

follows:

1. For each identifier, e.g., counterPtr, we consider the split performed using the

Camel Case splitter, i.e., counter ptr, and the oracle, i.e., counter pointer;

2. Then, we compare each term in the split with the term appearing in the same

position in the oracle, e.g., counter is compared with counter and ptr with

pointer;

3. For all cases where (i) the term in the split does not match with the one in

the oracle, (ii) both terms start with the same letter, (iii) the term in the

split does not appear in the English dictionary of 2774 words, and (iv) the

term in the oracle appears in the English dictionary, we consider the term in

the split as an abbreviation of the term in the oracle: ptr is an abbreviation

of pointer.

The set of 73 abbreviations obtained with the above process has been manually

validated to remove false positive. Then, we applied each approach, considering

the English dictionary with domain knowledge, and counted the percentage of

abbreviations correctly mapped to dictionary words. We also computed the set
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Table 6.3: Comparison among approaches: results of Fisher’s exact test and odds
ratios

Approach 1 Approach 2 p-values ORs
Camel Case Samurai 0.63 0.95
English dictionary Camel Case 0.01 0.73
English dictionary Samurai 0.01 0.69
English dictionary WordNet 1.00 0.95
English dictionary + domain kn. Camel Case <0.001 1.53
English dictionary + domain kn. Samurai <0.001 1.46
English dictionary + domain kn. English dictionary <0.001 2.13
Application Camel Case 1.00 1.06
Application Samurai 1.00 1.01
Application English dictionary + domain kn. <0.001 0.69
Application File <0.001 2.98
Application Function <0.001 7.86
File Function <0.001 2.63
Application + Domain kn. Application <0.001 2.56
Application + Domain kn. English dictionary <0.001 3.80
Application + Domain kn. English dictionary + domain kn. <0.001 1.80
Application + Domain kn. Camel Case <0.001 2.76
Application + Domain kn. Samurai <0.001 2.62

of abbreviations that were not correctly mapped, but with distance one from the

oracle, i.e., the mapping failed for a single character only. Thus, we identified

and can discuss cases where the approach almost found the correct solution, even

though it failed to correctly converge.

6.4 Study Results

We now present and discuss the results of our study to answer the research ques-

tions formulated in Section 6.2. Raw data of our study are available for replication

purposes5.

First, we evaluate the correctness of TIDIER when using different dictionaries

and compare it with that of the two alternative approaches, i.e., the Camel Case

splitter and Samurai. The percentage of correctly split/map identifiers is reported

in Figure 6.1.

The two bars at the bottom of the figure show the performances of the Camel

Case splitter and Samurai, respectively, while the other bars show the performances

5http://web.soccerlab.polymtl.ca/ser-repos/public/TIDIER-rawdata.tgz
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Figure 6.1: Percentages of correct identifier splittings

of TIDIER when using different dictionaries.

Table 6.3 reports results of the Fisher’s exact test (with corrected p-values,

significant p-values are shown in bold face) when performing a pair-wise comparison

(among approaches) of the percentages of correctly split identifiers. The table also

reports the ORs. ORs greater than one indicate results in favor of Approach 1 and

vice versa.

Figure 6.1 and Table 6.3 show that:

• In the extracted sample, Samurai performs nearly as well as the Camel Case

splitter and there are no statistically significant differences among them;

• When using only the simple English dictionary, TIDIER performs worse than

the Camel Case splitter and Samurai. The percentage of correctly split iden-

tifiers is only 23.82%, while the Camel Case splitter exhibits a performance

of 30.08% and Samurai of 31.14%. The OR for TIDIER is 0.73 and 0.69 with
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respect to the two alternatives;

• When using a larger dictionary, i.e., the WordNet dictionary, TIDIER does

not perform significantly better (nor worse) than when using the simple En-

glish dictionary;

• When domain knowledge is added to the English dictionary, TIDIER signif-

icantly outperforms the alternative approaches. The percentage of correctly

split identifiers is nearly 40% with ORs of about 1.5 in favor of TIDIER wrt.

the Camel Case splitter and Samurai;

• When using a contextual, program-level dictionary, TIDIER performs slightly

(but not significantly) better (31.38%) than the alternative approaches but

worse than when using the English dictionary with domain knowledge. Con-

textual dictionaries at file or function levels do not seem particularly useful

because of their limited size and, thus, the set of terms that they capture;

• When adding domain knowledge to the program-level dictionary, TIDIER

performs best with 54.29% of correct splittings, significantly higher than the

alternative approaches and than when using the English dictionary. ORs are

2.76 and 2.62 times in favor of TIDIER wrt. the Camel Case splitter and

Samurai respectively and 1.80 wrt. using the English dictionary with domain

knowledge.

Table 6.2 shows the descriptive statistics (first quartile, median, third quartile,

mean, and standard deviation) of the F-Measure computed as explained in Section

6.3 to evaluate the capability of the approaches to correctly and completely iden-

tify terms part of the identifiers. We do not show results of precision and recall

separately because they are consistent with the F-Measure, i.e., there are no cases

for which an approach exhibits a high precision and a low recall or vice versa.

Table 6.4 reports corrected results of the paired Wilcoxon test and the Cohen

d effect size (positive values of d are in favor of Approach 1, negative values are
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Table 6.4: Comparison among approaches: results of Wilcoxon paired test and
Cohen d effect size

Approach 1 Approach 2 p-value ORs
Camel Case Samurai <0.001 −0.15
English dictionary Camel Case <0.001 −0.12
English dictionary Samurai <0.001 −0.19
English dictionary WordNet <0.001 −0.11
English dictionary + domain kn. Camel Case <0.001 0.29
English dictionary + domain kn. Samurai <0.001 0.22
English dictionary + domain kn. English dictionary <0.001 0.61
Application Camel Case <0.001 0.18
Application Samurai 0.01 0.10
Application English dictionary + domain kn. <0.001 −0.16
Application File <0.001 0.46
Application Function <0.001 0.85
File Function <0.001 0.54
Application + Domain kn. Application <0.001 0.52
Application + Domain kn. English dictionary <0.001 0.81
Application + Domain kn. English dictionary + domain kn. <0.001 0.38
Application + Domain kn. Camel Case <0.001 0.58
Application + Domain kn. Samurai <0.001 −0.51

in favor of Approach 2). Overall, these results are consistent with those obtained

when measuring correctness. They show that:

• TIDIER, with the English dictionary, performs significantly worse than the

other approaches with a very small effect size, < 0.2;

• when using the English dictionary with domain knowledge, TIDIER performs

significantly better than the Camel Case splitter (d = 0.29) and Samurai

(d = 0.22);

• when using the program-level dictionary, TIDIER performs significantly bet-

ter than the alternative approaches, although the effect size is very small (<

0.2);

• when using the program-level dictionary augmented with domain knowledge,

TIDIER again performs significantly better than the alternative approaches,

with a medium effect size (d = 0.58 for the Camel Case splitter and d = 0.51

for Samurai).
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We can summarize the results for RQ1 as follows: with the simple English

dictionary, TIDIER performs worse than the alternative approaches. However,

TIDIER outperforms other approaches when the simple English dictionary is aug-

mented with domain knowledge or, with even better results, when a program-level

contextual dictionary augmented with domain knowledge is used.

Regarding RQ2, we conclude that there are two factors contributing to the in-

crease of performance of TIDIER: augmenting the dictionary with domain knowl-

edge, using a program-level contextual dictionary, or, to obtain the best perfor-

mances, augmenting a program-level dictionary with domain knowledge.

To answer RQ3, we ran five times TIDIER on each of the 73 abbreviations with

the English dictionary of 2,774 words. Out of the 73 abbreviations that TIDIER

could potentially map to dictionary words, TIDIER produced a correct mapping

for 35 of them, achieving an accuracy of 48%. Although this percentage is not

high, to the best of our knowledge, TIDIER is the first and only approach able to

deal with abbreviations.

The first block of Table 6.5 shows examples of abbreviations that were correctly

mapped by TIDIER to dictionary words. Specifically, the table reports (i) the

abbreviations, (ii) the oracle, (iii) the different mappings produced by TIDIER.

The second block of Table 6.5 shows cases of wrong mapping, such as those of auth

into author while the correct mapping was authenticate) or dest into destroy while

the correct one was destination. Wrong mappings happen because TIDIER does

not use semantic information thus it can generate mappings that are different from

our oracle yet with a zero distance. Consistently with insights gained from RQ1

and RQ2, wrong mappings suggest that domain-specific dictionaries can be useful

to better support mapping of identifiers to concepts.

Out of the 73− 35 = 38 abbreviations not correctly mapped there are 16 iden-

tifiers wrongly mapped and 22 cases in which TIDIER was not able to produce a

mapping with a zero distance. Some of these cases are shown in the third block

of Table 6.5, where the numbers in parentheses report the achieved minimum dis-

tances. For example, addr was mapped to add instead of address with distance
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Table 6.5: Examples of correct and wrong abbreviations

Match with the Oracle
Abbreviation Oracle Mapping 1 Mapping 2
arr array array arrow
clr clear clear color
curr current current –
dev device device –
div division dividend divided
intern internal internal –
len length length lender
lng long long language
mov move move –
sec security security secret
snd sound sound sand
spec specify specify specialize
str string string strict
wrd word word –

Wrong Mappings
Abbreviation Oracle Mapping 1 Mapping 2
auth authenticate author
comm communication comment command
del delete deal delay
dest destination destroy
disp display dispatch
exp expresion expansion expire
mem memory membrane memo
procs process protocol css prototype css
vol volume voltage voluntary

Distance > 0
Abbreviation Oracle Mapping 1 Mapping 2
acct accounting act (1.0)
addr address add (1.0)
arch architecture march (1.0)
elt element felt (1.0)
lang language long (2.0)
num number enum (1.0)
paren parenthesis green (3.0)
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two (trailing r removed), arch into march instead of architecture (leading m added)

with distance one, and def into prefix instead of define with distance two (leading

p and r added).

In conclusion, RQ3 suggests that, indeed, TIDIER is able to deal with abbrevi-

ations used to build identifiers and can map them into dictionary words in 48% of

the abbreviations considered in our sample. We claim that this result is promising

because alternative approaches are not able to deal with abbreviations at all and

because future work could improve the mappings, possibly using enhanced search

heuristics.

6.5 Threats to Validity

This section discusses threats to the validity of our study that could impact its

results.

Threats to construct validity concern the relation between the theory and the

observation. This threat is mainly due to mistakes in the oracle. We cannot ex-

clude that errors are present in the oracle. As the intent of the oracle is somehow

to explain identifiers semantics, we cannot exclude that some identifiers could have

been split in different ways by the developers that originally created them. This

problem is related to guessing the developers’ intent and we can only hope that,

given the program domain, the class, file, method, or function containing the iden-

tifiers (and the general information that can be extracted from the source code and

documentation), it will be possible to infer the developers’ likely intent. To limit

this threat, different sources of information, such as comments, context, and online

documentation were used when producing the oracle.

Threats to internal validity concern any confounding factors that could have

influenced our results. In particular, these threats are due to the subjectivity of

the manual building of the oracle and to the possible biases introduced by manually

splitting identifiers. To limit this threat, the oracle was produced by two of the

authors independently and inconsistencies in splitting/mapping to dictionary words
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were discussed. The size of the oracle was chosen large enough to ensure that even

an error of a few percent would not affect dramatically the comparisons.

Threats to Conclusion validity concern the relations between the treatment and

the outcome. Proper tests were performed to statistically reject the null hypotheses.

In particular, we used non-parametric tests, which do not make any assumption

on the underlying distributions of the data, and, specifically, a test appropriate

for categorical data (the Fisher’s exact test) and one for paired, ranked data (the

Wilcoxon paired test). Also, we based our conclusions not only on the presence of

significant differences but also on the presence of a practically relevant difference,

estimated by means of an effect-size measure. Last, but not least, we dealt with

problems related to performing multiple Fisher andWilcoxon tests using the Holm’s

correction procedure.

Threats to external validity concern the possibility of generalizing our results.

To make our results as generalizable as possible, we selected our sample of identi-

fiers from a very large set of open-source projects. The size of our sample (1,026

composed identifiers) is comparable to the one used by Enslen et al. in their

work [EHPVS09]. Differently from our previous work [MGD+10], we only consider

C programs rather than Java program because Java identifiers are mostly built

using the Camel Case convention and, quite often, using complete English words

rather than abbreviations. Instead, the usage of a more complex splitting algorithm

is particularly useful for the C programming language. Despite the sample size, we

cannot exclude that performances would vary on other projects, e.g., commercial

source code, and programming languages.

6.6 Conclusion

We have presented TIDIER, a tool that is the extension of DECOS for mapping

identifiers to concepts. TIDIER finds the minimum edit distance between the

identifier terms and dictionary words. It can split identifiers even in the absence of

explicit separator (e.g., underscore or Camel Case convention) and deal with the
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usage of abbreviations within identifiers in the context of a hill climbing search.

The tool also seems to be useful to better assess the quality of identifiers or to

identify identifiers refactoring actions.

TIDIER takes as input a thesaurus and an identifier to be mapped. It maps the

identifier to domain terms that achieve the overall, minimum edit distance with

respect to words (and their abbreviations) contained in the thesaurus. Abbreviation

not present in the thesaurus are generated automatically using word transformation

rules, mimicking developers’ identifier creation process.

To quantify the performances of TIDIER, we applied it to split a set of 1,026

C identifiers randomly extracted from a corpus of 340 open source programs. The

1,026 identifiers were manually split into terms to build an oracle against which

TIDIER, Camel Case splitter and Samurai [EHPVS09], were compared.

Reported results show that, with program-level dictionaries augmented with

domain knowledge, i.e., common acronyms, abbreviations, and C library func-

tions, TIDIER significantly outperforms previous approaches. Specifically, TIDIER

achieved with the program-level dictionary complemented with the domain knowl-

edge 54% of correct splits, compared to 30% for the Camel Case splitter and 31%

for Samurai. Moreover, TIDIER was also able to map identifiers terms to dictio-

nary words with a precision of 48% for a set of 73 abbreviations present in the

oracle.



CHAPTER 7

CONCLUSION

Our initial work introduced DECOS as a novel technique that maps identifiers

to domains terms. DECOS is based on a modified version of DTW algorithm

proposed by Ney for connected speech recognition and on the string edit-distance.

It assumes that developers apply a limited set of rules to create identifiers and

therefore uses words transformation rules, plus a hill climbing algorithm to deal

with word abbreviation and transformation.

The extension of DECOS gave birth to TIDIER: an automatic tool that derives

domain terms and thus concepts based on the analysis of source code identifiers.

TIDIER relies on the same components of our first technique and is able to de-

tect concepts that correspond to identifiers. Thus, it provides developers with

hints that could help them comprehend programs during their understanding and

maintenance activities. The power of DTW in revealing how close the match is

to the unknown string could be an indicator about how program identifiers reflect

terms in high level artifacts which can lead to a better assessment of the quality of

identifiers.

To validate our work, we applied it to map identifiers of JHotDraw and Lynx

and evaluate it by comparing its results with the manually-built oracles. Perfor-

mance analysis showed that our first approach outperforms the Camel Case splitter.

Unlike our previous work, we applied TIDIER not only to two applications but to a

large corpus of open source programs and compared its results with those attained

by previous alternatives. To see how sensitive TIDIER is to specialized knowledge,

we enriched it by the use of domain knowledge and context-aware dictionaries.

Reported results showed that, with program-level dictionaries augmented with do-

main knowledge, i.e., common acronyms, abbreviations, and C library functions,

TIDIER significantly outperforms the previous techniques.



CHAPTER 8

RESEARCH PLAN

In this section, we present an overview of the state of the proposed research,

what has been completed, and what are the possible directions for future research.

We also present a detailed plan for the possible publications to be produced from

the obtained results.

8.1 State of the Research and Future Work

We have accomplished the following phases of our research:

• Study of the literature and existing related research work on the detection of

concepts based on the analysis of source code and also research works that

deal with identifiers and software quality;

• Development of a novel approach for mapping identifiers to domain terms,

inspired from speech recognition techniques. The approach overcomes the

shortcomings of previous approaches and can identify concepts that corre-

spond to identifiers composed of transformed words, regardless of the kind of

separators;

• Presentation of our first contribution in the 14th European Conference on

Software Maintenance and Reengineering (CSMR 2010) that took place in

March 2010, in Madrid, Spain;

• Extension of our initial work into a novel approach called TIDIER and ex-

tensive validation of TIDIER on identifiers randomly extracted from a large

set of C programs;

• Comparison between TIDIER, Camel Case splitter and Samurai in term of

correctly mapping identifers to concepts;
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• Evidence on the relevance of contextual information as well as specialized

knowledge in the process of identification of concepts represented by identifers

embedded in source code.

Future research directions towards the completion of the thesis requirements

are as follows:

• To increase the accuracy of our results in term of choosing the domain terms

that correspond to a given identifier. We plan to develop new word trans-

formation rules that mimic the developers cognitive processes when building

identifiers. We also want to develop a variant of our algorithm in which

these transformation rules will be applied according to a determined priority

instead of being randomly chosen;

• The proposed approach has a non-deterministic component in the way in

which word transformation rules are applied and in the way in which the

candidate words to be transformed are selected. This suggests the need for

improving the heuristic used for the selection of the candidate word to be

used when mapping an identifier to the appropriate concept;

• Many recent works proposed quality models for the assessment of software

quality. However, to the best of our knowledge, none of these models consider

informal information such as identifiers or comments. We suggest to integrate

a new node called identifiers in one of such models namely, Software Qual-

ity Understanding through the Analysis of Design (SQUAD) [Kho09]. This

would enable us to increase the accuracy of the results related to the predic-

tion of the quality of a system. In fact, researchers [MPF08] have already

shown that comments and identifiers if combined with existing structural co-

hesion metrics proves to be a better predictor of faulty classes when compared

to different combinations of structural cohesion metrics.

• Our discussion with Dr.Andrian Marcus during MSR (Mining Software Repos-

itories) summer school in June 2010, in Kingston, results in another research
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direction aiming at taking advantage of our work when assessing software

quality. Indeed, we can consider every identifier for which our approach was

not able to find a mapping to a domain term, as a non well-formed identifier

and then assess the impact of such identifiers on the quality of programs.

This research idea could be empirically validated relying on non well-formed

identifiers and Lines of code (LOC) as metrics for example.

8.2 Our Contributions

• A conference paper published in March 2010 and received the best paper

award:

[MGD+10] Nioosha Madani, Latifa Guerrouj, Massimiliano Di Penta, Yann-

Gaël Guéhéneuc, and Giuliano Antoniol. Recognizing words from source code

identifiers using speech recognition techniques. Proceedings of the 14th Euro-

pean Conference on Software Maintenance and Reengineering (CSMR 2010),

March 15-18 2010, Madrid, Spain. IEEE CS Press, 2010;

• A journal paper submitted in June 2010:

[GMGGon] Latifa Guerrouj, Massimiliano Di Penta, Giuliano Antoniol,

and Yann-Gaël Guéhéneuc. TIDIER: An Identifier Splitting Approach us-

ing Speech Recognition Techniques. Submitted for publication in the Journal

of Software Maintenance and Evolution: Practice and Evolution (JSME),

June 2010.

• A 4-page pdf of our research proposal was accepted, in July 2010, for publica-

tion in the proceeding of the 17th Working Conference on Reverse Engineer-

ing (WCRE 2010) that will take place in Boston, USA during 13-16 October

2010.
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8.3 Publication Plan

We plan to publish possible upcoming publications of the research results in

the following conferences and journal.

DATE CONFERENCES CONTRIBUTION

February 4th, 2011 ICPC’11 An optimized TIDIER for the derivation of
of concepts based on identifiers

April 6th, 2011 ICSE’11 A hybrid heuristic based TIDIER for mapping
source code identifiers to concepts

July 21st, 2011 WCRE’11 A TIDIER assisted approach for the assessment
of software quality

January 7th, 2012 TSE A complete TIDIER based on new word
transformation rules mimicking developers
when creating identifiers

Table 8.1: Publication plan

We wish to accomplish our thesis writing during January 7th, 2012 - July 7th,

2012 and defend our thesis in August 2012.
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