
Titre:
Title:

Defining linguistic antipatterns towards the improvement of source
code quality

Auteurs:
Authors: Venera Arnaoudova

Date: 2010

Type: Rapport / Report

Référence:
Citation:

Arnaoudova, Venera (2010). Defining linguistic antipatterns towards the
improvement of source code quality. Rapport technique. EPM-RT-2010-07.

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: http://publications.polymtl.ca/2656/

Version: Version officielle de l'éditeur / Published version
Non révisé par les pairs / Unrefereed

Conditions d’utilisation:
Terms of Use: Autre / Other

Document publié chez l’éditeur officiel
Document issued by the official publisher

Maison d’édition:
Publisher: École Polytechnique de Montréal

URL officiel:
Official URL: http://publications.polymtl.ca/2656/

Mention légale:
Legal notice:

Tous droits réservés / All rights reserved

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213621261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://publications.polymtl.ca/2656/
http://publications.polymtl.ca/2656/
http://publications.polymtl.ca/

EPM–RT–2010-07

DEFINING LINGUISTIC ANTIPATTERNS TOWARDS THE
IMPROVEMENT OF SOURCE CODE QUALITY

Venera Arnaoudova
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

Septembre 2010

EPM-RT-2010-07

Defining linguistic antipatterns towards
the improvement of source code quality

Venera Arnaoudova
Département de génie informatique et génie logiciel

École Polytechnique de Montréal

Septembre 2010

2010
Venera Arnaoudova
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2010
Bibliothèque nationale du Canada, 2010

EPM-RT-2010-07
Defining linguistic antipatterns towards the improvement of source code quality
par : Venera Arnaoudova
Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/

) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique :

biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue.htm

http://www.polymtl.ca/biblio/catalogue.htm�

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Defining linguistic antipatterns towards

the improvement of source code quality

by

Venera Arnaoudova

A proposal submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Département de génie informatique et génie logiciel

September 2010

http://www.polymtl.ca/
http://www.veneraarnaoudova.ca/
http://www.polymtl.ca/gigl/

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Abstract

Département de génie informatique et génie logiciel

Doctor of Philosophy

by Venera Arnaoudova

Previous studies showed that linguistic aspect of source code is a valuable source of

information that can help to improve program comprehension. The proposed research

work focuses on supporting quality improvement of source code by identifying, specify-

ing, and studying common negative practices (i.e., linguistic antipatterns) with respect

to linguistic information. We expect the definition of linguistic antipatterns to increase

the awareness of the existence of such bad practices and to discourage their use. We

also propose to study the relation between negative practices in linguistic information

(i.e., linguistic antipatterns) and negative practices in structural information (i.e., de-

sign antipatterns) with respect to comprehension effort and fault/change proneness. We

discuss the proposed methodology and some preliminary results.

http://www.polymtl.ca/
http://www.polymtl.ca/gigl/
http://www.veneraarnaoudova.ca/

Contents

Abstract i

List of Figures iv

List of Tables v

Abbreviations vi

1 Introduction 1

2 Background 3
2.1 Design Patterns . 3
2.2 Design Antipatterns . 4

3 Motivation and problem statement: linguistic antipatterns 6

4 Methodology 8
4.1 Linguistic Information and Source Code Quality 8
4.2 Linguistic Antipatterns . 9
4.3 Linguistic Antipatterns Detection . 9
4.4 Linguistic and Design Antipatterns . 10
4.5 Expected contributions . 11

5 Linguistic Information and Source Code Quality 13
5.1 Definitions . 14

5.1.1 Term Entropy . 14
5.1.2 Term Context Coverage . 14
5.1.3 Aggregated Metric . 15

5.2 Approach . 16
5.2.1 Research Questions . 16
5.2.2 Analysis Method . 17

5.3 Case Study . 19
5.3.1 Results . 19

5.3.1.1 RQ1 – Metric Relevance 19
5.3.1.2 RQ2 – Relation to Faults 20

5.3.2 Discussion . 22

ii

Contents iii

5.3.2.1 LSI subspace dimension 22
5.3.2.2 Java Parser . 22
5.3.2.3 Statistical Computations 23
5.3.2.4 Object-oriented Metrics 23

5.3.3 Threats to Validity . 23
5.4 Automation . 25

5.4.1 Parsing . 26
5.4.2 Data extraction . 26
5.4.3 Identifier Splitting . 27
5.4.4 Execution . 27

5.4.4.1 Mapping Faults to Entities 27
5.4.4.2 Mapping Entities to Entropy and Context Coverage . . . 28

5.5 Conclusion . 28

6 Linguistic Antipatterns 30

7 Related work 36
7.1 Entropy and IR-based Metrics . 36
7.2 Metrics and Fault Proneness . 37
7.3 Linguistic Information in Source Code . 38
7.4 Antipatterns definition . 39
7.5 Natural Language Processing . 40
7.6 Antipatterns Detection . 41
7.7 Broken Windows Theory in Software Engineering 41

8 Research Plan 43
8.1 RQ1, RQ2 (Summer 2010 - Fall 2010) . 43
8.2 RQ3 (Winter 2011, Summer 2011) . 43
8.3 RQ4 (Fall 2011) . 44
8.4 RQ5 (Winter 2012) . 44

9 Conclusion 45

Bibliography 46

List of Figures

4.1 Flow of our methodology. 12

5.1 Summary of all results for different versions of ArgoUML and Rhino. . . . 25

6.1 Adapter pattern - class implementation 33
6.2 Adapter pattern - object implementation 33
6.3 Invisible use of design pattern - example 34
6.4 Invisible use of design pattern - refactored example 35

iv

List of Tables

5.1 Correlation test for ArgoUML v0.16 and Rhino v1.4R3. 19
5.2 Linear regression models for Rhino v1.4R3 and ArgoUML v0.16. 20
5.3 ArgoUML v0.16 and Rhino v1.4R3 logistic regression models. 20
5.4 ArgoUML v0.16 confusion matrix. 21
5.5 Rhino v1.4R3 confusion matrix. 21
5.6 ArgoUML v0.16 confusion matrix. 21
5.7 Rhino v1.4R3 confusion matrix. 21
5.8 Odds change due to LOC (numHEHCC=1) and numHEHCC(LOC=10)

for ArgoUML v0.16 and Rhino v1.4R3. 22
5.9 Unparsed files for both ArgoUML and Rhino. 26

v

Abbreviations

CK Chidamber and Kemerer

IR Information Retrieval

LM Language Model

LSI Latent Semantic Indexing

NL Natural Language

numHEHCC Number of terms with High Entropy and High Context Coverage

vi

Chapter 1

Introduction

Program comprehension is preliminary to any maintenance activity because developers

must first identify and understand relevant code fragments before performing any activ-

ity. ISO/IEC and IEEE define maintenance as the modification of a software product

after delivery to correct faults, improve performance (or other quality attributes), or to

adapt the product to a modified environment (ISO/IEC 14764:2006(E); IEEE Std 14764-

2006). Maintenance is not a uniform activity and as the type of required changes may

vary, four different types of maintenance can be identified [1]. Corrective maintenance

includes all changes made to a system after deployment to correct problems. Preventive

maintenance includes all changes made to a system after deployment to prevent faults

to become failures. Adaptive maintenance includes all changes made to a system after

deployment to support operability in a different environment. Perfective maintenance

includes all changes made to a system after deployment to address new requirements.

Adaptive and perfective types of maintenance are shown in the literature to consume

a significantly large proportion of all maintenance effort. Corrective maintenance is re-

ported to consume a relatively small proportion of the overall maintenance effort. The

rest of the effort is consumed while applying preventive maintenance.

Source code of good quality in terms of comments and identifiers eases program com-

prehension because developers use identifiers to build their mental models of the code

under analysis. Several studies showed that identifiers impact program comprehension

(e.g., [2–4]) and code quality [5].

Poorly-chosen identifiers could be misleading and also increase the risk of faults. Fault-

prone entities, i.e., classes, methods, and attributes, in object-oriented programs have

been characterized by their internal characteristics (e.g., [6–8]). However, fault proneness

is a complex phenomenon hardly captured by a single characteristic, such as complexity

1

Chapter 1. Introduction 2

or size. We believe that linguistic information will provide additional information, com-

plementary to the one captured by structural measures, and consequently will improve

the characterization of fault prone entities.

Our research hypothesis is that poor linguistic information (e.g., lack of relevant in-

formation, out-dated information, inconsistency with the rest of the software artifacts)

impact negatively the quality of the code and the overall quality of the system. Thus,

in this work, we are interested in 1) studying the relation between source code identi-

fiers and code quality, 2) identifying common linguistic negative practices that increase

the effort for comprehension, and 3) studying the relation between linguistic and design

negative practices.

The rest of this document is organized as follows: In Chapter 2, we provide the necessary

background for this research. In Chapter 3, we discuss our motivation and the problem

statement we are addressing. Chapter 4 gives an overview of the proposed methodology.

In Chapter 5, we discuss preliminary results with regards to program identifiers and

fault proneness. In Chapter 6, we discuss ongoing work on the definition of linguistic

antipatterns. In Chapter 7, we present related work. Chapter 8 defines current and

future activities with respect to this research. We present preliminary conclusions in

Chapter 9.

Chapter 2

Background

Before defining linguistic negative practices, in this chapter, we provide a brief back-

ground on common best practices in software engineering (design patterns) and common

worst practices in software engineering (antipatterns).

2.1 Design Patterns

Design patterns were initially introduced by Christopher Alexander in the domain of

architecture and urban design. “Each pattern describes a problem which occurs over

and over again in our environment, and then describes the core of the solution to that

problem, in such way that you can use this solution a million times over, without ever

doing it the same way twice” [9].

Software design patterns were later popularized by Gamma et al. [10] to document

recurring problems and their respective solutions that developers encounter during the

development and maintenance phases. Design patterns are based on experience and

the goal of identifying and document them is the reuse of knowledge and experience of

people, that encountered similar problems in the past.

Design patterns are documented using the following template:

• Pattern name: A name describing the problem and solution. The name will

become part of the vocabulary of developers and thus it should be chosen with a

particular care.

• Problem: The problem describes the problem and the context in which one should

apply the pattern.

3

Chapter 2. Background 4

• Solution: A design pattern provides a general solution to the problem that may

be applied in different situations.

• Consequences: The consequences describe the expected benefits of applying the

pattern as well as trade-offs. The purpose of the consequences is to help developers

to decide whether it worth applying the pattern in the particular situation.

2.2 Design Antipatterns

Antipatterns are defined by Brown et al. [11] as recurring solutions with negative impact

on software systems. While design patterns aim at promoting best practices, the goal

of documenting antipatterns is to make developers aware of situations where a solution

can have negative consequences, because being aware of eventual negative consequences

help to avoid them.

An antipattern can be documented in three different forms, namely pseudo-, mini-, and

full antipattern templates. The pseudo-antipattern template contains only name and

problem. This is not a very common template because it does not provide all necessary

information (e.g., what would be a better solution). The mini-antipattern template

contains name, problem, and solution sections. It is more complete than the pseudo-

antipattern template and it is used as a non-formal antipattern description.

When documented in details, an antipattern is presented in its full template, composed

of:

• Antipattern name: The name of the antipattern is intended to be pejorative.

• Also Known As: Other names the antipattern is known as.

• Most Frequent Scale: The level at which the antipattern is defined. Scale can

be one or more of the following: idiom, micro-architecture, framework, application,

system, enterprise, or global/industry.

• Refactored Solution Name: The name with which the refactored solution is

known as.

• Refactored Solution Type: The type of the refactored solution corresponds to

the type of action that results from this solution. It can be software (a new software

should be purchased), technology (results in the adoption of a new technology),

process (a process is defined), role (the solution results in assigning responsibili-

ties).

Chapter 2. Background 5

• Root Causes: Enumerates causes of the antipattern. Can be one or more from

the following: haste, apathy, narrow-mindedness, sloth, avarice, ignorance, pride,

or responsibility (the universal cause).

• Unbalanced Forces: Point to the primal forces that have been ignored or un-

derestimated. Primal forces are: management of functionality (meeting the re-

quirements), management of performance (meeting required speed of operation),

management of complexity (defining abstractions), management of change (con-

trolling evolution of software), management of IT resources (controlling use and

implementation of people and IT artifacts), management of technology transfer

(controlling technology change).

• Anecdotal Evidence [optional]: Situations or expressions heard with the an-

tipattern.

• Background [optional]: Background information that may be of interest.

• General Form of this Antipattern: A general characterization of the antipat-

tern. Often in terms of diagrams.

• Symptoms and Consequences: List the symptoms (the apparent negative im-

plications) and the consequences (anticipated negative implications).

• Typical Causes: The typical causes of the antipattern.

• Known Exceptions: Situations where the antipattern is known not to imply

negative consequences.

• Refactored Solutions: The refactored solution in terms of steps to be under-

taken.

• Variations [optional]: Variations of the antipattern and the refactored solution.

• Example: An example of how the solution is applied on an instance of the an-

tipattern.

• Related Solutions: Clarifications with respect to related antipatterns. This

section also includes references, terminology and resources.

• Applicability to Other Viewpoints and Scales: Description of the relevance

of the antipattern on different levels.

Chapter 3

Motivation and problem

statement: linguistic antipatterns

Studies in the literature showed that identifiers are among the most important sources

of information to understand source code entities. Deißenböck and Pizka observed that

70% of the source code of Eclipse 3.0 consists of identifiers [2]. Haiduc and Marcus [3]

studied several open-source systems and found that about 40% of the system domain

terms were used in the source code. The lack of comments, poor coding standards,

ambiguous or poorly selected identifiers impair code evolvability and increase the risk

of introducing faults while performing evolution tasks.

From [2, 3, 12], we conjecture that linguistic information extracted from source code

might highlight other aspects, not captured by structural metrics. We believe that those

new aspects can help to understand and explain why certain entities are likely to pose

program comprehension challenges for developers. Thus, linguistic information can help

to locate methods, classes or code fragments likely difficult to understand. The more

difficult to understand they are, the more difficult will be to change and evolve them

without introducing defects. Several studies highlighted the importance of choosing the

right identifiers and the impact of identifiers on program comprehension (e.g., [2, 3, 13])

and code quality [5, 14, 15].

In this research work, we investigate the relation between, on the one hand, linguistic

information in source code and, on the other hand, the quality of the software and the

comprehension effort. We are interested in studying common practices, from linguis-

tic aspect, in the source code that decrease the quality of the software or increase the

comprehension effort of developers and maintainers. From those practices, we plan to

define a new family of linguistic antipatterns that would be described in terms of symp-

toms, consequences, and alternative solutions. Based on the observation that proper

6

Chapter 3. Motivation and problem statement: linguistic antipatterns 7

identifiers improve quality [2], we we believe that 1) identifiers should provide relevant

information, 2) identifiers and documentation should be always up-to-date, and 3) there

should be a consistency between linguistic information in source code and information in

other software artifacts. Finally, we will investigate whether negative practices related

to linguistic information are related to other types of negative practices such as design

decisions.

Chapter 4

Methodology

To verify our hypothesis, we break down our methodology into four main steps. First,

we plan to study the relation between linguistic information and the quality of source

code. We then plan to improve the quality of source code by identifying, studying,

and documenting common negative practices that increase comprehension effort. Next,

we plan to investigate the automatic detection of linguistic antipatterns. Finally, we

propose to study whether there exists a relation between linguistic antipatterns and

design antipatterns. If a relation exists, linguistic antipatterns could be used to improve

the quality of source code by increasing the accuracy of existing techniques detecting

traditional design antipatterns. On the other hand, if linguistic and design antipatterns

appear not to be related, the absence of a relation will open new venues in supporting

program comprehension and software quality.

4.1 Linguistic Information and Source Code Quality

In this part, we are interested in the following research questions:

RQ1: Do physical and conceptual dispersions capture additional information with com-

parison to existing metrics used for fault and change explanation, such as LOC?

RQ2: Do physical and conceptual dispersions help to explain faults and changes in

entities?

Inspired by previous work on the impact of source code identifiers on program com-

prehension [2, 3, 13] and code quality [5, 14, 15], we plan to investigate the relation

between the way terms composing identifiers are used and the quality of the source code

with respect to change and fault proneness. Term dispersion can be analyzed from two

8

Chapter 4. Methodology 9

aspects, namely physical and conceptual dispersions. Physical dispersion measures the

degree to which a term is scattered across identifiers of different entities. Conceptual

dispersion indicates how related these entities are. We believe that terms, highly used

in unrelated entities (different contexts), may increase the odds ratio of those entities

being faulty.

4.2 Linguistic Antipatterns

The research question we will answer here is:

RQ3: Are common linguistic negative practices i.e., linguistic antipatterns related to

software quality and program comprehension?

To define linguistic antipatterns, we plan to investigate negative common practices in

several manners. We will start our investigation by analyzing the consistency of lin-

guistic information extracted from a program with other aspects (e.g., structural, dy-

namic). Next, we plan to study the applicability of ambiguity as defined in Natural

Language (NL), i.e., the taxonomy of ambiguities in NL Requirements Specifications

defined by Berry and Kamsties [16]. Negative impact will be measured in terms of

1) change and fault proneness of entities containing linguistic antipatterns, and 2) de-

veloper comprehension level and effort. To measure comprehension level and effort, we

will use devices such as eye tracking systems. We will perform a case study on subjects,

asking them to perform modifications on systems, some of which containing linguistic

antipatterns while others not. From those negative practices, from the symptoms that

will allow us to identify them, and from the suggestions how to improve them, we will

define linguistic antipatterns inspired from the design antipattern template of Brown

[11]. Next, we plan to construct, with the help of minimum three software experts, an

oracle of linguistic antipatterns of two systems — ArgoUML1 and Rhino2. To validate

the contribution of linguistic antipatterns on the quality of the source code, we will

refactor the manually detected linguistic antipatterns and we will compare the quality

of the source code on the original system and on the refactored system.

4.3 Linguistic Antipatterns Detection

The question that we are investigating in this part of the methodology is the following:
1http://argouml.tigris.org/
2http://www.mozilla.org/rhino/

http://argouml.tigris.org/
http://www.mozilla.org/rhino/

Chapter 4. Methodology 10

RQ4: Do linguistic antipatterns detection can help to improve code quality and program

comprehension?

We believe that automatic antipattern detection can be beneficial from two aspect. First,

it will allow developers to maximize the benefit of the defined linguistic antipatterns,

by automatically identifying a set of bad practices in software systems. Second, it may

allow a better understanding and a refinement of linguistic antipatterns, as different

source code properties may happen to play an important role in the characterization of

practices as antipatterns.

To detect linguistic antipatterns we will define rules based on existing or new measures

and techniques such as the CK metrics suite [17] for structural information; Maximal

Weighted Entropy (MWE) [18], Conceptual Cohesion of Classes (C3) [15], and Concep-

tual Coupling of a Class (CoCC) [14] for linguistic information; DEtection & CORection

(DECOR) [19] for design antipattern detection. We also plan to investigate the poten-

tial benefit of using n-gram probability estimations on linguistic antipattern detection.

N-gram probability estimations are used in Language Models (LM) to estimate the like-

lihood of discovering a piece of information given some previous knowledge.

We will validate the automatic detection of linguistic anti-patterns against the oracles

built by the experts.

4.4 Linguistic and Design Antipatterns

The research question that we are interested in is:

RQ5: Is there a relation between linguistic and design antipatterns?

The criminological theory of Broken Windows [20] states that if a broken window of a

building is left unrepaired, soon other windows will be broken, regardless of the neigh-

borhood. Deißenböck and Pizka [2] comment on the application of the theory of Broken

Windows on source code naming, affirming that source code identifiers containing nega-

tive characteristics have higher risk of fast deterioration. Inspired from this observation

we have reasons to believe that code fragments containing design antipatterns have

higher risk of containing other types of negative characteristics, and thus including lin-

guistic antipatterns. To verify this hypothesis, we plan to study whether a relation exists

between linguistic and design antipatterns. To validate the findings, we will analyze the

contribution of linguistic antipatterns on automatic detection of design antipatterns for

Chapter 4. Methodology 11

two systems, GanttProject and Xerces, for which design antipatterns have been manu-

ally validated [19, 21]. The contribution will be measured in terms of improved precision

and recall.

Figure 4.1 summarizes the flow of our methodology.

4.5 Expected contributions

We expect that our work contributes to improve the quality of source code and the

quality of the overall system. We expect RQ1 and RQ2 to confirm the existence of a

relation between term dispersion and fault proneness. Defining and detecting linguistic

antipatterns is expected to increase the awareness of the existence of bad practices and

consequently discourage and decrease their use (RQ3 and RQ4). We also expect that

there exists a relation between linguistic and design antipatterns (RQ5), confirming

the Broken Windows theory [20], and thus we expect that linguistic antipatterns will

increase the accuracy of existing techniques for design antipatterns.

Chapter 4. Methodology 12

Figure 4.1: Flow of our methodology.

Chapter 5

Linguistic Information and

Source Code Quality

In this chapter, we present our preliminary results that have been published in the

Proceedings of the 26th International Conference on Software Maintenance (ICSM’10) -

ERA Track [22]. We address one aspect of research questions RQ1 and RQ2, which is

fault proneness.

Poorly-chosen identifiers have been reported in the literature as misleading and increas-

ing the program comprehension effort. Identifiers are composed of terms, which can be

dictionary words, acronyms, contractions, or simple strings. We conjecture that the use

of identical terms in different contexts may increase the risk of faults. We investigate

our conjecture using a measure combining term entropy and term context-coverage to

study whether certain terms increase the odds ratios of methods to be fault-prone. En-

tropy measures the physical dispersion of terms in a program: the higher the entropy,

the more scattered across the program the terms. Context coverage measures the con-

ceptual dispersion of terms: the higher their context coverage, the more unrelated the

methods using them. We compute term entropy and context-coverage of terms extracted

from identifiers in Rhino 1.4R3 and ArgoUML 0.16. We show statistically that meth-

ods containing terms with high entropy and context-coverage are more fault-prone than

others.

The rest of this chapter is organized as follows. Section 5.1 introduces background

definitions and defines the novel measure. Section 5.2 provides an overview of our

approach. Section 5.3 describes our empirical study, reports, and discusses its results.

Section 5.4 provides more details regarding the automation.

13

Chapter 5. Linguistic Information and Source Code Quality 14

5.1 Definitions

In this section, we detail the computations of term entropy and context-coverage. With

no loss of generality, we focus on methods and attributes because they are “small”

contexts of identifiers. We include attributes because they are often part of some program

faults, e.g., in Rhino they participate to 37% of the reported faults. However, the

computation can be broaden by using classes or other entities as contexts for identifiers.

5.1.1 Term Entropy

Shannon [23] measures the amount of uncertainty, or entropy, of a discrete random

variable X as:

H(X) = −
∑
x∈κ

p(x) · log(p(x))

where p(x) is the mass probability distribution of the discrete random variable X and

κ is its domain.

We consider terms as random variables with some associated probability distributions.

We normalize each row of the term-by-entity matrix so that each entry is in [0, 1] and

the sum of the entries in a row is equals to one to obtain a probability distribution for

each term. Normalization is achieved by dividing each ai,j entry by the sum of all ai,j

over the row i. A normalized entry âi,j is then the probability of the presence of the

term ti in the jth entity. We then compute term entropy as:

H(ti) = −
n∑

j=1

(âi,j) · log(âi,j) i = 1, 2, . . . ,m

With term entropy, the more scattered among entities a term is, the closer to the uniform

distribution is its mass probability and, thus, the higher is its entropy. On the contrary,

if a term has a high probability to appear in few entities, then its entropy value will be

low.

5.1.2 Term Context Coverage

While term entropy characterizes the “physical” distribution of a term across entities,

context-coverage measures its “conceptual” distribution in the entities in which the term

appears. In particular, we want to quantify whether a same term is used in different

contexts, i.e., methods or attributes, with low textual similarity. Thus, the context

Chapter 5. Linguistic Information and Source Code Quality 15

coverage of term tk (where k = 1, 2, . . . ,m) is computed as the average textual similarity

of entities containing tk:

CC(tk) = 1− 1(
|C|
2

) ∑
i = 1 . . . |C| − 1

j = i + 1 . . . |C|
ei, ej ∈ C

sim(ei, ej)

where C = {el|ãk,p 6= 0} is the set of all entities in which term tk occurs and sim(ei, ej)

represents the textual similarity between entities ei and ej . Note that the number of

summations is

(
|C|
2

)
because sim(ei, ej) = sim(ej , ei).

A low value of the context coverage of a term means a high similarity between the

entities in which the term appears, i.e., the term is used in consistent contexts.

To compute the textual similarity between entities we exploit LSI, a space reduction

based method widely and successfully used in IR [24]. In particular, LSI applies a factor

analysis technique to estimate the “latent” structure in word usage trying to overcome

the main deficiencies of IR methods, such as synonym and polysemy problems. In

particular, the non-normalized term-by-entity LSI projection into the entities subspace

ãi,j captures the more important relations between terms and entities. The columns of

the reduced term-by-entity matrix represent entities and can be thought of as elements

of a vector space. Thus, the similarity between two entities can be measured by the

cosine of the angle between the corresponding vectors.

5.1.3 Aggregated Metric

In this preliminary investigation we use the variable numHEHCC (“number of high

entropy and high context coverage”), associated with all entities, to compute correlation,

build linear as well as logistic models and contingency tables throughout the following

case study:

numHEHCC(Ej) =
m∑

i=1

aij · ψ(H(ti) ≥ thH ∧ CC(ti) ≥ thCC)

where aij is the frequency in the term-by-entity matrix of term ti and entity Ej (j =

1, 2, . . . , n) and ψ() is a function returning one if the passed Boolean value is true, zero

otherwise.

Chapter 5. Linguistic Information and Source Code Quality 16

Thus, numHEHCC represents the overall number of times any term with high entropy

(value above thH) and high context coverage (value above thCC) is found inside an

entity.

5.2 Approach

We now present a study of the term entropy and context-coverage measures following the

Goal-Question-Metrics paradigm [25]. The goal of the study is to investigate the relation

(if any) between term entropy and context-coverage, on the one hand, and entities fault

proneness, on the other hand. The quality focus is a better understanding of charac-

teristics likely to hinder program comprehension and to increase the risk of introducing

faults during maintenance. The perspective is both of researchers and practitioners who

use metrics to study the characteristic of fault prone entities.

5.2.1 Research Questions

Entropy and context coverage likely capture features different from size or other classical

object-oriented metrics, such as the CK metrics suite [17]. However, it is well known

that size is one of the best fault predictors [6, 26, 27] and, thus, we first verify that

numHEHCC is somehow at least partially complementary to size.

Second, we believe that developers are interested in understanding why an entity may be

more difficult to change than another. For example, given two methods using different

terms, all their other characteristics being equal, they are interested to identify which

of the two is more likely to take part in faults if changed.

Therefore, the case study is designed to answer the following research questions:

• RQ1 – Metric Relevance: Do term entropy and context-coverage capture char-

acteristics different from size and help to explain entities fault proneness? This

question investigates if term entropy and context-coverage are somehow comple-

mentary to size, and thus, quantify entities differently.

• RQ2 – Relation to Faults: Do term entropy and context-coverage help to

explain the presence of faults in an entity? This question investigates if entities

using terms with high entropy and context-coverage are more likely to be fault

prone.

Chapter 5. Linguistic Information and Source Code Quality 17

Fault proneness is a complex phenomenon impossible to capture and model with a

single characteristic. Faults can be related to size, complexity, or linguistic ambiguity

of identifiers and comments. Some faults may be better explained by complexity while

other by size or linguistic inconsistency of poorly selected identifiers. Therefore, we

do not expect that RQ1 and RQ2 will have the same answer in all version of the two

programs and will be universally true. Nevertheless, as previous authors [2, 4, 5, 28],

we believe reasonable to assume that identifiers whose terms have with high entropy and

high context-coverage hint at poor choices of names and, thus, at a higher risk of faults.

5.2.2 Analysis Method

To statistically analyze RQ1, we computed the correlation between the size measured

in LOCs and a new metric derived from entropy and context-coverage. Then, we esti-

mated the linear regression models between LOCs and the new metric. Finally, as an

alternative to the Analysis Of Variance (ANOVA) [29] for dichotomous variables, we

built logistic regression models between fault proneness (explained variable) and LOCs

and the proposed new metric (explanatory variables).

Our goal with RQ1 is to verify whether term entropy and context-coverage capture some

aspects of the entities at least partially different from size. Thus, we formulate the null

hypothesis:

H01: The number of terms with high entropy and context-coverage in an

entity does not capture a dimension different from size and is not useful to

explain its fault proneness.

We expect that some correlation with size does exist: longer entities may contain more

terms with more chance to have high entropy and high context-coverage.

Then, we built a linear regression model to further analyze the strength of the relation

in term of unexplained variance, i.e., 1−R2. This model indirectly helps to verify that

entropy and context-coverage contribute to explain fault proneness in addition to size.

Finally, we performed a deeper analysis via logistic regression models. We are not

interested in predicting faulty entities but in verifying if entropy and context-coverage

help to explain fault proneness. The multivariate logistic regression model is based on

the formula:

π(X1, X2, . . . , Xn) =
eC0+C1·X1+···+Cn·Xn

1 + eC0+C1·X1+···+Cn·Xn

Chapter 5. Linguistic Information and Source Code Quality 18

where Xi are the characteristics describing the entities and 0 ≤ π ≤ 1 is a value on the

logistic regression curve. In a logistic regression model, the dependent variable π is com-

monly a dichotomous variable, and thus, assumes only two values {0, 1}, i.e., it states

whether an entity took part in a fault (1) or not (0). The closer π(X1, X2, . . . , Xn) is to

1, the higher is the probability that the entity took part in a fault. An independent vari-

able Xi models information used to explain the fault proneness probability; in this study

we use a metric derived from term entropy and the context-coverage, numHEHCC, and

a measure of size (LOCs) as independent variables.

Once independent variables are selected, given a training corpus, the model estimation

procedure assigns an estimated value and a significance level, p-value, to the coefficients

Ci. Each Ci p-value provides an assessment of whether or not the ith variable helps to

explain the independent variable: fault proneness of entities.

Consequently, we expect that the logistic regression estimation process would assign a

statistically relevant p-value to the coefficient of a metric derived from term entropy and

context coverage, i.e., lower than 0.05 corresponding to a 95% significance level.

With respect to our second research question (RQ2) we formulate the following null

hypothesis:

H02: There is no relation between high term entropy and context coverage of

an entity and its fault proneness.

We use a prop-test (Pearson’s chi-squared test) [29] to test the null hypothesis. If term

entropy and context coverage are important to explain fault proneness, then the prop-

test should reject the null hypothesis with a statistically significant p-value.

To quantify the effect size of the difference between entities with and without high

values of term entropy and context coverage, we also compute the odds ratio (OR) [29]

indicating the likelihood of the entities to have such high values for our metric. OR

is defined as the ratio of the odds p of a fault prone entity to have high term entropy

and high context coverage to the odds q of this entity to have low entropy and context

coverage: OR = p/(1−p)
q/(1−q) . When OR = 1 the fault prone entities can either have high or

low term entropy and context coverage. Otherwise, if OR > 1 the fault prone entities

have high term entropy and high context coverage. Thus, we expect OR > 1 and a

statistically significant p-value (i.e., again 95% significance level).

Chapter 5. Linguistic Information and Source Code Quality 19

Table 5.1: Correlation test for ArgoUML v0.16 and Rhino v1.4R3.

System Correlation p-values
ArgoUML 0.4080593 ≺ 2.2e− 16
Rhino 0.4348286 ≺ 2.2e− 16

5.3 Case Study

The context of the study is two open-source programs: Rhino, a JavaScript/ECMAScript

interpreter and compiler part of the Mozilla project, and ArgoUML, a UML modeling

CASE tool with reverse-engineering and code-generation capabilities. We selected Ar-

goUML and Rhino because (1) several versions of these programs are available, (2) they

were previously used in other case studies [30, 31], and (3) for ArgoUML (from version

0.10.1 to version 0.28) and for Rhino (from version 1.4R3 to version 1.6R5), a mapping

between faults and entities (attributes and methods) is available [30, 32].

5.3.1 Results

We now discuss the results achieved aiming at providing answers to our research ques-

tions.

5.3.1.1 RQ1 – Metric Relevance

Table 5.1 reports the results of Pearson’s product-moment correlation for both Rhino

and ArgoUML. As expected, some correlation exists between LOC and numHEHCC

plus the correlation is of the same order of magnitude for both programs.

Despite a 40% correlation a linear regression model built between numHEHCC (de-

pendent variable) and LOC (independent variable) attains an R2 lower than 19% (see

Table 5.2). The R2 coefficient can be interpreted as the percentage of variance of the

data explained by the model and thus 1 − R2 is an approximations of the model un-

explained variance. In essence Table 5.2 support the conjecture that LOC does not

substantially explain numHEHCC as there is about 80% (85%) of Rhino (ArgoUML)

numHEHCC variance not explained by LOC. Correlation and linear regression models

can be considered a kind of sanity check to verify that LOC and numHEHCC help to

explain different dimensions of fault proneness.

The relevance of numHEHCC in explaining faults, on the programs under analysis, is

further supported by logistic regression models. Table 5.3 reports the interaction model

built between fault proneness (explained variable) and the explanatory variables LOC

Chapter 5. Linguistic Information and Source Code Quality 20

Table 5.2: Linear regression models for Rhino v1.4R3 and ArgoUML v0.16.

Variables Coefficients p-values

Rhino (R2 = 0.1891)
Intercept 0.038647 0.439
LOC 0.022976 ≺ 2e− 16

Argo (R2=0.1665)
Intercept -0.0432638 0.0153
LOC 0.0452895 ≺ 2e− 16

Table 5.3: ArgoUML v0.16 and Rhino v1.4R3 logistic regression models.

Variables Coefficients p-values

MArgoUML

Intercept -1.688e+00 ≺ 2e− 16
LOC 7.703e-03 8.34e− 10
numHEHCC 7.490e-02 1.42e− 05
LOC:numHEHCC -2.819e-04 0.000211

MRhino

Intercept -4.9625130 ≺ 2e− 16
LOC 0.0041486 0.17100
numHEHCC 0.2446853 0.00310
LOC:numHEHCC -0.0004976 0.29788

and numHEHCC. In both models, MArgoUML and MRhino, the intercept is relevant as

well as numHEHCC. Most noticeably in Rhino the LOC coefficient is not statistically

significant as well as the interaction term (LOC : numHEHCC). This is probably

a fact limited to Rhino version 1.4R3 as for ArgoUML both LOC and the interaction

term are statistically significant. However, in both models MArgoUML and MRhino, the

LOC coefficient is, at least, one order of magnitude smaller than the numHEHCC

coefficient. This difference can partially be explained by the different range of LOC

versus numHEHCC. On average in both programs method size is below 100 LOC and

most often a method contains one or two terms with high entropy and context coverage.

Thus, at first glance we can safely say that both LOC and numHEHCC have the same

impact in term of probability. In other words, the models in Table 5.3 clearly show that

LOC and numHEHCC capture different aspects of the fault proneness characteristic.

Base on the reported results we can conclude that although some correlation exists

between LOC and numHEHCC, statistical evidence allows us to reject, on the programs

under analysis, the null hypothesis H01 .

5.3.1.2 RQ2 – Relation to Faults

To answer RQ2, we perform prop-tests (Pearson’s chi-squared test) and test the null

hypothesis H02 . Indeed, (i) if prop-tests revel that numHEHCC is able to divide the

population into two sub-populations and (ii) if the sub-population with positive values

for numHEHCC has an odds ratio bigger than one, then numHEHCC may act as a risk

indicator. For entities with positive numHEHCC it will be possible to identify those

Chapter 5. Linguistic Information and Source Code Quality 21

Table 5.4: ArgoUML v0.16 confusion matrix.

ArgoUML numHEHCC ≥ 1 numHEHCC = 0 Total
Fault prone 381 1706 2087
Fault free 977 9359 10336
Total 1358 11065 12423
p-value ≺ 2.2e− 16
Odds ratio = 2.139345

Table 5.5: Rhino v1.4R3 confusion matrix.

Rhino numHEHCC ≥ 1 numHEHCC = 0 Total
Fault prone 6 8 14
Fault free 172 1438 1610
Total 178 1446 1624
p-value = 0.0006561
Odds ratio = 6.270349

Table 5.6: ArgoUML v0.16 confusion matrix.

ArgoUML numHEHCC ≥ 2 numHEHCC = 1 Total
Fault prone 198 183 381
Fault free 511 466 977
Total 709 649 1358
p-value = 0.9598
Odds ratio = 0.9866863

Table 5.7: Rhino v1.4R3 confusion matrix.

Rhino numHEHCC ≥ 2 numHEHCC = 1 Total
Fault prone 3 3 6
Fault free 75 97 172
Total 78 100 178
p-value = 1
Odds ratio = 1.293333

terms leading to high entropy and high context coverage, identifying also the contexts

and performing refactoring actions to reduce entropy and high context coverage.

Tables 5.4 and 5.5 show the confusion matrices for ArgoUML v0.16 and Rhino v1.4R3,

together with the corresponding p-value and odds ratios. As the tables show, the null

hypothesis H02 can be rejected.

We further investigate, with Tables 5.6 and 5.7, the relation between numHEHCC and

odds ratio. These contingency tables compute the odds ratio of entities containing two

or more terms with high entropy and high context coverage with those entities which

only contain one high entropy and high context coverage term. They are not statistically

significant, but the odds ratio is close to one, the latter seems to suggest that the real

difference is between not containing high entropy and high context coverage terms and

Chapter 5. Linguistic Information and Source Code Quality 22

Table 5.8: Odds change due to LOC (numHEHCC=1) and numHEHCC(LOC=10)
for ArgoUML v0.16 and Rhino v1.4R3.

Changing variable ∆ Odds change ArgoUML Odds change Rhino

LOC
1 1.007448705 1.003657673
10 1.077034036 1.037184676
50 1.449262781 1.200274163

numHEHCC

1 1.074742395 1.270879652
2 1.155071215 1.61513509
10 2.056097976 10.99117854
50 36.74675785 160406.2598

just containing one or more. The results allow us to conclude, on the analyzed programs,

that there is a relation between high term entropy and context-coverage of an entity and

its fault proneness.

5.3.2 Discussion

We now discuss some design choices we adopted during the execution of the case studies

aiming at clarifying their rationale.

5.3.2.1 LSI subspace dimension

The choice of LSI subspace is critical. Unfortunately, there is not any systematic way

to identify the optimal subspace dimension. However, it was observed that in the ap-

plication of LSI to software artifacts repository for recovering traceability links between

artifacts good results can be achieved setting 100 ≤ k ≤ 200 [33, 34]. Therefore following

such a heuristic approach we set the LSI subspace dimension equal to 100.

5.3.2.2 Java Parser

We developed our own Java parser, using a Java v1.5 grammar, to extract identifiers

and comments from source code. Our parser is robust and fast (less than two minutes

to parse any version of the studied programs, in average) but when applied, few files

could not be parsed. Unparsed files include those developed on earlier versions of both

ArgoUML and Rhino because of the incompatibility between the different versions of

Java grammar.

Chapter 5. Linguistic Information and Source Code Quality 23

5.3.2.3 Statistical Computations

All statistical computations were performed in R1. The computations took about one

day for both programs, where the most expensive part of the computation in terms of

time and resources was the calculation of the similarity matrix. We believe that neither

extensibility nor scalability are issues: this study explains the fault phenomenon and is

not meant to be performed on-line during normal maintenance activities. In the course

of our evaluation, we realized that the statistical tool R yields different results when

used in different software/hardware platforms. We computed the results of our analysis

on R on Windows Vista/Intel, Mac OS X (v10.5.8)/Intel, and RedHat/Opteron, and we

observed some differences. All results provided in this paper have been computed with

R v2.10.1 on an Intel computer running Mac OS. We warn the community of using R

and possibly other statistical packages on different platforms because their results may

not be comparable.

5.3.2.4 Object-oriented Metrics

We studied the relation between our novel metric, based on term entropy and context

coverage, and LOC, which is among the best indicator of fault proneness [6, 26, 27] to

show that our metric provides different information. We did not study the relation be-

tween our metric and other object-oriented metrics. Of particular interest are coupling

metrics that could strongly relate to term entropy and context coverage. However, we

argue, with the following thought-experiment, that term entropy and context coverage,

on the one hand, and coupling metrics, on the other hand, characterize different in-

formation. Let us assume the source code of a working software system, with certain

coupling values between classes and certain entropy and context coverage values for its

terms. We give this source code to a simple obfuscator that mingles identifiers. The

source code remains valid and, when compiled, results in a system strictly equivalent to

the original system. Hence, the coupling values between classes did not change. Yet,

the term entropy and context coverage values most likely changed.

5.3.3 Threats to Validity

This study is a preliminary study aiming at verifying that our novel measure, based on

term entropy and context coverage, for two known programs (ArgoUML v0.16 and Rhino

1.4R3), is related to the fault proneness of entities (methods and attributes) and, thus,

is useful to identify fault prone entities. Consider Table 5.8; for a fixed numHEHCC

1http://www.r-project.org/

http://www.r-project.org/

Chapter 5. Linguistic Information and Source Code Quality 24

value (one) an increase of ten for LOC will not substantially change the odds (7.7%

for ArgoUML; 3.7% for Rhino2) while an increase of 50 increases the odds but not

significantly (44.9% for ArgoUML; 20% for Rhino) in comparison to the variation of

numHEHCC (for a fixed value of LOC=10). For instance, in the case of ArgoUML

for a fixed size of entities, one unit increase of numHEHCC has almost the same odds

effect than an increase of 10 LOCs. In the case of Rhino, for a fixed size of entities, one

unit increase of numHEHCC has more effect than an increase of 50 LOCs. Table 5.8

suggests that indeed an entity with ten or more terms with high entropy and context

coverage dramatically change the odds and, thus, the probability of the entities to be

faulty. Intuition as well as reported evidence suggest that term entropy and context

coverage are indeed useful.

Threats to construct validity concern the relationship between the theory and the ob-

servation. These threats in our study are due to the use of possibly incorrect fault

classifications or incorrect term entropy and context coverage values. We use manually-

validated faults that have been used in previous studies [30]. Yet, we cannot claim

that all fault prone entities have been correctly tagged or that fault prone entities have

not been missed. There is a level of subjectivity in deciding if an issue reports a fault

and in assigning this fault to entities. Moreover, in the case of ArgoUML, we used the

mapping of faults to classes provided in [32]. In order to map the faults to entities

we compared faulty classes with their updated version in the consecutive release, and

we marked as faulty those entities that were modified. However, the changes could be

due to a maintenance activity other than fault fixing, such as refactoring. Our parser

cannot parse some Java files due to the incompatibility between the different versions

of Java grammar, but errors are less than 4.7% in the studied program and thus do

not impact our results. Another threat to validity could be the use of our parser to

compute the size of entities. In the computation we took into account the blank lines

and comments inside method bodies. We also used a threshold to identify “dangerous”

terms and compute numHEHCC. The choice of threshold could influence the results

achieved. Nevertheless, analyses performed with other thresholds did not yield different

or contrasting results.

Threats to internal validity concern any confounding factor that could influence our

results. This kind of threats can be due to a possible level of subjectiveness caused by the

manual construction of oracles and to the bias introduced by the manual classification of

fault prone entities. We attempt to avoid any bias in the building of the oracle by reusing

a previous independent classification [30, 32]. Also, we discussed the relation and lack
2Although the coefficient for LOC is not significant, it was taken into account for the calculation of

odds because it has been shown in the literature that LOC is an important measure for fault prediction.

Chapter 5. Linguistic Information and Source Code Quality 25

Figure 5.1: Summary of all results for different versions of ArgoUML and Rhino.

thereof between term entropy and context coverage and other existing object-oriented

metrics.

Threats to external validity concern the possibility of generalizing our results. The study

is limited to two programs, ArgoUML 0.16 and Rhino 1.4R3. Results are encouraging but

it pays to be cautious. Preliminary investigation on the ten ArgoUML and eleven Rhino

releases show that numHEHCC is complementary to LOC for fault explanation. The

results of both ArgoUML and Rhino are summarized in Figure 5.1. Overall, although

the approach is applicable to other programs, we do not know whether or not similar

results would be obtained on other programs or releases. Finally, although we did not

formally investigate the measures following the guidelines of measurement theory [35],

we derived them from well-known definitions and relations and we plan to study their

formal properties as part of our future work while addressing the threats to external

validity.

5.4 Automation

To create the term by entity matrix (for the purpose of this study, methods and attributes

of Java classes are considered as documents and are reffed to as entities), Java classes

need to be parsed and the identifiers need to be extracted. Next, then the identifiers are

split into terms and the entropy and context coverage are then calculated for each term.

We have used Java and R3 to provide the automation. See below for a brief explanation.
3http://cran.r-project.org/

http://cran.r-project.org/

Chapter 5. Linguistic Information and Source Code Quality 26

System Total number
of Java files

Number of not
parsed files

Percentage

Rhino v1.4R3 75 1 0.01
Rhino v1.5R1 100 3 0.03
Rhino v1.5R2 105 2 0.02
Rhino v1.5R3 104 2 0.02
Rhino v1.5R4.1 107 1 0.01
ArgoUML v0.10.1 777 64 0.08
ArgoUML v0.12 850 64 0.08
ArgoUML v0.14 1077 57 0.05
ArgoUML v0.16 1124 53 0.04

Table 5.9: Unparsed files for both ArgoUML and Rhino.

5.4.1 Parsing

We used Java grammar 1.5 and JavaCC4 to generate a Java parser that extracts the

identifiers. To verify the completeness of the grammar, we have parsed 11 versions of

Rhino and 11 versions of ArgoUML with our parser, Table 5.9 shows the number of files

which were not parsed using our parser for each version. Other versions of Rhino (1.5R5,

1.6R1, 1.6R2, 1.6R3, 1.6R4, 1.6R5) and ArgoUML (0.18.1, 0.20, 0.22, 0.24, 0.26, 0.26.2,

0.28) with 636 and 11,062 number of files respectively, all files were parsed.

For our case study, we excluded the file which was not parsable for Rhino 1.4R3. Since

the percentage of not parsed files for each version was less than 0.08 percent, we decided

to proceed with our parser instead of using existing parsers.

5.4.2 Data extraction

We extract the data required to compute term entropy and context-coverage in two

steps. First, we extract the identifiers found in class attributes and methods, e.g., names

of variables and of called methods, user-defined types, method parameters. Extracted

identifiers are split using a Camel-case splitter to build the term dictionary, e.g., getText

is split into get and text. We then apply two filters on the dictionary. First, we remove

terms with a length less than two because their semantics is often unclear and because

they most likely correspond to loop indexes (e.g., I, j, k). Second, we prune terms

appearing in a standard English stop-word list augmented with programming language

keywords.

Second, the linguistic data is summarized into a m× n frequency matrix, i.e., a term-

by-entity matrix. The number of rows of the matrix, m, is the number of terms in

the dictionary. The number of columns, n, corresponds to the number of methods and

attributes. The generic entry ai,j of the term-by-entity matrix denotes the number of

occurrences of the ith term in the jth entity.
4https://javacc.dev.java.net/

https://javacc.dev.java.net/

Chapter 5. Linguistic Information and Source Code Quality 27

5.4.3 Identifier Splitting

Identifier splitting is done in three steps : First, the identifiers are split on digits and

special characters. Second, they are further split on lowercase to uppercase. Third, they

are split on uppercase to lowercase (before the last uppercase letter). After splitting the

identifiers to terms, we have applied two filters: first we have omitted the terms which

have the length equal or less than two, then the terms are further filtered through stop

words. The stop word list is a standard list to which we added Java specific terms and

keywords.

5.4.4 Execution

We download several versions of Rhino for which faults were documented by Eaddy et al.

[30] from the Mozilla Web site5. Versions of ArgoUML were downloaded from the Tigris

Community Web site6. We selected the version of ArgoUML that has the maximum

number of faulty entities (ArgoUML v0.16.) and one of the versions of Rhino, Rhino

v1.4R3.

The selected version of ArgoUML consists of 97,946 lines of Java code (excluding com-

ments and blank lines outside methods and classes), 1,124 Java files, and 12,423 methods

and fields. Version 1.4R3 of Rhino consists of 18,163 lines of Java code (excluding com-

ments and blank lines outside methods and classes), 75 files, 1,624 methods and fields.

To create the term-by-entity matrix, we first parse the Java files of Rhino and ArgoUML

to extract identifiers. We obtain terms by splitting the identifiers using a Camel-case

split algorithm. We compute term entropy and context coverage using the approach

presented in the previous section. We finally use existing fault mappings [30, 32] to tag

methods and attributes and relate them with entropy and context coverage values. The

following paragraphs detail each step.

5.4.4.1 Mapping Faults to Entities

We reuse previous findings to map faults and entities. For Rhino the mapping of faults

with entities was done by Eaddy et al. [30] for 11 versions of Rhino. We obtain the

mapping which corresponds to Rhino v1.4R3 by extracting, for each fault, its reporting

date/time7 and its fixing date/time. Then, we keep only those faults that fall under one

of the following two cases: (i) the reporting date of the fault was before the release date
5https://developer.mozilla.org/
6http://argouml.tigris.org/
7https://bugzilla.mozilla.org/query.cgi

https://developer.mozilla.org/
http://argouml.tigris.org/
https://bugzilla.mozilla.org/query.cgi

Chapter 5. Linguistic Information and Source Code Quality 28

of v1.4R3 and its fixing date was after the release date of the same version and (ii) the

reporting date of the fault is after the release date of v1.4R3 and before the release date

of the next version (v1.5R1). As for ArgoUML, we also use a previous mapping between

faults and classes [32]. For each class marked as faulty, we compare its attributes and

methods with the attributes and methods of the same class in the successive version and

keep those that were changed and mark them as faulty.

5.4.4.2 Mapping Entities to Entropy and Context Coverage

We identify entities with high term entropy and context coverage values by computing

and inspecting the box-plots and quartiles statistics of the values on all Rhino versions

and the first five versions of ArgoUML. The term context coverage distribution is skewed

towards high values. For this reason, we use 10% highest values of term context coverage

to define a threshold identifying the high context coverage property. In other words,

standard outlier definition was not applicable to context coverage.

We do not observe a similar skew for the values of term entropy and, thus, the threshold

for high entropy values is based on the standard outlier definition (1.5 times the inter-

quartile range above the 75% percentile). We use the two thresholds to measure for each

entity, the number of terms characterized by high entropy and high context coverage

that it contains.

5.5 Conclusion

In this chapter, we presented our preliminary results targeting RQ1 and RQ2 (Section

4.1) with respect to fault proneness. We presented a novel measure related to the iden-

tifiers used in programs. We introduced term entropy and context-coverage to measure,

respectively, how rare and scattered across program entities are terms and how unrelated

are the entities containing them. We provide mathematical definitions of these concepts

based on terms frequency and combined them in a unique measure. We then studied

empirically the measure by relating terms with high entropy and high context-coverage

with the fault proneness of the entities using these terms. We used ArgoUML and Rhino

as object programs because previous work provided lists of faults. The empirical study

showed that there is a statistically significant relation between attributes and methods

whose terms have high entropy and high context-coverage, on the one hand, and their

fault proneness, on the other hand. It also showed that, albeit indirectly, the measures

of entropy and context coverage are useful to assess the quality of terms and identifiers.

Chapter 5. Linguistic Information and Source Code Quality 29

As part of our future work related to RQ1 and RQ2, we plan to study the relation

between term dispersion and change proneness, as well as to relate and study the inter-

action of entropy and context coverage with a larger suite of object-oriented metrics.

Chapter 6

Linguistic Antipatterns

There may be several causes for poor linguistic information. Thus we expect that there

are different types of linguistic antipatterns such as lack of relevant information, out-

dated information, inconsistency with the rest of the software artifacts.

In this chapter, we explore linguistic antipatterns from the aspect of inconsistency with

the design artifacts and we present an example of our ongoing work on linguistic an-

tipatterns.

We started our investigation by analyzing the consistency between, on the one hand,

linguistic information found in source code identifiers and comments, and, on the other

hand, the design of a system in which identifiers and comments have been extracted. We

know from experience that a considerable amount of design patterns are implemented but

not documented. For developers who do not know the design pattern, the system may

become more difficult to understand because of the extra code related to the pattern.

Thus, the intention of reusing a solution (i.e., applying a design motif) may have a

negative impact on the system, by increasing its complexity. From this negative practice,

we defined the linguistic antipattern that follows.

• Antipattern name: Invisible use of design pattern.

• Most Frequent Scale: Application.

• Refactored Solution Name: Pattern documentation.

• Root Causes: Haste, apathy, sloth.

• Background: The use of design patterns have many advantages such as reuse

of design and knowledge, common language with other developers. Several works

in the literature encourage the use of patterns during software development and

30

Chapter 6. Linguistic Antipatterns 31

maintenance (e.g., [10, 36–39]), other perform experiments to verify the benefit of

their use (e.g., [40, 41]).

Sometimes, the use of design patterns in a software system can be identified easier

than others for various reasons: i) because developers use some patterns more

often than others and thus those patterns are more well-known by developers

and maintainers (e.g., Singleton), ii) because the name of some patterns or the

roles of the participants are part of the names of some classes (e.g., Visitor), or

iii) because some patterns are documented in terms of comments or other types of

documentation (e.g., in JHotDraw1 patterns appears in the documentation). Thus,

documenting the use of patterns plays an important role to take better advantage

of their benefits. However, more often than not, developers assume that design

patterns are well-known and their implementation can be easily identified from

the structure of the design. We concur with Kerievsky that the use of design

patterns can make code look more complex for people that are not aware of the

used pattern [42].

• General Form of this Antipattern: This antipattern is characterized by the

absence of the design pattern in the linguistic information of the source code, i.e.,

the pattern name or the roles of the participants do not exist, or is not explicit

enough, neither in the participants names, nor in the comments/documentation.

• Symptoms and Consequences:

– The class does not seem to be part of the domain concepts.

– It is not clear what is the role of the class in the overall design because of

the lack of comments or unproper naming (the name of the class does not

provide enough information about its purpose/role).

– Comments and documentation do not indicate the use of any design pattern.

– The name of the class does not suggest the use of design patterns.

• Typical Causes:

– Lack of documentation: The design pattern is not documented.

– Sloppy naming: Names do not include any hint about the pattern implemen-

tation.

• Refactored Solutions: The refactored solution involves renaming and documen-

tation.
1http://www.jhotdraw.org/

http://www.jhotdraw.org/

Chapter 6. Linguistic Antipatterns 32

1. Rename the participants in the design pattern to include the name of the

pattern or the roles they are playing in the pattern if they are self explanatory

enough.

2. Document the use of the design pattern in terms of comments or other type

of documentation (e.g., javadoc). Other participants in the design pattern

should be also enumerated and their roles should be explicitly stated.

Special cases:

1. It may happen that a class participate in more than one patterns. In this

case, adding the roles of a class to its name may result in more complex and

difficult to understand name. Thus, it is preferable to document the pattern

through comments or other types of documentation only.

2. Sometimes, pattern participants are part of a library and the source code is

not available for modification. In this case, the only possible documentation

of the pattern is via the other participants.

• Example: The Adapter design pattern brings a solution when two classes are

not compatible with each other. It converts one interface to another, the latter

being expected by and compatible with the client. There are two types of imple-

mentations of the Adapter pattern, namely class (see Figure 6.1) and object (see

Figure 6.2). More details on the two implementations are provided by Gamma et

al. [10].

Consider a fraction of a class diagram depicted in Figure 6.3, which is an instance

of the object Adapter design pattern. The example is taken from JRefactory2

v2.6.24. If a developer that knows the structure of the Adapter design pattern

is analyzing the code, he could identify the implementation only if the code is

reverse-engineered to obtain the class diagram or by browsing through the source

code of class MoveItemAdapter. To identify the other participants in the pat-

tern, the developer should manually navigate through the classes interacting with

MoveItemAdapter and identify their roles. However, even if the developer is fa-

miliar with the Adapter pattern, identifying the roles of the participants is not

straightforward because the actual implementation seems to be a variation of the

pattern and extra dependencies exist between the classes. Moreover, if the devel-

oper is not familiar with the Adapter pattern, he does not have any hint that a

pattern is used and will spend some considerable time and effort to understand

the logic behind the design.

Figure 6.4 depicts the partial class diagram after performing the suggested refac-

toring. To reflect the role of each class in the pattern some classes were renamed:
2http://jrefactory.sourceforge.net/

http://jrefactory.sourceforge.net/
http://jrefactory.sourceforge.net/

Chapter 6. Linguistic Antipatterns 33

Figure 6.1: Class implementation of the Adapter design pattern.

Figure 6.2: Object implementation of the Adapter design pattern.

Chapter 6. Linguistic Antipatterns 34

Figure 6.3: Instance of Invisible Use of Design Pattern.

class OrderableListModel was renamed to OrderableListModelAdaptee; class

OrderableList was renamed to OrderableListClient. Note that class Action-

Listener can not be renamed because it is part of the awt Java library. A docu-

mentation in terms of comments is also added to all participants explicitly stating

the role of each class and the rest of the participants.

Chapter 6. Linguistic Antipatterns 35

Figure 6.4: Instance of Invisible Use of Design Pattern - refactored.

Chapter 7

Related work

Our work is related to the following main categories of works: Information Retrieval

(IR) techniques (Section 7.1), fault proneness (Section 7.2) and source code identifiers

(Section 7.3) are related to RQ1 and RQ2 (Section 4.1); existing antipatterns definitions

(Section 7.4), and research studying ambiguity in NL (Section 7.5) are related to RQ3

(Section 4.2); antipattern detection techniques (Section 7.6) are related to RQ4 (Section

4.3). To the best of our knowledge there is no previous work on studying the eventual

relation between linguistic information and design antipatterns (RQ5, Section 4.4). Few

works discuss the Broken Windows theory in software engineering (Section 7.7).

7.1 Entropy and IR-based Metrics

Several metrics based on entropy exist. Olague et al. [43] used entropy-based metrics

to explain the changes that a class undergoes between versions of an object-oriented

program. They showed that classes with high entropy tend to change more than classes

with lower entropy. Yu et al. [44] combined entropy with component-dependency graphs

to measure component cohesion. Entropy was also used by Snider [45] to measure the

structural quality of C code by comparing the entropy of legacy program with that of a

rewrite of the same program aimed at producing a well-structured system. The rewritten

program had a much lower entropy that the legacy program.

IR methods have also been used to define new measures of source code quality. Etzkorn

et al. [46] presented a new measure for object-oriented programs that examines the

implementation domain content of a class to measure its complexity. Patel et al. [47]

and Marcus et al. [15] used Vector Space Model (VSM) and Latent Semantic Indexing

(LSI) [24], respectively, to measure the semantic cohesion of a class. They used IR

36

Chapter 7. Related work 37

methods to compute the overlap of semantic information in implementations of methods,

calculating the similarities among the methods of a class. Applying a similar LSI-based

approach, Poshyvanyk and Marcus [14] defined new coupling metrics based on semantic

similarity. Binkley et al. [28] also used VSM to analyze the quality of programs. Split

identifiers extracted from entities were compared against the split identifiers extracted

from the comments of the entities: the higher the similarity, the higher the quality of

the entities. The metric was also applied to predict faults and a case study showed that

the metric is suitable for fault prediction in programs obeying code conventions.

Liu et al. [18] use linguistic information to propose a new measure, namely Maximal

Weighted Entropy (MWE), to measure the cohesion of classes. The measure is based

on Latent Dirichlet Allocation (LDA) and it is used to improve the results of models

for software fault prediction based on structural cohesion. The authors validated the

results on a C++ software system, namely Mozilla1.

The measure that we define in this work is at finer grain (terms of source code identifiers)

and combines entropy with context.

7.2 Metrics and Fault Proneness

Several researchers studied the correlations between static object-oriented metrics, such

as the CK metrics suite [17], and fault proneness. For example, Gyimóthy et al. [6]

compared the accuracy of different metrics from the CK suite to predict fault-prone

classes in Mozilla. They concluded that CBO is the most relevant predictor and that

LOC is also a good predictor. Zimmermann et al. [12] conducted a case study on

Eclipse showing that a combination of complexity metrics can predict faults, suggesting

that the more complex the code is, the more faults in it. El Emam et al. [48] showed

that the previous correlations between object-oriented metrics and fault-proneness are

mostly due to the correlations between the metrics and size. Hassan [49] observed that a

complex code-change process negatively affects programs. He measured the complexity

of code change through entropy and showed that the proposed change complexity metric

is a better predictor of faults than other previous predictors.

Our work studies the importance of linguistic information for fault proneness explana-

tion. In the future, we plan to relate linguistic information and the metrics defined and

used in the literature for fault prediction.
1http://www.mozilla.org/

http://www.mozilla.org/

Chapter 7. Related work 38

7.3 Linguistic Information in Source Code

Sridhara et al. [50] study the applicability of a set of English-based semantic similarity

tools on source code identifiers and comments. The authors are interested in six types

of word relations and they believe that those relations can improve automated software

comprehension and analysis tools.

Lexical ambiguity, which is defined as a type of linguistic ambiguity, has been studied by

Deißenböck and Pizka in source code identifiers [2]. The authors formalize the definition

of concise and consistent identifiers names, and enforce the user to follow the formal

rules through a tool prototype.

Caprile and Tonella proposed refactoring strategies for source code identifiers based on

standard lexicon of terms and their arrangement [4].

Kuhn et al. introduce semantic clustering to identify topics in source code based on

Latent Semantic Indexing (LSI) and clustering source code documents with similar vo-

cabulary [51].

Haiduc and Marcus [3] studied several open-source programs and found that about 40%

of the domain terms were used in the source code. Unfortunately, in collaborative envi-

ronments, the probability of having two developers use the same identifiers for different

entities is between 7% and 18% [52]. Thus, naming conventions are crucial for improv-

ing the source code understandability. Butler et al. [5] analyzed the impact of naming

conventions on maintenance effort, i.e., on code quality. They evaluated the quality

of identifiers in eight open-source Java libraries using 12 naming conventions. They

showed that there exists a statistically significant relation between flawed identifiers

(i.e., violating at least one convention) and code quality.

The role played by identifiers and comments on source code understandability has been

empirically analyzed by Takang et al. [53], who compared abbreviated identifiers with

full-word identifiers and uncommented code with commented code. They showed that

(1) commented programs are more understandable than non-commented programs and

(2) programs containing full-word identifiers are more understandable than those with

abbreviated identifiers. Similar results have also been achieved by Lawrie et al. [54].

These latter studies also showed that, in many cases, abbreviated identifiers are as useful

as full-word identifiers. Recently, Binkley et al. [13] performed an empirical study of

the impact of identifier style on code readability and showed that Camel-case identifiers

allow more accurate answers.

Concern location techniques such as [55–57] aim at improving comprehension by ex-

tracting concepts from source code identifiers and comments.

Chapter 7. Related work 39

We plan to build on these previous works for the definition and detection of linguistic

antipatterns.

7.4 Antipatterns definition

Antipatterns became popular with the help of Brown et al. who defined a catalog

of antipatterns from three different point of views, namely architectural, design, and

management [11]. As described in Section 2.2, solution with negative consequences

focuses on the structure of the software or on the management, whereas the type of the

refactored solutions can be software, technology, process, or role. In our research, we

focus on the linguistic aspect of software, thus the negative solution and the refactored

solutions will focus on renaming and documentation. The linguistic aspect of source code

is not addressed in depth by Brown et al. The authors provide brief recommendations to

choose meaningful names for the participants of a design pattern and, when possible, try

to incorporate the name of the pattern in the names of the participants. They give an

example with the Strategy pattern used for a text compositing algorithm where names

SimpleLayoutStrategy or TeXLayoutStrategy seem to be suitable choices. Brown et

al. also recommend to decide on naming conventions for operations (e.g., use the prefix

create- for the Factory pattern) and be consistent. The authors also suggest that

pattern should be part of documentation.

Later Brown co-authored two other books on antipatterns. The first book lists a catalog

of antipatterns related to Software Configuration Management (SCM) [58]. The authors

document antipatterns that can be encountered when managing the evolution of software

projects (such as change and revision management). In the second book, Brown et al.

[59] list set of project management antipatterns from three perspectives, namely people,

technology and process.

Laplante and Neill [60] extend the catalog of Brown et al. [11] by enriching the catalog of

management antipatterns and by creating a new category of environmental antipatterns.

The former focuses on problems occurring with managers who fail in their leadership

task, whereas the latter is not about individual problems but rather a company strategy,

or a group of employees with negative consequences.

The work by Shoemaker [61] is driven by the importance of communication in software

development process and the negative impact that may result from a failure to com-

municate customer needs. The author defines a set of best and worst practices while

writing requirements. The antipatterns fall into both elicitation and analysis phases and

are mostly defined from a point of view of a programmer.

Chapter 7. Related work 40

Other related works [62–65] concentrate on antipatterns related to a specific technology

or language.

Dudney et al. [62] publish a catalog of J2EE antipatterns. Through this catalog, the

authors aim at helping developers to build better J2EE applications by documenting

commonly made mistakes and solutions suggesting how to fix them. The antipatterns

spread through various domains some of which are quite general (such as distributed

computing, application scale, persistence, and service-based architecture), whereas oth-

ers are J2EE specific (such as JSP, Entity Beans, and J2EE services).

Karwin [63] defines a set of SQL antipatterns and groups them into four categories,

namely logical database design antipatterns, physical database design antipatterns,

query antipatterns, and application development antipatterns. Logical database de-

sign antipatterns deal with common mistakes made while designing and organizing a

database. Physical database design antipatterns are concerned with the actual table

definition and the choice of types for the data. Query antipatterns deal with data in-

sertion and retrieval. Finally, application development antipatterns document common

mistakes made when using SQL in the context of other programming languages.

Tate [64] introduces a set of antipatterns in server-side Java programming. The an-

tipatterns document misuse of base Java and J2EE concepts such as servlets, JSPs, and

Enterprise JavaBeans (EJBs). The author also describe more general antipatterns such

as misuse of XML, lack of coding standards, and memory leaks.

After Bitter Java, Tate co-authored Bitter EJB [65] in which the authors define a catalog

of EJB antipatterns. As in previous related works, the authors also tackle more general

issues such as persistence, performance, and testing.

Our work extends previous works on antipatterns by enriching the catalog with a new

category of linguistic antipatterns defined following the template presented by Brown et

al. [11].

7.5 Natural Language Processing

Ceccato et al. [66] discuss the identification and measurement of different types of am-

biguity (lexical, syntactic, semantic, and pragmatic) in NL texts. The authors propose

a prototype tool limited to the identification of lexical ambiguity only.

Willis et al. [67] define and study nocuous ambiguity, which is a subtype of coordination

ambiguity occurring when the same expression can be interpreted differently by different

persons. The authors are not interested in disambiguation of the expressions but rather

Chapter 7. Related work 41

identifying nocuous ambiguity together with an ambiguity threshold (the latter being

the degree to which the user can tolerate misunderstandings) and inform the user about

a potential misunderstanding.

We plan to study the applicability of ambiguities defined in NL on source code identifiers

for the definition of linguistic antipatterns.

7.6 Antipatterns Detection

Marinescu [68] proposes detection strategies for defining metrics-based rules to identify

design antipatterns. The approach is high level and allows to software engineers to

capture deviations from what they define as good design. The author defined detection

strategies for more that ten design smells and validated the approach on two versions of

a medium size business application.

Munro [69] also defines a detection mechanism based on a set of software metrics. The

author provides feedback on the design based of pre-defined interpretation rules. The

author validated the approach on one small and one medium scale systems detecting

two design smells.

Moha et al. [70] use structural information to detect design anti-patterns. The au-

thors provide an automatic generation of detection algorithms from specifications writ-

ten in a domain specific language for four antipatterns (Blob, Functional Decomposition,

Spaghetti Code, and Swiss Army Knife). Precision and recall were calculated on nine

software systems, and results are promising: 100% recall and a precision greater than

50%. The authors detect design antipatterns based on structural information expressed

in terms of code smells.

We plan to detect linguistic antipatterns based on linguistic measures and their consis-

tency with structural/dynamic measures. We also plan to apply the work by Moha et

al. [70] for the detection of design patterns to verify the Broken Windows theory.

7.7 Broken Windows Theory in Software Engineering

Hunt and Thomas define a list of tips that may be thought of as patterns for programmers

[71]. One of these tips is the “Don’t Live with Broken Windows” in which the authors

recommend to fix broken windows (such as bad design decisions or badly written code)

as soon as they appear in order to keep control over the situation.

Chapter 7. Related work 42

Deienböck and Pizka [2] performed an experiment with graduate and undergraduate

students over one year and three months respectively. Students were initially asked to

develop a clone detection system using basic line-based mechanism. After a while the

requirements changed and the line-based detection was to be replaced with a unit-based

technique with units at different levels of granularity. Students implemented the modifi-

cation, but even few months after, the identifier line was present in almost all modules.

Consequently, line and unit became synonyms. The problem came after a new require-

ment, which is to provide the line-based technique as an optional detection mechanism.

Identifiers named line were confusing because in some places they meant line while in

others, they meant unit. The authors observed the effect of the Broken Windows theory

as students started being more careless about the naming of new variables, because they

considered the program as a mess already.

We plan to verify the Broken Windows theory by studying the co-occurrence of linguistic

and design antipatterns.

Chapter 8

Research Plan

8.1 RQ1, RQ2 (Summer 2010 - Fall 2010)

These research questions investigate the relation between linguistic information and code

quality. We can break them down into two activities as follows:

• Study the relation between terms extracted from source code identifiers and fault

proneness.

Publication: V. Arnaoudova, L. Eshkevari, R. Oliveto, Y.-G. Guéhéneuc, and

G. Antoniol, “Physical and Conceptual Identifier Dispersion Measures and

Relation to Fault Proneness,” in Proceedings of the 26th International Con-

ference on Software Maintenance (ICSM’10) - ERA Track. IEEE Computer

Society, 2010.

• Compare physical and conceptual dispersion to other metrics used for fault expla-

nation.

Possible publication: IEEE Transactions on Software Engineering (TSE).

8.2 RQ3 (Winter 2011, Summer 2011)

This research question study the relation between, on one hand, linguistic antipatterns

and, on the other hand, software quality and program comprehension. We plan to answer

this research question through the following activities:

43

Chapter 8. Research Plan 44

• Conduct an experiment with software developers on systems (some of which con-

tain linguistic antipatterns, while others not) and measure the degree of effort that

subjects provide to understand the systems.

Possible publication: Empirical Software Engineering Journal.

• Study the relation between linguistic antipatterns and code quality.

Possible publication: Software Quality Journal.

8.3 RQ4 (Fall 2011)

This research question deals with the automatic detection of linguistic antipatterns.

Possible publication: IEEE International Conference on Automated Software Engi-

neering (ASE’12).

8.4 RQ5 (Winter 2012)

This research question studies the relation between linguistic and design antipatterns.

Possible publication: International Conference on Software Engineering (ICSE’2012).

Chapter 9

Conclusion

In this work we are interested in investigating the importance of linguistic information on

system quality and comprehension effort that developers should provide to understand

a piece of code. To this end, we broke down our research methodology into five research

questions, presented in Chapter 4.

Up to now, we addressed one aspect of RQ1 and RQ2 (Section 4.1) by studying the

relation between, on the one hand, fault proneness and, on the other hand, the conceptual

and physical dispersions of terms extracted from source code identifiers (Chapter 5). We

showed that terms highly used in different contexts increase the odds ratio of the entities

containing them being buggy.

Currently, we are investigating RQ3 (Section 4.2) by identifying, specifying, and study-

ing negative linguistic practices from different aspects. In Chapter 6, we present an

example of a linguistic antipattern in terms of inconsistency of linguistic information

with design artifacts.

Preliminary findings that linguistic information is related to code quality are encouraging

and show that the proposed research worth carrying on.

45

Bibliography

[1] Burton Swanson and Bennet P. Lientz. Software Maintenance Management: A

study of the management of computer application software in 487 data processing

organizations. Addison Wesley, 1980.

[2] Florian Deißenböck and Markus Pizka. Concise and consistent naming. Software

Quality Journal, 14(3):261–282, September 2006.

[3] Sonia Haiduc and Andrian Marcus. On the use of domain terms in source code.

In Proceedings of the 16th International Conference on Program Comprehension

(ICPC’08), pages 113–122. IEEE Computer Society, June 2008.

[4] Bruno Caprile and Paolo Tonella. Restructuring program identifier names. In

Proceedings of 16th International Conference on Software Maintenance (ICSM’00),

pages 97–107. IEEE Computer Society, 2000.

[5] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. Relating iden-

tifier naming flaws and code quality: An empirical study. In Proceedings of the

16th Working Conference on Reverse Engineering (WCRE’09), pages 31–35. IEEE

Computer Society, October 2009.

[6] Tibor Gyimóthy, Rudolf Ferenc, and István Siket. Empirical validation of object-

oriented metrics on open source software for fault prediction. IEEE Transactions

on Software Engineering (TSE’05), 31(10):897–910, October 2005.

[7] Michelle Cartwright and Martin Shepperd. An empirical investigation of an object-

oriented software system. IEEE Transactions on Software Engineering (TSE’00),

26(8):786–796, August 2000.

[8] Taghi M. Khoshgoftaar, Edward B. Allen, Kalai S. Kalaichelvan, and Nishith Goel.

Early quality prediction: A case study in telecommunications. IEEE Software, 13

(1):65–71, January 1996.

[9] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Lan-

guage: Towns, Buildings, Construction. Oxford University Press, 1977.

46

Bibliography 47

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-

sional, 1994.

[11] William J. Brown, Raphael C. Malveau, Hays W. McCormick III, and Thomas J.

Mowbray. AntiPatterns: Refactoring Software, Architectures, and Projects in Cri-

sis. John Wiley & Sons, Inc., March 1998.

[12] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects for

eclipse. In Proceedings of the 3rd International Workshop on Predictor Models in

Software Engineering (PROMISE’07), page 9. IEEE Computer Society, 2007.

[13] David Binkley, Marcia Davis, Dawn Lawrie, and Christopher Morrell. To Camel-

Case or Under score. In Proceedings of the 17th International Conference on Pro-

gram Comprehension (ICPC’09), pages 158–167. IEEE Computer Society, May

2009.

[14] Denys Poshyvanyk and Andrian Marcus. The conceptual coupling metrics for

object-oriented systems. In Proceedings of 22nd International Conference on Soft-

ware Maintenance (ICSM’06), pages 469–478. IEEE Computer Society, 2006.

[15] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the conceptual co-

hesion of classes for fault prediction in object-oriented systems. IEEE Transactions

on Software Engineering (TSE’08), 34(2):287–30, March/April 2008.

[16] Daniel M. Berry and Erik Kamsties. Perspectives on Software Requirements, chapter

Ambiguity in Requirements Specification, pages 7–44. Kluwer Academic Publishers,

2003.

[17] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented

design. IEEE Transactions on Software Engineering (TSE’94), 20(6):476–493, June

1994.

[18] Yixun Liu, Denys Poshyvanyk, Rudolf Ferenc, Tibor Gyimóthy, and Nikos Chriso-

choides. Modeling class cohesion as mixtures of latent topics. In Proceedings of the

25th International Conference on Software Maintenance (ICSM’09), pages 233–242.

IEEE Computer Society, 2009.

[19] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-Françoise Le

Meur. DECOR: A method for the specification and detection of code and de-

sign smells. IEEE Transactions on Software Engineering (TSE’10), 36(1):20–36,

January-February 2010.

Bibliography 48

[20] George L. Kelling and James Q. Wilson. Broken windows: The police and neigh-

borhood safety. The Atlantic Monthly, March 1982.

[21] Foutse Khomh, Stéphane Vaucher, Yann-Gaël Guéhéneuc, and Houari Sahraoui. A

Bayesian approach for the detection of code and design smells. In Proceedings of

the 9th International Conference on Quality Software (ICQS’09), pages 305–314.

IEEE Computer Society, 2009.

[22] Venera Arnaoudova, Laleh Eshkevari, Rocco Oliveto, Yann-Gaël Guéhéneuc, and

Giuliano Antoniol. Physical and conceptual identifier dispersion: Measures and

relation to fault proneness. In Proceedings of the 26th International Conference on

Software Maintenance (ICSM’10) - ERA Track. IEEE Computer Society, 2010.

[23] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley

Series in Telecommunications John Wiley & Sons., 1992.

[24] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and

Richard Harshman. Indexing by latent semantic analysis. Journal of the American

Society for Information Science, 41(6):391–407, 1990.

[25] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal Question

Metric Paradigm. John Wiley & Sons, 1994.

[26] Lionel C. Briand, Jürgen Wüst, John W. Daly, and D. Victor Porter. Exploring

the relationships between design measures and software quality in object-oriented

systems. Journal of Systems and Software, 51(3):245–273, May 2000.

[27] Yuming Zhou and Hareton Leung. Empirical analysis of object-oriented design

metrics for predicting high and low severity faults. IEEE Transactions on Software

Engineering (TSE’06), 32(10):771–789, October 2006.

[28] David Binkley, Henry Feild, Dawn Lawrie, and Maurizio Pighin. Software fault

prediction using language processing. In Proceedings of the Testing: Academic and

Industrial Conference Practice and Research Techniques - MUTATION, pages 99–

110. IEEE Computer Society, 2007.

[29] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical Proce-

dures. Chapman & All, 4th edition edition, 2007.

[30] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg, Gail C.

Murphy, Nachiappan Nagappan, and Alfred V. Aho. Do crosscutting concerns

cause defects? IEEE Transactions on Software Engineering (TSE’08), 34(4):497–

515, July 2008.

Bibliography 49

[31] Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso, and Mas-

similiano Di Penta. An empirical study on the evolution of design patterns. In

Proceedings of the the 6th joint meeting of the European Software Engineering Con-

ference and the ACM SIGSOFT Symposium on The Foundations of Software En-

gineering, pages 385–394. ACM, 2007.

[32] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimiliano Di

Penta. An empirical study on the maintenance of source code clones. Empirical

Software Engineering, 15(1):1–34, February 2010.

[33] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-

code traceability links using latent semantic indexing. In Proceedings of 25th In-

ternational Conference on Software Engineering (ICSE’03), pages 125–135. IEEE

Computer Society, 2003.

[34] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora. Recov-

ering traceability links in software artefact management systems using information

retrieval methods. ACM Transactions on Software Engineering and Methodology

(TOSEM’07), 16(4):13, September 2007.

[35] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous and

Practical Approach. PWS Publishing Co., Boston, MA, USA, 2nd edition edition,

1998.

[36] James W. Cooper. The Design Patterns Java Companion. Addison Wesley, 1998.

[37] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and the Unified Process. Prentice Hall, 2nd edition edition,

2001.

[38] Alan Shalloway and James Trott. Design Patterns Explained: A New Perspective

on Object-Oriented Design. Addison-Wesley Professional, 1st edition edition, 2001.

[39] Oscar Nierstrasz, Stéphane Ducasse, and Serge Demeyer. Object-Oriented Reengi-

neering Patterns. Square Bracket Associates, 2009.

[40] Lutz Prechelt, Barbara Unger, Walter F. Tichy, Peter Brössler, and Lawrence G.

Votta. A controlled experiment in maintenance comparing design patterns to sim-

pler solutions. IEEE Transactions on Software Engineering (TSE’01), 27(12):1134–

1144, December 2001.

[41] Lutz Prechelt, Barbara Unger, Michael Philippsen, and Walter F. Tichy. Two

controlled experiments assessing the usefulness of design pattern documentation in

Bibliography 50

program maintenance. IEEE Transactions on Software Engineering (TSE’02), 28

(6):595–606, June 2002.

[42] Joshua Kerievsky. Refactoring to Patterns. Addison Wesley, 2004.

[43] Hector M. Olague, Letha H. Etzkorn, and Glenn W. Cox. An entropy-based ap-

proach to assessing object-oriented software maintainability and degradation - A

method and case study. In Proceedings of the International Conference on Software

Engineering Research and Practice (SERP’06), pages 442–452. CSREA Press, 2006.

[44] Yong Yu, Tong Li, Na Zhao, and Fei Dai. An approach to measuring the component

cohesion based on structure entropy. In Proceedings of the 2nd International Sympo-

sium on Intelligent Information Technology Application (IITA’08), pages 697–700.

IEEE Computer Society, 2008.

[45] Greg Snider. Measuring the entropy of large software systems. Technical report,

HP Laboratories Palo Alto, 2001.

[46] Letha H. Etzkorn, Sampson Gholston, and William E. Hughes. A semantic entropy

metric. Journal of Software Maintenance: Research and Practice, 14(5):293–310,

July 2002.

[47] Sukesh Patel, William Chu, and Rich Baxter. A measure for composite module

cohesion. In Proceedings of 14th International Conference on Software Engineering

(ICSE’92), pages 38–48. ACM, 1992.

[48] Kalhed El Emam, Säıda Benlarbi, Nishith Goel, and Shesh N. Rai. The confounding

effect of class size on the validity of object-oriented metrics. IEEE Transactions on

Software Engineering (TSE’01), 27(7):630–650, July 2001.

[49] Ahmed E. Hassan. Predicting faults using the complexity of code changes. In Pro-

ceedings of the 31st International Conference on Software Engineering (ICSE’09),

pages 78–88. IEEE Computer Society, 2009.

[50] Giriprasad Sridhara, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Identify-

ing word relations in software: A comparative study of semantic similarity tools.

In Proceedings of the 16th International Conference on Program Comprehension

(ICPC’08), pages 123–132. IEEE Computer Society, 2008.

[51] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı̂rba. Semantic clustering: Identifying

topics in source code. Information and Software Technology, 49(3):230–243, March

2007.

Bibliography 51

[52] Gregory Butler, Peter Grogono, Rajjan Shinghal, and Indra Tjandra. Retrieving

information from data flow diagrams. In Proceedings of 2nd Working Conference

on Reverse Engineering (WCRE’95), pages 84–93. IEEE Computer Society, 1995.

[53] Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie. The effects

of comments and identifier names on program comprehensibility: An experiential

study. Journal of Program Languages, 4(3):143–167, 1996.

[54] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. What’s in a

name? A study of identifiers. In Proceedings of 14th International Conference on

Program Comprehension (ICPC’06), pages 3–12. IEEE Computer Society, 2006.

[55] Giuliano Antoniol and Yann-Gaël Guéhéneuc. Feature identification: A novel ap-

proach and a case study. In Tibor Gyimóthy and Vaclav Rajlich, editors, Pro-

ceedings of the 21st International Conference on Software Maintenance (ICSM’05),

pages 357–366. IEEE Computer Society, September 2005.

[56] Meghan Revelle. Supporting feature-level software maintenance. In Proceedings of

the 16th Working Conference on Reverse Engineering (WCRE’09), pages 287–290.

IEEE Computer Society, 2009.

[57] Scott Grant, James R. Cordy, and David B. Skillicorn. Automated concept loca-

tion using independent component analysis. In Proceedings of the 15th Working

Conference on Reverse Engineering (WCRE’08), pages 138–142. IEEE Computer

Society, 2008.

[58] William J. Brown, Hays W. McCormick, and Scott W. Thomas. AntiPatterns and

Patterns in Software Configuration Management. John Wiley & Sons, 1999.

[59] William J. Brown, Hays W. ”Skip” McCormick III, and Scott W. Thomas. An-

tiPatterns in Project Management. John Wiley & Sons, 2000.

[60] Phillip A. Laplante and Colin J. Neill. AntiPaterns: Identification, Refactoring,

and Management. Auerbach Press, 2006.

[61] Martin L. Shoemaker. Requirements Patterns and Antipatterns: Best (and Worst)

Practices for Defining Your Requirements. Addison-Wesley Professional, 2007.

[62] Bill Dudney, Stephen Asbury, Joseph K. Krozak, and Kevin Wittkopf. J2EE An-

tipatterns. Wiley Publishing, Inc., 2003.

[63] Bill Karwin. SQL Antipatterns: Avoiding the Pitfalls of Database Programming.

The Pragmatic Bookshelf, 2010.

[64] Bruce A. Tate. Bitter Java. Manning Publications Co., 2002.

Bibliography 52

[65] Bruce Tate, Mike Clark, Bob Lee, and Patrick Linskey. Bitter EJB. Manning

Publications Co., 2003.

[66] Mariano Ceccato, Nadzeya Kiyavitskaya, Nicola Zeni, Luisa Mich, and Daniel M.

Berry. Ambiguity identification and measurement in natural language texts. Tech-

nical Report DIT-04-111, Department of Information and Communication Technol-

ogy, University of Trento, December 2004.

[67] Alistair Willis, Francis Chantree, and Anne De Roeck. Automatic identification

of nocuous ambiguity. Research on Language and Computation, 6(3-4):355–374,

December 2008.

[68] Radu Marinescu. Detection strategies: Metrics-based rules for detecting design

flaws. In Proceedings of the 20th International Conference on Software Maintenance

(ICSM’04), pages 350–359. IEEE Computer Society, 2004.

[69] Matthew James Munro. Product metrics for automatic identification of “bad smell”

design problems in java source-code. In Proceedings of the 11th International Soft-

ware Metrics Symposium (METRICS’05). IEEE Computer Society, 2005.

[70] Naouel Moha, Yann-Gaël Guéhéneuc, Anne-Françoise Le Meur, Laurence Duchien,

and Alban Tiberghien. From a domain analysis to the specification and detection of

code and design smells. Formal Aspects of Computing (FAC’10), 22(3-4):345–361,

2010.

[71] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman

to Master. Addison Wesley, 1999.

	EPM-RT-2010-07_Arnaoudova
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	2 Background
	2.1 Design Patterns
	2.2 Design Antipatterns

	3 Motivation and problem statement: linguistic antipatterns
	4 Methodology
	4.1 Linguistic Information and Source Code Quality
	4.2 Linguistic Antipatterns
	4.3 Linguistic Antipatterns Detection
	4.4 Linguistic and Design Antipatterns
	4.5 Expected contributions

	5 Linguistic Information and Source Code Quality
	5.1 Definitions
	5.1.1 Term Entropy
	5.1.2 Term Context Coverage
	5.1.3 Aggregated Metric

	5.2 Approach
	5.2.1 Research Questions
	5.2.2 Analysis Method

	5.3 Case Study
	5.3.1 Results
	5.3.1.1 RQ1 – Metric Relevance
	5.3.1.2 RQ2 – Relation to Faults

	5.3.2 Discussion
	5.3.2.1 LSI subspace dimension
	5.3.2.2 Java Parser
	5.3.2.3 Statistical Computations
	5.3.2.4 Object-oriented Metrics

	5.3.3 Threats to Validity

	5.4 Automation
	5.4.1 Parsing
	5.4.2 Data extraction
	5.4.3 Identifier Splitting
	5.4.4 Execution
	5.4.4.1 Mapping Faults to Entities
	5.4.4.2 Mapping Entities to Entropy and Context Coverage

	5.5 Conclusion

	6 Linguistic Antipatterns
	7 Related work
	7.1 Entropy and IR-based Metrics
	7.2 Metrics and Fault Proneness
	7.3 Linguistic Information in Source Code
	7.4 Antipatterns definition
	7.5 Natural Language Processing
	7.6 Antipatterns Detection
	7.7 Broken Windows Theory in Software Engineering

	8 Research Plan
	8.1 RQ1, RQ2 (Summer 2010 - Fall 2010)
	8.2 RQ3 (Winter 2011, Summer 2011)
	8.3 RQ4 (Fall 2011)
	8.4 RQ5 (Winter 2012)

	9 Conclusion
	Bibliography

