
Titre:
Title: Traceability Improvement for Software Miniaturization

Auteurs:
Authors: Nasir Ali

Date: 2010

Type: Rapport / Report

Référence:
Citation:

Ali, Nasir (2010). Traceability Improvement for Software Miniaturization. Rapport
technique. EPM-RT-2010-05.

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: http://publications.polymtl.ca/2654/

Version: Version officielle de l'éditeur / Published version
Non révisé par les pairs / Unrefereed

Conditions d’utilisation:
Terms of Use: Autre / Other

Document publié chez l’éditeur officiel
Document issued by the official publisher

Maison d’édition:
Publisher: École Polytechnique de Montréal

URL officiel:
Official URL: http://publications.polymtl.ca/2654/

Mention légale:
Legal notice:

Tous droits réservés / All rights reserved

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213621258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://publications.polymtl.ca/2654/
http://publications.polymtl.ca/2654/
http://publications.polymtl.ca/

EPM–RT–2010-05

TRACEABILITY IMPROVEMENT FOR SOFTWARE
MINIATURIZATION

Nasir Ali
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

Septembre 2010

EPM-RT-2010-05

Traceability Improvement for
Software Miniaturization

Nasir Ali
Département de génie informatique et génie logiciel

École Polytechnique de Montréal

Septembre 2010

2010
Nasir Ali
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2010
Bibliothèque nationale du Canada, 2010

EPM-RT-2010-05
Traceability Improvement for Software Miniaturization
par : Nasir Ali
Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/

) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique :

biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue.htm

http://www.polymtl.ca/biblio/catalogue.htm�

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Traceability Improvement for

Software Miniaturization

by

Nasir Ali

Jury Composed of:

Gabriela Niolescu, président-rapporteur

Yann-Gaël Guéhéneuc, directeur de recherche

Giuliano Antoniol, codirecteur

Yvan Labiche, examinateur externe

A research proposal submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Département de génie informatique et génie logiciel
ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Copyright c© September 2010 by Nasir Ali

http://www.polymtl.ca
mailto:nasir.ali08@gmail.com
http://www.polymtl.ca/gigl
http://www.polymtl.ca

Abstract

On the one hand, software companies try to reach the maximum number of cus-

tomers, which often translate into integrating more features into their programs,

leading to an increase in size, memory footprint, screen complexity, and so on. On

the other hand, hand-held devices are now pervasive and their customers ask for

programs similar to those they use everyday on their desktop computers. Com-

panies are left with two options, either to develop new software for hand-held

devices or perform manual refactoring to port it on hand-held devices, but both

options are expensive and laborious. Software miniaturization can aid companies

to port their software to hand-held devices. However, traceability is backbone

of software miniaturization, without up-to-date traceability links it becomes dif-

ficult to recover desired artefacts for miniaturized software. Unfortunately, due

to continuous changes, it is a tedious and time-consuming task to keep trace-

ability links up-to-date. Often traceability links become outdated or completely

vanish. Several traceability recovery approaches have been developed in the past.

Each approach has some benefits and limitations. However, these approaches do

not tell which factors can affect traceability recovery process. Our current re-

search proposal is based on the premise that controlling potential quality factors

and combining different traceability approaches can improve traceability quality

for software miniaturization. In this research proposal, we introduce traceability

improvement for software miniaturization (TISM) process. TISM has three sub

processes, namely, traceability factor controller (TFC), hybrid traceability (HT),

and software miniaturization optimization (SMO). TFC is a semi automatic pro-

cess, it provides solution for factors, that can affect traceability process. TFC uses

a generic format to document trace quality affecting factors. TFC results will help

practitioners and researcher to improve their tool, techniques, and approaches. In

the HT different traceability, recovery approaches are combined to trace functional

and non-functional requirements. HT also works on improving precision and re-

call with the help of TFC. Finally these links have been used by SMO to identify

required artefacts and optimize using scalability, performance, and portability pa-

rameters. We will conduct two case studies to aid TISM. The contributions of

this research proposal can be summarised as follow: (i) traceability support for

software miniaturization and optimization, (ii) a hybrid approach that combines

the best of available traceability approaches to trace functional, non-functional re-

quirements, and provides return-on-investment analysis, (iii) traceability quality

factor controller that records the quality factors and provide support for avoiding

or controlling them.

Contents

Abstract i

List of Figures iv

List of Tables v

1 Introduction 1

1.1 Context: Porting Software to Hand-held Devices 2

1.2 Problem: Low Precision in Automated Trace Retrieval 4

1.3 Research Objectives & Contribution 6

1.3.1 Traceability Datasets . 7

1.3.2 Software Miniaturization . 7

1.3.3 Hybrid Approach for Traceability 7

1.3.4 Traceability Quality Factor Controller 8

Identifiers Quality . 8

Unused software modules 8

Ambiguous Requirements 9

Granularity level . 9

1.4 Proposal Organization . 9

2 Literature Review on Software Miniaturization and Traceability 11

2.1 Discussion . 15

3 Traceability Improvement for Software Miniaturization (TISM) 18

3.1 Research Design Flow . 19

3.2 TISM Process Assumptions . 19

3.3 High Level Model of TISM . 20

3.3.1 Requirement Elicitation . 21

3.3.2 Artefact Traceability . 22

3.3.3 Traceability Quality Affecting Factor Handler 24

3.3.4 Software Miniaturization Optimization 25

Performance: . 25

Scalability: . 25

Portability: . 25

Return-on-Investment: 25

ii

Contents iii

3.4 TISM Supporting Tools . 26

3.4.1 Artefact Traceability - FacTrace 26

3.4.2 Dependency Graph Builder 26

3.4.3 Optimization Package . 27

3.5 Traceability Quality Measuring Methods 27

4 Preliminary Results 29

4.1 Experiment Goals . 29

4.2 Datasets . 29

4.2.1 SIP Communicator . 30

4.2.2 Pooka . 30

4.3 Survey Population Statistics . 31

4.4 TISM Pre-Processing Step . 31

4.5 Vector Space Model (VSM) . 32

4.6 Requirement Elicitation . 33

4.7 Requirement Traceability . 34

4.8 Traceability Quality Affecting Factors 35

4.9 Dependency Graph Builder . 36

4.10 Optimization . 37

4.11 Threats to Validity . 39

5 Conclusion 41

6 Future Work 43

6.1 Short Term Goals . 43

6.2 Long Term Goals . 44

6.3 Research Schedule . 45

A Traceability Approaches 48

A.1 Information-Retrieval-Based . 48

A.2 Event-Based . 50

A.3 Hypertext-Based . 51

A.4 Rule-Based . 51

A.5 Scenario-Based . 53

A.6 Value-Based . 54

B Applications of Traceability 56

B.1 Impact Analysis and Concept Location 56

B.2 Maintenance . 57

B.3 Program Comprehension . 58

B.4 Software Reuseability . 58

B.5 Software Verification and Validation 59

B.6 Testing . 60

List of Figures

3.1 Research Design Flow . 18

3.2 TISM High Level Diagram . 20

3.3 TISM - Requirement Elicitation Process 22

3.4 TISM - Traceability Process . 23

3.5 Online FacTrace System . 26

4.1 Pareto Front: Pooka Java Only . 38

4.2 Pareto Front: SIP Communicator Java Only 39

iv

List of Tables

2.1 Traceability Approaches Summary: 3 sign shows that current trace-
ability approach supports above mentioned feature.7 sign shows
that current traceability approach does not support above men-
tioned feature. 16

3.1 Traceability Quality Factor Documenting Format 24

4.1 Pooka & SIP Communicator General Statistics 30

4.2 Requirements Statistics . 34

4.3 Requirements Traceability Statistics 35

4.4 Traceability Quality Factor (Identifiers quality) 35

4.5 Traceability Quality Factor (Expert Knowledge) 36

4.6 Traceability Quality Factor (Vague Requirements) 37

6.1 Research Time Line . 46

v

Chapter 1

Introduction

Traceability is the degree to which a relationship can be established between

two or more products of the development process, especially products having a

predecessor-successor or master-subordinate relationship with one another; for ex-

ample, degree to which requirements and design of a given software’s component

match [1]. Requirement traceability has received much attention over the past

decade. Requirement is a piece of data that change and evolve with time. The

change in requirement causes modification in whole software life cycle. For ex-

ample, a requirement about changing email protocol can cause to update many

other dependent modules in the email system. Thus, it becomes important to keep

track of software evolution to maintain the system in long run. Traceability links

aid in tracing the project status, risk analysis, verification & validation, and other

software development activities. Software systems require constant modifications

to meet new and ever changing requirements, increasing software complexities and

maintenance cost, unless change accommodations is rigorously taken into account

as part of the software development process [2].

Several studies [3] have shown that many IT organizations do not practice re-

quirement traceability and therefore encounter delays, failures, and customer dis-

satisfaction. IT organizations want to satisfy maximum number of customers to

offer same solutions for both desktop computer and hand-held device users. The

main differences between desktop computers and hand-held devices are memory

size, storage size, display size, and computational power. However, it is not cost

effective solution to create two versions of the same software for desktop users and

hand-held device users. Software miniaturization can aid IT organizations to port

1

Chapter 1. Introduction 2

their software to hand-held devices. The software miniaturization can be defined

as:

1. Software miniaturization is a form of software refactoring focused on reduc-

ing an application to the bare bone [4].

2. Software miniaturization can be thought of as software refactoring where the

focus is on the optimization of resource usage [4].

We can conclude from the above-mentioned definitions that software miniatur-

ization can help in moving desktop software applications onto hand-held devices.

However, manual software miniaturization is tedious and error-prone process. The

traceability links can help in software miniaturization to identify all the required

software artefacts. As mentioned before, IT organizations do not practice require-

ment traceability, thus making it difficult to identify required artefact for software

miniaturization process. Some traceability recovery approaches [Appendix A] aid

in recovering traceability links. However, these approaches face low precision and

recall problem. Thus, it becomes important to improve traceability quality to

support software miniaturization.

1.1 Context: Porting Software to Hand-held De-

vices

Hand-held devices usage is increasing rapidly. Total sales to end users totalled

1.211 billion units in 2009 and first quarter of 2010 showed 17% increase from

the same period in 2009 [Gartner]. The BRIC (Brazil, Russia, India, and China)

countries are adding more and more subscriber each year. [eMarketer] forecasts

that worldwide subscribership will reach 4.3 billion in 2012. As hand-held device

users are increasing per year, it is becoming difficult to satisfy each user’s need

in term of software features. Recently Google introduced a new operating system

and software development kit called Android for mobile handsets. In May 2010

Eric Schmidt, Google’s chairman and CEO, revealed that company’s partners are

shipping about 65,000 Android handsets per day [Byrne]. If these rates were to

be extended over 2011, there would be 24 million new Android-based handsets

Chapter 1. Introduction 3

shipped by then. HTC’s 1H10 forecast and Motrola’s conservative full year ex-

pectations would get to 20 million units. On April 21, 2009, Apple reported that

over a billion iPhone applications were downloaded in just over a year.

The growing trends towards cellular phones has created a new software industry

for mobile software. Software companies provide many features in desktop applica-

tions, but it is not possible to add all these features in hand-held devices’ software

due to their limited storage memory, processing, and display size. Hand-held de-

vice manufacturers are trying to improve processing and increase storage memory

size. However, due to increase in software features support for large software

application is still lacking. Software companies are left with two options either

to develop separate software for hand-held devices or manually perform software

miniaturization to make their software compatible with hand held devices, though

both options are time consuming and costly.

The organization Suberic.net developed the Pooka Java e-mail client relying on

the Java Mail API. Pooka provides features similar to those provided by other

e-mail clients, such as Thunderbird. Version 2.0 consists of 3.5 MBs of Java code.

It is an open-source project, also available on SourceForge.net. Let us suppose

hypothetically that an organization, for example, MobileMail, wants to offer Pooka

on some hand-held devices, featuring the standard Java virtual machine on an

operating system such as Microsoft Windows Mobile and Google Android.

The software miniaturization process can aid MobileMail to reduce source code

size, for porting it to hand-held devices. The need for porting software to hand-held

devices requires up-to-date traceability links. The traceability allows identification

of the artefacts implementing a given requirement or the originating requirement

of a given software artefact. However, MobileMail does not practice requirement

traceability. Source code is the only source of information for MobileMail to per-

form tasks in hand.

It is important for MobileMail to recover traceability links between requirements

and source code for performing software miniaturization. There have been many

works on traceability links recovery [Appendix A]. Each approach has positive

and negative aspects. For example, information-retrieval-based approach is good

for automatic generation of traceability links between software artefacts. How-

ever, this approach cannot trace non-functional requirements. The goal-centric

Chapter 1. Introduction 4

approach [5] uses softgoal interdependency graph that is useful to trace non-

functional requirements. However, all these approaches have low precision and

recall problems that result into low quality links. Software miniaturization depends

on traceability links quality. If quality links are available then the miniaturized

software will be accurate and whole process will be less error prone.

Therefore, two main issues need to be addressed, firstly, improve the quality of

traceability and secondly, incorporate traceability to perform semi-automatic soft-

ware miniaturization for MobileMail to port Pooka onto hand-held device. Because

low quality links or wrong links can result in software maximization.

1.2 Problem: Low Precision in Automated Trace

Retrieval

The goal of our research work is threefold. Firstly, it deals with identifying the fac-

tors influencing low quality traceability links. Secondly, it focuses on the control-

ling identified traceability quality affecting factors. Lastly, it produces a process

to support software miniaturization using first and second part of this research.

The main question is:

How to produce an effective artefact traceability process that can support software

miniaturization?

Current traceability approaches [Appendix A] deal with recovering traceability

links. However, these approaches do not handle the factors that may cause low

precision and recall. We mentioned some of the factors in section 1.3.4 that may

affect traceability quality. These potential traceability quality factors will be em-

pirically verified in this research by author. We need a traceability process that

can avoid or control these quality factors. In this research proposal, we introduce

a traceability process. However, we will perform empirical studies to evaluate

effectiveness proposed process. The main purpose of this process is to handle

traceability quality factors to improve precision, recall, and provide support for

software miniaturization. We have divided our main research question into follow-

ing sub questions to solve the main question systematically.

1. Do current traceability approaches support software miniaturization?

Chapter 1. Introduction 5

2. Is there any dataset available in traceability community to carry out this

research?

3. What kind of factors can affect traceability for software miniaturization pro-

cess?

4. How to measure the potential factors effecting traceability for software minia-

turization?

5. How to avoid or control traceability quality affecting factors?

6. Can a single traceability recovery approach provide enough quality results?

7. How to validate the usefulness of proposed approach to support software

miniaturization process?

Sub question (i) will be answered via a literature review in Chapter 2. This chapter

pays a special attention to explore software miniaturization and traceability issues.

Question (ii) will be answered via Chapter 4. In Chapter 4, we will conduct

an experiment to create datasets. Experiments will be conducted and literature

review will be done to answer sub question (iii) and (iv). All the identified factors

will be documented. The documented factors will help researcher to improve their

traceability approaches and industry to improve their tools and techniques. This

factor controller supports to answer question (v). Different available traceability

approaches will be analysed to get the best of available approaches. For example,

which approaches can improve precision and recall if combined together. A hybrid

approach will be presented to answer sub question (vi). Lastly, sub question (vii)

leads to the evaluation of the proposed model and approach both quantitatively

and qualitatively. Miniaturized software will be analysed, based on performance,

scalability, and portability to evaluate the usefulness of proposed approach. For

example, expert will manually analyse the miniaturized software to see if proposed

traceability process improves performance, scalability, or portability. If there is no

difference in original and miniaturized software, then we will improve the proposed

process with the help of results that expert analysed.

Chapter 1. Introduction 6

1.3 Research Objectives & Contribution

The above problem statement serves as a premise to establish a set of specific

objectives that will constitute major milestones of this research.

1. To create datasets that can be used for conducting experiments. Datasets

are important to carry out this research. We could not find a complete

datasets for email client and instant messenger. Lack of datasets is a hurdle

to perform empirical case studies. We will create two datasets for email

client and instant messenger. These two datasets will be contributed to

traceability community to replicate our results or perform other traceability

experiments.

2. To improve the traceability quality to support software miniaturization. Trace-

ability is backbone for software miniaturization. Low quality traceability

affects software miniaturization process. Thus, it is important to improve

traceability quality to identify all correct (user mentioned) software artefacts.

We will use hybrid traceability approaches and quality factor controller to

improve traceability quality.

3. To develop a hybrid traceability approach to merge best of different approaches.

Every traceability approach has plus points. For example, goal-based trace-

ability approach helps to trace non-functional requirements. While, IR-based

approach provides functional requirement traceability. In this research, we

will combine IR-based, goal-based, and value-based traceability approaches.

4. To establish a software miniaturization approach and mechanism that cover

artefact dependencies and granularity. Different software systems can have

different level of granularity. For example, Java program low granularity is

Class level, because, Java is object oriented language and to create a com-

pilable miniaturized software we need all Classes and their objects. Experts

can decide the granularity level with our traceability process.

5. Develop tools to support the proposed traceability process for making minia-

turization process semi-automatic. Our proposed process is semi-automatic.

It requires tools and expert input to perform traceability. We will develop

some tools that will help us to conduct empirical case studies. Developed

Chapter 1. Introduction 7

tools will also be provided online to other researchers. Therefore, other re-

searchers can replicate our case studies or perform their own case studies

using our tools.

6. To demonstrate and evaluate the practicability of the artefact traceability pro-

cess to support software miniaturization. We will perform several empirical

case studies to evaluate our proposed traceability process for software minia-

turization. All the results will be published in conferences and journals. It

will help us to improve our proposed process with the comments of reviewers.

This thesis work is being developed in the context of software miniaturization,

more specifically, for the traceability improvement for miniaturization. Following

are the main contributions of this research:

1.3.1 Traceability Datasets

We will create two datasets (instant messenger and email client). These datasets

will contain all the requirements, manually created traceability links, and source

code. The manual created traceability links will help to calculate precision and

recall of the proposed approach. These datasets will be shared with the traceability

community as a contribution.

1.3.2 Software Miniaturization

This research presents a semi-automatic process to support software miniaturiza-

tion. This will help project managers to optimize their software for hand-held

devices. Our proposed software miniaturization process name is traceability im-

provement for software miniaturization (TISM). TISM supports multi-objective

optimization that will aid project manager to make their decisions in term of

software size and customer satisfaction.

1.3.3 Hybrid Approach for Traceability

This research will provide a hybrid approach to trace functional and non-functional

requirements, as well as, improve quality by combining different approaches. Func-

tional requirement traceability helps to identify functional software artefacts. While

Chapter 1. Introduction 8

the non-functional requirement traceability helps to identify overall software sys-

tem properties, for example, performance, portability, and maintainability. Goal-

based traceability approach’s softgoal interdependency graph will be used to cap-

ture non-functional requirements. While IR-based approach will be combined to

trace functional requirements. Lastly, value-based approach will be combined with

the previous two approaches to provide economical analysis. For example whether

some traceability link sets can provide benefit for the investment or not.

1.3.4 Traceability Quality Factor Controller

This research will help identify the factors affecting traceability quality. We will

document these quality factors with their source and rational. For example, if

the source is internal (inside the traceability process) or external (outside the

traceability process) and how it affects overall traceability process. We will provide

details to solve or avoid these quality factors. All the identified traceability quality-

affecting factors will be documented. These quality factors documentation will aid

practitioners to know potential traceability quality factors. We will develop a sub-

process of TISM to handle most of the quality factors. The controller will be

traceability approach independent. It will be flexible and can work with different

available traceability methodologies. It will also aid researchers and practitioners

to control these factors to get quality links.

Bellow are some quality factors that can cause low precision and recall. We will

perform empirical case studies to verify these factors and explore new quality

factors that cause low precision and recall.

Identifiers Quality Identifiers naming convention can affect traceability recov-

ery process. If the developer has used some abbreviations or meaningless names,

it will result into low quality links or no link.

Unused software modules Software teams mostly add and remove software

modules. However, without proper documentation it is hard to remember which

modules they should remove for future release, this result into unused software

modules. When we try to recover traceability links, these unused modules will

also participate in traceability relations that can result into more false positives.

Chapter 1. Introduction 9

Ambiguous Requirements Requirement is a dynamic concept and evolves

with time. These dynamic concepts can be ambiguous, as user is not a technical

person and does not know what he needs. These ambiguous requirements can take

traceability process towards low quality links and false positives.

Granularity level The level of granularity should be defined before extracting

traceability links. If the source artefact is class level diagram and target artefact

is package level or fine grain source code granularity level then it can produce false

positives and low quality links. Same for requirements, if the requirements are

high level and we try to trace them into method level or source code line level

then it can create problems.

1.4 Proposal Organization

This research proposal covers some discussions on the specific issues associated

with traceability improvement for software miniaturization and understanding how

this new research will be carried out. The proposal is organized in the following

outline.

Chapter 2: Discusses the literature review of the traceability and software minia-

turization. Few areas of interest are identified from which all the related issues,

words and approaches are highlighted. This chapter also discuss some approaches

and deployment of traceability. At the end is a discussion on literature. This leads

to improvement opportunities that form a basis to develop a new process.

Chapter 3: Provides a research methodology that describes the research design,

proposed process, supporting tools, and measuring methods. It is followed by

some research assumptions.

Chapter 4: The proposed process is evaluated for its effectiveness and correct-

ness. Preliminary results have been shown in this chapter and proposed process’s

applicability.

Chapter 5: Gives conclusion remarks about proposed TISM process.

Chapter 6: Gives directions for future work and the schedule of this research.

Appendix A: Gives details about current available traceability approaches.

Chapter 1. Introduction 10

Appendix B: Gives details about the importance for traceability in software

engineering and application of traceability.

Chapter 2

Literature Review on Software

Miniaturization and Traceability

Modifying multifaceted software systems require a detailed understanding of their

functionalities. It is important to traverse the development artefacts looking for

their relationship to develop this understanding. Traceability has been recognised

as an important task in software system development. The requirement engineer-

ing community has done biggest part of traceability research. Traceability has

gained importance and its topics have become subject to research. Traceabil-

ity relations can improve the quality of the product being developed and reduce

development time and cost [6].

Ramesh [7] separated traceability users into two groups, high-end and low-end.

High-end users are organizations, which use traceability as well-defined system

development policies. They customize their tool to provide better support for

traceability. On the other hand, low-end users use traceability relations to allocate

requirements to system components. However, they do not see traceability as

an important task in their development process. Low-end users do not capture

process-related traceability information.

Maletic et al. [8] proposed XML based traceability query language, TQL. TQL

supports queries across multiple artefacts and multiple traceability link types.

TQL has some primitives to allow complex queries construction and execution

support. Authors executed complicated pattern matching queries using XPath on

srcML and got speed of 20KLOC/sec.

11

Chapter 2. Literature Review on Software Miniaturization and Traceability 12

Maider [9] re-focused attention on practical ways to apply traceability information

models in practice to encourage wider adoption of traceability. Authors highlight

the typical decisions involved in creating a basic traceability information model,

suggest a simple UML-based representation for its definition and illustrate its

central role in the context of a modelling tool.

Arkley et al. [10] proposed Traceable Development Contract (TDC). The TDC

formalises the interaction of two development teams by defining their behaviour

with respect to the state of their common development artefacts. TDC framework

records traceability information to reduce incomplete, inaccurate, and out-of-date

traceability links. TDC issues an upstream functional development team that

impose changes on a downstream development team. The contract makes the

recording of traceability beneficial to both development teams.

Cleland-Huang et al. [11] presented a model-based approach designed to help or-

ganizations gain full benefit from the traceability links they developed and to allow

project stakeholders to plan, generate, and execute trace strategies in a graphical

modeling environment. Sherba et al. [12] proposed an approach TraceM to trace-

ability based on technique from open hypermedia [13] and information integration.

TraceM approach manages traceability links between requirements and architec-

ture. Open hypermedia system enables the creation and viewing of relationship in

heterogeneous application. TraceM allows the creation, maintenance, and viewing

of traceability relationships in tools that software professionals are accustomed to

using on a daily basis.

Jirapanthong et al. [6] presented a rule-based approach to support automatic gen-

eration of traceability relations between feature-based communality and variability

analysis documents. The authors defined a traceability reference model with nine

different types of traceability relations for eight types of documents. This ap-

proach classifies rules into two groups: direct and indirect rules. The rules are

represented in an extension of XQuery. The authors also provided the XTraQue

prototype tool that supports their approach. It allows creation of new traceabil-

ity rules and execution of these rules to verify their correctness. When a user is

satisfied with a new rule, it can be inserted in traceability containing document.

Clealand et al. [14] proposed a heterogeneous solution TraCS (Traceability for

Complex Systems) to improve return on investment (ROI) of traceability efforts.

Chapter 2. Literature Review on Software Miniaturization and Traceability 13

Their hypothesis is that different types of requirements are best-traced using dif-

ferent methods, and that competing techniques introduce their own tradeoffs at

both the individual requirement level and at the project level. This approach uses

blend of manual (Simple Links) and dynamic traceability techniques (EBT, IR,

SBT) in order to establish proper levels of traceability.

The authors used Softgoal Interdependency graph (SIG) to decompose traceability

into sub goals to minimizes costs and maximize value. They further decomposed

the goal of maximizing value into sub-goals of (i)correctness: The extent to which

a set of links conform the actual relationships that exists between artefacts. (ii)

Coverage: The extent to which the traceability scheme provides support for all

requirements regardless of their type, geographical location, or level of abstraction.

and (iii)automation: The extent to which a traceability link supports automated

queries.

HRT approach also defines some strategies how to avoid conflicts between these

sub-goals. It uses IR traceability techniques to maximize the dynamic link genera-

tion to avoid user-defined links. This strategy is only useful if there is high lexical

correlation between artefacts. HRT uses trace for a purpose strategy to establish

links that have a clearly defined purpose, and will return clearly defined value to

the project. It provides support to trace same or different artefacts with differ-

ent technique that performs better. The decision could be made that which links

should be kept or thrown away to get ROI. The main contribution of their research

is to improve ROI of requirement traceability. This technique did not present any

prove that if it also helps to improve precision and recall. The main drawback of

this approach is that user has to make decision which technique should be used at

what time. A single wrong decision can produce wrong results.

Above-mentioned approaches, aid in creating links between functional require-

ments and source code. It is also worth to trace Non-functional requirements

(NFRs) [15] to keep track of important aspects of software system such as, usabil-

ity, flexibility, performance, interoperability, and security. NFRs play a critical

role in any system. NFRs do not talk about specific module in the source code, it

talks about over all system’s aspects. It is difficult to trace NFR. Some researchers

have tried to trace NFR.

Cleland-Huang [16] proposed goal centric traceability (GCT) that supports impact

analysis of NFRs with the context of the software architecture in which they are

Chapter 2. Literature Review on Software Miniaturization and Traceability 14

deployed. GCT focuses on post-requirement traceability of NFRs. The authors

first identify three critical areas in which NFRs require traceability support, then

they evaluates existing traceability methods, and finally proposes a more holis-

tic traceability environment named Goal Centric Traceability. The authors did

not provide any empirical prove that their approach works for NFRs. Kassab et

al. [17] proposed a ”language independent meta model” that explicitly models

functional requirements (FR) and NFRs, their refinements, and their interdepen-

dencies. The metamodel, which is independent from any programming paradigm,

is further transformed into a relational model, which facilitates NFRs traceability

using tracing queries implemented through datalog expressions.

Functional and non-functional requirements’ traceability help to identify software

artefacts that help to perform software miniaturization. Software miniaturization

is a form of software refactoring focused on reducing an application to the bare

bone [4]. Some work has been done in the research area for miniaturization that

mainly focuses on refactoring software.

Di Penta et al. [18] introduced the Software Renovation Framework (SRF) that

uses Genetic algorithms for refactoring to remove unused objects, code clones, and

miniaturized libraries. SRF works in six steps, firstly, it identifies the dependencies,

secondly, it identify and remove unused functions and objects, thirdly, all dupli-

cated and cloned source code identified, fourthly, all the circularly linked libraries

are reduced or removed after identification, fifthly, large libraries are miniatur-

ized. In the last step, objects used by many application are grouped. Authors

applied SRF on geographical information system called GRASS. SRF significantly

improved the software organization, reduced by about 50% the average number of

objects linked by each application, and has consequently reduced the applications

memory requirements.

Antoniol et al. [19] proposed an approach for moving smaller libararies via clus-

tering and genetic algorithm, considering the initial clusters as the starting popu-

lation, adopting a knowledge-based mutation function and multi-objective fitness

function. They applied their approach in several medium and large-size open

source software systems, such as, GRASS, KDE-QT, Samba, and MySql, allowing

effectively to produce smaller, loosely coupled libraries, and to reduce memory

requirement for each application.

Chapter 2. Literature Review on Software Miniaturization and Traceability 15

Bodhuin et al. [20] proposed a search-based approach for dynamically re-packing

downloadable applications. It exploits dynamic information to re-package java

classes into jars. This approach reduces the downloading. It collects dynamic

information by executing the instrumented application. Authors first generated

a preliminary re-packaging by putting together resources used by common sets of

scenarios, and then used genetic algorithms to improve such a re-packaging. They

performed case study on medium-sized software to evaluate their approach.

Di Penta et al. [4] presented a case study focused on the refactoring of GRASS,

which operates on small hand-held devices. They used, nm Unix tool, R statis-

tical tool, and Perl script to support their approach. Their effort was aimed at

software miniaturization, reducing code duplications, eliminating unused files, and

restructuring system libraries and reorganizing them into shared libraries.

Antoniol et al. [21] used dynamic (keeping into account dependencies exploited

during application execution in a given user profile) and static (keeping into ac-

count all possible dependencies) information to perform effective library minia-

turization. Authors used hierarchical clustering techniques to identify software

libraries minimizing the average executable size, followed by Genetic Algorithms

to improve the identified solution. They defined multi-objective fitness function

to keep low in size, at the same time, both the inter-library dependencies and the

average number of objects linked (or dynamically loaded, in case of dynamically-

loadable libraries) by each application. They tested their approach on medium

size open source software systems.

None of the above-mentioned approaches deals with requirement traceability to

perform software miniaturization. The dependency graph is the core part for mak-

ing different decisions. For example, should the module be removed or not? It is

quite possible, programmer has developed a module for future use and dependency

graph is showing it as unused module. The requirement traceability can help in

such situations. It can also help to keep track of whole software miniaturization

process.

2.1 Discussion

There are many approaches available for traceability. However, none of the ap-

proach provides solution for all problems, described in Chapter 1. For example,

Chapter 2. Literature Review on Software Miniaturization and Traceability 16

value-based approach can be used for return-on-investment but cannot recover

links, IR-based approach can be used for creating automatic traceability links be-

tween functional requirement and source code. However, IR-based approach is

not effective for non-functional requirements. Goal-centric approach can provide

non-functional requirements traceability but goal-centric approach requires a lot

of manual work for creating softgoal interdependency graph. Table 2.1 shows the

details about different approaches’ support for tracing non-functional, functional,

Return-on-Investment (ROI), and traceability quality affecting factor.

Software miniaturization cannot be done only by tracing functional requirements.

There is a need to introduce a hybrid approach that can trace functional, non-

function requirements, and provide return-on-investment analysis too, since hand-

held devices are limited in non-functional features, namely performance, scalabil-

ity, and portability.

Approaches Trace
Evolution
Support

Trace
Recovery
Support

ROI FR NFR Quality
Factor
Contr.

Used
for
Soft.
Miniatu.

IR-based 3 3 7 3 7 7 7

Event-based 3 7 7 3 7 7 7

HT-based 3 3 7 3 7 7 7

Rule-based 3 3 7 3 7 7 7

Scenario-
based

7 3 7 3 7 7 7

Value-based 7 7 3 3 7 7 7

Goal-based 7 7 7 3 3 7 7

Table 2.1: Traceability Approaches Summary: 3 sign shows that current
traceability approach supports above mentioned feature.7 sign shows that cur-

rent traceability approach does not support above mentioned feature.

We can see in Apendix B that traceability has different applications domains [Ap-

pendix B] where software engineer can apply traceability to get benefit for different

tasks in hand. The applications of traceability show that improving traceability

quality can also benefit other areas of software engineering that use traceability.

All the current traceability approaches [Appendix A] focus on techniques for re-

covering, managing traceability links and providing ROI analysis. However, these

approaches do not talk about the factors that may affect the traceability approach,

process, or technique. Egyed et al. [22] mentioned about granularity and time of

trace generation factors for traceability. There can be more quality factors, for

Chapter 2. Literature Review on Software Miniaturization and Traceability 17

example, identifiers’ quality, expert knowledge, time constraints, and vague re-

quirements. It is important to identify these quality factors and control them for

improving traceability link quality.

All the current miniaturization work [4, 18, 19, 20, 21] focuses on removing unused

code, code clones, and miniaturization of libraries. None of these approaches talks

about users’ perspective. These approaches can help to miniaturize software, but

question remains, who will decide to remove or add any module. This kind of

decisions can be supported with the help of requirement traceability. Manually

creating traceability links and then performing miniaturization can be a costly

process and error prone. Traceability is a basic step for software miniaturization.

However, current approaches [Appendix A] do not provide efficient support for

miniaturization.

The literature review shows that requirement traceability can be helpful in different

areas of software engineering. However, there is no evidence in the literature of

traceability support for software miniaturization. The main purpose to perform

traceability application literature review in Appendix B was to find out if any

of the researcher has used traceability for software miniaturization. We explored

almost all traceability approaches in [Appendix A] to see which approach supports

specifically software miniaturization or which approach can produce better results

for miniaturization process. There is no proof in the literature that can show

whether any work has been done in the proposed research context.

Chapter 3

Traceability Improvement for

Software Miniaturization (TISM)

This chapter describes the proposed traceability improvement process to support

software miniaturization. The proposed approach is established around the func-

tional requirements, non-functional requirements, design documents, and source

code. The chapter begins with a brief introduction about the proposed TISM

process, followed by details of each step of this process.

Figure 3.1: Research Design Flow

18

Chapter 3. Research Methodology 19

3.1 Research Design Flow

Figure 3.1 illustrates the operational steps of our research work. This research

proposal was started by doing a high-level literature review of requirement trace-

ability. The next step was to define and formulate the problem. During the

literature review, we gathered the related information of software miniaturization

and traceability to obtain some meaningful research problems. We also explored

whether traceability has been previously used for software miniaturization. How-

ever, we could not find any evidence. We explored the limitation and drawbacks

of the existing techniques and approaches.

The next step of our proposal was to develop a process for solving research ques-

tions. To aid our proposed process, we developed miniaturization, optimization,

and traceability tools. The developed tools will be used to conduct case studies

to validate and verify our proposed approach. Author will make the last decision

of accepting or rejecting the proposed TISM process after peer review of TISM. If

the results of case studies are not as we expected we will edit and or re-design the

proposed approach. Evaluation of proposed process is an iterative process, until

we achieve high precision and recall with TISM process. The findings will then

be concluded, published in conferences and journals, and produced in the research

thesis.

3.2 TISM Process Assumptions

The proposed TISM process makes following assumptions. If these assumptions

are not true, TISM may not be able to increase precision and recall for traceability.

1. TISM process assumes that traceability recovery is for textual format. All

the graphical elements’ text will be manually extracted and textual part will

be processed by proposed TISM process.

2. All requirements are independent but if they are dependent then backward

traceability is required.

3. The datasets are complete in term of dependency. Incomplete dependency

graph can still work; however, the miniaturized software will not be compil-

able.

Chapter 3. Research Methodology 20

Figure 3.2: TISM High Level Diagram

4. Software artefacts that are used as an input for TISM are assumed to be in

the correct state in term of consistency among artefacts.

5. Experts have a good knowledge of traceability, miniaturization, and opti-

mization to perform different tasks during experiments.

6. All documents are in English.

3.3 High Level Model of TISM

In this research, we present the TISM process to improve traceability quality for

software miniaturization. Figure 3.2 gives a high-level overview of TISM process.

TISM is combination of sub-processes to achieve main goal that is to improve

traceability quality and provide support for software miniaturization.

Requirement elicitation process is (REP) an external part of the TISM process.

The REP helps to create datasets for empirical case studies. It represents an

iterative set of steps in order to perform elicitation process. The REP process

uses clustering techniques to gather stakeholder’s understanding of the software

system. The output of this process are pre-requirements that will be used in HTML

as input. The main sub-process of the TISM process is Hybrid Traceability Model

Chapter 3. Research Methodology 21

(HTM). The HTM model is flexible to add and remove traceability approaches

to perform traceability based on project need. The final output of the HTM

is ranked list of traceability links between requirements and source code. Some

factors may affect the traceability link quality. The traceability factor handler

(TFH) identifies and uses precautionary measure to resolve these factors. The

output of TFH is purified data that helps to increase traceability precision and

recall. To remain flexible, experts can select some or all of the identified factors

to resolve in this process. The HTM model can identify software artefacts that

can participate in miniaturized software. However, different stakeholders want to

optimize their miniaturized software with respect to size, performance, portability,

and screen size. The requirement for optimization leads us to the last component

of TISM process, which is miniaturization optimization (MO). The MO goal is to

optimize miniaturized software based on different attributes, namely, portability,

scalability, performance, and return-on-investment. Expert can make a trade-off

between these optimization attributes.

Below we describe each of the sub-process of TISM in more details.

3.3.1 Requirement Elicitation

Every stakeholder can have different or similar needs for miniaturized software.

However, it is not an easy task to manually collect all stakeholders’ needs and group

into similar and different needs. Different stakeholders can write their needs in

different way. The TISM process supports semi-automatic elicitation of user needs.

Users can express their needs in any textual format. All the elicited requirements

will be assigned an identity. This process will group all the elicited requirements

in three groups, namely, functional requirements, non-functional requirements,

and outliers. The elicited requirements will be input for requirement traceability

process. All the traced requirements will be used to capture required software

artefacts, while new requirements (non-traced requirements) will be highlighted

to project manager. Below is the technical detail of semi-automatic requirement

elicitation process.

We used previously available techniques PREREQIR [23] to perform requirement

elicitation process. Figure 3.3 gives the overview of requirement elicitation pro-

cess. Requirement can be obtained by eliciting the stakeholders’ expectations of

Chapter 3. Research Methodology 22

Figure 3.3: TISM - Requirement Elicitation Process

generic systems or domains. Survey and interviews can help to extract stakehold-

ers’ needs for their hand-held device software. The survey or interviews’ data

(raw requirements) is the input for elicitation process. Experts can then manually

correct spelling and grammatical mistakes from requirements. Different available

tools can be used for English spelling and grammatical corrections. The output

of this step will be correct English raw requirements. These raw requirements

will be used as input for clustering process. This step uses information retrieval

techniques to perform similarity analysis between different raw requirements and

generate similarity matrix. This similarity matrix is used by Agnes clustering to

group all similar raw requirements and at the end of this process, experts can

label each requirement and separate functional requirements, non-functional re-

quirements, and outliers [23]. The output of this process will be pre-requirements

and will be used in traceability process as input.

3.3.2 Artefact Traceability

Traceability process works as backbone of software miniaturization. The quality

of software miniaturization depends on the quality of traceability approach. The

input for traceability process is requirements and software artefacts. We have

Chapter 3. Research Methodology 23

Figure 3.4: TISM - Traceability Process

seen in chapter 2 that there is not a single approach that can provide the fa-

cility to trace both functional and non-functional requirements. Our proposed

traceability approach is hybrid. It includes IR-based, value-based, and goal-based

approaches to trace requirements into source code. IR-based approach provides

automatic link recovery between different software artefacts. The softgoal inter-

dependency graph (SIG) [16] will be combined with IR-based approach to trace

non-functional requirements. The non-functional requirements help to trace per-

formance, maintainability, and portability links. Lastly, a value-based approach

[24] will be combined with two other approaches. A value-based approach will help

to determine which traceability links are worth to keep, and how much value it can

return in miniaturization process. For example, whether keeping non-functional

requirement traceability link can aid in long term and will return on investment

or not. It is important for project manager to know returns on investment that

they are putting in miniaturized software. It helps to manage project budget.

In traceability process expert can assign different or same weights to different

requirements. This weight will aid in optimization. FacTrace online application is

used to assign different weights to customers and calculating total weight of each

requirement.

The output of this process is a ranked list of traceability links. These links will

be used to extract all the required software artefacts from the software reposi-

tory. Figure 3.4 illustrates the high-level activities and major tasks involved in

Chapter 3. Research Methodology 24

our TISM traceability process. The precision and recall metrics will be used to

measure the accuracy of the hybrid approach and for quality of links. Proposed

hybrid approach is flexible to add or delete a traceability approach. For example,

rule-based traceability approach can be integrated by experts in proposed hybrid

approach to recover specific traceability links.

3.3.3 Traceability Quality Affecting Factor Handler

This process in our framework helps to answer the research question, i.e which

factors can affect traceability link quality? Our hypothesis for current research

proposal is that there are some factors affecting the traceability process, such

as, identifiers quality, expert knowledge, ambiguous requirements, and time con-

straint. However, we do not know which factors can affect trace recovery more than

other. We will conduct survey to know about other traceability experts opinion

to determine other factors affecting traceability. We will also conduct requirement

traceability case studies to verify if these factors really affect the link quality or

no. These factors will be documented in the following format:

Description Description of the factor
Rational Source of the factors and reason why and how these fac-

tors affect link quality.
Importance Level of the factor

Table 3.1: Traceability Quality Factor Documenting Format

Each factor will be described in detail and the source of this factor and possible

rationale behind this factor. To be able to perform valid empirical research on

these factors, we will use precision and recall to measure each factors’ affect on

traceability process. The importance of that particular factor can help to see

influence of the value of that factor on link quality. IR techniques will be used to

measure factors’ effect.

Factor handler process will avoid any external factor and resolve the internal trace-

ability process factors. It will handle quality factors depending on the nature of

the individual factor. The process is iterative.

Chapter 3. Research Methodology 25

3.3.4 Software Miniaturization Optimization

The optimization process is multi-objective. It supports following mentioned at-

tributes for optimization. The input for this process is traced artefacts, depen-

dency graph, and weighed requirements. Below are different attributes used by

TISM to optimize miniaturized software:

Performance: The performance is critical part for miniaturized software as

hand-held devices are limited in memory and processing speed. The CPU usage

and memory usage will be measured. The methods that minimize CPU and mem-

ory usage will be selected and the features contributing these methods. Dynamic

analysis helps to capture performance.

Scalability: The purpose of miniaturization is to maximize features with min-

imized source code. The least code will be select that can provide maximum

features. Search-based approach will be used to draw Pareto front for expert to

make the decision for scalability.

Portability: Many operating systems are available in hand-held devices. If

the software is platform dependent, it will be difficult to move it to hand-held

device. NFR traceability matrix will help to identify software modules that uses

platform-specific constructs.

Return-on-Investment: Expert can assign weights that determine return-

on-investment for optimization. Weights will be assigned to customer and their

requirements. This weight helps project manager to make decision whether he

wants to satisfy maximum number of customers or most important customers.

Project manager can see untraced requirements weight and their customers’ weight

to make decision that whether it will give benefit to implement them. Search-based

techniques will be used to perform optimization process. There is a trade-off

between these optimization attributes. Experts can decide which optimization

attributes are important to optimize software, and selected attributes will be used

to provide multiple solutions to experts. The output of this process will be a Pareto

front of multiple solutions. Expert can select either one or multiple solutions as

per project need from Pareto front.

Chapter 3. Research Methodology 26

Figure 3.5: Online FacTrace System

3.4 TISM Supporting Tools

This section describe the details of tools, packages, and scripts we will use for

conducting experiments to support our proposed process.

3.4.1 Artefact Traceability - FacTrace

FacTrace stands for artefact traceability. FacTrace aids in recovery traceability

links between source code and requirements as well as in requirement elicitation

process. It has two parts: first is online and the second is a desktop application.

The desktop part of FacTrace uses LSI & VSM to recover traceability links. The

online FacTrace system (Figure 3.5) helps experts to remove false positive links

and vote for each link. Online FacTrace helps in teamwork. Figure 3.5 shows the

front-end of online FacTrace system.

3.4.2 Dependency Graph Builder

Requirement traceability can help identify all the modules that can be used in

miniatruized software. However, it is quite possible those module are dependent

on other modules. We need a dependency graph to extract all releated modules.

For this purpose, we will use two tools AURA [25] and the NM Unix tool. The

AURA only supports the Java language for dependency graph. It uses AST graph

to extract all the dependencies. The NM is a unix command. It is used to examine

Chapter 3. Research Methodology 27

binary files (including libraries, compiled objects modules, shared-object files, and

standalone executeables) and display contents of those files and meta information.

NM will be used to extract dependency graph for C/C++ source code.

3.4.3 Optimization Package

We will use genetic algorithms to support optimization part of TISM process. Ge-

netic algorithms provide multiple solutions for single problem. We selected JMetal

package to develop optimization tools to conduct experiments. jMetal stands for

Metaheuristic Algorithms in Java and is an object-oriented Java-based framework

aimed at the development, experimentation, and study of metaheuristics for solv-

ing multi-objective optimization problems.

3.5 Traceability Quality Measuring Methods

We will use two well-known information retrieval metrics, recall and precision, to

evaluate the accuracy of our experiment results. Both measures have values in the

interval [0,1].

Precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|

Expert can define threshold value based on the project scope or retrieved docu-

ments. Precision is defined as the number of relevant documents retrieved divided

by the total number of retrieved documents by an approach. Precision considers

all retrieved documents above than the threshold value. This measure is called

precision at n or P@n. If the value is 1 for precision it means that all the recovered

documents are correct.

Recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|

Recall is defined as the relevant documents retrieved divided by the total number

of relevant documents. Document can be a query or result of query execution. It

Chapter 3. Research Methodology 28

is ratio between the number of documents that are successfully retrieved and the

number of documents that should be relevant. If the value is 1 for recall, it means

all relevant documents have been retrieved.

Chapter 4

Preliminary Results

This chapter discusses the evaluation of proposed TISM process1. The objectives

of this evaluation is to conform that the proposed process is stable. This chapter

includes case study data and preliminary results using TISM process.

4.1 Experiment Goals

The goal of this case study is to miniaturize two software systems (Pooka, SIP

Communicator) in terms of scalability. Miniaturized software can be optimized

based on number of customers and number of valued customers.

4.2 Datasets

We use two general-public systems as case studies: Pooka [Pooka], a Java e-mail

client and SIP communicator [SIP], an instant messenger. We choose these two

systems because gathering requirements for such general-public systems is possible

by interviewing subjects with little technical background. Our choice does not

reduce the applicability of TISM to any system.

1This experiment is still in progress. We are preparing these results to submit in ICSE’11 for
publication and will provide the submitted paper after 20th of August.

29

Chapter 4. Preliminary Results 30

4.2.1 SIP Communicator

SIP Communicator is an audio/video Internet phone and instant messenger that

supports some of the most popular instant messaging and telephony protocols

such as SIP, Jabber, AIM/ICQ, MSN, Yahoo! Messenger, Bonjour, IRC, RSS and

counting. SIP Communicator is distributed under the terms of the LGPL 2. SIP

Communicator is based on the OSGi 3 architecture using the Felix 4 implemen-

tation from Apache. These technologies make it very extensible and particularly

developer friendly. SIP Communicator was originally created by Emil Ivov, who

was at the time a student at the Louis Pasteur University in Strasbourg, France.

4.2.2 Pooka

Pooka is an email client written in Java, using the Javamail API. It supports email

through the IMAP (connected and disconnected) and POP3 protocols. Outgoing

mail is sent using SMTP. It supports folder search, filters, display filters, context-

sensitive color encoding features. Pooka has different user interface styles, namely,

Eudora and Outlook-like interfaces. Address book feature is partially supported

by Pooka.

Pooka and SIP communicator datasets are currently active projects. Table 4.2.2

provide some general descriptive statistics on the two systems:

Pooka SIP Communicator
Version 2.0 1.0
Total Classes 298 1771
Total Functions 20868 31502
LOC 244870 486966
Size (in MB) 5.23 25.8

Table 4.1: Pooka & SIP Communicator General Statistics

2http://www.gnu.org/licenses/lgpl.html
3http://www.osgi.org
4http://felix.apache.org

Chapter 4. Preliminary Results 31

4.3 Survey Population Statistics

We conducted an online survey 5 to gather requirements for email client and in-

stant messenger. We sent 350 invitations to our colleagues and other peoples.

Among the 350 recipients, only 151 responded back. Only 73 out of 151 respon-

dents filled the whole survey. In selected 73 participants, 28 were females and 45

males. Statistics analysis of participants and their background revealed some in-

teresting observations. Of the sample, 45.21% were student, 28.7% researchers and

26.02% industry related people. On an experience basis, 22.6% had no experience

whereas 75.34% had one or more than one-year experience. Of those participated

70.08% and 80.82% did not contribute in email client and instant messenger devel-

opment respectively. Concerning programming language, experience 71.23% and

72.60% had JAVA and C language experience respectively. Majority of survey

participants i.e. 72.60% used Microsoft window. Out of 73 participants, 22 and 7

users do not use email client and instant messenger respectively. Survey partici-

pants spent an average time of 10.07 and 9.14 minutes to write email and instant

messenger requirements respectively while 20.06 minute to complete whole survey.

All the participants wrote a total 599 and 639 requirements for email client and

instant messenger respectively. The population statistics shows that majority of

the participants were from computer field and they have good knowledge of both

software systems.

4.4 TISM Pre-Processing Step

This is pre-processing step for TISM process. We consider each requirement and

source code class as a separate document. We performed the following steps for

normalizing all documents. All upper-case letters were converted into lower-case

letters. We removed all stop words that do not play an important in lexical

similarity (such as articles, punctuation, numbers, etc.). Morphological analysis

helps to convert plural into singulars and to re-conduct all the flexed verbs into

the infinity form. This process is automatic and done using FacTrace. For the

source code files, we performed following steps before applying above-mentioned

techniques. We extracted all the identifiers from the source code. Programmers

5http://web.soccerlab.polymtl.ca/limesurvey/index.php?sid=28533

Chapter 4. Preliminary Results 32

normally use underscore and camel-case to separate different identifier names. We

used AURA [25] to extract and split identifiers.

4.5 Vector Space Model (VSM)

We used Vector Space Model [26] (VSM) to recover traceability links between

source code and requirement documents. Text is represented by vectors of terms

in VSM. Either a query or a document is viewed as a vector of terms. Different

term weighing schemes can be used to construct these vectors. The most popular

scheme is tf-idf. Term frequency (TF) is described by a t x d matrix, where t is

the number of terms, and d is the number of documents in the collection. TF is

often called local weight. The most frequent term will have more weight in TF but

it does not mean it is an important term. It is also important to find how many

times this term has occurred in whole document collection to see its importance.

The inverse document frequency (IDF) of terms is calculated to measure the global

weight of a term.

(tf − idf)i,j =
ni,j∑
k nk,j

∗ log2(
|D|

d : —ti ∈ d|
)

ni,j = occurences of term (ti) in document dj∑
k nk,j = sum of occurrences of all terms in document dj

|D| = total number of documents in the collection

|d : ti ∈ d| = number of documents where the term ti appreas

Similarity Analysis

The similarity between two vectors is not inherent in the vector space model. The

angle between two vectors (A, B) is used as a measure of divergence between the

vectors. Smaller the vector angle is higher the similarity between a query and a

document.

A ∗B
||A|| ||B||

Chapter 4. Preliminary Results 33

In similarity analysis equation, A and B are the term frequency vectors of the

documents. We have developed FacTrace tool based on VSM. It can create links

between different artefacts. FacTrace has tool parts, one online system and one

desktop application. The desktop FacTrace helps to recover traceability links,

while online FacTrace system helps expert to verify the links and remove false

positive ones. The output of this process is ranked list of links.

4.6 Requirement Elicitation

We elicited requirements for Pooka and SIP communicator to create datasets for

current experiment. We used PREREQIR [23] to elicit requirements. We con-

ducted an online survey 6 to elicit requirements for email client and instant mes-

senger and asked participants about the features they need in their hand-held

software. These features can be new or existing ones that they use in in their

instant messenger and email client.

Many similar requirements were found from different participants. We use VSM

and agglomerative nesting (aggnes) clustering to recover core requirements by elim-

inating similar requirements. VSM generates similarity matrix based on the lexical

similarity between requirements. The high similar value means two requirements

are same. The input for VSM is the normalized natural language requirements.

Each requirement was considered as one document. VSM generated document-

by-document matrix and each matrix value represents the measure of divergence

between the vectors. The aggnes clustering was used to represent vectors similarity

matrix. Aggness presents data in hierarchical way. It creates all singleton clusters

at first and then keeps merging them to closest clusters in terms of matrix similar

value. Expert manually checked the aggnes cluster tree and used 46% value as

threshold. We used this value because less than this value aggnes start mixing

different concepts in the same cluster. There were 235 instant messenger and 221

email client requirement clusters. Each customer was randomly weighed from 10

to 70 points. This weight will help experts to determine expert in optimization

phase that which customers he wants to satisfy. Each cluster has different par-

ticipants’ requirements and cluster’s total weight is based on participants’ total

6http://web.soccerlab.polymtl.ca/limesurvey/index.php?sid=28533

Chapter 4. Preliminary Results 34

weight. Experts used online FacTrace system to delete any duplicate clusters, sep-

arate functional and non-functional requirements, and outliers. Then each cluster

was labelled by experts. Table 4.2 shows the summary of elicited requirements.

Instant Messenger Email Client
Functional Requirements 82 93
Non-Functional Requirements 20 25
Outliers 9 6

Table 4.2: Requirements Statistics

4.7 Requirement Traceability

Elicited requirements were traced into the source code. We performed document

normalization step on both requirements and source code files. The VSM com-

putes the similarity between requirements and source code documents and returns

for each requirement, a ranked list of source code document. Due to dealing with

Object-oriented datasets, we traced all the requirements to class level. The ranked

list’s high value shows there is strong relation between requirement and a class.

Expert created manual links to develop oracle. This oracle can be used to evaluate

traceability recovery approach. Experts spend 116 and 43 hours for creating SIP

communicator and Pooka manual traceability links. Table 4.3 shows the auto-

mated traceability results. We used different threshold values, however, at 0.34

threshold value it produced better results. We made a trade-off between precision

and recall. Automated process took some minutes for recovering more than 40%

correct traceability links. It means we saved 67 hours of developer for creating

40% links. In addition to creating links, It is easy to discard false positive links

with the help of online FacTrace system, other than creating new links. Though

we can get good recall with our approach, we have to sacrifice precision.

Precision was low because the requirements in the case study were short, and

many differences occur in describing the same concept for requirements written

at different times. From the population statistics, we can see that majority of

the respondent were non-technical who wrote the requirements. Most of them do

not have software engineering experience, never participated in any kind of email

client and instant messenger development. Thus, the expressing words and style

can be different. Development team of datasets never communicated with the

Chapter 4. Preliminary Results 35

Pooka SIP Communicator
Possible Links 11920 90321
Threshold 0.34 0.35
Automated Generated Links 1215 7412
Correct Recovered Links 144 409
Total Correct links 318 830
Precision 12% 6%
Recall 45% 40%

Table 4.3: Requirements Traceability Statistics

survey respondent. This kind of problem increase the problem space document

distance from solution space artefacts. It can also cause low precision and recall

in traceability recovery process.

4.8 Traceability Quality Affecting Factors

During the traceability process we found some factors which affected precision and

recall. They are as follow:

Description Identifiers quality
Rational The names given by developer to identifiers are valuable information.

They are often the starting point for the program’s understanding ac-
tivities, especially when high-level views, like the call graph, are not
available [27]. Developers use different naming conventions for identi-
fiers. These identifiers can help in creating automatic traceability links.
However, due to personal preference, lack of time, and experience this
kind of problems occurs. If developers have precise requirements, they
should utilize the requirement terms while naming identifiers. In some
cases, developers do not even use camel case naming convention or
any specific separator for separating two different words in identifiers’
name. It makes it difficult to split the identifiers’ name for matching
them with the requirements. For example, developers use ”cmdpntr”
for ”command pointer” concept. It is easy for a developer to read and
understand this. However, it is not easy task to separate this identifier
and extract its original concept. In legacy systems, it is very difficult
to update all the identifiers.

Importance High

Table 4.4: Traceability Quality Factor (Identifiers quality)

The high importance means, it can highly affect precision and recall. We will

conduct more case studies to verify these factors and identify more quality factors.

Chapter 4. Preliminary Results 36

Description Expert Knowledge
Rational Automatic or semi-automatic traceability approaches can be as perfect

as expert’s knowledge. It is important expert verify the trace links and
discard false positive from the recovered link. It is important for an ex-
pert to have some knowledge about the domain. For example, if it is an
aerospace software system, we can not expect a metropolitan software
system expert to verify aerospace system traceability links. However,
both are software systems, but are different in functionality. If the
expert does not have domain knowledge, it can affect the traceability
results. Expert can allow some false positive links during trace verifi-
cation process. We used 0 threshold to retrieve all possible links. The
recall should be 100% whereas it was only 90%. It means expert had
removed some good links. If the expert have good knowledge about the
domain it can help in the elimination process of wrong links.

Importance High

Table 4.5: Traceability Quality Factor (Expert Knowledge)

We will conduct survey to ask other traceability expert about their opinion for

these factors and possible solution.

4.9 Dependency Graph Builder

We used AURA tool to automate extract dependency graph for a miniaturized

version of each dataset. The current version of AURA works on Java at class

level. It performs following steps to build dependency graph:

1. AURA builds the dependency tree of each implementation unit of projects to

be miniaturized and get the size of the nodes in the tree. Here, implementa-

tion units and nodes in dependency tree can be libraries, classes or methods,

depending on the programming languages (Object-Oriented or procedural)

in which the projects are implemented and on granularity of miniaturizing

process (at library, class or method level).

2. It uses the traceability links of each requirement generated by the previous

step to identify the implementation units to satisfy it. Each requirement can

trace to one or more than one class at the same time.

3. It filters out the duplicate nodes of the dependency trees of the implemen-

tation units and generates the dependency graph of the code to implement

each requirement of a system.

Chapter 4. Preliminary Results 37

Description Distance between problem space and solution space
Rational The unstructured interviews, feedbacks, and meetings can help to elicit

requirements. However, a user is mostly non-technical person. He does
not know about development process. He explains his requirements,
as he wants. It is architect, analyst, or requirement engineer’s duty to
express user’s need in technical way that a developer can understand.
Due to shortage of time, money, and expertise, software companies do
not document requirements properly, but if they do, then it is in the
form of imperfect information. Imperfect information, like interpreting
incomplete requirement specifications or vagueness in decisions is one of
the main reasons that make software design difficult [28]. On the other
hand, developers’ non-interoperable tools, which evolve autonomously
[29] make software structure difficult. These kinds of problems can in-
crease the distance between problem space and solution space. It is
possible final product satisfy customer’s need. However, this distance
between solution and problem space can create problem for creating
traceability links manually or automatically. In our experiment, we
saw that users expressed their requirements in different words and de-
velopers used their own knowledge and choices for writing source code,
which created high false positive links.

Importance High

Table 4.6: Traceability Quality Factor (Vague Requirements)

4. Finally, for a miniaturized version, it combines the dependency graphs of

all included requirements and removes their duplicate nodes to produce the

dependency graph of the project.

4.10 Optimization

Theoretically, every combination of more than one requirement of a project is

a miniaturized version. Not all of them are acceptable because the numbers of

satisfied customers can be too small or the code size is too large. when the project

is large, it is not straightforward to make a balance between code size and the

number of satisfied customers. Total number of the combination of requirements

of a project is 2n where n is the number of the requirements. Therefore, we can

describe this problem as a Multi-Objective Optimization Problem (MOOP)[30,

31]. Our approach finds the Pareto front which helps the project manager to

balance the source code size and the total number of satisfied customers.

Chapter 4. Preliminary Results 38

Figure 4.1: Pareto Front: Pooka Java Only

We assume that all requirements are independent of each other, i.e., anyone of

these can be added to or removed from the project without breaking the others.

If there are more than one dependent requirements, we can merge them to a

single requirement. To solve this problem, we apply No-dominated Sorting Generic

Algorithm II (NSGAII) [32] to find one or a set of approximate Pareto fronts of all

the possible solutions. We choose this algorithm because it directly generates no-

dominated Pareto front with smaller computational complexity. Our approach is

based on the JMetal implementation of NSGAII. The parameters of the algorithm,

such as population size, crossover and mutation probabilities were the default

values of the implementation.

We only included Java source code while computing the size of code base in the

Pareto front. The code in the libraries or frameworks used by Pooka (Figure

4.1) and SIP Communicator (Figure 4.2) are considered as the code shared by all

programs running on the device. With the help of this Pareto front graph, expert

can select the optimal solution. Following are the Pareto front of Pooka and SIP

Communicator:

Chapter 4. Preliminary Results 39

Figure 4.2: Pareto Front: SIP Communicator Java Only

4.11 Threats to Validity

There is a threat to external validity as we cannot claim that the TISM process

will be effective on all software products that are to be miniaturized. To minimize

this threat, we applied the approach to two different systems. The two systems

examined are both open source, so we cannot claim that the approach general-

izes to closed source projects. Future work will include evaluation of the TISM

approach on additional systems from different domains, closed and open source.

There is a single group threat to internal validity. We did not examine the use of

a control method, such as a manual approach, for miniaturizing a product. We

minimized this threat by examining the amount of effort saved for human analysts

at various steps of the process, such as during the traceability step.

There is a mono-operation bias threat to construct validity. The two case studies

examined the miniaturization optimization when being constrained by memory.

An application of TISM when constrained by a different attribute (screen size,

e.g.) may yield different results. Such additional evaluations are relegated to

future work. Another possible threat to construct validity is that of experimenter

expectations. We attempted to mitigate this threat by involving six researchers

Chapter 4. Preliminary Results 40

from four different universities representing different perspectives on the research

who scrutinized the results of each step of each case study.

Chapter 5

Conclusion

In this section we will look briefly at results from preliminary experiments and

draw some overall conclusions. We will also look at future work in this section.

The goal of this thesis is to investigate whether traceability can support software

miniaturization or not. The literature review aided in finalizing our research prob-

lem. We saw in the literature review that none of the researcher has tackled the

issues that we raise in current research proposal. We also discussed some solutions

for the identified research questions. For this research proposal, our hypothesis

is that there is some traceability quality affecting factors. These quality factors

may affect the miniaturized software system. We proposed a process (TISM) that

supports software miniaturization through traceability, as well as, improving the

traceability quality. TISM has different components to handle different issues.

TISM’s aim is to answer our main research question to aid in software miniatur-

ization. The sub-modules of the TISM provide the solution for the sub-questions.

Requirement elicitation module can aid requirement engineers to elicit require-

ments from different stakeholders and summarize them. The same module can

also help to recover requirements for legacy systems.

The core part of TISM is traceability process. It helps in identifying the modules

that can be used in miniaturized software with the help of requirements. We

saw in the literature review that almost no available approaches are accurate for

providing quality links. Moreover, they dont have good support for tracing non-

functional requirements. Our traceability process contain hybrid approach that

can help in tracing both functional and non-functional requirements. This raise

the sub-research questions for traceability quality factors. For this purpose, we

41

Chapter 5. Conclusion 42

have included factor controller module in our process to aid improving traceability

link quality. This module has two objectives, first, it document all the recovered

quality factors and second provides support for avoiding or controlling any quality

factor. The last module of our proposed process is optimization that can help to

optimize miniaturized software system. It supports multi-objective optimization

to help expert in decision-making.

To evaluate our proposed process, we conducted a case study and have presented

our preliminary results chapter 4. The results show that this proposed process

has potential to solve current research question. We found and documented some

quality factors, which affect the traceability process during the experiment.

The proposed approach has several benefits: (i) it is a systematic approach to

manage requirements and develop miniaturized software. (ii) It easily identifies

requirements traceability relations and helps experts to remove ambiguity and

assign identities to each requirement. (iii) Help experts to make their decision

in term of software size and whether to satisfy maximum customers or valued

customers. (iv) Software companies can move their big application on the hand-

held devices with the help of miniaturization process. It is worth to continue our

research and we aim to perform the task mentioned in Chapter 5 in the future.

Chapter 6

Future Work

The proposed TISM process in this research proposal is the basis of an on-going

work to improve traceability quality and provide better support for software minia-

turization process. We aim to continue this research to achieve following short and

long-term goals.

6.1 Short Term Goals

Following are the short-term goals that we are planning to finish within six to

eight months period time.

Systematic Traceability Literature Review: We will conduct a systematic

traceability literature review to have better look inside the current state-of-the-

art. It will help us to understand the life cycle and flow of the traceability, as well

as, some loopholes that can be filled with our current research and future research

either by us or by others.

Conducting Experiment on Two Datasets: We will conduct several experi-

ments using our proposed TISM process to see its positive and negative aspects.

Therefore, we can improve our existing process (TISM). We will use our own cre-

ated datasets (email client and instant messenger) for these experiments. We will

also use other datasets available in traceability community to avoid biasness.

Research paper: The results gained from experiment and case study will be sub-

mitted to ICSE’11 to have other experts’ opinion about our proposed process and

43

Chapter 6. Future Work 44

results. We selected ICSE to submit our result, because it is a general purpose

software engineering conference and include all aspects of software engineering.

Our proposed approach also has different aspects, for example, requirement elic-

itation, traceability, optimization, and quality attribute of traceability. We will

utilize reviewers’ comments and conference members comments to improve our

proposed process.

6.2 Long Term Goals

Following long term goals have been planed to complete within next two to three

years of this thesis duration.

Tools Creation: We have already developed some tools that helped in our case

studies. However, these are not complete. We will develop more tools to make

our methodology more automatic and reduce human intervention. That includes

following features:

1. Hybrid approach support in traceability link recovery process.

2. Support tracing non-functional requirements.

3. Implement automatic labelling techniques for requirements elicitation pro-

cess.

4. Different genetic algorithms support for better-optimized solutions.

5. Improve performance of existing modules of FacTrace.

6. Traceability Quality factor controller.

Factor Controller: In our case studies results in chapter 4, we saw that some

factors exist to affect traceability results. We will design a database to store

all quality factors that may also help other researchers to know these factors

and provide their own solutions. We will introduce semi-automatic techniques to

identify these factors and control them. If these are not controllable, it will update

expert so he can avoid or manually remove them.

Chapter 6. Future Work 45

Hybrid Approach Traceability: There are different approaches available in the

literature to recover traceability links. Each traceability approach has some ben-

efits. We will combine IR-based, value-based, goal-centric traceability approach

to trace both functional and non-functional requirements. While, value-based

approach helps to perform economical analysis for investment and profit for trace-

ability links.

Optimization: In this proposal, we used two objectives (source code size, satisfy-

ing maximum customers) for optimization. In future, we will use more objectives

for optimizations including performance, scalability, satisfaction of each customer,

and portability. Different kind of graphs will be used to help expert in decision-

making process for optimization.

Non-Functional Requirements Traceability: It is quite possible that trac-

ing functional requirements and missing non-functional requirements traceability

leads to expensive miniaturized software in terms of memory size, processing speed,

and portability. We will use existing non-functional requirements traceability ap-

proaches to trace non-functional requirements. We will also try to improve existing

approaches or introduce new technique for tracing non-functional requirements and

improve traceability quality.

Verification and Validation: We will conduct more case studies to evaluate

our proposed TISM process. This step is incremental, if results are not good, we

will improve our proposed process and tools. But if the results are good then all

the results will be submitted to the conference and journal for publication. The

reviewers’ comments will be utilized to improve our proposed methodology.

6.3 Research Schedule

Here is an overview of research status and a time line for work accomplished and

to be done in future (Table 6.1). Criteria for completed research work will be in

the form of technical report, submission to a journal, or a conference. The major

milestones of the proposed research are listed in a chronological order and grouped

as milestones:

Chapter 6. Future Work 46

Milestones Start Times Activities

1-Literature review

2-Proposal Writing

Fall 2010

Winter 2010

+ Software miniaturization

+ Artefacts Traceability

+ Artefacts Traceability deployment

+ Defining TISM process

+ Experiments on Proposed process (TISM)

1-Comprehensive

Exam

2-Proposed process

Results analysis

Summer 2010 + Experimentation in Software Engineering: an Introduction

+ Empirical software engineering

+ Evidence-based software engineering

+ Software testing

+ Software engineering

+ Embedded Systems

+ Design Patterns

+ Refactoring to patterns

+ Proposal write-up

+ Possible publications:

+ 33rd international Conference on Software Engineering (ICSE)

1-Course Work

2- TISM Process ratio-

nalization

Fall 2010 + Scientific and Technical Communication II INF7900

+ Research Methods ING6900

+ Extend TISM process components details

+ Software engineering related Seminar

Traceability Factor

Controller

Winter 2011 + Case studies to identify traceability quality factors

+ Conducting survey for expert opinion about identified factors

+ Using tools and techniques to control quality affecting factors

+ Possible publications:

+ Book chapter in Software and Systems Traceability

+ 18th Working Conference on Reverse Engineering

1 - Hybrid traceability

approach

2 - NFR based minia-

turization

Summer 2011

Fall 2011

+ Evaluating different traceability approaches

+ Creating softgoal independency graph for NFR

+ Hybrid approach for tracing FR and NFR

+ Implement assessment process

+ Validate hybrid approach with case studies

+ Non-functional requirement based Software Miniaturization

+ Optimizing miniaturized software using genetic algorithms

+ Possible publications:

+ 34th international Conference on Software Engineering (ICSE)

+ 20th IEEE International Requirement Engineering Conference

Thesis Winter 2012

Fall 2012

+ Possible publications:

+ IEEE Journal, Transactions on Software Engineering

+ ACM Journal, Transactions on Software Engineering and Method-

ology

+ Prepare for thesis write-up

+ Thesis write-up and defense

Table 6.1: Research Time Line

Following are the potential titles for our future publication that we will publish

from the result of this research. OdMoMs paper is in progress and we will submit

it to ICSE11.

1. OdMoMs: On Deman Multi-objective Software Miniaturization

A: Traceability Approaches 47

2. 3D Traceability Approach for recovering Traceability Links

3. TraQua: Traceability Quality Factors, An Empirical Cast Study

4. Hybrid Traceability Approach

5. Non-functional Requirement Traceability to support Software Miniaturiza-

tion

6. Imperfect Information to Perfect Traceability, A Traceability Quality Han-

dler

7. Traceability Optimization for Cost-Benefit Analysis

Appendix A

Traceability Approaches

The following sections discuss thoroughly the current traceability approaches.

There are various traceability approaches available in the literature. We have

mentioned only some of the most cited one.

A.1 Information-Retrieval-Based

IR approaches have been applied in domain of internet search engines for several

decades and have some maturity. Many researchers have tried to use different

IR approaches to establish traceability links between different software artefacts

[33, 34]. IR support automatic generation of traceability links between artefacts

using similarity analysis. This approach is normally based on natural languages

text documents independent of structural properties. It uses an indexing process

on the collection of pre-process documents (corpus). This is done in the following

steps: (i) Extracting all the terms from corpus. (ii) Removing stop words and

stemming (ii) Developing dictionary of all terms and number of time it occurred

in that document. (iv) Calculating Term Frequency (TF) at document level.

(v) Calculating Inverse Document Frequency (IDF) to reduce the weight most

frequent words, at the corpus level. (vi) Developing TF/IDF weight matrix. (vii)

Computing similarity between document and query to retrieve a ranked list of

matched documents.

The user can use the rankings in order to understand relationships between arti-

facts and even requirements in order validate the links that have been generated

48

A: Traceability Approaches 49

by the IR algorithm [33, 35]. The user has to review each link to accepted or

reject, this activity remains a manual task which can not be automated [36]. IR-

based approach has been proposed as an after-the-fact method for traceability link

recovery [37].

The most commonly used IR models applied to traceability are: Vector Space

Model (VSM) [33], Probabilistic Model (PM) [38], and Latent Semantic Indexing

(LSI) [34]. In each model, source type of artefacts act as query and target type

of artefact act as document. For example, requirement document can be treated

as query while source code as document being searched based on the query. The

VSM [35] treats documents and queries as vectors in n-dimensional space. A dis-

tance or similarity function can be used to calculate similarity or distance between

vectors. There is one limitation in VSM that it can not produce good results for

polysemy and synonyms. The LSI [34] bases on VSM; however, it overcomes the

VSM limitation. LSI uses Singular Value Decomposition (SVD) to reduce the

dimensionality of LSI space. It is manual task, user has to select dimensional-

ity reduction value, it can vary from project to project. The PM uses statistical

formulas to rank documents based on probability of relevance to a query.

The effectiveness of IR technique is measured using two main metrics: recall and

precision [35, 37]. For a given query: recall is the percentage of actual retrieved

links and precision is the percentage of correct links as a ratio to the total number

of traces retrieved. The lower precision, the manual intervention is required to

review the returned results [33, 35]. IR approaches have been implemented in

different tools RETRO [39] ADAMS [40] and Poirot [41].

One of the drawback for using IR is the human intervention for low precision

queries. However, IR minimizes the cost to nearly zero, because human interven-

tion is only necessary when traces are retrieved and used. However, IR traceability

approaches proved it is much faster than manual approaches. It has been proved

on thousands to few numbers of documents and artefacts [37]. Previous research

also shown that recall and precision increase as number of documents increase

[37].It can have adverse affect on time for retrieval too.

A: Traceability Approaches 50

A.2 Event-Based

Clealand-huang et al. [42] proposed Event Based Traceability (EBT) approach to

handle both long-term evolutionary change as well as the short-term speculative

change needed to support performance related impact analysis. EBT is based

upon the event-notifier design pattern [43]. EBT defines traceability relationship

as publisher-subscriber relationships in which dependent artefacts must subscribe

to the requirements on which they depend [44]. EBT approach involves three main

components, i.e. (i) Requirement manager, (ii) Event server, and (iii) Subscriber

manager. When a change occurs in requirement (merge, replacement, refinement,

or abandonment) an event notification message is published. The event server

receives event notification and forward to all dependent artefacts. A subscriber

manager is responsible for listening all incoming event notification for a set of

similarly typed artefacts on the behalf of the subscribers that it manages for event

notification forwarded by the event server. In some cases, the event manager may

automatically update the managed object, whilst in other cases the event message

must be stored in an event log to await manual intervention [42]. EBT also provides

mechanism needed to support the performance related impact analysis. In EBT,

The main advantage of EBT is that when changes are introduced into the system,

they can be adequately propagated throughout the system of artefacts [45].

EBT supports two type of changes functional and contextual change. Functional

changes occur when a new requirement is added in the system. Functional changes

involve functionality and performance that is why they are hard to predict. If

a quantitative change occur in existing requirement is called contextual change.

The contextual changes update EBT system and execute automated re-execution

of relevant performance models with the new values from the change. It enables

project managers to analyze that should they implement new changes or no, and

helps developers to understand change effects.

The EBT assume the user has established the traceability links among artefacts.

Once links are established, changes can then be monitored [45]. EBT focused

only to manage up-to-date traceability links based on changes that may occur.

Clealand-huang et al. [42] made prototype based on EBT to manage and maintain

traceability between requirements and UML artifacts as well as test cases.

A: Traceability Approaches 51

A.3 Hypertext-Based

Metalic et al [46] proposed hypertext-based (HBT) approach for traceability be-

tween different artefacts. HBT allows traceability link recovery as well as ver-

sioning of traceability links. Sherba et al. [12, 46] also proposed hypertext-based

traceability link generation using open hypermedia and information integration.

Metalic et al [46] approach centers LSI and it is partially automated. However,

user input is necessary for different task (selecting source code, documents, select-

ing dimensionality subspace of LSI, and determine threshold value for traceability)

during HBT process. HBT treats each file as document and if files are too large

it break down into parts roughly the size of average document in the corpus.

The documents are broadly divided into two categories: conformance and non-

conformance. Conformance category Is further divided into two types: causal and

non- causal conformance. The causal relationship carry implied logical ordering of

document involved while a non-causal conformance relationship exist when docu-

ments or part of documents must agree each other. The causality can not be clearly

identified in non-causal relations. Non-conformance links are intended to support

navigational and organizational relationships that have little or no relevance to

determine agreement between documents.

In HBT model, links have two properties: arity (link specifies the number of its

endpoints) and directionality (navigational and logical links). Navigational di-

rectionality refers to the directions in which a link may be traversed. Logical

directionality is a semantic quality that is independent of how a link can be tra-

versed. HBT heavily depends on separating navigational and logical directionality.

In HBT, models and created links have been represented in XML format. This ap-

proach categorize model into two types: anchor model and target model. When the

traceability links have been created between models. A meta-differencing mecha-

nism can be used to monitor changes in models that may occur during software

evolution. HBT supports evolution by fine-grained versioning technique.

A.4 Rule-Based

Spanoudakis et al [47] presented a rule-based approach to extract traceability links

between requirement statement documents (RSD), use case documents (UCD),

A: Traceability Approaches 52

and analysis object models (AOM). They used mainly two rules, i.e. requirement-

to-object model (RTOM) and inter-requirement (IREQ). These rules were de-

ployed on previously mentioned artefacts.

RTOM rules are used to trace syntactically related terms in the textual parts of

RSD and UCD to an AOM. When RTOM rule matches found, a rule specified

type traceability link is created. The syntactic traces are defined as patterns of

terms that have specific grammatical roles in piece of text. These grammatical

roles are determined by probabilistic grammatical tagging technique [48]. IREQ

rules are used to trace between RSD and UCD. These traces are called derived

traceability as they are generated between parts of the RSD and UCD. It will only

be created, if these parts are traced to elements of AOM by RTOM traceability

links.

This technique assumes that all of document types are in XML-based format. The

traceability rules are also represented in XML-based mark-up language. Rule-

based traceability consists of four stages. (i) grammatical tagging of UCD and

RSD using CLAW [48] (ii) converting UCD, RSD, and AOM into XML represen-

tations (iii) generating traceability links between UCD, RSD, and AOM, and (iv)

the generation of traceability relations between different parts of the requirement

statement and use case documents.

Nentwich et all [49] developed rule-based tool (xlinkit) for consistency management

for xml-based software artefacts.Xlinkit assumes all artefacts are in document-

objece-model (DOM) tree format. It use first-order logic to describe consistency

rules. This approach has a fine-grained level of granularity since links can be

created at a method level in the source code (in the xlinkit too [49]). RB approach

also does not directly invoke into executable element of the software when applying

the rules, since the rules are only invoked into RSD, UCD, and AOM. RB technique

does not support partial generation for artefacts evolution. If change has been

made to a particular artefact, then RB technique will re-generate traces as it

generates links for the first time. RB technique can support versioning since the

links regeneration is independent from the previously established links.

A: Traceability Approaches 53

A.5 Scenario-Based

Egyed et al. in [50] proposed scenario-based (SB) traceability approach. SB has

three pre-requisite in order to create traceability links between artefacts. First,

there must be an executable or simulate able software system, it can be partial

implementation or incremental prototype. Second, there must be a software model

for the system. Finally, there must be test cases or scenarios that can be executed.

Various types of test scenarios can be used to observe and record the activities of

the system. Since those observations correspond directly to scenarios this implies

that trace information is established between those scenarios and the system. It is

not important for SB whether scenarios are tested manually or automatically, as

long as some automatically trace observation tools are used to observed footprints.

Footprint mean the classes that were executed while testing a scenario [51].

Trace analyzer [50] can be used to create the links between artefacts. Third party

tools such as Rational PureCoverage [IBM] can be used to observe the footprints.

SB approach can validate the following four types of traces: (a) traces between

scenarios and system, (b) traces between model elements and system, (c) traces

between scenarios and model elements, and (d) traces between model elements.

SB approach consists of four major activities called Hypothesizing,Atomizing,

Generalizing, and Refining.

Hypothesizing is used to reason about potential trace information. Hypothesizing

is the manual activity of SB approach. SB requires limited amount of hypothesized

trace information, otherwise, the cost of using it can be too high. SB assumes

that most are latest partially correct. However, it can target the wrong traces and

create new correct traces. These traces with automatic new generated traces can

be used for further reasoning.

SB uses footprint graph to reason about traces and how traces relate to model ele-

ments. Footprint graph also provides foundation for the generalizing and refining

activities of SB. Footprint graph can built by adding new scenario in the graph, it

involves two steps. First, identify the largest node that is either equal to or part

of the new scenario. If two nodes are equal they are merged together and if one

node has child then a parent-child relationship is created. In case no node is found

or in case a found node only partially covers the footprint of the new scenario.

Second, identify smallest node that overlap with the new scenario.

A: Traceability Approaches 54

In generalizing step, pure hierarchical decomposition of the footprint graph is

done. This hierarchy is then traversing the footprint graph starting at its leaves

to propagate trace information to their parents. Refining, the reverse activity,

and then traverse the footprint graph starting at its roots to propagate trace

information to its leaves [51]. SB can aid to reduce ambiguity in manual links by

introducing dynamic verification in large systems. SBT is a viable solution for

requirements change management activities as well as impact analysis of changing

requirements [IBM].

A.6 Value-Based

Zemont [24] introduces a framework for assessing the value that requirement trace-

ability can provide to an organization in order to support decisions related to the

implementation of requirement traceability.

The value-based (VB) approach provides a technical model and an economic model

for requirements tracing, depending on criteria like number of requirements, value

of requirements, risk of requirements, number of artefacts, number of traces, preci-

sion of traces, size of artefacts, cost/effort of trace identification and maintenance,

and value of traces [52]. VB consist of five processes. (i) Requirement definition:

project manager or requirement engineer analyse each requirement and assign a

unique identifier to create requirement list with id. (ii) Requirement prioritiza-

tion: all stakeholders asses the requirement and divide them on three priority levels

based on value, risk and effort of each requirement. (iii) Requirement packaging:

identification of requirement cluster to define and refine architecture from a given

set of requirements. (iv) Requirement linking: project team establish traceability

links between requirements and different software artefacts. Important require-

ments are traced in detail while less important requirements are traced at less

detail to create overall traceability plan. (v) Evaluation: project manager can use

traces to estimate the impact of change requirements.

In VB cost and benefits of requirements tracing mainly depends on project context,

tailoring parameters, and cost and benefits. VB combines a manual and semi-

automated way in obtaining the traceability links and in performing a change in

the software artefacts. VB does not support versioning feature since the links are

built in manual way. The scope of VB technique includes high-level and low-level

B: Applications of Traceability 55

artefacts. This technique has a fine-grained level of granularity since links can be

created at a method level in the source code. VB approach provides traceability

analysis as well as change impact analysis to support software evolution.

Egyed et al. [22] descirbed how VB technique can be used to determine (a) the

level of detail of traces among artifacts (package, class, method levels); (b) the

value of the artifacts that are traced (high-value artifacts justify a higher level of

tracing effort); and (c) the points in time of trace generation (early vs. late).

Appendix B

Applications of Traceability

The following sections discuss the deployment of traceability in software engineer-

ing. The main purpose to do traceability usage literature study is to see if any

of researcher has used traceability for software miniaturization or not. This sec-

tion also shows the importance of traceability in the different domains of software

engineering.

B.1 Impact Analysis and Concept Location

Impact analysis is a process of identifying the potential consequences of a change,

and estimating what must be modified to implement that change [53]. One of the

applications of requirements traceability is the change impact analysis [54]. Many

researchers have used traceability to analyze change impact. David et al. [54]

focused on requirement and requirement relations from traceability perspective to

provide formal definition of the requirement relations in SysML [OMG] for change

impact analysis. Cleland-Huang et al. [44] used an event-based approach to es-

tablish dynamic traceability links between requirements and performance models

of the software system. Quantitative values in performance related requirements

are adjusted to reflect proposed changes and impacted models are re-executed to

measure the impact of the change. The resulting outputs are then automatically

compared to relevant performance requirements and a system-wide report showing

the impact of the proposed change upon performance is generated [45]. Knethen

[55] proposed the TraceChange approach for impact analysis that focuses on func-

tional system requirements changes of embedded control system. TraceChange

56

B: Applications of Traceability 57

consists of three parts: (1) a fine-grained conceptual trace model, (2) process de-

scriptions of how to establish traces and how to analyze the impact of changes, and

(3) supporting tools [55]. Ibrahim [56] presented a software traceability approach

to support change impact analysis of object-oriented software. It provide the

ability to integrate the high-level software models with low-level software models

that involve requirements, test cases, design, and code. It allows a direct link be-

tween same and different level components. It supports top-down and bottom-up

traceability in response to tracing for the potential effects [56].

B.2 Maintenance

Large software systems have large number of elements and their integration is

complex. The understanding of large software systems is required for mainte-

nance task. The design rationale can support such understanding but it is often

undocumented or unstructured. The absence of design rationale makes the main-

tenance task more difficult. Traceability relations can be used to recover relations

between different artefacts to understand their design rationale.

Antoniol et al. [35] proposed a method based on information retrieval techniques

to trace the maintenance request text to software components that can be affected

directly with this maintenance request. Di Lucca et al. [57] applied different in-

formation retrieval techniques and machine learning approaches to trace incoming

maintenance request to the specialized maintenance team. They used training set

of correctly classified maintenance request. This trained data helped new incoming

request to go directly to specialized maintenance team. They used some distance

metrics to measure the distance between team specialization and new incoming

maintenance request.

Tang et al. [58] proposed rationale-based architecture model that incorporates de-

sign rationale, design objects, and their relationship. This model provide reasoning

that why design objects exists and their dependencies. Authors applied traceabil-

ity on this model to help several maintenance activities such as change impact

analysis and root-cause analysis. It helps software architects to better understand

and reason about software architecture. Their model uses UML representation.

They also developed a prototype for tracing of their model.

B: Applications of Traceability 58

B.3 Program Comprehension

Requirement traceability creates and utilizes relations between stakeholders re-

quirements and artefacts produced during the software development lifecycle.

Traceability relations between artefacts and manual pages assist in top-down and

bottom-up program comprehension [59]. Tracing feature evolution across releases

and identifying feature interaction reduce the program comprehension effort [60].

Egyed et al. [51] presented tool-supported approach that requires the designer

to specify some trace dependencies but eases trace acquisition by generating re-

maining traceability links automatically. They illustrated their approach using a

video-on-demand system to show that generated traces can be used in software

engineering scenarios to improve software understanding. Ratanotayanon et al.

[61] presented an approach for providing software comprehension support in Agile

software development using traceability relations. Authors also presented their

prototype tool, Zelda. Zelda is an Eclipse [Eclipse] plug-in that helps developers

to create links from user stories and tasks to source code, test cases, and vari-

ous text-based files. Zelda is designed to work with Agile practices that captures

and maintains links between high-level information and source code. This ap-

proach leverage the sequence in which artefacts are created in Agile development

to provide a lightweight, code centric means to capture links between user stories,

test cases, and source code. De Lucia et al. [62] developed an Eclipse [Eclipse]

plugin COCONUT (COde COmprehension Nurturant Using Traceability) capa-

ble of indicating the traceability links between high-level artefacts and the code

under development to improve Comprehensibility of Source Code. COCONUT

uses information retrieval techniques to create traceability relations. It calculates

similarity between source code components and high-level artefacts. Similarity

suggests actions aiming at improving the correct usage of identifiers and com-

ments in source code to improve traceability and the comprehensibility level.

B.4 Software Reuseability

Software artefacts at different level of abstraction can be identified and reused

with the help of different traceability relations. As software evolves, the documen-

tation becomes outdated. It results in difficulty to understand the current system

and reuse existing modules. Therefore, a successful reuse strategy must propose

B: Applications of Traceability 59

a solution to the traceability gap between software components and stakeholders

requirements [63]. The ReDSeeDS project use similarity of requirement specifi-

cations for software reuse. The software repositories, such as SVN, are used to

save time for software reusability. In order to reuse the existing software part in

repository, ReDSeeDS creates traceability links between new requirements and old

software, saved in repository. It saves a lot of development time and money [64].

It assumes that solutions for similar old requirements are reusable in new software

case [64]. Hong [65] presented the Architecture-centric Software Process for Pat-

tern Based Software Reuse approach. It uses architecture-centric software process

that combines architecture-centric modeling approach with software components

development process. It builds traceable component model. The architecture pat-

terns are used as the development expertise and are the key factors in software

reuse. It explicitly creates traceability links between components [65]. The trace-

ability mode can be used to identify reusable components in the existing software

system.

B.5 Software Verification and Validation

Traceability links can provide a start for performing verification and validation,

to ensure that system implemented whole user’s requirements and validate certain

properties and specification. Requirements traceability analysis is widely consid-

ered the most effective software V&V methods [66]. Koo et al. [67] developed Nu-

SISRT (Nuclear Software Inspection Support and Requirements Traceability) tool

and integrated requirement traceability to help verification and validation (V&V)

of software systems. NuSISRT traceability view supports traceability analysis be-

tween two documents. This view helps users to assess coverage for verification

and validation. Hayes et al. [68] presented REquirements TRacing On-target

(RETRO), requirement traceability tool. RETRO also helps in V&V and is used

in both research field and industry [68]. Deng et al. [69] proposed a traceability

technique named RBC (Retrieval By Construction). Authors preliminary investi-

gations suggest that RBC can be a useful traceability technique for validating and

verifying UML formalisations. This approach creates traceability links between

UML model and target model representing UML semantics by using generative

procedures. A generative procedure determines which elements should be created

in a target model to formalise an element in UML model.

Bibliography 60

B.6 Testing

Software testing is the central means for ensuring that system performs as ex-

pected. Traceability links can be used to check the existence of appropriate test

cases to validate different type of requirements and use such cases for further

testing. Traceability is required to support activities such as result evaluation,

regression testing, and coverage analysis [70].

Bouquest et al. [70] proposed an approach for automated test case generation

for smart card software validation. Authors developed the LEIRIOS Test Gen-

erator too that support their approach. This approach expects formal models

(written with B specification language) to be annotated with requirements iden-

tifiers. When the test cases are generated from the models, the identifiers are

used to create the traceability matrix relating requirement identifiers to test cases

identifiers.

Naslavsky et al. [71] proposed an approach that influences model transformation

traceability technique to create links between artefacts. This approach adopts

high-level models as the basis for test generation. It also includes the creation and

maintenance of traceability relations between test-related artefacts. Traceability is

required to support activities such as coverage analysis, evaluation, and regression

testing. Model-driven development and model transformation solutions address

the traceability problem by creating relationships among transformed artefacts

throughout the transformation process. Their fine granularity enables the support

for result evaluation, coverage analysis and regression testing.

Naslavsky et al. [72] proposed a model-based testing approach that uses model

transformation techniques to create a traceable infrastructure that comprises model-

based testing artefacts and fine grained relationship among these models. Their

approach supports model-based regression testing by leveraging fine-grained rela-

tionship established during test generation process.

Bibliography

[1] E. Iee. Ieee std 610.12-1990(r2002). IEEE Standard Glossary of Software
Engineering Terminology, 1990.

[2] A. Rawashdeh and B. Matalkah. A new software quality model for evaluating
cots components. Journal of Computer Science, 2(4):373–381, 2006.

[3] B. Ramesh and M. Jarke. Toward reference models for requirements trace-
ability. IEEE Trans. Softw. Eng., 27(1):58–93, 2001. ISSN 0098-5589.

[4] M. Di Penta, M. Neteler, G. Antoniol, and E. Merlo. Knowledge-based library
re-factoring for an open source project. In WCRE ’02: Proceedings of the
Ninth Working Conference on Reverse Engineering (WCRE’02), page 319,
Washington, DC, USA, 2002. IEEE Computer Society.

[Gartner] Gartner. Gartner says worldwide mobile phone sales grew 17 per cent
in first quarter 2010. URL http://www.gartner.com/it/page.jsp?id=

1372013. [Online; accessed 08-June-2010].

[eMarketer] eMarketer. How big will mobile get? URL http://www.emarketer.

com/Article.aspx?R=1006855. [Online; accessed 08-June-2010].

[Byrne] Gavin Byrne. Google’s momentum is growing in the mobile handset mar-
ket. URL http://www.informatm.com/itmgcontent/icoms/s/sectors/

handsets-devices/20017778004.html. [Online; accessed 08-June-2010].

[5] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and
S. Christina. Goal-centric traceability for managing non-functional require-
ments. In ICSE ’05: Proceedings of the 27th international conference on Soft-
ware engineering, pages 362–371, New York, NY, USA, 2005. ACM. ISBN
1-59593-963-2.

[6] W. Jirapanthong and A. Zisman. Xtraque: traceability for product line sys-
tems. Software and Systems Modeling, 8(1):117–144, February 2009. ISSN
1619-1366.

[7] B. Ramesh. Factors influencing requirements traceability practice. Commun.
ACM, 41(12):37–44, 1998. ISSN 0001-0782.

[8] J. I. Maletic and M. L. Collard. Tql: A query language to support traceabil-
ity. In TEFSE ’09: Proceedings of the 2009 ICSE Workshop on Traceability

61

http://www.gartner.com/it/page.jsp?id=1372013
http://www.gartner.com/it/page.jsp?id=1372013
http://www.emarketer.com/Article.aspx?R=1006855
http://www.emarketer.com/Article.aspx?R=1006855
http://www.informatm.com/itmgcontent/icoms/s/sectors/handsets-devices/20017778004.html
http://www.informatm.com/itmgcontent/icoms/s/sectors/handsets-devices/20017778004.html

Bibliography 62

in Emerging Forms of Software Engineering, pages 16–20, Washington, DC,
USA, 2009. IEEE Computer Society. ISBN 978-1-4244-3741-2.

[9] P. Mader, O. Gotel, and I. Philippow. Getting back to basics: Promoting
the use of a traceability information model in practice. In TEFSE ’09: Pro-
ceedings of the 2009 ICSE Workshop on Traceability in Emerging Forms of
Software Engineering, pages 21–25, Washington, DC, USA, 2009. IEEE Com-
puter Society. ISBN 978-1-4244-3741-2.

[10] P. Arkley and S. Riddle. Overcoming the traceability benefit problem. In RE
’05: Proceedings of the 13th IEEE International Conference on Requirements
Engineering, pages 385–389, Washington, DC, USA, 2005. IEEE Computer
Society. ISBN 0-7695-2425-7.

[11] J. Cleland-Huang, J. H. Hayes, and J. M. Domel. Model-based traceability.
In TEFSE ’09: Proceedings of the 2009 ICSE Workshop on Traceability in
Emerging Forms of Software Engineering, pages 6–10, Washington, DC, USA,
2009. IEEE Computer Society. ISBN 978-1-4244-3741-2.

[12] S. A. Sherba, Kenneth M. A., and M. Faisal. A framework for mapping
traceability relationships. In 2nd International Workshop on Traceability in
Emerging Forms of Software Engineering at 18th IEEE International Con-
ference on Automated Software Engineering, pages 32–39, Montreal, Quebec,
Canada, 2003.

[13] K. Osterbye and U. K. Wiil. The flag taxonomy of open hypermedia systems.
In HYPERTEXT ’96: Proceedings of the the seventh ACM conference on
Hypertext, pages 129–139, New York, NY, USA, 1996. ACM. ISBN 0-89791-
778-2.

[14] J. Cleland-Huang, G. Zemont, and W. Lukasik. A heterogeneous solution
for improving the return on investment of requirements traceability. In RE
’04: Proceedings of the Requirements Engineering Conference, 12th IEEE
International, pages 230–239, Washington, DC, USA, 2004. IEEE Computer
Society. ISBN 0-7695-2174-6.

[15] M. Glinz. On non-functional requirements. Requirements Engineering, IEEE
International Conference on, 0:21–26, 2007. ISSN 1090-705X.

[16] J. Cleland-Huang. Toward improved traceability of non-functional require-
ments. In TEFSE ’05: Proceedings of the 3rd international workshop on
Traceability in emerging forms of software engineering, pages 14–19, New
York, NY, USA, 2005. ACM. ISBN 1-59593-243-7.

[17] M. Kassab, O. Ormandjieva, and M. Daneva. A metamodel for tracing non-
functional requirements. In CSIE ’09: Proceedings of the 2009 WRI World
Congress on Computer Science and Information Engineering, pages 687–694,
Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-
3507-4.

Bibliography 63

[18] M. Di Penta, M. Neteler, G. Antoniol, and E. Merlo. A language-independent
software renovation framework. J. Syst. Softw., 77(3):225–240, 2005. ISSN
0164-1212.

[19] G. Antoniol, M. Di Penta, and M. Neteler. Moving to smaller libraries via
clustering and genetic algorithms. In Software Maintenance and Reengineer-
ing, 2003. Proceedings. Seventh European Conference on, pages 307 – 316,
2003.

[20] T. Bodhuin, M. Di Penta, and L. Troiano. A search-based approach for dy-
namically re-packaging downloadable applications. In CASCON ’07: Proceed-
ings of the 2007 conference of the center for advanced studies on Collaborative
research, pages 27–41, New York, NY, USA, 2007. ACM.

[21] G. Antoniol and M. Di Penta. Library miniaturization using static and dy-
namic information. In ICSM ’03: Proceedings of the International Confer-
ence on Software Maintenance, page 235, Washington, DC, USA, 2003. IEEE
Computer Society. ISBN 0-7695-1905-9.

[22] A. Egyed, S. Biffl, M. Heindl, and P. Grünbacher. A value-based approach for
understanding cost-benefit trade-offs during automated software traceability.
In TEFSE ’05: Proceedings of the 3rd international workshop on Traceability
in emerging forms of software engineering, pages 2–7, New York, NY, USA,
2005. ACM. ISBN 1-59593-243-7.

[23] J. H. Hayes, G. Antoniol, and Y. G. Guéhéneuc. Prereqir: Recovering pre-
requirements via cluster analysis. Reverse Engineering, Working Conference
on, 0:165–174, 2008. ISSN 1095-1350.

[24] G. Zemont. Towards Value-Based Requirements Traceability. PhD thesis,
DePaul, USA, 2005. Adviser-Chang, Carl.

[25] W. Wu, Y. G. Guéhéneuc, G. Antoniol, and M. Kim. Aura: a hybrid ap-
proach to identify framework evolution. In ICSE ’10: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering, pages
325–334, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-719-6.

[Pooka] Pooka. Pooka email client. URL http://www.suberic.net/pooka. [On-
line; accessed 13-May-2010].

[SIP] SIP. Sip communicator. URL http://www.sip-communicator.org. [On-
line; accessed 23-May-2010].

[26] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, New York, 1999.

[27] B. Caprile and P. Tonella. Restructuring program identifier names. In ICSM
’00: Proceedings of the International Conference on Software Maintenance
(ICSM’00), page 97, Washington, DC, USA, 2000. IEEE Computer Society.
ISBN 0-7695-0753-0.

http://www.suberic.net/pooka
http://www.sip-communicator.org

Bibliography 64

[28] J. Noppen, P. B. van den, and M. Aksit. Software development with imperfect
information. Soft computing, 12(1):3–28, June 2008.

[29] A. Zisman, G. Spanoudakis, E. Perez-Minana, and P. Krause. Towards a
traceability approach for product families requirements. In Proceedings of 3rd
ICSE Workshop on Software Product Lines: Economics, Architectures, and
Implications, Orlando, USA, May 2002.

[30] A Osyczka. Multicriteria optimization for engineering design. Design Opti-
mization, pages 193–227, 1985.

[31] Y. Sawaragi, N. Hirotaka, and T. Tetsuzo. Theory of multiobjective optimiza-
tion. Academic Press, Orlando :, 1985. ISBN 0126203709.

[32] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimisation: Nsga-
ii. In PPSN VI: Proceedings of the 6th International Conference on Parallel
Problem Solving from Nature, pages 849–858, London, UK, 2000. Springer-
Verlag. ISBN 3-540-41056-2.

[33] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering
traceability links between code and documentation. IEEE Trans. Softw. Eng.,
28(10):970–983, 2002. ISSN 0098-5589.

[34] A. Marcus and J. I. Maletic. Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. In ICSE ’03: Proceedings of
the 25th International Conference on Software Engineering, pages 125–135,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1877-X.

[35] G. Antoniol, G. Canfora, G. Casazza, and A. de Lucia. Identifying the starting
impact set of a maintenance request: A case study. In CSMR ’00: Proceedings
of the Conference on Software Maintenance and Reengineering, page 227,
Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0546-5.

[36] J. H. Hayes and A. Dekhtyar. A framework for comparing requirements trac-
ing experiments. International Journal of Software Engineering and Knowl-
edge Engineering, 15(5):751–782, 2005.

[37] J. H. Hayes, A. Dekhtyar, and J. Osborne. Improving requirements tracing via
information retrieval. In RE ’03: Proceedings of the 11th IEEE International
Conference on Requirements Engineering, page 138, Washington, DC, USA,
2003. IEEE Computer Society. ISBN 0-7695-1980-6.

[38] G. Antoniol, G. Canfora, A. de Lucia, G. Casazza, and E. Merlo. Tracing
object-oriented code into functional requirements. In IWPC ’00: Proceed-
ings of the 8th International Workshop on Program Comprehension, page 79,
Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0656-9.

[39] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, and S. Howard. Helping analysts
trace requirements: An objective look. In RE ’04: Proceedings of the Re-
quirements Engineering Conference, 12th IEEE International, pages 249–259,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2174-6.

Bibliography 65

[40] A. Lucia, De, F. Fasano, R. Oliveto, and G. Tortora. Adams re-trace: A
traceability recovery tool. In CSMR ’05: Proceedings of the Ninth European
Conference on Software Maintenance and Reengineering, pages 32–41, Wash-
ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2304-8.

[41] J. Lin, C. C. Lin, J. Cleland-Huang, R. Settimi, J. Amaya, G. Bedford,
B. Berenbach, O. B. Khadra, C. Duan, and X. Zou. Poirot: A distributed
tool supporting enterprise-wide automated traceability. In RE ’06: Proceed-
ings of the 14th IEEE International Requirements Engineering Conference,
pages 356–357, Washington, DC, USA, 2006. IEEE Computer Society. ISBN
0-7695-2555-5.

[42] J. Cleland-Huang, C. K. Chang, G. Sethi, K. Javvaji, H. Hu, and J. Xia.
Automating speculative queries through event-based requirements traceabil-
ity. In RE ’02: Proceedings of the 10th Anniversary IEEE Joint International
Conference on Requirements Engineering, pages 289–298, Washington, DC,
USA, 2002. IEEE Computer Society. ISBN 0-7695-1465-0.

[43] S. Gupta, J. Hartkopf, and S. Ramaswamy. Event notifier: A pattern of event
notification, 1998.

[44] J. Cleland-Huang. Robust requirements traceability for handling evolutionary
and speculative change. PhD thesis, Chicago, IL, USA, 2002. Adviser-Chang,
C.

[45] J. Cleland-Huang, C. K. Chang, and J. C. Wise. Automating performance-
related impact analysis through event based traceability. Requir. Eng., 8(3):
171–182, 2003.

[46] S. A. Sherba. Towards automating traceability: an incremental and scalable
approach. PhD thesis, Boulder, CO, USA, 2005.

[47] G. Spanoudakis, A. Zisman, E. Prez-Miana, and P. Krause. Rule-based gener-
ation of requirements traceability relations. Journal of Systems and Software,
72(2):105 – 127, 2004. ISSN 0164-1212.

[48] G. Leech, R. Garside, and M. Bryant. The tagging of the british national cor-
pus. 15th International Conference on Computational Linguistics (COLING
94), page 622628, 1994.

[49] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a con-
sistency checking and smart link generation service. ACM Trans. Internet
Technol., 2(2):151–185, 2002. ISSN 1533-5399.

[50] A. Egyed and P. Grünbacher. Automating requirements traceability: Be-
yond the record & replay paradigm. In ASE’02: Proceedings of the 17th
IEEE international conference on Automated software engineering, page 163,
Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1736-6.

Bibliography 66

[51] A. Egyed and P. Grünbacher. Supporting software understanding with auto-
mated requirements traceability. International Journal of Software Engineer-
ing and Knowledge Engineering, 15(5):783–810, 2005.

[IBM] IBM. Rational software. URL http://www.rational.com. [Online; ac-
cessed 23-May-2010].

[52] M. Heindl and S. Biffl. A case study on value-based requirements tracing.
In ESEC/FSE-13: Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 60–69, New York, NY, USA,
2005. ACM. ISBN 1-59593-014-0.

[53] L. C. Briand, Y. Labiche, L. O’Sullivan, and M. M. Sówka. Automated impact
analysis of uml models. Journal System Software, 79(3):339–352, 2006. ISSN
0164-1212.

[54] D. ten Hove, A. Göknil, I. Kurtev, K. G. van den Berg, and K. de Goede.
Change impact analysis for sysml requirements models based on semantics
of trace relations. In J. Oldevik, G. K. Olsen, T. Neple, and D. Kolovos,
editors, Proceedings of the ECMDA Traceability Workshop (ECMDA-TW)
2009, Enschede, the Netherlands, pages 17–28. Centre for Telematics and
Information Technology, University of Twente, June 2009.

[OMG] OMG. Sysml specification. URL OMGptc/06-05-04http://www.sysml.

org/specs.htm. [Online; accessed 23-May-2010].

[55] A. V. Knethen. Change-oriented requirements traceability: Support for evo-
lution of embedded systems. In ICSM ’02: Proceedings of the International
Conference on Software Maintenance (ICSM’02), page 482, Washington, DC,
USA, 2002. IEEE Computer Society. ISBN 0-7695-1819-2.

[56] S. Ibrahim and N. B. Idris. A requirements traceability to support change
impact analysis. Asean Journal of Information Technology, Pakistan, pages
345–355, 2005.

[57] G. di Lucca. An approach to classify software maintenance requests. In ICSM
’02: Proceedings of the International Conference on Software Maintenance
(ICSM’02), page 93, Washington, DC, USA, 2002. IEEE Computer Society.
ISBN 0-7695-1819-2.

[58] A. Tang, Y. Jin, and J. Han. A rationale-based architecture model for design
traceability and reasoning. Journal of Systems and Software, 80(6):918 – 934,
2007. ISSN 0164-1212.

[59] A. De Lucia, R. Oliveto, and G. Tortora. Adams re-trace: traceability link
recovery via latent semantic indexing. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages 839–842, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-079-1.

http://www.rational.com
OMG ptc/06-05-04 http://www.sysml.org/specs.htm
OMG ptc/06-05-04 http://www.sysml.org/specs.htm

Bibliography 67

[60] G. Antoniol, E. Merlo, Y. G. Guéhéneuc, and H. Sahraoui. On feature trace-
ability in object oriented programs. In TEFSE ’05: Proceedings of the 3rd
international workshop on Traceability in emerging forms of software engi-
neering, pages 73–78, New York, NY, USA, 2005. ACM. ISBN 1-59593-243-7.

[61] S. Ratanotayanon, S.E. Sim, and R. Gallardo-Valencia. Supporting program
comprehension in agile with links to user stories. In Agile Conference, 2009.
AGILE ’09., pages 26 –32, aug. 2009.

[Eclipse] Eclipse. Eclipse jdk. URL http://www.eclipse.org. [Online; accessed
23-May-2010].

[62] A. De Lucia, R. Oliveto, F. Zurolo, and M. Di Penta. Improving comprehen-
sibility of source code via traceability information: a controlled experiment.
In ICPC ’06: Proceedings of the 14th IEEE International Conference on Pro-
gram Comprehension, pages 317–326, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2601-2.

[63] S. B. D. Dakhli. The solution space organisation: Linking information systems
architecture and reuse. In Information Systems Developmen, pages 101–109,
Springer US, September 23 2009. Springer-Verlag. ISBN 978-0-387-84810-5.

[64] D. Bildhauer, T. Horn, and J. Ebert. Similarity-driven software reuse. In
CVSM ’09: Proceedings of the 2009 ICSE Workshop on Comparison and
Versioning of Software Models, pages 31–36, Washington, DC, USA, 2009.
IEEE Computer Society. ISBN 978-1-4244-3714-6.

[65] W. Hong. Architecture-centric software process for pattern based software
reuse. In WCSE ’09: Proceedings of the 2009 WRI World Congress on Soft-
ware Engineering, pages 95–99, Washington, DC, USA, 2009. IEEE Computer
Society. ISBN 978-0-7695-3570-8.

[66] S. R. Koo, P. H. Seong, J. Yoo, S. Deok Cha, and Y. J. Yoo. An effec-
tive technique for the software requirements analysis of npp safety-critical
systems, based on software inspection, requirements traceability, and formal
specification. Reliability Engineering & System Safety, 89:248 – 260, 2005.
ISSN 0951-8320.

[67] S. R. Koo, P. H. Seong, J. Yoo, S. Deok Cha, C. Youn, and H. Han. Nusee: An
integrated environment of software specification and v&v for plc based safety-
critical systems. Nuclear Engineering and Technology, 38:259276, 2006.

[68] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, E. A. Holbrook, S. Vadlamudi,
and A. April. Requirements tracing on target (retro): improving software
maintenance through traceability recovery. ISSE, 3:193–202, 2007.

[69] M. Deng, R. E. K. Stirewalt, and B. H. C. Cheng. Retrieval by construc-
tion: a traceability technique to support verification and validation of uml
formalization. ISSE, 5:837872, 2005.

http://www.eclipse.org

Bibliography 68

[70] F. Bouquet, E. Jaffuel, B. Legeard, F. Peureux, and M. Utting. Requirements
traceability in automated test generation: application to smart card software
validation. In A-MOST ’05: Proceedings of the 1st international workshop
on Advances in model-based testing, pages 1–7, New York, NY, USA, 2005.
ACM. ISBN 1-59593-115-5.

[71] L. Naslavsky, H. Ziv, and D. J. Richardson. Towards traceability of model-
based testing artifacts. In A-MOST ’07: Proceedings of the 3rd international
workshop on Advances in model-based testing, pages 105–114, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-850-3.

[72] L. Naslavsky and D. J. Richardson. Using traceability to support model-based
regression testing. In ASE ’07: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, pages 567–570,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-882-4.

	EPM-RT-2010-05_Ali
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context: Porting Software to Hand-held Devices
	1.2 Problem: Low Precision in Automated Trace Retrieval
	1.3 Research Objectives & Contribution
	1.3.1 Traceability Datasets
	1.3.2 Software Miniaturization
	1.3.3 Hybrid Approach for Traceability
	1.3.4 Traceability Quality Factor Controller
	Identifiers Quality
	Unused software modules
	Ambiguous Requirements
	Granularity level

	1.4 Proposal Organization

	2 Literature Review on Software Miniaturization and Traceability
	2.1 Discussion

	3 Traceability Improvement for Software Miniaturization (TISM)
	3.1 Research Design Flow
	3.2 TISM Process Assumptions
	3.3 High Level Model of TISM
	3.3.1 Requirement Elicitation
	3.3.2 Artefact Traceability
	3.3.3 Traceability Quality Affecting Factor Handler
	3.3.4 Software Miniaturization Optimization
	Performance:
	Scalability:
	Portability:
	Return-on-Investment:

	3.4 TISM Supporting Tools
	3.4.1 Artefact Traceability - FacTrace
	3.4.2 Dependency Graph Builder
	3.4.3 Optimization Package

	3.5 Traceability Quality Measuring Methods

	4 Preliminary Results
	4.1 Experiment Goals
	4.2 Datasets
	4.2.1 SIP Communicator
	4.2.2 Pooka

	4.3 Survey Population Statistics
	4.4 TISM Pre-Processing Step
	4.5 Vector Space Model (VSM)
	4.6 Requirement Elicitation
	4.7 Requirement Traceability
	4.8 Traceability Quality Affecting Factors
	4.9 Dependency Graph Builder
	4.10 Optimization

	5 Conclusion
	6 Future Work
	6.1 Short Term Goals
	6.2 Long Term Goals
	6.3 Research Schedule

	A Traceability Approaches
	A.1 Information-Retrieval-Based
	A.2 Event-Based
	A.3 Hypertext-Based
	A.4 Rule-Based
	A.5 Scenario-Based
	A.6 Value-Based

	B Applications of Traceability
	B.1 Impact Analysis and Concept Location
	B.2 Maintenance
	B.3 Program Comprehension
	B.4 Software Reuseability
	B.5 Software Verification and Validation
	B.6 Testing

