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Abstract—Poorly-chosen identifiers have been reported
in the literature as misleading and increasing the program
comprehension effort. Identifiers are composed of terms,
which can be dictionary words, acronyms, contractions, or
simple strings. We conjecture that the use of identical terms
in different contexts may increase the risk of faults. We
investigate our conjecture using a measure combining term
entropy and term context-coverage to study whether cer-
tain terms increase the odds ratios of methods to be fault-
prone. Entropy measures the physical dispersion of terms
in a program: the higher the entropy, the more scattered
across the program the terms. Context coverage measures
the conceptual dispersion of terms: the higher their context
coverage, the more unrelated the methods using them.
We compute term entropy and context-coverage of terms
extracted from identifiers in Rhino 1.4R3 and ArgoUML
0.16. We show statistically that methods containing terms
with high entropy and context-coverage are more fault-
prone than others.

Keywords-Source code identifiers; fault models; program
comprehension.

I. INTRODUCTION

Program comprehension is preliminary to any main-
tenance activity because developers must first identify
relevant code fragments before performing any activity.
Source code of good quality in terms of comments
and identifiers can surely ease such activities because
developers use identifiers to build their mental models of
the code under analysis. Thus, poorly-chosen identifiers
could be misleading and increase the risk of faults.

Fault-prone entities, i.e., classes, methods, and at-
tributes, in object-oriented programs have been char-
acterized by their internal characteristics. For example,
several studies used metrics, such as Chidamber and
Kemerer (CK) metrics suite [1], to build models to locate
fault-prone entities [2], [3], [4]. These studies show that
there are more faults in (1) complex [5] and (2) large
entities (in term of LOCs), thus characterizing fault
prone entities using only structural data. However, fault

proneness is a complex phenomenon hardly captured by
a single characteristic, such as complexity or size.

Several studies showed that identifiers impact program
comprehension (e.g., [6], [7], [8]) and code quality [9].
Indeed, identifiers must be sufficiently distinctive yet
must relate to one another and to the context in which
they appear [7]. We concur with Deißenböck and Pizka’s
observation that proper identifiers improve quality and
that identifiers should be used consistently [7]. We
consequently present, to the best of our knowledge, the
first empirical study on the relation between the terms in
identifiers, their spread in entities, and fault proneness.

By term we mean any substring in an identifier or
to the identifier itself if it is not compound. Terms
are obtained by splitting identifiers, for example with
a Camel-case splitter [10], and they may be dictionary
words (e.g., userAccount), acronyms (e.g., uint for
unsigned integer), abbreviations (e.g., int for integer),
or any string (e.g., x11 for the window system).

We conjecture that a term should carry a single mean-
ing in the context where it is used. Thus, terms used for
different concepts and–or in different contexts may either
reflect the program domain or some misunderstandings
but would lead, in any case, to an increase in the
developers’ effort to understand the role of the associated
entities, ultimately leading to faults.

We present a novel measure based on linguistic data
and an empirical study to verify our conjecture. The
novel measure quantifies terms from two aspects: term
entropy and context-coverage. Term entropy is derived
from entropy in information theory and measures the
“physical” dispersion of a term in a program, i.e., the
higher the entropy, the more scattered the term is across
entities. Term context-coverage is based on an Informa-
tion Retrieval method and measures the “conceptual”
dispersion of the entities in which the term appears,
i.e., the higher the context coverage of a term, the more
unrelated are the entities containing it.



We perform an empirical study relating terms with
high entropy and high context-coverage to the fault-
proneness of the methods and attributes in which they
appear. We analyze two widely studied open source pro-
grams, ArgoUML1 and Rhino2 because sets of manually-
validated faults for these two programs exist in the
literature. We show that there is a statistically signifi-
cant relation between the “physical” and “conceptual”
dispersion of terms and fault proneness.

Thus, the contributions of this paper are as follows:
• A novel measure characterizing the “physical” and

“conceptual” dispersions of terms;
• An empirical study showing the relation between

the proposed measure and entities fault proneness.
The rest of the paper is organized as follows. Section II

presents related work. Section III introduces background
definitions and defines the novel measure. Section IV
describes our empirical study, reports, and discusses its
results. Section V concludes and suggests future work.

II. RELATED WORK

Our study relates to Information Retrieval (IR), fault
proneness, and the quality of source code identifiers.

a) Entropy and IR-based Metrics: Several metrics
based on entropy exist. Olague et al. [11] used entropy-
based metrics to explain the changes that a class under-
goes between versions of an object-oriented program.
They showed that classes with high entropy tend to
change more than classes with lower entropy. Yu et
al. [12] combined entropy with component-dependency
graphs to measure component cohesion. Entropy was
also used by Snider [13] to measure the structural quality
of C code by comparing the entropy of legacy program
with that of a rewrite of the same program aimed at pro-
ducing a well-structured system. The rewritten program
had a much lower entropy that the legacy program.

IR methods have also been used to define new
measures of source code quality. Etzkorn et al. [14]
presented a new measure for object-oriented programs
that examines the implementation domain content of a
class to measure its complexity. Patel et al. [15] and
Marcus et al. [16] used Vector Space Model (VSM)
and Latent Semantic Indexing (LSI) [17], respectively,
to measure the semantic cohesion of a class. They
used IR methods to compute the overlap of semantic
information in implementations of methods, calculating
the similarities among the methods of a class. Applying
a similar LSI-based approach, Poshyvanyk and Marcus
[18] defined new coupling metrics based on semantic

1http://argouml.tigris.org/
2http://www.mozilla.org/rhino/

similarity. Binkley et al. [19] also used VSM to ana-
lyze the quality of programs. Split identifiers extracted
from entities were compared against the split identifiers
extracted from the comments of the entities: the higher
the similarity, the higher the quality of the entities. The
metric was also applied to predict faults and a case study
showed that the metric is suitable for fault prediction in
programs obeying code conventions.

b) Metrics and Fault Proneness: Several re-
searchers studied the correlations between static object-
oriented metrics, such as the CK metrics suite [1], and
fault proneness. For example, Gyimóthy et al. [3] com-
pared the accuracy of different metrics from CK suite to
predict fault-prone classes in Mozilla. They concluded
that CBO is the most relevant predictor and that LOC is
also a good predictor. Zimmermann et al. [5] conducted
a case study on Eclipse showing that a combination of
complexity metrics can predict faults, suggesting that
the more complex the code is, the more faults in it. El
Emam et al. [20] showed that the previous correlations
between object-oriented metrics and fault-proneness are
mostly due to the correlations between the metrics and
size. Hassan [21] observed that a complex code-change
process negatively affects programs. He measured the
complexity of code change through entropy and showed
that the proposed change complexity metric is a better
predictor of faults than other previous predictors.

c) Identifiers and Program Comprehension:
Haiduc and Marcus [8] studied several open-source
programs and found that about 40% of the domain
terms were used in the source code. Unfortunately, in
collaborative environments, the probability of having
two developers use the same identifiers for different
entities is between 7% and 18% [22]. Thus, naming
conventions are crucial for improving the source code
understandability. Butler et al. [9] analyzed the impact of
naming conventions on maintenance effort, i.e., on code
quality. They evaluated the quality of identifiers in eight
open-source Java libraries using 12 naming conventions.
They showed that there exists a statistically significant
relation between flawed identifiers (i.e., violating at least
one convention) and code quality.

The role played by identifiers and comments on source
code understandability has been empirically analyzed by
Takang et al. [23], who compared abbreviated identifiers
with full-word identifiers and uncommented code with
commented code. They showed that (1) commented
programs are more understandable than non-commented
programs and (2) programs containing full-word identi-
fiers are more understandable than those with abbrevi-
ated identifiers. Similar results have also been achieved
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by Lawrie et al. [24]. These latter studies also showed
that, in many cases, abbreviated identifiers are as useful
as full-word identifiers. Recently, Binkley et al. [25]
performed an empirical study of the impact of identifier
style on code readability and showed that Camel-case
identifiers allow more accurate answers.

III. IDENTIFIERS, ENTROPY, AND CONTEXTS

We now detail the computations of term entropy and
context-coverage. With no loss of generality, we focus on
methods and attributes because they are “small” contexts
of identifiers. Moreover, we consider attributes because
they are often part of some program faults, e.g., in Rhino
they participate to 37% of the reported faults. However,
the computation can be broaden by using classes or other
entities as contexts for identifiers.

A. Data extraction

We extract the data required to compute term entropy
and context-coverage in two steps. First, we extract the
identifiers found in class attributes and methods, e.g., ,
names of variables and of called methods, user defined
types, method parameters. Extracted identifiers are split
using a Camel-case splitter to build the term dictionary,
e.g., getText is split into get and text. We then apply
two filters on the dictionary. First, we remove terms
with a length less than two because their semantics is
often unclear and because they most likely correspond
to loop indexes (e.g., I, j, k). Second, we prune terms
appearing in a standard English stop-word list augmented
with programming language keywords.

Second, the linguistic data is summarized into a m×n
frequency matrix, i.e., a term-by-entity matrix. The num-
ber of rows of the matrix, m, is the number of terms in
the dictionary. The number of columns, n, corresponds to
the number of methods and attributes. The generic entry
ai,j of the term-by-entity matrix denotes the number of
occurrences of the ith term in the jth entity.

B. Term Entropy

Shannon [26] measures the amount of uncertainty, or
entropy, of a discrete random variable X as:

H(X) = −
∑
x∈κ

p(x) · log(p(x))

where p(x) is the mass probability distribution of the
discrete random variable X and κ is its domain.

We consider terms as random variables with some
associated probability distributions. We normalize each
row of the term-by-entity matrix so that each entry is
in [0, 1] and the sum of the entries in a row is equals
to one to obtain a probability distribution for each term.

Normalization is achieved by dividing each ai,j entry by
the sum of all ai,j over the row i. A normalized entry
âi,j is then the probability of the presence of the term
ti in the jth entity. We then compute term entropy as:

H(ti) = −
n∑
j=1

(âi,j) · log(âi,j) i = 1, 2, . . . ,m

With term entropy, the more scattered among entities
a term is, the closer to the uniform distribution is its
mass probability and, thus, the higher is its entropy. On
the contrary, if a term has a high probability to appear
in few entities, then its entropy value will be low.

C. Term Context Coverage

While term entropy characterizes the “physical” dis-
tribution of a term across entities, context-coverage
measures its “conceptual” distribution in the entities
in which the term appears. In particular, we want to
quantify whether a same term is used in different con-
texts, i.e., methods and–or attributes, with low textual
similarity. Thus, the context coverage of term tk (where
k = 1, 2, . . . ,m) is computed as the average textual
similarity of entities containing tk:

CC(tk) = 1− 1(
|C|
2

) ∑
i = 1 . . . |C| − 1
j = i + 1 . . . |C|

ei, ej ∈ C

sim(ei, ej)

where C = {el|ãk,p 6= 0} is the set of all entities
in which term tk occurs and sim(ei, ej) represents
the textual similarity between entities ei and ej . Note

that the number of summations is
(
|C|
2

)
because

sim(ei, ej) = sim(ej , ei).
A low value of the context coverage of a term means

a high similarity between the entities in which the term
appears, i.e., the term is used in consistent contexts.

To computed the textual similarity between entities
we exploit LSI, a space reduction based method widely
and successfully used in IR [17]. In particular, LSI
applies a factor analysis technique to estimate the “la-
tent” structure in word usage trying to overcome the
main deficiencies of IR methods, such as synonym and
polysemy problems. In particular, the non-normalized
term-by-entity LSI projection into the entities subspace
ãi,j captures the more important relations between terms
and entities. The columns of the reduced term-by-entity
matrix represent entities and can be thought of as ele-
ments of a vector space. Thus, the similarity between
two entities can be measured by the cosine of the angle
between the corresponding vectors.
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D. Aggregated Metric

In this preliminary investigation we use the variable

numHEHCC (“number of high entropy and high con-

text coverage”), associated with all entities, to compute

correlation, build linear as well as logistic models and

contingency tables throughout the following case study:

numHEHCC(Ej) =
mX

i=1

aij · ψ(H(ti) ≥ thH ∧ CC(ti) ≥ thCC)

where aij is the frequency in the term-by-entity matrix

of term ti and entity Ej (j = 1, 2, . . . , n) and ψ() is

a function returning one if the passed Boolean value is

true and zero otherwise.

Thus, numHEHCC represents the overall number

of times any term with high entropy (value above thH )

and high context coverage (value above thCC) is found

inside an entity.

IV. CASE STUDY

We now present a study of the term entropy and

context-coverage measures following the Goal-Question-

Metrics paradigm [27]. The goal of the study is to

investigate the relation (if any) between term entropy

and context-coverage, on the one hand, and entities fault

proneness, on the other hand. The quality focus is a better

understanding of characteristics likely to hinder program

comprehension and to increase the risk of introducing

faults during maintenance. The perspective is both of

researchers and practitioners who use metrics to study

the characteristic of fault prone entities.

The context of the study is two open-source pro-

grams: Rhino, a JavaScript/ECMAScript interpreter and

compiler part of the Mozilla project, and ArgoUML, a

UML modeling CASE tool with reverse-engineering and

code-generation capabilities. We selected ArgoUML and

Rhino because (1) several versions of these prorgrams

are available, (2) they were previously used in other case

studies [28], [29], and (3) for ArgoUML (from version

0.10.1 to version 0.28) and for Rhino (from version

1.4R3 to version 1.6R5), a mapping between faults and

entities (attributes and methods) is available [29], [30].

A. Research Questions

Entropy and context coverage likely capture features

different from size or other classical object-oriented

metrics, such as the CK metrics suite [31]. However,

it is well known that size is one of the best fault

predictors [3], [32], [33] and, thus, we first verify that

numHEHCC is somehow at least partially comple-

mentary to size.

Second, we believe that developers are interested in

understanding why an entity may be more difficult to

change than another. For example, given two methods

using different terms, all their other characteristics being

equal, they are interested to identify which of the two is

more likely to take part in faults if changed.

Therefore, the case study is designed to answer the

following research questions:

• RQ1 – Metric Relevance: Do term entropy and

context-coverage capture characteristics different

from size and help to explain entities fault prone-

ness? This question investigates if term entropy and

context-coverage are somehow complementary to

size, and thus, quantify entities differently.

• RQ2 – Relation to Faults: Do term entropy and

context-coverage help to explain the presence of

faults in an entity? This question investigates if

entities using terms with high entropy and context-

coverage are more likely to be fault prone.

Fault proneness is a complex phenomenon impossible

to capture and model with a single characteristic. Faults

can be related to size, complexity, and–or linguistic

ambiguity of identifiers and comments. Some faults may

be better explained by complexity while other by size

or linguistic inconsistency of poorly selected identifiers.

Therefore, we do not expect that RQ1 and RQ2 will

have the same answer in all version of the two programs

and will be universally true. Nevertheless, as previous

authors [6], [7], [9], [19] we believe reasonable to

assume that identifiers whose terms have with high

entropy and high context-coverage hint at poor choices

of names and, thus, at a higher risk of faults.

B. Analysis Method

To statistically analyze RQ1, we computed the cor-

relation between the size measured in LOCs and a new

metric derived from entropy and context-coverage. Then,

we estimated the linear regression models between LOCs

and the new metric. Finally, as an alternative to the

Analysis Of Variance (ANOVA) [34] for dichotomous

variables, we built logistic regression models between

fault proneness (explained variable) and LOCs and the

proposed new metric (explanatory variables).

Our goal with RQ1 is to verify whether term entropy

and context-coverage capture some aspects of the entities

at least partially different from size. Thus, we formulate

the null hypothesis:

H01: The number of terms with high entropy
and context-coverage in an entity does not
capture a dimension different from size and is
not useful to explain its fault proneness.
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We expect that some correlation with size does exist:
longer entities may contain more terms with more chance
to have high entropy and high context-coverage.

Then, we built a linear regression model to further an-
alyze the strength of the relation in term of unexplained
variance, i.e., 1 − R2. This model indirectly helps to
verify that entropy and context-coverage contribute to
explain fault proneness in addition to size.

Finally, we performed a deeper analysis via logistic
regression models. We are not interested in predicting
faulty entities but in verifying if entropy and context-
coverage help to explain fault proneness. The multivari-
ate logistic regression model is based on the formula:

π(X1, X2, . . . , Xn) =
eC0+C1·X1+···+Cn·Xn

1 + eC0+C1·X1+···+Cn·Xn

where Xi are the characteristics describing the entities
and 0 ≤ π ≤ 1 is a value on the logistic regression
curve. In a logistic regression model, the dependent
variable π is commonly a dichotomous variable, and
thus, assumes only two values {0, 1}, i.e., it states
whether an entity took part in a fault (1) or not (0).
The closer π(X1, X2, . . . , Xn) is to 1, the higher is
the probability that the entity took part in a fault. An
independent variable Xi models information used to
explain the fault proneness probability; in this study we
use a metric derived from term entropy and the context-
coverage, numHEHCC, and a measure of size (LOCs)
as independent variables.

Once independent variables are selected, given a train-
ing corpus, the model estimation procedure assigns an
estimated value and a significance level, p-value, to the
coefficients Ci. Each Ci p-value provides an assessment
of whether or not the ith variable helps to explain the
independent variable: fault proneness of entities.

Consequently, we expect that the logistic regression
estimation process would assign a statistically relevant
p-value to the coefficient of a metric derived from term
entropy and context coverage, i.e., lower than 0.05
corresponding to a 95% significance level.

With respect to our second research question (RQ2)
we formulate the following null hypothesis:

H02 : There is no relation between high term
entropy and context coverage of an entity and
its fault proneness.

We use a prop-test (Pearson’s chi-squared test) [34] to
test the null hypothesis. If term entropy and context
coverage are important to explain fault proneness, then
the prop-test should reject the null hypothesis with a
statistically significant p-value.

To quantify the effect size of the difference between
entities with and without high values of term entropy

and context coverage, we also compute the odds ratio
(OR) [34] indicating the likelihood of the entities to have
such high values for our metric. OR is defined as the
ratio of the odds p of a fault prone entity to have high
term entropy and high context coverage to the odds q
of this entity to have low entropy and context coverage:
OR = p/(1−p)

q/(1−q) . When OR = 1 the fault prone entities
can either have high or low term entropy and context
coverage. Otherwise, if OR > 1 the fault prone entities
have high term entropy and high context coverage. Thus,
we expect OR > 1 and a statistically significant p-value
(i.e., again 95% significance level).

C. Execution

We download several versions of Rhino for which
faults were documented by Eaddy et al. [29] from
the Mozilla Web site3. Versions of ArgoUML were
downloaded from the Tigris Community Web site4. We
selected the version of ArgoUML that has the maximum
number of faulty entities (ArgoUML v0.16.) and one of
the versions of Rhino, Rhino v1.4R3.

The selected version of ArgoUML consists of 97,946
lines of Java code (excluding comments and blank lines
outside methods and classes), 1,124 Java files, and
12,423 methods and fields. Version 1.4R3 of Rhino
consists of 18,163 lines of Java code (excluding com-
ments and blank lines outside methods and classes), 75
files, 1,624 methods and fields. Indeed, Rhino v1.4R3
is the first and smallest Rhino version with documented
faults; since our study in the earliest phase required a
remarkable manual verification of data and results we
selected v1.4R3 to simplify and minimize verification
effort. In essence, all data and results where manually
and carefully verified several times on Rhino v1.4R3.
ArgoUML data were also verified but manual verification
was limited to the ambiguous and critical cases discov-
ered by Rhino analysis.

To create the term-by-entity matrix, we first parse the
Java files of Rhino and ArgoUML to extract identifiers.
We obtain terms by splitting the identifiers using a
Camel-case split algorithm. We compute term entropy
and context coverage using the approach presented in the
previous section. We finally use existing fault mappings
[29], [30] to tag methods and attributes and relate them
with entropy and context coverage values. The following
paragraphs detail each step.

1) Term extraction: We used a grammar for the Java
programming language v1.5 and JavaCC5 to generate

3https://developer.mozilla.org/
4http://argouml.tigris.org/
5https://javacc.dev.java.net/
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a Java parser and extract identifiers. We verify the
completeness and soundness of the grammar and of the
extracted identifiers by parsing 11 versions of Rhino
and 11 versions of ArgoUML. We omitted two versions
of Rhino because their numbers of faulty entities was
too low: two and six. In general Rhino versions have a
very limited numbers of documented faults and this may
possibly bias model estimation and derived conclusions;
for example Rhino v1.4R3 contains 14 faulty entities.
Only five Rhino and four ArgoUML versions generate
some parse errors on more than 8% of files. We selected
a Rhino version with 1% parsing errors (v1.4R3) and one
ArgoUML (v0.16) with 4.7% parsing errors. Despite the
parsing errors we choose v0.16 for ArgoUML as it was
the version with the highest number of faulty entities,
and v1.4R3 for Rhino as it has one of the lowest number
of faulty entities with comparison to other versions and
also, as noted above, it is the smallest version. The
extracted identifiers were split considering both digits
and underscore plus Camel-case aiming at extracting
terms. The extracted terms are then filtered according
to both stop-word function and list.

2) Mapping Faults to Entities: We reuse previous
findings to map faults and entities. For Rhino the map-
ping of faults with entities was done by Eaddy et al. [29]
for 11 versions of Rhino. We obtain the mapping which
corresponds to Rhino v1.4R3 by extracting, for each
fault, its reporting date/time6 and its fixing date/time.
Then, we keep only those faults which fall under one
of the following two cases: (i) the reporting date of the
fault was before the release date of v1.4R3 and its fixing
date was after the release date of the same version, (ii)
the reporting date of the fault is after the release date of
v1.4R3 and before the release date of the next version
(v1.5R1). As for ArgoUML, we also use a previous
mapping between faults and classes [30]. For each class
marked as faulty, we compare its attributes and methods
with the attributes and methods of the same class in the
successive version and keep those that were changed and
mark them as faulty.

3) Mapping Entities to Entropy and Context Cover-
age: We identify entities with high term entropy and
context coverage values by computing and inspecting
the box-plots and quartiles statistics of the values on all
Rhino versions and the first five versions of ArgoUML.
The term context coverage distribution is skewed to-
wards high values. For this reason we use 10% highest
values of term context coverage to define a threshold
identifying the high context coverage property. In other
words, standard outlier definition was not applicable to

6https://bugzilla.mozilla.org/query.cgi

Table I
CORRELATION TEST FOR ARGOUML V0.16 AND RHINO V1.4R3.

System Correlation p-values
ArgoUML 0.4080593 ≺ 2.2e− 16
Rhino 0.4348286 ≺ 2.2e− 16

Table II
LINEAR REGRESSION MODELS FOR RHINO V1.4R3 AND

ARGOUML V0.16.

Variables Coefficients p-values

Rhino (R2 = 0.1891) Intercept 0.038647 0.439
LOC 0.022976 ≺ 2e− 16

Argo (R2=0.1665) Intercept -0.0432638 0.0153
LOC 0.0452895 ≺ 2e− 16

context coverage. We do not observe a similar skew
for the values of term entropy and, thus, the threshold
for high entropy values is based on the standard outlier
definition (1.5 times the inter-quartile range above the
75% percentile). We use the two thresholds to measure
for each entity, the number of terms characterized by
high entropy and high context coverage that it contains.

D. Results

We now discuss the results achieved aiming at pro-
viding answers to our research questions.

1) RQ1 – Metric relevance: Table I reports the results
of Pearson’s product-moment correlation for both Rhino
and ArgoUML. As expected, some correlation exists
between LOC and numHEHCC plus the correlation
is of the same order of magnitude for both programs.

Despite a 40% correlation a linear regression model
built between numHEHCC (dependent variable) and
LOC (independent variable) attains an R2 lower than
19% (see Table II). The R2 coefficient can be interpreted
as the percentage of variance of the data explained by
the model and thus 1−R2 is an approximations of the
model unexplained variance. In essence Table II support
the conjecture that LOC does not substantially explain
numHEHCC as there is about 80% (85%) of Rhino
(ArgoUML) numHEHCC variance not explained by
LOC. Correlation and linear regression models can be
considered a kind of sanity check to verify that LOC
and numHEHCC help to explain different dimensions
of fault proneness.

The relevance of numHEHCC in explaining faults,
on the programs under analysis, is further sup-
ported by logistic regression models. Table III re-
ports the interaction model built between fault prone-
ness (explained variable) and the explanatory variables
LOC and numHEHCC. In both models, MArgoUML

and MRhino, the intercept is relevant as well as
numHEHCC. Most noticeably in Rhino the LOC
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Table III
ARGOUML V0.16 AND RHINO V1.4R3 LOGISTIC REGRESSION

MODELS.

Variables Coefficients p-values

MArgoUML

Intercept -1.688e+00 ≺ 2e− 16
LOC 7.703e-03 8.34e− 10
numHEHCC 7.490e-02 1.42e− 05
LOC:numHEHCC -2.819e-04 0.000211

MRhino

Intercept -4.9625130 ≺ 2e− 16
LOC 0.0041486 0.17100
numHEHCC 0.2446853 0.00310
LOC:numHEHCC -0.0004976 0.29788

coefficient is not statistically significant as well as the in-
teraction term (LOC : numHEHCC). This is probably
a fact limited to Rhino version 1.4R3 as for ArgoUML
both LOC and the interaction term are statistically signif-
icant. Notice however, that in both models MArgoUML

and MRhino the LOC coefficient is, at least, one order of
magnitude smaller than the numHEHCC coefficient.
This can partially be explained by the different range
of LOC versus numHEHCC. On average in both
programs method size is below 100 LOC and most
often a method contains one or two terms with high
entropy and context coverage. Thus, at first glance we
can safely say that both LOC and numHEHCC have
the same impact in term of probability. In other words,
the models in Table III clearly show that LOC and
numHEHCC capture different aspects of the fault
proneness characteristic. Base on the reported results
we can conclude that although some correlation exists
between LOC and numHEHCC, statistical evidence
allows us to reject, on the programs under analysis, the
null hypothesis H01 .

2) RQ2 – Relation to faults: To answer RQ2, we
perform prop-tests (Pearson’s chi-squared test) and test
the null hypothesis H02 . Indeed, (i) if prop-tests revel
that numHEHCC is able to divide the population into
two sub-populations and (ii) if the sub-population with
positive values for numHEHCC has an odds ratio bigger
than one, then numHEHCC may act as a risk indicator.
For entities with positive numHEHCC it will be possible
to identify those terms leading to high entropy and
high context coverage, identifying also the contexts and
performing refactoring actions to reduce entropy and
high context coverage.

Tables IV and V show the confusion matrices for
ArgoUML v0.16 and Rhino v1.4R3, together with the
corresponding p-value and odds ratios. As the tables
show, the null hypothesis H02 can be rejected.

We further investigate, with Tables VI and VII, the
relation between numHEHCC and odds ratio. These
contingency tables compute the odds ratio of entities
containing two or more terms with high entropy and high

Table IV
ARGOUML V0.16 CONFUSION MATRIX.

ArgoUML numHEHCC ≥ 1 numHEHCC = 0 Total
Fault prone 381 1706 2087
Fault free 977 9359 10336
Total 1358 11065 12423
p-value ≺ 2.2e− 16
Odds ratio = 2.139345

Table V
RHINO V1.4R3 CONFUSION MATRIX.

Rhino numHEHCC ≥ 1 numHEHCC = 0 Total
Fault prone 6 8 14
Fault free 172 1438 1610
Total 178 1446 1624
p-value = 0.0006561
Odds ratio = 6.270349

context coverage with those entities which only contain
one high entropy and high context coverage term. They
are not statistically significant, but the odds ratio is close
to one, this seems to suggest that the real difference is
between not containing high entropy and high context
coverage terms and just containing one or more. The
results allow us to conclude, on the analyzed programs,
that there is a relation between high term entropy and
context-coverage of an entity and its fault proneness.

E. Discussion

We now discuss some design choices we adopted dur-
ing the execution of the case studies aiming at clarifying
their rationale.

1) LSI subspace dimension: The choice of LSI sub-
space is critical. Unfortunately, there is not any system-
atic way to identify the optimal subspace dimension.
However, it was observed that in the application of LSI
to software artifacts repository for recovering traceability
links between artifacts good results can be achieved set-
ting 100 ≤ k ≤ 200 [35], [36]. Therefore following such
a heuristic approch we set the LSI subspace dimension
equal to 100.

2) Java Parser: We developed our own Java parser,
using a Java v1.5 grammar, to extract identifiers and
comments from source code. Our parser is robust and
fast (less than two minutes to parse any version of
the studied programs, in average) but when applied,
few files could not be parsed. Unparsed files include
those developed on earlier versions of both ArgoUML
and Rhino because of the incompatibility between the
different versions of Java grammar.

3) Statistical Computations: All statistical computa-
tions were performed in R7. The computations took

7http://www.r-project.org/
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Table VI
ARGOUML V0.16 CONFUSION MATRIX.

ArgoUML numHEHCC ≥ 2 numHEHCC = 1 Total
Fault prone 198 183 381
Fault free 511 466 977
Total 709 649 1358
p-value = 0.9598
Odds ratio = 0.9866863

Table VII
RHINO V1.4R3 CONFUSION MATRIX.

Rhino numHEHCC ≥ 2 numHEHCC = 1 Total
Fault prone 3 3 6
Fault free 75 97 172
Total 78 100 178
p-value = 1
Odds ratio = 1.293333

about one day for both programs, where the most ex-
pensive part of the computation in terms of time and
resources was the calculation of the similarity matrix.
We believe that neither extensibility nor scalability are
issues: this study explains the fault phenomenon and
is not meant to be performed on-line during normal
maintenance activities. In the course of our evaluation,
we realized that the statistical tool R yields different
results when used in different software/hardware plat-
forms. We computed the results of our analysis on R
on Windows Vista/Intel, Mac OS X (v10.5.8)/Intel, and
RedHat/Opteron, and we observed some differences. All
results provided in this paper have been computed with R
v2.10.1 on an Intel computer running Mac OS. We warn
the community of using R and possibly other statistical
packages on different platforms because their results may
not be comparable.

4) Object-oriented Metrics: We studied the relation
between our novel metric, based on term entropy and
context coverage, and LOC, which is among the best
indicator of fault proneness [3], [32], [33] to show that
our metric provides different information. We did not
study the relation between our metric and other object-
oriented metrics. Of particular interest are coupling
metrics that could strongly relate to term entropy and
context coverage. However, we argue, with the follow-
ing thought-experiment, that term entropy and context
coverage, on the one hand, and coupling metrics, on
the other hand, characterize different information. Let us
assume the source code of a working software system,
with certain coupling values between classes and certain
entropy and context coverage values for its terms. We
give this source code to a simple obfuscator that mingles
identifiers. The source code remains valid and, when
compiled, results in a system strictly equivalent to the
original system. Hence, the coupling values between

Table VIII
ODDS CHANGE DUE TO LOC (numHEHCC=1) AND

numHEHCC(LOC=10) FOR ARGOUML V0.16 AND RHINO
V1.4R3.

Changing variable ∆ Odds change ArgoUML Odds change Rhino

LOC
1 1.007448705 1.003657673
10 1.077034036 1.037184676
50 1.449262781 1.200274163

numHEHCC

1 1.074742395 1.270879652
2 1.155071215 1.61513509
10 2.056097976 10.99117854
50 36.74675785 160406.2598

classes did not change. Yet, the term entropy and context
coverage values most likely changed.

F. Threats to Validity

This study is a preliminary study aiming at verifying
that our novel measure, based on term entropy and
context coverage, for two known programs (ArgoUML
v0.16 and Rhino 1.4R3), is related to the fault proneness
of entities (methods and attributes) and, thus, is useful
to identify fault prone entities. Consider Table VIII; for
a fixed numHEHCC value (one) an increase of ten
for LOC will not substantially change the odds (7.7%
for ArgoUML; 3.7% for Rhino8) while an increase of
50 increases the odds but not significantly (44.9% for
ArgoUML; 20% for Rhino) in comparison to the varia-
tion of numHEHCC (for a fixed value of LOC=10).
For instance, in the case of ArgoUML for a fixed size of
entities, one unit increase of numHEHCC has almost
the same odds effect than an increase of 10 LOCs.
In the case of Rhino, for a fixed size of entities, one
unit increase of numHEHCC has more effect than an
increase of 50 LOCs. Table VIII suggests that indeed
an entity with ten or more terms with high entropy and
context coverage dramatically change the odds and, thus,
the probability of the entities to be faulty. Intuition as
well as reported evidence suggest that term entropy and
context coverage are indeed useful.

Threats to construct validity concern the relationship
between the theory and the observation. These threats
in our study are due to the use of possibly incorrect
fault classifications and–or incorrect term entropy and
context coverage values. We use manually-validated
faults that have been used in previous studies [29]. Yet,
we cannot claim that all fault prone entities have been
correctly tagged or that fault prone entities have not been
missed. There is a level of subjectivity in deciding if
an issue reports a fault and in assigning this fault to
entities. Moreover, in the case of ArgoUML, we used
the mapping of faults to classes provided in [30]. In

8Although the coefficient for LOC is not significant, it was taken
into account for the calculation of odds.
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order to map the faults to entities we compared faulty
classes with their updated version in the consecutive
release, and we marked as faulty those entities that
were modified. However, the changes could be due to
a maintenance activity other than fault fixing, such as
refactoring. Our parser cannot parse some Java files
due to the incompatibility between the different versions
of Java grammar, but errors are less than 4.7% in the
studied program and thus do not impact our results.
Another threat to validity could be the use of our parser
to compute the size of entities. In the computation we
took into account the blank lines and comments inside
method bodies. We also used a threshold to identify
“dangerous” terms and compute numHEHCC. The
choice of threshold could influence the results achieved.
Nevertheless, analyses performed with other thresholds
did not yield different or contrasting results.

Threats to internal validity concern any confounding
factor that could influence our results. This kind of
threats can be due to a possible level of subjectiveness
caused by the manual construction of oracles and to
the bias introduced by the manual classification of fault
prone entities. We attempt to avoid any bias in the
building of the oracle by reusing a previous independent
classification [29], [30]. Also, we discussed the relation
and lack thereof between term entropy and context
coverage and other existing object-oriented metrics.

Threats to external validity concern the possibility of
generalizing our results. The study is limited to two
programs, ArgoUML 0.16 and Rhino 1.4R3. Results
are encouraging but it pays to be cautious. Preliminary
investigation on the ten ArgoUML and eleven Rhino
releases show that numHEHCC is complementary to
LOC for fault explanation. The results of both ArgoUML
and Rhino are summarized in Figure 1. Overall, although
the approach is applicable to other programs, we do not
know whether or not similar results would be obtained
on other programs or releases. Finally, although we
did not formally investigate the measures following the
guidelines of measurement theory [37], we derived them
from well-known definitions and relations and we plan to
study their formal properties as part of our future work
while addressing the threats to external validity.

V. CONCLUSION

In this paper, we presented a novel measure related
to the identifiers used in programs. We introduced term
entropy and context-coverage to measure, respectively,
how rare and scattered across program entities are terms
and how unrelated are the entities containing them. We
provide mathematical definitions of these concepts based
on terms frequency and combined them in a unique mea-

sure. We then studied empirically the measure by relating
terms with high entropy and high context-coverage with
the fault proneness of the entities using these terms. We
used ArgoUML and Rhino as object programs because
previous work provided lists of faults. The empirical
study showed that there is a statistically significant
relation between attributes and methods whose terms
have high entropy and high context-coverage, on the one
hand, and their fault proneness, on the other hand. It also
showed that, albeit indirectly, the measures of entropy
and context coverage are useful to assess the quality of
terms and identifiers.

Future work includes empirical studies of the relations
between high entropy and context coverage with other
evolution phenomena, such change proneness or par-
ticipation to occurrences of anti-patterns and–or design
patterns. It also includes using the measures to provide
hints to the developers on the best choice of identifiers
while programming. We also plan to relate numHEHCC
and other term entropy and context coverage derived
metrics with a larger suite of object-oriented metrics
and study interaction between OO metrics and metric
proposed in this work.
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