
Titre:
Title:

Detection of Redundant Clone Relations Based on Clone
Subsumption

Auteurs:
Authors: Ettore Merlo et Thierry M. Lavoie

Date: 2009

Type: Rapport / Report

Référence:
Citation:

Merlo, Ettore et Lavoie, Thierry M. (2009). Detection of Redundant Clone
Relations Based on Clone Subsumption. Rapport technique. EPM-RT-2009-05.

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL: http://publications.polymtl.ca/2646/

Version: Version officielle de l'éditeur / Published version
Non révisé par les pairs / Unrefereed

Conditions d’utilisation:
Terms of Use: Autre / Other

Document publié chez l’éditeur officiel
Document issued by the official publisher

Maison d’édition:
Publisher: École Polytechnique de Montréal

URL officiel:
Official URL: http://publications.polymtl.ca/2646/

Mention légale:
Legal notice:

Tous droits réservés / All rights reserved

Ce fichier a été téléchargé à partir de PolyPublie,
le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the
institutional repository of Polytechnique Montréal

http://publications.polymtl.ca

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213621242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://publications.polymtl.ca/2646/
http://publications.polymtl.ca/2646/
http://publications.polymtl.ca/

EPM–RT–2009-05

DETECTION OF REDUNDANT CLONE RELATIONS

BASED ON CLONE SUBSUMPTION

Ettore Merlo and Thierry M. Lavoie
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

Avril 2009

EPM-RT-2009-5

Detection of Redundant Clone Relations
Based on Clone Subsumption

Ettore Merlo and Thierry M. Lavoie

Department of Computer and software Engineering
École Polytechnique of Montréal

April 2009

2009
Merlo, Ettore et Lavoie, Thierry M.
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2009
Bibliothèque nationale du Canada, 2009

EPM-RT-2009-05
Detection of Redundant clone Relations Based on Clone Subsumption
par : Ettore Merlo et Thierry M. Lavoie
Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/

) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique :

biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue.htm

http://www.polymtl.ca/biblio/catalogue.htm�

Detection of Redundant Clone Relations Based on Clone Subsumption

Ettore Merlo, Thierry Lavoie

Department of Computer and Software Engineering, École Polytechnique de Montréal,
P.O. Box 6079, Downtown Station, Montreal, Quebec, H3C 3A7, Canada

e-mail: ettore.merlo@polymtl.ca

Abstract

Clone detection has been presented in the literature at
different levels of fragment granularity from functions, to
syntactic blocks, to variable length strings of source code
or tokens. String matching approaches, pref x and suff x
trees, metrics, syntactic approaches and others can be used
to compare fragments for similarity.
Inclusion relations between source code lines may cause

some clone relations to be redundant, when clones code
fragments subsume each other. This may occur between
nested blocks of source code, for example.
An original method to analyze this kind of redundancy in

clone relations is presented. The proposed method is based
on eff ciently combining clone subsumption information to-
gether with clone similarity relations on code fragments.
The amount of redundancy in clone relations has been

evaluated on two open source Java systems, Tomcat and
Eclipse. Experimental results are presented. Execution
time performance of redundancy analysis is measured and
reported. Results are discussed together with further pro-
posed research.

Keywords: clone structural redundancy analysis, clone
detection, software metrics, software analysis, open source
code analysis.

1 Introduction

The granularity of fragments for clone analysis can be
any subset of source code from a few lines to blocks to
methods.

When matching of units smaller than methods is per-
formed, some pairs in the computed similarity relation may
somehow be structurally redundant because the compared
blocks may be subsets of similar fragments.

The objective of this paper is to present and evaluate an
original linear algorithm for structural redundancy detection
from similarity relation between code fragments of arbitrary

granularity.
Structural redundancy detection is computed by con-

structing equivalence classes of redundant clone blocks.
Blocks in a system may represent classes, methods,

statement blocks, and so on. In this paper we consider only
relations between blocks that are either method bodies or
statement blocks.

Class bodies or other hierarchical blocks are not investi-
gated in this paper, neither are other smaller scale fragments
like expressions and their nested sub-expressions, and so on.

An inclusion relation may exist between the source code
lines of some of these blocks, depending of the syntactic
structure of the source code. For example, a block corre-
sponding to a method body may contain several possibly
nested statement blocks. For example, an if statement may
be composed of a “then” block and an “else” block. Ad-
ditionally a “then” block may contain other blocks and so
on.

Block subsumption occur when the lines of code of a
block are contained in the lines of code of another block. In
other words, block subsumption in this paper refers to a set
inclusion relation between the lines of clones of two blocks.
Syntactic nesting in the AST introduces subsumption rela-
tions between nested blocks.

In general, the subsumption partial order generated by
the set inclusion relation between ranges of source code
lines may correspond to the full power set of subsets of lines
of code and it can be quite large and complex.

If we restrict ourselves to syntactic blocks that can be ei-
ther method bodies or statement blocks, the partial order be-
comes a forest of trees where each block may have at most
one parent (the including block) or none if it’s a method
body. We call this forest the Block Inclusion Forest (BIF).

The set inclusion relation of source code ranges can be
easily extracted from an AST representation of code or
from the token sequence representation of it. Construction
of the BIF is linear on the size of a system (LOC).

This set inclusion perspective of source code ranges may
also benef t other clone detection methods, especially those

1

that are not necessarily AST based, like token-based or
string matching ones. It has to be noted that several clone
detection approaches such as [9, 16, 21] already make use
of some structural information derived from the AST , pre-
f xes and suff xes.

When the AST structure is available, structural limits of
blocks are easily determined. In token based approaches,
often some sort of post or pre-processing is performed to
achieve similar objectives.

Often, the results of similarity analysis are used for fur-
ther purposes such as reporting to the user [11], visualiza-
tion of clones [23], bug identif cation by token mapping
mismatch analysis [25]. Structurally redundant similarity
relation pairs increase the volume of input to further pro-
cessing. In the case of human processing, additional vol-
ume may not lead to errors, but could be annoying to de-
velopers. When additional volume is fed to further process-
ing, it increases the computational processing time. This is
more noticeable when quadratic algorithms are used for fur-
ther processing by token alignment [23] and token mapping
[25].

An experimental evaluation of the execution time per-
formance of the presented algorithm has been performed on
two large open source systems written in Java, Tomcat and
Eclipse, and compared to the execution of a quadratic naive
algorithm. At the same time, f gures concerning the volume
of structural similarity redundancy in these systems have
been evaluated and reported.

The clone relation used in this paper is based on our pre-
vious work [7, 24, 27, 28, 29]. Other approaches for clone
analysis have been presented in [6, 9, 14, 16, 19, 20, 21, 26].
Empirical studies and evaluation of clone detection ap-
proaches can be found in [3, 5, 10, 15, 22, 32, 33]. Scal-
ability of clone detection approaches has been addressed in
[8, 18], while clones and software evolution have been in-
vestigated in [4, 13]. Domain specif c clone detection ap-
proaches have been presented in [17] for the business f eld
and in [12] for the automotive industry. Very interesting
and comprehensive surveys about clone detection literature
can be found in [30, 31].

Section 2 introduces an example to explain the presented
approach and problem. Section 3 describes the proposed al-
gorithm to detect clone relation redundancy in details. Sec-
tion 4 describes the experiments, set-up, and results; Sec-
tion 5 discusses results and issues, and Section 6 concludes
this paper.

2 Example

Suppose that a system is composed of methods
A, B, C, D, and E whose code structure is depicted in
Fig. 1, 2, and 3. Suppose also that method A is similar to B

and C is similar to D.

1 A(Z...) { 1 B(Z...) {
2 if (W...) { 2 if (W...) {
3 X... 3 X...

4 } else { 4 } else {
5 Y... 5 Y...

6 } 6 }
7 } 7 }

Figure 1. Structure of methods A and B

1 C(Z...) { 1 D(Z...) {
2 if (W...) { 2 if (W...) {
3 X... 3 X...

4 } 4 }
5 } 5 }

Figure 2. Structure of methods C and D

Blocks in this example are identif ed by the method name
and the beginning and ending lines of enclosing curly brack-
ets in the code. A2,4 identif es the block enclosed in curly
brackets from line 2 to 4 in method A.

Fig. 4 shows the Block Inclusion Forest (BIF) of meth-
ods A, B, C, D, and E. Nodes in Fig. 4 are depicted
as polygons to emphasize the similarity relation between
blocks. Methods are identif ed by the block represent-
ing the method body. Thus, method A is identif ed by
block A1−7 and so on for the other methods. It should be
noted that since A1−7 and B1−7 are similar, correspond-
ing blocks A2−4 and B2−4 are also similar, as are blocks
A5−7 and B5−7. Along this perspective, clone relations
(A2−4, B2−4) and (A5−7, B5−7) are structurally redun-
dant with respect to the relation (A1−7, B1−7).

Fig. 5 shows the clusters cl0, cl1, cl2, cl3 of similar
blocks obtained when analyzing the whole system under
unitary thresholds for identical block analysis. We can ob-
serve in this f gure that blocks A1−7 and B1−7 belong to
cluster cl0; C1−5 and D1−5 belong to cluster cl1; A2−4,
B2−4, C2−4, D2−4, and E1−3 belong to cluster cl2; and
A4−6 and B4−6 belong to cluster cl3.

Blocks can be further sub-clustered based on the similar-
ity relation of their parents int he BIF as def ned in Sec-
tion 3. A2−4, B2−4 belonging to cluster cl2 also belong to
sub-cluster pSim[2, 0] since their respective parents A1,7

and B1−7 are both in cluster cl0. C2−4, D2−4 belonging

1 E(Z...) {
2 X...

3 }

Figure 3. Structure of method E

2

A B B C

D

DA

E

2−4 4−6 2−4 4−6 2−4

1−5

2−4

1−7A B1−7
C1−5 1−3

Figure 4. Block Inclusion Forest (BIF)

D1−5

E1−3

2−4D
2−4C

4−6A
B4−6

1−5CAB2−4
2−4

1−7
BA

1−7

cl2

cl1

cl0cl3

pSim{0,5}
pSim{0,4}

pSim{2,0}

pSim{2,8}

pSim{1,7}

pSim{1,6}

pSim{2,1}

pSim{3,0}

Figure 5. Similarity partitions

to cluster cl2 also belong to sub-cluster pSim[2, 1] since
their respective parents C1−5 and D1−5 are both in cluster
cl1. Following the same reasoning, A4−6, B4−6 belong to
sub-cluster pSim[3, 0].

A block that represents a method body doesn’t have
a parent in the BIF and belongs to a sub-cluster con-
taining only the block itself as happens for blocks A1−7

from cluster cl0 in sub-cluster pSim[0, 4]; B1−7 from cl0
in sub-cluster pSim[0, 5]; C1−5 from cl1 in sub-cluster
pSim[1, 6]; D1−5 from cl1 in sub-cluster pSim[1, 7]; and
E1−3 from cl2 in pSim[2, 8].

Clone relations between blocks in the same sub-cluster
are redundant, while clone relations between blocks in the
same cluster but different sub-cluster are not redundant.

Clone relation (A2−4, B2−4) is redundant and in fact
its elements are in the same cluster cl2 and also are in the
same sub-cluster pSim[2, 0]. Clone relation (A2−4, C2−4)
is not redundant because its elements are in the same clus-
ter cl2 but are also in different sub-clusters pSim[2, 0] and
pSim[2, 1].

Method bodies cannot produce redundant clone relations
since they are the only member of their own sub-cluster.
Thus, for example, clone relation (A2−4, E1−3) is not re-
dundant and indeed its elements are in the same cluster cl2
but also belong to different sub-clusters pSim[2, 0] and
pSim[2, 8]

3 Algorithms

Suppose we have the Block Inclusion Forest (BIF) of
a system and suppose also that the similarity relation be-
tween code blocks is an equivalence relation sim(bi, bj)
between code blocks bi and bj , which produces a partition
of all blocks into mutually exclusive clusters clk. Equiv-
alence properties of clone detection are often satisf ed by
approaches based on AST , metrics, pref x and suff x simi-
larity, and so on.

The idea behind structural redundancy analysis of pairs
of blocks is that a similarity relation pair (bi, bj) of blocks
belonging to the same cluster clk is redundant if the parents
of bi and bj in the BIF are similar under the same similar-
ity relation as children, that is, if they, in turn, belong to the
same cluster cp. In other words, similar blocks are struc-
turally redundant if they are also pSim related as follows:

redundant(bi, bj) ↔
sim(BIF.parent(bi), BIF.parent(bj), th) ↔

(BIF.parent(bi) 6= UNDEF) ∧
(BIF.parent(bj) 6= UNDEF)) ∧

sim(bi, bj , th) ∧
pSim(bi, bj, th)

(1)

It should be noted that a block bt, that doesn’t have a par-
ent in the BIF , corresponds to a method body and cannot
be redundant, if similar to some other block, since it’s a root
of a tree in the BIF .

Relation pSim is an equivalence relation on blocks that
have parents in the BIF , since its ref exive, symmetric and
transitive properties are easily verif ed as follows:

sim(BIF.parent(a), BIF.parent(a))

sim(BIF.parent(a), BIF.parent(b)) →
sim(BIF.parent(b), BIF.parent(a))

sim(BIF.parent(a), BIF.parent(b)) ∧
sim(BIF.parent(b), BIF.parent(c)) →
sim(BIF.parent(a), BIF.parent(c))

(2)

A block bt that doesn’t have a parent in the BIF be-
longs to an equivalence class [bt] = {bt} containing only
the block itself.

Equivalence redundant classes under the pSim relation
can be computed using the algorithm presented in Fig. 6 for
Structural Redundancy Analysis (SRA), where clId func-
tion associates blocks with the cluster they belong to, in the
cluster partition generated by the clone relation.

Relation pSim is computed as a bi-dimensional associa-
tive table, rather than as a full bi-dimensional matrix, whose
generic element psim[k, m] represents the set of blocks

3

1 pSim← computeParentSimilarity(
clusters, clId, BIF)

2 seed = | clusters |
3 forall ck ∈ clusters

4 forall bi ∈ ck

5 pi = BIF.parent(bi)
6 if (pi 6= UNDEF)
7 pSim[k, clId(pi)].add(bi)
8 else

9 pSim[k, seed].add(bi)
10 seed = seed + 1
11 return pSim

Figure 6. Structural redundancy analysis
(SRA)

bi that are all similar to one another and that have parents
which are similar too. Refer to Fig. 5 for a graphical repre-
sentation of similarity partitions induced by pSim relation.
Index k is associated with cluster ck of similar blocks. The
union of all psim[k, m] that have the same k is equal to
cluster ck. Index m identif es the cluster of similar parents
of some member bi of psim[k, m], so that either the parent
of bi exists and it belongs to cluster cm or it doesn’t exist
because bi is a method and m represents a progressive iden-
tif er that doesn’t correspond to any similarity cluster. In
this case, the progressive identif er is generated through a
seed as shown in lines 2, 9, 10 in Fig. 6. Line 3 traverses
all clusters. Line 4 iterates over the blocks bi in cluster ck.
Line 5 computes pi parent of bi in the BIF . Line 6 tests if
pi exists and then adds bi to the proper element of pSim at
index [k, clId(pi)], where clId returns the identif er of the
cluster to which pi belongs. At least, pi belongs to a cluster
containing pi itself. If line 6 fails, that is if bi is a method or
a function and therefore it doesn’t have a parent, the index
of pSim is [k, seed]. The initial value of seed is out of the
range of cluster identif ers (see line 3) and it is incremented
for each additional use (line 10).

Lines 5 to 10 can be executed in constant time if ele-
ments of pSim are represented as lists and if the opera-
tion add can be implemented so that it has a constant time
execution complexity. This condition is easily satisf ed in
conventional list implementations. Lines 5 to 10 are exe-
cuted as many times as the number of all blocks belonging
to all clusters, but since clusters ck represent a partition of
blocks, this number is equal to the total number of blocks in
the system under investigation. We can conclude that algo-
rithm SRA is linear on the number of blocks composing a
system.

The following properties hold for elements in the equiv-
alence classes of structural redundancy pSim computed by

SRA:

∀bi bj ∈ pSim[k, m] → redundant(bi, bj)

bi ∈ pSim[k, m] ∧ bj ∈ pSim[k, n] ∧
(m 6= n) → ¬ (redundant(bi, bj))

(3)

Additionally, we may def ne as def nitely redundant
those blocks belonging only to redundant pairs. This oc-
curs when a pSim class is equal to the whole cluster to
be sub-partitioned. Similarly, we may def ne as def nitely
non-redundant those blocks that participate only in non-
redundant pairs. This occurs when blocks are alone in a
class and there are at least two pSim classes from the sub-
partitioning of a cluster. Possibly redundant blocks partici-
pate in both redundant and non-redundant pairs, which oc-
curs when the sub-partitioning of a cluster produces more
than one pSim class with at least two elements.

4 Experiments and results

Experiments have been performed on two open-source
Java systems, Tomcat and Eclipse, and have been executed
on an Intel Core 2 Duo, 3.0 GHz clock, 3 GB RAM, under
Linux Fedora 8. Code has been compiled with g++ 4.1.2.
Tomcat [2] is an implementation of the Java Servlet and the
Java Server Pages technologies and is widely used to power
different kinds of web-based systems. Eclipse [1] is a com-
plete IDE to develop Java applications. The size, number
of methods, number of blocks and average nesting level of
blocks in the BIF for Tomcat and Eclipse are reported in
Table 1. In this table and in all reported f gures and exper-
iments, data refer to blocks larger than 6 LOC, which is a
threshold that has been chosen as a lower bound of signif-
icance for block sizes. Choice of 6 LOCs comes from the
literature on clones and from previous authors’ experience
and is considered a reasonable size threshold for clone de-
tection. Other size thresholds can be used if required.

The distribution of nesting levels of blocks in the BIF

for the investigated systems is shown in Fig. 7 and Fig. 8.
Methods are considered as being at nesting level 0. Nesting
levels of statement blocks in the BIF start at 1 and increase
as nesting does.

System Tomcat Eclipse
Version 5.5 3.3
LOC 130K 1.3M
Methods 5047 60326
Blocks 5538 32113
BIF Average Nesting 0.89 0.62

Table 1. System features

4

Figure 7. Tomcat BIF nesting level distribution

Figure 8. Eclipse BIF nesting level distribution

The number of blocks at higher BIF nesting levels
decreases as block nesting increases. It is interesting to
compute the distribution of nesting levels because method
clones produce as many redundant relations as the number
of their nested blocks. A rather f at structured system has
less structurally redundant clones than a deeply nested sys-
tem for the same cloning ratio at method level.

Syntactic analysis of investigated systems has been per-
formed using Eclipse to extract the Block Inclusion Forest
(BIF) and block metrics from the Abstract Syntax Tree
(AST). Block similarity has been computed using CLAN

[10]. The algorithm for similarity clustering used in CLAN

is shown in Fig.9. The following metrics have been com-
puted for each block in the investigated systems: number of
statements, number of branches (IF, CASE, etc.), number
of loops (FOR, WHILE, DO, etc.), number of calls, number
of parameters (zero for nested blocks, possibly non-zero for
methods).

1 clustersType← computeClusters(
blocks, metrics)

2 clusters.clear()
3 forall b ∈ blocks

4 i = 1
5 key = ()
6 while (i ≤ metrics[b].size())
8 key.append(int(metrics[b][i]))
9 i = i + 1
10 kSet[b] = key

11 clusters[key] = clusters[key] ∪ {b}
12 return clusters

Figure 9. Similarity Clustering

Overall method and block information have been re-
ported in Table 1 together with average nesting levels in the
BIF . Table 2 presents the cardinality of the clusters com-
puted by algorithm SRA. The minimum cluster cardinality
is 2 for all steps and has not been reported.

The distribution of cluster cardinality is reported in
Fig. 10 for Tomcat and in Fig. 11 for Eclipse.

Table. 4 presents the redundant clone block information
f gures. Redundant clusters can be safely ignored, because
they are totally composed of def nitely redundant blocks. It
is interesting to remark that the percentage of def nitely re-
dundant blocks is quite small for both systems, but is higher
for Tomcat than for Eclipse. Possibly redundant blocks are
in a larger number for Eclipse than for Tomcat and the num-
ber of def nitely non-redundant is about the same for both
systems. The percentage of redundant number of clone
pairs is between 10 and 13% in the investigated systems
and the total number of relevant clone pairs is between 86
and 89% for those systems.

5

Tomcat Eclipse
avg max avg max
3.71 79 5.36 342

Table 2. Cluster cardinalities

Figure 10. Tomcat cluster cardinality distribu-
tion

Figure 11. Eclipse cluster cardinality distribu-
tion

Sub-cluster cardinalities represent the size of structurally
redundant sets of blocks. Cardinality distribution of sub-
clusters corresponding to pSim partition is depicted in
Fig. 12 for Tomcat and in Fig. 13 for Eclipse.

Figure 12. Tomcat sub-cluster cardinality dis-
tribution

Figure 13. Eclipse sub-cluster cardinality dis-
tribution

It is interesting to remark in these f gures that the overall
distribution shape reminds that of a Pareto distribution.

Table 3 show CPU execution time in seconds for SRA.
Tomcat execution times are smaller because its total number
of blocks is smaller than that of Eclipse.

5 Discussion

Results show that structural redundancy in clone rela-
tion can be quickly evaluated using the SRA algorithm on
a common desktop computer.

From an application point of view, the results seem

6

System Time (s)
Tomcat 0.201
Eclipse 1.91

Table 3. Eclipse and Tomcat execution times

Tomcat Eclipse
Number of clusters 1192 10363
Relevant clusters 1093 9775
Redundant clusters 99 588
Number of 355 2310
redundant blocks (6.33%) (3.5%)
Number of possibly 809 15568
redundant blocks (14.43%) (23.61%)
Number of def nitely 4445 48044
non-redundant blocks (79.24%) (72.89%)
Number of pairs 21456 791681
Relevant pairs 19121 687280

(89.1%) (86.8%)
Redundant Pairs 2335 104401

(10.9%) (13.2%)

Table 4. Clusters redundancy analysis

interesting for software engineering purposes such as re-
factoring, evolution and bug detection analysis.

The presented results also depend on several specif c fac-
tors used in the experiments and discussed in the following.

The investigated systems are written in Java. Further-
more, only two specif c systems with specif c structural
block inclusion and cloning features have been investigated.
Results using other object oriented languages or procedural
languages may be different and should be investigated. In-
vestigation should also be carried out on more Java systems
for different nesting and cloning characteristics.

The Java inner class programming construct presents
an anomaly of classif cation between blocks and functions.
Methods bodies from inner classes are actually methods that
are nested in other method bodies from other classes. For
the presented experiments and results, methods from inner
classes have been labeled as compound statement blocks
rather than methods at root level in the BIF . This little
lack of precision could be easily corrected if required.

Clone relations have been based on software metrics and
on the specif c metrics mentioned in Section 4. Other ap-
proaches, based for example on string matching, pref x or
suff x trees, or graph matching, may produce slightly differ-
ent clusters of similar fragments. In addition, only blocks
bigger than 6 LOC have been considered for experiments.
Eliminating small blocks from clone analysis is a common
strategy to avoid reporting trivial relations between small

blocks. The specif c choice of 6 LOCs is consistent with the
literature on clones and with the authors’ previous experi-
ence and is considered a reasonable size threshold for clone
detection. Other size thresholds can be used if desired or
the threshold f ltering could be questioned and removed if
necessary.

Metrics based block analysis is eff cient because met-
rics for clone analysis are compositional and a single pass
through the AST is suff cient to annotate it with the metrics
value for each sub-tree. It should be noted that the choice
of metrics has been based on the authors’ previous experi-
ence, but the metrics presented in [9, 19, 23] could be used
almost interchangeably.

Metrics based approaches suffer from the typical distor-
tion that similarity of metrics doesn’t necessarily mean sim-
ilarity of code. Consider, for example, two blocks, the f rst
one composed of an if statement containing a for state-
ment and the second composed of a for statement contain-
ing an if statement. Although the metrics count may be the
same, the two blocks should not be considered similar, at
least not for a unitary threshold indicating a perfect match.
Conversely, similarity of code necessarily means similarity
of metrics. Think of two code blocks: the f rst being a for

statement including an if statement and the second being
an if statement including a for. It’s easy to imagine a sit-
uation where the metrics are the same for the two blocks,
while the two fragments are not similar. In metrics based
approaches, false negatives may be absent, while false pos-
itives may exist.

We are interested here in discussing whether the pre-
sented redundancy detection approach changes or not the
intrinsic matching distorsion mentioned above. This dis-
tortion may have an impact in structural redundancy clone
analysis because false positives may exist in nested blocks
as well as in functions at top nesting levels. Since false
negatives are absent, when a clone relation is not detected
between children or parents in the BIF , no similarity or er-
ror is possible. Errors may only occur when some similarity
relation exists among children or parents.

When similar children don’t have similar parents in the
BIF , children are correctly reported as similar. False pos-
itive children are still reported as false positive. No new
errors are introduced by the structural redundancy analysis.
When similar parents don’t have similar children, parents
may be reported as similar, recursively depending on their
parents’ similarity, and so on. False positive parents may
still be reported as false positive. There is no new error
generated and no change in the global error rate.

Falsely positive children that have falsely similar parents
are not reported after structural redundancy analysis, be-
cause they are erroneously considered redundant. However,
this reduces the number of false positives to parents only
and it may indeed reduce the global error rate. Falsely posi-

7

tive children that have truly similar parents are not reported
since they are considered redundant, which is def nitely not
an error since parents are indeed similar. Truly positive
children that have falsely similar parents are not reported
as clones since they are erroneously considered redundant.
This is the only case in which the redundancy analysis in-
troduces a new error. Truly positive children that have truly
similar parents are not reported as clones, which is perfectly
correct.

Overall, structural redundancy analysis reduces the error
rate of metrics based clone detection when falsely positive
children have falsely similar parents, and it increases the
error rate when truly positive children have falsely similar
parents.

The global error after structural redundancy analysis is
the balance between the two types of errors. Unfortunately,
this balance has not been evaluated in this paper. Neverthe-
less, we may argue that if the false positives are uniformly
distributed over the fragments, the two errors may somehow
compensate each other and therefore the overall impact may
not be very signif cant. The precise values of uncompen-
sated errors should be investigated in future experiments.

Experimental evaluation of def nitely redundant, def -
nitely non-redundant and possibly redundant fragments has
been measured and shows that between 3 and 6% of blocks
are def nitely redundant, between 14 and 23% of blocks are
possibly redundant, while between 10 and 13% of clone
pairs are redundant. These f gures are encouraging show-
ing that some computational effort can be reduced by taking
into account redundancy information.

Some source code inclusions relations can be originated
by sub-sequences of statements in a compound statement.
The presented approach doesn’t yet address inclusion rela-
tions induced by sub-sequences and this issue is left to fur-
ther research. Sub-sequences are nevertheless included in a
compound statement, so, if this information is represented
in the BIF , the algorithm would compute the redundancy
analysis also for sub-sequences.

Some further processing of clone blocks information
may be done directly from the clusters and redundancy sub-
partitions. For example, visualization of clone blocks can
be done by selecting a def nitely non-redundant clone block
representative of a cluster and by visualizing the differences
with respect to the selected block of all other members of
the same cluster. This is the visualization approach used in
CLAN.

If bug detection caused by inconsistent image identif er
replacement (as described in [25] is sought, identif er map-
ping can be performed with respect to a def nitely non-
redundant representative of a cluster and by analyzing the
consistency of mapping in all other members of the same
cluster.

Nevertheless, some further processing of clone informa-

tion may require the output of all pairs of clone blocks.
The number of pairs of clone blocks that can be constructed
from clusters is quadratic on the cardinality of clusters. Al-
though clusters and redundancy information can be com-
puted in linear time, computation of all pairs of clone
blocks shows nevertheless a quadratic component in com-
plexity. Redundancy identif cation may reduce by factors
the quadratic component, but still computation of all clone
block pairs remains quadratic in general.

6. Conclusions

Clone relations may be affected by structural redundancy
when block fragments at different levels of nesting in the
Block Inclusion Forest (BIF) are considered for similarity.

A linear algorithm for structural redundancy detection of
similarity information has been proposed and experimen-
tally evaluated on Tomcat and Eclipse in this paper.

The experimental evaluation of def nitely redundant, def-
initely non-redundant and possibly redundant analyses has
been performed.

The detected redundancy of clone pairs appears to be
about 10% for Tomcat and 13% for Eclipse.

The proposed SRA algorithm computes redundant sub-
partitions of clusters of similar blocks in linear memory and
execution time complexity on the total number of analyzed
blocks and is also fast in practice: execution CPU times
have been about 0.2 s for Tomcat and about 1.9 s for Eclipse.

Further research is required on more numerous and dif-
ferent system, possibly written in languages other than
Java.

7. Acknowledgements

This research has been funded by the Natural Sciences
and Engineering Research Council of Canada under the
Discovery Grants Program. The authors wish to thank
Melissa Mongeau for her contribution to Eclipse based met-
rics extraction.

References

[1] Eclipse. http://www.eclipse.org.
[2] Tomcat. http://tomcat.apache.org.
[3] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey. Cloning

by accident: An empirical study of source code cloning
across software systems. In International Symposium on
Empirical Software Engineering, 2005.

[4] G. Antoniol, U. Villano, E. Merlo, and M. D. Penta. Ana-
lyzing clone evolution in the linux kernel. Information and
Software Technology, pages 755–765, 2002.

[5] L. Aversano, L. Cerulo, and M. D. Penta. How clones are
maintained: An empirical study. In European Conference
on Software Maintenance and Reengineering, 2007.

8

[6] B. Baker. Finding clones with dup: Analysis of an experi-
ment. IEEE Transactions on Software Engineering, 2007.

[7] M. Balazinska, E. Merlo, M. Dagenais, B. Lagu, and
K. Kontogiannis. Advanced clone-analysis as a basis for
object-oriented system refactoring. In Proc. Working Con-
ference on Reverse Engineering (WCRE), pages 98–107.
IEEE Computer Society Press, 2000.

[8] H. Basit, S. Pugliesi, W. Smyth, A. Turpin, and S. Jarz-
abek. Eff cient token based clone detection with f exible to-
kenization. In European Software Engineering Conference
and Symposium on the Foundations of Software Engineer-
ing, 2007.

[9] I. Baxter, A. Yahin, l. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. In Proceedings
of the International Conference on Software Maintenance -
IEEE Computer Society Press, pages 368–377, 1998.

[10] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo. Comparison and evaluation of clone detec-
tion tools. IEEE Transactions on Software Engineering,
33(9):577–591, 2007.

[11] S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo. A
novel approach to optimize clone refactoring activity. InGe-
netic and Evolutionary Computation Conference (GECCO),
pages 1037–1043. ACM Press, 2006.

[12] F. Deissenboeck, B. Hummel, E. Juergens, B. Schaetz,
S. Wagner, S. Teuchert, and J. F. Girard. Clone detection
in automotive model-based development. In Proceedings
of the International Conference on Software Engineering.
IEEE Computer Society Press, 2008.

[13] E. Duala-Ekoko and M. Robillard. Tracking code clones in
evolving software. In Proceedings of the International Con-
ference on Software Engineering. IEEE Computer Society
Press, 2007.

[14] S. Ducasse, O. Nierstrasz, and M. Rieger. On the effective-
ness of clone detection by string matching. International
Journal on Software Maintenance and Evolution: Research
and Practice, 2006.

[15] R. Falke, P.Frenzel, and R. Koschke. Empirical evaluation of
clone detection using syntax suff x trees. Empirical Software
Engineering Journal, 13(6):601–643, 2008.

[16] N. Gode and R. Koschke. Incremental clone detection.
In European Conference on Software Maintenance and
Reengineering, 2009.

[17] J. Guo and Y. Zou. Detecting clones in business applica-
tions. In Proceedings of the Working Conference on Reverse
Engineering, 2008.

[18] Z. Jiang and A. Hassan. A framework for studying clones in
large software systems. In Workshop on Source Code Anal-
ysis and Manipulation, 2007.

[19] J. H. Johnson. Identifying redundancy in source code using
f ngerprints. In CASCON, pages 171–183, October 1993.

[20] T. Kamiya. Variation analysis of context-sharing identif ers
with code clone. In Proceedings of the International Con-
ference on Software Maintenance - IEEE Computer Society
Press. IEEE Computer Society Press, 2008.

[21] T. Kamiya, S. Kusumoto, and K. Inoue. Ccf nder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engi-
neering, 28(7):654–670, 2002.

[22] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empir-
ical study of code clone genealogies. In European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering, 2005.

[23] K. Kontogiannis, R. De Mori, R. Bernstein, M. Galler, and
E. Merlo. Pattern matching for clone and concept detec-
tion. Journal of Automated Software Engineering, 3:77–108,
March 1996.

[24] B. Lagüe, D. Proulx, E. Merlo, J. Mayrand, and J. Hude-
pohl. Assessing the benef ts of incorporating function clone
detection in a development process. In Proceedings of the
International Conference on Software Maintenance - IEEE
Computer Society Press, pages 314–321, 1997.

[25] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: Find-
ing copy-paste and related bugs in large-scale software code.
IEEE Transactions on Software Engineering, pages 1–17,
2006.

[26] A. Marcus and J. I. Maletic. Identif cation of high-level con-
cept clones in source code. In ASE ’01: Proceedings of the
16th IEEE International Conference on Automated Software
Engineering, page 107, Washington, DC, USA, 2001. IEEE
Computer Society.

[27] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proceedings of the International Confer-
ence on Software Maintenance - IEEE Computer Society
Press, pages 244–253, Monterey, CA, Nov 1996.

[28] E. Merlo. Detection of plagiarism in university projects
using metrics-based spectral similarity. In R. Koschke,
E. Merlo, and A. Walenstein, editors, Duplication, Re-
dundancy, and Similarity in Software, number 06301 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007.
IBFI.

[29] E. Merlo, G. Antoniol, M. D. Penta, and F. Rollo. Lin-
ear complexity object-oriented similarity for clone detection
and software evolution analysis. In Proceedings of the Inter-
national Conference on Software Maintenance - IEEE Com-
puter Society Press, pages 412–416. IEEE Computer Soci-
ety Press, 2004.

[30] U. of Alabama at Birmingham. Clone literature.
”http://students.cis.uab.edu/tairasr/clones/literature”.

[31] C. Roy and J. Cordy. A survey on software clone detec-
tion research. Technical Report Technical Report 2007-541,
School of Computing, Queen’s University, November 2007.

[32] C. Roy and J. Cordy. Scenario-based comparison of clone
detection techniques. In International Conference on Pro-
gram Comprehension, pages 153–162. IEEE Computer So-
ciety Press, 2008.

[33] C. K. Roy and J. R. Cordy. An empirical study of function
clones in open source software. In Proceedings of the Work-
ing Conference on Reverse Engineering, 2008.

9

	EPM-RT-2009-5_Merlo

