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RESUME

Letraitement des eaux usees biologique a charge élevée permet d'utiliser lamatiere organique pour
la production d'énergie par un procédé méthanogéne qui contribue au bilan d’énergie positif pour
les stations de récupération des ressources de I’eau (StaRRE).

L’objectif principal de cette recherche était de maximiser la biotransformation de la matiére
organique soluble et colloidale de I’affluent en matiére particulaire par I’emploi d’'un bioréacteur a
lit mobile (MBBR) pour que cette matiére particul aire soit captée et acheminée vers un procéde de

digestion anaérobie.

L hypothése scientifique originale de ce projet est qu’un systéme innovateur de MBBR servant
d'inoculum (MBBR-inoculum) suivi d'un chémostat maximise la biotransformation de la matiére
organique biodégradable soluble et colloidale (CSg : Cg+Sg) en matiére particulaire (Xs) tout en
minimisant I’hydrolyse des matiéres particulaires biodégradables provenant de I’affluent (Xg) afin

gue tout ces deux sources de Xg soient captées pour maximiser la production de méthane.

Deux configurations ont été étudiées : 1) un systéme de MBBR-inoculum et chémostat et 2) un
MBBR a charge élevée. Le MBBR-inoculum est en fait un MBBR acharge élevée (HR-MBBR).

Les essais ont été réalises a échelle pilote dans une remorque du centre de recherche,
développement et validation des technologies et procédés de traitement des eaux (CREDEAU)
alimenté en eaux usées de la StaRRE de Repentigny pour une période continue de trois mois.

Les eaux usées éaient moyennement concentrées avait une concentration de la demande en
oxygéene chimique de 268 a 482 mg DCO/L, de la DCO soluble de 38 & 73 mg Spcol/L et des
matiéres en suspension de 344 a 477 mg MES/L. Les ratios fvr and fcy des eaux usées éaient de

0,65+ 0,10 g MVES etde 1,7+0,2 ﬁﬁ, respectivement. La fraction CSg représentait 20 a 30 %

g MES
delaDCOtotale (60 2120 mg CSg/L) tandis quelamatiére coll oidal e et soluble non biodégradabl e,
CSy, représentait 5 % de laDCO totale (20 425 mg/L).

Dans le MBBR, le taux de charge organique a varié entre 1,5 et 20 g CSg m?d* correspondant a
un temps de rétention hydraulique de 25 a 54 min. Dans ce taux de charge, la surface représente la

surface active protégée des médias ou peut s'attacher le biofilm. L’effet du ratio de remplissage du
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média a varié entre 50 % et 35 % v/v correspondant a2 1000 L et 700 L de médias « K5 » pour une
surface utile de 800 et 560 m?, respectivement.

Dans I’inoculum du procédé inoculum-chémostat, le taux de charge organique avarié de 20 a85 g
CSs m2d? (basé sur la superficie utile des supports mobiles), tandis que le temps de rétention
(TRHinoc + TRHchem) a varié entre 150 et 300 min. La température de I’eau a varié entre 17 et
21°C et le pH se gardait stable autour de 7,0 dans les deux études.

Dans le réacteur a lit mobile, |a biotransformation maximale du CSg en Xg d’environ 90 % a été
atteinte & un taux de charge organique entre 1,5 et 5,5 g DCO m? d™%, ce qui correspond aun temps

de rétention hydraulique de 36 a 55 min.

Dans le procédé inoculum-chémostat, la biotransformation maximale du CSg en Xg d’environ
80 % a été atteinte & un taux de charge organique entre 22 et 40 g CSs m? d™, ce qui correspond &

un temps de rétention hydraulique de 3,7 ha 3,9 h.

Dans le réacteur alit mobile, la concentration en oxygene dissous a montré un effet important sur
I’efficacité opérationnelle et la biotransformation. De petites augmentations de la concentration de
I’oxygene dissous de 1 a 2 mg O2/L a2 a3 mg O/ L aaugmente significativement I’efficacité de
la biotransformation du CSg de 64 £ 13 % a 84 + 6 %. L’augmentation de la concentration de

I’oxygéne dissous a contribué a I’oxydation de la matiére organique particulaire par biofilm.

Le taux d’utilisation de I’oxygéne dans le bioréacteur alit mobile (53 mg Oz L h'l) était trois fois

plus élevé que dans | e réacteur chémostat (16 mg Oz L h'Y).

Une conclusion qui a pu étre établie du bioréacteur alit mobile est que labiotransformation de CSg
était sensible a la concentration de I’oxygeéne dissous tandis que c’était le temps de rétention

hydraulique et le taux de charge organique qui était sensible dans le systeme inoculum-chémostat.

Ce projet a déterminé le potentiel du procédé innovateur d’inoculum-chémostat pour le traitement
des eaux useées comme aternatif pour les StaRRE a énergie positive ou efficace.

Mots clés : chémostat, oxidation de la DCO, bioréacteur a lit mobile a taux éleve, captage de la

matiere organique
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ABSTRACT

High-rate biological treatment processes allow the recovery of organic matter from wastewater into
energy via methanogenesis contributing to the energy positive development of water resource
recovery facilities (WRRFs) with lower carbon footprints.

The main objective of thisresearch was to maximize the bio-transformation of influent soluble and
colloidal organic matter into particulate COD using a high-rate moving bed bioreactor (MBBR)

for subsequent physico-chemical capture prior to transport to anaerobic digestion process.

The original scientific hypothesis of this project is that a high-rate innovative MBBR-inoculum
followed by a chemostat system maximizes the bio-transformation of soluble and colloidal
biodegradable organic matter (CSg: Cg+Sg) into particulate matter (Xg) while minimizing the
hydrolysis of particulate biodegradable organic matter from the influent (Xg), so that both of these

XB sources are captured to maximize methane production.

Two configurations were studied: 1) an MBBR-inoculum and chemostat system and 2) a high-load
MBBR. MBBR-inoculum isin fact a high-load MBBR (HR-MBBR).

The tests were carried out with the activated sludge pilot trailer of the center of research,
devel opment and validation of water treatment technol ogies and processes (CREDEAU) using real
wastewater from the WRRF of Repentigny for a three month continuous operation.

The wastewater was moderately concentrated, based on the concentrations of chemical oxygen
demand (COD), soluble COD and total suspended solids (TSS), ranging from 268 to 482 mg

COD/L, 38 to 73 mg Scon/L, and 344 to 477 mg TSS/L. The raw wastewater fyt and fcv indexes

gVss

were 0.65+ 0.10 m

and 1.7 £ 0.2 -ga%, respectively. The CSg fraction represented 20 to 30%

total COD (60 to 120 mg CSg/L) while the unbiodegradabl e colloidal and the solublefraction (CSu)
represented 5% of the total COD (20 to 25 mg/L).

In the MBBR system, the organic loading rates (OLRs) varied between 1.5 to 20 g CSg m? d*,
which corresponded to hydraulic retention times (HRTS) of 25 to 54 min. The effect of the media
fill volume fraction was changed from 50% to 35% v/v, which corresponded to 1000 L and 700 L
of K5 media and provided 800 and 560 m? of useful surface area, respectively.
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In the inoculum of the inoculum-chemostat process, the OLR varied from 20 to 85 g CSg m?d*
(based on the useful surface area of the media), while the HRT (HRT inoc + HRTchem) ranged from
150 to 300 min. The water temperature ranged from 17 to 21 °C and the pH was around 7.0 across
both processes during the study.

In the MBBR system, the maximum biotransformation of CSg into Xg of near 90% + 3 was
obtained at the OLR of 1.5to 5.5 g COD m? d that corresponded to HRT between 36 min to 55
min.

In the inoculum-chemostat process, the maximum biotransformation of CSg into Xg of near 80 + 3
%, was obtained at an OLR between 22 to 40 g CSg m? d* at HRT between 3.7 hand 3.9 h.

In the MBBR system, dissolved oxygen concentration demonstrated a major effect on the
operational efficiency and bio-transformation. Small increases in DO level ranged from 1-2 mg
O2/L to 2-3mg O/ L led to asignificant increase in CSg biotransformation efficiency from 64% +
13to 84 + 6%. Anincrease in DO level contributed particulate organic matter oxidation by the
attached biofilm.

The oxygen uptake rate (OUR) in the MBBR (53 mg Oz L h!) was about three times higher than
in the chemostat reactor (16 mg Oz L™ h'Y).

It was concluded that in the MBBR system, the CSg biotransformation was sensitive to the DO

concentration while in the inoculum-chemostat, it was more sensitive to the HRT and OLR.

This project determined the potential of the innovative inoculum-chemostat process for wastewater

treatment as an alternative system towards energy positive/efficient WRRFs.

Key words. chemostat, COD oxidation, high rate MBBR, organic matter capture.
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CHAPTER 1 INTRODUCTION

1.1 Context

The world has been focusing on mitigating the problems resulting from population growth and
economic development and among the issues to be addressed are the changes resulting from
environmental impacts on wastewater quantity and quality. Wastewater needs to be processed to
treat biological, chemica and physical contaminants due to the high demand for a clean and safe

environment.

High land costs are the likely consequences of high population density and this has led to
unconventional solutions for wastewater collection and handling, including pure oxygen systems,
two-story settling tanks, deep aeration tanks and even underground plants. Whereas conventional
wastewater treatment processes with large occupied surface areas are too technically sophisticated
and costly and often require high energy inputs for operation, a conventional activated sludge (AS)
process, comprised of an aeration tank with a secondary clarifier and asludge recirculation line, as
the aeration process takes longer than 6 hours across the treatment process (Saleh, 1994) resulting
in 0.3-0.7 kWh per m® consumption of energy (Metcalf and Eddy-Aecom, 2014). However,
wastewater may be considered as a source of energy and if properly extracted, it can provide
significant portion of the energy requirement for treatment (Gude, 2015). The main source of this
energy results from the large quantities of biomass from wastewater treatment processes (Rulkens,
2007).

Over the past few decades, increasing attention has been devoted to considering several optionsfor
making the treatment process energy-yielding rather than an energy-consuming, despite the fact
that wastewater treatment is an energy intensive process. In thisregard, researchers have conducted
various studies to meet diversified socia needs, such as the reduction of organic matter footprint
and treatment costs for secondary or biological treatment. Asaresult of intensive studies, advanced
wastewater treatment process technologies have been devel oped recently, i.e. advanced oxidation
processes (AOPs), bio-filter processes, aerobic granular sludge (AGS), anammox, moving bed
bioreactor (MBBR), €tc.

TheMBBR isabiological continuousflow process which combinesthe benefits of activated sludge

and bio-filter processes without a need for sludge recirculation (ddegaard et al., 1994). The



submerged carriers, on which the biofilm grows, are kept in a suspension by either a mixer or an

aeration system.

Currently, due to a better understanding of the biological process and bacteria populations as well
as having determined a way to apply them in the most energy efficient manner possible, the
industry is moving away from the term "wastewater treatment plants’ (WWTPs) to "water resource
recovery facilities' (WRRFs) (U.S.EPA, 2016).

In the quest to enhance energy self-sufficiency (or autarcy), reduce the carbon footprint and achieve
a sustainable operation, WRRFs typically employ an energy recovery process typicaly by
operating an anaerobic digestion (AD) process for the production of biogas and energy (Jimenez
et. al., 2015). However, in generd, it is not possible in WRRFs to obtain energy neutral operations
without concurrently minimizing energy usage (ex. from aeration) and maximizing energy (organic
carbon) recovery. The AD system process produces biogas comprised of 50-70% methane (CHa)
from biodegradable organic matter (CODp) (Mata-Alvarez et a., 2000).

The energy efficiency of WRRFs has been improved by reducing energy consumption by
optimizing aeration systems and optimizing the capture of the readily biodegradable organic matter

to produce more energy through anaerobic digestion systems (energy positive/efficient).

Biodegradable COD can be identified in two fractions that are either readily (RBCOD) or slowly
biodegradable (Sg) (Henze, 2000; Melcer et a., 2003). Also, biodegradable COD can be identified
as filterable (CSg) and particulate (Xg) forms which are quickly degradable/undegradable and
decantable/undecantable. This filterable fraction may be divided into dissolved material (soluble;
Sg) or colloidal material (Cg) (Orhon et a., 1997). They are rapidly oxidized (or stored) under
aerobic conditions by heterotrophic bacteria to produce biomass, which through the process of
solid-liquid separation can be recovered as biological sludge, a major substrate for biogas (Fang,
2010).

The slowly biodegradable, mostly particulate Xg, is not rapidly used up by bacteria due to its
complex composition. For this reason, a conversion mechanism through the breakdown by
extracellular enzymes into a readily biodegradable form (hydrolysis) is necessary prior to
absorption and utilization, leading to delayed consumption of the organic matter (Henze, 2000).
On the contrary, the readily biodegradable matter (mostly colloidal Cg and soluble Sg) has
relatively simple moleculesthat can be oxidized (or stored) and consumed directly by heterotrophic



bacteria under aerobic conditions and used for growth of the new heterotrophic biomass Xowo
(Fang 2010; Petersen et al., 2003) known as a bio-transformation process.

Continued research and experience resulting in the development of a high-rate (HR) wastewater
treatment process, which is one of the most effective systems, with the possibility of short HRT of
30 to 90 minutes and a high portion of COD capture efficiency (80-85%).

High-rate biological treatment processes allow the recovery of organic matter from wastewater into
energy viamethanogenesis contributing to the devel opment of energy positive WRRFs with lower
carbon footprints (Tilley, 2011; Nogq et al., 2015).

MBBRs can be operated at high loadings which enable near-exponential growth conditions for the
biomass without increasing the reactor size and maximize the storage and bio-transformation of
biodegradable organic matter. The transformation of the readily biodegradable material (CSg) to
particulate biodegradable organics (Xg) is performed by the biofilm developed in carriers which
exist in the bio-reactor and consequently, there is no requirement for a return of mixed liquor
(Husham et al., 2014; Guanglei et a., 2011).

1.2 Scientific hypothesis and objectives

1.2.1 General objective

The genera objective of this project was to maximize the bio-transformation of influent soluble
and colloidal organic matter into particulate COD using ahigh-rate moving bed bioreactor (M BBR)
for subsequent physico-chemical capture prior to anaerobic digestion, improving the energy

efficiency of wastewater treatment processes.

1.2.2 Specific objective

The specific objective of this study was to develop an innovative high-rate process (inoculum-
chemostat) to maximize the bio-transformation of soluble and colloidal biodegradable matter (CSg:
Sg+Cg) into particulate matter (Xg) and to capture this Xg to enhance methane production via
anaerobic digestion. A constraint was to minimize the oxidation of biodegradable matter in this

process. Results were compared with atypical high-rate MBBR process operated simultaneously.



Inoculum-chemostat can be easily integrated into an existing WRRFs as part of an upgrade process,
or by the design of anew facility. In addition, it could improve the energy balance of the WRRFs,

while reducing air consumption and the cost of the disposal of sewage sludge.

1.2.3 Original scientific hypothesis

The origina scientific hypothesis of this project is that a high-rate innovative MBBR-inoculum
and chemostat system can maximize the bio-transformation of soluble and colloidal biodegradable
matter (CSg: Cg+Sg) into particulate matter (Xg) and its physico-chemical capture to maximize
methane production, while minimizing hydrolysis of particul ate biodegradable organic matter from
the influent (Xg).

1.2.4 Project phases

The project was divided into three phases. The first phase, conducted in the laboratory, was
performed using 1 L reactors with synthetic wastewater. The preliminary phase was completed
from September 2013 to August 2014. The second phase, which is the subject of this thesis, was
conducted in two biological treatment process configurations as a pilot scale demonstration. The

pilot plant is comprised of two configurations as follows:

1) an inoculum-chemostat system combining a high-rate moving bed biofilm reactor (HR-MBBR)
playing the role of an inoculum and a continuous flow stirred-tank reactor operated as a chemostat,

and
2) atypical high-rate MBBR.

The third phase was the modelling of the treatment systems to integrate the results.

1.2.5 Organization of thisdissertation

This report is divided into 6 chapters. Chapter 1 presents the general and specific objectives, and
the originality of this project. Chapter 2 presents a literature review and theoretical elements to
improve the energy efficiency of WRRFs. Chapter 3 presents the methodology for the pilot plant
operation conditions, process configurations, methodology, experimental design, measurements
and analyses. Chapter 4 presents the results and discussion related to the bio-transformation
efficiency of organic matter across the MBBR and inoculum-chemostat process at pilot scale, in



the format of ascientific articleto be submitted to the journal of "Water Quality Research Journal”.
Chapter 5 presents additional results, chapter 6 provides ageneral discussion and chapter 7 presents

conclusions and recommendations.



CHAPTER 2 LITERATURE REVIEW

The body of the work isthe main portion of the thesis or dissertation. Thisiswhere the theoretical
or mathematical development is set out, along with the methodology and experiment design,

measurements, results and analysis, as well as the necessary scientific discussion.

2.1 Wastewater characteristics

Anthropogenic waste isreleased daily asindustrial and municipal wastewaters enter WRRFs. The
characteristics of wastewater are mostly influenced by factors such as behaviour, lifestyle and
living standards which can affect the design of the wastewater treatment systems (Henze and
Comeau, 2008). A detailed characterization of wastewater and organic matter is provided for the
purpose of wastewater reclamation/reuse to make it possible to perform appropriate and effective
treatment methods to meet the discharge standards and levels of purification (Shon et a., 2007).

Chemical oxygen demand (COD) is the main parameter, representing the organic matter content
of municipal wastewaters. Based on biodegradability, the total COD can be divided into
biodegradable (CODg), unbiodegradable (CODuy) and active biomass (heterotrophic biomass
Xono) fractions (Figure 2.1) (Melcer et a., 2003; Lee et a., 2006).
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Figure 2.1: Municipal wastewater COD characterization (Melcer et a., 2003)

These fractions can be further subdivided based on their biodegradability into particulate
biodegradable (X&), particulate unbiodegradable (Xu), colloidal and soluble biodegradable (Cg and
S, respectively) and soluble unbiodegradable (Su) (Melcer et al., 2003; Henze, 2000; Corominas
et al. 2003).



Particles in wastewater can aso be classified based on size fractions: 25% of COD as dissolved
(< 0.08 um), 15% as colloidal (0.001-1 pm), 25% as “supra” colloidal (1-100 um) and 35% as
settling (> 100 um) (Dulekgurgen et al. 2006; @degaard, 2000).
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Figure 2.2: Schematic fractionation of COD components for municipal wastewater (adapted from
Comeau, 2013)

The composition of typica municipal raw wastewater is presented in Table 2.1. High

concentrations of wastewater represent low water consumption and/or infiltration, whereas diluted

wastewater shows high water consumption/or infiltration. Storm water can further dilute

wastewater (Henze and Comeau, 2008).



wastewater (Henze and Comeau, 2008)

Table 2.1: Typica composition of municipal wastewater with minor contribution of industrial

Parameters Unit High | Medium | Low
Total COD mg/L 1,200 750 500
Filtered COD mg/L 480 300 200
Particulate COD mg/L 720 450 300
BOD5 mg/L 560 350 230
TSS mg/L 600 400 250
VSS mg/L 480 320 200
VFAsS mg HAc/L 80 30 10
Total Kjeldahl nitrogen mg N/L 100 60 30
Ammonia mg N/L 75 45 20
Tota P mg P/L 25 15 6
Ortho-P mg P/L 15 10 4

2.2 Wastewater treatment processes

Wastewater treatment is required due to environmental discharge requirements and to meet
regional criteriaand standards. The treatment processes can be divided into pre-treatment, primary,
secondary, tertiary and advanced to reduce different parts of pollutants (Grady et al, 2011; Comeau,
2013; Metcalf and Eddy-Aecom, 2014). A typical municipal sewage treatment plant, including all
proposed process configurations, is shown schematically in Figure 2.3.

Two major types of treatment processes can be incorporated in WRRFs, including the physico-
chemical processes (coagulation, flocculation, sedimentation, filtration, disinfection) and
biological treatment (Ballay et al., 1998). Treatment levels (pretreatment, primary, secondary,

tertiary and advanced) are chosen according to the effluent discharge requirements.

The primary treatment is the preliminary level of wastewater treatment; it initiates the process by
screening to trap floating solids, followed by primary sedimentation for gravitational removal of
suspended solids. This level is sometimes defined as “mechanical treatment”, although chemical
products may be used to accelerate the sedimentation process. The biological oxygen demand
(BOD) can be reduced by 20-30% and the total suspended solids by some 50-60% during the
primary treatment process (Metcalf and Eddy-Aecom, 2014).

Organic matter is consumed and removed as food by heterotrophic bacteria under aerobic
conditions during the secondary (biological) treatment, and it is then converted to carbon dioxide,
water, and energy for growth of new heterotrophic biomass Xono (Fang 2010; Petersen et a.,



2003). The biological processis followed by additional secondary sedimentation to reduce more
of the suspended solids. About 85% suspended solids and BOD can be removed across the
biological treatment process. Different forms of biological treatments can be incorporated for the
removal of organic materials at thislevel of treatment, i.e. activated sludge, pond and constructed
wetland systems, trickling filters (Qasim, 1985; Metcalf and Eddy-Aecom, 2014).

Tertiary treatment can remove over 99% of all pollutants from wastewater even supplying effluent
of drinking water quality. The technologies performed at this level of treatment are very expensive,
requiring a high level of technical and well trained operators. An example of a typical tertiary
treatment process is the modification of a conventional secondary treatment plant to remove
additional phosphorus and nitrogen (Qasim, 1985; Metcalf and Eddy-Aecom, 2014). Disinfection
usually isbuilt in as afinal step before discharge of treated wastewater.
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Screens Chamber Clarifier Air > Treatment 4 Clarifier  gutfall of reuse
T e H
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Heat ™ Heat
’:D/Biosolids — Biosolids reuse or landfill

Figure 2.3: Identification of atypical wastewater treatment system (adopted Qasim, 1985; Metcalf
and Eddy-Aecom, 2014; Nazaroff and Alvarez-Cohen, 2001)
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2.3 Biological wastewater Treatment

Biological treatment includes (Grady et al., 2011; Comeau, 2013; Metcalf and Eddy-Aecom.,
2014):

Bio-transformation of particulate, colloidal and soluble biodegradable matter into new

biomass and simple compounds, i.e. CO2, H20, N2 or HNOsg, etc.

Adsorption of non-decantable and unbiodegradabl e particulate and colloidal matter
And

Conversion or removal of nutrients (N and P)

The bio-transformation of biodegradable matter into bacterial biomass is the result of purification
of wastewater. Then, biomass can be removed from biologically treated wastewater by means of
the secondary clarifier (Gray, 2005).

A biological processisapromising treatment technology to attain revenue from Certified Emission
Reduction (CER) credits, as methane gas can be generated from anaerobic digestion and can be
utilized as renewabl e energy. Biological treatments offer advantages such as operational flexibility
to support awide variety of effluent and wastewater characteristics. They also reduce the operating
costs, including those of chemical reagents. However, the implantation of biological processes
requires a certain area and microbial activity may be sensitive to operating conditions (Seabloom
et al., 2005).

Biological processes require free or dissolved oxygen for microorganisms (ordinary heterotrophic
organisms,; XoHo) activity, converting organic matter to biomass and CO»; while in the latter
process, complex organic matter are degraded into methane, CO> and H20 across three basic steps
via anaerobic digestion (hydrolysis, acidogenesis including acetogenesis and methanogenesis) in
the absence of oxygen (Chan et al., 2009; Comeau, 2013; Metcaf and Eddy-Aecom, 2014).

The microorganisms transform the organic matter through two biologica oxidation and

biosynthesis processes (Gray, 2005). The biosynthesis converts the colloidal and dissolved organic
matter into new cells, forming biomass (Eqg. 2-1).
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(Eq. 2-1)

microorganisms

CeH1,06 + O, + NH3 + other nutrients ——  CsH,0,N + C0, + H,0
l—Y—J & J | )
| |

carbon source new biomass mineralization

products
The biological oxidation end-products (i.e. mineral) remain in the wastewater and they are
discharged with the effluent (no new biomassis produced). The biological process can be operated
as 1) suspended growth versus attached growth systems, or both 2) continuous process system
versus sequencing batch reactor, under aerobic (in the presence of oxygen with constant aeration),
anoxic (in the absence of oxygen, but in the presence of nitrite or nitrate (NOx)) or anaerobic
conditions (Wang et al., 2010).

The suitable method for treatment depends on the characteristics of the wastewater system effluent
standards and regulations. The system performance also depends on the operating conditions such
as the organic loading rate (OLR), the hydraulic retention time (HRT) and environmental
conditions i.e. the pH and temperature. Temperature and pH directly affect the development of
distinct species and the growth of microorganisms. Most bacteria cannot operate effectively at a
pH higher than 9 or a pH less than 4. Typically, the optimum pH is between 6.5 and 7.5 (Metcalf
& Eddy-Aecom, 2014).

Conventional aerobic treatments have been used frequently for industrial and municipal
wastewater; however, high-rate bioreactors have been devel oped to reduce the capital costs of the
process and to increase biogas production via anaerobic digestion. The advantage of high-rate
biological treatment processes is the ability of organic carbon redirection into possible energy
generation, by maximizing the bio-transformation of the substrate and minimizing the oxidation
(no mineralization) of colloidal, particulate COD (Jimenez et a., 2015, @degaard et al., 2000).
There has been arenewed interest in the HR wastewater process due to its high potentia to recover
energy positive/efficient in WRRFs (Tilley, 2011; Nogg et al., 2015). The aerobic biological
treatment process using high rate bioreactors can achieve ahigh COD removal (up to 70%) at short
HRT (ranging from afew hoursto afew days) (Chan, et al., 2009).

An overview of two major types of biological systems including suspended and attached growth

processes are described in the next section.
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2.4 Suspended growth process

Suspended growth (i.e., Activated sludge processes) is an effective process for the remova of
organic carbon and nutrientsin municipal wastewater plants; in this process, active microorganisms
(heterotrophic biomass Xono) are maintained in a liquid suspension by mixing and aeration
methods. Additionally, the mixture of microorganisms and wastewater is transferred to a clarifier
and sludge settles out of the treated wastewater, it is then returned to the main reactor to increase

the concentration of microorganisms.

Activated sludge is the most commonly used suspended growth process where the Xono are fed by
nutrients and organic matter to grow and form the biomass flocs (Chai and Lie, 2008; Spellman,
2008). Air can be introduced in both fine and coarse bubbles to provide respiration to suspend
microorganisms and also to provide intimate contact between organic materia in the water and
oxygen. Following the bio-transformation of soluble and colloidal matter at operated hydraulic
retention time (HRT), the mixture of Xono and wastewater is redirected to the secondary clarifier
where the flocs are separated by gravitational settling and returned to the bioreactor to seed the
process and increase the concentration of microorganisms. Once the microorganisms reach a
desired concentration, surplus Xono are wasted from the system. The population ratio of biomass
for providing proper food to microorganisms (F/M) isthe most important factor affecting efficiency
of an activated sludge (AS) system and the health of its biomass. The criterion for wasting sludge
is defined based on constant sludge retention time (SRT), which leads to a constant F/M.

2.5 Attached growth process

In this process, the X oHo, responsible for the conversion and removal of nutrient and organic matter
is developed on inert packing material, such asrock, gravel, slag, sand, redwood and awide range
of plastics and synthetic materials.

Attached growth system (biofilm) is a reliable process for the removal of nutrients and organic
carbon, since no return activated sludge stream is required (as a considerable advantage) in

comparing with the suspended growth process; however, the surplus biomass has to be separated.

The most significant feature of thistype of processisthe development of biofilm on acarrier; they
are mostly diffusion limited. The removal of biodegradable matter is affected by diffusion rates as

well as the electron donor and electron acceptor concentration at different layers of the biofilm
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(Tchobanoglous et al., 2003), whereas this factor illustrates the difference between attached and
suspended growth processes. The liquid dissolved oxygen (DO) associated with diffusion

limitation should be considered due to its effects on the biological reaction rate.

Different biofilm systems are already commonly used in WRRF’s, such as trickling filters, rotating
biological contactors (RBCs), fixed media submerged bio-filters, granular media bio-filters,
fluidized bed reactors, moving bed biofilm reactor (MBBR), etc.

2.6 Moving bed biofilm reactor (MBBR)

The development of the moving bed biofilm reactor (MBBR) originated in the 1970s (Loosdrecht
et a., 2015). The MBBR provides a wide variety of attached growth systems where synthetic
material isused as acarrier media. This process was first developed for the treatment of municipal
wastewater for the removal of nitrogen (Odegaard et. a., 1994). Afterwards, the Norwegian
University of Science and Technology (NTNU) and the Norwegian company, Kadnes
Miljgteknologi (now Anox Kaldnes AS), developed a new attached growth system in 1988.

The MBBR, is a biological process in a complete mix with continuous flow across the process,
combining the benefits of the activated sludge process and the bio-filter processes and there is no
need for sludgerecirculation (ddegaard et a ., 1994). The submerged carriers, on which the biofilm
grows, are kept in a suspension by either a mixer, or an aeration system, to force an upward

movement of the submerged carriers.

In this context, while the suspended growth aerobic process needs a DO concentration of 2-3 mg/L,
thislevel of DO could be alimitation for the attached growth process, eespecially to achieve ahigh
level of nitrification (ddegaard, 2006).

The major disadvantage of the MBBR process is the operating costs associated with the aeration
process. Fine bubble diffusers are not used in the MBBR process because coarse bubbles are more
effective in having the mediafloat to the water surface, which resultsin very poor oxygen transfer
efficiencies. Furthermore, dissolved oxygen concentrations of 3 to 4 mg/L is the optimum level

recommended by the manufacturer to maintain the aerobic conditions in the biofilm.

The biomass are fixed on carriersin the MBBR with the surface area provided by the carrier media.
This carrier offers a number of advantages, i.e. non-cloggable, lower head loss, no need for back

flushing and higher specific surface area. The high-density polyethylene carriers have a specific
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gravity of 0.95 g/cm? in the form of a wheel or cylinder reinforced on the inside with a cross to
provide harborage for microorganisms (ddegaard et al., 2006). There are different types of media
with different sizes and shapes, provided by the Anox Kaldnes Company, such asK1, KaldnesK2,
Kadnes K3, K5 and BiofilmChip M. Media size and surface area are usually used to evaluate
different kinds of carriers (Table 2.2).

Table 2.2: Different type of Kaldnes MBBR carrier (adapted from McQuarrie and Boltz, 2011)

Typeof carrier Model of media ( d?a{rrggtne? ?(n drgpr?h) Suzrzlaz??ng;ea
K1 9.1x%x72 500
K3 25x10 500
K5 25%x 35 800
BiofilmChip M 48 x 2.2 1200

The biomass Xono is grown on the carrier elements (active surface) with alittle lighter density than
water (Loukidou and Zouboulis, 2001), while introducing air from the bottom of the reactor and a
mechanical mixer performs uniform distribution of the plastic biofilm carriers and provides the
required oxygen for processing in a complete mixed reactor (Jdegaard et al., 1994).

Several applications of different configurations in both industrial and municipal wastewater
treatment can be operated by aMBBR process as a biological treatment process for BOD removal,
nitrification and/or de-nitrification, or as a pre-treatment system ahead of an existing activated
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sludge system for increased organic matter removal. Different configurations and flow diagrams
are presented in Figures 2.4 and 2.5.
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Figure 2.4: Typical MBBR configuration for various application organic carbon and ammonia
removal processes (adapted from @degaard, 2006)
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Figure 2.5: Typicd MBBR configuration for various application nitrogen removal processes
(adapted from @degaard, 2006)

Thehigh-rate MBBR (Figure 2.4b) is used for the removal of readily biodegradable matter (mostly
soluble); coagulation and floatation are used to separate suspended and colloidal matter. The
process results in the maximized bio-transformation of substrate and minimizes the oxidation of
colloidal, particulate COD (Jimenez et a., 2015, @degaard et a., 2000) to enhance maximum

biogas production across the anaerobic digestion (AD) process.

2.6.1 Operating conditions

The moving bed biofilm reactor (MBBR) can be operated in aerobic, anoxic and anaerobic
processes with system performance affected by various conditions, including hydraulic retention
time (HRT), organic loading rate (OLR) and carrier filling rate (Li et al., 2011; Jianlong et al.,
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2000). Although, it has been reported that by increasing HRT and OLR, there is an increase in
organic matter and nutrient removal efficiency, higher costs and energy consumption requirements
were also reported (Guo et a., 2010).That is the reason why low cost and efficient treatment is
considered an operational optimum condition in the current research on MBBRs. Consequently, it
was necessary to carry out a systematic study on the optimum biofilm carrier filling rate, OLR and
HRT in MBBR to treat wastewater efficiently and cost effectively. In addition, the removal of 90%
of soluble COD can be achieved in a pilot scale MBBR operation if an optimum mediafill volume
fraction , HRT, OLR and dissolved oxygen is applied (Chen et al., 2007; Schubert et al., 2013;
Sima, 2013).

The dissolved oxygen concentration is also an important factor for biofilm growth: from 2 to 3 mg
O2/L isrequired for Bio-transformation of organic matter (ddegaard, 2006, McQuarrie and Boltz,
2011).

The mechanical mixer is also used to agitate the bulk of the ligid and distribute carriers uniformly
in the MBBR reactor, and also to control the thickness of biofilm on the carrier’s surface. However,
Sheli and Moletta (2007) reported that by increasing OLR, it resultsin an augmentation of biomass
inthe MBBR system. About 70% of the total surface areacan be represented as an effective surface
areadue to lesser attachment of biofilm on the outer surface of the media (Majeed et al., 2012). In
addition, the size and shape of the media proved to be an effective factor in the system’s removal
efficiency, due to the biofilm thickness inside and outside of the carrier (ddegaard, 2000). The
thickness of the biofilm on the carrier’s surface can be controlled by a mechanical mixer. However,
as the organic loading rate (OLR) increased, attached biomass is augmented as well in the MBBR
(Sheli and Moletta, 2007). It is recommended that the percentage of media should be below 70%
of reactor volume to ensure the media can move freely (Rusten et a., 2006). However, the
percentage of the media fill volume fraction can be determined based on the wastewater
characteristics and specific treatment goals (Sima, 2013), whilst more than 90% of biomass is
attached to the media rather than suspended in the liquid (Schmidt and schaechter, 2011).

However, carrier movement leads to attrition and collision of media in the reactor and causes
biofilm detachment from the surface area; this may be mitigated by providing fins on the outside
of the carrier media to protect against biofilm loss and to promote biofilm growth. Controlling

adequate turbulence eliminates excess biomass and maintains sufficient thickness of biofilm in the
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reactor (Jdegaard et al., 2000). Less than 100 pm biofilm thickness is recommended for enough
substrate diffusion in the biofilm (Jdegaard et al., 2006).

2.6.2 Applicationsof MBBR

There are more than 500 full scale wastewater treatment processes based on MBBR in 50 different
countries which are operated in municipal and industrial wastewater conditions. The MBBR
process offers a very compact treatment process, leading to low investment and annual costs.
MBBR has been used in a variety of applications and has achieved acceptable results in the case

of the removal of different contaminants removal (AnoxKaldnes, 2009).

In most applications, MBBR is used either alone, or combined with the other technologies, such as
NEOSEP® membrane bioreactors, actiflo clarification, hydrotech discfilters, dissolved air flotation
(DAF), activated dludge or conventional clarifiers. For example, a combination of
hydrolysigacidification with MBBR in which oxidation was used to upgrade centralized
wastewater treatment plants in a pharmaceutical industrial park (PIP) in China (Lei et a., 2010).
In this combination system, MBBR was used at DO level of above 3 mg/L with the aim of good
fluidization of carriersat an HRT of 10.8 h, and HRT was gradually decreased to 5.4 h and then to
3.6 h by the enhancement of inflow. The COD and NH4*-N concentration in a good performance
of the system were remained stable bellow 100 and 20 mg/L, respectively.

A combination process consists of one or more MBBRs reactor, followed by an activated sludge
system patented by AnoxKaldnes ™ Company. The high rate biofilm stage is designed to pre-treat
the wastewater for the removal of readily bio-degradable organic matter prior to the activated
sludge system (AnoxKaldnes™, 2009).

Norway acquired a wastewater treatment plant in Lillehammer WWTP in 2005, and the results
indicated average effluent concentrations of 2.2 mg BODs/L, 2.9 mg total N/L and 0.12 mg total
P/L. In addition, five WWTPs were used in Sweden for the remova of nitrogen and COD from
municipal wastewater using the MBBR process

2.7 Anaerobic digestion

Anaerobic biodegradation of organic matter is performed in the absence, or presence, of oxygen
and anaerobic microorganisms, respectively. Metabolic interaction between microorganism groups
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resulted in an AD process comprising three stages, hydrolysis, acidogenesis and methanogenesis.
The first group of microorganism secretes enzymes that hydrolyze polymeric materias (e.g.
glucose and amino acids) to monomers, such as glucose and amino acids. They are subsequently
converted to higher volatile fatty acids by acetogenic bacteria, H> and acetic acids and into fatty
acids in the next step. Finally, the third group of bacteria, methanogenic, converts H2, CO. and
acetate to CHa4. The AD is operated by mesophilic and thermophilic bacteria at temperatures
ranging from 30°C -65°C. These are subsequently converied by a second group, i.e. acetogenic

bacteriato higher volatile fatty acids, H2 and acetic acid. An acetogenesis reaction is shown below:
CsH1206 + 2H,0 < 2CH;00H + 2C0, + 4H, Eq. 2-2
CH;CH,OH + 2H,0 & CH;C00~ + 2H, + H* Eq. 2-3

Finally, the third group of bacteria, methanogenic, converts Hz, CO», and acetate, to CHa4. These
stages are described in detail below (Shefali & Themelis 2002). The AD is carried out in large
digesters (Figure 2.3) that are maintained either 30-40°C or 50-60°C, respectively.

The methanogenesis reactions can be expressed as follows:

2C,HsOH + CO, - CH, + 2CH;COOH Eq. 2-4
CH;COOH — CH, + CO, Eq. 2-5

(Acetic acid) (Methane) (Carbon dioxide)
Among the advantages promised by AD, it may be a source of renewable energy as well as its
economic benefits offer a key operational advantage. Biogas generates power and heat leading to
areduction in the energy costs of facilities at plants. It has a considerable benefit and alows the
digesters to be self-sufficient energy sources and self-paid to warm the digester (Stuart, 2006;
Renou et al., 2008). If the energy (electricity or heat) produced by AD exceedstheinternal demand,

it can be sold off as generating revenue (Stuart, 2006).

2.8 Valorization of organic matter

Wastewater is arenewable resource for biogas production and sustainable water management must
be ensured. The primary approach to sustainable water management is a degradation of organics
to carbon dioxide (CO»).
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Development of compatible treatment processes in WRRFs, which are compact, durable and
capable of being operated at different operational conditions, is necessary to invest in wastewater

infrastructure.

The main treatment configurations proposed in this project are composed of an innovative
combined pilot scale MBBR operated under real wastewater conditions, followed by a chemostat
process to biotransform the colloidal and soluble organic matter and recover the produced
particulate organic matter. The latter is converted into biogas by anaerobic digestion and then
upgraded to energy. This treatment chain is directly in line with the objective of maximizing the
recovery of water resources and by using them in an energy efficient manner. In addition, it
promotes the use of biosourced reagents, which are potentially biomethanizable, easily accessible
and safe for health. (Beltran-Heredia and Sanchez-Martin, 2009; Heubeck et a., 2011; Sutton et
al., 2011; Metcalf and Eddy-Aecom, 2014).

2.9 MBBR E+ project

This research was performed as a part of the MBBR E+ NSERC RDC project which started on
January 1, 2013, and included 3 years of lab scale and pilot-scale studies. The pilot unit used
(named BA+) had been previously funded by the Canada Foundation for Innovation (CFl). A view
of the BA+ pilot unit was shown in Figure 2.6. The MBBR E+ process is proposed to improve the
energy efficiency of WRRF, to reduce the carbon footprint and to promote better management of
resources. Two liquid configurations were proposed, including the high rate of MBBR and
inoculum-chemostat processes) in a separation step to maximize sludge recovery by anaerobic
digestion (AD).
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pH adjustment

Figure 2.6: A view of interior and exterior BA+ pilot scale wastewater treatment plant
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CHAPTER 3 METHODOLOGY

The setup configuration for the pilot plant and the experimental design corresponding with the
project objectives are presented in thefirst part of thischapter. Thisisfollowed by the experimental
infrastructure, influent raw wastewater, operating protocols, sampling methodology, data
validation process and evaluation of the process efficiency. The information which was provided
in this section is complementary information on the methodology for this study that was not

mentioned in the paper (chapter 4).

3.1 Pilot plant setup configurations

A pilot-scale wastewater treatment plant was installed at Repentigny WRRF in the city of
Repentigny, Quebec (Figure 3.1).

Pilot scale treatment configurations were as follows:

1) An Inoculum-Chemostat (IC) system combining a high-rate moving bed biofilm reactor
(HR-MBBR) playing the role of an inoculum and a continuous flow stirred-tank reactor
operated as a chemostat,

and a
2) Typica A high-rate MBBR (HR-MBBR).

Both configurations were fed continually with Repentigny WRRF. The MBBR-E+ pilot scale
process configurations are presented in Figure 3.1.

| &mm
screenin

Ij__ ==

Spidflow®
(diss. air flot.)

WRRF of Inoculum e
Repentigny ‘AM *‘:
Chemostat

MBER and Inoculum-chemostat pilot plant

Figure 3.1: MBBR-E+ pilot system configuration
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3.1.1 Pretreatment process

Two paralel Thompson cone strainers (produced by Miller-Leaman, USA) as a pretreatment
process for the physical removal of escaped particles were installed in the influent diverted from
Repentigny WRREF to the inlet of the pilot unit to protect the pilot plant’s mechanical equipment.
Strainers had a stagger customized size of 6 mm (1/4 in); the total surface area and open area are
1290 cm? (200 sq.in) and 51%, respectively.

Conical strainer
Screen

Outlet

QOutlet Gauge
" port

Inlet Gauge

Clean water
Separation Seal

Debris Flush/
Drain port

n = Debri i
Strainer Stand Sars resanal

http://www.millerleaman.com

Figure 3.2: Miller-Leaman strainer installed on the influent line of pilot plant

3.1.2 MBBR configuration

The MBBR comprised a 2.1 m® with an external dimension 77.5 cm x140 cmx 190 cm (L x W x
H) (Figure 3.3). The useful height is 178 cm, which corresponds to atotal liquid volume of 1.9 m®,
It was partialy filled with K5 AnoxKaldnes™ media type (d: 26 mm; h: 4 mm, Figure 2.4) that
provides a specific surface area of 800 m?/m? if the reactor fill by 100% of total volume of the
reactor. The mediafill volume fraction was 37% and 53% of total liquid volume corresponding to
700 L and 1000 L of K5 media, respectively. The actual volume, occupied by the K5 media and
biofilm, varies with changes in the thickness of the developed biofilm. This volume ranged from
11% to 16% total liquid volume for afill volume fraction of 37% and 53%. Therefore, the actual
volume of water in the MBBR reactor was changed by 89% and 84% (for 11% to 16% devel oped
biofilm, respectively) of the liquid volume corresponding to 1.7 m® and 1.6 m?, respectively. HRTs

have been recal culated according to changesin the volume of real water in thereactors. The MBBR
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reactor is equipped with a mechanical mixer and a diffuser. The blower provided 16 + 1 m%h per
volume of reactor coarse and fine bubbles via diffusers from the bottom of the reactor. Overflows

were fitted with screensto prevent the loss of K5 mediafrom the vessel.

Influent , -
- @ e —
o®loo Effluent

®o o ®

190 cm
o7 @
oG

le]
(=]
(o]
(o]

&
- |/
g

77.5cm

Figure 3.3: MBBR process configuration and dimensions

3.1.3 Inoculum-chemostat configuration

The IC process configuration is shown in Figure 3.4. The Chemostat reactor dimension (L x W x
H) was 210 cmx140 cmx210 cm for atotal volume of 5.6 m3. The useful height of the reactor was
60 cm, which corresponds to a working volume of 4.7 m3. The reactor had a mechanical stirrer,
blower and afine bubble diffuser. A 1.5 + 0.2 m3h per volume of reactor air was introduced from
the bottom of the reactor. The Chemostat was installed after a 0.4 + 0.04 m® of MBBR (inoculum)
to inoculate and enrich the microorganisms in the influent within a short HRT. The inoculum
dimensions (L x W x H) were 70 cmx70 cmx100 cm with a total volume of 0.5 m3. The liquid
depth ranges in the inoculum were changed as 90 cm, 75 cm and 50 cm, based on operated HRT,
representing liquid volumes of 0.44 m3, 0.37 m® and 0.27 m®, respectively. The mediafill volume
fraction varied between 15% and 23% based on the total liquid volume. The actual volume of liquid
considering the volume of media and the inoculum reactor varied between 80% and 95% total
volume of 0.25 m3to 0.42 m®. Inoculum is completely mixed in the reactor by introducing fine air
bubbles from the bottom of the reactor, without installing a mechanical mixer. Approximately
2+ 1 m3h air per volume of reactor was introduced to the inoculum to keep DO level up to
6 mg O2/L.
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Inoculum

210cm

Figure 3.4: Inoculum-chemostat process configuration and dimensions

3.2 Raw wastewater characteristics

The influent raw wastewater was provided from Repentigny WRRF. The wastewater was
composed of residential, institutional and backwashed water from the Repentigny drinking water
treatment plant filters and a small proportion (10%) from industrial sectors. The raw wastewater
was pumped from the aerated grit chamber to the pilot after screening (6 mm) and after fat and

grease removal. The organic matter fractionation of raw influent is presented in Table 3.1.

Table 3.1: Total COD fractionation of pilot plant influent raw wastewater
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3.3 Operational conditions

The systems operational processis divided into two successive start-up and stabilized phases.

The start-up phase reached stability in one week. The start-up period alowed microorganisms to
grow and develop as attached biofilm on the carriers across the MBBR and inoculum. The stable
period was defined as the period when no significant change was observed in the characteristics of
the effluent (CSs concentration) based on the operated conditions. All sample analyses were
performed over the stabilized period of each MBBR and IC process under specific operational
conditions. The minimum duration for each specific condition was 2 weeks to acquire enough data.
The variable conditions used in different experiments are summarized in chapter 4 (Table 1 and 2).
The impact of hydraulic retention time (HRT), dissolved oxygen (DO) levels, organic loading rate
(OLR) and mediafill volumefraction were studied on the operation of the proposed configurations.
The temperature was not controlled and changed over time during the pilot operation (20 + 3 °C,
Appendix A).

3.4 Sampling methods

Two series of composite and grab samples were taken three times per week from the influent and
effluent of HR-MBBR and |C processes, respectively. Composite samples were scheduled over a
period longer than the operated HRT. The schedule of preparing composite and grab samples from
influent and effluent of HR-MBBR and IC processes based on the length of HRT <3 h and
HRT >3 h were performed as shown in Figure 3.5. An additional composite sample from
chemostat (Figure 3.5a), was performed if HRT was greater than 3 h (to, to+ 1h,to+ 2 h, to + 3 h,
to+4h).
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sampling
Figure 3.5: Scheduled sampling from influent and effluent of (&) HRT <3 h (b) HRT >3 h

3.5 Analytical determinations

3.5.1 Total and filtered COD

Total COD and filtered COD of influent and effluent samples were measured based on the standard
method 5220D, closed reflux colorimetric method (APHA et a., 2012), using the Hach Test-in-
Tube (TNT) kits (Hach, Inc.). The COD tests were performed with high (0 to 1500 mg/L) and low
(0 to 150 mg/L) range TNT tubes, while two standard samples were prepared for each test using
dried potassium hydrogen phthalate (KHP). For each test 2 ml of sample were placed into an Hach
vial, shaken, and digested on a heating block for 2 hours. The digested samples, after cooling to
ambient temperature, were analyzed spectrophotometrically. The colloidal and filtered fraction
(CS) represents the COD concentration filtered through a 1.2 ym filter, while the soluble COD (S)
portion measured after flocculation (by ZnSO4) and filtered through 0.45 um filter (soluble COD:
S). The unbiodegradable soluble fraction (Sy) was considered 5% total COD (EnviroSim, 2014).

Unbiodegradable colloidal fraction was determined from equation 3.2, based on the assumption in
Eq. 3.1.
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B0 Eq.3.1

Su S
o= 050 = 5 Eq.3.2

The colloidal COD (C) and particul ate fractions (X), colloidal and soluble biodegradable (Cg and
Sg) are calculated from Equations 3.3, 3.4, 3.5 and 3.6, respectively.

C=CS-S Eq. 3-3
X =CO0D - CS Eq. 3-4
Cg=C+Cy Eq. 3-5
By =54 5y Eq. 3-6

3.5.2 VSSand TSS

TSS and VSS analysis were measured based on standard method 2450D. The remaining solids on
1.2 ym filter (MF-Millipore™, EMD Millipore, USA) were dried at 105 °C and 550 °C in ovens
for measuring TSS and VSS, respectively (APHA et al., 2012). All filters were washed with
distilled water prior to testing and then placed in aluminium dishes, and dried for 1 h and weighed
before usage. Values were recorded and used in the following equations to determine VSS and TSS

concentrations;

TSS = (B—A)(1000 ™9/

Sample volume,L Eq. 3-7
(B-C)(1000 ™9/,)

Sample volume,L

VsS =

Eq. 3-8

Where

A (g): weight of thefilter (dried at 105 °C) + aluminum container

B (g): weight of the filter + aluminum container + residue (dried at 105 °C for 1 hour)

C (g): weight of the aluminum container + filter and residue (combusted at 550 °C for 20 min).

3.5.3 Biofilm mass

The mass of developed biofilm was measured in both HR-MBBR and inoculum during each of the

operational conditions. For this purpose, 100 media carriers were collected from the reactors at
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each sampling time, and divided into five replicates of 20 media carriers. For each replicate, this
procedure was applied:

All the carrierswere dried at 105 °C for 24 h and then weighed to determine the total mass
(media + biofilm);

Carrierswere placed in acontainer with water and stirred vigorously to detach the biomass.
This step was repeated five times and the entire washing water was retained and the exact
volume was measured using a graduated cylinder. Analyses of TSS and VSS were
performed to obtain aratio VSS/TSS,

The mediawere washed in 6 M NaOH for 30 minutes, rinsed with warm water to remove
any remaining biomass, dried again at 105 °C and all of the carrier was weighed in
determining the mass of the media without the biofilm.

The difference between the total mass and the mass of the media at the final step represented the
total amount of biofilm growninall 20 carriers. Biofilm mass per carrier was cal culated by dividing
the total amount of biofilm by the number of balls (20).

3.5.4 Sudge volumeindex

SV1 variation from effluent samples were determined to monitor settling characteristics of MBBR
and chemostat suspensions. The sludge volume index (SV1) is the volume in milliliters occupied
by 1 g of a suspension after 30 min settling (APHA et al., 2012). The suspended solids can be
determined by dividing the settleable (after 30 min) sludge volume of one liter, well-mixed sample

by total suspended solids of wastewater samples. The formula for SVI iswritten:

settled sludge volume (mL/L) x 1000
Total suspended solids (mg/L)

SVI = Eq. 3-9

3.5.5 Other parameters(pH, DO, Nitrate)

The probes (Hach Company), connected to the automation system (PLC), were applied to
continuous real-time monitoring and controlling of DO, pH and temperature. Oxygen utilization
rate measurements (OUR) were measured every two hours and three hours in the MBBR and in

the chemostat reactor, respectively.
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3.6 Process efficiency

The process efficiency was evaluated according to the criteria of removal of soluble and colloidal
biodegradable organic matter and observed bio-transformation of soluble and colloidal material
into particulate matter. The removal efficiency was calculated by a correlation between soluble and

colloidel biodegradable organic matter (CSg) from the influent and effluent:

g
€S, Removal efficiency (%)—CS‘)“‘”ES) ((:i";;” &) x 100 Eq.3-10
bars
CSh,,, (mg/L) = CSiny (5 ) CSu,,s (52) Eq.3-11
CSby,, (Mg/L) = CSgrr (TE) — CSuy,, () Eq.3-12

The specific removal per used surface area (Ay) of media was calculated as:

cs cs TE
Specific removal (g CS,m2d™1) =« Q(—”;—s) * ( bmf( A)(mz;Eﬁ( )) Eqg.3-13

Theyield of Xg and observed yield (Yobs) were calculated using these equations:

. g CODp _ |cop(E)- csasr(E)|~[cODins (F5) - CSins (FE)]
Yield Xp (.g CODCSremoved) - csbm(%)- Gy (%) Eq.3-14

g TSS TSSE‘ff(_Lg') TSSmf( )
obs (g DCOCSremoved) CSp, i (%) CSbEf; (mg) Eq.3-15

Otherwise, the retention time of the biofilm (SRT) and the maximum specific growth rate were

measured as follows:

Total mass of biomass

SRT(d) = Eq.3-16

Total mass of purged biomass

V(L)*Vssmf( )+ number of media-M yss (g)
SRT(d) = NE T e Eq.3-17
o) vssen()
( i ) (K3+Sbeff( )) (14+kq*SRT(d))
m\gvssd SRT(a}*sbeﬁ(_”?)

Eq.3-18

The effect of temperature was evauated using the coefficient 6 using the modified Arrhenius
equation:

k'r - kZU * Q(T_ZG) e kZU = k'r * Q(ZU_T) Eq.3'19
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Abstract

This main objective of this study was to develop an innovative process to maximize the bio-
transformation of colloidal and soluble biodegradable matter (CSg) into particul ate matter (Xg) for
energy recovery via methane production. Two configurations were studied, 1) a high-rate MBBR
and 2) an inoculum-chemostat (IC) system consisting of a very high-rate moving bed biofilm
reactor (HR-MBBR) inoculating a continuous flow stirred-tank reactor operated as a chemostat.
The effect of process parameters such as hydraulic residence time (HRT), specific organic loading
rate (SOLR) and dissolved oxygen (DO) level on the performance of the two high rate systems was
determined using real wastewater at pilot scale. Results showed that in the HR-MBBR process, a
very high CSg bio-transformation efficiency (90 £ 3%) was obtained in a wide range of SOLRs
(2.0t05.5g CSs m? d?) corresponding to an optimum HRT of 36 minutes. The IC process reached

* Corresponding author
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amaximum CSg bio-transformation efficiency of 77 + 3%, at SOLRs ranging from 22t0 30 g CSg
m2 d?at an HRT of 3.7 hours. The DO concentration in the HR-MBBR influenced the CSB bio-
transformation ratio, while the HRT and the SOLR were the dominant factors influencing the CSg
bio-transformation ratio in the IC process. Based on these results, the IC process could be an
interesting alternative to high rate systems towards obtaining energy positive/efficient from water

resource recovery facilities.

Key words: chemostat, COD oxidation, high-rate MBBR, organic matter capture

4.1 Introduction

Environmental protection requirements and energy demand are major factors driving the energy-
efficiency of water resource recovery facilities (WRRFs). Conventional processes, like activated
sludge (AS), are widely used for wastewater treatment, but they require a significant amount of
energy (Jimenez et a., 2015). Therefore, process optimization and innovative treatment strategies
are required to improve the energy balance and obtain cost-effective WRRFs (Metcalf and Eddy-
Aecom, 2014; Meerburg et a., 2015).

A central approach to obtain energy-positive WRRFs is to maximize the capture of organic matter
for energy production via methanogenesis. The biodegradable organic matter consists of readily
(RBCOD) and slowly biodegradable (SBCOD) fractions (Henze, 2000; Melcer et a., 2003).
Readily biodegradable matter, is composed of soluble (Sg) and colloidal (Cg) matter that can be
oxidized or stored directly by heterotrophic bacteria under aerobic conditions and used for the
growth of new heterotrophic biomass Xono Vvia bio-transformation processes. Slowly
biodegradable matter (mostly particulate matter, Xg and ordinary heterotrophic organisms, Xowo)
requires conversion into a readily biodegradable form by hydrolysis prior to absorption and
utilization. Thus, optimizing aeration, minimizing hydrolysis, minimizing oxidation of particulate
matter and capturing biodegradable organic matter to be sent to anaerobic digestion can improve
the energy efficiency of WRRFs (Jdegaard et a., 2000; Jimenez et a., 2015).

High-rate biological treatment profits from the high bacterial activity under high food-to-
microorganism ratios and low solid retention times (SRTs) with relatively short hydraulic retention
times (HRTS) resulting in the maximization of bio-transformation and capture of organic matter
from wastewater (Jimenez et a ., 2015 and Grady et al., 2011). The high-rate moving bed bioreactor
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(HR-MBBR) is a promising process which is successfully used for organic matter recovery at low
HRTSs (30-90 min) while still maintaining a high COD removal efficiency (80- 85%) (ddegaard,
2000). Biomassisgrown in such HR processes, transforms Cg and Sg (CSg) into Xono, minimizing
the oxidation of Xg whileincreasing the production of X ono thus maximizing the energy generation
potential (Jimenez et al., 2015; Brosseau €t a., 2015).

The main objective of this study was to develop an innovative process combining an HR-MBBR
and an AS process to maximize the bio-transformation of CSg into Xg for energy recovery via
methane production. For this purpose, two pilot-scale treatment configurations, including a high-
rate MBBR (HR-MBBR) in paralel with a very high rate MBBR acting as an inoculum and an
activated sludge chemostat (1C) system, were tested to address the following specific objectives:
(&) Determine the operational parameters (HRT, specific organic loading rate, dissolved
oxygen) to maximize the performance of each treatment process and

(b) Maximize the bio-transformation of CSg into Xg to allow the capture of Xg to maximize
methane production.

4.2 Materials and methods

4.2.1 Pilot plant setup and configurations

The pilot plant, comprising of (a) an HR-MBBR (1.6 m®) and (b) avery high rate MBBR inoculum
(0.4 m®) followed by achemostat (4.7 m3), (Figure 4.1), wasinstalled at the Repentigny municipal
WRRF, Quebec. The raw wastewater influent containing about 10% industrial loading was
subjected to 6 mm screening, fat and grease removal and grit removal prior to being fed to the pilot
plant trains. The wastewater characteristics and operating conditions of the HR-MBBR and IC are
presented in Table 4.1.

Additional screening was provided by another 6 mm punched hole strainer which was connected
at the inlet of both systems to remove trash and which was cleaned manually every two days. The
HR-MBBR and inoculum were filled with the carrier type K5 from AnoxK aldnes™ with a specific
surface area of 800 m?/m?>. All reactors were completely mixed and were equipped with fine and
coarse bubble aeration systems, and a mechanica mixer. Probes (Hach) connected to the
automation system (PLC), were used for real-time monitoring of dissolved oxygen (DO), pH and

temperature.
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Figure 4.1: Configuration of the (A) HR-MBBR and (B) IC treatment systems



Table 4.1: Influent and process and operating characteristics for the pilot-scal e reactors at different operating conditions (OC)
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HR-MBBR Inoculum Chemostat
Parameter Units
OCl |oc2|oc3| oca | ocs | ocl | oc2 | oc3 | oca | ocs | ocl | oc2 | oc3 | oca | ocs
Influent
Q mdh 18 | 26 | 38| 18 | 38 | 20 | 135 | 10 | 20 | 20 | 20 | 14 | 10 | 20 | 20
Tota o | 403|432 400 | “0 | 300 | as0 | 454 | 455 | 381 | 370 | 429 | 440 | 420 | 380 | 271
coD 9 £43 | £77 | 59 | [, | #100 | +81 | £22 | £39 | 36 | £24 | +48 | £24 | +41 | £23 | 10
Colloidal oL 26 | 26 | 37 | 31 | 21 | 27 | 16 | 52 | 24 | 29 | 21 | 10 | 32 8 29
coD 9 +13 | +14 | +8 | £14 | +15 | £13 | +9 | +13 | £14 | +12 | +13 | +4 | £13 | +5 | £5
Soluble oL 61 | 68 | 69 | 60 | 61 | 64 | 68 | 73 | 61 | 5 | 5 | 53 | 50 | 53 | 42
coD 9 +8 |+15|+10| +9 | +14 | 14 | +8 | 27 | +4 | £11 | +12 | +6 | +3 | +7 | £2
Process and operating characteristics
Liquid R
m 16 | 16 | 16 | 16 | 17 | 042 | 036 | 036 | 043 | 043 | 47 | 47 | 47 | 47 | 47
volume
HRT min 54 | 36 | 25 | 54 | 25 | 13 | 16 | 22 | 13 | 13 | 141 | 209 | 282 | 141 | 141
COD weopid | 7 | 2 [ 14 s [ 14| 1| 17| 14 2a | 1| 10|28 18
loading 9 +2 | +5 | +6 | +4 | £9 | +4 | +1 | +1 | 2 | #£1 | +2 | +1 | +1 | +23 | 6
Fill
volume m?/m? 50 | 50 | 35 | 50 | 50 | 13 | 16 | 16 | 25 | 45 - - - - -
fraction
26 | 46 | 85 | 23 | 59 | 474 | 319 | 237 | 238 | 196
* -2 -1 - - - - -
SOLR gm=d +3 | £+9 |12 | +6 | £14 | +87 | £16 | £20 | +1 | +1
Temp °C 1) e 118 1 17 e o1 | 17-22 | 17-22 | 1821 | 19-20 | 16-17 | 17-22 | 17-22 | 18-21 | 19-20 | 1617
2 | 22 | 21| 18
DO mg/L 24 | 34 | 34 |152| 34 | 56 | 56 | 56 | 46 | 46 | 67 | 67 | 67 | 67 | 67

* The specific organic loading rate (SOLR) was cal culated based on total COD.
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4.3 Aeration

The aeration system in the HR-MBBR process provided 16.3 + 1.2 m*h provided through coarse
(1/3) and fine (2/3) bubbles to ensure proper aeration and media mixing. The aeration system in
the IC system provided 1.5 + 0.2 and 2.5 + 1.3 m%h in the inoculum and chemostat processes,
respectively, viafine bubble diffusers.

4.4 Sampling and analytical methods

The influent to each process was sampled 2 to 5 times per week. Multiple grab samples (taking
into account the HRT) from the influent were mixed together to obtain a homogeneous composite
sub-sample. Total and soluble COD, total and volatile suspended solids were analyzed at each
sampling point according to Standard Methods 5220D (APHA et a., 2012). Filtered COD was
determined using both 1.2 ym glass microfiber filters (Whatman® 934-AH™, GE Healthcare Life
Sciences, GBR) and 0.45 pm cellulose membranes (MF-Millipore™, EMD Millipore).
Floccul ated-filtered COD (ffCOD) was measured using the method developed by Mamais et al.
(1993). COD fractions characterized were thus particulate COD (Xcop > 1.2 um), colloidal and
soluble COD (CScop < 1.2um) and soluble COD (ffCOD = Scop < 0.45 pm). Colloidal COD
(Ccop) fraction was calculated from the difference between CScop and Scop. The colloidal and
soluble unbiodegradable fraction (Su) was considered to be the typical 5% of the total COD
(EnviroSim, 2014). The following formula was used to calculate the Cy, Cg and Sg, according to
S, C, CSand Sy (given above) values:

Cy =Sy *x (C5/s—1) Eq.4-1
Cg = Ccop — Cy Eq.4-2
S = Scop — Su Eq.4-3

The DO was measured with a portable DO-meter (HQ40d, Hach Company) and an LDO® probe
(Hach Company).

The biofilm mass was measured every week by collecting carriers (20 carriers per sampling event)
dried at 105 °C overnight and weighed. The carriers were then soaked in 6% NaOH for 30 min to
recover the biofilm from the carrier surface, after which the carriers were scraped clean and dried

again at 105 °C overnight. The difference between the dry weight of the carriers before and after
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cleaning represented the mass of biofilm on the carriers. The amount of biofilm per square meter
of protected surface area of carriers (g TSS/m?) was determined by dividing the obtained total
solids (TS) of the detached biofilm over the protected surface area of the number of carriers
sampled (Andreottola et a. 2000, 2003). Considering a protected surface area of 23 cm?/carrier

allowed to determine the specific biofilm concentration in g/m?.

45 Statistical analysis

Statistical comparisons between the HR-MBBR and IC treatment efficiencies were conducted
using the t-test function in Microsoft Excel 2013 with the least significant difference of P < 0.05.

4.6 Resultsand discussion

The effect of HRT, SOLR, media fill volume fraction and oxygen uptake rate (OUR) was
considered in the following sections for maximizing the production of biodegradabl e sludge, based
on the maximization of the removal efficiency of CSg (bio-transformation of CSg into Xcop) as

well as the minimization of biodegradable particul ate matter (Xg) hydrolysis.

A summary of the pilot-scale HR-MBBR and IC effluent characteristics of the five operating

conditionsis presented in Table 4.2.

No significant nitrification occurring as expected under such high-rate conditions as shown by the

very low concentration of nitrate (0.1 mg N/L) in the effluent of the HR-MBBR and |C processes.

4.7 Effect of HRT, SOLR and DO on bio-transfor mation of CSs and
hydrolysis Xcop

The effect of HRT on the bio-transformation of the Cg and Sg, and the hydrolysis of Xcop in the
HR-MBBR at operating conditions OC1, OC2 and OC5 base on the HRT are shown in Figure 4.2a
and Table 4.2. Cg and Sg hio-transformation, increased from 75 = 5% to 83 + 6% by increasing
HRT from 25 min to 54 min. The bio-transformation of Cg and Sg into Xg showed no significant
difference at HRTs longer than 36 min and reached a plateau at 85 + 6% (below an SOLR 36 + 6
kg COD m? db).



Table 4.2: Summary of operating conditions, effluent characteristics and process performance for the pilot-scae HR-MBBR and IC
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Parameter Symbol Units HRMBBR ¢

oct1 | oc2 | oca | oca | ocs oct | oc2 | ocs | oca | oOcCs
Operating conditions

. 17 29 39 14 38 21 15 11 18 18
COD loading ) kg COD/d +2 +5 +6 +4 +9 +2 +1 +1 +2 +7
HRT ; min 54 36 25 54 25 154 225 304 154 154
Solids retention time SRT d 14 14 1.6 - 1.6 0.6 0.8 0.7 - 0.6
Biofilm
) 641 868 500 1168 351 357 340 119

Totd suspended solids | TSS mg/L - +5 +122 +64 + 260 +68 + 62 + 60 +13 -

) 0.63 0.77 0.64 0.63 0.74 0.70 0.70 0.69
VSSTSSrdio fvr gVSHQTSS - +002 | +002 | #003 | +002 | +003 | +000 | 002 | +0.02 -
Effluent

313 357 335 338 307 414 371 206 389 341

Totd COD cob mg COD/L +39 +58 +71 +92 + 89 +55 +12 +95 +31 +56
) 12 8 17 2 6 14 8 19 10 21
Colloidal COD Coon mg COD/L +3 +4 +5 +6 +3 +8 +4 +11 +6 +7
24 29 38 33 29 40 40 38 a1 40

Soluble COD Scop mg COD/L +4 +8 +8 +5 +9 +10 +10 +3 +5 +4
295 327 245 316 320 364 303 256 302 319

TSS Xss mg TSSL +67 | +67 | +80 | +114 | %141 | +51 | %63 | %66 | 54 | 54
166 206 182 184 170 218 171 185 185 170

VSS Xvss mg VSSL +25 +35 +47 +48 +52 +31 +25 +29 +27 +31

) 0.57 0.63 0.76 0.60 0.57 0.60 0.57 0.74 0.62 0.59

VSSTSSraio fvr 9VSSQTSS | 007 | +004 | £007 | 009 | £013 | £006 | 007 | +010 | +004 | +010

) 17 16 19 15 18 17 17 19 18 17
Xcop/VSSratio fov 9XcolgVSS | 61 | +01 | 01 | #01 | +01 | 02 | %02 | %04 | +01 | +02
— 156 162 184 193

Alkalinity Salk mg CaCOa/L - - +10 - 11 +15 - +18 - -
H ) ) 73 75 7.4 6.7 73 7.9 75 77 8.1 6.7

P +02 | 02 | +02 | +02 +0.2 +10 | +01 | +04 | +04 | +01

Process performance

CSg biotransform. R % 85 86 67 64 78 56 62 74 53 40

efficiency CsB 0 +6 +9 +4 +13 +13 +5 +5 +6 +6 +11

CSe specific removal 2 41 3 6 10 3 7 39 35 28 19 13

rate SRess | g CScon m*d +1 +1 +2 +1 +2 +10 +4 +4 +7 +5

. 083+ | 086+ 0838+ | 101+ | 091+ | 095+
Xcop,eit/(CSs+X oHo)int, - g Xcop/g BCOD 0.15 0.06 - - 012 0.18 012 033 - -
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The same tendency also has been observed between HRT and CSg bio-transformation by Brosseau
et a. (2016) and Aygun et a. (2008), however the bio-transformation efficiencies were
systematically different due to influent COD concentration, available surface area for biofilm

growth, and HRT in their experiments.

A lower value of Xcop and COD removal efficiency was observed at higher HRT (36 min and 54
min) probably due to the partial release of particulate matter from biofilms caused by abrasion at a
long HRT (Hoang, 2013). Minimal hydrolysis of particulate organic matter can be achieved at a
low HRT as can be achieved in aHR-MBBR process (Schubert et al., 2013).

Similarly, the effect of HRT on remova and bio-transformation of COD, Xcop, Cs and Sg were
evaluated through the IC process at operating conditions OC1, OC2 and OC3 in Figure 4.2b and
Table 4.2.

A positive correlation was observed between SCg bio-transformation and HRT in the IC system
due to the prolonged contribution of inoculum by transferring and establishing active biomass in
the chemostat at higher HRT.

The CSg bio-transformation efficiencies were 56% + 5%, 62% * 5% and 74 + 6% at HRTs of 154
min, 225 min and 304 min, respectively, across the IC process. The concentration of COD and
Xcop did not effectively change in the IC process at HRTs 154 and 304 min based on removal
efficiency compared to HR-MBBR, due to the minimum effect of hydrolysis on particul ate matter.

This phenomenon supported Confer & Logan (1998) results which found that hydrolysis rate is

much more on the biofilm surface than at the surface of sloughed biofilm.

The overall efficiency of biotransformation of influent biodegradable organic matter into
particulate matter across each process was also characterized by the ratio of effluent particulate
COD to influent total biodegradable COD. Results are presented in Table 4.2 as
Xcop et/ (CSs+XoHo)int.. This fraction was lower across the IC process (0.96 + 0.22 g Xcop/g
BCOD) than the HR-MBBR process (0.86 + 0.11 g Xcop/g BCOD) suggesting that less hydrolysis
of particulate organic matter took place in the first one.
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Figure 4.2: Effect of HRT on the removal efficiency of COD fractions for the A) HR-MBBR and
B) IC processes

The effect of the SOLR on the removal of CSg was also assessed in HR-MBBR and |1C processes
(Figure 4.3). The higher specific removal rates were attained as the SOLR was increased in both
HR-MBBR and IC processes, whereas HRT and SOLR has been identified as an

important constraint on the bio-transformation (especialy for 1C process).

A maximum CSg bio-transformation rate (90 £ 3 %) in HR-MBBR process was achieved at SOLR
from 2.0t0 5.5 g CSs m2 d%, corresponding to an optimum HRT of 36 min. These values for IC
process reached in maximum specific removal of 80 + 3 %, corresponding as SOLR ranged
between 22 to 40 g CSgCOD m2 d at an optimum HRT of 225 min.

The observed linear pattern between SOLR and CSg removal efficiency was observed with the
study of @degaard et al. (2000), Brosseau et a. (2015) and Helness et a. (2005) in lab and pilot
scale experiments with HR-MBBRs. Aygun et a. (2008) also demonstrated that by increasing the
SOLR from 6 to 96 g COD m? d'?, the organic removal efficiency decreased from 95% to 45%.

In this context, Orantes and Gonzalez-Martinez (2003) established an asymptotic relationship
between the mass of attached biofilm and SOLR, which no further biomass is attached at high
SOLR. Hence, at high SOLR, less biofilm can be established through inoculum process and limited
by short HRT, so less contribution of inoculum could reasonably be expected to transfer active

biomass into the chemostat.
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Figure 4.3: Bio-transformation of CSg into Xcop asafunction of CSg-SOLR at different HRTs
A) HR-MBBR B) IC process

Variation of DO during aerated and non-aerated periods in the HR-MBBR and chemostat was
monitored, based on the operating conditions of OC2 and OC1, respectively. The oxygen
concentration dropped more rapidly in the HR-MBBR than in the chemostat when the aeration
system was switched off for 3 minutes. Cal culation of the oxygen uptakerate (OUR) intwo reactors
indicated over five-fold higher OUR inthe MBBR (50 + 2 mg Oz L' h'Y) than in the chemostat (10
+1.5mg O2L1hY). Inthis context, the SOUR value across HR-MBBR and chemostat process was
55+ 1mgO02gtVSShland53+6mgO.g!VSSh? respectively.
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The highest OUR in the HR-MBBR can be correlated to the oxidation of more readily
biodegradable matter produced by hydrolysis of biofilm surface (Confer & Logan, 1998) and the
slowly biodegradable matter that results from lysis of decayed biomassin the HR-MBBR system,
whereas the source of active biomass in the chemostat process was provided from inoculum
continually with lower SRT (SRTicoci: 0.6 d and SRThr-meer-oc2: 1.4 d) and no further

accumul ation.

The removal efficiency of filterable biodegradable organic matter (CSg) by the IC and HR-MBBR
processes was about 75% and 85%, respectively, which corresponded to HRT of 141 min and
36 min.

Further tests were conducted to assess the effect of oxygen concentration on the bio-transformation
rate in the HR-MBBR process. For this purpose, the DO concentration was changed from 1-2 mg
O2/L to 2-4 mg O2/L during OC4 and OC1, respectively, for aduration of one week each.

The role of the DO concentration as an effective and sensitive parameter controlling the removal
of Sg and Cg fractions, but not that of particulate COD isillustrated in Figure 4.4 and Table 4.2.
The maximum Sg and Cg removal efficiency, 86 + 7% and 77 + 17%, respectively, was obtained
during OC1. The Sg and Cg removal efficiency was significantly decreased to 67 + 20% and 53 +
12%, respectively, as DO concentration was less than 2 mg O/L indicating that the DO
concentration (below 2 mg O2/L) was a limiting factor in the HR-MBBR system. For an optimal
COD removal, dissolved oxygen should be maintained higher than 2 mg O2/L as indicated by a
13% declinein COD remova when the DO level was decreased from 2 to 1 mg/L while only a6%
increase in COD removal was observed with an increase in DO level from 2 to 6 mg/L (Wang et
al., 2005).
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Figure 4.4: Effect of DO on the COD removal efficiency of the different COD fractions across
the HR-MBBR process (OC4 and OC1)

4.8 Effect of mediafill volume fraction on bio-transfor mation of CSB

The effect of the two media fill volume fraction (OC3: 35% v/v, OC5: 50% v/v) on HR-MBBR
treatment efficiency was assessed at HRT of 36 min. As the media fill volume fraction increased
from 35% to 50% in the HR-MBBR, both Sg and Cg bio-transformation efficiency was increased
from76+ 4 and 84 £ 6to 89 + 10, 90 + 8, respectively (Figure4.5aand Table 4.2). Similarly Azizi
et a. (2013) reported an effective treatment can be obtained by increasing media fill volume
fraction up to 40% v/v, due to higher available surface area for biofilm growth. The removal of
particulate and total COD decreased slightly by increasing the mediafill volume fraction. Collision
and attrition in the HR-MBBR reactor could lead to a biofilm detachment from the outer surface
and increase the total and particulate COD in the effluent due to the high volume of media and
shear forces (Jdegaard et a., 2000).

The effect of mediafill volume fraction in the inoculum based on OC1, OC4 and OC5, aimed at
transferring active biomass to the chemostat, demonstrated the opposite effect on bio-
transformation of Sg and Cg in IC process. Increasing the mediafill volume fraction from 15% v/v
to 45% v/v in the inoculum decreased the bio-transformation of Sg and Cg from 58 + 4% to 50 +
6% and 69 = 14% to 43 + 10%, respectively, in the IC process (Figure 5b). The mediafill volume

fraction ranging from 15% to 22% in the inoculum did not significantly affect the removal of
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particulate and total COD, while increasing the mediafill volume fraction up to 45% significantly
influenced the removal of total and particulate COD.

Higher mediafill volume fraction (up to 45% v/v) may increase the development of active biomass
in the inoculum (less biomass to be sloughed off the media) and may lead to less transferring of
active biomass from inoculum to chemostat due to HRT constrains, therefore, less removal of Sg
and Cg occurred in the chemostat.
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Figure 4.5: Effect of the mediafill volume fraction on the COD removal efficiency of COD
fractionsin the A) HR-MBBR (OC3 and OC5) and B) IC (OC1, OC4 and OCb5)
processes

4.9 Effect of operating conditions on attached biofilm concentration

The attached biofilm growth concentration in the HR-MBBR was directly correlated to the SOLR
(Figure 4.6).

Biofilm growth concentration in the HR-MBBR reactor reached a plateau of 18.0 + 1.6 g TSS/m?
at SOLR morethan 8.0 + 2.7 g CSg m? d. In this context, a 2-parameter exponential equation (R2
0.95) showed the best fit to the biofilm concentration data. The concentration of attached biofilm
during OC1 to OC5 was increased from 4.5 + 2.6 g TSS/m?to 18.5 + 1.2 g TSSYm? by increasing
the SOLR from 3.1+ 0.9 g CSs m?d*to 15.6 + 2.8 g CSg m? d%, respectively.

The attached biofilm concentration in inoculum after an increase from 6.0 £+ 0.5t013.1+£ 0.8 g
TSS/m? reached a plateau with an average concentration of 11.7 + 1.1 g TSS/m?, while the SOLR
ranged over 39.7 + 13.8 g CSg m? dX. Moreover, under high SOLR in the inoculum, sloughing
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phenomenon was observed frequently and elevated effluent (chemostat influent) suspended solids
concentrations. Downing et al. (2013) and Bassin et al. (2016) also indicated that high SOLRs
potentially enhanced biofilm detachment rates. In this context, Aygun et a. (2008) also reported a
plateau occurred in biomass production level after SOLR reached 50 g COD m? d™.

The trend of VSS/TSS ratio in attached biofilm across the HR-MBBR and inoculum ranged 0.67
+0.06 and 0.71 £ 0.02 mg VSS/mg TSS, respectively (Table 4.2). The VSS/TSS ratio obtained by
Oliveiraet al. (2014) based on pilot scale average values was 0.69 mg VSS/mg TSS, however, this
value reported by Jahren et al., (2002) operated lab scale, equal to 0.91, was much higher. This
may because of the fibrous materials with low VSS/TSS ratio (aAmost 0.55 mg VSS/mg TSS)

carried by raw wastewater and although biomass adhered to the carriers.
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Figure 4.6: Effect of SOLR on the attached biofilm concentration for different operating
conditionsin the A) HR-MBBR and B) inoculum processes

4.10 HR-MBBR and I C effluent

The fyt (VSSITSS) and fcv (Xcon/VSS) ratios in the effluent of HR-MBBR and |C processes are
shown in Figure 4.7. The fyt value in the HR-MBBR increased from 0.5 to 0.8 g VSS/g TSS with
an increasing SOLR from 2 to 16 g CSg m2d™. In the IC process, the fyr value only increased
from 0.60 to 0.7 g VSS/g TSS as the SOLR increased from 20 to 90 g CSg m? d* despite some
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fluctuations that may have resulted from detached biofilm. The values of fcy in the effluent in both

processes effluent was 1.7 + 0.2 g Xcopo/g for all operating conditions.

Thefyr valuein the effluent reported by Brosseau et a. (2016) was0.81t0 91 g VSS/g TSS, while
fcv varied between 1.24 to 1.6 g XCOD/g for al operating conditions based on HRT and SOLR,
the same ratio also was reported by Karizmeh (2012).
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Figure 4.7: Effect of SOLR on fy and fcv ratio for A) HR-MBBR and B) 1C process effluents

The effect of the HRT on the effluent COD fractions was evaluated for the HR-MBBR and I1C
processes (Figure 4.8). The particulate matter fraction increased after the HR-MBBR or the IC
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processes, with the largest proportion observed with an HRT of 36 minutes in the HR-MBBR and
of 225 minutes in the IC process. The fractionation of COD showed that particulate and soluble
COD were predominant in the influent and effluent of HR-MBBR and IC processes, whereas the

COD contained asmall portion of colloidal matter.

Particles agglomeration occurred with increasing HRT up to 36 and 225 min acrossthe HR-MBBR
and IC process, however, with increasing HRT from 36 min to 54 min in HR-MBBR, a movement
from particulate toward smaller particle (colloidal) matter was observed. The same characteristics
in the MBBR effluent were observed by Brosseau et al. (2016) between 37 and 40 min HRT.

Particle agglomeration also resulted from increasing the HRT from 0.75 to 4 hours (Melin et al.,
2005; Ahl et a., 2006; @degaard et a., 2010; Karimzadeh, 2012), but Karimzadeh et al. (2014)
later demonstrated that by independently decreasing HRT and SOLR, a shift toward smaller
particle size was observed. Moreover, during degradation of particulate matter and formation of
smaller particles more surface area of substrate is available for hydrolysis (Dimock & Morgenroth,
2006).

The average value of SVI on different operating condition was measured to evaluate the sludge

settleability of each process.

Slightly better settling sludge was obtained in the IC process (SVI of 70 + 11 ml/g) than in the HR-
MBBR (94 + 10 ml/g). Better flocculating solids may have resulted from inoculum-chemostat
process on which configuration most favors the proper maintenance of SVI in ahigher SOLR even
at lower SRT (SRTic: 0.6 + 0.1 d and SRTHr-meer:1.5 + 0.1 d). These results are supported by Y.
Liu et a. (2006) which demonstrated that |ow organic loading rate resulted inirregular shape with
poor settling characteristics and high SVI value, According to the theory, low substrate
concentrations favor the growth of filamentous over floc-forming bacteria (J. Chudobaet al., 1973;
Jan Chudoba, 1985).



48

407 £ 22 307+ 89 357+58 338+ 92 mg/LL

A 100%
95%

00% - S e ]
85% 1

5% 1 =t o 1 +—F

20% A

X X
15% 1 X X
10% -
5% -
S 0%
g Influent 25 36 54
= 450+ 8 414+ 55 37112 406 £ 95 mg/L
B) 100%
95% S i S S 8
M6 . [SE B
85% |
a0 ;
5% 4—- | _— +—F +——1 =
2007 4 i !
20% f X X
15% 1 |
X : X
10% | :
5%
0%

Influent ! 154 225 304
' HRT (min)
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and B) IC processes

4.11 Aeration requirements

The maximum efficiency of HR-MBBR and IC processes bio-transformation were 90 + 3 % and
77 = 3%, respectively, which corresponded to HRTs of 36 min and 3.7 hours, SRTsof 1.5+ 0.1d
and 0.6 + 0.1 d, and SOLR of 2.0t05.5 g CSs m?d*and 22 to 30 g COD m2 d™.

The oxygen uptake rate (OUR) in the HR-MBBR (50 mg O, L h'!) was determined to be two and
half times greater than in the IC process 20 mg Oz L™ h! (accounting for the inoculum process
OUR of 10 mg Oz L h'l). The total oxygen demand was calculated to be 0.54 + 0.03 and 0.81 +
0.07 kg O2/kg CSg added for the HR-MBBR and 1C processes, respectively. The blower provided
16 + 1 m¥h and 3.5 + 0.2 m¥h of air in the HR-MBBR and IC reactors to maintain DO level 3-4
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mg O2/L and 6-7 mg O2/L, respectively. It should be noted that oxygen transfer rates and efficiency
(OTE) at full scale may differ due to the shallow depth of the pilot reactors.

In a high-rate activated sludge process, Jimenez et a. (2015) reported that the maximum removal
efficiency was obtained at an HRT ranging between 30 and 45 minutes, at an SRT of 0.6 + 0.1 d.
They observed that the optimal remova of Sg (80%) required an oxygen concentration of 0.38
0.12 kg O2/kg COD (based on the use of net oxygen consumption of bio-transformation).

Poor oxygen transfer efficiencies (rapidly rising bubbles) related to the coarse diffuser in the HR-
MBBR can be also lead to less dissolved oxygen and excessive power requirement compared with

the fine diffuser in the chemostat.

The dissolved oxygen concentration dropped below 2 mg/L in the HR-MBBR process within
5 minutes of the non-aeration period, while this value took almost 30 minutes in the chemostat. In
this context, much of the energy can be saved across the IC process with DO control strategy by
using programmable logic controllers (PLC) for multi loop controllers of aeration system (turn
automatic switchingrange  on/off  dissolved  oxygen  transmitters),  however, cost-
effectiveness analysis need to conduct further results to fully compare the IC and HR-MBBR

processes.

From an energy efficiency point of view, operating the IC process as an interesting alternative to
high-rate system may lead to diminishing the consumption of energy through aeration system and
also resulted in the efficient production of energy across the anaerobic digester by minimizing

hydrolysis of Xg.

4.12 Conclusion

The objective of this study was to determine the potential of an innovative high-rate inoculum-
chemostat (IC) process compared with a typical HR-MBBR process for colloidal and soluble
organic matter transformation into particulate matter for anaerobic digester methane production.
The effect of SOLR, OUR and HRT on the removal and bio-transformation of Cg and Sg fractions
were studied using real wastewater in a pilot scale system operated under five operating conditions.
The SOLR inthe HR-MBBR and IC processes were varied between 2 to 16 g m? d* and 20 to 90
gm2d? respectively, using different HRTSs.

The following conclusions were drawn:
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CSg bio-transformation into Xg in the HR-MBBR processincreased with HRT (and SOLR)
up to 36 min with a CSg capture efficiency as high as 90 + 3 %, whilein the IC process, an
HRT of 3.7 hours was required for a CSg capture of up to 77 + 3 % at SOLRs between 22
t030g CSs m?d™.

The SOUR value across the HR-MBBR and chemostat, to maintain aDO level above 2 mg
Oz/), was similar in both systems (55 + 1 and 53 + 6 mg Oz g VSS h't, respectively).

A dlightly better settleability of produced particulate matter, based on SVI values, was
obtained in the IC process (70 £ 11 mL/g) than in the HR-MBBR (94 + 10 mL/g), possibly
dueto better flocculating solids may have resulted from higher SOLR and lower SRT values
in the IC than the HR-MBBR process

The innovative IC process can be a competitive alternative process to maximize the bio-
transformation of CSg to minimize Xg and Xono Oxidation to improve the energy balance at
WRRFs.
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CHAPTER S ADDITIONAL RESULTS

Additional resultsincluding results validation, hydraulic behavior, reactor stability, comparing the
two proposed configurations, are presented in this chapter.

5.1 Resultsvalidation

Validation of the results were performed based on several steps. As a prerequisite, the stability of
the influent characteristics was evaluated by monitoring for sudden and significant changesin pH,
color and temperature, according to fluctuations of influent concentrations in the WRREF. In the
second validation step, the pattern of the operating conditions in the pilot system was monitored;
flowrate, blower, mixer and power supply, mixed liquor DO and pH levels based on the operational
conditions mentioned in section 3.3 and Table 3.1. As the mass balance determination was not
possible for the COD, the preferred method for data validation was a stable condition for the
removal of soluble organic matter and biodegradable colloidal across the reactors (Aygun et al.,
2009; Helness et al., 2005; Schubert et a, 2013; @degaard and al., 2000; Karizmeh 2012).

5.2 Hydraulic behavior

Good hydraulic behavior plays a crucia rule for the proper operation of a process. Tracer studies
were performed to examine the hydraulic characteristics and select an appropriate hydraulic model
to simulate the pilot—scale HR-MBBR system (Appendix A).

A summary of the t10, t50, t90, and Morrill index, calculated from the data is presented in Table
5.1. Thefirst test showed that the HR-MBBR reactor was moderately mixed with some dead zones
based on the Morril index (ta/T <1), but determination of the Morril index in the second test
indicated that a dead zone did not exist (ta/T =1) (Argaman & Rebhun, 1964).
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Table 5.1: Summary of results for the tracer tests in the HR-MBBR reactor

values
Parameters Symbol | Unit | Test | Test | Formula
1 2
Theoretical retention time T min | 40 40 VIQ
. . 5
Time representing 10% of total tracer amount tio h | 007 | 0.12 i
passage
—~ . 5

Median time corresponding to 50% of tracer Twm min | 0.72 | 0.75 i
passage

: . 5
Time representing 90% of total tracer amount Taoo min | 20 | 20 i
passage
Time of tracer appearance in the effluent ta min | 20 45 -
Median retention time Th min | 22 30 -
Time for the initial observation of the draw at ti min | 03 | 042 i
the outlet
Morril dispersion index MDI - | 285 ] 16.7 | teltio
Volumetric efficiency Ev - 35 | 59 | 100/MDI
Displacement efficiency DE - 05 | 11 t/ T
Efficiency factor n - 1102 | 1.01 | td(ta-tm)
Index of model detention time 002 | 0.02 | Twm/T
I\/%= 1 Indicate plug flow ideal basin; MDI = o complete mixed reactor.

t, /st Lessthan 1. no dead zone.

r > oo basin idedl. » = 8, very good efficiency; good for n = 3, bad for n = 2 very bad for
n=1 .

t,, /T
A high value of /" —"icates plug flow.

5.3 Reactor stability

ThelC and HR-MBBR stability was determined by treatment efficiency and effluent characteristics
of parametersincluding CS C, S, Xcop, TSS and VSS in both the HR-MBBR and IC processes
(Tables5.2 & 5.3).

Each operating condition was conducted during 2 weeks including a growth and stabilization

period of 1 week followed by a characterization period of 2 weeks.

Results indicated some stability for the processes except for the particulate matters, according to
variation Xcop in the influent. The effluent from the IC process was relatively stable regardless of

the operating conditions. All reactor characterization results are presented in detail in Appendix A.



Table 5.2: Summarized results for influent and effluent characterization of the HR-MBBR process
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HRT Media Influent (mg/L) Effluent (mg/L)
(min) DO % Date
TSS vss|coD| CcS| s [ X | C |Tss|vss|coD| X | s | C|cCs
2 | 24| = | oct 314 183 | 383 | 81 | 56 | 02| % | 204 | 165 | 313 | 277 | 24 | Y| 36
+ 68 +32| #51 |+21|+13| 2 | % 166 | +25| +30 | +37| +4 | |14
36 | 12 3
% | 24| 50 | oc 323 204 | 455 | 94 | 67 |30 % 136 205 | 356 | 320 | 28 | O | 36
- + 68 +36| +90 |+18| 15| £ | ¥ | 167 |+35| +58 |+54| +8 | ¥ | £8
90 | 14 4
262 187 | 409 | 106 | 69 | 392 | 37 | 244 | 182 | 334 | 280 | 38 | | =4
25 | 34| 35 | OC3 + 4
+ 68 +38 | 59 | +14 | £10 5_6 +9 | 80| x47 | £71 | £67 +8 g +7
o 15| 5 | oc 361 189 | 399 | 90 | 59 || 3| 316 | 183 | 338 | 283 | 32 | | 55
2 +90 +30| +81 |+22| +8 | £ | % | 457 | +30| +52 |+8a| 5 | T |+7
68 | 15 4
o | 24| =0 | ocs 406 201 | 454 | 84 | 68 |37 16 | 405 | 203 | 362 | 323 | 33 | > | 39
: +58 +25| +22 | +17 | +8 7 +9 | +59 | +14 | +20 | +17 | +4 3 +5
Table 5.3: Summarized results for Influent and effluent characterization of IC process
glﬂl?lir']l') DO M;:lia Date Influent (mg/L) Effluent (mg/L)
TSS VSS COD CS S X C TSS | VSS COD X S C S
337 | 204 | 410 | 92 | 64 | 348 | 27 | 364 | 218 | 414 | 360 | 40 | 14 | 54
13| 141 13 | ocl +69 | £32 | +37 |+10| £14 | +79 | +13 | £51 | +31| £55 | +55| +10 | +8 | + 10
317 | 177 | 390 | 82 | 61 | 308 | 21 | 303 | 171 | 333 | 200 | 35 | 8 | 43
16 | 209 16 | Oc2 +65 | £21 | +29 | +22| +14 | +67 | £15| +63 | +25 | +61 | +55| +112 | +5 | +13
220 6 | 16 | oca 260 | 188 | 455 | 125 | 73 | 330 | 52 | 256 | 185 | 406 | 349 | 38 | 19 | 57
+1 + 45 +17 + 39 + 15 +7 +42 | £13| 66 | £29 +95 | +78 +3 +8 | +12
285 | 171 | 366 | 80 | 56 | 286 | 24 | 300 | 180 | 444 | 395 | 39 | 11 | 49
13141 25 | Oc4 +57 | 20| 42 | +24| +13 | 227 | £14 | +47 | +26 | +59 | +76| +7 | +6 | =7
203 | 185 | 369 | 85 | 56 | 284 | 20 | 268 | 170 | 344 | 281 | 41 | 22 | &2
13| 141 4o | 0 +57 | £36| +58 | +10| £11 | £57 | +12 | +58 | 246 | +77 | +77| +4 | +9 |+11




CHAPTER 6 GENERAL DISCUSION

6.1 Influent characteristics

The pilot plant influent characteristics (Appendix A) showed that the wastewater was moderately
concentrated with significant variations during the day. The fi (VSS/ITSS) and fev (Xcopn/TSS)
ratioswere0.65+ 0.10 and 1.7 £ 0.2, respectively. The solublefraction of the COD (40to 70 mg/L)
was between 15 and 20% of the total COD and the CS fraction (60 to 120 mg/L) represented 20 to
30% of the total COD, respectively.

Typical reference datafor based on total COD are shown in Tables 6-1. In this context, CSy, S and
Xcop fraction represent about 5-12%, 9-30% and 57-75% of total COD (adapted from Ekama et
al., 1986; Henze et al., 1987, Henze et al., 1992, Henze et a., 1987, Orhon et al., 1996;
Dulekgurgen et a., 2006).

Moreover, the BioWin software (EnviroSim, 2014) also reported typical ratios of municipal raw
wastewater S'COD, CS/COD, fvr and fcv of 0.21, 0.38, 0.81 and 1.6, respectively.

Table 6-1 : COD fractionation of domestic wastewaters

L ocation CSu ()| CS(%) | X (%) Reference
South Africa 5 20 75 Ekamaet a. (1986)
Hungary 9 29 62 Henze et a. (1987)
Denmark 2 20 78 Henze et a. (1992)
Switzerland 11 32 57 Henze et a. (1987)
Turkey | 4 9 87 Orhon et a. (1996)
Turkey 11 35 65 Dulekgurgen et a. (2006)
Repentigny, QC 812 20+5 | 747 This study

The specific loading rate during pilot operation varied between 2 and 20 g CSs m? d* (1000 to
9000 g CSs/d) and 19 to 87 g CSg m? d! (1000 to 4000 g CSg/d) in the HR-MBBR and IC
processes, respectively. Loading rates of 4 to 100 g CSg m? d* (Helness et al., 2005) and 1 to 85
g CSs m2d? (@degaard, 2000) have been reported in literature.
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A summary of data obtained during different operating conditions in this study is presented and

compared with the data from the literature are presented in Table 6.2.

Table 6-2 : Comparison of operating and performance results with literature data

_ Thiswork Literature
Parameter Units
Value Value Reference
_ 2-3 @degaard, 2006
Dissolved oxygen (DO) mg O2/L 2-5 —
>4 Emile, 2014
Temperature coefficient (0) 101-1.04 1.07 M&EA, 2014
N _ > 60 M&EA, 2014
Mediafilling ratio % viv 35and 50 p—
50 Emile, 2014
10- 80 Emile, 2014
Organic loading rate (OLR) | gCSsm?d?| 2-16 4-100 Helness et al., 2005
1-85 @degaard, 2000
Minimum recommended . 30 M&EA, 2014
min 28 _
HRT 25 Emile, 2014
CSs Removal efficincy at 70 M&EA, 2014
minimum recommended % 80 .
HRT 70 Emile, 2014
. 40 - 60 M&EA, 2014
HRToptimum min 40 - 60 P
40-60 Emile, 2014
15 Helness et al., 2005
Maximum filtered COD 2 1
removal rate gCSs m-d 10 12 Qo'legaard, 2000
27 Emile, 2014
ves 0,38 Emile, 2014
: g g )
Observed yield (Y obs) CcOoD 0.3— 045 Van Haandel et al.,
2012
Biofilm density g TSSYm? 6-20 28 M&EA, 2014
Mixed liquor concentration | mgTSS/L | 3000 - 8000 388180' M&EA, 2014

Note: M&EA (Metcalf & Eddy-Aecom, 2014)
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6.2 Biotransformation efficiency

CSg biotransformation efficiency generally increased with an increase in HRT up to acertain limit
for both tested configurations (Figures 2), however, it decreased by increasing the loading rate
(Figure 3). The observed trend was compatible with previously reported |aboratory and pilot studies
(Brosseau, 2015, Helness et al., 2005 & Aygun et al., 2009). However, the DO deficiency led to a
significant decrease of bio-transformation in the HR-MBBR process. Indeed, providing an
adequate DO concentration, especially in the HR-MBBR, was found to be critical to obtain an
appropriate efficiency. An optimum DO concentration 2 to 3 mg Oz L™* was recommended
(Ddegaard, 2006) but it should be increased up to 4 to 6 mg OJ/L if nitrification is also needed
(Metcalf and Eddy-Aecom, 2014). Furthermore, a high oxygen uptake rate (OUR) in the HR-
MBBR (50 mg Oz L™* h'}) is indicative of particulate COD hydrolysis and of organic matter

oxidation, as catalyzed by a high concentration of biomass in the reactor.

An optimum HRT value of 36 min was determined to achieve the highest removal and bio-
transformation of CSg in the HR-MBBR process, which corresponded to a removal efficiency of
near 90 + 3 %, when the OLR was between 2.0 and 5.5 g CSg m2 d*. The maximum removal (80
+ 3%) was achieved in the IC process with an OLR of 22 to 40 g CSs m2d?, which corresponded
to HRT of 3.7 h. The observed pattern agreed with related studies (Helness et a., 2005 & Aygun
et a., 2009). Aygun et a., 2009 and was also demonstrated that by increasing the OLR from 6 to
96 g COD m?.d%, the Organic removal efficiency decreased from 95.1% to 45.2%.
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CHAPTER 7 CONCLUSIONSAND RECOMMENDATIONS

7.1 Conclusions

The main objective of this project was to maximize the biotransformation of influent soluble and
colloidal biodegradable matter into particulate matter to be recovered by a physico-chemical
process and sent to anaerobic digestion for maximum energy production. Thus, the
biotransformation process had to minimize the oxidation of biodegradable organic matter. For this
purpose, two parallel treatment processes were compared during a pilot test with real wastewater

from the Repentigny WRRF.

The first process configuration consisted of an aerated high-rate MBBR (HR-MBBR) reactor and
the second one was an inoculum (a very high rate MBBR) followed by an activated sludge

chemostat reactor (IC).
Various operating conditions were tested for HRT, mediafill volume fraction, DO level and OLR.
The following conclusions were.

1. The HR-MBBR reactor achieved 90% capture efficiency of the colloidal and soluble
biodegradabl e organic matter (CSg) at afilling ratio of 50% v/v and an HRT of 36 min. At
afill volume fraction of 35 % v/v the removal efficiency decreased to about 80% at the
same HRT.

2. TheIC process achieved 77 + 3 % CSg capture at an HRTinoc Of 12 min and afill volume

fraction of 15% v/v in the inoculum followed by an HRT chemo Of 140 min in the chemostat.

3. A DO concentration above 3 mg O2/L, corresponding to 16 + 1 m*h air per volume of
reactors, was required to reach the maximum CSg bio-transformation in the HR-MBBR
reactor, due to the high amount of active biomass. The air flowrate in the chemostat reactor
was 1.5 + 0.2 m¥h to achieve aDO level of 5mg Oz/L.

4. In the IC system, the maximum capture of CSg and biotransformation efficiency reactor
was obtained at an inoculum reactor media filling ratio of 15% v/v with 20-26 min HRT
and 1.5 + 0.2 m¥h of air, with achemostat HRT of 300 min.
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7.2 Recommendations

To improve the study results and achievements, the following recommendations are proposed:

1.

10.

Obtain further detailed investigation, such as a respirometry test to determine the effect of

the inoculum process on transferring active biomass from inoculum into chemostat.

Operate settler at the end of process and prepare composite samples over 24 hours from

influent and effluent of the process for characterization of observed yield.
Evaluate the biofilm mass, at least 3 times aweek, or at each sampling time.

Perform additional tests to evaluate the effect of DO levels and aeration control (On/Off)

on CSg removal efficiency across the |C process.

Perform additional teststo optimize the aeration in the HR-MBBR and the effect of biofilm
thickness on oxygen consumption.

Characterize mixer performance through chemical tracer tests throughout the reactors to

obtain optimum mixing values for more energy saving.

Improve the energy efficiency through optimization of HRT, media fill volume fraction,
carrier type (i.e. Biofilm Chip M) and DO to enhance energy recovery with proposed

innovative approach of 1C process.
Conduct a detailed energy audit on both inoculum- chemostat and HR-MBBR processes.

Analyse the CSg bio-transformation efficiency data from HR-MBBR and IC processes
during low temperature (temperature< 10 ° C).

Determine the current WRRF’s energy usage and benchmark this to the proposed process
in terms of energy usage and cost for the entire facility and for each of the major power
demandsin the WRRF.

Evaluate the potential approachesfor theinstallation of theinoculum-chemostat processesin afull-

scale system for performing different case studies.
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APPENDIX A - RAW WASTEWATER CHARACTERISTICS

Table Al: Repentigny WRRF raw wastewater characteristics

Parameter Symbole Units Average Number of
samples

Total COD COD mg COD/L 346 + 22 44
Particulate COD Xcop mg COD/L 254 + 50 44
Colloidal DCO Ccop mg COD/L 16+ 10 44
Soluble DCO Scop mg COD/L 80+31 44
TSS TSS mg TSS/L 255+ 104 44
VSS VSS mg VSS/L 154 + 49 44
Azote total Kjeldahl TKN mg N/L 37+tnd* 5
Total ammonium SNH4 mg N/L 30+ nd. 5
Oxidized nitrogen Snox mg N/L <0.05+ n.d. 5
Total phosphorus TP mg P/L 45+ n.d. 5
Orthophosphates Spoa mg P/L 1.7 £ n.d. 5
Turbidity - NTU 69+7 10
Alkalinity Salk mg CaCOs/L 230+ 20 5
pH - - 75+£05 44

*n.d: not detected
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APPENDIX B-LAB PROTOCOLSFOR CHEMICAL ANALYSES
1. Flocculated, filtered COD of sludge and wastewater
Objectives

This method of flocculation and filtration removes colloidal and particulate fractions of a sample
of wastewater or mixed liquor to keep only the soluble fractions. It is made typically to determine
rapidly biodegradable COD (RBCOD; Mamais et al., 1992) and the soluble inert COD following
arespirometric test at high load (Method zinc sulphate; Wentzel et a., 1995; 1999) or to prepare
the dilution water to measure the active biomass in a sample of mixed liquor (method using
aluminum sulphate; Cronje et al., 2002).

Zinc sulphate method
Equipment:
- Zinc sulphate solution (ZnSO4) to 100 g/L,
- 150 ml beaker (100 ml sample)
- pH meter calibrated with pH 7 and pH 10,
- 6 M NaOH,
- Syringe filter 0.45 pm,
- Syringe,
- Stirrer plate and a magnetic bar.
Preparation of the solution of ZnSO4:
The ZnSO4 is sold commercially as heptahydrate.
Molecular weight ZnSO, - 7H20: 287.53 g/mal
ZnS0O4 Molar mass: 161.47 g/mol
For 1000 m:
Dissolve 178 g of zinc sulphate heptahydratein a1000 mL flask filled half of Milli-Q water.

Make up to gauge with Milli-Q water.
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Procedure;

Add 1 ml of the solution to 100 g/L of ZnSO4 per 100 ml sample,
Shake vigorously on the plate for about 1 minute,

Adjust the pH to 10.5-11 with 6 M NaOH,

Allow to settle for 5 minutes,

Collect the supernatant with a syringe,

Filter the supernatant sample, discarding the first 5 ml.

2. Chemical oxygen demand (COD) and total soluble

1

Identify the tubes for each sample on the lab sheet. DO NOT USE IF TUBE
scratched. Analyses are done in triplicate, and should not vary by over 5%. Turn the
digestion furnaces.

Turn the digestion oven by pressing the button on the back of the oven and wait to see the
temperatures displayed on the screen. Press "START" to preheated to 150 ° C.

3. Make the sample dilutions as indicated on the lab sheet.

If an an automatic pipette was used, check it using the method before using it to collect
your samples.

Put your sample into a beaker with a magnetic stirrer and placed on the stir plate. Take the
pipette, halfway between the vortex, 2.0 ml of sample (diluted if necessary) thoroughly and
add the COD tubes (0-150 or 0-1500 as shown in the lab sheet). For inhomogeneous
samples you must pass the blender before removing it.

In each furnace, there must be two white. Whites contain 2.0 ml preferably milli-Q water
and the digestion solution. In addition, you must insert into your sequence 3 standard of
500 mg/L or 50 mg/L depending on the range of work.

Tighten the cap and vortex 10 seconds and put the tubes in the preheated oven
digestion. Pressthe "Start” button to start the digestion of 2 hoursat 150 °© C. SCREW THE
VORTEX WELL BEFORE CAP.

After 2 hoursat 150 ° C, turn off the oven and vortex tubes 10 seconds before putting them
in test tubes to support (wear gloves during this step). Allow to cool and decant the tube
before reading spectrophotometer for 30 minutes.
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9. Turnonthe HACH spectrophotometer and alow to heat 15 minutes

BEFORE YOU READ A SAMPLE, MAKE SURE IT IS AT ROOM TEMPERATURE AND
THAT IS PRECIPITATE decanted AND THAT THE TUBE IS CLEAN (Kimwipe)

10. Select the appropriate program in the spectro.

11. Wipe the first white to play with a Kimwipe taking care not to re-suspend the particles,
insert it into the spectro with the HACH logo facing you.

12. Press "zero."

13. Measure the second white, if it has a negative value, press "zero" (becomes zero) and read
the first white (and note its value on the |ab sheet). If the second white has a positive value,
the note on the lab sheet.

14. Read COD samples. 9 and 10 but by pressing the "Sample" button. Note the COD vaues
on the lab sheet.
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3. Determination of the wastewater soluble unbiodegradable COD (SU)
Background

Organic matter in municipa wastewaters (WW) is quantified by measuring the chemical oxygen
demand (COD). Total COD can be divided based on biodegradability into biodegradable (CODg),
unbiodegradable (CODu) and Active biomass (XgH, Xga) fractions (Figure 1). Thesethree fractions
as shown in Figure 2 can be further subdivided based on their size into particulate biodegradable
(Xg), particulate unbiodegradable (Xu), colloidal (Cg), soluble biodegradable (Sg) and soluble
unbiodegradable (Su) COD (Henze, 2000; Corominas et al. 2003; Melcer et a., 2003; Lee et .,
2006). The unbiodegradable colloidal COD is not considered here as it would represent a small
fraction for typical municipal wastewaters.

This protocol describes a methodology to determine the soluble unbiodegradable COD () in a
pretreated (after the trash and grit removal) municipa wastewater.

Method
Su can be determined by following these 3 steps:
Step 1: Flocculation/Filtration COD M ethod

Material required:
Zinc sulfate (ZnSO,) solution as 100 gr/L
150 ml beaker
pH meter (calibrate in high pH 7 and 10)
Sodium hydroxide solution as 6M
Syringefilter 0.45 um
Magnetic stirrer

Steps to measuring ffCOD with zinc sulfate solution (ZnSO4)
1. Prepare 1000 ml of 100 gr/L ZnSOs solution (ZnSO4.7H20: 287.5 g/Mol; ZnSO4: 161.5
g/Mol):
1.1 Dissolve 178,0 g of zinc sulfate powder in a 1000 ml of flask filled with 500 ml of
demineralized water (DM);
1.2 Fill up to 1000 ml with DM
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2. Add 1 ml of 100 g/L zinc sulfate solution (as 100 g/L concentrations) in 100 ml of
wastewater sample;

Mix vigorously during 1 minute;

Adjust the pH to 10.5-11 by using a2 M sodium hydroxide;

Let settle for a 20 minutes period,;

Carefully withdraw the supernatant using a syringe;

Filter the supernatant using a 0.45 um syringe filter;

Anayze thefiltrate COD as flocculated filtered COD (ffCOD).

© N o g k~ W

Step 2: Aerobic Batch test

The batch reactor test under aerobic condition is conducted for degradation of the biodegradable
fractions (soluble) of filtrate solution from previous step based on operating at long SRT (i.e. 20
days) to provide complete degradation of soluble biodegradable portion. The change in COD
concentration with time is monitored during batch test operation while decreasing until COD reach
in a steady state value (ffCOD).

By considering these two steps S is determined:

The paralel physicochemica and biological method between flocculation filtration method and

batch test under aerobic condition is conducted to measure soluble unbiodegradable COD.

It is proposed that all colloidal, particulate biodegradable and unbiodegradable will remove by
flocculation filtration (ffCOD) method (Mamais et al. 1993) and the supernatant contains only
soluble biodegradable and Unbiodegradable COD (ffCODixt.). Therefore, a batch test method is
used for estimating the mass of soluble Unbiodegradable which remain under aerobic condition
(ffCODerr.) at sludge ages greater than about 20 days.
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APPENDIX C - DO PROFILES

Figure C5: DO profile under aerated and non-aerated periods and OUR for the A) MBBR (OC2)
and B) chemostat (OC1) processes
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APPENDIX D -HYDRAULIC TRACER TESTS

Table D6: Tracer results for the first experiment

Time| Time2 At Abs gs\r}? 0 QV?/STS %‘g‘s cum. | T C.At t.C.At | t2.C.At
Abs. BDE CICo

min h2 h mg/L |m%h |L/min| mg mg % min mg/L.h mg/L.h mg/L.h3
0 |0.00E+00 | 0.00E+00| 0.03 |0.000| 0.00 | 291 | 485 0 0 0% | 0.00| 0.0 | 0.00E+00 | 0.00E+00 | 0.00E+00
0.2 | 7.72E-06 | 2.78E-03 | 0.032|0.002| -0.03 | 2.91 | 484 0 0 0% | 0.00| 00 |-7.92E-05 | -2.20E-07 | -6.11E-10
0.3 | 3.09E-05 | 2.78E-03 | 0.982|0.952| 7.03 | 291 | 484 28 28 1% | 001| 39 | 1.95E-02 | 1.08E-04 | 6.03E-07
0.5 | 6.94E-05 | 2.78E-03 | 1.444|1.414| 1046 | 291 | 484 71 99 3% | 001 | 57 | 291E-02 | 2.42E-04 | 2.02E-06
0.7 | 1.23E-04 | 2.78E-03 | 0.435]|0.405| 2.97 | 291 | 484 54 153 56 | 002 | 16 | 824E-03 | 9.15E-05 | 1.02E-06
0.8 | 1.93E-04 | 2.78E-03 | 0.306 | 0.276| 2.01 | 291 | 484 20 173 6% | 0.02| 11 | 557E-03 | 7.74E-05 | 1.08E-06
1.0 | 2.78E-04 | 2.78E-03 | 0.220|0.190| 1.37 | 3.02 | 50.3 14 187 6% | 0.03| 0.8 | 3.80E-03 | 6.33E-05 | 1.06E-06
12 | 3.78E-04 | 2.78E-03 | 0.226|0.196| 1.41 | 3.02| 50.3 12 199 6% | 0.03| 08 | 3.92E-03 | 7.63E-05 | 1.48E-06
13 | 494E-04 | 2.78E-03 | 0.214|0.184| 1.32 | 3.02 | 50.3 11 210 7% | 0.04 | 0.7 | 3.68E-03 | 8.17E-05 | 1.82E-06
15 | 6.25E-04 | 2.78E-03 | 0.213|0.183| 1.32 | 3.02 | 50.3 11 221 7% | 0.04 | 0.7 | 3.66E-03 | 9.14E-05 | 2.28E-06
1.7 | 7.72E-04 | 2.78E-03 | 0.230|0.200| 1.44 | 3.02 | 50.3 12 233 8% | 005| 08 | 401E-03 | 1.11E-04 | 3.09E-06
20 | 1.11E-03 | 5.56E-03 | 0.210|0.180| 1.29 | 3.07 | 511 23 256 8% | 006 | 0.7 | 7.19E-03 | 2.40E-04 | 7.99E-06
25 | 1.74E-03 | 8.33E-03 | 0.218|0.188| 1.35 | 3.07 | 51.1 34 290 9% | 0.07 | 0.7 | 1.13E-02 | 4.70E-04 | 1.96E-05
3.0 | 250E-03 | 8.33E-03 | 0.217|0.187| 1.35 | 3.02 | 50.3 34 324 10% | 0.09 | 0.7 | 1.12E-02 | 5.61E-04 | 2.80E-05
40 | 444E-03 | 1.67E-02 |0.201|0.171| 1.23 | 253 | 42.2 54 378 12% | 0.12 | 0.7 | 2.04E-02 | 1.36E-03 | 9.09E-05
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Table D7: Tracer results for the first experiment (continued)

Time| Time? At gs\r;_?_ Q :;AV?/S.? ?nl;n; Cum. | t/T
Abs. | Abs. BDF C/Co C.At t.C.At | t2.C.At

min h? h mg/L | m¥h | L/min | mg mg % min
50 | 6.94E-03 | 1.67E-02 | 0.193 0.163 117 | 3.16 | 52.6 63 441 14% | 0.15| 0.6 | 1.95E-02 | 1.62E-03 | 1.35E-04
7.0 | 1.36E-02 | 3.33E-02 | 0.183 0.153 1.09 | 3.08 | 513 116 557 18% | 021 | 0.6 | 3.64E-02 | 4.25E-03 | 4.96E-04
10 | 2.78E-02 | 5.00E-02 | 0.166 0.136 097 | 293 | 488 151 708 23% | 0.29 | 0.5 | 4.83E-02 | 8.06E-03 | 1.34E-03
14 5.44E-02 | 6.67E-02 | 0.161 0.131 0.93 | 3.02 | 50.3 191 899 29% | 041 | 0.5 | 6.20E-02 | 1.45E-02 | 3.37E-03
20 1.11E-01 | 1.00E-01 | 0.180 0.150 1.07 | 299 | 49.8 299 1197 39% | 059 | 0.6 | 1.07E-01 | 3.57E-02 | 1.19E-02
30 2.50E-01 | 1.67E-01 | 0.132 0.102 0.71 | 333 | 555 495 1693 55% | 0.88 | 0.39 | 1.19E-01 | 5.95E-02 | 2.98E-02
41 4.67E-01 | 1.83E-01 | 0.113 0.083 0.57 | 3.02 | 50.3 356 2049 66% | 1.21 | 0.31 | 1.05E-01 | 7.18E-02 | 4.91E-02
62 | 1.07E+00 | 3.50E-01 | 0.079 0.049 0.32 | 3.05| 50.8 477 2526 82% | 1.82 | 0.18 | 1.12E-01 | 1.16E-01 | 1.20E-01
80 | 1.78E+00 | 3.00E-01 | 0.064 0.034 0.21 | 298 | 49.7 237 2763 89% | 235 | 0.11 | 6.28E-02 | 8.37E-02 | 1.12E-01
105 | 3.06E+00 | 4.17E-01 | 0.049 0.019 0.00 | 298 | 49.7 130 2893 93% | 3.09 | 0.00 |0.00E+00 | 0.00E+Q0 | 0.00E+00
155 | 6.67E+00 | 8.33E-01 | 0.047 0.017 0.00 | 3.01 | 50.2 0 2893 | 93.4% | 4.56 | 0.00 | 0.00E+00 | 0.00E+00 | 0.00E+00
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Figure D1: Normalization curve of measured tracer
concentration in the effluent of HR-MBBR (1% test)
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Table D2: Tracer results for second test
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Time | "M | At “t';soT Abs. g%? a‘;“‘; CICo Re?n";’ged C”%”give C”rrrr']‘g;“ve ceat | trcxat| U *Atc .
min Hour H m3/h | L/min - - ppm | ppm - mg mg % mg/L*h mg/L*h mg/L*h3
0.00 0.00 0.00 3.00 | 50.00 0.00 0.006 0.03 -0.13 | -0.08 0.0 0 0% 0.00E+00 | 0.00E+00 | 0.00E+00
0.42 0.00 0.01 3.00 | 50.00 0.01 0.091 0.66 0.51 0.34 4.0 4 0% 3.54E-03 | 2.46E-05 | 1.71E-07
0.75 0.00 0.01 3.00 | 50.00 0.02 0.206 1.53 1.37 0.90 15.7 20 1% 7.62E-03 | 9.52E-05 | 1.19E-06
1.00 0.00 0.00 3.00 | 50.00 0.03 0.193 1.43 1.27 0.84 16.5 36 1% 5.31E-03 | 8.85E-05 | 1.47E-06
1.25 0.00 0.00 3.00 | 50.00 0.03 0.199 147 1.32 0.87 16.2 52 2% 5.50E-03 | 1.14E-04 | 2.39E-06
1.50 0.00 0.00 3.00 | 50.00 0.04 0.202 1.50 134 0.88 16.6 69 2% 5.59E-03 | 1.40E-04 | 3.49E-06
1.75 0.00 0.00 3.00 | 50.00 0.04 0.193 143 127 0.84 16.3 85 3% 5.31E-03 | 1.55E-04 | 4.52E-06
217 0.00 0.01 3.00 | 50.00 0.05 0.192 1.42 1.27 0.83 26.5 112 4% 8.80E-03 | 3.18E-04 | 1.15E-05
2.50 0.00 0.01 3.00 | 50.00 0.06 0.193 1.43 1.27 0.84 21.2 133 4% 7.08E-03 | 2.95E-04 | 1.23E-05
3.00 0.00 0.01 3.00 | 50.00 0.08 0.19 141 1.25 0.82 316 165 5% 1.04E-02 | 521E-04 | 2.61E-05
4.00 0.00 0.02 3.00 | 50.00 0.10 0.187 1.38 123 0.81 62.0 227 % 2.05E-02 | 1.37E-03 | 9.10E-05
5.00 0.01 0.02 3.00 | 50.00 0.13 0.184 1.36 121 0.79 60.9 287 9% 2.01E-02 | 1.68E-03 | 1.40E-04
6.00 0.01 0.02 3.00 | 50.00 0.15 0.181 1.34 1.18 0.78 59.8 347 11% 197E-02 | 1.97E-03 | 1.97E-04
7.00 0.01 0.02 3.00 | 50.00 0.18 0.183 1.35 1.20 0.79 59.6 407 13% 2.00E-02 | 2.33E-03 | 2.72E-04
8.00 0.02 0.02 3.00 | 50.00 0.20 0.178 1.32 1.16 0.76 59.0 466 15% 194E-02 | 2.58E-03 | 3.44E-04




Table D2: Tracer results for secondtest (continued)

Time Tirzne At t/HRT Absorb Conc. | Conc. c/Co Recovered | cumulative | Cumulative C*At E*C*AL | 2% C*At
theo RWT | blank mass mass mass

min Hour H m3/h | L/min - - ppm ppm - mg mg % mg/L*h mg/L*h mg/L*h3
9.50 0.03 0.03 3.00 | 50.00 | 0.24 0.17 1.26 1.10 0.72 84.9 551 18% 2.75E-02 | 4.36E-03 | 6.90E-04
11.00 0.03 0.03 3.00 | 50.00 | 0.28 0.171 1.26 1.11 0.73 82.9 634 21% 2.77E-02 | 5.08E-03 | 9.32E-04
12.50 0.04 0.03 3.00 | 50.00 | 0.31 0.163 1.20 1.05 0.69 80.9 715 24% 2.62E-02 | 5.46E-03 1.14E-03
15.00 0.06 0.04 3.00 | 50.00 | 0.38 0.159 1.17 1.02 0.67 129.3 844 28% 4.25E-02 1.06E-02 | 2.65E-03
20.00 0.11 0.08 3.00 50.00 0.50 0.141 1.04 0.88 0.58 237.9 1082 36% 7.37E-02 2.46E-02 8.19E-03
30.00 0.25 0.17 3.00 50.00 0.75 0.117 0.86 0.70 0.46 397.2 1479 49% 1.17E-01 5.87E-02 2.94E-02
40.00 0.44 0.17 3.00 50.00 1.00 0.104 0.76 0.61 0.40 327.9 1807 59% 1.01E-01 6.74E-02 4.50E-02
50.00 0.69 0.17 3.00 50.00 1.25 0.096 0.70 0.55 0.36 288.5 2095 69% 9.12E-02 7.60E-02 6.33E-02
60.00 1.00 0.17 3.00 | 50.00 1.50 0.092 0.67 0.52 0.34 266.0 2361 78% 8.62E-02 | 8.62E-02 | 8.62E-02
75.75 1.59 0.26 3.00 | 50.00 1.89 0.059 0.42 0.27 0.18 309.8 2671 88% 7.08E-02 | 8.94E-02 1.13E-01
95.00 2.51 0.32 3.00 | 50.00 | 2.38 0.056 0.40 0.25 0.16 248.9 2920 96% 7.93E-02 1.26E-01 1.99E-01
126.00 4.41 0.52 3.00 50.00 3.15 0.036 0.25 0.10 0.06 267.2 3187 105% 5.03E-02 1.06E-01 2.22E-01
151.00 6.33 0.42 3.00 50.00 3.78 0.032 0.22 0.07 0.04 103.0 3290 108% 2.81E-02 7.07E-02 1.78E-01
161.00 7.20 0.17 3.00 50.00 4.03 0.026 0.18 0.02 0.01 22.5 3313 109% 3.75E-03 1.01E-02 2.70E-02
181.00 9.10 0.33 3.00 50.00 4.53 0.022 0.15 -0.01 0.00 7.5 3320 109% -2.50E-03 | -7.54E-03 | -2.27E-02
208.00 | 12.02 0.45 3.00 | 50.00 | 5.20 0.034 0.24 0.08 0.05 50.6 3371 111% 3.71E-02 1.29E-01 | 4.46E-01
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Figure D2 : Normalization curve of measured tracer
concentration in the effluent of HR-MBBR (2™ test)

cumulative distribution of the tracer mass
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Figure D3 : Cumulative curve of measured tracer from the
effluent of HR-MBBR (2™ test)
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