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RÉSUMÉ 

De nombreuses espèces d'algues se sont révélées se développer rapidement et produire des 

quantités substantielles de lipides. Ainsi, identifiées comme des algues oléagineuses, on a 

longtemps proposé que les algues pourraient être utilisées comme une usine cellulaire de 

production de lipides pour l’industrie des biodiesels. Cependant, la faible production de lipides, 

due à un métabolisme des lipides fortement interconnecté, ainsi qu’un rendement relativement 

faible des procédés d'extraction ont représenté des obstacles majeurs à l’industrialisation des 

technologies de production de lipides d'algues. Algues d'eau douce Chlorella protothecoides était 

l'espèce la plus métabolique diverse et robuste trouvée dans les littératures. Il pourrait appliquer 

trois modes de culture différents, qui sont autotrophes sur le CO2, l'alimentation mixotrophique sur 

le CO2 et le glucose, et l'hétérotrophie avec le glucose uniquement. Dans cette espèce, la teneur en 

lipides et le rendement en biomasse étaient beaucoup plus élevés en mode de culture 

hétérotrophique par rapport au mode de culture autotrophique. Bien que les recherches montrent 

que le glucose pourrait inhiber l'affinité du CO2 dans le système de fixation du CO2 et avoir un fort 

effet inhibiteur sur les enzymes du cycle de Calvin ainsi que sur les protéines de collecte de lumière, 

l'impact de la régulation du glucose sur le niveau métabolique n'était pas clair. L'objectif principal 

du travail était d'améliorer le rendement lipidique des algues, en mettant l'accent sur l'ingénierie 

métabolique basée sur l'étude métabolomique et une modélisation cinétique, ainsi que sur 

l'exploration de nouvelles approches et de méthodes efficaces d'extraction des lipides, afin 

d'améliorer la cellule d'algues comme plate-forme d'accumulation de lipides pour la production de 

biodiesel. 

Dans la première partie, nous avons étudié différents modes de culture à base de carbone, tels que 

autotrophes, mixotrophes et hétérotrophes sous un faible pouvoir azoté. Sous un faible taux d'azote, 

les lipides pourraient être évidemment accumulés; Pendant ce temps, la différence de métabolisme 

cellulaire pourrait être clairement observée à cause de l'impact du glucose. L'objectif était de 

démêler les liens et la régulation entre le métabolisme du carbone des algues et la production de 

lipides. Dans cet article, nous nous concentrons profondément sur l'étude du métabolisme et de la 

régulation de la production de lipides dans la plate-forme d'algues et apporte une nouvelle 

connaissance de la régulation dans le métabolisme des lipides d'algues. Surtout, c'est la première 

fois que l'on étudie la dynamique de l'énergie dans les algues et que l'on retrouve la capacité de 
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rotation de l'énergie dans les modes de culture hétérotrophes et mixotrophes pour une forte 

accumulation de lipides. 

La deuxième partie de ce travail a porté sur le développement d'un modèle métabolique cinétique 

décrivant le métabolisme central du carbone de Chlorella protothecoides cultivé dans des 

conditions hétérotrophes. Le modèle comprend la plupart des principales voies du métabolisme 

cellulaire. On a montré que les simulations de modèles concordaient avec les données 

expérimentales, ce qui suggère que la structure de modèle proposée fait face à la biologie des 

cellules de Chlorella protothecoides. Le modèle a permis d'effectuer une analyse dynamique du 

flux métabolique et nous a permis de démontrer que le rendement lipidique élevé s'accompagne 

d'un flux lipidique élevé et d'une faible activité TCA. Pendant ce temps, la distribution du flux 

dynamique suggère également un métabolisme stable et robuste dans Chlorella protothecoides 

avec un rapport relativement constant de la distribution du glucose. Ce modèle est un premier 

modèle métabolique cinétique dans les plates-formes d'algues et a jeté une base de base pour servir 

d'outil pour prédire l'ingénierie génétique ainsi que la stratégie de culture de conception pour une 

production optimisée de lipides en la définissant comme fonction objective. 

Dans la troisième et dernière partie, nous avons travaillé à améliorer les protocoles d'extraction des 

lipides actuels, afin de maximiser le rendement de l'extraction des lipides. Une étape de traitement 

de l'eau a été ajoutée et adaptée aux protocoles d'extraction actuels, entre les deux extractions de 

solvant organique. Les résultats ont montré que le traitement de l'eau de la biomasse après la 

première étape d'extraction du solvant aide à la libération des lipides intracellulaires dans la 

deuxième étape d'extraction, améliorant ainsi le rendement final d'extraction des lipides. Le 

nouveau procédé fournit donc un moyen efficace d'améliorer le rendement en extraction des lipides 

des méthodes existantes, ainsi que de favoriser le TAG, un lipide présentant le plus grand intérêt 

pour la production de biodiesel. 

En résumé, ce travail a permis de décrire le comportement métabolique de la production de lipides 

chez Chlorella protothecoides. La combinaison d'un outil d'ingénierie métabolique en amont et 

d'une approche optimisée de l'extraction des lipides en aval a clairement contribué à améliorer la 

faisabilité commerciale du bioprocessage de la production de lipides à base de microalgues. 
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ABSTRACT 

Many algal species have been found to grow rapidly and produce substantial amounts of lipid. 

These microalgae are identified as oleaginous algae and it has long been proposed that algae could 

be employed as a cell factory to produce lipids for biodiesel. However, low lipid production level, 

because of a highly regulated lipid metabolism as well as relatively low lipid extraction yields, 

have been major barriers to the practical application of algae lipid technologies industrially. Fresh 

water algae Chlorella protothecoides was the most metabolic diverse and robust species found in 

literatures. It could apply three different culture modes, which are autotrophic on CO2, mixotrophic 

feeding on CO2 and glucose, and heterotrophic with glucose only. In this species, lipid content and 

biomass yield were much higher under heterotrophic culture mode compared with autotrophic 

culture mode. Although researches found glucose could inhibit the affinity of CO2 in the CO2 

fixation system, and have strong inhibitory effect on Calvin cycle enzymes as well as on light 

gathering proteins, the impact of glucose regulation on metabolic level were not clear. The main 

objective of this thesis was thus to improve the algae lipid yield, with a special emphasis on a 

metabolic engineering approach based on a metabolomics study, kinetic modeling as well as on 

exploring new approaches of efficient lipid extraction methods, in order to improve algae cell as a 

lipid accumulation platform for biodiesel production. 

In the first part, we studied different carbon-based culture modes, such as autotrophic, mixotrophic, 

and heterotrophic under a low nitrogen medium condition. Under low nitrogen condition, lipid 

could be obviously accumulated; meanwhile the difference of cell metabolism could be clearly 

seen from glucose impact. The aim was to unravel the links and regulation between algae carbon 

metabolism and lipid production. In this article, we deeply focus on the metabolism and regulation 

study of lipid production in algae platform and it brings novel knowledge of regulation in algae 

lipid metabolism. Especially it’s the first time to investigate the energy dynamic in algae and found 

energy turn over capacity in heterotrophic and mixotrophic culture modes for high lipid 

accumulation.    

The second part of this work focused on the development of a kinetic metabolic model describing 

Chlorella protothecoides central carbon metabolism grown under heterotrophic condition. The 

model includes most of the major pathways of the cell metabolism. Model simulations were shown 

to agree with experimental data, which is suggesting that the proposed model structure copes with 
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Chlorella protothecoides cells’ biology. The model enabled performing a dynamic metabolic flux 

analysis, and enabled us to demonstrate that high lipid yield is accompanied with high lipid flux 

and low TCA activity. Meanwhile, the dynamic flux distribution also suggests a robust and stable 

metabolism in Chlorella protothecoides with relatively constant ratio of glucose distribution. This 

model is a first kinetic metabolic model in algae platforms and laid a basic foundation to serve as 

a tool in predicting genetic engineering as well as design culture strategy for optimized lipid 

production by defining it as objective function.  

In the third and final part, we worked at improving current lipid extraction protocols, to maximize 

lipid extraction yield. A water treatment step was added and adapted to current extraction protocols, 

between the two organic solvent extractions. Results showed water treatment of biomass after the 

first solvent extraction step helps the release of intracellular lipids in the second extraction step, 

thus improving the final lipids extraction yield. The novel method thus provides an efficient way 

to improve lipid extraction yield of existing methods, as well as favoring TAG, a lipid of the highest 

interest for biodiesel production. 

In conclusion, this thesis allowed ameliorating our understanding of the links between cell 

metabolomic behavior and lipid production in Chlorella protothecoides. The combination of an 

upstream metabolic engineering tool and an optimized downstream lipid extraction approach has 

clearly contributed to ameliorate the commercial feasibility of lipids production bioprocess based 

on microalgae. 
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CHAPTER 1 INTRODUCTION 

 Background 

Microalgae are rich in protein, fat, sugar, amino acids, polyunsaturated fatty acids and other 

biologically active substances. It is a golden key for human to obtain food, pharmaceutical, fine 

chemical products, and other important materials from the ocean. Microalgae are easy to culture, 

and have high photosynthetic efficiency, zero net carbon values, short growth cycle (10 ~ 60 days) 

compared with plants and high lipid content (25-70 %). They do not compete nor hijack farming; 

do not compete with food and do not affect the global energy distribution. 

Two oil crises during the 1970’s stimulated a vigorous search for alternative energy sources and 

microalgae are among the top priority candidates (Georgianna & Mayfield, 2012; Quintana et al., 

2011a). The capability of lipid accumulation in different microalgae varies from 20 % - 50 % (cell 

dry weight) with some that can even reach 70 %. In most cases, only the neutral lipids will be used 

for biodiesel production as transesterification yields from polar lipids require more expensive 

catalysts, longer reaction times, and higher reaction temperatures (Orr & Rehmann, 2016; Hidalgo 

et al., 2013). Meanwhile, although TAG and FFA are all neutral lipid classes, in our work, TAG is 

a more favorable component. As from our result, TAG account for 50-60% of the total lipids while 

FFAs are only around 1% of total lipids. Meanwhile, TAG has suitable fatty acids composition of 

C16 and C18 chains with saturated or mono-unsaturated fatty acids, which are the most suitable 

components for biodiesel production (Xu et al., 2006). So, microalgae lipid production is now one 

of the hottest topics around the world. In 1973, Japan launched the first “Sunshine project”, and 

then followed the “Microalgae diesel research program” and declared to be a biodiesel exporter in 

2025. The United States started Aquatic Species Program (ASP) in 1978 and completed high-oil 

algae species selection and improvement in the two following decades (Yu et al., 2011b). Then in 

2006, they launched a “Mini-Manhattan Project”, which did plan to realize microalgae diesel 

industrialization in four years. Meanwhile, the UK “Carbon Trust”, U.S. “Solix Biofuel” and 

“Green Fuels Technology”, Canada “International energy” and New Zealand “Aquaflow bionomic” 

are all committed to large-scale cultivation of microalgae and biodiesel research and development, 

setting off a global wave of biodiesel production and research by engineered microalgae (Bollinger, 

2011; Greenwell et al., 2010a; Maia, 2010; Senne, 2012; Thurman, 1997). 
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 Microalgae application in lipid production 

A microalgae cell contains water at about 60-80 % by weight and approximately 98 % of the dry 

weight is composed of organic molecules and the remaining 2 % is composed of inorganic 

molecules. The organic molecules present are predominantly proteins, carbohydrates and lipids, 

which total constitutes about 90 %, while other organics like DNA, RNA and ATP are found in 

lesser amounts of about 10-12 % (Bumbak et al., 2011; Sivakaminathan, 2012). 

Many algal species have been found to grow rapidly and produce substantial amounts of 

triacylglycerol (TAG) or oil, so they are referred to as oleaginous algae. It has long been postulated 

that algae could be employed as a cell factories to produce oils and other lipids for biofuels and 

other biomaterials (Borowitzka, 1988; Nan et al., 2015). The advantages of algae as feedstock for 

biofuels and biomaterials include: 

a) They can synthesize and accumulate large quantities of neutral lipids/oil (20–50 % DCW), 

and grow at high rates (0.1-1.6 day-1) (Duong et al., 2015; Welter et al., 2013), 

b) They can grow in saline, coastal seawater where there are few competing stress, 

c) They can be grown in pounds on marginal lands (e.g. desert, arid- and semi-arid lands), so they 

do not compete with farmlands,  

d) They can fix carbon dioxide from flue gases emitted from fossil fuel-fired power plants and 

other sources, thereby reducing emissions of a major greenhouse gas, 

e) Meanwhile, they can produce various value-added co-products such as biopolymers, proteins, 

polysaccharides, pigments, animal feed, fertilizer and H2, 

Based upon the photosynthetic efficiency and growth potential of algae, theoretical calculations 

indicate that annual oil production of >30 000t of algal oil per hectare of land may be achievable 

in mass culture of oleaginous algae, which is 100-fold greater than that of soybeans, a major 

feedstock currently being used for biodiesel in the USA (Hu et al., 2008). Also because of its 

extremely high lipid content, it is attractive as a second-generation alternative fuel and was widely 

studied and investigated. 
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 Microalgae characteristics and classification 

Microalgae includes a wide range of organisms differing in size, shape, color and structure. 

However, they have a common property having a photosynthetic system, capturing carbon dioxide 

and assimilating it as a part of their central metabolism. Their photosynthetic system is highly 

similar to that in plants, but they have a much simpler whole organism organization level (uni-

cellular species). So unlike plant cells, in which lipids were not only trapped in the cell walls and 

membranes but also only in certain tissue/organization. Meanwhile they also have higher 

reproduction capabilities, the growth cycle of microalgae is around 10 ~ 60 days compared with 

that of 1 year for soybeans (Sivakaminathan, 2012). 

Based on their color (pigment type), size (cell structure) and their life cycle, microalgae are divided 

into nine categories (Khan & Rashmi, 2009) namely: Chlorophyta, Chlorarachniophyta, 

Cryptophyta, Dinophyta, Euglenophyta, Glaucophyta, Haptophyta, Heterokontophyta and 

Rhodophyta, and two prokaryotic divisions: Cyanophyta and Prochlorophyta (Mutanda et al., 

2011; Sivakaminathan, 2012). 

 Oleaginous algae strains 

In 1998, 3,000 microalgae species were screened by the U.S. Department of Energy’s Aquatic 

Species Program with the aim to identify species with high lipid and fatty acid content (Georgianna 

& Mayfield, 2012). After almost two decades of the ASP program, thousands of algae strains were 

isolated and screened for their lipid and fatty acid content. Algae were classified in categories based 

on their lipid content (Sheehan, 1998). For instance, diatoms are among the most common and 

widely distributed group of algae. They store energetic molecules primarily in the form of lipids 

(TAGs), and the average lipid content of oleaginous diatoms has been reported at 22.7 % dry-cell 

weight (DCW) under normal growth conditions and up to 44.6 % DCW under stress conditions 

(Hu et al., 2008). Chlorella and Nannochloropsis are categorized as the most potential oil 

producing species. Nannochloropsis sp. bears a high lipid content (60 % DCW), especially with 

eicosapentaenoic acid (EPA) component (4 % DCW) (Maia, 2010), which makes this algae species 

the only that has been used for industrial EPA production (Sakthivel & Elumalai, 2011; 

Sivakaminathan, 2012). Chlorella mainly includes Chlorella vulgaris，Chlorella pyrenoidosa and 

Chlorella protothecoides. Although the lipid content for the first two species is not high (13 %-20 
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%), a relatively short (10-19h) doubling time compared to 1-5 day normally observed (Bollinger, 

2011; Duong et al., 2015) leads to a higher lipid productivity level. Since Chlorella protothecoides 

can use organic carbon source such as glucose, glycerol, starch, etc., to live a heterotrophic life, it 

results in a higher cell culture density and lipid content compared to autotrophic growth. Miao et 

al. applied cell engineering techniques to reach a high lipid content in heterotrophic Chlorella cells, 

with 55 % of the dry cell weight, corresponding a 4-fold that in autotrophic algae cells (Miao & 

Wu, 2006b). Moreover, Salina and Phaeodactylum are high oil content seawater algae.  

Table 1. 1 Lipid content of the major microalgae species 

Microalgae lipid content ( % dry wt) 

Botryoccus braunii 25-75 

Chlorella sp. 28-32 

Chlorella protothecoides (autotrophic/heterotrophic) 15-55 

Dunaliella. tertiolecta 36-42 

Nannochloropsis sp. 31-68 

Nannochlosis sp. 15-32 

Crypthecodinium cohnii 20 

cylindrotheca sp. 16-37 

Dunaliella primolecta 23 

Neochloris oleoabundans 35-54 

Nitzschia sp. 45-47 

phaeodactylum tricornutum 20-30 

Schizochytrium sp. 50-77 

Tetraselmis sueica 15-23 
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Among eukaryotic microalgae, Chlamydomonas reinhardtii has arisen as the hallmark model 

organism, with its genome been sequenced and annotated, although having a low lipid content 

(Merchant et al., 2007). C. reinhardtii has been widely used to study photosynthesis, cell motility 

and phototaxis, cell wall biogenesis, and other fundamental cellular processes (Harris, 2001). These 

studies laid a foundation framework for researches on other species. (Shah, 2010) listed major 

lipid-producing strains.  

Up to date, published biofuel studies have focused on less than 20 species taken from culture 

collections (Figure 1.1), and of these publications, Chlamydomonas reinharditii, Synechocystis 

sp. and Chlorella sp. are top 3 intensive species studied (Larkum, 2012).  

 

Figure 1. 1 (a) Microalgae strain-specific publications related to biofuels published in Web of 

Science since 1991. The references presented capture 70 % of all microalgal biofuel publications. 

(b) Number of publications per year for microalgae biofuel publications referring to biodiesel, 

hydrogen and lipids (Larkum, 2012). 

 Algae lipid classes 

Algal lipids fall under two broad categories: non polar lipids and polar/membrane lipids (Bumbak 

et al., 2011). Most of the algal lipids are glycerinated membrane lipids (polar lipids), with minor 

contributions to overall lipid content from TAG, wax esters, hydrocarbons, sterols, and prenyl 

derivatives (non-polar lipids) (Hu et al., 2008). 

Under optimal growth conditions, algae synthesize fatty acids principally for esterification into 

glycerol-based membrane lipids, which constitute about 5–20 % of their dry cell weight (DCW). 

Fatty acids include medium-chain (C10–C14), long-chain (C16–18) and very-long-chain (≥C20) 
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species and fatty acid derivatives. The major membrane lipids are the glycosylglycerides (e.g. 

monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol), 

which are enriched in the chloroplast together with significant amounts of phosphoglycerides (e.g. 

phosphatidylethanolamine (PE) and phosphatidylglycerol (PG)), which mainly reside in the plasma 

membrane and many endoplasmic membrane systems (Murata, 2007). The major constituents of 

the membrane glycerolipids are various kinds of fatty acids that are polyunsaturated and derived 

through aerobic desaturation and chain elongation from the “precursor” fatty acids palmitic (16:0) 

and oleic (18:1ω9) acids (Erwin, 1973). 

Under unfavorable environmental or stressful conditions for growth, however, many algae alter 

their lipid biosynthetic pathways towards the formation and accumulation of neutral lipids (non-

polar lipids) (20–50 % DCW), mainly in the form of triacylglycerol (TAG). Unlike the 

glycerolipids found in membranes, TAGs do not have a structural role but, instead, serve primarily 

as a storage form of carbon and energy. However, there is some evidence suggesting that, in algae, 

the TAG biosynthesis pathway may play a more active role in the stress response, in addition to 

being a carbon and energy storage under environmental stress conditions. Unlike higher plants, 

where individual classes of lipid may be synthesized and localized in a specific cell, tissue or organ, 

many of these different types of lipids may be produced in a single algal cell. After being 

synthesized, TAGs are deposited in densely packed lipid bodies located in the cytoplasm of the 

algal cell. The transesterification reaction from TAG to biodiesel is shown in Figure 1.2. 

 

Figure 1. 2 Transesterification process for the conversion of oil to biodiesel. R1, R2, R3 are 

hydrocarbon groups (Sivakaminathan, 2012). 

 Challenges of industrial lipid production 

Although microalgae metabolism has been described in various species (Radakovits et al., 2010), 

we still have sparse details on metabolic flux distribution and regulation in lipid production 

bioprocesses. For instance, it becomes crucial, while developing lipid production bioprocesses, to 
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better understand metabolic flux regulation favouring cell lipid storage accumulation or algae 

growth acceleration, for determining optimal culture conditions maximizing total lipid productivity 

(i.e. qlipid or µ x Ylipid/biomass). For instance, diatoms are known for their high lipid content but a low 

growth rate limits their use at large scale. Indeed, it is quite common to observe a reduced biomass 

yield when reaching high cell lipid content. The field thus seems attractive for improvement 

looking at a better control of cell lipid productivity, and acquiring fundamental knowledge on algae 

cell metabolism can result in tips for identifying efficient strategies to favor a specific cell behavior. 

Moreover, significant amounts of lipids are trapped in the cytoplasm by the cell walls and various 

organelles membrane, so the lipid extraction efficiency can greatly impact the final extracted lipid 

yield, another major bottleneck of commercial-scale biodiesel production (Guldhe et al. 2016).  

 Research problems 

 Carbon and nitrogen nutrition: a key to control microalgae lipid 

metabolism 

As mentioned previously, one of the major bottlenecks for algae lipid industrialization relies in the 

metabolic conflict between lipid accumulation and biomass growth. Previous studies have clearly 

shown that lipid content of a unit microalgae cell evolves along with the growth stages, culture 

conditions and nutritional states. Lipid productivity is thus seen as quite unstable since a slight 

perturbation of bioprocess culture conditions can either result in an increase or a decrease of the 

cell lipid content. In the recent years, heterotrophic algae culture have gained in interest for lipid 

production, since high biomass and lipid content (55 % of the dry weight) can be reached while 

feeding sugar-rich waste streams (Miao and Wu 2006) or other agricultural stocks (Gao et al., 

2009). It is thus expected that feeding an organic carbon source would make a bioprocess more 

productive but it is not known if it could be more efficient in stimulating lipid accumulation. It is 

known that most of microalgae strains accumulate lipids when the cell division is blocked or 

inhibited such as from nitrogen shortage stress conditions, while carbon continued being fixed (i.e. 

CO2 in autotrophic) or consumed (i.e. organic carbon source in heterotrophic)  (Georgianna & 

Mayfield, 2012; Quintana et al., 2011b). 

Nitrogen is an essential nutrient factor for algae growth, as well as for any other biosystem. It is 

the essential element structurally formatting amino acids, purines, pyrimidines, amino sugars and 
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amine compounds. Nitrogen (N) is also a component of chlorophyll, so it is essential in 

photosynthesis. Therefore, under insufficient N conditions, chlorophyll amount in algal cells is 

reduced, and the cell photosynthesis capacity from light intensity and CO2 concentration reduces 

accordingly, leading to weakened photosynthesis and respiration (Yang, 2012). Furthermore, under 

limited N condition, protein and nucleic acid synthesis slow down so cell division and growth are 

restricted, and most assimilated carbon molecules go into the production of storage and stress-

resistant materials such as lipid, starch and beta-carotene. A detailed cell response for the carbon 

metabolism reprogramming under N limitation is illustrated below (Figure 1.3) in which the red 

color represents enhanced pathways and the green ones reduced metabolic activity.  
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Figure 1. 3 Carbon metabolism reprogramming in N limitation. The red color represents 

enhanced pathways and the green ones reduced metabolic activity 

Nitrogen metabolism is thus tightly linked to carbon metabolism with, for instance, the uptake and 

assimilation of nitrogenous compounds requiring organic acids such as 2-oxoglutarate, which is 
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the primary carbon acceptor for ammonium; and malate which prevents alkalinization during 

nitrate assimilation (Stitt, 2002). Therefore, in presence of nitrogenous compounds the synthesis 

of organic acids requires the re-direction of the carbon influx that would go to carbohydrate 

synthesis. Of interest, nitrate represses ADP-glucose pyrophosphorylase (a key enzyme in the 

starch synthesis pathway) activity, which lead to a marked starch depletion (Scheible & Gonzales, 

1997). However, under nitrogen deficiency, this pathway repression phenomenon is removed and 

the competing pathway of organic acid synthesis is under-expressed (TCA cylcle), and starch 

accumulates intracellularly. Takuro Ito and Miho Tanaka (Ito & Tanaka, 2012) have specifically 

studied the metabolic profile of microalgae cells in N-limited conditions and they found that within 

the starch-sucrose and the glycolysis/gluconeogenesis metabolisms, four out of eight metabolites 

are increasing, phenomena correlating with the intracellular accumulation of starch granules. 

Except for the competition and repression effects in carbon metabolism, N is also a resource for 

amino acid synthesis, as previously discussed and shown in Figure 1.3. Nitrate is assimilated and 

converted to ammonium, entering the glutamate synthase or GS-GOGAT (glutamine synthetase-

oxoglutarate amidotransferase) pathway. So under deficient N conditions, the influx of carbon to 

the amino acid synthesis pathway is reduced, and the limitation of amino acid supply results in the 

reduction to the cessation of net protein synthesis, which slows down algae cell division and growth 

(Levy & Gantt, 1990; Lewitus & Caron, 1990). In Takuro Ito and Miho Tanaka’s study (Ito & 

Tanaka, 2012), amino acids in nitrogen assimilation and N-transport metabolisms under N-limited 

conditions were decreased to 1/20th of that under normal N condition. (Coleman et al., 1988a) also 

reported that the exposure of algae cells to N-deficient conditions resulted in the level decrease of 

37 proteins identified of the chloroplast. 

Nitrogen is the major elements of chlorophyll; the synthesis of chlorophyll requiring N to form δ-

aminolevulinic acid, a chlorophyll precursor. Net mass balance of chlorophyll concentration in the 

cell is the sum of its synthesis and photooxidation rates. Photooxidation of chlorophyll occurs 

constantly under light excitation, and the synthesis of new chlorophyll molecules also occurs to 

replace degraded molecules (i.e. a maintenance phenomenon). However, under N-limited levels, 

new chlorophyll cannot be produced and the quantity of chlorophyll thus reduces per cell with 

time. Indeed, it has been widely reported that growth of algae under N-deficient conditions results 

in a significant loss of chlorophyll molecules. In Nannochloropsis, cells grown under N-deficient 

conditions resulted in increased levels of storage products per cell such as lipid and carbohydrate 
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(starch), while the level of chlorophyll declined rapidly. Thus, N depletion would also presumably 

decrease photosynthetic efficiency and the availability of carbon-based substrates synthesized 

through CO2 fixation pathway (i.e. Calvin-Benson cycle) (Sheehan, 1998). Similar results were 

also reported in other oil-rich green algae grown under N-limited conditions, with increased cell 

content in oil bodies and starch granules and decreasing chlorophyll cell content (Coleman et al., 

1988a; Hu & Sommerfeld, 2008; Shifrin & Chisholm, 1981). 

The de novo nucleotides synthesis requires metabolic intermediates such as ribose phosphate (i.e. 

within PPP pathway), amino acids and CO2. Insufficient concentrations in amino acids, as 

mentioned previously, is limiting the carbon integration in nucleic acids molecules, so the carbon 

flowing in extra is then thought being re-oriented feeding other synthetic pathways such as those 

leading to lipid and starch.  

In addition to the metabolic variations in macromolecules such as proteins, nuclear acids, 

carbohydrates and lipids, there is also an increase in the ratio of carotenoid to chlorophyll. N 

depletion induces the accumulation of antioxidative beta-carotenoids (e.g. carotene), which may 

play a role in the cell resistance under stressed conditions. The carbon flow to carotene is shown 

in Figure 1.3, where pyruvic acid and phosphoglyceraldehyde are combined for the synthesis of 

IPP (isoprenyl pyrophosphate), which first leads to GPP (geranyl pyrophosphate) and further to 

beta-carotene. As we can see, beta-carotene and chlorophyll are also competitive pathways, which 

means when chlorophyll synthesis flux is reduced, the synthesis flux of beta-carotene is enhanced. 

Jianxin etc. (Jianxin & Jue, 2003) reported a beta-carotene content two times that in the high N 

condition, when growing microalgae cells under nitrogen deficiency conditions .  

So in summary, lipid synthesis includes a complex network of metabolic reactions that are highly 

interconnected to carbon and nitrogen metabolisms. Nitrogen deficiency conditions thus reprogram 

the cell carbon metabolism favoring carbon flow toward carbon-storage molecules (e.g. starch, 

lipids) and anti-stress components (beta-carotene). N-based carbon fluxes to synthetic pathways 

for proteins, nucleic acids and chlorophyll molecules are then reduced, resulting in a slow specific 

growth rate and low final biomass levels. Indeed, the two effects seem being tightly regulated as 

mutually exclusive. It is thus of high interest to find ways balancing the global metabolism to 

minimize these metabolic conflicts and optimize lipid productivity of microalgae, i.e. maximizing 

µ, x, Ylipid/biomass. 
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 The metabolic engineering of lipid production is a multifactorial problem 

Metabolic modeling (modeling in America and modelling in Europe) is a systematic way to 

describe cell metabolism and predict cell behavior, ultimately. It can serve as a tool to guide the 

development of control strategies for maximizing bioprocess output in biomolecules of interest. A 

model allows performing a series of computer simulations to assess hypotheses of various types, 

either on culture strategies or on cell interaction with its environment. Conclusions can thus be 

drawn faster than performing successive comprehensive experimental operations, or even guide 

their planning and objectives. Multiple culture conditions can then be rapidly covered and the more 

the model describes finely cellular processes the more reliable are expected to be the output results. 

A cell-mirror model, which can be highly complex to develop and to handle, is thus expected to 

allow predictive model simulations, i.e. exploring outside the experimental space covered to 

generate experimental data used to develop a model. However, optimising complex biosystems 

such as microalgae for lipid production may require complex accurate mathematical models.  

Different models have shown great efficiencies for process control while providing complementary 

knowledge on microalgae nutrition, culture condition (macroscopic models; (Deschênes & 

Wouwer, 2015; Mairet et al., 2013; Packer et al., 2011; Yang et al., 2011)) and metabolism 

(microscopic; (Kliphuis et al., 2012; Quintana et al., 2011a; Sweetlove et al., 2013)). Among 

macroscopical dynamic models developed to optimize operating conditions of bioprocesses using 

microalgae for lipid production, Bernard nutrition-based models (Oliver Bernard 2005) modified 

from Droop model (Droop, 1983b; Droop, 1968b) shown being highly efficient and reliable. For 

instance, a model was developed and used for neutral lipid production by the microalgae Isochrysis 

aff. galbana under nitrogen limitation (Oliver Bernard 2011). Temperature effect on microalgae 

was also included in a model (Olivier Bernard 2013), as well as accounting for light and 

temperature effects (Oliver Bernard 2012). Several kinetic models dealing with photosynthesis 

have then been proposed, effect of light, photoinhibition by light excess (J.C.H. Peeters, P. Eilers 

2007). So based on the predicted optimized conditions, the production process are oriented 

controlled.  

Various microscopic models have also been developed for describing cell metabolism. For 

instance, to quantify the effect of the O2-to-CO2 ratio on the metabolism of C. reinhardtii, Kliphuis 

developed a metabolic model to estimate the metabolic flux distribution at different steady states 
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for Chlamydomonas reinhardtii, performing a metabolic flux analysis (MFA). The metabolic 

network included 18 pathways, 159 reactions and 326 metabolites (Kliphuis et al., 2011), making 

that work the more detailed flux analysis in the algae platform. Muthuraj also performed a steady 

state metabolic flux analysis (a stoichiometric study) to study the behavior of Chlorella sp. FC2 

IITG under different conditions. A shift of the intracellular flux distribution was identified at the 

transition from the nutrient sufficient to nutrient starvation growth phases. This author also applied 

their approach to perform a dynamic flux balance analysis (dFBA) to evaluate the bio-reaction 

velocity change and predict cyclic metabolism behavior of microalgae grown under a light–dark 

cycle (Muthuraj et al., 2013). In that work, the author considered CO2, nitrate, phosphate and 

inoculated biomass as input variables, and intracellular fluxes were estimated by validating known 

cell contents in protein, carbohydrate, neutral lipid as well as biomass yield value. Therefore, 

metabolic modeling opens the black box of intracellular metabolism. It can describe every 

metabolic reaction of a network and integrate multifactorial approach, which can comprehensively 

help to identify key metabolic processes and improve cell productivity in an end-product of interest 

including growth. However, current metabolic models mostly considers every reaction rate as 

constant and do not consider flux enzymatic reality (enzyme kinetics). However, a cell culture is 

necessarily a dynamic process and steady state models can only partially predict a culture behavior, 

from time point to time point. In addition, such MFA and FBA approaches do not implicitly 

consider flux regulation mechanisms, which need being defined as objective criteria for the system 

resolution.  More recently, dynamic modeling approaches, allowing to perform time-continuous 

simulations of a cell population behaviour, were proposed. Such models, also called kinetic 

metabolic models, can describe flux kinetics and regulation, time-based perturbations and complex 

enzymatic and gene interactions (Cloutier et al., 2009; Cloutier et al., 2007; Ghorbaniaghdam et 

al., 2013; Leduc et al., 2006). Some models consider both cell inorganic nutrition and metabolism, 

aiming at identifying a balanced nutritional strategy to optimize culture conditions favoring a 

specific metabolic end-product (Cloutier et al., 2009). However, kinetic models require the 

identification of a large amount of parameter values, which can be hardly found in literature such 

as for the microalgae biosystem (Surendhiran & Sirajunnisa, 2015). From all the above, it is thus 

clear that the microalgae biosystem is highly regulated with complex non-linear interactions among 

metabolic pathways. Therefore, we think that only a modeling approach having the capacity to 

describe such regulation mechanisms linking metabolic pathways, can provide a tool allowing, 
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ultimately, to identify the key culture parameters enabling the modulation of the cell metabolism 

for maximizing cell lipid productivity. 

 Research objectives 

The overall purpose of the research presented in this thesis was to improve algae lipid yield by 

using metabolic engineering approaches. To this end, we have followed three sub-objectives: 

1- At the upstream of microalgae bioprocess, we worked at the enhancement of fundamental 

understanding of microalgae cell behavior, performing a metabolomic study to identify 

differences in cell metabolic behavior under autotrophic, mixotrophic and heterotrophic 

culture conditions. 

2- This metabolomics knowledge has then enabled developing a kinetic metabolic model 

which was asked to describe, as a first attempt, heterotrophic culture condition. 

3- Finally, working at the downstream of microalgae bioprocess, we have contributed to the 

enhancement of the yield for current lipid extraction methods by a slight but efficient 

modification of the protocols.   

First, we characterized the effect of different carbon feeding strategies, comparing autotrophic (i.e. 

with CO2 only), mixotrophic (i.e. with CO2 and glucose) and heterotrophic (i.e. with glucose only) 

culture modes, on Chlorella protothecoides metabolic behavior. All cultures were performed at 

low initial concentration in nitrogenous nutrients (1.32 mmol L-1 glycine plus 1.6 mmol L-1 amino 

acids) to better understand lipid metabolism for the three culture strategies. To achieve this goal, 

an algae species with a flexible metabolism, Chlorella protothecoides, was studied. Algae cells 

quantitative metabolomics was determined performing analysis of the culture media as well as of 

intracellular metabolites from cell extracts. Carbon flux distribution within glycolysis, PPP and 

TCA cycle, cell energetics fluctuation, and extra- and intracellular metabolites concentration 

variation were determined. Experimental data helped building a simplified metabolic network of 

the microalgae, and helped to understand the complex interplay between carbon utilization, energy 

regulation, and biosynthetic pathways, from the carbon substrate uptake to carbon storages (i.e. 

starch and lipid) metabolism. This metabolomics study is the more complete published to date. 

Second, we developed a kinetic metabolic model, based on the laboratory modeling approach as 

well as on the metabolomics experimental data previously described, to better characterize the 
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algae platform, and to develop an in silico simulation platform of the microalgae biosystem. To 

realize this objective, we developed a kinetic metabolic model based on a simplified network 

stoichiometry, Michaelis-Menten kinetic equation and mass balances on cell metabolites 

(intracellular and extracellular) quantified previously, covering central and secondary metabolic 

pathways in the microalgae Chlorella protothecoides. The final model included 7 pathways, 30 

metabolic reactions for carbon, nitrogen and lipid metabolisms. Cell growth, lipid production and 

25 metabolic intermediates were simulated. So the model included most of the main characters of 

the cell metabolism. The model structure and parameter values were calibrated using experimental 

data of previously described heterotrophic culture, and then the model was used to perform a 

dynamic metabolic flux analysis to further understand cell behavior. To the best of our knowledge, 

this is the first metabolic kinetic model proposed to describe microalgae cell behavior. 

Finally, after performing the metabolomic study, we tested different hypotheses and finally 

confirmed that a water treatment step added to current extraction protocols, between the two 

organic solvent extraction steps, would perturb cell integrity and increase cell material disruptions 

with an enhancement of lipid release from the cell. We have thus ameliorated currently used lipid 

extraction protocols, which will ultimately improve lipid extraction yield, at the lab and industrial 

scale.  

 Organization of the thesis 

The thesis contains nine chapters. Chapter one is a brief introduction which describes the thesis 

background, context, research problems and objectives. The status of oleaginous algae application 

in lipid production and challenges of microalgae lipid industrial production were introduced. In 

chapter two, we reviewed the physical characteristic of the microalgae platform, and its metabolic 

engineering from a deep overview of metabolism and regulatory interactions. Mathematical 

modelling of cell behaviour, as a method to study and control the bioprocess were finally reviewed. 

In the third chapter, the general methodology used in this work is presented. In chapter four, a 

metabolomics study of Chlorella protothecoides under different carbon-based culture modes with 

a low nitrogen medium condition was investigated to unravel the links between algae metabolism 

and lipid production. In chapter five, a kinetic metabolic model is developed to describe Chlorella 

protothecoides central carbon metabolism grown under heterotrophic condition. This is the first 

kinetic metabolic model in microalgae platform. The model is adapted from a kinetic model from 
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mammalian cell, Chinese hamster ovary cell (CHO) and developed based on the biochemical 

information of metabolic pathways and calibrated according to the dynamic metabolic data 

obtained from heterotrophic culture mode. In chapter six, we explored an efficient way to improve 

lipid extraction yield of existing methods by simply adding a water treatment step to current 

extraction protocols between the two organic solvent extractions. In chapter seven, we present the 

general discussion, in chapter eight, we draw the main conclusions of this thesis and in chapter 

nine finally recommended the future works.   

  



16 

 

CHAPTER 2 LITERATURE REVIEW 

 Physiological factors affecting lipid production 

While the ‘algae-for-fuel’ concept has been explored in the USA and in many other countries over 

the past few decades, interest and funding levels are growing and waning according to fluctuations 

of the world petroleum oil market. The lipid yields obtained from algal mass culture efforts 

performed to date fall short of the theoretical maximum yield (at least 10–20 times lower), and 

have historically made algal oil production technology prohibitively expensive (Sheehan, 1998). 

Researchers found that even neutral lipid content of unit microalgae biomass greatly differs 

between different strains within the same species, indicating the accumulation of neutral lipids is 

microalgae species dependant, culture condition and growth stage. Therefore, the effect of nutrient 

and culture conditions on lipid production was studied discriminating among defined species. For 

example, studies clearly showed that the cultivation mode greatly affects lipid accumulation in 

microalgae. Heterotrophic grown microalgae usually accumulate more lipids than those cultivated 

under photoautotrophic condition (Miao & Wu, 2006b). Indeed, the heterotrophic mode offers 

several advantages over phototrophic including the elimination of light requirement, a more direct 

control of the cultivation process controlling the organic carbon source concentration in the liquid 

medium, and lowered costs of lipid harvesting because of higher cell densities normally obtained 

in heterotrophic culture (Chen, 1996). Heterotrophic growth of C. protothecoides using acetate, 

glucose, or other organic compounds as carbon source results in much higher biomass as well as 

lipid content in cells (Liu et al., 1999). These authors have compared several carbon sources and 

concluded that glucose leads to the highest yields in both biomass and lipid. Jiang 2000, Chen 2008 

(Guanqun Chen, 2008; Yue Jiang, 2000) studied the effect of glucose, salinity, pH, and of dissolved 

O2 on the behavior of microalgae, and they concluded that low glucose concentrations (5g L-1) and 

medium pH (7.2) enhanced the degree of fatty acid unsaturation and DHA formation in 

Crypthecodinium cohnii. High salt stress (20g L-1) also lead to highest contents of total fatty acids, 

EPA, and polar lipids as well as enhance the degree of fatty acid unsaturation. Other studies also 

focusing on the light parameter confirmed that a strategic light photoperiod management can lead 

to high cell densities as it is critical for cell growth and lipid production (Zhiyou Wen, 2003), while 

excessive light can rather induce the “photoinhibition” phenomenon which will affect and limit a 

bioprocess productivity (Jack Myers, 1940). Of interest, previous studies have shown that most 
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microalgae strains accumulate lipids when the cell division is blocked or inhibited, as far as carbon 

continue to being fixed (e.g. such as from nitrogen shortage stress conditions) (Georgianna & 

Mayfield, 2012; Quintana et al., 2011b). It was observed that cell growth continued even after 

medium depletion in external nitrogenenous nutrients pool, while hypothetically supported by 

anabolic reactions of intracellular macromolecular nitrogenenous pools such as chlorophyll 

molecules. The relationship between nitrate depletion, cell growth, lipid cell content, and cell 

chlorophyll content was investigated by Yanqun Li et al. (Li et al., 2008), and Chen and Johns 

(Feng Chen, 1991) focused on the effect of the C-to-N ratio and of aeration on the fatty acid 

composition of heterotrophic Chlorella sorokiniana. At a C-to-N ratio (C/N) of approximately 20, 

cell lipid content was at a minimum, but it increased at either higher or lower C/N values. However, 

culture management strategies only based on physiological parameters cannot fundamentally solve 

the conflict between cell growth and lipid accumulation. Consequently, the community started 

seeking solutions looking at metabolic and genetic approaches. 

 Lipid metabolism and genetic engineering  

Lipid biosynthesis and catabolism, as well as pathways that modify the length and saturation level 

of fatty acids, have not been as thoroughly investigated for algae as they have for terrestrial plants. 

However, many of the genes involved in lipid metabolism in terrestrial plants have homologs in 

the sequenced microalgae genomes. The following figure 2.1 is a simplification of lipid synthesis 

pathways in microalgae (Radakovits et al., 2010). Although TAG and FFA are all neutral lipid 

classes, in our work, TAG is a more favorable component. As from our result, TAG account for 

50-60% of the total lipids while FFAs are only around 1% of total lipids. Meanwhile, TAG has 

suitable fatty acids composition of C16 and C18 chains with saturated or mono-unsaturated fatty 

acids, which are the most suitable components for biodiesel production. Transformation of TAG 

to biodiesel is also with lower cost compare with PL and FFAs. As a more comprehensive model 

of cell metabolism, under mixtrophic conditions, cells use concurrently both CO2, which is fixed 

from photosynthesis, and organic carbon source in the medium, and the key metabolic nodes in the 

mixtrophic metabolism include the following. 

First, GA3P (glyceraldehyde-3-phosphate), where Calvin cycle enters glycolysis and alternatively 

leads to Ru5P regeneration through reversed PPP pathway (Figure 2.2). It is also a very important 
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precursor for various organic molecules. Therefore, it is an important metabolic node in 

mixotrophic algae cell.  

 

Glucose

 

Figure 2. 1 Simplified overview of the metabolites and representative pathways in microalgae.  

Lipid biosynthesis shown in black and enzymes shown in red. Free fatty acids are synthesized in 

the chloroplast, while TAGs may be assembled at the ER. ACCase, acetyl-CoA carboxylase; 

ACP, acyl carrier protein; CoA, coenzyme A; DAGAT, diacylglycerol acyltransferase; DHAP, 

dihydroxyacetone phosphate; ENR, enoyl-ACP reductase; FAT, fatty acyl-ACP thioesterase; 

G3PDH, gycerol-3-phosphate dehydrogenase; GPAT, glycerol-3-phosphate acyltransferase; HD, 

3-hydroxyacyl- ACP dehydratase; KAR, 3-ketoacyl-ACP reductase; KAS, 3-ketoacyl-ACP 

synthase; LPAAT, lyso-phosphatidic acid acyltransferase; LPAT, lyso-phosphatidylcholine 

acyltransferase; MAT, malonyl-CoA:ACP transacylase; PDH, pyruvate dehydrogenase complex; 

TAG, triacylglycerols. Figure cited from (Radakovits et al., 2010) 
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Figure 2. 2 Metabolic division in GA3P node 

Calvin cycle is regulated by Rubisco, GAPDH (glyceraldehyde phosphate dehydrogenase), FBPase 

(fructose-1,6-bisphosphatase), SBPase (sedoheptulose-1,7-bisphosphatase) and Ru5PK (ribulose-

5-phosphate kinase). RuBisco is an important carboxylase in C3 photosynthetic metabolism. It 

determines carbon assimilation rate. Meanwhile, it is also an indispensable oxygenase in 

photorespiration. Photorespiration could lead to carbon loss during carbon fixation, which reduces 

the carbon flow to carbohydrates and lipid pools build-up. Higher concentration of CO2 under light 

condition can enhance the carboxylase activity of Rubisco, so as to produce more GA3P and 

increase the Calvin cycle flux. Rubisco is the key enzyme that can increase the ratio of fixed carbon 

of the Calvin cycle in mixtrophic algae culture. GAPDH is also a key enzyme for glycolysis and 

Calvin cycle. GAPDH is located in chloroplasts, and requires NADPH as coenzyme to catalyze the 

reverse reaction in glycolysis and convert 1,3-diphosphoglycerate to GA3P. This enzyme plays a 

central role in Calvin cycle. GAPDH is also located in cytoplasts, specifically needing NAD+(H) 

as coenzyme, to catalyze GA3P convertion to 1,3-diphosphoglycerate, which is the only redox 

reaction in glycolysis. The NADPH-to-NADP+ ratio regulates the direction of GAPDH enzymatic 

catalysis, as well as the flux distribution among the Calvin cycle and glycolysis. Moreover, 
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GAPDH is a light regulated enzyme; light can increase the enzyme activity and then leading to 

more GA3P products and higher carbon flux entering glycolysis. 

GA3P is also a key point where GA3P is reversed to FBP by FBPase and enters reversed PPP to 

regenerate Ru5P consumed in the first step of Calvin cycle. This process is regulated by FBPase, 

SBPase and Ru5PK, since these enzymes are regulated by light.  

GA3P can also be converted by triosephosphate isomerase (TPI) to DHAP, which is the precursor 

of 3- phosphoglycerol, thus preparing carbon skeletons for lipid boosting carbon flux into lipid 

synthesis pathway. 

Secondly, G6P and F6P, where free sugar metabolism branches out (catalyzed by 6-phosphate 

dehydrogenase) from glycolysis and goes to PPP pathway. PPP pathway is mainly regulated by 6-

phosphate dehydrogenase, which catalyzes G6P to Ru5P. It is a rate-limiting enzyme in PPP 

pathway, and thus determines the carbon flux entering PPP. PPP pathway can generate large 

amount of NADPH, which is the reducing power necessary for fatty acid synthesis. The NADPH-

to-NADP+ ratio regulates specific enzymes activity. High concentrations of NADPH competitively 

inhibit glucose 6-phosphate dehydrogenase, and thus limit carbon flux access to the PPP. PPP 

pathway can also generate Ru5P, so when free sugar exists 6-phosphate dehydrogenase can also 

accelerate the Calvin cycle indirectly by producing more Ru5P as the normal replenishment rate in 

Calvin cycle.  

Glycolysis and gluconeogenesis are also regulated at the G6P and F6P node. In glycolysis, 

hexokinase and 6-phosphofructokinase (PFK) catalyze glucose to FBP. But in gluconeogenesis, 

the reverse steps are catalyzed instead by fructose bisphosphatase and glucose-6-phosphatase. 

Hexokinase is allosterically inhibited by its product G6P. Therefore, large G6P accumulation cause 

the inhibition of PFK enzyme activity, thus inhibiting the glycolytic pathway global flux. 

Phosphofructokinase (PFK) is regulated by the allosteric activation of ADP and AMP, while it is 

inhibited by ATP. In addition, citric acid is also an allosteric inhibitor of PFK enzyme. However, 

opposite regulation mechanisms will affect the gluconeogenesis pathway. Indeed, when TCA cycle 

goes too fast, the excessive ATP and citric acid generated will inhibit PFK, but activate the fructose 

bisphosphatase and glucose-6-phosphatase enzymes, which finally reverse the glycolysis to 

gluconeogenesis pathway.  
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Third, acetyl-CoA (Acetyl coenzyme A), which is a very critical metabolic node, is regulated to 

act on flux distribution to gluconeogenesis, TCA cycle, fatty acids and amino acids synthesis. 

Acetyl coenzyme A carboxylase（ACCase） is a key rate-limiting enzyme in the fatty acid 

biosynthetic pathway. Early in 1988, Roessler discovered that nutritional limitation could induce 

ACCase gene expression, thus contributing to the accumulation of fatty acid (Roessler 1988). 

PEPC (pyruvate dehydrogenase complex) is also a critical enzyme leading glycolytic flux to TCA 

cycle, thus diverging fluxes toward non-lipid synthesis direction. PEPC is regulated by an allosteric 

control and chemical modification, and its catalytic products ATP, NADH and acetyl-coA potently 

inhibit the enzyme activity. Indeed, such allosteric inhibition can be enhanced by long chain fatty 

acids, and when reduced acetyl-CoA enters TCA cycle, AMP, CoA and NAD + accumulate in the 

cell and the enzyme complex will be activated again.  

ACCase and PEPC relative activities affects lipid metabolism direction. ACCase catalyzes acetyl-

CoA into fatty acid synthesis pathway. Accumulation of acetyl-CoA can activate PEPC, which 

catalyzes pyruvate to oxalic acid and enters the amino acid biosynthetic pathway. Therefore, 

inhibition of PEPC activity is thought to stimulate ACCase catalyze its substrate into fatty acids 

pathway. 

Moreover, at the acetyl-CoA node, citrate synthase and isocitrate dehydrogenase regulates acetyl-

CoA entering the TCA cycle. The reaction regulation is mainly achieved through product feedback 

inhibition. TCA cycle is the main energy producing pathway in the metabolic network. Therefore, 

the ATP-to-ADP and NADH-to-NAD+ ratios are main regulators of TCA as well as the energetic 

metabolism. When ATP-to-ADP ratio increases, citrate synthase and isocitrate dehydrogenase are 

inhibited, whereas reduction of ATP-to-ADP ratio is activating these two enzymes. An NADH-to-

NAD+ ratio increase can also inhibit citrate synthase activity, thereby reducing the carbon flux 

entering the TCA cycle. 

Acetyl-CoA concentration also affects gluconeogenesis since it determines the direction of 

pyruvate metabolism. When fatty acids are oxygenolyzed, large quantity of acetyl-CoA products 

can inhibit pyruvate dehydrogenase and makes pyruvate accumulating, which on the one hand 

provides raw materials for gluconeogenesis, and on the other hand activates the pyruvate 

carboxylase and thus enhancing gluconeogenesis. 
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Furthermore, Kozaki proposed that light can also activate plastids ACCase though ferredoxin and 

thioredoxin intermediate signal transduction, thus inducing the carbon flux to fatty acid synthesis. 

Under dark condition, ACCase is inactive as an oxidized state. It is this oxidation-reduction cascade 

system that makes photosynthesis and fatty acid synthesis coupled together, and results in synergy 

effects of these two physiological responses (Kozaki et al., 2000). 

Based on recent information on metabolism and its regulation, applying genetic engineering 

strategies has become attractive to improve the microalgae lipid content. The U.S. National 

Renewable Energy Laboratory (NREL) launched the High oil microalgae genetic engineering 

project in 1991. From this initiative, the role of acetyl CoA carboxylase (ACCase) in the regulation 

of fatty acids production in microalgae has been clearly identified as a major bottleneck (Bao & 

Ohlrogge, 1999; Post-Beittenmiller & Roughan, 1992).  

However, intuitively, increasing ACCase activity may push an excess of substrate, malonyl-CoA, 

into the lipid biosynthesis pathway. In 1995 acetyl-CoA carboxylase (ACC) was first isolated from 

the microalga Cyclotella cryptica by Roessler (Roessler & Ohlrogge, 1993) and then successfully 

transformed by Dunahay et al. (Dunahay et al., 1995) into the diatoms C. cryptica and Navicula 

saprophila. The ACC gene, acc1, was overexpressed with the enzyme activity enhanced by 2–3-

folds. This was the first time an exogenous gene transformation system was reported in the algae 

platform. However, these experiments demonstrated that although ACCase could be transformed 

efficiently into microalgae, there was no significant increase of lipid accumulation observed in the 

transgenic diatoms (Dunahay et al., 1995). This negative result suggested that overexpression of 

the ACCase enzyme alone might not be sufficient to enhance the whole lipid biosynthesis pathway. 

Fatty acid synthase (FAS) has been suggested to be another rate-limiting regulator of lipid 

production, and several studies have been performed where a single enzyme of the FAS complex 

was selectively overexpressed, however, results show a reduced rate of lipid synthesis when 

overexpressing 3-ketoacyl-acyl-carrier protein synthase IIIs in plants (Dehesh et al., 2001). While 

demonstration of protein-protein interactions between the fatty acid acyl carrier protein (ACP) and 

thioesterase (TE) govern fatty acid hydrolysis within the algal chloroplast, which provide another 

way to manipulate fatty acid biosynthesis (Blatti et al., 2012). Another successful example of 

genetic strategies for increasing plant oil levels have come by altering the acyltransferases of TAGs 

biosynthesis pathway (Jain et al., 2000). 
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Indeed, with the development of more precise and powerful molecular biology techniques 

significant advances in microalgae genomics have been achieved during the last decade. Several 

nuclear genome-sequencing projects have now been completed, including those for C. reinhardtii 

(Merchant et al., 2007), Phaeodactylum tricornutum (Bowler et al., 2008), Thalassiosira 

pseudonana (Armbrust et al., 2004), Ostreococcus lucimarinus (Palenik et al., 2007), Ostreococcus 

tauri (Derelle et al., 2006), and Micromonas pusilla (Worden, 2009). These tools and knowledge 

have definitely stimulated researchers to progress characterizing the genetic regulation 

mechanisms of lipid accumulation metabolism and to develop genetic manipulation platforms. 

Significant achievements in the development of genetic manipulation tools have recently been 

reported for the microalgal model system (Radakovits et al., 2010), such as intrinsic algal gene 

silencing mechanisms; albeit repressive histone H3 lysine methylation, DNA cytosine methylation, 

RNA interference and microRNA-mediated gene regulation for instable foreign transcript or 

protein degradation (Guihéneuf et al., 2016). However, lipid synthesis pathways is highly regulated 

in microalgae, which may explain there is so little improvements that have come out of modifying 

enzymes activity levels. For this reason, it is hypothesized that the use of metabolic models can 

help understanding how flux regulation limits lipid production increase as well as guiding research 

to the identification of efficient strategies to perform genetic manipulation (Yu et al., 2011b). 

 Mathematical model application in the microalgae cell factory  

Predicting the behaviour of microalgae based processes is delicate because of the strong interaction 

between biology and environmental factors. For example, photosynthesis activity greatly depends 

on the light accessibility of an algae population, and on the pigment concentration which varies 

along nutrition states. However, the algae metabolism is quite flexible as it is used to cope with 

evolving natural environment with light cycle and temperature variations. Therefore, modeling 

microalgae behavior has to account for its physiology. In this section, mathematical models in algae 

platform were reviewed. The symbols appeared in different literatures’ equations with the same 

meaning were unified to the same style for the convenience of understanding.  

 Microalgae growth models 

The first models describing microalgae growth in continuous culture was proposed using Jacques 

Monod kinetics (Monod, 1942), which is based on the assumption that the microorganisms growth 
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rate is proportional to their consumption rate of an extracellular limiting nutrient (Bernard, 2005). 

However, it was observed that in microalgae platform cell growth continued after the exhaustion 

of external nitrogen pool, hypothetically supported by the consumption of intracellular nitrogen 

pools such as chlorophyll molecules. Therefore, algae cell growth cannot be taken as being 

proportional to the extracellular medium nutrients content. This phenomenon was first described 

by Droop (Droop, 1983b; Droop, 1968b). He assumed that unicellular algae growth on a limiting 

nutrient is ruled by a two-step phenomenon: first, uptake of the nutrient in the cell and then, use of 

the intracellular nutrient to support cells growth. So, based on this hypothesis, microalgae have the 

ability to store nutrients into a so-called internal quota “qn”, which is further used for biomass 

growth. Nitrogen uptake rate ρ(s) can be described by a Michaelis-Menten type kinetics (equation 

2.1): 

 𝜇(𝑞𝑛) = 𝜇𝑚𝑎𝑥 (1 −
𝑄0

𝑞𝑛
)                                                   Equation 2.1 

                                            Equation 2.2  

whereas the growth rate µ(qn) (d-1) can be modelled by Droop kinetics: equation 2.1, (Droop, 

1968b). In these expressions, μmax (d
-1) is the maximum growth rate, 𝑄0 (mgN mgC-1) is the quota 

threshold below which no growth is possible, qn (mgN mgC-1) is the intracellular nitrogen 

concentration. Then the nutrition uptake rate ρ(S) is expressed by equation 2.2, where ρmax (mgN 

mgC-1 d-1) is the maximum uptake rates, KS is a half-saturation constant (mgN mm-3) and S (mgN 

mm-3) is the concentration of nutrition in cell medium. The Droop model has been widely validated 

(Bernard & Gouzé, 1999; Droop, 1983b; Sciandra & Ramani, 1994) for its aptitude to predict both 

biomass and remaining inorganic nitrogen, and a similar approach has also been developed for 

plant cells (Cloutier, et al. 2009). 

 Macroscopic model on algae physiology 

Microalgae models dealing with nutrition effects 

Droop model is a growth model for microalgae, and it was improved by adding nutrient and product 

terms such as neutral lipids, to predict the lipid production under certain nutritional states and 

identify optimization strategy between cell growth and lipid accumulation (Mairet et al., 2011b). 
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Indeed, a dynamical model based on Droop’s was developed to predict neutral lipid productivity 

under nitrogen stress in order to propose an optimization strategy (Mairet et al., 2011b). In this 

model (Figure 2.3), nitrogen is considered as a part of the internal nitrogen quota (qn) of nutrient 

as defined by Droop, and the microalgae specific growth rate is as in equation 2.2. 

 

 

Figure 2. 3 Carbon pools and fluxes hypothesised in the model structure, figure cited from 

(Mairet et al., 2011b) 

The biomass is assumed as the sum of three carbon pools in the cell: functional pool-(f), sugar-(g), 

and neutral lipid pool-(l) (Figure 2.3). Various intracellular carbon fluxes between these pools are 

proportional to the nitrogen assimilation rate ρ(s) or the internal nitrogen quota (qn) as well as the 

specific growth rate µ(qn) (Figure 2.3). Therefore, the model structure illustrated in Figure 2.3 can 

then be written as a system of ordinary differential equations (equations 2.3 (Mairet et al., 2011b)):   

                                    Equations 2.3 

Where D is the dilution rate (d-1), S is the extra-cellular nutrition concentration (mg L-1), “” (mg 

C L-1) is the biomass. The first three equations of this system are exactly those of Droop model 

(Droop, 1968, 1983), while the dynamics of neutral lipid quota 𝑞̇l (gC gC-1 d-1) and functional lipid 
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quota 𝑞̇f (gC gC-1 d-1) were validated by the authors’ more recent work; where α (g[C] g[N]−1) is 

the protein synthesis coefficient, β (g[C] g[N]−1) is the fatty acid synthesis coefficient, γ (g[C] 

g[N]−1) is the fatty acid mobilisation coefficient. The model connects the lipid production and 

biomass accumulation as a response of nitrogen states, and predicts an optimal lipid productivity 

obtained when the specific growth rate was kept at (0.95 d-1). Nitrogen-limited continuous cultures, 

which allow the control of the cell growth by maintaining a suboptimal nitrogen level (Falkowski 

& Raven, 2007 ), could then be used to control the lipid production process, calculating nitrogenous 

nutrient feed using the authors’ nutritional model. However, cell metabolism is not simply pools 

of products, complex non-linear interactions among metabolic pathways directly affect the final 

product, and thus such products pool model could not ultimate enable the modulation of the cell 

metabolism for maximizing cell lipid productivity. 

Microalgae models dealing with light effects 

The Droop model was further developed by adding other environmental factors such as light and 

temperature effects. In Droop plus light model, the growth is regulated not only by nitrogen but 

also by light condition. It was gradually developed to predict biomass, carbohydrate and neutral 

lipid cell productivities (Mairet et al., 2011a). To introduce the light effect, cell chlorophyll content 

was related to the nitrogen quota, and its contribution to growth rate was added, meanwhile, photo-

inhibition phenomenon and light distribution intensity inside the photobioreactor was also 

considered. The model kinetics was as follow (Mairet et al., 2011a): 

                                           Equation 2.4 

                                          Equation 2.5  

In the light related specific growth rate 𝜇̅(𝐼) term (d-1) (Equation 2.5), μ̃ is the maximum light 

related specific growth rate (d-1), KsI is the light half saturated coefficient (µmol m−2 s−1), I is 

light intensity (µmol m−2 s−1) and KiI is the light inhibition constant (µmol m−2 s−1). The light 

dynamic effect is related to chlorophyll cell content, which is related to the nitrogen quota. This 

model has then been successfully used in a “raceway” algae culture pond experiment to optimize 

the biomass yield, resulting in enhanced biomass and lipid productivities of Isochrysis aff. 

galbana at a 0.5 d-1 dilution rate and an inlet feed at a nitrogen concentration over 15 gN m3. 
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Different from Barnard’s model structure, Packer proposed describing from another mechanism 

(Packer et al., 2011) in which nitrogen depletion uncouples photosynthesis and growth (Frank & 

Dubinsky, 1999), thus resulting in the synthesis and accumulation of neutral lipids. In their model, 

total biomass was divided into two parts as non-neutral lipid biomass () and neutral lipids part 

(L). Neutral lipid synthesis resulted from an excess of carbon fixation in top of reduced carbon 

requirements for biomass synthesis. Therefore, when the nitrogen quota (qn) was consumed to 

minimum quota (q0) required for , with the increase in total biomass now due to de novo neutral 

lipids synthesis. This model is described as follow: 

𝜇(𝑥, 𝐿, 𝐻, 𝑆) = min {𝜇𝑚𝑎𝑥(1 −
𝑞0

𝑞𝑛(𝑡)
,

𝑝(𝑥,𝐿,𝐻,𝑆)

𝑐
}                              Equation 2.6 

p(𝑥, L, H, S) = H(t)𝑝𝑚(𝑥, 𝐿, 𝑆)(1 − exp (
−𝑎𝜑𝐼(𝑥,𝐻)

𝑝𝑚(𝑥,𝐿,𝑆)
)                          Equation 2.7 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝜇(𝑥, 𝐿, 𝐻, 𝑆)𝑥(𝑡)                                                Equation 2.8 

𝑑𝐿(𝑡)

𝑑𝑡
= [𝑝(𝑥, 𝐿, 𝐻, 𝑆) − 𝑐𝜇(𝑥, 𝐿, 𝐻, 𝑆]𝑥(𝑡)                                  Equation 2.9 

In which  is the algal biomass concentration excluding neutral lipids (g dw m-3); L is the neutral 

lipid concentration (g NL m-3); H is the chlorophyll content (g chl g-1 dw); S is the extracellular 

nitrogen concentration (g N m-3). The cell specific growth rate 𝜇(𝑥, 𝐿, 𝐻, 𝑆) (day-1) is for the non-

lipid biomass  and is constrained from nitrogen or light source (Equation 2.6). Nitrogen limitation 

condition is described by the Droop model, but when light is limited the growth rate is limited to 

the “p/c” term (as shown in Equation 2.6 where p (gC g-d-1) is the photosynthesis rate in Equation 

2.9; c (gC g-1dw) is a fixed proportion of accumulated carbon that contribute to the non-lipid 

biomass. This model assumption breaks away from Droop’s representation of a cell-quota model. 

The model was validated on experimental data for both biomass ( +L), neutral lipids (L) as well 

as the intracellular nitrogen quota (qn).  

More accurate models, which are presented below, have been proposed to deal with the coupling 

between nitrogen and carbon assimilation under various light conditions (Faugeras et al., 2004; 

Geider et al., 1998; Pahlow, 2005) (Armstrong, 2006 ; Flynn, 2001; Ross & Geider, 2009), but 

none of them describes the lipid fraction.  

Microalgae models dealing with temperature effects 
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Light irradiance could induce high temperatures especially in photobioreactors, which could 

strongly reduce the growth rate. Meanwhile, temperature is also an important factor related to 

growth and the rate of metabolic reactions. Therefore, a model accounting for the combined effect 

of light and temperature on algae growth was also developed (Equation 2.10) (Bernard & Rémond, 

2012). It is based on a “cardinal temperature model with inflexion” (CTMI) (Rosso et al., 1993), 

and predicts the growth rate between a temperature (T) range delimited by Tmin and Tmax (Equation 

2.12), where µopt is the optimal specific growth rate that can be reached at optimum temperature 

Topt for a light intensity I, and is the function of temperature through the CTMI ɸ(T) term (Equation 

2.13).  

                                             Equation 2.10 

                                     Equation 2.11 

                                Equation 2.12 

     Equation 2.13 

The optimal specific growth rate can then be determined using the model and at selected culture 

temperatures, such as illustrated below: 
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Figure 2. 4 Normalized model predictions (continuous line) for heterogeneous data of D tertiolecta 

(open circles), in different growth conditions from various authors and N. oceanica (diamonds) at 

different light intensities (Sandnes et al., 2005). This figure is cited from (Bernard & Rémond, 

2012). 

 Metabolic modelling 

The models discussed so far describe cell behaviour at a general macroscopic level and do not 

consider precise knowledge on intracellular carbon flux distribution from the carbon substrates to 

the lipid production. The challenge at developing a model that can describe microalgae cell 

processing of carbon substrates into desired lipid product relies on the description of the 

biochemical reactions network involved. However, such as for other cell types, there are 

peculiarities making microalgae cells tedious to describe at the metabolic level. If the previously 

discussed carbon flux distribution problem between lipid or cell synthesis pathways may be 

encountered in other cell biosystems, their metabolic flexibility (autotrophic, mixotrophic, 

heterotrophic) add a layer of flux regulation complexity. 

Although macroscopic physiological models based on cell nutrition management were successful 

for identifying culture conditions favoring lipid accumulation, they still fail to solve the 

fundamental conflict between cell growth and lipid accumulation. Therefore, the optimal utilization 

of microalgae as cell factory for biodiesel production requires a better understanding of the 
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interaction between the energetic metabolism, carbon fixation and assimilation pathways 

(Muthuraj et al., 2013). It is thus clear that a deeper understanding of cell metabolic behavior can 

allow a fine control of microalgae bioprocess, and a biologically reliable mathematical model 

would be a unique tool to evaluate maximum theoretical product yield and to help developing 

optimal control strategies (Navarro et al., 2009). Recent genomics, proteomics and metabolomics 

data that are now more and more available enable exploring novel ways to describe and characterize 

microalgae biosystem behavior, in complement to the nutritional models. Having in hand data sets 

on extracellar medium composition with time, a metabolic flux analysis (MFA) method allows 

studying the topological characteristics (flux distribution) and functional properties (metabolic 

limitations) of a metabolic network with known stoichiometry. Looking at optimal metabolic flux 

sets, a flux balance analysis (FBA) (Harris, 1999), which is based on linear programming, can then 

be performed, where constraints are considered to restrain the resolution of the possible metabolic 

flux network within a possible space of solution. Both MFA and FBA approaches are based on 

cells with their intracellular metabolic intermediates at steady-state and allow estimating metabolic 

flux rate values. The general mass balance equation of a biosystem is as follow:  

𝑑𝑥

𝑑𝑡
= 𝑆 ∙ 𝑣 = 0                                                       Equation 2.14 

Where 𝑥  is the concentration of each metabolite; S represents matrix of the stoichiometric 

coefficients of the metabolites considered. It has the dimension of (c×r), where c is the number of 

metabolites and r is the number of reactions. 𝜐 is the vector of the fluxes through the r bio-chemical 

reactions. FBA approach is illustrated below: first, it needs a genome-scale metabolic network 

reconstruction, then the stoichiometric of each biochemical reactions and the constraints for fluxes 

were represented mathematically, the mass balances of metabolites were defined as a system of 

linear equations and objective functions were defined to predict the optimum condition (maximum 

biomass), and finally calculate fluxes that maximize the objective function.  

FBA study has been performed in cyanobacteria Arghrospia platensis (Cogne et al., 2003) to 

identify the metabolic network structure and support the existence of a metabolic shunt of PEP to 

pyruvate through several enzymes to convert NADH,H+ into NADPH,H+. FBA model in 

Synechocystis sp. PCC 6803 (Fu, 2009) was used to predict cell behavior after the insertion of 

ethanol fermentation pathway, and simulation of cell growth and ethanol production all showed a 
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satisfactory agreement with experimental data. FBA was also successfully used in higher eukaryote 

algae Chlamydomonas reinhardtii (Boyle & Morgan, 2009; Kliphuis et al., 2012), as well as in 

Chlorella sp.(Muthuraj et al., 2013). For example, Boyle’s FBA study of Chlamydomonas 

reinhardtii under three culture conditions (autotrophic, mixtrophic and heterotrophic) included a 

metabolic network containing 484 metabolic reactions and 458 intracellular metabolites. Except 

regular carbon metabolism, reactions also included cellular energy production which comes from 

either photosynthesis or oxidative phosphorylation by consuming organic carbon source. The 

optimization constraint criteria consisted in finding the flux distribution maximizing biomass at 

minimum energy usage (light or organic carbon source), it finally predicted the biomass yields 

ranged from 28.9 g per mole C for autotrophic growth to 15 g per mole C for heterotrophic growth 

(Boyle and Morgan 2009). FBA approach was also specifically used to characterize CO2 time-

evolution behavior, which reveals that respiration is not always the dominant source of CO2, and 

that metabolic processes such as the oxidative pentose phosphate pathway (OPPP) and lipid 

synthesis can be quantitatively important (Sweetlove et al., 2013). However, as the author indicated, 

FBA is poor at predicting flux through certain metabolic processes such as the OPPP, which may 

due to limited number of experimental systems that are suitable for the more tractable steady-state 

stable isotope FBA approach. Indeed, FBA model only capable of determining fluxes at steady 

state. Typically, FBA does not account for regulatory effects such as activation of enzymes by 

protein kinases or regulation of gene expression. Therefore, its predictions may not always be 

accurate. 

Estimation of carbon flux distribution via metabolic flux analysis (MFA) or flux balance analysis 

(FBA) relies on the pseudo steady state approximation. However, as we previously discussed, 

microalgae is hardly at steady state. Cells accumulate and reuse energy, carbon and nitrogen along 

a culture. A model capable to describe transient conditions may then be more biologically reliable. 

To this end, an improvement of the steady state approaches resides in the dynamic flux analysis 

(dFBA) approach, which connected two steady states by incorporating the rate of change in flux 

constraints (Mahadevan et al. 2002). The kinetic of substrate utilization, growth and intracellular 

biomass composition are require as the input of intracellular flux balance analysis over the 

exponential growth phase, which manipulations turn the original approach into a time-varying FBA 

(dFBA). A schematic representation of the approach is illustrated in figure 2.8.  
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Figure 2. 5 Schematic representation of the steps involved in the dFBA. The dFBA consists of three 

steps: (i) development of kinetic model to predict dynamic profile of extracellular substrates, 

growth, and intracellular biomass composition; (ii) estimation of kinetic parameters by fitting 

simulated dynamic profiles with the corresponding experimental values; and (iii) integrating 

dynamic reaction rates (fluxes) predicted by kinetic model as inputs for dFBA. This figure is cited 

from (Muthuraj et al., 2013). 

A dynamic flux analysis (dFBA) was carried out to capture light–dark metabolism over discretized 

pseudo steady state time intervals in Chlorella sp (Muthuraj et al., 2013). Results show flux 

distribution during transition period was toward nongrowth associated (NGA) maintenance energy, 

oxidative phosphorylation, and photophosphorylation; meanwhile, a shift in the intracellular flux 

distribution was also predicted during transition from nutrient sufficient phase (72h of cultivation) 

to nutrient starvation phase (96h of cultivation). However, the steady state based dFBA modelling 

does not include the true dynamics of the metabolic fluxes, which are represented by kinetic 

parameters, and thus it cannot predict metabolite concentrations. The addition of kinetic parameters 

to describe each flux kinetics may allow analyzing complex time-dependent dynamics in 

microalgae metabolic biosystem.  
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 Kinetic metabolic modelling  

Kinetic modeling (Ghorbaniaghdam et al., 2013; Shinto et al., 2008), however, can make up this 

shortness, because they can describe time-based perturbations and complex enzymatic and gene 

interactions. Nowadays, kinetic metabolic modeling opens the black box of internal microbial 

metabolism (Cloutier et al., 2008; Cloutier et al., 2009; Cloutier et al., 2007), it includes the 

dynamics of enzymatic reactions, which are time dependent and relies on the enzyme kinetics. It 

can comprehensively provide the real time metabolic flux fluctuations and provide more precise 

site of key metabolic processes for genetic manipulation, and in the other hand, provide a preferable 

but balanced nutritional strategy to optimize the culture conditions favoring aimed products 

(Cloutier et al., 2009). 

However, its application in microalgae is relatively new, since previously few algae have been 

genome sequenced and annotated (Curtis et al., 2012), the biochemical information such as enzyme 

kinetic parameters are relatively limited (Surendhiran & Sirajunnisa, 2015). Along with the 

development of algae biochemistry, genomic information and biochemistry, analysis methods, and 

kinetic parameters in algae platforms sprung up in the recent years.  

So now it’s quite urgent that a kinetic model combing metabolomics and biological kinetics can be 

done; Make the model play its significant role in operating lipid synthesis both in nutrient strategy 

and potential genetic manipulation strategy. To our best knowledge, the current model in this thesis 

is the first kinetic metabolic modelling in algae platform. It will be used to provide the real time 

metabolic flux fluctuation and provide more precise sites for genetic manipulation, and as a tool, 

provide a preferable but balanced nutritional strategy to optimize the culture conditions favoring 

lipid production. 

 Lipid extraction method greatly impact on the final extraction 

yield 

Amelioration of lipid extraction protocols is a step considered as one of the major bottlenecks for 

commercial-scale biodiesel production (Guldhe et al., 2016). However, limited attention has been 

put on this effort (Araujo et al., 2013; Li et al., 2014; Ranjan et al., 2010). Significant amounts of 

lipids are trapped in the cytoplasm by the cell walls and membranes, so lipid extraction efficiency 
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greatly depends on cell disruption technique as well as on the polarity of the solvents used to 

remove lipids from the cell water phase (Burja et al., 2007; Hamilton et al., 1992; Lee et al., 2010; 

Lewis et al., 2000).  

Various methods have been proposed to break down cell wall and release trapped lipids in algae 

platforms, e.g. Ultrasound was proved to be a very efficient cell wall disruption method (Araujo et 

al., 2013), with fragmentation efficiency over 90 % after a 12 min ultrasonic treatment (Araujo et 

al., 2013; Wang et al., 2007). For comparison, a low shear stress approach such as using a 

hydrocyclone only leads to ~10 % cell lipids extraction efficiency but microalgae cells remain 

viable (Dommange et al., 2015). “Green solvents” such as 1-butyl-3-methylimidazolium chloride 

are hydrophilic ionic liquids that were investigated for their ability to dissolve low concentrations 

of cellulose, which compose about 1 % by mass of the whole algae cell. These solvents are thus 

capable of lysing microalgae cell walls and microalgae vesicle membranes to form two immiscible 

layers, one of which consists of the lipids released from the lysed cells (Salvo, 2011a). This method 

enables to disrupt cell wall and lipid separation in a single step, and currently obtained interest. 

Overall, the solvents perform lipid extraction, which also determine the extraction efficiency. A 

short series of solvent-based methods have been largely used to perform lipid extraction from 

various biological materials. The Folch method (Folch et al., 1957) consists in using chloroform-

methanol (Chl/Met), and then the extracted solvent (chloroform) is washed with water to remove 

non-lipid substances. Bligh & Dyer then proposed a method based on Folch’s combining 

chloroform, methanol and water (Chl/Met/H2O), for lipid extraction from a wide range of 

biological materials (Bligh & Dyer, 1959). More recently, because of concerns on biosafety, a less 

hazardous solvent mixture of dichloromethane/methanol (Dic/Met) has been proposed by Cequier 

et al. (Cequier-Sanchez et al., 2008) as a substitute for Bligh & Dyer method. In addition, Drochioiu 

proposed a fast lipid assay with acetone extraction and turbidimetric reaction with sulfosalicylic 

acid, which requires only few milligrams of dry samples compared to grams for the above-

mentioned methods, which limits their application to pilot and large scale production facilities 

(Drochioiu, 2005). These methods can be considered as references, or classical, in the field. 

However, different microalgae species show different extraction efficiency using different 

extraction systems (Araujo et al., 2013) (Ryckebosch et al., 2012a) (Li et al., 2014) (Grima et al., 

1994). As it can be seen, lipid extraction efficiency differs with biomass type as well as with the 

solvent mixture. Thus specific lipid extraction method could help to increases cell material 
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disruptions with an enhancement of lipid release from the cell. For example some solvents like 

ionic liquids could help to hydrolyze cellulose and hemicellulose in the wall.    
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CHAPTER 3 METHODOLOGY 

 Culture species and cultivation methods 

The freshwater algae Chlorella protothecoides screened from Professor Réjean Tremblay’s Lab at 

Universite du Quebec à Rimouski (UQAR) will be used in this study. Since this algae species can 

afford three different metabolism, which are autotrophy, mixtrophy and heterotrophy. It is one of 

the most metabolic diverse and robust species found in literature. The lipid content in Chlorella 

protothecoides can reach up to 40 % of cell dry weight. The major fatty acid components (C16:1, 

C16:0, C18:1, C18:0) can be a source for biodiesel.  

The culture medium was the modified basal medium (Xiong, 2008) containing glycine, yeast 

extract as nitrogen source, and sufficient amounts of inorganic supplements, including KH2PO4 

(0.7 g/L), K2HPO4 (0.3 g/L), MgSO4∙7H2O (0.3 g/L), FeSO4∙7H2O (0.003 g/L), H3BO3 (0.00286 

g/L), MnCl2.4H2O (0.00181 g/L), ZnCl2 (0.000105 g/L), Na2MoO4 2H2O (0.000039 g/L), CuSO4 

5H2O (0.000079 g/L), and CoCl2 (0.000030 g/L). Autotrophic, heterotrophic, and mixotrophic 

flask cultures of C. protothecoides were carried out in 2.8L Erlenmeyer flasks containing 1L of the 

culture medium. And 1 % of glucose (10 g L-1) is added to heterotrophic and mixotrophic culture. 

Light was provided for autotrophic and mixotrophic cultures with the intense of 60 μmol m− 2 s− 1. 

5 % CO2 was provided to all the cultures. While heterotrophic cells were kept under the dark. The 

culture medium was always sterilized before the inoculation and then was inoculated exponentially 

growing microalgae from non-glucose based cultures to reach an original cell density as one 

million. Cultures were kept at 28 ℃, 150 rpm for 10days. Cell density of culture samples was 

determined in triplicates by cell counting using a hemocytometer. Culture medium was centrifuged 

at 4,000 g for 10 min., and the collected biomass were vacuumed (remove extra water) and weighed 

for fresh weight; fresh cell pallets were further freezed dry (VirTis, Advantage Plus EL-85) to 

determine the dry weight. Cultures were sampled every day and centrifuged, the suspension was 

kept at -80 ℃ for extracellular analysis and the cell pellets were washed twice with distilled water 

and then their metabolism was quenched by adding 500 ul 80 % MeOH.  

 Metabolomics extraction and analysis 

Metabolomics analysis of cell metabolites include metabolic intermediates and energetic and redox 

nucleotides. The main steps consist in the sampling of the cell suspension, cell separation from the 
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medium, extraction of metabolites and then the chemical identification and quantification. The 

nutrient composition and extracellular metabolites in cell medium was obtained after cell 

separation from the suspension. Cell extraction of metabolites was developed based on the cold 

methanol method: 10 ml cell culture were harvested by centrifuge at 4℃ for 10 min at 21,000 g 

(Samples suspension were kept for glucose, amino acids and ions analysis) and washed twice by 

10 ml of 4 ℃ pre-cold de-ionized (DI) water in centrifuge tube. And separated by 0℃ pre-cold 

centrifuge at 21,000 g for 10 min. Supernatant was drained to the waste tank to keep a small amount 

of liquid and then removed by 1ml pipette with care. Cell pellets were re-suspended in 0.5 ml DI 

water and were transferred to 1.5ml micro centrifuge tube, repeating this until all the cells were 

transferred. Then collect the cell pellets by centrifuge at 21,000 g for 10 min. Supernatant was 

removed by 1ml pipette with care. After removing medium substrate by the washing steps, 0.5 ml 

of pre-cold 80% methanol was pipetted onto cell pellet to quench the cell by precipitating enzyme 

protein. Tube was vigorously homogenized with mini vortexer (Fischer Scientific) for 1-2min. By 

this step, all the biochemistry reaction was stopped. Then the suspension was put in the ultrasound 

bath (Crest, 1000 W, 20 kHz) with ice for 30 mins. Then the mixture were centrifuged (Eppendorf 

centrifuge, maximum speed for 10 min at 4 ℃). The supernatant was transferred into a 1.5 ml 

centrifuge tube on ice. 0.5 ml 80% cold methanol was added to pellet and vertaxed again. Then the 

tube was put in the ultrasound bath with ice for 30 mins and centrifuged again. The supernatant 

was added to the first one. Combined supernatants were passed through 0.2 µm filter (Millipore, 

Etobicoke, Canada) and stored at -80 oC for further analysis of nucleotides (analyzed in one shot) 

and sugar phosphates & organic acids (sugar phosphates and organic acids analysis was carried out 

in another shot) by UPLC/MS/MS. The cell residue was used to do the starch analysis.  

 Glucose analysis 

Samples suspension was used to detect glucose. The analytical method is enzyme-based via 

oxidization of the analyte by the enzyme immobilized on a membrane. Samples were automatically 

detected by a dual-channel immobilized oxidase enzyme biochemistry analyzer (YIS 2700 select, 

YSI Inc. Life Sciences, USA); the analyzer was calibrated with standard glucose when the 

equipment was started, and then calibrated again for every 6 samples.  
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 Amino acids analysis 

Extracellular amino acids analysis was chemical-based method, samples were separated on a solid 

phase due to different physiochemical properties. Samples suspension was diluted with 70 % 

MeOH for 200 times, then mix it with ISTD of ratio 1:1. Filter the mixture to a sample vial using 

0.22 um filter before analysis, and then 5 µl sample was injected to 1290 UPLC system coupled to 

a 6460 triple quadruple mass spectrometer in negative ion mode (Agilent Technologies, Santa Clara, 

CA, USA) (Ghorbaniaghdam et al., 2013). Samples were separated by a 2.1 × 150 mm ZICTM-

Hilic column (3.5 mm, 200 A, PEEK) (Merck SeQuant, Peterborough, Canada) and 2.1 × 20 mm 

ZICTM-Hilic guard column (5 mm, 200 A, PEEK) (Merck SeQuant, Peterborough, Canada). The 

flow rate of mobile phase was set at 0.1 mL min-1. The mobile phase (20 mM NH4AC at pH 4 in 

acetonitrile) was linearly decreased from 90% to 35% in the first 19 min, then was increased to 90% 

in one minute and held at 90% for 15 mins. The mass spectrometer was set at gas temperature 

350 ℃, scan time 100 ms, flow rate of 9 L min-1; pressure at 45 PSI and capillary voltage of 3000 

V. Internal standard was used for quantification. 

 Intracellular metabolites analysis 

Sugar phosphates and organic acids analysis was done in one shot (Ghorbaniaghdam et al., 2013). 

Cell extraction of metabolites was injected and analyzed on the UPLC/MS/MS system (Agilent, 

Montreal, Quebec, Canada) in negative ion mode. And passed through a Hypercarb pre-column 

(2.1610 mm, 5 mm) and a Hypercarb column (100 × 2.1 mm, 5 mm) (Thermo Fisher, Burlington, 

Canada). The mobile phase including buffer A: 20 mM ammonium acetate at pH 7.5 and buffer B 

10 % v/v menthol/water. The completed separation condition is as follow: 0-5 min with 10 % buffer 

A. 5-10 min with linear gradient buffer A from 10% to 20%. 10-20 min with linear gradient buffer 

A from 20% to 100%, 20-30 min with 100% buffer A, 30-32 min with linear gradient buffer A 

from 100% to 10% and 32-40 min with 10% buffer A. The flow rate was constant at 0.3 mLmin-1. 

The mass spectrometer was set at gas temperature 300 ℃, scan time 100 ms, flow rate of 7 L min-

1; pressure at 35 PSI and capillary voltage of 3500 V. The quantification of the metabolites were 

compared with standard stock solutions.   

Nucleotides were analyzed separately as another shot on the UPLC/MS/MS system (Agilent, 

Montreal, Quebec, Canada) in positive ion mode. Cell extraction was passed through a symmetry 

C18 column (150 × 2.1 mm, 3.5 mm) (Waters, Milford, USA). The mobile phase including 10 mM 
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ammonium acetate (Buffer A), 15 mM DMHA at pH 7.0, 50/50% (v/v), acetonitrile (Buffer B) and 

20 mM NH4Ac at pH 7.0. Flow rate was set at 0.3 mL min-1, with different gradient of mobile 

phase: 0-10 min with 10% B, 10-20 min at linear gradient of buffer from 10 to 30% B, 20-21 min 

at linear gradient from 30 to 60% B, 21-26 min at 60% B, 26-27 min at linear gradient from 60 to 

10% B and 27-35 min at 10% B (Ghorbaniaghdam et al., 2013). Mass condition was set as the 

same as mentioned above. External standard curve was used for quantification.  

 Ions analysis 

Liquid suspension media was passed through 0.2 µm filter before analysis on the Dionex ion 

chromatography system in conductivity mode (Dionex Canada Ltd., Oakville, Canada) as 

previously described (Lamboursain & Jolicoeur, 2005). Anions was separated at 4mm × 250 mm 

IONPAC AS14A-SC analytical column with mobile phase (2 mM Na2CO3 and 1 mM NaHCO3) at 

1.0 mL min-1 flow rate. Cations were separated using 4mm × 250 mm IONPAC CS-12A column 

with mobile phase (methanesulfonicsolution 20 mM) flowing at a 0.9 mL min-1. The ion 

concentrations were calculated by the calibration curve which is the standard ion concentration 

plotted vs. peak area. 

 Starch analysis 

Starch cell content was analyzed by the starch assay kit (Sigma-Aldrich, St. Louis, MO, USA), as 

previously described (Lamboursain & Jolicoeur, 2005). The cell pellets obtained from intracellular 

metabolites extraction were re-suspended in 1 mL ddH2O and sterilized at 121 °C for 15 min. 

Samples were cooled down at room temperature and the volume was readjusted to 1 mL with 

ddH2O. Then it was diluted 1:1 with the amyloglucosidase solution of the starch assay kit and 

incubated for 30 min in an ultrasound bath at 60 °C. The supernatant was collected and detected 

by a biochemistry analyzer (YSI Life Science, Yellow Springs, OH, USA).  

 Lipid extraction and analysis  

The analysis of total lipid was based on the method developed by Drochioiu Gabi (Drochioiu 2005). 

10 mg of dried cells were extracted by 1 ml acetone under ultrasound in ice water for 30 mins; 0.1 

ml supernatant of the mixture was introduced into a micro-centrifuge tube containing 0.9 mL 1.5% 

sulfosalicylic acid; then the absorbance of the mixture was detected at 440 nm by UV-VIS 
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determination (UNICAM 8625, UV/VIS). A standard curve was constructed using quantity known-

raw lipid extracted from the species. 

 Fatty acids composition analysis 

Fatty acids composition was analysed by a multichannel gas chromatograph “Trace GC ultra” 

(Thermo Scientific) equipped with a mass detector model ITQ900 (Thermo Scientific). An Omega 

wax 250 (Supelco) capillary column was used for the separation with high purity helium as a carrier 

gas. The internal standard 19:0 was added to samples and fatty acid methyl esters (FAME) were 

prepared before injection according to the method using sulphuric acid and methanol (2:98 v/v) at 

100°C for 10 min. FAME were identified and quantified using known internal standards (Supelco 

37 Component FAME Mix and menhaden oil; Supleco).  

 Model development 

As the first step in the development of a mathematical model of the cell metabolism, the metabolic 

network must be known. Nowadays, the genome sequence and annotation have been published for 

many microalgae. Based on databases that include metabolic reaction pathways such as KEGG, 

MetaCyc, DiatomCyc, BioCyc, and the established metabolic network model for other microalgae 

in literature, a metabolic network model was reconstructed specifically for Chlorella 

protothecoides. 

The metabolic modelling in silico framework already developed in our lab was adapted to cope 

with microalgae growth and lipid production process. Full kinetic equations were used to describe 

metabolic reactions and pathways conducting from substrates including CO2/glucose, to lipids and 

biomass. Flux kinetics and mass balances were carried out based on stoichiometrics of each 

reaction, it included kinetic terms of regulation of metabolic reactions. So this tool draws a clear 

map of the metabolic processes and regulation that helps us understand it well. The modelling in 

silico framework was carried out in Matlab (the MathWorks Inc., Natick, MA, USA), all the model 

equations will be solved in this platform to get the metabolic fluxes rates.  

The original kinetic parameters (Vmax, Km) for each reaction and enzymes in the model were 

gained from BRANDE. However, during the model modification and validation process, we need 

to provide abundance of experimental data according to model variables. These analyses were 

carried out by HPLC-MSMS, Ion-FID etc. in our assay lab. Then these experimental results helped 
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to adjust parameter values and modify the model to best simulation result. Then sensitivity analysis 

was used to allow a statistical analysis of estimated model parameters. And the model was validated 

by estimating the confidence interval of the calibrated parameters. Details of modelling 

development, model structure calibration, parameter estimation and model validation can be found 

in Chapter 5 in Material and methods section.  
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 Abstract 

Heterotrophic culture of some algal cells is now known as an efficient avenue for lipids production. 

However, the mechanism involved is not clearly understood, especially when feeding glucose 

concurrently to an autotrophic culture. In this work, the time course dynamics of central carbon 

metabolites of Chlorella protothecoides was studied in autotrophic, heterotrophic and mixotrophic 

culture modes to elucidate the glucose regulation effect. Results show that assimilated CO2 mainly 

goes to the synthesis of upstream carbohydrate-based metabolites under autotrophic condition, 

while supplementing glucose recalibrates the metabolism toward downstream metabolites and 

lipids, rather than carbohydrates accumulation. The analysis of the lipid class shows, under glucose 

supplementation, that cells accumulate neutral lipids as storage rather than as membrane polar 

lipids, while fatty acids composition changes from polyunsaturated to saturated and monosaturated, 

which shows improving the quality of biodiesel precursors. The metabolic flux rearrangement 

seemed being regulated by a high cell energetic state that was maintained by a glucose metabolism. 

A high initial ATP-to-ADP ratio was observed after adding glucose, suggesting cell energetics as 

a biomarker of a metabolic shift from starch to lipids accumulation. These findings thus bring novel 

data on the regulation of carbon flow in microalgal cells, and enhance our understanding of 

microalgae as a lipids production platform. 
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 Introduction 

Microalgae has received a renewed attention in the recent years for its high potential of lipids 

production, in the context of biodiesel market, as well as for specific fatty acids of high interest for 

the cosmeceutical and neutraceutical industry [1]. Algal cells are built to assimilate CO2 as their 

sole carbon source under light. However, many microalgae species have the membrane transport 

systems to uptake and catabolize organic substrates as carbon and energy sources [2].  

Chlorella protothecoides is a microalga that can grow either photoautotrophically, mixotrophically 

or heterotrophically [3]. With the addition of glucose in a fed-batch heterotrophic bioreactor 

culture, C. protothecoides reached 16.8 g L-1 of biomass having a crude lipids content of up to 55.2 

%. This result represented about four times the lipids level observed in photoautotrophic cultures 

[4]. C. protothecoides has also been cultured mixotrophically when organic carbon as well as CO2 

and light are provided at the same time, and showed a similar growth rate than for heterotrophic 

culture (0.04 h-1), but which was over 10X higher than under autotrophic mode (0.005 h-1) [3]. 

Lots of researches have been done on the impact of glucose on algae growth and photosynthetic 

activities [5, 6]. Glucose was reported to be able to reduce CO2 apparent affinity in Chlorella 

sp.VJ79 [7] and C. vulgaris UAM101 [8]. It was shown to negatively impact on the synthesis of 

RuBPase and light related phycocyanin-PC involved in Calvin cycle [9]. Indeed, organic carbon 

supplement have shown to induce metabolic differences in both respiration and photosynthesis in 

cyanobacteria [10]. Little is known, however, on the differences taking place at the metabolic level 

of cultivating algal cells under autotrophic, heterotrophic and mixotrophic culture modes. A 

metabolic flux analysis (MFA) was carried out in Synechococcus sp., it was found the glycolysis, 

TCA cycle, and oxidative phosphorylation fluxes were affected when glucose was added in the 

autotrophic culture [11]. However, for the microalgae C. protothecoides, which shows a high 

industrial potential for producing lipids and fatty acids at high yield, only sparse and incomplete 

datasets are available in literature on the effect of feeding concurrently glucose to autotrophic.  

In the present study, we have thus focused describing how C. protothecoides metabolism adapts 

while varying the carbon source. The microalgae was cultivated under autotrophic, mixotrophic 

and heterotrophic conditions. A metabolomics strategy was applied to investigate the effect of the 

carbon source on the central carbon metabolism, integrating lipids synthesis as well as the cell 

energetic state, for the three culture modes. Therefore, this study unravels the metabolic mechanism 
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of glucose impact on the carbon flux distribution and thus improves the understanding of the links 

between central carbon fluxes and lipids metabolisms in this microalgae.  

 Material and methods 

 Algal strain and culture conditions 

All cultures of Chlorella protothecoides, either under autotrophic, mixtrophic or heterotrophic 

conditions, were performed in 2.8-L glass flasks (PYREX) at 28°C under continuous orbital 

agitation (150 rpm) in a Multitron II incubator (Infors-HT, Bottmingen, Switzerland). Modified 

basal medium (MBM) [4] adjusted at an initial pH of 7 was used in all cultures and modified as 

described below. Glucose was added at 1 % w/v (10g L-1) under mixotrophic and heterotrophic 

modes. Light was provided for autotrophic and mixotrophic cultures with the intense of 60 μmol 

m− 2 s− 1. CO2 was controlled at 5 % in all cultures. Heterotrophic cultures were kept under dark 

conditions in the same CO2 incubator; the body of flasks being covered with double layer aluminum 

foil to avoid light penetration. Exponentially growing cells were inoculated in fresh media at 1x106 

cells mL-1. Each flask was sampled every 24 h in a sterile biological hood.  

 Cell density and biomass estimation 

Cell density of culture samples was determined in triplicates by cell counting using an 

hemocytometer. Culture medium was centrifuged at 4,000 g for 10 min, and the collected biomass 

were vacuumed (remove extra water) and weighed for fresh weight; fresh cell pallets were further 

freezed dry (VirTis, Advantage Plus EL-85) to determine the dry weight.  

 Intracellular metabolites extraction and analysis  

Cell extraction and analysis of metabolites was developed based on the cold methanol method 

previously described by Ghorbaniaghdam et al. [12] on the UPLC MS/MS system (Agilent 

Technologies, Santa Clara, CA, USA). Only modificatons are mentioned here: 109 cells pellets 

were used here for each analysis. Extraction was performed by ultrasonication in ice water for 30 

mins and centrifugation at 4℃ for 10 min at 21,000 g. The supernatants were filtered by 0.2 µm 

milipore filter and stored at -80 oC for nucleotides, sugar phosphates and organic acids analysis 

[12]. The cell residue was used to do the starch analyis (see below).  
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 Amino acids analysis 

Culture media suspension was passed through 0.2 µm filter to do amino acids analysis. The analysis 

was performed on the UPLC MS/MS system as described previously [12]. 

 Ions analysis 

Liquid suspension media was passed through 0.2 µm filter before analysis. Dionex ion 

chromatography system (Dionex Canada Ltd., Oakville, Canada) equipped with a 4mm×250mm 

IONPAC AS14A-SC analytical column was used to separate and quantify the anions as previously 

described [13].   

 Starch analysis 

Starch cell content was analyzed by the starch assay kit (Sigma-Aldrich, St. Louis, MO, USA), as 

previously described [13]. The hydrolyzed supernatant was collected and detected by a 

biochemistry analyzer (YSI Life Science, 2700 select, Ohio, USA). 

 Glucose analysis  

1 ml culture media suspension was analyzed by a biochemistry analyzer (YSI Life Science, 2700 

select, Ohio, USA) for the glucose concentration.  

 Total lipids extraction and analysis 

The extraction procedure was developed by Gabi [14]. Briefly, 1 mg of dried cells were extracted 

with 1 mL acetone under ultrasound in ice water for 30 min. 0.1 mL of the supernatant of the 

mixture was introduced into a micro-centrifuge tube containing 0.9 mL of 1.5 % sulfosalicylic acid; 

then the absorbance of the mixture was detected at 440 nm by UV-VIS determination (UNICAM 

8625, UV/VIS).  

 Lipids and fatty acids composition analysis 

Lipid and fatty acids composition analysis were done in Professor Réjean Tremblay and Jean-

Sébastien Deschênes’s lab in Rimouski, Quebec, Canada, following the method previously 

described [15]. 
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 Results and discussion  

 Growth rate and biomass yield are enhanced in presence of glucose 

C. protothecoides was cultivated in autotrophic, mixotrophic and heterotrophic batch cultures 

(Figure1). As expected, the cell concentration rapidly increased for reaching a plateau of 1.81E+8 

 7E+6 cell mL-1 after 72 h in both cultures with glucose, while the autotrophic culture required 

more than 2.7 times longer to reach, however, a similar maximum value (Figure 1a). The cells 

maximum specific growth rate in heterotrophic (0.154 ± 0.007 h-1) and mixtrophic (0.145 ± 0.021 

h-1) cultures were similar but significantly higher than that in autotrophic culture (0.104 ± 0.018 h-

1) (FMH=3.473, p=0.2033>0.05; FAMH=13.642, p=0.0391<0.05); The sum of this value under 

heterotrophic and autotrophic modes was not corresponding to that under mixotrophic mode, which 

differs from the observations reported for C. regularis [16] and C. vulgaris [17, 18]. The respective 

metabolisms of photosynthesis and oxidative phosphorylation of glucose are thought to function 

independently in C. vulgaris [17], which may explain a cumulative growth rate in mixtrophic 

culture. However, according to the growth rate results observed in this work, an interaction between 

organic and inorganic carbon metabolisms is expected to occur in C. protothecoides. Glucose 

sensing mechanism is known to negatively affect the apparent affinity of CO2 in Chlorella sp. VJ79 

[7]. Free glucose in the culture medium was shown to negatively impact on the synthesis of 

RuBPase and light related phycocyanin-PC involved in Calvin cycle in the alga Cyanidium 

caldarium [9]. Our results showing final biomass yields of 9.54 ± 0.72 g L-1 and 10.32 ± 0.83 g L-

1, respectively for mixtrophic and heterotrophic conditions and 1.89 and 2.05 folds that obtained in 

autotrophic (5.04 ± 0.37 g L-1) culture, clearly supports the hypothesis of a strong synergistic 

interaction between photosynthetic and oxidative phosphorylation metabolisms in C. 

protothecoides.  
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Figure 4.1 Culture growth under autotrophic (Square), mixotrophic (Circle) and heterotrophic 

(Triangle) conditions. (a) Cell concentration; (b) Cell specific growth rate; (c) Biomass; (d) 

Biomass specific growth rate; (e) Cell density; (f) Raito of specific growth rate between biomass 

and cell concentration. Error bars represent the standard deviation of triplicate data. 

Interestingly, the final cell concentration (in cells per mL) was not depending on the carbon source, 

and similar values were reached in all three cultures (1.81E+8 ± 7E+6 cell mL-1). Therefore, lighter 

cells were thus obtained in the autotrophic culture with 0.427 ± 0.010 ng cell-1, compared to 0.638 

± 0.050 ng cell-1 and 0.716 ± 0.027 ng cell-1 respectively under mixtrophic and heterotrophic 

conditions. So the evolvation of biomass is not following the same pace with cell concentration; 

when observed under the microscope, cells in mixtrophic and heterotrophic cultures, after 72 h 

were larger than those in autotrophic culture; From the ratio of the specific growth rate between 

biomass and cell concentration (Figure 4.1f), we see that biomass is accumulating faster than the 

cell number (cell concentration) in mixtrophic and heterotrophic cultures than in autotrophic 

culture. It seems that the cell divison is affected under mixotrophic and heterotrophic conditions. 
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Here, nutrients limitation (Figure 4.2) may have affected cell division under these two conditions, 

which may explain higher specific cell weights. Glucose (Figure 4.2a) was below the detection 

limit at 96 and 72 h in mixtrophic and heterotrophic culutures, respectively; even in the mixotrophic 

culture where CO2 was expected to support a continous growth. However, the amino acids were 

also depleted (Figure 4.2b) concurrently at 48 h. As observed in Deschenes’ work [19], the algae 

Scenedesmus obliquus has shown an intrinsic ability to internalize nitrate much faster than its 

effective use for growth. Since the cell concentration and the biomass were both still increasing 

after 48 h, it is assumed that nitrogen is accumulated as intracellular storages [19]. Then a 

difference occurred from 72 h, while this nitrogenous intracellular pool is probably depleted thus 

causing growth to stop in mixotrophic and heterophic cultures. However, growth was maintained 

in autotrophic culture, which may be due to slower growth as well as consumption rate of 

intracellular nitrogen.   

 Glucose feeding favors lipids accumulation and improves fatty acids 

composition 

Carbon feeding mode and lipids accumulation dynamic were closely related (Figure 4.2i). Glucose 

specific consumption rate (Figure 4.2a) in heterotrophic culture (0.910 ± 0.004 mmol L-1d-1) was 

similar to that in mixotrophic culture (0.828 ± 0.034 mmol L-1d-1) (F=5.533, p=0.1429>0.05). 

Haass and Tanner reported an inducible hexose transport system in Chlorella with glucose as an 

inducer [20], a system that can be significantly inhibited under light condition. However, there was 

no evidence in our work of this inhibition phenomenon since glucose uptake rate was not reduced 

in mixotrophic culture.  
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Figure 4. 2 (a) Carbon source (here only glucose was quantified, CO2 as is always maintained as 

5% in the culture incubator, and because of the limitation of monitor we didn’t detect it in the 

culture medium); (b) nitrogen source; (c-h) ions; and (i) cell lipid, (j) starch accumulation under 

autotrophic (Square), mixotrophic (Circle) and heterotrophic (Triangle) conditions. Error bars 

represent the standard deviation of triplicate data. 
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Lipids (Figure 4.2i) start to accumulate rapidly from 24 h in heterotrophic and mixtrophic cultures. 

It has been reported that most microalgae strains do accumulate lipids under nitrogen limitation 

stress conditions while carbon source are still available [1]; However, in our results, the availability 

in amino acids cannot explain the difference observed in the lipids patterns for the three culture 

modes assessed; the cell consumption of the nitrogenous sources (12 amino acids) was similar 

among all culture modes and depletion occurred at 48 h (Figure 4.2b). Total amino acids quantity 

is given here because they all behaved the same. 

The cell ionic environment is a crucial parameter of cell behavior, and the evolution of the media 

ions content was analysed together with intermediates of the carbon storage routes (Figure 4.2c-h). 

Interestingly, both concentrations in Mg2+ (Figure 4.2d) and PO4
3- (Figure 4.2g) decreased below 

the detection limit at 96 h only for autotrophic and mixotrophic, which may suggest their 

importance under light and mixed energetic conditions involving CO2 uptake. As it is well known, 

Mg2+ is essential for photosynthesis, and PO4
3- is involved in the transformation of intermediate 

products of the photosynthesis energy transfer pathway [21]. It is interesting to see that K+ 

decreases concurrently to biomass growth in autotrophic and mixotrophic cultures and stayed non-

limiting (Figure 4.2c), since this ion normally remain at a stable concentration in plant cells [22]. 

However, K+ is involved in the carbohydrates metabolism as it can promote the transport of sugars 

into the storage organelle, and promote the synthesis of other storage materials [23]. Particularly 

for the stored carbohydrates, higher levels of starch (Figure 4.2j) are found in autotrophic and 

mixtrophic conditions compared to that in heterotrophic condition. Na+, which is normally involved 

to balance the transmembrane ions exchange and for keeping the cell membrane electronegativity, 

was kept at a quasi steady-state concentration during the whole culture (Figure 4.2e). In addition, 

stable SO4
2- level (Figure 4.2h) suggests there was no protein degradation problem, a phenomenon 

normally attributed to cell death.  

Cell lipid content accumulated at a lower rate (0.046 ± 0.006g DW-1 h-1) and at a lower level (5.9 

± 0.4 % DW) in autotrophic culture compared to mixotrophic and heterotrophic cultures. 

Mixotrophic and heterotrophic cultures accumulated lipids at a similar initial rate (respectively 

0.133 ± 0.034g DW-1 h-1 and 0.202 ± 0.051g DW-1 h-1; F=3.741, p=0.1927>0.05), and reached 

similar lipids content (respectively 10.3 ± 1.2 % DW and 13.2 ± 2.1 % DW; F=0.674, 

p=0.4980>0.05). However, in mixotrophic, a two-step increase/decrease cycle was observed while 

a peak in cell lipid content was reached in heterotrophic at 72 h. Clear differences arose later (> 72 
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h) in heterotrophic culture with a constant decrease of the cell lipid content (0.204 ± 0.017 % DW 

h-1) following glucose depletion. Under mixotrophy, although the cell lipid content also showed to 

decrease after glucose depletion, lipids started re-accumulating under the subsequent autotrophic 

mode using CO2, and interestingly at a similar rate than earlier in the culture when glucose and 

CO2 were both present. Reaching free glucose depletion thus lead, in heterotrophic and mixotrophic 

cultures, to a similar behaviour with the re-mobilisation of stored lipids. However, the mixtrophic 

culture can still capture CO2 with light supply, after re-organization of cell metabolism and 

promoting lipids accumulation. Moreover, it is interesting and looks intriguing that the second 

lipids accumulation phase from glucose depletion was at a similar rate (0.064 ± 0.003 % DW h-1; 

F=4.596, p=0.16>0.05) but reached a higher level (10.3 ± 1.2 % DW; F=89.811, p=0.011<0.05) 

compared to pure autotrophic culture (0.075 ± 0.006 % DW h-1 and 5.9 ± 0.4 % DW, respectively). 

Therefore, adding glucose as a complementary organic carbon source in mixotrophic culture may 

have triggered an enhanced cell ability to accumulate lipids. Another but not contradictory 

possibility is that some metabolites may have been released in the culture medium while glucose 

was present, metabolites that have been re-uptaked concurrently to CO2 from glucose depletion. It 

should be noted that cell respiration under a glucose metabolism is releasing CO2 that dissolves in 

the liquid medium both in heterotrophic and mixtrophic cultures that cannot be re-uptaken in 

heterotrophic culture since it was performed at dark. However, mixotrophic culture could have still 

reuse this dissolved CO2, which is adding to using exogenous CO2.   

To better understand the results on lipids accumulation, we also measured starch accumulation 

(Figure 4.2d), since it has been reported that starch is the main storage carbohydrate competing 

with lipids synthesis in algae cells [24]. Interestingly, starch showed to accumulate in all culture 

modes, with clear peaks after 24 h for then reaching similar initial basal values from 50 h. The 

maximum level was reached in autotrophic culture (12.79 ± 0.367 % DW), and lower but 

significantly similar values were observed in mixotrophic and heterotrophic cultures (5.5 ± 1.19 % 

DW and 3.07 ± 0.98 % DW respectively; FAMH=31.238, p=0.009<0.01; FMH=2.464, p=0.257>0.05). 

This global trend thus suggests that the enzymatic machinery for starch accumulation can rapidly 

be activated, but that the cell priority is to convert this storage into lipids, since lipids start 

accumulating from 24 h when starch catabolism is initiated. However, the starch content reached 

an higher level in autotrophic culture compared to mixtrophic and heterotrophic cultures, a result 

that may reveal that starch is stored at a lower metabolic cost than lipids; lipids are reported as a 
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form of storage componds with 2.25 times higher stored enregy than starch for the same 

weight [25]. Cells growing under the autotrophic mode are carbon-limited and maintain a strictly 

efficient nutritional behavior to maintain a balanced growth, which limits either lipids and starch 

accumulation along exponential growth. This result is also similar to that reported in C. reinhardtii, 

in which starch accumulation was observed earlier than lipids, where lipids catabolism showed to 

start after starch degradation [26]. The phenomenon that starch is accumulated and degraded faster 

than lipids is also consistent with results reported for Chlamydomonas [26]. It is thus clear that 

starch and lipids in Chlorella prototehcoides have different metabolic functions; starch serves as 

the cell preferential storage and re-mobilize compound, and lipids serves as long term storage under 

nutritional shortage or culture stresses. 

Lipids mainly include polar lipids (PL, structural lipids, mainly phospholipids) and neutral lipids 

(NL, reserve lipids, mainly TAG), in which neutral lipids are the preferential source for biodiesel 

production. However, the fatty acids composition and structure such as unsaturated degree and 

carbon chain length can affect the properties of the resulting biodiesel [27]. Therefore, polar and 

neutral lipids were first separated (see Material and methods) and then characterized independently 

for their fatty acids profile. The heterotrophic culture shows a higher NL-to-PL ratio (steady state 

of 13.48± 2.45) compared to that in autotrophic culture (steady state of 0.32 ± 0.11) (Figure 4.3a), 

while averaged values are observed under mixtrophic conditions (steady state of 3.49 ± 1.93). So 

with glucose supplementation, cells are more prone to accumulate storage lipids, which favours the 

downstream biodiesel production.  

Fatty acids composition of NL and PL classes were also analyzed and differences were observed 

among culture conditions. In the NL class (Figure 4.3d), the 16:0, 16:1, 18:1, 18:2, and 18:3 fatty 

acids were dominant with the percentage of each fatty acids depending on the culture mode, for 

example, in the autotrophic culture, 16:1, 18:2 and 18:3 together are more than 70 % of total NL 

fatty acids at steady state, while in mixotrophic and heterotrophic cultures the 16:0 and 18:1 mostly 

dominated (around 65 % of total NL fatty acids). In PL class (Figure 4.3c), the 16:0, 18:1, 18:2, 

and 18:3 fatty acids were dominant, in which 18:2 and 18:3 are more than 80 % of total fatty acids 

in autotrophic culture at steady state. However, in mixotrophic and heterotrophic cultures, 16:0 and 

18:1 are more than 70 % of total PL fatty acids. 
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Figure 4. 3 Fatty acids compositon under autotrophic (Square), mixotrophic (Circle) and 

heterotrophic (Triangle) conditions. (a) Neutral lipids (NL) and polar lipids (PL) ratio; (b) Fatty 

acids unsaturated degree; (c) Fatty acids main composition in polar lipid class; (d) Fatty acids main 

composition in neutral lipid class.  % represent each independent fatty acid percentage of total 

fatty acids (weight/weight). Error bars represent the standard deviation of triplicate data. 
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As noted previously, biodiesel properties are defined by the fatty acids unsatured degree and carbon 

chain length, such as the higher cetane number, which can offer a better engine performance, 

leading to less white smoke at start up, less noise and lower emissions. Fatty acids carbon chain 

length of 16-18 could mean a high cetane number, but higher carbon chain lengths can affect the 

cold flow properties of biodiesel [28]. In this work, glucose addition showed no significant effect 

on the carbon chain length (i.e. cells fatty acids), while, the fatty acids unsaturated degree (Figure 

4.3b) decreased from 1.63 ± 0.37 ∇/mol in autotrophic culture to 1.18 ± 0.19 ∇/mol in mixtrophic 

culture and 1.14 ± 0.14 ∇/mol in heterotrophic culture. Highly unsaturated fatty acids have a very 

low cetane number, and when heated, they easily produce polymers and form colloids [28]. Thus, 

the fatty acids carbon chain should preferably contains only one double bonds [29]. Our results 

revealed that glucose supplement could increase the ratio of neutral lipids to polar lipids and 

decrease the unsaturated degree of fatty acids. Therefore, mixtrophic and heterotrophic cultures 

showed to favour obtaining desired fatty acids composition for biodiesel production. 

 Glucose feeding recalibrates the cell metabolism for downstream 

intermediates and lipids accumulation rather than upstream metabolites 

In order to further unravel the metabolic differences from adding free glucose in the medium, which 

led to different cell lipid content as previously discussed, we extended our study analyzing 

intracellular metabolites concentration with culture time. Glucose-1-P (G1P), glucose-6-P (G6P) 

and fructose-6-P (F6P) rapidly increased after inoculation (0-24 h) in autotrophic and in 

mixotrophic (to a lower extent), while these metabolites stayed constant in the heterotrophic culture 

(except for G6P, which increased as for the mixotrophic culture). Upstream (glycolysis / 

gluconeogenesis pathways) intracellular intermediate metabolites concentrations in G1P, G6P, F6P 

and phosphoenolpyruvate (PEP) (Fig.4a-c,f) under autotrophic conditions were 2-5 folds those in 

mixtrophic and heterotrophic cultures at the maximum peak observed before glucose depletion (24-

72 h). However, similar levels and trends with time were measured thereafter in all culture modes, 

except for PEP in autotrophic where a punctual but significant increase was observed at 144 h. 

Intermediate metabolites of the upstream glycolysis (G1P, G6P, F1P) all showed to temporarily 

increase after glucose depletion (72-120 h), for increasing again from 144 h in both heterotrophic 

and mixtrophic cultures. These early increases in G1P, G6P, F1P (72-120 h) were concomitant to 

decreases of cell lipid content in both heterotrophic and mixtophic cultures, but at distinct extents 
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for the different culture modes. The late increase trend was, however, only concomitant for the 

autotrophic and heterotrophic cultures. The mixotrophic culture showed a different behavior with 

an increase of cell lipids (Figure 4.2i) that may be attributed to a continuous efficient carbon source 

(i.e. CO2) uptake (described in the previous section). Therefore, lipids degradation at 96-120 h in 

mixtrophic and at 72-192 h in heterotrophic culture is thought to have occurred to support the cell 

metabolism at stationary phase (i.e. maintenance and other anabolic reactions) after the depletion 

of the exogenous carbon source.  
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Figure 4. 4 Intracellular metabolites concentrations in glycolysis / gluconeogenesis pathway and 

PPP/ Calvin-RuBP regeneration pathway as well as TCA cycle organic acids concentrations under 

autotrophic (Square), mixotrophic (Circle) and heterotrophic (Triangle) conditions. (a) G1P: 

glucose 1-phosphate; (b) G6P: glucose 1-phosphate; (c) F6P: fructose 6-phosphate; (d) X5P: 
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xylulose 5-phosphate; (e) R5P: ribose 5-phosphate; (f) PEP: phosphoenolpyruvate; (g) PYR: 

pyruvic acid; (h) AKG: α-Ketoglutaric acid; (i) SUCC: succinic acid; (j) FUM: fumaric acid; (k) 

MAL: malic acid; (l) CIT: citric acid; ISO: isocitrate. Error bars represent the standard deviation 

of triplicate data. 

Of interest, intermediate metabolites of pentose phosphate pathway (PPP) and of Calvin-RuBP 

regeneration pathway (R5P and X5P) showed similar behaviors to those of G1P, G6P, F6P and 

PEP, for all culture modes (Figure 4.4d-e), except again for the autotrophic culture where no 

punctual increases were observed at 72-120 h. These results thus clearly confirm, from this intimate 

relationship between the cell concentrations in G1P, G6P, F6P and R5P and X5P, PPP is 

continuously fed from upstream metabolites of glycolysis in presence of glucose. And oppositely, 

the Calvin-RuBP regeneration pathway is continuously feeding glycolysis in the autotrophic 

culture. It is thus clear that in the autotrophic culture, which is fuelled by the inorganic carbon CO2 

entering the Calvin cycle under light condition, R5P and X5P are maintained at higher levels than 

in the other culture modes with free glucose in culture medium. These intermediate metabolites are 

critical for photosynthesis as precursors of RuBP, which is needed for CO2 fixation. The high level 

of R5P and X5P as well as of upstream metabolites of glycolysis in autotrophic culture confirm 

that Calvin cycle is more intense than in mixtrophic culture. Rapid starch accumulation in 

autotrophic culture concurrently to a low cell growth rate (and division rate) before 24 h thus 

revealed a higher carbon fixation rate than for the cell demand (Figure 4.1b). Moreover, lower 

upstream intermediates level in mixtrophic as well as in heterotrophic cultures, are thought to be 

due to higher metabolic activities, and thus of the metabolic demand for anabolic biochemical 

reactions as well as for energy production (see next section), as observed from higher specific 

growth rates in these cultures. The inhibition of Calvin cycle when using free glucose may also 

explain the results in the mixtrophic culture. In mixtrophic and heterotrophic cultures, organic 

carbon catabolism leads to pyruvate (PYR) (4 folds intracellular concentration than in autotrophic 

culture) and acetyl coenzyme A, an intermediate metabolites which activates downstream lipids 

synthesis from sugar-phosphates [30].  

We further tracked the downstream metabolism of TCA cycle, which is another main branch 

pathway parallel to lipids synthesis. The results show that metabolites in mixtrophic and 

heterotrophic cultures are mainly concentrated in TCA cycle and previous steps entering TCA such 

as PYR (Figure 4.4g-i). However, the evolution trends for the metabolites in TCA cycle are quite 
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different. Concentrations of CIT, ISO and AKG are higher in heterotrophic, with only FUM and 

MAL that are slightly higher in autotrophic and mixtrophic cultures as compared to that in the 

heterotrophic culture. AKG is one of the precursors for chlorophyll synthesis, which suggests a 

lower outlet flow from this point in the heterotrophic culture compared to the mixtrotrophic and 

autotrophic cultures, in which AKG is maintained in a stable level. Also in TCA cycle, the reaction 

from AKG to SUCC is known to be a rate limiting step and also to be irreversible [31]. So CIT, 

ISO AKG are accumulated while not SUCC. In autotrophic and mixtrophic cultures, MAL could 

be supplemented from PEP (higher levels were observed under these two culture modes), since this 

is a reversible reaction in gluconeogenesis helping to maintain MAL at relatively higher levels in 

autotrophic and mixtrophic cultures.  

Combining our results altogether for upstream and downstream metabolites, we could conclude 

that feeding glucose to Chlorella protothecoides recalibrates the cell metabolism towards 

downstream intermediates and lipids accumulation rather than to upstream metabolites. 

 Cell energetic state drives carbon metabolism and reflects lipids 

accumulation 

Cell energetics is directly involved in metabolic regulation [32]. Indeed, the ATP-to-ADP ratio, a 

biomarker of cell energetic state, was significantly higher in heterotrophic and mixtrophic (to a 

lesser extent) cultures than that in autotrophic culture specifically at 48 h (FAH=143.257, 

p=0.0069<0.01; FAM=37.948, p=0.0253<0.05; FAMH=86.246, p=0.0021<0.01) (Figure 4.5). With a 

ATP-to-ADP ratio of 64.8  6.9 at 48 h, the cell energetics was particularly high in the 

heterotrophic culture grown on glucose, while a maximum value of 22.8  4.3 was measured in the 

mixotrophic culture, and only a value of 5.1  1.5 in the autotrophic culture. Interestingly, all 

cultures showed converging to a similar ultimate value of 2.3  0.42 from 72 h, therefore before 

and after glucose depletion. These maxima values of the ATP-to-ADP ratio coincided with the 

maximal cell growth rate observed in all culture modes (Figure 4.1b), thus using glucose and/or 

CO2 as the carbon source. Glucose catabolism, combined to respiration metabolism, provides a 

high energetic turnover capacity in the heterotrophic and the mixtrophic cultures, compared to 

autotrophic growth. These results are consistent with TCA cycle metabolites that were significantly 

higher in heterotrophic and mixtrophic cultures compared to that in autotrophic. Under autotrophic 

mode, light provided the energy required in the CO2 fixation process, but hexoses synthesis requires 
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energy, which thus reduces the global energy output that can be available for anabolic reactions of 

the central metabolism. Our results also suggest that the CO2 fixation process limits cell 

metabolism, which explains a quite stable energetic state in autotrophic cells during the whole 

culture period.  
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Figure 4. 5 Cell energetic level under autotrophic (Square), mixotrophic (Circle) and heterotrophic 

(Triangle) conditions. Error bars represent the standard deviation of triplicate data. 

Except for the autotrophic culture, two distinct phases can be observed: before (phase I) and after 

(phase II) glucose depletion. In phase I, glucose uptake suffices to the cell energetic load as well 

as momently (0 – 24 h) accumulating starch and then lipids (24– 100 h). This phenomenon occurred 

in both heterotrophic and in mixotrophic cultures; the use of exogenous glucose being the common 

condition between these two culture modes. At glucose depletion, in tracellular carbon and energy 

storage pools is degraded and re-mobilized to maintain cellular metabolic activity and biomass 

viability. However, unlike glucose high energetic metabolism, lipids seem to feed energy at a rate 

following cell demand with an energetic state maintained at a quasi steady-state level. However, 

the intermediates issued from lipids degradation fluctuate, which may suggest alternate metabolic 

demands.  

 Conclusion  

In this study, Chlorella protothecoides dynamic metabolic profile and cell behavior showed being 

highly affected from environmental culture condition, especially with or without feeding glucose. 

Comparing three typical culture modes, namely the heterotrophic, the mixotrophic and the 

autotrophic, we clearly showed that glucose addition, as the main or a complementary organic 
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carbon source to CO2, stimulates algae metabolism towards lipids production rather than to 

carbohydrates accumulation, the highest lipid content was reached as 13% DCW in heterotrophic 

culture compared that of 6% in autotrophic culture. Furthermore, it showed to improve lipids and 

fatty acids composition in regards to biodiesel production, neutral to polar lipids ratio were greatly 

improved from 0.32 ± 0.11 to 13.48 ± 2.45 while fatty acids unsatarated degree were reduced from 

1.63 ± 0.37 ∇/mol to 1.18 ± 0.19 ∇/mol with glucose supplement. The carbon flux direction 

preference is thought being regulated by the cell energetic state, which depends on the cell carbon 

source management.  
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CHAPTER 5 A KINETIC METABOLIC MODEL DESCRIBING LIPID 

PRODUCTION IN CHLORELLA PROTOTHECOIDES UNDER 

HETEROTROPHIC CONDITION 

 Presentation of this chapter 

In this chapter, a kinetic metabolic model was first applied in microalgae platform in Chlorella 

protothecoides under heterotrophic condition. Unlike most dynamic models coping with algae 

physiology or steady-state metabolic level models, the current model combines both physiology 

and flux information in a kinetic approach. Cell growth, lipid production and almost 30 metabolic 

intermediates covering glycolysis, pentose phosphate pathway and TCA cycle and energetic 

metabolism were included and simulated. Multiple Michaelis–Menten type kinetics were used to 

describe biochemical reaction rates and the Monod equation was used to describe the cell growth 

state. Weighted sum of squared residues between experimental data and simulated values was used 

as the objective function to help convergence during model structuring and for parameter 

calibration. Parameter sensitivity and confidence interval were carried out to verify model 

reliability. It is shown that the model can simulate well the experimental data for all available data. 

Flux analysis results are also in high accordance with the literature, except for a higher lipid 

synthesis metabolic activity, with higher lipid flux and lower TCA activity, were revealed in our 

model.  

 Introduction 

1970’s oil crises and the more recent global warming problem have vigorously stimulated the 

scientific community to identify sustainable alternative energy sources, and microalgae are among 

the top priority candidates for obvious reasons (Georgianna & Mayfield, 2012; Mayfield; Quintana 

et al., 2011b). Microalgae can normally accumulate lipid from 20-50 % of their cell dry weight, 

with some species that can even reach up to 70 %. Fatty acid compositions in microalgae are mainly 

C16 and C18; most of them are saturated or mono-unsaturated fatty acids, which can be used to 

obtain biodiesel. Indeed, microalgae lipid production has now become one of the most promising 

platform to replace fossil fuels (Bollinger, 2011; Greenwell et al., 2010a; Maia, 2010; Senne, 2012; 

Thurman, 1997; Yu et al., 2011b). However, the culture of microalgae presents specific issues as 
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an industrial production platform. For instance, lipid content is quite unstable along with the growth 

stages and culture conditions such as light and nutritional status. Among candidate microalgae, 

Chlorella protothecoides, an oleaginous specie, can be cultured under heterotrophic growth using 

acetate, glucose, or other organic compounds as carbon source, and result in higher biomass as well 

as lipid content than for autotrophic growth condition (Miao & Wu, 2006a). C. protothecoides has 

been studied optimizing culture medium composition and bioprocess management strategies 

(Xiong et al., 2008b). Genetic modifications were also assessed targeting lipid synthesis pathways, 

such as with the overexpression of acyltransferases (ACCase) and fatty acid synthase (FAS) 

(Radakovits et al., 2010).  

With the aim of elucidating key environmental factors involved in microalgae behavior, various 

mathematical models have been proposed, and the work of Droop (Droop, 1968) describing major 

nutrients (e.g. inorganic phosphate) management has demonstrated being widely applicable to 

various microalgae species. For instance, Droop based models (Bernard & Rémond, 2012; Droop, 

1983a; Droop, 1968a; Mairet, 2011; Mairet et al., 2011a) did emerge from the Droop original work 

and have largely contributed to describing the effect of macronutrients, light and temperature on 

cell growth and product, as well as to identify strategies to maximize lipid production. However, 

although these models demonstrated being highly efficient at describing global phenomena, they 

stay at macroscopic level and do not consider detailed carbon fluxes from substrates to lipid 

synthesis. Knowledge on the intracellular carbon flow distribution may enable refining culture 

management protocols to maximizing cell productivity in lipid. The flux balance analysis (FBA) 

approach, which is based on pseudo steady-state approximation, has been applied to microalgae 

biosystems such as Arghrospia platensis, Synechocystis sp. PCC 6803 (Fu, 2009), Chlamydomonas 

reinhardtii (Boyle, 2009; Kliphuis et al., 2012) and Chlorella protothecoides (Muthuraj, 2013). 

For instance, in Chlorella sp., a shift in intracellular flux distribution was hypothesized during 

transition from nutrient sufficient phase to nutrient starvation phase of growth (Muthuraj, 2013). 

Another appealing modeling approach, which allows simulating a culture’s dynamics, is based on 

a transient-type approach with each flux kinetic described (Ghorbaniaghdam et al., 2013; Shinto et 

al., 2008).  Such kinetic metabolic models can describe cell behavior dynamics, while opening 

the black box-type usual approach allowing closely look at intracellular metabolic flux rates 

(Cloutier et al., 2008; Cloutier et al., 2009; Cloutier et al., 2007). An underestimated potential 

output of these kinetic metabolic models relies in their capacity to perform dynamic metabolic flux 
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analysis from which key metabolic processes can be examined while assessing in silico hypothesis 

of genetic engineering and/or culture conditions management strategies (Cloutier et al., 2009). 

However, to the best of our knowledge, there are very few studies reporting metabolomics data of 

microalgae and even less on the development of mathematical models to describe cell metabolic 

dynamics (Muthuraj et al., 2013), and this is maybe due to the fact that only few algal genome have 

been sequenced and annotated so far (Curtis et al., 2012). Moreover, dynamic metabolic models 

require defining numerical values of numerous kinetic parameters, while only limited data sets are 

available, a reason that could also explain the limited work in that field so far (Surendhiran & 

Sirajunnisa, 2015). 

In the present work, a kinetic metabolic model describing Chlorella protothecoides growth and 

nutrition was developed to describe heterotrophic culture mode. It included glycolysis, TCA 

(tricarboxylic acid) cycle, pentose phosphate pathway, global lipid synthesis, starch synthesis, 

amino acids metabolism, energy synthesis and biomass build up pathway. In this model, cell 

growth, lipid production and almost 30 metabolic intermediates are simulated. Multiple Michaelis–

Menten type kinetics are used to describe biochemical reaction rates and the Monod equation is 

used to describe the cell specific growth state. The model was successfully calibrated on previously 

published experimental data. A sensitivity analysis was performed on kinetic parameters and their 

confidence intervals were determined. The model was then used to perform a dynamic metabolic 

flux analysis. To the best of our knowledge, this is the first kinetic metabolic model developed for 

the microalgae platform. 

 Material and methods 

 Algae stain and culture conditions 

Details about algae species and culture conditions can be found in a previous work (Ren et al., 

2016). Briefly, Chlorella protothecoides culture in the dark was carried out in 2.8-L glass flasks 

with 10 g L-1 glucose as the carbon source and the modified basal medium (MBM), thus imposing 

a strict heterotrophic metabolism. Glucose concentration in the medium was analyzed by a 

biochemistry analyzer (YSI Life Science, 2700 select, Ohio, USA). Intracellular metabolites 

extraction was performed as described in (Ren et al., 2016) and their quantification was carried out 

by UPLC/MS/MS system (1290 model, Agilent Technologies, Santa Clara, CA, USA) also detailed 
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in (Ren et al., 2016), starch analysis was performed using a starch assay kit (Sigma-Aldrich, St. 

Louis, MO, USA). Total lipid quantification was done according to Drochiou’s method and 

described in previous work (Ren et al., 2016). 

 Model development   

A kinetic metabolic model was developed to describe the central carbon metabolism of a 

microalgae platform, including glycolysis, TCA (tricarboxylic acid) cycle, pentose phosphate 

pathway, total lipid synthesis, starch synthesis, amino acids metabolism, energy metabolism and 

biomass synthesis. The metabolic network (Figure 5.1) was first built according to databases such 

as KEGG, MetaCyc, DiatomCyc, BioCyc as well as from literature (Boyle & Morgan, 2009; 

Kliphuis et al., 2011; Muthuraj et al., 2013). In this work, for simplification purposes, Chlorella 

cells were considered as a unique compartment with no specific intracellular compartments such 

as mitochondria, chloroplast, vacuoles, vesicles and nucleus. Energy metabolism was considered 

as a global reaction where de novo synthesis and substrate level phosphorylation were combined 

in a unique pathway. Reversible reactions involving storage carbon such as starch and lipid 

catabolism were described. As a first attempt, the various lipids found in microalgae cells were 

taken as a global lipid pool. The stoichiometry of the biochemical reactions of the network is based 

on a flux balance analysis on Chlorella protochecoides (Muthuraj et al., 2013). A full list of the 

model reactions and reactions stoichiometry is listed in Table 5.1. The Michaelis-Menten kinetic 

equation is used to describe each flux rate (Table 5.2). 
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Figure 5. 1 The model metabolic network for heterotrophic Chlorella protothecoides 

The cells specific growth rate (equation no. 30 in Table 5.2) was defined as in previous works 

(Cloutier et al., 2009; Leduc et al., 2006), accounting for biomass synthesis from precursors of the 

major cell constituents such as RX (R5P and X5P), G6P, PYR, AcCOA and total lipid. RX is 

normally used to synthesize nucleotides, DNA and RNA; G6P leads to organic phosphates 

providing energy for maintenance and metabolism; PYR is feeding amino acids metabolism which 
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leads to protein formation; AcCOA is the precursor of fatty acids; while the lipid pool is the main 

contributor to cell mass accumulation in the algae platform. The specific consumption of precursors 

to cell mass synthesis was considered in the mass balances. For each metabolite, a mass balance 

equation (Equation 5.1) included the sum of all the input and output fluxes minus cell dilution 

effect from the cell division phenomenon (Table 5. 3 with all ordinary differential equations).  

𝑑[𝐶𝑆𝑖
]

𝑑𝑡
= (∑ 𝑉𝑖𝑛𝑝𝑢𝑡𝑖

𝑀
𝑖=1 − ∑ 𝑉𝑜𝑢𝑡𝑝𝑢𝑡𝑗

𝑁
𝑗=1 − [𝐶𝑆𝑖

] × 𝑉𝑔𝑟𝑜𝑤𝑡ℎ )                     Equation 5.1 

Where Csi is the concentration of each metabolite at time t, M is the input flux number, N is the 

output flux number, Vinput and Voutput are the flux rates at each metabolite node. Vgrowth is the growth 

rate.   

 Model parameters estimation 

The model has 77 parameters, which include 34 maximum flux rates, 38 enzyme half-saturated 

constants, and 5 growth coefficients for the 5 growth precursors contributing to biomass synthesis. 

Initial metabolite concentrations (i.e. at t = 0) were taken from experimental data, which include 

25 intracellular metabolites distributed in 8 pathways covering 30 metabolic reactions (Ren et al., 

2015), or from literature otherwise (Table 5.4). Model simulations were performed using Matlab 

(the MathWorks Inc., Natick, MA, USA) with the “ode23” solver of the ordinary differential 

equations system. Initial kinetic parameter values (Vmax, Km) for each flux and enzymes in the model 

were taken within ranges found in the enzyme database BRENDA (http://www.brenda-

enzymes.org), and the respective units (mmol/L) were converted to comply with the model 

(mmol/gDW) by dividing 10 gDW/L biomass obtained in our culture. First estimates of maximal 

flux rates (Vmax) have been calculated from experimental data (Ren et al., 2015), or from BRENDA. 

Model parameter values were determined following the method proposed in Rizzi et al. (Rizzi et 

al., 1997).  Briefly, the time course of each metabolite with experimental concentration data were 

defined as fixed mathematical functions, enabling the procedure for parameter values optimization 

to focus first on non-measured metabolites. In the present case of a high number of parameters, this 

approach allows accelerating parameter values identification. An objective function (Equation 5.2), 

defined as the weighted sum of squared residues between experimental data and simulated values 

for each metabolites m at time k, where the weight is the experimental data for each state variable, 

was used to quantify simulation error. 
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min (∑ ∑ (
𝑋𝑛,𝑡

𝑒𝑥𝑝
−𝑋𝑛,𝑡

𝑠𝑖𝑚

𝑋𝑛,𝑡
𝑒𝑥𝑝 )

2
𝑇
𝑡=1

𝑁
𝑛=1 )                                          Equation 5.2 

Based on this objective function, a sensitivity analysis of model parameters was performed to 

identify the sensitive ones in order to avoid over-parameterization, by then keeping constant non-

sensitive parameters. Sensitivity analysis was performed by changing each parameter from -70 % 

to +150 % one at a time while holding others constant. From the Matlab optimization toolbox, the 

“linsqurfit” sub-routine was used to identify model parameter values. This process of parameter 

calibration was continued until minimizing the objective function, i.e. the simulated results closely 

following experimental data. Final parameter values of the model are shown in Table 5.5. 

Confidence intervals of estimated parameters were evaluated using the Matlab sub-routine 

“nlparci.m” (Table 5.5). It is clear there is no unique solution for parameter values in such an 

underdetermined system, as well as the values are averaged ones differing from that for each 

enzyme since a simplified model deals with lumped reactions. However, although a simplified 

metabolic model only partially describes the biological reality, it remains a valuable tool to assess 

hypotheses on modeling structure which biological relevancy can be validated comparing model 

simulations to experimental data. 
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Table 5. 1 Reactions of a metabolic network 

No. Enzyme Description Reaction 

1 HK  Hexokinase  EGLC => G6P 

2 GPI  Glucose 6 phosphate isomerase  G6P => F6P 

3 PFK  6 phosphofructokinase  F6P => 2 GD 

4 FBPase  Fructose biphosphate aldolase  2 GD => F6P 

5 PGK  Phosphoglycerate kinase  GD => PEP 

6 PK  Pyruvate kinase  PEP => PYR 

7 PDH  Pyruvate dehydrogenase  PYR => AcCOA + CO2 

8 FASN  Fatty acid synthase  12 AcCOA => Lipid 

9 Lipase  Lipase  Lipid => 12 AcCOA 

10 GPAT  Glycerol-3-phosphate acyltransferases  GlyP = Lipid 

11 TPI  Triosephosphate isomerase  GD => GlyP 

12 G6PDH  Glucose 6 phosphate 1 dehydrogenase  G6P => RX + CO2 

13 TK  Transketolase  3 RX => 2 F6P + GD 

14 PPRiBP  Phosphoribosyl-diphosphate synthetase  RX = ADP 

15 CK  Creatine kinase  ADP => ATP 

16 AK  Adenylate kinase  ATP => ADP 

17 PGM  Phosphoglucomutase  G6P = G1P 

18 ADPG  

Adenosine diphosphate glucose-starch 

glucosyltransferase  25 G1P => Starch 

19 AP  Amylase  Starch => 25 G1P 

20 GHMT  Glycine hydroxymethyltransferase  GLY => PYR 

21 CS  Citrate synthase  AcCOA => CIT 

22 MLD  Malate dehydrogenase  MAL => CIT 

23 ISOD  Isocitrate dehydrogenase  CIT => AKG + CO2 

24 AKGDH  Oxoglutarate dehydrogenase  AKG => SCOA + CO2  

25 GLDH  Glutamate dehydrogenase  AKG = AA 

26 SCOAS  Succinyl CoA ligase  SCOA => SUCC 

27 SDH  Succinate dehydrogenase  SUCC => FUM  

28 FH  Fumarate hydratase  FUM => MAL 

29 ME  Malic Enzyme  MAL => PEP + CO2 

30 growth  Biomass synthesis 

 G6P + RX + PYR + Lipid + AcCOA 

=> X  

Note: ‘=>’ represents unidirectional reactions. ‘=’ represents reversible reactions. 
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Table 5. 2 Kinetic equations of the metabolites fluxes in the model 

No. Kinetic equations  

1 𝑉𝐻𝐾 = 𝑉max_𝐻𝐾 ∗
𝐸𝐺𝐿𝐶

𝐾𝑚_𝐻𝐾_𝐸𝐺𝐿𝐶 + 𝐸𝐺𝐿𝐶
 

2 𝑉𝐺𝑃𝐼 = 𝑉max_𝐺𝑃𝐼 ∗
𝐺6𝑃

𝐾𝑚_𝐺𝑃𝐼_𝐺6𝑃 + 𝐺6𝑃
 

3 𝑉𝑃𝐹𝐾 = 𝑉max_𝑃𝐹𝐾 ∗
𝐹6𝑃

𝐾𝑚_𝑃𝐹𝐾_𝐹6𝑃 + 𝐹6𝑃
 

4 𝑉𝐹𝐵𝑃𝑎𝑠𝑒 = 𝑉max_𝐹𝐵𝑃𝑎𝑠𝑒 ∗
𝐺𝐷

𝐾𝑚_𝐹𝐵𝑃𝑎𝑠𝑒_𝐺𝐷 + 𝐺𝐷
 

5 𝑉𝑃𝐺𝐾 = 𝑉max_𝑃𝐺𝐾 ∗
𝐺𝐷

𝐾𝑚_𝑃𝐺𝐾_𝐺𝐷 + 𝐺𝐷
 

6 𝑉𝑃𝐾 = 𝑉max_𝑃𝐾 ∗
𝑃𝐸𝑃

𝐾𝑚_𝑃𝐾_𝑃𝐸𝑃 + 𝑃𝐸𝑃
 

7 𝑉𝑃𝐷𝐻 = 𝑉max_𝑃𝐷𝐻 ∗
𝑃𝑌𝑅

𝐾𝑚_𝑃𝐷𝐻_𝑃𝑌𝑅 + 𝑃𝑌𝑅
 

8 𝑉𝐹𝐴𝑆𝑁 = 𝑉max_𝐹𝐴𝑆𝑁 ∗
𝐴𝑐𝐶𝑂𝐴

𝐾𝑚_𝐹𝐴𝑆𝑁_𝐴𝑐𝐶𝑂𝐴 + 𝐴𝑐𝐶𝑂𝐴
 

9 𝑉𝐿𝑖𝑝𝑎𝑠𝑒 = 𝑉max_𝐿𝑖𝑝𝑎𝑠𝑒 ∗
𝐿𝑖𝑝𝑖𝑑

𝐾𝑚_𝐿𝑖𝑝𝑎𝑠𝑒_𝐿𝑖𝑝𝑖𝑑 + 𝐿𝑖𝑝𝑖𝑑
 

10 𝑉𝐺𝑃𝐴𝑇 = 𝑉max_𝐺𝑃𝐴𝑇 ∗
𝐺𝑙𝑦𝑃

𝐾𝑚_𝐺𝑃𝐴𝑇_𝐺𝑙𝑦𝑃 + 𝐺𝑙𝑦𝑃
− 𝑉maxr_𝐺𝑃𝐴𝑇 ∗

𝐿𝑖𝑝𝑖𝑑

𝐾𝑚_𝐺𝑃𝐴𝑇_𝐿𝑖𝑝𝑖𝑑 + 𝐿𝑖𝑝𝑖𝑑
 

11 𝑉𝑇𝑃𝐼 = 𝑉max_𝑇𝑃𝐼 ∗
𝐺𝐷

𝐾𝑚_𝑇𝑃𝐼_𝐺𝐷 + 𝐺𝐷
 

12 𝑉𝐺6𝑃𝐷𝐻 = 𝑉max_𝐺6𝑃𝐷𝐻 ∗
𝐺6𝑃

𝐾𝑚_𝐺6𝑃𝐷𝐻_𝐺6𝑃 + 𝐺6𝑃
 

13 𝑉𝑇𝐾 = 𝑉max_𝑇𝐾 ∗
𝑅𝑋

𝐾𝑚_𝑇𝐾_𝑅𝑋 + 𝑅𝑋
 

14 𝑉𝑃𝑃𝑅𝑖𝐵𝑃 = 𝑉max_𝑃𝑃𝑅𝑖𝐵𝑃 ∗
𝑅𝑋

𝐾𝑚_𝑃𝑃𝑅𝑖𝐵𝑃_𝑅𝑋 + 𝑅𝑋
 

15 𝑉𝐶𝐾 = 𝑉max_𝐶𝐾 ∗
𝐴𝐷𝑃

𝐾𝑚_𝐶𝐾_𝐴𝐷𝑃 + 𝐴𝐷𝑃
 

16 𝑉𝐴𝐾 = 𝑉max_𝐴𝐾 ∗
𝐴𝑇𝑃

𝐾𝑚_𝐴𝐾_𝐴𝑇𝑃 + 𝐴𝑇𝑃
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17 𝑉𝑃𝐺𝑀 = 𝑉𝑚𝑎𝑥_𝑃𝐺𝑀 ∗
𝐺6𝑃

𝐾𝑚_𝑃𝐺𝑀_𝐺6𝑃 + 𝐺6𝑃
− 𝑉𝑚𝑎𝑥𝑟_𝑃𝐺𝑀 ∗

𝐺1𝑃

𝐾𝑚_𝑃𝐺𝑀_𝐺1𝑃 + 𝐺1𝑃
 

18 𝑉𝐴𝐷𝑃𝐺 = 𝑉max_𝐴𝐷𝑃𝐺 ∗
𝐺1𝑃

𝐾𝑚_𝐴𝐷𝑃𝐺_𝐺1𝑃 + 𝐺1𝑃
 

19 𝑉𝐴𝑃 = 𝑉max_𝐴𝑃 ∗
𝑆𝑡𝑎𝑟𝑐ℎ

𝐾𝑚_𝐴𝑃_𝑆𝑡𝑎𝑟𝑐ℎ + 𝑆𝑡𝑎𝑟𝑐ℎ
 

20 𝑉𝐺𝐻𝑀𝑇 = 𝑉max_𝐺𝐻𝑀𝑇 ∗
𝐺𝐿𝑌

𝐾𝑚_𝐺𝐻𝑀𝑇_𝐺𝐿𝑌 + 𝐺𝐿𝑌
 

21 𝑉𝐶𝑆 = 𝑉𝑚𝑎𝑥_𝐶𝑆 ∗
𝐴𝑐𝐶𝑜𝐴

𝐾𝑚_𝐶𝑆_𝐴𝑐𝐶𝑜𝐴 + 𝐴𝑐𝐶𝑜𝐴
 

22 𝑉𝑀𝐿𝐷 = 𝑉𝑚𝑎𝑥_𝑀𝐿𝐷 ∗
𝑀𝐴𝐿

𝐾𝑚_𝑀𝐿𝐷_𝑀𝐴𝐿 + 𝑀𝐴𝐿
 

23 𝑉𝐼𝑆𝑂𝐷 = 𝑉𝑚𝑎𝑥_𝐼𝑆𝑂𝐷 ∗
𝐶𝐼𝑇

𝐾𝑚_𝐼𝑆𝑂𝐷_𝐶𝐼𝑇 + 𝐶𝐼𝑇
 

24 𝑉𝐴𝐾𝐺𝐷𝐻 = 𝑉max_𝐴𝐾𝐺𝐷𝐻 ∗
𝐴𝐾𝐺

𝐾𝑚_𝐴𝐾𝐺𝐷𝐻_𝐴𝐾𝐺 + 𝐴𝐾𝐺
 

25 𝑉𝐺𝐿𝐷𝐻 = 𝑉max_𝐺𝐿𝐷𝐻 ∗
𝐴𝐾𝐺

𝐾𝑚_𝐺𝐿𝐷𝐻_𝐴𝐾𝐺 + 𝐴𝐾𝐺
− 𝑉maxr_𝐺𝐿𝐷𝐻 ∗

𝐴𝐴

𝐾𝑚_𝐺𝐿𝐷𝐻_𝐴𝐴 + 𝐴𝐴
 

26 𝑉𝑆𝐶𝑂𝐴𝑆 = 𝑉max_𝑆𝐶𝑂𝐴𝑆 ∗
𝑆𝐶𝑂𝐴

𝐾𝑚_𝑆𝐶𝑂𝐴𝑆_𝑆𝐶𝑂𝐴 + 𝑆𝐶𝑂𝐴
 

27 𝑉𝑆𝐷𝐻 = 𝑉max_𝑆𝐷𝐻 ∗
𝑆𝑈𝐶𝐶

𝐾𝑚_𝑆𝐷𝐻_𝑆𝑈𝐶𝐶 + 𝑆𝑈𝐶𝐶
 

28 𝑉𝐹𝐻 = 𝑉max_𝐹𝐻 ∗
𝐹𝑈𝑀

𝐾𝑚_𝐹𝐻_𝐹𝑈𝑀 + 𝐹𝑈𝑀
 

29 𝑉𝑀𝐸 = 𝑉max_ME ∗
𝑀𝐴𝐿

𝐾𝑚_𝑀𝐸_𝑀𝐴𝐿 + 𝑀𝐴𝐿
 

30 

𝑉𝑔𝑟𝑜𝑤𝑡ℎ = 𝑉max_𝑔𝑟𝑜𝑤𝑡ℎ ∗
𝐺6𝑃

𝐾𝑚_𝑔𝑟𝑜𝑤𝑡ℎ𝐺6𝑃
+ 𝐺6𝑃

∗
𝑅𝑋

𝐾𝑚_𝑔𝑟𝑜𝑤𝑡ℎ𝑅𝑋
+ 𝑅𝑋

∗
𝑃𝑌𝑅

𝐾𝑚_𝑔𝑟𝑜𝑤𝑡ℎ𝑃𝑌𝑅
+ 𝑃𝑌𝑅

∗
𝐴𝑐𝐶𝑂𝐴

𝐾𝑚_𝑔𝑟𝑜𝑤𝑡ℎ_𝐴𝑐𝐶𝑂𝐴 + 𝐴𝑐𝐶𝑂𝐴
∗

𝐿𝑖𝑝𝑖𝑑

𝐾𝑚_𝑔𝑟𝑜𝑤𝑡ℎ_𝐿𝑖𝑝𝑖𝑑 + 𝐿𝑖𝑝𝑖𝑑
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Table 5. 3 Mass balances of state variables in the model 

No. Mass balances of each metabolite Unit  

1 AA=+ V_GLDH - (V_growth * AA)  mmol/gDW/day 

2 ADP =+ V_PPRiBP - V_CK + V_AK - (V_growth * ADP)  mmol/gDW/day 

3 AKG =+ V_ISOD - V_AKGDH - V_GLDH - (V_growth * AKG)  mmol/gDW/day 

4 ATP =+ V_CK - V_AK - (V_growth * ATP)  mmol/gDW/day 

5 
AcCOA = + V_PDH - V_CS -(12 * V_FASN) +(12 * V_Lipase) -(V_growth * AcCOA) 

- (V_growth_AcCOA * V_growth)  
mmol/gDW/day 

6 CIT = + V_CS + V_MLD - V_ISOD - (V_growth * CIT)  mmol/gDW/day 

7 F6P = + V_GPI - V_PFK + V_FBPase +(2 * V_TK) - (V_growth * F6P)  mmol/gDW/day 

8 FUM = + V_SDH - V_FH - (V_growth * FUM)  mmol/gDW/day 

9 G1P = + V_PGM -(25 * V_ADPG) +(25 * V_AP) - (V_growth * G1P)  mmol/gDW/day 

10 
G6P = + V_HK - V_GPI - V_G6PDH - V_PGM - (V_growth * G6P) - (V_growth_G6P * 

V_growth)  
mmol/gDW/day 

11 GD=  +(2 * V_PFK) -(2 * V_FBPase) - V_PGK + V_TK - V_TPI - (V_growth * GD)  mmol/gDW/day 

12 GlyP = + V_TPI - V_GPAT - (V_growth * GD)  mmol/gDW/day 

13 
Lipid = + V_GPAT + V_FASN - V_Lipase - (V_growth * Lipid) - (V_growth_Lipid * 

V_growth)  
mmol/gDW/day 

14 MAL = - V_MLD + V_FH - V_ME - (V_growth * MAL)  mmol/gDW/day 

15 PEP =  + V_PGK - V_PK + V_ME - (V_growth * PEP)  mmol/gDW/day 

16 
PYR = + V_PK - V_PDH + V_GHMT - (V_growth * PYR) - (V_growth_PYR * 

V_growth)  
mmol/gDW/day 

17 
RX = + V_G6PDH -(3 * V_TK) - V_PPRiBP - (V_growth * RX) - (V_growth_RX * 

V_growth)  
mmol/gDW/day 
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18 SCOA = + V_AKGDH - V_SCOAS - (V_growth * SCOA)  mmol/gDW/day 

19 SUCC = + V_SCOAS - V_SDH - (V_growth * SUCC)  mmol/gDW/day 

20 Starch  = + V_ADPG - V_AP - (V_growth * Starch)  mmol/gDW/day 

21 EGLC = ( - V_HK ) * X mmol/L/day 

22 X = V_growth *  X  gDW/L/day 

23 GLY = ( - V_GHMT ) *X mmol/L/day 

24 CO2 = ( + V_PDH + V_G6PDH + V_ISOD + V_AKGDH + V_ME ) * X mmol/L/day 
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Table 5. 4 State variables description and initial conditions 

No. Metabolites Description Values Units 

1 ADP Adenosine diphosphate 2.22E-03 mmol/gDW 

2 AKG  a-Ketoglutarate 5.88E-05 mmol/gDW 

3 ATP  Adenosine triphosphate 1.43E-02 mmol/gDW 

4 AcCOA Acetyl–coenzyme A 2.56E-04 mmol/gDW 

5 CIT Citrate 2.00E-04 mmol/gDW 

6 F6P Fructose 6-phosphate 4.72E-05 mmol/gDW 

7 FUM Fumarate 2.42E-05 mmol/gDW 

8 G1P Glucose 1-phosphate 1.05E-05 mmol/gDW 

9 G6P Glucose 6-phosphate 2.36E-04 mmol/gDW 

10 GD 
Glyceraldehyde 3-phosphate & 

Dihydroxyacetone phosphate 
1.94E-04 mmol/gDW 

11 AA Amino acids 3.80E+01 mmol/gDW 

12 GlyP Glycerone-phosphate 2.00E-04 mmol/gDW 

13 Lipid Lipid 4.76E-01 mmol/gDW 

14 MAL Malate 1.39E-04 mmol/gDW 

15 PEP Phosphoenolpyruvate 2.37E-05 mmol/gDW 

16 PYR Pyruvate 1.10E-04 mmol/gDW 

17 RX 
Ribose 5-phosphate & Xylose-

5-phosphate 
2.26E-05 mmol/gDW 

18 SCOA Succinyl–coA 2.00E-05 mmol/gDW 

19 SUCC Succinate 2.00E-05 mmol/gDW 

20 Starch Starch 4.45E-03 mmol/gDW 

21 EGLC Extracellular glucose 5.53E+01 mmol/L 

22 X Biomass 4.21E-02 gDW/L 

23 GLY Glycine 1.32E+00 mmol/L 

24 CO2 Carbon dioxide 1.20E-04 mmol/L 
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Table 5. 5 Parameter values and 95 % confidence intervals of the highly sensitive parameters  

Parameters   Values 

Confidence 

interval Parameters Values Confidence interval 

Vmax_HK 20 (19.989, 20.011) km_HK_EGLC 0.8  

Vmax_GPI 17 (16.998, 17.002) km_GPI_G6P 0.0001 (8.37E-5, 1.16E-4) 

Vmax_PFK 23 (22.998, 23.002) km_PFK_F6P 0.00003  

Vmax_FBPase 1 (1.000, 1.000) km_PGK_GD 0.000004 (3.12E-6, 4.88E-6) 

Vmax_PK 37 (36.991, 37.009) km_PK_PEP 0.000007  

Vmax_PDH 40 (39.997, 40.003) km_PDH_PYR 0.00001  

Vmax_G6PDH 9  km_G6PDH_G6P 0.0009  

Vmax_PGK 30 (29.997, 30.003) km_TK_RX 0.0001  

Vmax_TK 13 (13.000, 13.000) km_ADPG_G1P 0.00005  

Vmax_ADPG 10 (9.999, 10.001) km_AP_Starch 0.008  

Vmax_AP 2 (2.000, 2.000) km_PGM_G6P 0.00004  

Vmax_PGM 16 (15.992, 16.008) km_PGM_G1P 0.000005  

Vmaxr_PGM 14 (13.995, 14.005) km_GHMT_GLY 0.1  

Vmax_GHMT 6 (6.000, 6.000) km_growth_G6P 0.0000001 (-3.20-E-6, 3.40E-6) 

Vmax_growth 2 (2.000, 2.000) km_growth_PYR 0.0000001 (-2.47E-7, 4.47E-7) 

Vmax_PPRiBP 15  km_growth_RX 0.0000006 (4.46E-7, 7.54E-7) 

Vmaxr_PPRiBP 7  km_growth_Lipid 0.001 (8.16E-4, 1.18E-3) 

Vmax_CK 5  km_growth_AcCOA 0.000001  

Vmax_AK 4.5  km_FBPase_GD 0.0003 (0.0002, 0.0004) 

Vmax_TPI   0.01  km_PPRiBP_RX 0.00001  

Vmax_GPAT 0.01  km_PPRiBP_ADP 0.005  

Vmaxr_GPAT 0.06  km_CK_ADP 0.001  

Vmax_FASN 31.3  km_AK_ATP 0.002  

Vmax_Lipase 12.12  km_GPAT_GlyP  0.0001  

Vmax_CS 2  km_GPAT_Lipid 0.01 (0.0098, 0.0102) 

Vmax_ISOD 0.3  km_FASN_AcCOA 0.002  

Vmax_AKGDH 0.3  km_Lipase_Lipid 0.01 (0.0099, 0.0101) 

Vmax_SCOAS 1  km_TPI_GD 0.002  

Vmax_SDH 13  km_CS_AcCOA 0.2  

Vmax_FH 3  km_GLDH_AA  3  

Vmax_MLD 0.1  km_GLDH_AKG 3  

Vmax_ME 0.1  km_ISOD_CIT 0.7  

Vmax_GLDH  0.01  km_AKGDH_AKG 0.007  

Vmaxr_GLDH  0.02  km_SCOAS_SCOA  0.001  
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V_growth_RX 0.001  km_SDH_SUCC 0.00002  

V_growth_PYR 0.002  km_FH_FUM 0.008  

V_growth_G6P 0.001  km_MLD_MAL 0.003  

V_growth_Lipid 0.001 (0.0008, 0.001) km_ME_MAL 0.001  

V_growth_AcCOA 0.008     

Note: Flux rates in mmol gDW-1, except for the maximum specific growth rate (Vmax,growth) which 

is in d-1. Enzymes affinity constants in mmol gDW-1, except for HK and GHMT, which affinity 

constant on substrates are in mmol L-1. 

 Results and Discussion 

 Model structure calibration 

Although steady-state approaches such as MFA and FBA seem having virtually no limit at detailing 

a biosystem metabolic network, with for instance 484 reactions and 458 metabolites in 

Chlamydomonas reinharditii (Boyle & Morgan, 2009), a fully dynamic approach requires limiting 

overparameterization, and thus network reduction (Jolicoeur, 2014). Our strategy while building-

up the model structure consisted in starting from the simplest but minimal network, which included 

glycolysis, TCA cycle, PPP pathway, and total lipid and starch metabolisms. Then, while 

progressing calibrating model parameter values evaluating the simulation error from the objective 

function (equation 5.2), decisions were made to add complexity (i.e. pathways, flux regulation) 

until simulation trends agreed with experimental data. The final step of parameter values estimation 

then started from that point. Reactions stoichiometry were taken from a previous FBA study on 

Chlorella sp. in which 158 reactions and 113 metabolites were considered (Muthuraj et al., 2013). 

The energetic metabolism has been simplified, lumping a series of consumption/regeneration 

reactions into a single pathway involving the PPRiBP, CK and AK enzymes, and specifically linked 

to nucleotides pool management.  

Lipid synthesis was considered from the major precursor of AcCOA, and fatty acids which are 

intermediates to lipid were pooled as total lipid for simplification purposes; lipid contain dozens of 

fatty acids of different lengths and saturated degrees. From the preliminary simulation results while 

exploring various model structures (not shown), the reaction from AcCOA to lipids showed being 

mostly unidirectional. Glycerine-phosphate (GlyP), a precursor providing the carbon frame of acyl-

glycerol such as triacylglycerol (TAG), a main lipid type in Chlorella protothecoides, was 
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considered. The reaction from GD (GA3P & DHAP) to glycerine-phosphate (GlyP) was also 

added. TCA cycle is a competing pathway of lipid synthesis pathway while sharing the same 

precursor AcCOA. Again, in preliminary model simulations (not showed), lipid catabolism could 

not stimulate TCA fluxes, and any added regulation mechanisms around these enzymes could only 

increase or decrease fluxes to TCA cycle (e.g. the CS enzyme), and make TCA metabolites level 

changing but not provide extra carbon flux to make the TCA metabolites rebound. However, 

interconnecting TCA cycle to amino acids metabolism (AA to AKG) helped simulating TCA cycle 

metabolites concentration. This then enables the consumption of AA to feed the TCA fluxes.  

 Calibration of kinetic parameters 

A sensitivity analysis on model parameters showed flux maximum rate constants (Vmax,i) to be more 

sensitive than affinity constants (Km,i). For the final calibrated model 21 parameters, 15 maximum 

flux rates and 6 enzyme affinity constant (Figure 5.2), out of 77 revealed greater sensitivity, defined 

as affecting the objective function of more than 10 % when applying a -70 % to +150 % parameter 

value change around its optimized value. Most sensitive parameters are Vmax,HK and Vmax,GHMT, 

which are both at the entrance of the major carbon and nitrogen sources; then Vmax,GPI, Vmax,PGM and 

Vmax,PDH, which refer to fluxes at the intersection of glycolysis, starch and lipid metabolisms. 

Vmax,FASN, Vmax,Lipase and Vmax,GPAT sensitive suggests lipid metabolism is reactive to variations of 

connected pathways. Interestingly, the two highly sensitive affinity constants (km,growth_lipid and 

km,Lipase_lipid), refer to the importance of lipid for cell biomass growth. Algae cell is a great platform 

accumulating lipids and biomass, some algae species could accumulate lipids up to 70 % of their 

biomass. Some reactions or pathways (i.e. their kinetic parameters) such as the maximum specific 

growth rate, PPP pathway (Vmax,TK) and TCA cycle, showed a low sensitivity level, which suggest 

these are robust pathways. These sensitivity results were in agreement with published data on plant 

cell platform, which all reported sensitive parameters being in glycolysis, the specific growth rate 

and in TCA cycle. Parameters 95 % confidence intervals (Table 5.5) are within ranges found in the 

BRENDA databank. 
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Figure 5. 2 Sensitivity analysis on model parameters. Vertical axis value represents percentage 

change in the objective function for parameter change from -70 % to +150 % around the optimized 

value. Parameters not shown have percentage changes less than 10 %. 

 Model simulates algae cell behavior under heterotrophic condition 

The final calibrated model cope with the experimental data with adequate fitness (Figure 5.3). Cell 

growth, as well as extracellular metabolites such as glucose and glycine are closely simulated. 

More importantly, total lipids and starch as the main products were also simulated adequately. 

These results thus confirm the model structure as well as its calibrated kinetic parameters to 

simulate algae cells carbon nutrition and products accumulation dynamics. Many decades ago, the 

Droop model was developed to represent the effect of B12 vitamin intracellular quota on the growth 

rate of phytoplankton. The model has been shown appropriate to also represent the effect of 

intracellular management of nutrients such as nitrogenous compounds and phosphate on growth 

rate. The model premises were based on observations that cell growth continued after the 

exhaustion of external nitrogen pool, being then supported by the consumption of intracellular 
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nitrogen pools such as chlorophyll molecules. This intracellular nutrients management 

phenomenon has also been modeled for plant cells (Cloutier et al., 2009). In the present work, algae 

cells biomass still accumulates while glycine and other amino acids pool (AA) reached values 

under the detection limits. However, this phenomenon was only observed for nitrogen sources since 

cell biomass growth stopped simultaneously to glucose depletion. Therefore, Droop model 

philosophy, which is implicit in kinetic metabolic models such as in this work, applies in C. 

protothecoides. Furthermore, describing metabolic flux kinetics and thus time evolution of the cells 

enzyme activity in addition to intracellular metabolites concentration, a kinetic metabolic can bring 

complementary data of high interest, such as for the elucidation of metabolic regulation 

phenomena, although this type of model is more tedious to build. Indeed, in this work, both the 

experimental data and model simulations show glycolysis and PPP pathways being more affected 

by glucose supply while TCA metabolism, which is fed by both carbon and nitrogen metabolisms, 

seems more robust to perturbations such as extracellular glucose depletion. Although limited to 

carbon and nitrogen metabolisms, the model led to adequate simulation results when compared to 

experimental data. Meanwhile, although highly simplified, simulation results showed to cope well 

with ATP and ADP experimental data, as well as with the ADP-to-ATP ratio. However, the 

integration of cell energetic status with its known effect on flux regulation (as co-factors and co-

substrates) shall, in a further model development step, allow an enhanced simulation capacity under 

various culture modes.  
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Figure 5. 3 Simulation result versus experimental data for Chlorella protothecoides heterotrophic 

behavior (experimental data: open squares, simulated data: solid line. Experimental data were taken 

from a previous work (Ren et al., 2016), where the error bars represent the standard error of 

triplicates data.  

 A metabolic flux analysis reveals a high lipid synthesis and low TCA cycle 

activity 

Considering all the above, it is thus clear that the model structure allows simulating heterotrophic 

Chlorella protothecoides cell behavior. There was then strong confidence turning the model as an 

in silico tool and perform a metabolic flux analysis (MFA) estimating flux distribution. Flux rates 

were estimated at 48 h before glucose depletion in the exponential growth phase. For comparison 

purposes, all the flux values were normalized to an uptake flux of 100 mmol g-1DW h-1 glucose 

(Figure 5.4).  Flux results agree with that reported in (Muthuraj et al., 2013), who performed a 

flux balance analysis at steady state for Chlorella protothecoides  under heterotrophic condition, 

with a GPI flux of 66.28 mmol g-1DW h-1 (leading to glycolysis), G6PDH of 12.15 (leading to PPP 

pathway) and PGM of 13.83 (leading to starch), compared to 49.8 mmol g-1DW h-1, 32.04 and 17.3 
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respectively. The total flux to G6P obtained from our model is of 92.26 mmol g-1DW h-1 compared 

to 99.22 in (Muthuraj et al., 2013). The net flow From F6P to GD (PFK minus FBPase) was of 

73.47 mmol g-1DW h-1 compared to 70.35 (from F6P to GAP) in (Muthuraj et al., 2013), and the 

flux from GD to PEP was of 150.51 mmol g-1DW h-1 in our model versus 148.25 (from GAP to 

PEP) in (Muthuraj et al., 2013). The fluxes of nucleotides synthesis (from RX to ADP) was of 1.36 

mmol g-1DW h-1 compared to 0.67 in (Muthuraj et al., 2013) (from PRPP to DNA and RNA). 

Biomass synthesis rate was of 9.19 compared to 7.36 in (Muthuraj et al., 2013). Furthermore, 

downstream fluxes to AcCOA, the sum of the downstream lipid and TCA cycle flux was of 74.01 

mmol g-1DW h-1 compared to 86.14 in (Muthuraj et al., 2013). Although a similar total flux around 

the TCA cycle was obtained, with 73.93 mmol g-1DW h-1 at lipid branch and 0.08 at TCA branch, 

different results were reported in (Muthuraj et al., 2013) with 81.21 mmol g-1DW h-1 at TCA cycle 

and 4.82 mmol g-1DW h-1 at lipid branch. This discrepancy may rely on a high lipid level (13.13  

% DW) in our cell culture compared to that in (Muthuraj et al., 2013) (1 % DW). Differences in 

culture conditions may be involved as well.  
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Figure 5. 4 Flux distribution under heterotrophic cultivation at exponential phase (48 h). Note: All 

the flux values are normalized to 100 mmol glucose assimilated and are measured in 

mmol/gDW/day. Red arrows represents the flux direction for the four reversible reactions. The 

figure on the right is screen-cut from the cited article as mentioned in the text. 

 A dynamic flux analysis suggest a robust and stable metabolism in 

Chlorella protothecoides 

A dynamic metabolic flux analysis was performed from model simulation (Figure 5.5). Looking at 

glucose flux (VHK), glycine flux (VGHMT) as well as cell specific growth rate (Vgrowth) (Figure 5.5a), 

it is clear that cell growth proceeds simultaneously to carbon source uptake, but not proportionally 

to nitrogenous source uptake. Interestingly and as previously discussed for glycine concentration, 

glycine flux (VGHMT) ceased more than 24 h prior to growth cessation.   

Fluxes of PPP pathway and starch synthesis (Figure 5.5c, 5.5d) originate from G6P and are partially 

affected in some extent by glucose flux (Figure 5.5a). For instance, model simulation VPGM flux 

showed being reversible from accumulation to decomposing at around day 3, where glucose 

reached depletion. This suggests that starch, which is an intracellular carbon storage pool, rapidly 

responds to a low carbon source level threshold, contributing providing continuous carbon flow 

feeding cell metabolism and maintenance. However, as an alternative carbon storage pool, net lipid 

flux shows a continuous catabolism at a quasi-constant rate, composed of a synthesis flux (VFASN) 

that was slightly affected at glucose depletion and two catabolic fluxes (VLipase and VGPAT) which 

stayed quite constant (11.87-12.04 mmol gDW-1 d-1 and 0.05 mmol gDW-1 d-1 respectively) (Figure 

5.5e). Interestingly, TCA cycle fluxes (VISOD, VSDH) (Figure 5.5f) exhibited a minimum value at 

glucose depletion, for increasing thereafter. As previously mentioned, the TCA cycle is closely 

related to lipid metabolism, so this result is not surprizing. Moreover, CS flux dynamics also closely 

follows the lipid synthesis flux.  
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Figure 5. 5 Flux rate of every reaction in the model system. (a) Nutrition fluxes and growth rate; 

(b) Glycolysis fluxes; (c) PPP pathway fluxes; (d) Starch synthesis fluxes; (e) Lipid synthesis 

fluxes; (f) TCA cycle fluxes. All flux units were in mmol gDW-1 d-1. 

We then looked at the major branch points of glycolysis. Model simulations show that the glucose 

uptake rate (VHK) and the glycolytic fluxes went down to a very low level after day 2.6, we have 

thus analyzed their related flux ratios only before glucose depletion (< 2.6 d). First, we evaluated 

that 6 % of the glucose flux contributes to biomass synthesis and growth (Vgrowth-to-VPK ratio) 

(Figure 5. 6a), a value comparable to the literature with 3.9 % (Follstad et al., 1999). Within the 

same range, 8 % (8.323-8.325 %) of the glucose flux feed lipid synthesis (Figure 5. 6b). However, 

as a main product contributing to biomass, the lipid catabolism-to-biomass synthesis and growth 
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ratio (VFASN -VLipase - VGPAT to Vgrowth) shows two successive constant values at around 60 % 

increasing at 80 % at mid-exponential growth phase (1.5 d) (Figure 5. 6e). Model simulations also 

suggest that around 1 % of the glucose flux goes to starch synthesis (VADPG-VAP to VHK) (Figure 

5.6c), and that 15 % to 7 % of the glucose flux feed nucleotides synthesis (VPPRiBP to VG6PDH). 

Concerning the PPP pathway activity, around 12 % of the glucose uptake flux flow into the pentose 

phosphate pathway (VG6PDH to VHK). Therefore, the dynamic metabolic flux analysis using the 

developed model mostly suggest a robust and stable metabolism.  
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Figure 5. 6 Metabolic flux ratios between different pathways. Glucose contribution ratio to biomass 

(a), lipids (b), starch (c) and nucleotides (d); Lipid contribution to biomass (e); PPP pathway 

activity (f); (a) Vgrowth to VPK ratio; (b) VFASN -VLipase - VGPAT to Vgrowth ratio; (c) (VADPG-VAP) to VHK 

ratio; (d) VPPRiBP to VG6PDH ratio; (e) VPPRiBP to VG6PDH ratio; (f) VG6PDH to VHK ratio 

 Conclusion 

A model simulating Chlorella protothecoides cell metabolic behavior under heterotrophic 

condition and describing metabolic network flux kinetics and energetic states has been developed 

and calibrated. Simulation results show satisfactory fit with experimental data. Flux analysis is also 

in high agreement with literature data. A sustained high lipid synthesis metabolic activity was 
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further confirmed from model simulations with higher lipid flux and lower TCA activity. The 

model was also used to analyze the dynamic distribution of the carbon source to the main carbon 

pathways, such as PPP pathway, starch synthesis, lipid synthesis and nucleotides synthesis. In 

addition, as the model included a high number of parameters, it described not only experimental 

data, but also most of the metabolic kinetics that showed statistical significance. It can thus be used 

as an in silico platform for characterizing the cell lines as well as to search for ‘‘optimal’’ culture 

strategy either by management through rational adjustment of the main nutrient concentrations that 

affect glucose and/or glycine concentration with time or by genetic manipulation of certain 

predicted critical enzymes. However, much work remains to be done: it would be of interest to add 

more metabolic reactions from extracellular multiple nutrients, like ions; and separating the lipids 

pools to more interest classes; get larger data sets including both extra- and intracellular 

experimental data, to test and validate the platform as a predictive tool. 
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 Abstract  

Background 

Microalgae have the potential to rapidly accumulate lipids of high interest for the food, cosmetics, 

pharmaceutical and energy (e.g. biodiesel) industries such as biodiesel production. Triacylglycerols 

(TAG) is the major lipid class accounting 60-70 % of total lipids. Free fatty acids (FFAs) as well 

as polar lipids (PL) were not comparable with TAG, that only in a small ratio of total lipids. 

Meanwhile, TAG has suitable fatty acids composition of C16 and C18 chains with saturated or 

mono-unsaturated fatty acids, which are the most suitable components for biodiesel production. 

Transformation of TAG to biodiesel is also with lower cost compare with PL and FFAs. However, 

current lipid extraction methods show efficiency limitation and until now, extraction protocols have 

not been fully optimized for specific lipid compounds, such as TAG. The present study presents a 

novel lipid extraction method, consisting in the addition of a water treatment of biomass between 

the two-stage solvent extraction steps of current extraction methods. The resulting modified 

method not only enhances lipid extraction efficiency, but also yields a higher triacylglycerols 

(TAG) ratio, which is the highest desirable for biodiesel production.   

Results 

Modification of four existing methods using acetone, chloroform/methanol (Chl/Met), 

chloroform/methanol/H2O (Chl/Met/H2O) and dichloromethane/methanol (Dic/Met) showed 

respective lipid extraction yield enhancement of 72%, 36%, 60 % and 61 %. The modified acetone 

method resulted in the highest extraction yield, with 68.9 ± 0.2 % DW total lipids. Extraction of 

TAG was particularly improved with the water treatment, especially for the Chl/Met/H2O and 

Dic/Met methods. The acetone method with the water treatment led to the highest extraction level 

of TAG with 73.7 ± 7.3 µg/mg DW, which is 130.8 ± 10.6 % higher than the maximum value 

obtained for the four classical methods (31.9 ± 4.6 µg/mg DW). Interestingly, the water treatment 

preferentially improved the extraction of intracellular fractions, i.e. TAG, sterols (ST), and free 

fatty acids (FFA), compared to the lipid fractions of the cell membranes, which are constituted of 

phospholipids (PL), acetone mobile polar lipids (AMPL) and hydrocarbons (HC). Finally, from the 
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32 fatty acids analyzed for both neutral lipids (NL) and polar lipids (PL) fractions, it is clear that 

the water treatment greatly improves NL-to-PL ratio for the four standard methods assessed.  

Conclusion 

Water treatment of biomass after the first solvent extraction step improved the global lipids 

extraction yield. In addition, the water treatment positively modifies the intracellular lipid class 

ratios of the final extract, in which TAG ratio is significantly increased without changes in the fatty 

acids composition. The novel method thus provides an efficient way to improve lipid extraction 

yield of existing methods, as well as selectively favoring TAG, a lipid of the upmost interest for 

biodiesel production. We found that a hypotonic environment generated adding pure water results 

in the increase of cell volume (Figure 6.5) to equilibrate osmotic pressure. It may greatly affects 

membrane integrity, which is already highly weakened from the use of solvents in stage one. 

Solvents access to the cell interior volume is then made easier and thus improved the extraction of 

lipids, especially for the intracellular lipids release. However, the hypothesis of water disturbing 

cell membrane after first stage ultrasound and solvent extraction procedure should be further 

verified to make the mechanism more clear and solid.      
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 Background  

Microalgae is an attractive platform for lipid production (Perez-Garcia et al., 2011; Yena et al., 

2013). Microalgae cells can accumulate lipids at up to 20–50 % of their cell dry weight (Araujo et 

al., 2013), and which can be used as precursors for biodiesel production after a transesterification 

step (Cesarini et al., 2014; Liu et al., 2015). Algal lipids include polar lipids, which are normally 

structural such as phospholipids and glycolipids, and neutral lipids, which are mainly storage lipids 

such as mono-, di-, tri-acylglycerides (TAG) and sterols (ST) (Greenwell et al., 2010b; Schuhmann 

et al., 2012). TAGs represent the most preferable lipid class for biodiesel production since they 

contain fatty acids that can be removed from their glycerol frame, and transformed through 

transesterification reaction into fatty acid methyl esters (FAMEs) (Islam et al., 2013). Significant 

efforts have been devoted to identify the genes and signals that regulate microalgae metabolism 

(Dangoor et al., 2009; Nikkanen et al., 2016; Peled-Zehav & Danon, 2007; Peled-Zehavi et al., 

2010), and to optimize the upstream processing steps to generate lipid-rich cellular biomasses 

(Chen et al., 2013; Guo et al., 2013; Ho et al., 2013; Ho et al., 2015; Maeda et al., 2016; Mendes 

& Vermelho, 2013; Pereira et al., 2011; Ren et al., 2013; Shih-Hsin Ho, 2014; Xiong et al., 2008a; 

Yu et al., 2011a). However, although the downstream process normally accounts for the major part 

of a bioprocess costs, only limited attention has been placed on the amelioration of lipid extraction 

protocols (Araujo et al., 2013; Li et al., 2014; Ranjan et al., 2010); a step still considered as one of 

the major bottlenecks for commercial-scale biodiesel production (Guldhe et al., 2016). Significant 

amounts of lipids are trapped in the cytoplasm by the cell walls and membranes, so lipid extraction 

efficiency thus greatly depends on cell disruption technique as well as on the polarity of the solvents 

used to remove lipids from the cell water phase (Burja et al., 2007; Hamilton et al., 1992; Lee et 

al., 2010; Lewis et al., 2000). For instance, some protocols favor imposing a high mechanical stress 

such as ultrasound treatment (Araujo et al., 2013), resulting in a high cell disruption efficiency 

level. For comparison, a low shear stress approach such as using a hydrocyclone only leads to ~10  

% cell lipids extraction efficiency but microalgae cells remain viable (Dommange et al., 2015). 

Overall, the solvents perform lipid extraction, which explains the amount of work dedicated to 

identify the most efficient solvents combination. 

A short series of solvent-based methods have been largely used to perform lipid extraction from 

various biological materials. The Folch method (Folch et al., 1957) consists in using chloroform-
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methanol (Chl/Met), and then the extracted solvent (chloroform) is washed with water to remove 

non-lipid substances. Bligh & Dyer then proposed a method based on Folch’s combining 

chloroform, methanol and water (Chl/Met/H2O), for lipid extraction from a wide range of 

biological materials (Bligh & Dyer, 1959). More recently, because of concerns on biosafety, a less 

hazardous solvent mixture of dichloromethane/methanol (Dic/Met) has been proposed by Cequier 

et al. (Cequier-Sanchez et al., 2008) as a substitute for Bligh & Dyer method. In addition, Drochioiu 

proposed a fast lipid assay with acetone extraction and turbidimetric reaction with sulfosalicylic 

acid, which requires only few milligrams of dry samples compared to grams for the above-

mentioned methods, which limits their application to pilot and large scale production facilities 

(Drochioiu, 2005). These methods can be considered as references, or classical, in the 

field.Comparative studies have been done with different microalgae species using different 

extraction systems. For the microalga Chlorella vulgaris, Araujo et al. (Araujo et al., 2013) 

revealed that using Bligh & Dyer’s method (Chl/Met/H2O) [11,12] is more efficient than Folch’s 

method (Chl/Met) [10], followed by Chen’s method using methanol/dichlorometane (Met/Dic) 

(Chen et al., 1981 ), while low efficiency levels were obtained for isopropanol/hexane (Hara et al.) 

(Hara & Radin, 1978) and soxhlet extraction using acetone (F., 1879). Ryckebosch et al. explored 

seven solvent mixtures at different ratios on C. vulgaris, and showed that extraction efficiency level 

was higher using chloroform/methanol 1:1, then for chloroform/methanol 2:1, followed by 

dichloromethane/ethanol 1:1, hexane/isopropanol 3:2, acetone, diethyl ether, and methyl-tert-butyl 

ether/methanol 10:3 (Ryckebosch et al., 2012a). For the marine microalgae Tetraselmis sp., Li et 

al. (Li et al., 2014) revealed that Dic/Met (Cequier-Sanchez et al., 2008) was the most efficient 

method, followed by propan/hexane (Pro/Hex) (Ch. Schlechtriem 2010), Chl/Met/H2O, 

supercritical CO2 (Andrich et al., 2005) and finally ethanol/KOH (Burja et al., 2007). For Isochrysis 

galbana, Grima et al. have also compared seven solvent mixtures and found that the extraction 

efficiency level was higher for chloroform/methanol/H2O 1:2:0.8, followed by hexane/ethanol 

1:2.5, hexane/ethanol 1:0.9, butanol, ethanol, ethanol/H2O 1:1, and hexane/isopropanol 1:1.5 

(Grima et al., 1994). As it can be seen, lipid extraction efficiency differs with biomass type as well 

as with the solvent mixture. 

In this work, we thus test the hypothesis that a water treatment step added to current extraction 

protocols, between the two organic solvent extraction steps, increases cell material disruptions with 

an enhancement of lipid release from the cell. The four different extraction methods largely used 
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for algal lipid extraction (Folch method with Chl/Met (Folch et al., 1957); Bligh & Dyer method 

with Chl/Met/H2O (Araujo et al., 2013; Bligh & Dyer, 1959); Cequier method with Dic/Met 

(Cequier-Sanchez et al., 2008) and Drochioiu method with acetone (Drochioiu, 2005)) were thus 

implemented with a water treatment. Results showed a significant improvement of the global lipid 

extraction efficiency, and especially for TAG, a precursor of biodiesel synthesis. 

 Materials and methods 

 Experimental microalgae  

Chlorella protothecoides was cultivated under heterotrophic condition for biomass and lipid 

accumulation (Ren et al., 2016). The modified basal medium (MBM) (Wei et al., 2008) was used 

to maintain the inocula and to perform the experiments. Cells were collected at the exponential 

phase by centrifugation at 4,000 g for 10 min, and were vacuumed (remove extra water) and freeze-

dried (VirTis, Advantage Plus EL-85) to determine the dry weight. Then the freeze-dried biomass 

was ground into a fine powder for subsequent extractions. 

 Current lipid extraction methods 

A mass of 35 mg of dried microalgae was used in each experiment. The four non-modified original 

extraction methods were applied in four control groups as detailed below.  

Method A: Acetone (Drochioiu, 2005) 

35 mg of dry samples were extracted with 5 mL of acetone under ultrasound (1000 W, 20 kHz) in 

ice water for 30 min, and centrifuged at 4000 g at 4°C for 5 min. Supernatants were transferred to 

a new test tube for lipid analysis, and the remaining cell pellets were re-extracted repeating the 

procedure. 

Method B: Chl/Met (Folch et al., 1957) 

35 mg of dry microalgae samples were extracted with 7.5 mL of a mixture chloroform/methanol 

(2:1, v/v) under ultrasound (1000 W, 20 kHz) in ice water for 30 min. The mixture was centrifuged 

at 4000 g at 4°C for 5 min. Cell pellets were kept for a re-extraction step and supernatants were 

transferred to a new test tube with 1.875 mL of H2O and shaken vigorously following a 

centrifugation at 4000 g at 4°C for 5 min. Then the lower layer of 5 mL chloroform with extracted 
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lipids were pipetted out for lipid analysis. The remaining cell pellets were re-extracted repeating 

the procedure. 

Method C: Chl/Met/H2O (Araujo et al., 2013; Bligh & Dyer, 1959) 

35 mg of dry microalgae samples were mixed and homogenized with 5 mL of methanol, 2.5 mL 

of chloroform and 5 mL of water. The mixture was treated under ultrasound (1000 W, 20 kHz) in 

ice water for 20 min. Another 2.5 mL of chloroform was added to the mixture and sonicated for 10 

min. Then the mixture was centrifuged at 4000 g at 4°C for 5 min. Then the lower layer of 5 mL 

chloroform with extracted lipids were pipetted out for lipid analysis. The remaining cell pellets 

were re-extracted repeating the procedure. 

Method D: Dic/Met (Cequier-Sanchez et al., 2008) 

This method was the same as the Folch et al. method. However, all extractions used 

dichloromethane/methanol (2:1, v/v) instead of chloroform/methanol. In order to layering the 

extracted mixture, 1.625 mL KCL solution (0.88 %) was used instead of 1.875 mL H2O. Lipids 

were then within the 5 mL dichloromethane phase. The remaining cell pellets were re-extracted 

repeating the procedure. 

 Modified lipid extraction methods 

Lipid extraction in the four test groups was carried out according to the four control groups (see 

above) with the following modifications. The 35 mg of dry microalgae samples were extracted two 

times as in the above-mentioned methods, but prior to the second solvent extractions, the pre-

extracted fresh cell pellets were re-suspended in 5 mL dH2O (deionized) and vortexed (1000rpm) 

for 30 s at room temperature, and then centrifuged at 4000 g for 5 min at room temperature; the 

treatment was done only once. After centrifugation, the aqueous phase extractions were also kept 

for total lipids quantification, but the concentration levels were all around or below the detection 

limit, thus confirming that no detectable amounts of lipids were released in the water phase. Solvent 

phases obtained from the first and second extractions are defined as stage 1 and stage 2 respectively 

in both control and test groups. 

 Lipid analysis 

Fast total lipid assay 
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Although GC-MS could get more detailed and accurate quantification data of different lipid classes 

(HC, TAG, FFA, ST, AMPL, PL), there still may be some components missing. Fast total lipid 

assay was thus used to quantify the total extracted lipid yield.  

0.1 mL of extracted solvents were pipetted out from each solvent phase and evaporated under a 

stream of N2. Then each sample was re-suspended in 0.1 mL of acetone, and 0.9 mL of 1.5 % 

sulfosalicylic solution was added. Each sample was shaken vigorously followed by a 30 min 

standing. The sample absorbance is read at 440 nm by UV–VIS determination (UNICAM 8625, 

UV/VIS), and then the quantification of the lipids is calculated according to a calibration curve 

(lipid concentration vs. absorption reading) using lipid extracted from Chlorella protothecoides 

cells harvested at growth steady state. For generating the calibration curve, known weighted lipids 

were dissolved in acetone to prepare a stock solution (2g/L) and diluted to a series of standard 

solutions. The lipid concentration vs. absorption reading was taken as a standard curve. Lipid 

quantification was thus done using this standard curve.  

Lipid class analysis 

All remaining solvent phases (~4.9 mL) collected in each group were evaporated under a stream 

of N2 and each sample was re-suspended in 500 µL dichloromethane to analyze lipid classes. Lipid 

classes were identified by TLC-FID according to Parrish’s method (Parrish, 1987). 

Fatty acids profiles analysis 

Lipids were separated into polar (structural lipids, mainly phospholipids) and neutral fractions 

(including wax esters, sterols, free fatty acids and triglycerides) by column chromatography on 

silica gel micro-columns (30 × 5 mm I.D. Kieselgel 70–230 mesh Merck) as described in Marty’s 

method (Marty et al., 1992). The neutral fraction was purified on an activated silica gel with 1 mL 

of hexane/ethyl acetate (v/v) to eliminate free sterols. FA composition of the neutral and the polar 

fractions were determined separately on fatty acid methyl esters (FAMEs) obtained by 

esterification using sulfuric acid/methanol (2:98, v/v), and then analyzed by GC–MS (Thermo 

Fisher Scientific Inc., GC model Trace GC Ultra and MS model ITQ900) (Girard et al., 2014; Ren 

et al., 2016). Standards for 37 fatty acids were used and only 32 fatty acids were detected in this 

work, listed as: C11:0_Undecanoic, C12:0_Lauric, C13:0_Tridecanoic, C14:0_Myristic, 

C14:1_Myristoleic, C15:0_Pentadecanoic, C15:1_cis-10-pentadecanoic, C16:0_Palmitic, 

C16:1_Palmitoleic, C17:0_Heptadecanoic, C17:1_Cis-10-heptadecenoic, C18:0_Stearic, 
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C18:1n9_Oleic(c)+Elaidic(t), C18:2n6_Linolelaidic(t)+Linoleic(c), C18:3n6_Gamma-linolenic, 

C18:4n3_semi-quant, C19:0,  C18:3n3_Alpha-Linolenic, C20:0_Arachidic, C20:1n9_Cis-11-

eicosenoic, C20:2_Cis-11,14-eicosadienoic, C20:3n6_Cis-8,11,14-eicosatrienoic, 

C21:0_Henicosanoic, C20:4n6_Arachidonic, C20:3n3_Cis-11,14,17-eicosatrienoic, C20:5n3_cis-

5,8,11,14,17-eicosapentaenoic, C22:0_Behenic, C22:1n9_Erucic, C22:2_Cis-13,16-

docosadienoic, C24:0_Lignoceric, C22:6n_Cis-4,7,10,13,16,19-docosahexaenoic, 

C24:1n9_Nervonic. 

 Statistical Analysis 

Three replicates were carried out for each experiment samples, and the variation within the 

replicates were assessed by calculating the standard deviation of the means. Evaluation of 

differences between the different extraction systems were carried out by analyses of variance 

(ANOVA) (Cequier-Sanchez et al., 2008). 

 Results  

 H2O treatment significantly improves total lipid extraction yield 

In the present study, we evaluated a modification to current extraction methods for lipids in 

microalgae, adding a water treatment between two successive solvent extraction stages. The first 

solvent extraction stage was performed under the same condition in both control and test groups 

for the four different methods, with total lipids of 26.7 ± 1.1 % DW in control and 26.5 ± 2.6 % 

DW in test for method A; 17.4 ± 0.6 % DW in control and 16.7 ± 7.9 % DW in test for method B; 

28.8 ± 0.1 % DW in control and 28.7 ± 0.6 % DW in test for method C; 26.1 ± 3.9 % DW in control 

and 24.1 ± 4.0 % DW in test for method D (Figure 6.1). With the water treatment, test groups 

reached significantly higher total lipid levels compared to control, after the second solvent 

extraction stage. The total lipids yield in test group (42.3 ± 0.2 % DW) was 3.2-fold that in control 

group (13.3 ± 1.2 % DW) using acetone, 1.9-fold using Chl/Met (24.1 ± 4.0 % DW in test and 12.6 

± 0.1 % DW in control), 2.9-fold using Chl/Met/H2O (39.3 ± 13.5 % DW in test and 13.6 ± 1.1  

% DW in control) and 3.0-fold using Dic/Met (38.2 ± 0.6 % DW in test and 12.6 ± 0.5 % DW in 

control). Lipid extraction efficiency thus improved by 72.3 %, 35.8 %, 60.3 % and 60.9 % 
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respectively for acetone, Chl/Met, Chl/Met/H2O and Dic/Met by adding a water treatment between 

the two solvent extraction stages, which usually performed successively.  
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Figure 6. 1 Total lipids extracted in stage 1 (black) and stage 2 (grey) for acetone method, Chl/Met 

method, Chl/Met/H2O method and Dic/Met method respectively, without (control) or with a water 

treatment (test). Error bars represent the standard deviation of triplicate data. 

Attempts have been done to enhance lipid extraction yield by adding more solvent to wash the 

post-extracted biomass, or washing the post-extracted biomass with the extracted mixture (solvent 

and lipids mixture), but without any improvement (Araujo et al., 2013). Our results also show that 

in the control group, most of the extraction occurred in the first extraction step, with the second 

extraction yield only accounting for 31.2 ± 2.9 % (13.3 ± 1.2 % DW), 42.1 ± 1.1 % (12.6 ± 0.1 % 

DW), 32.0 ± 1.8 % (13.6 ± 1.1 % DW) and 32.5 ± 2.5 % (12.6 ± 0.5 % DW) of total extraction 

yield for acetone, Chl/Met, Chl/Met/H2O and Dic/Met methods respectively. However, in the test 

groups the second extraction stage following the water treatment accounted for 61.4 ± 2.4 % 

(acetone), 59.2 ± 15.5 % (Chl/Met), 57.7 ± 0.4 % (Chl/Met/H2O) and 61.3 ± 3.6 % (Dic/Met) of 

the final lipids yield.  
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Our data show that the total lipid extraction yield differs among the four original extraction 

methods. Lipid content in Chlorella protothecoides biomass may rely on culture condition but it 

was reported reaching between 14.6 and 57.8 (%, w/wDW) (Malcata, 2011 ), a range that is 

comparable with our data, in control groups. The yield obtained using the Chl/Met was significantly 

lower than those from Dic/Met (F (1, 4) = 7.89, P < 0.05) and Chl/Met/H2O (F (1, 4) =249.93, P < 

0.0001), which is in agreement with literature (Araujo et al., 2013). The extraction yield using 

acetone was also significantly higher than that from Chl/Met (F (1, 4) = 639.15, P < 0.0001), but not 

statistically different to that from Chl/Met/H2O and Dic/Met method (F (2, 6) = 1.08, P=0.397). We 

then moved further characterizing the effect of the water treatment on extracted lipids composition. 

 Water treatment promotes TAG-to-total lipid ratio in extraction 

processes 

The major lipid classes identified include HC (hydrocarbons), TAG (triacylglycerols), FFA (free 

fatty acids), ST (sterols), AMPL (acetone mobile polar lipids) and PL (phospholipids) (Figure 6. 

2). HC are mainly integrated in the cell membrane through amino acid residues anchored on it 

(Lodish et al., 2000), TAG and ST are storage lipids, FFA are precursors of lipid synthesis, PL are 

the main component of cell membranes, whereas AMPL is a group constituted from glycolipids 

monoacylglycerols, pigments and degradation products of PLs (Salvo et al., 2015). 
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Figure 6. 2 Lipids composition extracted in control (left columns) and test groups (right columns) 

for acetone method, Chl/Met method, Chl/Met/H2O method and Dic/Met method in the first 

(black) and second (grey) stage. Error bars represent the standard deviation of triplicate data. 

Interestingly, in the first stage TAG was the main component extracted over total lipids, reaching 

a similar level of 19.4 ± 0.6 µg/mg in all four methods. However, the TAG content in total lipids 

extracted varied among the four methods with 55.3 ± 2.6 % (acetone), 48.3 ± 5.7 % (Chl/Met), 

36.9 ± 0.1 % (Chl/Met/H2O) and 34.0 ± 2.4 % (Dic/Met). Moreover, HC was higher in 
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Chl/Met/H2O (36.2 ± 1.0 %) and Dic/Met (26.4 ± 0.2 %), while PL was higher in Chl/Met (34.1 ± 

0.2 %) and Dic/Met (20.0 ± 0.1 %). The water treatment affected differently the resulting lipid 

class distribution profile in the second solvent extraction phase depending on the method, but 

shows generally increased extraction yields. The second extraction stage led to significantly 

increased levels of HC in Chl/Met for both control (2.1 ± 0.1 µg/mg in stage 1 and 17.3 ± 0.3 

µg/mg in stage 2) and test group (2.0 ± 0.2 µg/mg in stage 1 and 21.6 ± 0.5 µg/mg in stage 2). 

Using Chl/Met/H2O and Dic/Met also showed a high extraction efficiency for HC at the second 

stage with no significant effect of the water treatment, while acetone seems less efficient for HC 

extraction. Meanwhile, extraction of FFA, ST and AMPL was higher (or comparable) in the second 

stage for both control and test groups in all four methods. However, comparing control and test 

groups, HC extraction was only slightly improved in Chl/Met by water treatment (17.3 ± 0.3 µg/mg 

in control and 21.6 ± 0.5 µg/mg in test respectively), not significantly improved in acetone (2.2 ± 

0.1 µg/mg in control and 2.4 ± 0.3 µg/mg in test respectively) and Dic/Met (11.8 ± 3.9 µg/mg in 

control and 12.1 ± 0.7 µg/mg in test respectively), while it was similar for Chl/Met/H2O (15.4 ± 

1.1 µg/mg in control and 15.4 ± 0.9 µg/mg in test respectively). However, TAG, ST and PL 

revealed a high sensitivity to water treatment as showed by the significant extraction improvement 

in test groups compared to control groups in all four methods (Figure 6.2).  As the main 

component, TAG extraction was significantly improved compared to the other components (Table 

1), with TAG levels of 4.3 ± 0.7 (acetone), 4.1 ± 0.3 (Chl/Met), 13.0 ± 3.5 (Chl/Met/H2O) and 11.5 

± 1.9-fold (Dic/Met) for the control groups in stage 2. Our results thus clearly show that the water 

treatment specifically favored the extraction of intracellular fractions of TAG, ST, and FFA 

compared to the membrane fractions of AMPL and HC (Table 6.1). Meanwhile, although PL, the 

main known cell membrane lipid component, reached 4.0 ± 1.9-fold the level in the control group, 

its extraction improvement was less than for TAG with an average of 8.2 ± 1.5-fold that in control 

group. 
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Table 6. 1 Comparative extraction level as test-to-control (T/C) ratio for different lipid classes in 

stage two 

  TAG  FFA  ST  AMPL PL  HC  

Acetone 4.3±0.7 2.1±0.6 2.8±0.2 1.6±0.7 6.3±4.5 1.1±0.4 

Chl/Met 4.1±0.3 2.0±0.0 2.7±1.1 1.5±0.0 2.1±0.1 1.3±0.1 

Chl/Met/H2O 13.0±3.5 1.0±0.2 3.3±0.9 0.6±0.2 4.0±0.2 0.8±0.2 

Dic/Met 11.5±1.9 2.0±0.9 5.8±1.0 1.7±0.3 3.6±1.4 1.0±0.5 

Average 8.2±1.5 1.8±0.4 3.7±0.8 1.3±0.3 4.0±1.9 1.1±0.3 

     Results are expressed as the mean ± SD (n = 3). 

Overall, combining the two extraction stages, the water treatment resulted in significantly higher 

TAG-to-total lipids ratios (67.5 ± 0.7 %, 44.4 ± 3.9 %, 48.7 ± 3.7 % and 48.7 ± 0.1 % for acetone, 

Chl/Met, Chl/Met/H2O and Dic/Met method respectively) compared to control (56.0 ± 5.0 %, 34.1 

± 5.3 %, 28.4 ± 2.3 % and 29.0 ± 3.8 % for acetone, Chl/Met, Chl/Met/H2O and Dic/Met method 

respectively), with reduction of HC-to-total lipids ratio of 3.8 %, 6.6 %, 16.2 % and 13.3 % for 

acetone, Chl/Met, Chl/Met/H2O and Dic/Met method respectively (Figure 6.2). Of interest, acetone 

method with a water treatment resulted in the highest TAG extraction level with 73.7 ± 7.3 µg/mg, 

which is 130.8 ± 10.6 % higher than the maximum value observed in all control groups (31.9 ± 4.6 

µg/mg in acetone method).  

Interestingly, when compared in parallel, our results confirm that each extraction method is specific 

to a lipid class (Figure 6.2). For instance, the highest TAG extraction efficiency is for acetone 

method, reaching 56.0 ± 5.0 % and 67.5 ± 0.7 % in control and test group respectively, while it 

only reached 28.4 ± 0.7 % in control and 48.7 ± 2.7 % in test for Chl/Met/H2O. Acetone showed 

favoring extraction of ST and FFA, while not PL and HC (8.6 ± 1.7 % and 8.3 ± 1.5 % respectively 

in control, 8.7 ± 0.2 % and 4.5 ± 0.2 % respectively in test). Chl/Met method led to the highest 

extraction levels of PL and HC (21.8 ± 0.9 % and 27.6 ± 3.6 % respectively in control group, 18.3 

± 0.2 % and 21.0 ± 1.8 % respectively in test group). However, AMPL extraction level was similar 

in the four methods (Figure 6.2). Results suggest that the different solvent and extraction 

procedures studied here have different selectivity for lipid components. Acetone may penetrate 
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deeply and reach intracellular lipids, while Chl/Met and Dic/Met action may be mostly limited to 

membrane lipids. 

 H2O treatment significantly favors neutral-to-polar lipid ratio extraction 

Since fatty acids (FA) composition and structure, such as carbon chain length and unsaturated 

degree, greatly affect the properties of resulting biodiesel (Tabatabaei et al., 2015; Wang et al., 

2013), the FA profile was characterized for neutral (NL) and polar lipids (PL) independently 

(neutral and polar fractions were first separated as described in material and methods). A total of 

32 FA were detected from C11 to C24 (as shown in Material and methods), and similar fatty acids 

were found in NL and PL fractions with the five most prevalent components being C16:0, C18:0, 

C18:1n9, C18:2n6 and C18:3n3 in both NL and PL fractions. FAs are known as precursors of both 

neutral lipids and polar lipids, with no evidence of FAs selection priority during neutral lipid and 

polar lipid synthesis. Therefore, it was expected that similar FA components were found in both 

NL and PL. 

The same result has also been reported in (Li, 2014), where the most abundant FAs in the lipid 

extracts accounted for approx. 70 % of total FAs, with C16 hexadecanoic acid, C18:1 (n-9) oleic 

acid and C18:2 (n-6) octadecadienoic acid. Interestingly, similar components of these dominant 

FAs were found in the four methods tested here. However, although the FAs in both fractions are 

quite similar, the quantity of each component differed in NL and PL fraction as shown in Figure 

6.3. For instance, the multi-unsaturated fatty acids C18:2n6 and C18:3n3 are clearly more abundant 

in PL than in NL, which suggests membrane lipids mobility. C16:0 is also more abundant in PL, 

which is maybe due to the fact that it is the initial FA synthesized and is first used for cell growth 

as in the structure of cell membrane. 

C18:1n9 accounts for the highest content in the NL fraction, followed by C18:2n6 > C18:3n3 > 

C16:0 > C18:0, and this in all methods (Figure 6.3). A water treatment resulted in a significant 

enhancement, at stage 2, of C18:1n9 in Chl/Met/H2O and Dic/Met methods (6.9 ± 1.5 and 4.9 ± 

0.5-fold of that in control respectively), followed by acetone (2.4 ± 0.2-fold) and to a lesser extent 

in Chl/Met method (1.3 ± 0.2-fold). However, C18:1n9 reached a similar final extraction yield of 

66.9 ± 1.9 µg/mg in all methods after water treatment. Indeed, C18:2n6, C18:3n3, C16:0 and C18:0 

all showed similar trends with a significant improvement using Chl/Met/H2O and Dic/Met, than 

acetone and Chl/Met. However, fatty acids in PL fraction differ from that in NL fraction, with 
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C18:2n6 the predominant component in all methods. With a water treatment, extraction efficiency 

of all five components were improved in acetone, Chl/Met/H2O and Dic/Met methods at different 

extents. However, Chl/Met method resulted in a slightly but significant lower extraction efficiency 

than the control group (Figure 6.3). Adding a water treatment in Chl/Met method is thus detrimental 

to polar lipids extraction.  
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Figure 6. 3 Extraction ratio for each lipid component in different extraction methods. Error bars 

represent the standard deviation of triplicate data. 

We then compared extraction methods analyzing the partition of extracted fatty acids in neutral 

lipids fraction (FA-NL) and in polar lipids fraction (FA-PL) (Figure 6.4). Before H2O treatment, 

averaging the results in control and test samples, acetone method led to FA-NL extraction of 61.6 

± 0.6 µg/mg and FA-PL of 3.9 ± 0.1 µg/mg, corresponding to NL-to-PL ratio of 15.7 ± 0.1. 

However, in Chl/Met, Chl/Met/H2O and Dic/Met methods, NL-to-PL ratio is of 11.5 ± 0.2, 7.0 ± 

1.0 and 6.9 ± 0.3 respectively, with less NL extracted (53.0 ± 1.8 µg/mg , 41.2 ± 7.3 µg/mg  and 

47.5 ± 2.2 ug/mg for Chl/Met, Chl/Met/H2O and Dic/Met methods respectively) but more PL 

extracted (4.6 ± 0.1 µg/mg , 5.9 ± 0.1 µg/mg  and 6.9 ± 0.1 µg/mg  for Chl/Met, Chl/Met/H2O 

and Dic/Met methods respectively). Acetone method thus shows the highest selectivity level for 

neutral lipids, with extraction yield ranked as acetone method > Chl/Met method > Dic/Met method 

> Chl/Met/H2O method. However, the PL extraction yield in stage one was ranked as Dic/Met 

method > Chl/Met/H2O method > Chl/Met method > acetone method (Figure 6.4).  
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Figure 6. 4 Five main fatty acids composition in neutral lipids fraction and polar lipids fraction 

respectively. (Control groups: left columns; Test groups: right columns; First stage: black; Second 

stage: grey). Error bars represent the standard deviation of triplicate data.  
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For the second stage, results revealed that NL extracted in test groups (80.3 ± 0.7 µg/mg for acetone 

method, 83.8 ± 5.2 µg/mg  for Chl/Met method, 91.5 ± 24.1 µg/mg for Chl/Met/H2O method and 

101.5 ± 9.4 µg/mg for Dic/Met method) were increased compared to that in control groups (36.6 ± 

5.1 µg/mg for acetone method, 65.7 ± 1.4 µg/mg for Chl/Met method, 16.1 ± 1.0 µg/mg for 

Chl/Met/H2O method and 22.7 ± 4.1 µg/mg for Dic/Met method). Indeed, a water treatment led to 

2.1, 1.3, 5.1 and 3.8-fold that in control groups for acetone, Chl/Met, Chl/Met/H2O and Dic/Met 

method respectively. However, PL extraction in test groups was only improved in acetone, 

Chl/Met/H2O and Dic/Met methods (5.0 ± 0.5, 2.9 ± 0.7 and 2.2 ± 0.2-fold of control group for 

acetone, Chl/Met/H2O and Dic/Met methods respectively), and resulted in lower yields than control 

in Chl/Met method (0.8 ± 0.0 of that in control). Therefore, the NL-to-PL ratio is greatly improved 

with a water treatment (18.3 ± 1.0 for acetone method, 21.8 ± 0.6 for Chl/Met method, 26.0 ± 4.1 

for Chl/Met/H2O method and 36.4 ± 6.1 for Dic/Met method) compared with control (11.0 ± 2.6 

for acetone method, 14.2 ± 1.4 for Chl/Met method, 13.3 ± 1.0 for Chl/Met/H2O method, 17.8 ± 

3.4 for Dic/Met method). Of interest, the neutral lipids fraction is mainly stored in the cell while 

polar lipids fraction is mainly within the cell membrane, suggesting H2O treatment favors the 

release of intracellular storage lipids.  

 Discussion 

The key step in the extraction and recovery of lipids from microalgae relies on their release from 

intracellular compartment, where stands the major lipid pool (Araujo et al., 2013). Moreover, the 

extraction process efficiency, which is also a mass transfer operation problem, largely depends on 

the nature of the solvent as shown in this work as well as in the cited literature. In this work on 

Chlorella protothecoides, lipid extraction yields efficiency is ranked as acetone-based method > 

Chl/Met/H2O method > Dic/Met method > Chl/Met method. This ranking agrees with the polarity 

degree of the extraction solvents; acetone and Chl/Met/H2O polarity being higher than Chl/Met 

and Dic/Met. It may because the cell membrane mainly contains polar lipids, the use of polar 

solvents could increase lipids diffusion phenomenon, as suggested by Araujo for acetone (Araujo 

et al., 2013). It has been already observed that nonpolar solvents have lower extraction levels 

toward microalgae lipids compared to polar solvents (Araujo et al., 2013). This relationship has 

also been suggested in other reports. Li (Li et al., 2014) observed that an hexane and ethanol 

mixture resulted in two times higher lipid yields than hexane in Tetraselmis sp., a result that the 



107 

 

authors explained by the lower polarity of hexane over the hexane & ethanol mixture. Rychecosch 

et al. (Ryckebosch et al., 2012b) and Lewis et al. (Lewis et al., 2000) also demonstrated that a 

mixture of polar and non-polar solvents succeeded at extracting higher amounts of lipids compared 

to non-polar solvents. However, contradictory results have also been reported but for other 

microalgae species. For instance, Shen et al. (Shen et al., 2009) showed that an hexane and ethanol 

mixture extracted less lipid than hexane on Chlorella protothecoides and Scenedesmus dimorphus. 

Structural and composition differences of algal species may explain differences in extraction 

protocols efficiencies.  

A hypotonic environment generated adding pure water results in the increase of cell volume (Figure 

6.5) to equilibrate osmotic pressure, a phenomenon which greatly affects membrane integrity. 

Solvents access to the cell interior volume is then made easier. All of the above can thus explain 

that extraction of intracellular TAG, ST and FFA are preferentially increased compared to 

membrane lipids such as HC, PL and AMPL after water treatment. However, deeper investigation 

are still needed to find the solid mechanism of water effect on lipid extraction.  

 

Figure 6. 5 Cells before (a) and after (b) H2O treatment step, 400X magnification under bright field 

optical microscopy (Leitz Laborlux S Microscope). 

It is also clear from this work (Figure 6.2) as well as from literature that each extraction protocol 

may differ in its selectivity for the different lipid classes found in microalgae. HC is a non-polar 

component anchored on the cell membrane by amino acids residues, and should then be more 

available to the less polar solvent mixtures Chl/Met and Dic/Met. However, although this is the 
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case for Dic/Met method, results for Chl/Met and Chl/Met/H2O revealed Chl/Met is quite selective 

for HC when residual water remains with the cell pellets. This may be due to the fact that the non-

polar HC is embedded in the polar phospholipids layers by amino acids residues. The presence of 

water may thus increase solvent mixture polarity and help weakening the links between polar lipids 

and proteins anchored into the membrane, hence making HC (neutral) more available to the less-

polar solvent mixture Chl/Met. However, two times successive solvent extraction stages shown 

leading to a similar effect, as shown in Chl/Met and Chl/Met/H2O with the release of HC from the 

membrane, no matter whether water treatment is applied or not.  

Finally, although H2O treatment could lead to different lipid class compositions and significantly 

improve the sum of fatty acids extracted, the effect on the FA composition was less important. The 

most abundant FAs in the lipid extracts include C16:0, C18:1n9, C18:2n6 and C18:3n3. The FAs 

composition was not affected by the water treatment, with final FAs composition in each method 

being similar in control and test groups. For instance, acetone method led to 12.7 % of C16:0 in 

control group and 12.4 % in test group, 46.4 % of C18:1n9 in control group and 49.1 % in test 

group, 21.0 % of C18:2n6 in control group and 20.2 % in test group, 16.9 % of C18:3n3 in control 

group and 15.4 % in test group, and ~3.0 % of other fatty acids in both control and test groups. 

Moreover, FAs composition was also found similar in the four methods, modified or not, compared 

stage by stage, which suggests that different extraction methods studied have limited impact on 

FAs composition selectivity, as proposed by Li (Li et al., 2014). The most abundant FAs extracted 

in the four methods are fortunately the ones preferred for microalgae biodiesel production (Halim 

et al., 2011). 

In the present work, we have clearly demonstrated that the classical extraction methods can be 

significantly improved from the addition of a water treatment between the two solvent extraction 

steps. However, all these methods were historically based on the use of dry microalgae biomass, 

while recent developments in the field propose the use of fresh biomass. Avoiding the drying 

process allows reducing process energy and costs, as well as it enables a positive energy balance 

between the process energy and that extracted from the microalgae biomass (e.g. biodiesel) (Liu, 

2013). Therefore, in complement to assessing classical methods which are based on using dry 

biomass, we have evaluated the effect of adding a water treatment using fresh biomass on a 

modified acetone-based extraction method, and obtained 1.6-fold total lipid extracted with water 

treatment (Figure 6.6).  
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Figure 6. 6 Sum of the fatty acids of neutral lipids fraction (FA-NL) and polar lipids fraction (FA-

PL) in different methods. Error bars represent the standard deviation of triplicate data. 

Indeed, in addition to significantly improving the lipid extraction efficiency, with over 100 % 

increase of the harvested TAG, a precursor leading to biodiesel, the addition of a water treatment 

step is thus expected to enhance significantly the global final energy yield (e.g. of ~100 % estimated 

from the experimental results in this work) also while avoiding energy consumption for drying the 

algal cells before the solvents extraction steps. To conclude, the global process may then turn out 

to be positive energetically speaking, and the energy cost should be greatly lower than for the 

classical methods. Except for energy, the other part of costs difference between the new protocol 

proposed here and classical methods rely on equipment investment, from biomass pre-treatment to 

the extraction process. Adding a water treatment step will specifically require a water deionisation 

system, which would most likely be already available for other uses in the biological production 

plant, but will not need a cell dryer equipment such as in classical methods. Therefore, the 

equipment investment is similar when adding a water treatment step.  

Finally, recent approaches propose replacing the use of ultrasounds to perform microalgae cells 

disruption (Wang et al. 2007; Orr et al. 2016) with “green solvents” such as 1-butyl-3-

methylimidazolium chloride (Wang et al. 2007; Orr et al. 2016). These solvents are capable of 

lysing microalgae cell walls and microalgae vesicle membranes and thus favor the release of the 
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cell lipids (Wang et al. 2007). In conclusion, it is believed that the addition of a water treatment 

can allow to enhance lipid extraction efficiency, and thus improve the productivity of a biodiesel 

production process based on microalgae biomass. 

 Conclusion 

Through the modification of four classical lipids extraction methods this study clearly 

demonstrated that water treatment of biomass after the first solvent extraction phase favors the 

release of intracellular lipids in the second solvent extraction step. Total lipid extraction yield as 

well as intracellular lipid class ratios in the final extract were thus significantly increased by the 

water treatment. The neutral-to-polar lipid ratio is also greatly improved after the water treatment, 

and the preferable lipid component TAG showed being increased up to 130.8 % compared to the 

original extraction methods. H2O treatment between two-stage solvent extraction processes thus 

allows increasing the extraction efficiency, most probably through provide osmotic pressure to the 

cell membrane, which is already highly weekend from the use of ultrasound and solvents in stage 

one, thus help the release of especially intracellular lipids. The selection of the proper solvent 

system is crucial to the extraction process, because it may affect solvent penetration of the cell 

membrane and therefore lipids extraction.  

 List of abbreviations 

Chl/Met: chloroform/methanol  

Chl/Met/H2O: chloroform/methanol/H2O  

Dic/Met: dichloromethane/methanol  
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TAG: triacylglycerols 
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CHAPTER 7 GENERAL DISCUSSION 

This thesis, which focused on the algae platform Chlorella protothecoides, presented a 

metabolomic study, a kinetic metabolic model as well as a new approach increasing the efficiency 

of current lipid extraction methods. The metabolomic study confirmed the algae cell metabolic 

flexibility, comparing autotrophic, mixotrophic and heterotrophic culture conditions.  The 

modeling work, the first of this type, which allowed performing a dynamic metabolic flux analysis 

while drawing the intracellular carbon flow distribution, opens new perspectives for the evaluation 

of hypotheses and strategies for metabolic engineering work and bioprocess development. Finally, 

and taking all the above, by ameliorating current lipid extraction methods, this thesis has 

contributed with fundamental knowledge as well as technologies useful to the improvement of the 

lipid yield of the algae platform as well as to its commercial feasibility.  

1) Understanding metabolic regulation for improving lipid yield 

Lipid synthesis in the algae platform is a complex and highly interacting process, and the regulation 

of lipid synthesis could either favor or inhibit lipid synthesis pathways depending on a 

multifactorial set of culture and cellular parameters. Previous studies on metabolic regulation 

mechanisms in algae platform mainly focused on photosynthesis, with the Calvin cycle as the key 

regulatory pathway. It is regulated by the enzymes Rubisico (RuBisco), GAPDH (glyceraldehyde 

phosphate dehydrogenase), FBPase (fructose-1,6-bisphosphatase), SBPase (sedoheptulose-1,7-

bisphosphatase) and Ru5PK (ribulose-5-phosphate kinase). RuBisco is an important carboxylase 

that determines carbon assimilation rate. Moreover, it is also an indispensable oxygenase in 

photorespiration, which leads to carbon loss during carbon fixation thus reducing the carbon flow 

to carbohydrates (e.g. starch) and lipid accumulation. High concentrations of CO2 and adequate 

light intensity can enhance, however, the net carbon storages (i.e. starch, lipid), while also 

increasing carbon loss from increasing the carboxylase activity of Rubisco. 

Indeed, in the recent years, heterotrophic algae culture gained in attention for lipid production, 

since it presents advantages such as high final biomass concentration and lipid content (55 % of 

the dry weight) (Miao and Wu 2006). Although it was expected that an organic carbon source can 

serve as a more direct organic substrate to an algae, it was surprising that literature reports a no 

increase of lipid production under mixtrophic culture condition, with the two carbon sources CO2 

and glucose available. Therefore, we have conducted a metabolomic study to better understand the 
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role of adding an organic carbon source on the microalgae metabolism, focusing on lipid 

accumulation. This work (Ren et al., 2016) was published in Algal Research. It presents an in-

depth study of C. protothecoides response to glucose supplementation, comparing heterotrophic 

and mixotrophic modes to autotrophic culture mode. The observed changes in metabolite pools and 

energy charge demonstrate a clear effect of the carbon sources of the cellular response, which also 

affect lipid accumulation. We have also observed that the presence of glucose as a carbon source 

can substantially augment neutral lipid synthesis, while the metabolomic analysis showed that 

autotrophic growth favored starch synthesis. Glucose also affect the cells energetic state inducing 

a high ATP-to-ADP ratio, which is hypothesized to recalibrate a metabolic shift from starch to 

lipids accumulation. Therefore, novel data were thus disseminated on the role of glucose on the 

regulation of carbon flow and lipid synthesis in microalgae cells.  

2) Developing a dynamic in silico model as a tool for bioprocess optimization 

The previous work on the metabolomics effects of glucose-fed algae cultures stimulated to conduct 

a study specifically to better understand the heterotrophic culture condition. There are highly 

performant models in literature, basically macroscopic, dealing with nutrient limitation (mainly 

nitrogen), light intensity and temperature variation. Only few models considered lipid 

accumulation as a product. To the best of our knowledge, there is no mention in literature of models 

that describe the carbon flux distribution at the metabolic level. In fact, such metabolic model that 

combine both the environmental factor and metabolic information would further provide a unique 

tool to identify, through model simulations, optimal nutritional strategy to maximize lipid 

productivity (Cloutier et al., 2009). A model describing a metabolic network on duty (functional 

timewise) is thought to also provide a precise tool for the identification of key genetic manipulation 

hypotheses. We have thus developed a dynamic metabolic model adapted from a previous model 

originally developed for non-photosynthetic plant cells to describe the behaviour of the central 

carbon metabolism and cell behavior in heterotrophic Chlorella protothecoides cells. We here 

presented a first attempt which was constrained with the objective to limit model complexity. Since 

in this model type each flux is kinetically described using a Michaelis-Menten type equation, only 

the major pathways linking the substrate glucose to the global lipid synthesis pathway, such as 

glycolysis and pentose phosphate pathways and TCA cycle as well as lipid synthesis were 

considered, which thus limited the number of kinetic parameters. Cell energetics and redox state 

were thus not described in the model, and flux regulation was limited to that from metabolic 
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intermediates. The model structure and kinetic parameters were determined based on experimental 

data for heterotrophic growth obtained in Chapter four (4), minimizing an objective function for 

the simulation global error. The error minimization step implied performing a parameter sensitivity 

analysis, enabling to focus on the minimal set of sensitive parameters. Once calibrated, the model 

showed adequate to simulate experimental data for heterotrophic C. protothecoides culture. Then, 

model simulation output allowed performing a dynamic metabolic flux analysis of the algae 

biosystem. It was showed that high lipid yield is companied with high lipid flux and low TCA 

activity. Meanwhile, the dynamic flux distribution also suggest a robust and stable metabolism in 

Chlorella protothecoides with relatively constant ratio of glucose distributed to biomass, lipid, 

starch, nucleotide as well as pentose phosphate pathway. This work thus presents the first kinetic 

metabolic model applied to the algae platform, to the best of our knowledge, which provides a 

biologically relevant model of the cell metabolic dynamics. This model represents a valuable 

fundamental and bioprocess tool. 

3) Improving bioprocess lipid yield enhancing lipid extraction method efficiency 

Every step in a production bioprocess is important to reach maximum yield. We have first worked 

upstream acquiring knowledge and developing tools to enhance algae productivity, then we also 

put effort at downstream to maximize the efficiency of lipid extraction process. Classical and 

mostly used extraction methods consist of two successive solvent extractions. Our strategy was 

then to ameliorate lipid extraction efficiency by further disturbing the cell membranes integrity by 

adding a water step between the two successive solvent extractions. The new approach allowed 

over 100 % increase of the harvested lipids, and for the four most popular methods currently widely 

used. It showed water treatment of biomass after the first solvent extraction phase favors the release 

of intracellular lipids in the second solvent extraction step. Total lipid extraction yield as well as 

intracellular lipid class ratios in the final extract were thus significantly increased by the water 

treatment. The neutral-to-polar lipid ratio is also greatly improved after the water treatment. The 

addition of a water step also showed to favor TAG lipids, thus favoring the energy level harvested, 

since TAG is the precursor of final energetic product biodiesel. The highest TAG extraction yield 

by the modified method was of 73.7 µg/mg, while the highest TAG extraction yield by the classical 

methods was of 31.9 µg/mg. So, adding a water treatment step multiplies by a factor two the TAG 

extraction yield. Although we added an extraction step in our proposed method, less solvent is then 

required with increased yield. Our results can be applied as well using more “environment friendly” 
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“green” solvents as extractive phase (Salvo, 2011b). The vortex treatment such as the length of the 

treatment, the power of agitation, as well as its effect on the extracted lipids classes should also be 

included for further clarity of the single role of water treatment. Different solvents could also be 

used as substitute of water to verify whether water is the specific one that could help improving the 

extraction. Meanwhile, literature has recently become abundant proposing extraction procedures 

using fresh algae biomass oppositely to dry algae biomass in classical methods. This method 

modification can significantly lower the costs and fasten total required time of the downstream 

processing step, which are crucial issues to establish commercial feasibility of a bioprocess. Indeed, 

we have also validated our method modification showing enhanced extraction efficiency using 

fresh biomass. Therefore, although our new approach adds an extra step, the extra cost is thought 

counteracted by removing a biomass mechanical cell disruption pre-treatment step, can be applied 

using either dry or fresh algae biomasses, using less solvent as well as resulting in higher lipid 

yield. Taking all above-mentioned advantages adding a water treatment step, our method is 

expected to impact practices at laboratory and industrial scales, enabling to harvest more energy 

(i.e. that from lipid) that the energy requires in the whole bioprocess, a serious issue for industrials 

(Liu, 2013). 

 

 

  



121 

 

CHAPTER 8 CONCLUSION 

In this thesis, the dynamic metabolic profile and cell behavior of Chlorella protothecoides were 

studied under three typical culture modes, namely the heterotrophic, the mixotrophic and the 

autotrophic. Results showed the metabolomic status of this algae species was highly affected by 

the environmental culture condition, especially with or without feeding glucose. Glucose showed 

playing an important role both as a complementary organic carbon source to CO2 and as energy 

source. It induces a high energy gradient (ATP-to-ADP ratio), which directly stimulates algae 

metabolism towards lipids production rather than to carbohydrates such as starch accumulation. 

Furthermore, glucose also improved lipids and fatty acids composition in regards to biodiesel 

production. 

Based on such knowledge and conclusion, a model simulating Chlorella protothecoides cell 

metabolic behavior under heterotrophic condition and describing metabolic network flux kinetics 

was developed. Simulation results show satisfactory fit with experimental data with the minimum 

objective function value. A sustained high lipid synthesis metabolic activity was further confirmed 

from model flux analysis with higher lipid flux and lower TCA activity. Such model also provides 

a platform exploring hypotheses for genetic manipulations improving lipid production by, for 

instance, looking at re-directing TCA activity. Indeed, this in silico platform allows both exploring 

and questioning fundamental metabolic behavior then guiding experimental plan. Finally, it could 

be used as a tool to search for ‘‘optimal’’ culture management strategy guiding the management of 

the main nutrients concentration that affect lipid synthesis. 

In complement, we also ameliorated the lipid extraction method based on classical current methods. 

An intermediate treatment step using water in current lipid extraction methods was confirmed 

helping the release of intracellular lipids in the second and last extraction, which accordingly can 

clearly improve the final lipids extraction yield. In addition, the water treatment greatly improves 

NL-to-PL ratio, and positively modifies the lipid class ratios in the final extract, which favors 

selective extraction of TAG. The novel method thus provides an efficient way to improve lipid 

extraction yield of existing methods, as well as selectively favoring TAG, a lipid of the highest 

interest for biodiesel production.     

Therefore, this thesis presents a coherent set of complementary studies showing that a glucose 

addition strategy, identified using the kinetic metabolic model we developed, combined to the 
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ameliorated lipid extraction method could result in improved lipids yield and composition; all 

factors contributing to establish the economic viability of the algae platform to produce biodiesel. 
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CHAPTER 9 RECOMMENDATION  

We believe the metabolic model can become a central tool supporting the development and the 

management of an economically feasible biodiesel production using the algae platform.  

However, more work remains to be done for having a predictive model, and we are presenting 

below some research ideas to reach that ultimate goal. 

1. Adapt the heterotrophic model to autotrophic and mixotrophic conditions 

Since the specific character of the algae platform relies in its high photosynthesis efficiency, which 

can fix CO2 and thus contribute to solve the global warming problem, it would be of interest to 

adapt our heterotrophic kinetic model to autotrophic and mixotrophic cultures to compare flux 

distribution profile in different culture modes and get more information of lipid synthesis 

regulation, and have a clearer view on the specific advantages of the three culture modes. 

2. Expand the metabolic reaction network including key nutrients, such as inorganic ions, that are 

known to have a regulatory role on lipid production 

Some ions are known to play various roles in lipid synthesis, for example, from our metabolic study 

in which Mg2+ shows its importance under light and mixed energetic conditions. Mg2+ is essential 

for photosynthesis, so it is expected that the heterotrophic condition leads to less Mg2+ requirement. 

Therefore, the management of Mg2+ concentration can be seen as a way in the control of cultures, 

and a mathematical model may be used for that purpose. In the case of K+, it normally remains at 

a stable concentration in plant cells (Kant, 2002). However, K+ ion is involved in the transport of 

sugars into the storage organelle, and is promoting the synthesis of other storage materials (Kumar, 

2012). Therefore, adding this ion in the model as a nutrient factors could help to design a balanced 

nutrient strategy favoring lipid production. And there are many other nutrients that can be 

important, such as inorganic phosphate (Pi). 

3. Accounting for lipid classes 

There is storage lipid and functional lipid pools. Some lipid greatly accumulates under stressful 

environmental conditions, such as storage pools (mainly as TAG) that are of interest for biodiesel 

production, and membrane lipids, which could also be of interest although these require further 

chemical transformation to be biodiesels. Therefore, modifying the model for describing the 

specific pathways leading to major lipid classes can definitely enhance the value of the model.  
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4. Expand data sets of experimental data, both extracellular and intracellular 

Although very few studies have been reported with this large number of measurements for the 

intermediate metabolites of Chlorella protothecoides cells, such as in the present study, it would 

also improve model predictive capacity to include more detailed pathways on, for instance, 

nitrogen metabolism, and intracellular compartmentalization. However, to this end, there will be 

no choice to include cell energetics and redox states in the model. 

5. Appling the metabolic model in process simulation and control. 

To the long term, based on a model further developed as suggested above, using it as a tool, it will 

be the ultimate interest to evaluate the model capacity to support directed manipulation of the 

carbon flow favoring lipids and fatty acids synthesis. Such simulation platform would also be 

useful to design a nutrient fed-batch culture strategy for a balance between microalgae growth and 

lipids synthesis. Finally, the in silico platform may also be helpful guiding work for the 

identification of potential targets for genetic engineering.  
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