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Abstract The increase of interdependent components in avionic and automotive
software rises new challenges for real-time system integration. For instance, most
scheduling and mapping techniques proposed in the literature rely on the avail-
ability of the system’s DAG representation. However, at the initial stage of system
design, a dataflow graph (DFG) is generally used to represent the dependence
between software components. Due to limited software knowledge, legacy compo-
nents might not have fully-specified dependencies, leading to cycles in the DFG
and making it difficult to determine the overall scheduling of the system as well as
restrict access to DAG-based techniques. In this paper, we propose an approach
that breaks cycles based on the assignment of a degree of importance and that
with no inherent knowledge of the functional or temporal behaviour of the compo-
nents. We define a “criticality” metric that quantifies the effect of removing edges
on the system by tracking the propagation of error in the graph. The approach was
reported to produce systems (56 ± 14)% less critical than other methods. It was
also validated on two case studies; a data modem and an industrial full-mission
simulator, while ensuring the correctness of the system is maintained.

Keywords Execution order assignment · Real-time systems · System scheduling ·
System integration · Data criticality · Cyclic dependency · Directed acyclic graph

1 Introduction

When scheduling complex real-time systems, such as those encountered in the
avionic and automotive industries, engineers widely rely on a representation of the
system in the form of a directed acyclic graph (DAG). This is usually referred
to as a task graph in which nodes represent system components and edges, the
communication between them. A system component is an encapsulated entity
treated as a simple task and mapped and scheduled in the same manner. A DAG
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representation of a system is the basic input for various methodologies proposed
in literature. The motivation of these works vary from the analysis of system
performance and feasibility [3] to the optimization of the mapping and scheduling
of real-time systems [1, 4], to involving artificial intelligence to solve the issue of
real-time scheduling [17]. Some tools such as YARTISS [5] and STORM [31] use a
DAG as an input model to simulate the real-time behaviour of the system. In large-
scale system development, it is generally assumed that the DAG representation
is available at integration time. However, the reality on the industrial level says
otherwise. Legacy components and architectures are oftentimes not fully specified
which limits the availability of a DAG. Instead, the system representation is limited
to a generic model such as the one in Figure 1a.

A generic avionic subsystem is shown in Figure 1a with the edges representing
the flow of data between the components and the bubble stating the id. and rate
at which they are executed. These are among other characteristics specific to every
component that we formally define in Section 3. Scheduling this system becomes
tedious even under a simple application of Rate Monotonic scheduling (RMS)
with dependent tasks. However, with the DAG representation of the system in
Figure 1b, in which the cycles are removed, one possible schedule for the system
under a pre-emptive RMS can be achieved as in Figure 1c and further methods
to optimize certain objective metrics such as the throughput or the energy of
the system become possible; an option that was very limited with the graph of
Figure 1a.

The inability to identify the execution order of the system components at
integration time is a consequence of many scenarios, one of which is expecting
engineers from different domains, such as mechanics, electrical engineering, etc.,
to be experts in their fields as well as software engineering. Moreover, due to the
complexity of these systems, code is repeatedly reused to decrease time-to-market
and cost of software testing. On top of this, the system design sometimes requires
the use of an Original Equipment Manufacturer (OEM)’s product which generally
comes in the form of a binary component accompanied with a file to describe the
component’s inputs and outputs, often without specifying the inter-dependence
nor the latency of a component. In all of these cases, the system components
are viewed as black boxes which makes it difficult to gather concrete information
about the components, unless specified by the designer. This limits the integration
experts’ accessibility to the system’s task graph.

To model such systems, a dataflow graph (DFG) is employed to represent
the dependence between components as well as the amount of data exchanged.
However, different components are interconnected in such a way that their com-
putations depend on the data generated by other components. This naturally
creates cycles within the graph which complicates the scheduling process, as well
as precedence assignments that schedulers will have to take into consideration.
Furthermore, the existence of cycles in the system puts a hindrance to the appli-
cation of many analysis tools and optimization techniques that are available for
acyclic directed graphs.

Generally, integration engineers rely on the feedback of legacy component de-
velopers and their own expertise and knowledge of the components individual
functionality acquired through the years to split the cycles. Alongside integration
problems, this creates issues in other disciplines such as co-simulation. For the
purpose of system verification and validation, different components are simulated
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(a) DFG representation of the system with cyclic dependences.
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(b) DAG representation of the system after cycle breaking.
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Fig. 1: Analysis and scheduling of a simple avionic system.
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using varied technologies. If we look at a simulation of an avionic system as an
example, the tools used to simulate the electrical system are different from those
that simulate the aerodynamics. In some cases, parts of the system are physi-
cally available, however presented as black boxes and engineers are required to
co-simulate the rest of the system with limited knowledge about the components.
The presence of cycles in the overall mapping of the system drives engineers to rely
on recursive techniques to reach sound simulation results. Having a good initial
configuration to the recursive process could reduce the design time extensively.

One popular approach to model systems that involve cyclic dependences is
Synchronous dataflow graphs (SDFs). The authors of [30] presented a modular
approach to analyze system performance that was applied directly to a cyclic SDF.
The scheduling of an SDF was optimized in [6] using evolutionary techniques by
considering the limitation of the size of the scratchpad memory. Although these
approaches yielded good results, this model decreases the scope of approaches
that study real-time systems since it excludes approaches based on DAGs. To this
endeavor, other works [27, 29, 32] have been proposed to unfold an SDF into a
DAG by simply discarding the edges that contained delays. This makes DAG-
based approaches to analyze and optimize the system accessible. For all that,
these methodologies cannot be adapted to the problem that we presented so far
for the sole reason that the edge property, delay, encountered in SDFs is among the
metadata that are not available at integration time as discussed in the previous
scenarios.

In this paper, we put forth an approach to transform a DFG with cyclic data
dependencies into a DAG, with no inherent knowledge of the function and be-
haviour of system components for the purpose of opening access to DAG-based
techniques. In here, we focus on simulations of real-time systems and systems
such the informatics in automotive systems which are comprised of components
with soft deadlines and scheduled under static schedulers. This is the case since
certain standards are enforced when scheduling these types of real-time systems.
Especially with the prevalence of the Integrated Modular Avionics (IMA) [20]
to design avionic systems, static scheduling policies are preferred and sometimes
imposed to enforce predictability in the system.

The approach we propose here is based on the idea of error propagation to elim-
inate cycles. We introduce a concept that describes the importance of data, which
we label criticality, in which the effect of removing a certain edge is quantified as
a characteristic of the data being carried by the edge. This is a key component in
deciding which edges to discard and transform the DFG into a DAG.

The rest of the paper is structured as follows: Section 2 summarizes the work
that has been proposed in literature to solve this issue; Section 3 gives a description
of the system model. The approach to eliminate cycles based on criticality is
detailed in Section 4 followed by a motivational example; The results obtained
from a set of experiments and two case studies are reported in Section 5; Finally,
conclusions are given in Section 7.

2 Related work

One of the important parameters that characterizes tasks in real-time system
scheduling is their priority assignment. This, alongside task precedence constraints,
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could decide the schedule that drives the execution of the system. The assignment
is generally attributed with a performance objective in mind decided by the de-
signer when building the system such as schedule length, schedulability, etc.

Different approaches have been proposed to schedule the system and assign
priorities with task dependences in mind. The authors in [25] and [21] tackled
the issue from a mapping point of view in which a Genetic Algorithm (GA) was
employed to allocate dependent tasks and assign priorities on a multiprocessor
system. The Distributed by Optimal Priority Assignment (DOPA) heuristic was
proposed in [9] to address both the problem of finding a partitioning configuration
and a priority assignment for tasks on a core that ensures the tasks don’t miss
their deadlines. The problem is extended to Network-On-Chip (NoC) systems in
the work of Liu et al. [18] who proposed a dependency-graph based priority as-
signment algorithm (eGHSA) targeting NoCs with shared virtual-channels. On the
other hand, the works in [7, 14, 19] relied on the system topology and focused on
the basic idea that priorities should be chosen by the node’s relative importance.
In [15, 16], the concept of Global Critical Path is introduced which extends the
top-level and bottom-level strategies by considering the critical path in the graph
(the longest path from the source to the exiting node) and its branch paths. Sin-
nen et al. [26] proposed multiple extensions of the previous schemes to include
communication contention and the number of successors. Be that as it may, the
constant assumption seems to be that a graph representation of the system as a
directed acyclic graph (DAG) is available. Other models that include cyclic de-
pendences were proposed to bypass the issue of DAG inaccessibility. The work
in [11] extended TTIG (Temporal Task Interaction Graph) [22]; a different model
from a DAG that models cycles and bypasses some of the drawbacks of using
a DAG. However, the cycles within this model were viewed as special nodes re-
ferred to as Composite Nodes to facilitate computation of path execution times
and the presence of cycles was not dealt with head-on. A similar approach was
proposed by Sardinha et al. [24] in which cycles were included in a special group
called Strongly Connected Components (SCC) to facilitate mapping of tasks onto
a number of processing elements. The authors in [23] proposed a modified Depth
First Search (DFS) algorithm that splits the cycles. Yet, once again, the assump-
tion was that all edges are of the same importance and the focus of the paper was
on shortening the critical path of the resulting DAG to reach a better makespan
for scheduling the DAG. The presence of cycles in attack graphs in the field of
cyber security was addressed by Huang et al. [12] in which the authors identify
two types of cycles; the ones that cannot be executed irrespectively of which edge
was removed and hence discarded the cycle, and those that cannot be removed.
The approach relies on the functionality of the nodes and characteristics specific
to security modules to remove the cycles and hence cannot be generalized to other
scenarios from different domains.

In this work, we set forth a methodology to break the cycles in a dataflow graph
with no inherent knowledge of the components behaviour or execution times that
relies on a definition of data criticality.
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3 System Model

In this paper, we deal with systems similar to full-mission simulators (FMS) in
which system components are viewed as tasks with execution times, deadlines and
execution rates, and thereby mapped and scheduled as a generic taskset. To be
able to visualize the system, better understand the dependencies and build our ap-
proaches on mathematical grounds, we define two types of graphs; the dependence
graph and task graph.

Due to the partially specified components, the dependence graph represents the
system at its raw state. The exchange of data between components is used to track
the intra-component communication and build the dependence graph. Note that
the components that depend on the data produced by other components do not
wait for said data to be generated to start executing. Rather the data is accessed
through a shared memory. This, in turn, implies that, depending on the schedule,
the data read by a component at a point in time could be possibly out-dated. This
is another reason synchronous dataflow graph are not suitable to model our system
since the nodes or actors in a SDF wait on certain tokens to start executing. For
such, we choose to rely on a generic DFG to model the dependence graph.

On these grounds, we model our system’s dependence graph with a dataflow
graph G = (V,E) where the nodes V = {t1, t2, ..., tn} represent the components
that make up the system and E = {e11, e12, ..., ekp}, the set of edges eij that link
components ti and tj . It is worth noting that self-loops, defined as data generated
by a component and read by the same component, are ignored since they have no
effect on the execution order of the components.

The common representation of systems found in literature is that of a task
graph, onto which we aim to transform the above defined DFG. A task graph
is a directed acyclic graph, G̃ = (Ṽ , Ẽ), in which the nodes Ṽ = {τ1, τ2, ..., τn}
represent a job instance of the component V . A job τi is characterized as a tuple
{Idi, Ci, di, Ti} defined as the identifier, execution time, absolute deadline, and
period respectively. The edges Ẽ represent the precedence between the jobs and
describes the constraint on the execution order of the jobs.

As can be seen from Figure 1a, component communication does not imply iden-
tical periodicity. In other words, two components communicating with each other
does not necessarily translate to them executing at the same rate. This charac-
teristic is important to identify especially when certain schedulers are considered.
With scheduler policies that rely on task deadlines and periods to assign priorities,
multiple components are assigned the same priority in execution and the number
of tasks with the same priority becomes large as the system grows in size. If we
take as an example a taskset with three tasks (t1, t2, t3) with periods {16, 32, 16}
respectively, and we schedule them under a Rate Monotonic scheduler, the RMS
algorithm will assign priorities P = 2 for task t2 and P = 1 for both tasks t1
and t3. The need to assign execution orders for tasks with similar priorities be-
comes necessary when scheduling a dependent set of tasks in which precedence is
a constraint.

Furthermore, we argue that analyzing the overall system to break all cycles
is unnecessarily time-consuming since data produced by components with shorter
periods can be consumed at a later time by the components with larger periods.
Component Spoilers in Figure 1a for example might produce data every 10 (ms).
However, Hydraulic only consumes the data once every 40 (ms) making it irrel-
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Fig. 2: The effect of splitting a cycle in a real-time system.

evant whether Hydraulic is consuming the data generated in the first period of
Spoilers or the last.

4 Graph Transformation Through Data Criticality

The graph transformation refers to breaking the cycles present within the depen-
dence graph to be able to schedule the resulting task graph. In the context of
scheduling soft real-time systems, cycle breaking involves the decision of which
components can tolerate delay. Our approach relies on the definition of a new pa-
rameter that characterizes the data exchanged between the components that we
label data criticality.

4.1 Error Propagation Approach (EPA)

Data criticality comes from the understanding that some data generated by some
components are more important than other data. In here, the importance of data
expresses how affected the system would be if the data were erroneously computed.
Since our problem is a scheduling issue, in which the system components are
scheduled in a certain order within one time period, breaking cycles by removing
edges in the graph does not involve loss of data but rather results in one of the
data generated to be “out-dated”. This is to say that when edge eij is removed, the

kth job τ
(k)
j of the component at the tail tj will use data generated by component

ti in the previous time period, τ
(k−1)
i , to complete its inner computations. This

can be observed in the example shown in Figure 2.
Since the system components are viewed as black boxes and the knowledge of

the interactions of input and output variables within a component is unavailable, it
is difficult to determine which components can tolerate out-of-date data. For such,
we label the data generated by a component that is using outdated information
as “faulty data”. By modelling this behaviour as an error injection mechanism,
we propose a method that computes the criticality of the data based on the prop-
agation of the error within the system graph and that with no knowledge of the
components’ functionality. This involves four steps:

1. Extraction of all graph cycles;
2. Calculation of the rate of error propagation within the system graph from every

component in the cycles;
3. Assignment of criticality weights to the data flowing inside the cycles;
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4. Removal of appropriate edges to break the cycles.

In the following, we detail every step and provide insight into their implemen-
tations.

4.1.1 Cycle Extraction

A simple cycle is defined as a path Γc = {t1, t2, ..., tk} in which the head node is
the same as the tail node with no repetitive nodes or edges, except for the head
and tail nodes. We implemented an algorithm based on the work presented in [13]
to extract the cycles present in the graph G. The time complexity of this algorithm
is reported as O((n+ e)(c+ 1)) for a graph with n nodes, e number of edges and
c number of simple cycles.

4.1.2 Error Propagation

By adopting the definition that removing an edge translates to a component using
old data and hence generating faulty data, the algorithm follows the propagation of
this erroneous data within the graph. Although we can easily follow the dependence
between components given a dependence graph, there is no definitive way to track
the dependence of a component’s outputs to its input variables unless provided by
the designer.

To avoid making assumptions about the components, an element of stochas-
ticity is introduced. The behaviour of the erroneous data when consumed by a
component can have two behaviours within a component.

– State A in which the error disappears if the faulty data gets overwritten by the
component’s inner calculations. A simple example of this is the case in which
the faulty variable x is initialized if certain conditions are fulfilled.

[..]

if (Conditions == True) do:

x = x_0

end if

z = x - 10

[..]

– State B in which the error propagates to other output variables that include
the faulty variable x in their computations as a function f(x), which allows
the error to propagate from the component to the components of the system
that directly depend on it.

[..]

y = x^2 + z

if (Conditions == True) do:

x = x_0

end if

[..]
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We define Ai as the event of component ti producing an error in which:

Ai =

{
1, if the error is propagated.

0, if the error is masked.
(4.1)

The problem can be viewed as a set of Bernoulli trials in which every component
has the probability of internally propagating an error defined as:

Pr(Ai) =

{
pi, if Ai = 1.

qi, if Ai = 0.
(4.2)

where pi represents the probability of a component propagating an error from
its inputs to its outputs, and qi = 1 − pi, the probability of masking the error.
This is not to be confused with the probability of a component generating or
containing a software bug since the components are assumed to be bug-free at
integration time.

We define Pred(ti) and Succ(ti) as the list of predecessor and successor com-
ponents of ti respectively. Assuming that Pred(ti) = {tj}, the observation of an
error at the output of ti depends on tj

Pr(Ai = 1|Aj = 1) = pi,

P r(Ai = 1|Aj = 0) = 0

We want to find the probability of a component propagating an error to its
successor dependants with the probability of the error having propagated from its
predecessor components. In other words, it is the probability of events Ai and Aj
having occurred, where tj ∈ Pred(ti) and tj /∈ Succ(ti).

The unconditional probability of ti propagating an error is

Pr(Ai = 1) = Pr(Ai = 1, Aj = 1) + Pr(Ai = 1, Aj = 0)

= Pr(Ai = 1|Aj = 1)Pr(Aj = 1) + Pr(Ai = 1|Aj = 0)Pr(Aj = 0)

= Pr(Ai = 1|Aj = 1)Pr(Aj = 1)

= piPr(Aj = 1)

(4.3)

Events Aj are independent, however, they are not mutually exclusive since
components tj can contain and propagate an error at the same time. For more
than one predecessor component, Equation 4.3 can be generalized as

Pr(Ai = 1) = Pr(Ai = 1, (∪tj∈Pred(ti)Aj = 1)) (4.4)

In the case that ti has no predecessors, we are dealing with the faulty com-
ponent at which we are injecting the error and the probability of propagation is
Pr(Ai = 1) = 1. A weighted graph Ω(tx) = (V, ω(tx)) is built by calculating the
probability of error propagation from the faulty component tx to all its directly
and indirectly connected components by assigning weights ωij(ti) to the edges
carrying the data. The algorithm is summed up in these steps:
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Fig. 3: Direct and Indirect Error Propagation results in weighted graph Ω(t9).

Step 1. Given a cycle Γ , an edge eli is selected to study the effect of its
removal on the system. The component at the tail of the edge is assumed to be
the faulty component and the data it generates as erroneous. We calculate the
direct error propagation by looking for the component directly connected to
the faulty component and assign a weight ωij(ti) = 1 to the edges connecting
the faulty component ti to its successor components tj | tj ∈ Succ(ti).
Step 2. Once the direct error propagation is assigned, we calculate the indi-
rect error propagation by employing Equation 4.4 considering the components
tk that depend on the faulty component through other intermediate compo-
nents and assign weights ωjk(ti) = Pr(Aj = 1) to the edges connecting these
components to the intermediate components.
Step 3. We rely on a Breadth First Search (BFS) to look for lower level
components that indirectly connect to the faulty component and repeat Step
2 until the last dependent component is reached and appropriate weights are
assigned to the connecting edges. The result is a weighted graph Ω(ti) with the
probabilities of the error propagating from the designated faulty component
ti.

Figure 3 represents part of the system of Figure 1a and gives a visual example of
how Equation 4.4 is used when we track the propagation of error from component
t9 to the rest of the subgraph. We can see that the directly dependent component
t3 will have a probability of p̂9 = 1 to receive faulty data at its input. To calculate
the probability of indirect propagation of error from component t3 to [t2, t5, t10],
we use Equation 4.3 as

Pr(At3 = 1) = Pr(At3 = 1|At9 = 1)Pr(At9 = 1)

= pt3Pr(At9 = 1)

= pt3

The same is done for the probability of the error propagating from compo-
nent t2. Considering that t2 depends on both t3 and t5, the probability of the
error propagation Pr(At2 = 1) is the probability of event At2 occurring with the
probabilities of events At3 and At5 having occurred respectively in which case
Equation 4.4 will be employed.



Scheduling Real-Time Systems with Cyclic Dependence Using Data Criticality 11

1 2 

6 7 

5 4 

3 

L1 L2 L3  L1 L2 L3  L1 L2 L3  L4 
C

u
m

u
la

te
d
 E

rr
o

r 
P

ro
p
a

g
a

ti
o

n
 Node-1 Node-2 Node-6 

Dataflow Graph Levels 

Fig. 4: Example: CEP for three different nodes

4.1.3 Cumulated Error Propagation

Once the error propagation probabilities of a faulty component are calculated, the
result is a weighted graph Ω(ti) for every edge that belongs to a cycle as in the
example graph of Figure 3.

The amount of propagation of an error in the system determines the global
effect of removing an edge on the system. To quantify this effect, a cumulated
error propagation (CEP ), that expresses the criticality of data, is calculated as

CEP (tx) =
∑

i,j∈Ω(tx)

ωij(tx) (4.5)

The example shown in Figure 4 illustrates how the error accumulates as it
spreads in the system DFG when it transfers from one level to another for different
faulty nodes of the same graph. A level is defined as a subset of components which
have an equal number of hops (i.e. longest distance) to the root component; ti. For
the example given in figure 3, both components t5 and t10 are at level 2 whereas
component t2 is at level 3.

Figure 4 shows that the CEP is not affected by how deeply the error spreads
through the graph, but rather by the outdegree centrality of the studied compo-
nent. This is the case since the probability of an error propagating is higher at the
first levels and becomes lower as we go deeper and further from the root faulty
component since the faulty data have more chances to be overwritten. That is
to say that the denser the levels directly connected to the faulty component, the
higher the CEP is going to be.

Given this definition, the component within the cycle with the minimum CEP
has the smallest effect on the system, which will decide the edge to be remove to
break the cycle.

4.1.4 Minimum Feedback Arc Set with Criticality

Our proposed approach described so far is only concerned with breaking the cycles
by removing the edges that carry the least critical data within a cycle. However,
in most cases, an edge belongs to more than one cycle. Hence, removing an edge
from a cycle might also break other cycles. This means that the number of edges
that are to be removed is:
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Algorithm 1: Error Propagation Approach (EPA): Cycle breaking algo-
rithm based on data criticality.

Input: A dependence graph G = (V,E).

Output: A transformation of G to a task graph G̃.
1 Load the dependence graph G;
2 Cycles = simple cycles in G;
3 for cycle in Cycles do
4 for edge in cycle do
5 Calculate probability of error propagation Pr(Ai = 1) from component tx;
6 Assign probability to edge weights ωij(tx) ;
7 Build weighted graph Ω(tx) with error propagation probabilities;
8 Attribute the Cumulated Error Propagation CEP (tx) to edge;

9 end
10 Add edge with minimum(CEP) to Temporary Edges list;

11 end
12 Calculate “popularity” of edges in Temporary Edges;
13 Sort Temporary Edges according to popularity;
14 while Cycles do
15 Add Popular edge to the Removed Edges list Υ ;
16 Update Temporary Edges and Cycles lists ;

17 end

18 Remove edges ẽij ∈ Υ from G̃.

∑
eij∈Υ

eij ≤ c (4.6)

where c is the number of simple cycles in the graph., and Υ the set of removed
edges.

To optimize our approach, we address the problem as a Minimum Feedback
Arc (MFA) set problem. This refers to a set of NP-Hard problems that take a
non-polynomial time to find the minimum number of edges to remove in order to
break all cycles.

Since our main concern is removing edges based on the criticality of data they
carry, solving the MFA problem is out of the scope of this paper. Nonetheless, we
want to base the decision of removing edges on data criticality while reducing the
number of edges that could break all cycles. For this purpose, we introduce the
concept of “popularity” among edges. We define the “popularity” of an edge eij
as the frequency of appearance f(eij) of an edge in the cycles Γc. Formally,

f(eij) =
∑

eij∈Γ f
c

eij (4.7)

Accordingly, we extend the criticality based solution to lower the number of
removed edges by first sorting the set of edges that EPA suggested to discard and
then remove the most popular edges one by one until all cycles are broken (12−17).

Algorithm 1 summarizes the methodology to break cycles within a dependence
graph that relies on data criticality and consequently transforms the DFG into a
DAG. The algorithm has a time complexity of O((n + e) · ce) for a graph with
n components, e number of edges and ce number of total edges in c number of
simple cycles.
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(a) Cyclic Dataflow Graph.

 

 

 

 

 

 

 

 

 

 

  

t3 

t5 t1 

t2 

t9 t10 

1.0 0.13 

0.13 

0.13 

0.035 0.148 

0.102 

(b) Error propagation after re-
moving edge e10,9.
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(c) Transformed Directed
Acyclic Graph.

Fig. 5: Dataflow graph transformation of an avionic subsystem with components
executing at a rate of T = 10ms.

4.2 Motivational Example

In order to demonstrate the EPA approach to break cycles and how the concept of
data criticality is employed, we apply EPA to the example of a simple avionic sys-
tem presented in Section 1. Keeping to the same example, the goal is to schedule
the system under a Rate Monotonic scheduler and hence we only consider the sub-
graph with components executing at a rate T = 10(ms) to reduce the complexity
(as explained in Section 3).

The dependence dataflow graph in Figure 5a represents this subgraph that
consists of 6 interconnected components. We can see that the graph has three cycle;
Γ1 = {t3, t9, t10}, Γ2 = {t3, t2, t1}, Γ3 = {t3, t5, t2, t1} that need to be broken in
order to transform the DFG into a DAG. Table 1 summarizes the probability
Pr(Ai) of every component to propagate an error from its inputs to its outputs.

Table 1: Probability of a component propagating an error from its inputs to its
outputs.

Component t1 t2 t3 t5 t9 t10

Pr(Ai) 0.69 0.92 0.13 0.27 0.32 0.52

Applying the (EPA) approach, Figure 5b illustrates the spread of the error
through the graph when edge e10,9 is removed. Considering the problem defini-
tion presented in Section 4.1, removing edge e10,9 translates to injecting a fault at
component t9. The weight of the edges represent the probability of the error prop-
agating from a component to its dependent components. Thus, the probability of
the error spreading from component t9 to its directly dependent component {t3}
is Pr(A9 = 1) = 1. For the sake of illustration, we calculate here the probability
of error propagation from component t5:
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Pr(A5 = 1) = Pr(A5 = 1|A3 = 1)Pr(A3 = 1)

= Pr(A5 = 1|A3 = 1)Pr(A3 = 1|A9 = 1)Pr(A9 = 1)

= p5 × p3 × 1

= 0.035

The general formula of Equation 4.4 can be illustrated by calculating the error
propagation from component t2 as follows:

Pr(A2 = 1) = Pr(A2 = 1, (A3 = 1) + (A5 = 1))

= Pr(A2 = 1|(A3 = 1) + (A5 = 1))Pr((A3 = 1) + (A5 = 1))

= p2 × (Pr(A3 = 1) + Pr(A5 = 1)− Pr(A3 = 1)Pr(A5 = 1))

= 0.148

As can be seen in the weighted graph of Figure 5b, the probability of the error
transferring to components in the lower levels decreases gradually as the error has
more chances of being nullified. This, however, highly depends on the topology of
the graph since the probability of a heavily connected component to propagate
an error will be relatively greater than its less connected neighbours even if it is
furthest from the faulty component as is the case with t2.

Table 2: CEP for edges in the overlapping cycles Γ2 and Γ3 and non-overlapping
cycle Γ1.

Γ1 Γ2 Γ3

Edge e9,3 e3,10 e10,9 e2,1 e3,2 e1,3 e3,5 e5,2
CEP 5.344 1.495 1.674 1.514 1.955 4.876 2.776 2.021

Given the resulting weighted graph of Figure 5b, Equation 4.5 is employed to
calculate the CEP (t9), which represents the criticality of the data carried by the
removed edge. In the same manner, the algorithm will calculate the CEP of the
edges constituting the cycles [Γ1, Γ2, Γ3] as summarized in Table 2. Considering
this, edges e3,10 and e2,1 produce the smallest CEP which means that removing
these edges will have the smallest effect on the overall system. This results in the
directed acyclic graph of Figure 5c and by extension, the graph of Figure 1b.

5 Error Propagation Approach: Experimental Evaluation

For the purpose of assessing the efficiency of the EPA methodology, we conducted a
set of experiments to compare the approach with two other cycle breaking solutions
in terms of system criticality. System criticality refers to the effect of removing a
set of edges on the overall system. This is defined as the maximum cumulated
error propagation throughout the system as a result of removing a set of edges Υ
and is formally defined as,
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SysCrit = max
eix∈Υ

CEP (tx) (5.1)

An industrial avionic system was taken as a reference in the choice of param-
eters of these experiments. The average number of components that constitute
the system as well as the graph structure of this case study were inspiration to
generate the set of graphs and scenarios described below.

To ascertain that EPA does not operate haphazardly, the first approach is a
random algorithm that removes a random edge from a cycle one step at a time
until a DAG is obtained. The other approach is a minimum feedback arc set
approximate solution. We mentioned before that finding the minimum number of
edges to break all cycles in a graph is a NP-Hard problem. We implemented the
approach proposed in [8], henceforth labelled MFA, that approximates the number
of removed edges to break all simple cycles to the optimal minimum number.

For the purpose of these experiments, the graphs were generated using the
Networkx 1.11 package [10], by taking two characteristics into account: Density
and connectivity degree. Density refers to the total number of the nodes making
up the graph. Connectivity degree is the ratio between the number of nodes and
the total number of edges. The graphs were generated by adding nodes one at a
time with an edge in either directions to one previously added node, chosen with
a uniform probability.

In here, 12 scenarios were considered in which 30 random graphs were generated
for every scenario with densities ranging from 10, 50, 100 to 150 nodes and 3
different degrees of connectivity with ratios [0.10, 0.25, 0.50]. The generated graphs
had c number of cycles in the range c ∈ [1, 6000]. These numbers were inspired by
a real case study of a full-mission simulator (FMS) in which the average number
of system components ranges from 50 to 120.

Figure 6a shows the system maximum CEP for graphs with different densities
and connectivity ratio of 0.10. Although the performance of the algorithms are
comparable when the density of the graphs are at 10 nodes, we notice that EPA
outperforms the other methods in terms of system criticality as the density of
the graphs grows. It can be seen that the Minimum Feedback Arc set solution
decreases in performance and produces the most critical systems with an average
SysCritMFA ∈ [2.5, 3.5] as compared to the random and EPA approach with
SysCritEPA ∈ [1.8, 2.3] .

The same set of observations are noted when the connectivity between nodes is
increased as shown in Figure 6b. We notice that the criticality of the system is much
higher than the previous scenario, with an average SysCritEPA ∈ [2.2, 3.8], which
is expected since increasing connectivity results in a more connected network and
the components being more dependent on each other, which increases the chances
of an error propagating to a higher number of components.

Increasing the connectivity of the nodes to the a connectivity ratio of 0.50 in
Figure 6c results in the MFA performing slightly better than the random algorithm
with SysCritMFA ∈ [4.3, 13.8]. However, the same scenario results in a much
superior performance from the EPA as compared to the previous scenarios with
SysCritEPA ∈ [2.3, 8.4].

We employed the Wilcoxon statistical test to confirm whether the results ob-
tained for EPA and MFA had identical distributions. The test yielded a maximum
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(a) 1st degree of node connectivity

(b) 2nd degree of node connectivity

(c) 3rd degree of node connectivity

Fig. 6: System CEP for different node connectivity degrees
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Table 3: Number of removed edges as connectivity grows.

G50 G100 G150
Connectivity Alg. Min Mean Max Min Mean Max Min Mean Max

1st degree
EPA 1 1 3 1 1 2 1 1 1
MFA 1 1 1 1 1 2 1 1 1

2nd degree
EPA 1 2 4 1 2 4 1 2 7
MFA 1 1 3 1 1 3 1 2 5

3rd degree
EPA 1 5 14 1 8 21 3 14 27
MFA 1 3 6 1 4 6 2 5 9

p-value = 2.9 · 10−3 which allows us to reject the null hypothesis H0 of identical
means.

The observations reported so far could be attributed to the fact that the main
objective of the MFA solution is to minimize the number of removed edges. It
would make sense that the most connected edge will be chosen by MFA to be
removed. Yet, EPA will avoid these type of edges since the criticality of central
edges will increase because of component dependencies.

Table 3 summarizes the number of removed edges for EPA and MFA as the
connectivity degree increases. We can see that for a connectivity ratio of 0.50
and high density graphs, EPA discarded double to triple the number of edges
removed by MFA. However, the system criticality was still observed to be lower for
EPA than MFA as shown in Figure 6c, which supports our previous explanation.
MFA removes the least number of edges but the most critical as opposed to EPA,
which removes a larger number of least critical edges. That being said, for less
connected graphs, the number of edges removed for EPA and MFA does not differ
significantly with less critical systems in the case of EPA as seen from 6b. This
could be explained by the lower degree of connectivity as well as the fact that EPA
includes a step to minimize the number of removed edges.

6 Case studies

6.1 Voice-band Data Modem

The first case study represents a voice-band data modem [2] as shown in Figure 7.
This application was selected since it contains cyclic dependencies and is often
employed as a benchmark to validate emerging research scheduling techniques for
soft real-time systems. The graph of the modem consists of 15 components and
has 5 cycles in total. Although the potential schedule start and finish points (IN,
OUT) are obvious, regardless of whether their functionality is known or not, the
schedule encounters a cyclic execution once it reaches the component (Eq). For
such, we employ EPA to decide which edge(s) to disregard and thus, define the
order in which the components will be executed. For the sake of brevity, we only
show the results obtained by running the EPA algorithm on one of the cycles.
Table 4 summarizes the date criticalities (CEP) when studying the edges in the
cycle Γ = {Eq, Mult2, Dec, Mult}.

From Table 4, we can see that in order to have the least critical system, EPA
suggests the removal of edge e(Dec,Mult) to break the cycle Γ . Running EPA on
the rest of the cycles yielded the set of edges {e(Mult,Eq), e(Dec,Fork)} as the
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Fig. 7: The directed graph of a voice-band data modem.

Table 4: CEP for edges in cycle Γ

Component Edge CEP

tEq e(Mult,Eq) 3.00
tMult e(Dec,Mult) 2.44
tDec e(Mult2,Dec) 6.34
tMult2 e(Eq,Mult2) 4.12

candidate edges to remove to transform the graph in Figure 7 into a DAG. From a
functional point of view, the choices made by EPA do not jeopardize the correctness
of the system since the component (Dec) is the decision module and is supposed
to execute last in the loop. This solution agrees with many scheduling solutions
found in literature for this benchmark [2, 28].

6.2 Full-Mission Simulator

Full Mission simulators are mixed-critical systems comprised of components with
hard and soft deadlines. Although our approach focuses on soft real-time systems,
in this section, we want to validate the accuracy of the scheduling assignment
when EPA is applied.

Our case study involves an industrial FMS scheduled under a modified version
of RMS that consists of two subsystems: Sub1 and Sub2 consisting of 9 and 13
components respectively. The two subsystems are interconnected but the compo-
nents within each subsystem execute with different rates from the components of
the other subsystem. This means that the EPA algorithm operates on the two sub-
systems separately. It is worth noting here that the current schedule with which
the industrial FMS is executed was implemented by integration engineers whom
take advantage of their prior expertise in the different fields and the knowledge
of the components functionality, as well as, trial and error to achieve the current
working state of the simulator.

In order to compare the accuracy of the system generated by EPA, we observe
the accuracy of the scheduling obtained from the DAG after the transformation
of EPA and the current schedule of the FMS that we label the real schedule. We
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define Accusched(ti) as the degree to which the EPA scheduling matches the real
schedule for every component ti as follows:

Accusched(ti) =
PredEPA(ti)

PredReal(ti)
(6.1)

Where:

PredReal(ti) represents the number of components that are scheduled before
component ti and;

PredEPA(ti) represents the number of predecessor components that EPA sched-
uled before component ti and were scheduled as predecessors in the real schedule
as well.

Due to confidentiality agreements, we are unable to include the full details of
the experiments conducted in this case study. However, we provide the outcome
of the experiments henceforth.

The results obtained are summarized in Figure 8 in which the schedule accuracy
obtained for both Sub1 and Sub2 following the definition in Equation 6.1 are
plotted. We can see that although the two schedules are not identical, the accuracy
of the scheduled DAG obtained after EPA is relatively close to the real schedule for
both subsystems. In this case study, we blindly trusted the schedule provided with
the full-mission simulator (the real schedule) to be the ideal schedule. However,
the real schedule sometimes gives higher execution orders to certain components
even when there is no precedence requirements to be met. This can occur if other
objectives are in play such as load balancing. We argue that the values provided
in Figure 8 are lower bounds and that the average accuracy of the EPA schedule
would increase if these cases were overlooked.

It is a good place to remind the reader that the current schedule is obtained
manually after a rigorous trial and error process that involves expertise from dif-
ferent fields. The fact that EPA could result in an average accuracy of 79% without
requiring the knowledge of the functionalities of the components is very promis-
ing, especially when dealing with such complex systems. The solution becomes
more appealing to co-simulation design and early stage integration of components
coming from different sources and that is by providing starting configurations that
could help accelerate the process and reduce time-to-market.

7 Conclusions

Our work was driven by the current state of complex software development in
avionic and automotive industries. The lack of software and architecture specifica-
tions prompted us to propose an approach that offers access to the system’s task
graph with no inherent knowledge of the components functionality. In this paper,
we presented a methodology that makes it possible to schedule soft real-time tasks
after transforming the system’s dataflow graph onto a task graph by assigning crit-
icality levels to the data exchanged based on the idea of error propagation. This
in turns opens access to DAG-based tools and techniques with limited knowledge
about the target system. We demonstrated the efficiency of the algorithm to break
cycles based on data criticality which produced the least effect on the system. As
a matter of fact, the approach was able to deliver systems with criticality levels
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(a) (b)

Fig. 8: Schedule accuracy for the components in (a) subsystem Sub1 and (b)
subsystem Sub2

(56 ± 14)% lower than other cycle breaking algorithms. Since adding new com-
ponents affects the view of the system and thus increases integration cost, the
approach proposed here offers the potential to test a set of configurations which
will substantially reduce integration cost and offers automatic solutions to current
integration issues.
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