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RÉSUMÉ

Nous considérons une classe de systèmes de contrôle stochastiques linéaires scalaires en
réseau dans lesquels un grand nombre d’agents contrôlés envoient leurs états à un concen-
trateur central qui, à son tour, envoie des commandes de contrôle silencieuses basées sur ses
observations et vise à minimiser un coût quadratique donné. La technologie de communi-
cation est l’accès multiple par répartition en code (CDMA) et, par conséquent, les signaux
reçus sur le concentrateur central sont corrompus par des interférences. Les niveaux des
signaux envoyés par les agents sont considérés proportionnels à leur état, et le traitement des
signaux basés sur le CDMA réduit l’interférence d’autres agents d’un facteur de 1/N où N
est le nombre d’agents. L’interférence existante crée par inadvertance une situation de jeu
dans laquelle les actions d’un agent affectent son état et donc par interférence, la capacité
d’autres agents à estimer les leurs, influençant à leur tour leur capacité à contrôler leur état.
Ceci conduit à des problèmes d’estimation fortement couplés. Cela conduit également à une
situation de contrôle dual puisque les contrôles individuels contrôlent l’état mais affectent
également le potentiel d’estimation de cet état. La thèse comporte trois parties principales.

Dans la première partie, nous montrons que le fait d’ignorer le terme d’interférence et
d’utiliser un principe de séparation pour le contrôle mène à des équilibres de Nash asymp-
totiques en N , pourvu que la dynamique individuelle soit stable ou “pas excessivement”
instable. Que pour certaines classes de coût et de paramètres dynamiques, les lois de con-
trôle séparées optimales obtenues en ignorant le couplage interférentiel, sont asymptotique-
ment optimales lorsque le nombre d’agents passe à l’infini, formant ainsi pour un nombre de
joueurs fini N , un équilibre ε-Nash. Plus généralement, les lois de contrôle séparées optimales
peuvent ne pas être asymptotiquement optimales et peuvent en fait conduire à un comporte-
ment global instable. Nous considérons donc une classe de lois de contrôle décentralisées
paramétrées selon lesquelles le gain séparé de Kalman est traité comme le gain arbitraire
d’un observateur analogue à un observateur de Luenberger. Les régions de stabilité du sys-
tème sont caractérisées et la nature des politiques optimales de contrôle coopératif au sein
de la classe considérée est explorée.

La deuxième partie concerne l’extension du travail dans la première partie au-delà du seuil
d’instabilité des contrôles coopératifs. Il est alors observé que les contrôles linéaires invari-



vi

ants dans le temps basés sur les sorties des filtres de dimension croissante semblent toujours
maintenir la stabilité du système et d’intrigantes propriétés sur les estimations des états sont
observées numériquement. En particulier, nous abordons le cas d’un filtrage décentralisé ex-
act sous une classe de contrôleurs basés sur un retour d’estimateur d’état avec gain invariant,
et nous étudions numériquement à la fois la capacité de stabilisation et la performance de tels
contrôleurs lorsque le gain de rétroaction de l’estimation de l’état est modifié. Alors que les
filtres optimaux ont des besoins de mémoire qui deviennent infinis dans le temps, la capacité
de stabilisation de leur approximation de mémoire finie est également testée.

La dernière partie porte sur le développement d’algorithmes basés sur des points fixes
pour l’identification des stratégies de Nash. En particulier, pour un problème d’horizon fini,
nous proposons un algorithme basé sur un point fixe qui tient compte d’une combinaison
de coûts de contrôle et d’estimation pour calculer les équilibres de Nash symétriques, s’ils
existent. Cela implique d’alterner à plusieurs reprises un forward sweep pour l’estimation
d’état et un backwards sweep pour une optimisation basée sur la programmation dynamique.
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ABSTRACT

We consider a class of networked linear scalar stochastic control systems whereby a large
number of controlled agents send their states to a central hub, which in turn sends back
noiseless control commands based on its observations, and aimed at minimizing a given
quadratic cost. The communication technology is code division multiple access (CDMA),
and as a result signals received at the central hub are corrupted by interference. The signals
sent by agents are considered proportional to their state, and CDMA based signal processing
reduces other agents’ interference by a factor of 1/N where N is the number of agents. The
existing interference inadvertently creates a game situation whereby the actions of one agent
affect its state and thus through interference, the ability of other agents to estimate theirs, in
turn influencing their ability to control their state. This leads to highly coupled estimation
problems. It also leads to a dual control situation as individual controls both steer the state
and affect the estimation potential of that state. The thesis is presented in three main parts.

In the first part, we show that ignoring the interference term and using a separation
principle for control provably leads to Nash equilibria asymptotic in N , as long as individ-
ual dynamics are stable or “not exceedingly” unstable. In particular, we establish that for
certain classes of cost and dynamic parameters, optimal separated control laws obtained by
ignoring the interference coupling are asymptotically optimal when the number of agents
goes to infinity, thus forming for finite N an ε-Nash equilibrium. More generally though,
optimal separated control laws may not be asymptotically optimal, and can in fact result in
unstable overall behavior. Thus we consider a class of parameterized decentralized control
laws whereby the separated Kalman gain is treated as the arbitrary gain of a Luenberger like
observer. System stability regions are characterized and the nature of optimal cooperative
control policies within the considered class is explored.

The second part is concerned with the extension of the work in the first part past the
instability threshold for the previous cooperative Luenberger like observers. It is observed
that time invariant linear controls based on the outputs of growing dimension filters appear
to always maintain system stability, and intriguing state estimate properties are numerically
observed. More specifically, we tackle the case of exact decentralized filtering under a class
of time invariant certainty equivalent feedback controllers, and numerically investigate both
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stabilization ability and performance of such controllers as the state estimate feedback gain
varies. While the optimum filters have memory requirements which become infinite over
time, the stabilization ability of their finite memory approximation is also tested.

The final part focuses on developing fixed point based algorithms for identifying Nash
strategies. In particular, for a finite horizon problem, we propose a fixed point based algo-
rithm which accounts for a combination of control and estimation costs to compute symmetric
Nash equilibria if they exist. It involves repeatedly alternating a forward sweep for state es-
timation and a backwards sweep for dynamic programming based optimization.
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Table 5.1 Thresholds ā(af , N) and am(af ) . . . . . . . . . . . . . . . . . . . . . 70



xiv

LIST OF FIGURES

Figure 1.1 N users using CDMA technology . . . . . . . . . . . . . . . . . . . . 3
Figure 4.1 Unstable behavior of agent 1 and of the average of all the population

when a = 2.5, r = 1, and N = 1000. . . . . . . . . . . . . . . . . . . . 23
Figure 4.2 Unstable behavior of agent 1 and of the average of all the population

when a = 2.5, r = 1, and N = 1000000. . . . . . . . . . . . . . . . . . 23
Figure 4.3 Stability regions: the box inside the black frame defines the region

where (4.33) and (4.34) are met. This bounded area has been numeri-
cally explored to determine the stability regions (brown areas). . . . . 26

Figure 4.4 Stability and reverse engineering regions in (a, af ) . . . . . . . . . . . 30
Figure 4.5 Stability and reverse engineering regions in (a, f) (same color meaning

as Fig. 4.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4.6 Cost comparison between the deviant agent and each of the other

agents when a = 2.44, under r = 1, N = 100, i0 = 50. . . . . . . . . . 37
Figure 4.7 rinf(a) as calculated using increments of 0.01 by evaluating for values

of a ranging on a grid of step 0.01. . . . . . . . . . . . . . . . . . . . 40
Figure 4.8 Optimal cost J∗i when a = 2.44, under r = 1, b = c = h = 1, x̄0 = 0,

σ0 = σw = σv = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 4.9 Analytical cost Ji as a function of K and af , saturated at 100, where

af = a− bf , a = 2.44, N = 100. . . . . . . . . . . . . . . . . . . . . . 41
Figure 4.10 Optimal cooperative af as a function of the number of agents, where

K = K∗ and a = 2.44. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 4.11 Optimal cooperative K as a function of the number of agents, where

f = f ∗ and a = 2.44. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 4.12 Stability region (inside the red border) when a = 2.44, N = 100. . . . 43
Figure 4.13 Optimal (analytical) cost J∗i when a = 4. . . . . . . . . . . . . . . . . 43
Figure 4.14 Stability region (inside the red border) when a = 4, N = 100. . . . . 44
Figure 4.15 Cost comparison between the deviant agent (i0 = 50) and each of the

other agents when a = 4, under r = 1, N = 100. . . . . . . . . . . . . 45



xv

Figure 4.16 Stability region (inside the red border), and the best cost J of the N
agents with increasing N when a = 3; the magenta and black colors
correspond to N = 10 and N = 1000000, respectively. . . . . . . . . . 45

Figure 4.17 Isolated cost and cost of each agent for different values of N on the
points of segment Σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.18 Minimum number of agents N such that |J (S)−J (N)| < ε (with ε = 1),
along segment Σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.19 The power tracking error xk,i = p
(b)
k,i− p̄∗ and its estimate when r = 20,

p̄∗ = 15.9664, N = 100, i = 50. . . . . . . . . . . . . . . . . . . . . . . 49
Figure 4.20 Transmitted power p(m)

dBk,i
in decibels when αi = 0.7, i = 50, in a group

of 100 mobile users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 5.1 The stability regions S(a) (brown shaded areas) in the (K, af ) plane.

The vertical lines represent the optimal Riccati gain f ∗(a, r) corre-
sponding to all possible values of parameter r while the horizontal line
is the optimal isolated (naive) Kalman filter gain K∗(a). . . . . . . . 57

Figure 5.2 The state and its estimate when a = 10, af = 0.9, σv = 1, N = 100,
i = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.3 The state and its estimate when a = 100, af = 0.9, σv = 1, N = 100,
i = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.4 The state and its estimate when a = 1000, af = 0.9, σv = 1, N = 100,
i = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.5 Stationarity index ∆ as a function of a when af = 0.5 (top) and af =
0.99 (bottom), for different values of N over T = 1000 steps. The red
vertical line represents the threshold am(af ) where (K∗(a), af ) ceases
to belong to the stability region S(a) in Fig. 5.1. . . . . . . . . . . . 71

Figure 5.6 Discrepancy index δp between the Bulk Filter gains at step T and
Kisolated as a function of a when af = 0.5 (up), 0.99 (bottom), for
different values of N over T = 1000 steps. The red vertical line repre-
sents the threshold am(af ) where (K∗(a), af )) ceases to belong to the
stability region S(a) in Fig. 5.1. . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.7 Last entry of Kk when a = 5, f = 4.5, N = 1000. . . . . . . . . . . . 73
Figure 5.8 The cross covariance of two arbitrary agents when a = 5, f = 4.5,

N = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 5.9 Mean variance when a = 5, f = 4.5, N = 1000. . . . . . . . . . . . . 75



xvi

Figure 5.10 The average LQ cost of all the population for a = 2 and different values
of N over T = 1200 steps, while the vertical blue line shows the Riccati
gain f ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.11 The average LQ cost of all the population for a = 5 and different values
of N over T = 1200 steps, while the vertical blue line shows the Riccati
gain f ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.12 Simulative evaluation of the finite memory approximate Bulk filters
with memory length of n when N = 100, T = 1000. The mesh reports
the cost defined as maxi |xT,i|, 1 ≤ i ≤ N . . . . . . . . . . . . . . . . 77

Figure 6.1 N users using CDMA technology . . . . . . . . . . . . . . . . . . . . 89
Figure 6.2 Behavior of agent 1 using Kalman-Riccati couple K∗ = 0.809, f ∗ =

1.618, where a = 2, N = 100, J̄ (N)/T = 15.65. . . . . . . . . . . . . . 99
Figure 6.3 Behavior of agent 1 using the proposed algorithm which is initialized by

Kalman-Riccati couple K∗ = 0.809, f ∗ = 1.618, where a = 2, N = 100,
J̄ (N)/T = 15.08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 6.4 Unstable behavior of agent 1 using Kalman-Riccati coupleK∗ = 0.8735,
f ∗ = 2.2711, where a = 2.6, N = 100, J̄ (N)/T = 6.4582× 107. . . . . 102

Figure 6.5 Behavior of agent 1 using the proposed algorithm which is initialized
by Kalman-Riccati couple K∗ = 0.8735, f ∗ = 2.2711, where a = 2.6,
N = 100, J̄ (N)/T = 45.6167. . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 6.6 Behavior of agent 1 using the Kalman gain K∗ = 0.8735 and af = 0.9,
where a = 2.6, N = 100, J̄ (N)/T = 151. . . . . . . . . . . . . . . . . . 103

Figure 6.7 Behavior of agent 1 using the proposed algorithm which is initialized by
the Kalman gain K∗ = 0.8735, and af = 0.9, where a = 2.6, N = 100,
J̄ (N)/T = 44.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure A.1 The LQ cost J as a function of f . . . . . . . . . . . . . . . . . . . . 130
Figure A.2 Comparison between m∗(t) and h

(
1
n

∑n
j=1 zj(t)

)
for n = 100 . . . . . 131



xvii

LIST OF SYMBOLS AND ABBREVIATIONS

ARE Algebraic Riccati Equation
BS Base Station

CDMA Code Division Multiple Access

dB Decibel

FIR Finite Impulse Response

IIR Infinite Impulse Response

LQG Linear Quadratic Gaussian

LTA Long Time Average

MFG Mean Field Game

MPC Model Predictive Control

MSS Mean Square Stable

NCE Nash Certainty Equivalence

NCS Networked Control System

NE Nash Equilibrium

ODE Ordinary Differential Equation

OSNR Optical Signal to Noise Ratio

QNG Quadratic Network Game

SINR Signal to Interference plus Noise Ratio

E Expected value

N Normal distribution

Tr Trace of a matrix

R Set of real numbers



xviii

LIST OF APPENDICES

Appendix A ARTICLE 4 : DISTRIBUTED ESTIMATION AND CONTROL FOR
LARGE POPULATION STOCHASTIC MULTI-AGENT SYSTEMS
WITH COUPLING IN THE MEASUREMENTS . . . . . . . . . . . 117



1

CHAPTER 1 INTRODUCTION

1.1 Background Information

Networked Control System (NCS) refers to a decentralized control system in which the
components are connected through real-time communication channels or a data network.
There may be a data link between the sensors (which collect information), the controllers
(which make decisions), and the actuators (which execute the controller commands); and the
sensors, the controllers, and the plant themselves could be geographically separated (Yüksel
and Başar (2013)). A multi-agent system is a network of multiple interacting components
(agents). Each agent is assumed to hold a state regarding one or more quantities of inter-
est. Depending on the context, states may be referred to as values, positions, velocities,
temperatures or etc. Many practical applications and examples of large population stochas-
tic multi-agent systems arise in engineering, biological, social and economic fields, such as
wireless sensor networks (Chong and Kumar (2003)), very large scale robotics (Reif and
Wang (1999)), swarm and flocking phenomena in biological systems (Grönbaum and Okubo
(1994); Passino (2002)), evacuation of large crowds in emergency situations (Helbing et al.
(2000); Lachapelle (2010)), sharing and competing for resources on the Internet (Altman
et al. (2006)), charging control for large populations of plug-in electric vehicles (Parise et al.
(2014); Grammatico (2016)), and so on.

In conventional control systems, control laws are constructed based upon the overall states
of the plants. However, in complex systems with many agents, each agent has a self-governed
but limited capability of sensing, decision-making and communication. Therefore, in multi-
agent decision making in the context of networked control systems with large number of agents
an important issue is the development of decentralized solutions so that each individual
agent may implement a strategy based on its local information together with statistical
information on the population of agents. These are systems where different decision units
(or equivalently decision makers or agents, which could be sensors, controllers, encoders, or
decoders) are connected over a communication network, where information is decentralized.
Just as stabilization and optimization are two fundamental issues for single-agent systems, for
large population stochastic multi-agent systems we are also concerned with how to construct
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decentralized control laws that preserve closed-loop system stability while optimizing the
performance of agents in a cooperative or non-cooperative context.

Game theory has emerged as a well-established discipline capable of providing a resource-
ful and effective framework for addressing control of large scale and distributed networked
systems. Agent to agent interaction during competitive decision-making is usually due to the
coupling in their dynamics or cost functions. Specifically, the dynamic coupling is used to
specify an environment effect on the individual’s decision-making as generated by the popu-
lation of other agents. While each agent only receives a negligible influence from any other
given individual, the overall effect of the population (i.e., the mass effect) is significant for
each agent’s strategy selection (see Huang et al. (2007) for example). In this thesis, we study
a somewhat dual situation whereby large populations of partially observed stochastic agents,
although a priori individually independent, are coupled via their observation structure. The
latter involves an interference term depending on the empirical mean of all agent states. The
study of such measurement-coupled systems is inspired by a variety of applications, including
for instance the communications model for power control in CDMA technology based cellular
telephone systems (Huang et al. (2004); Perreau and Anderson (2006)), where any conversa-
tion in a cell acts as interference on the other conversations in that cell. Indeed, despite the
so-called signal processing gain achieved thanks to a user’s specific coding advantage (and
considered in our model to be of order 1/N where N is the total number of agents), the
ability of the base station to correctly decode the signals sent by a given mobile, remains
limited by interference formed by the superposition of all other in cell user signals. Viewed
in this light, the studied problem can be considered as a game over a noisy channel.

1.2 Problem Formulation

Consider a model of a code division multiple access (CDMA) based communication and
control system in the context of a large number of users with N users which share a channel
and are assumed to be equally spaced on a circle around the base station as depicted in
Figure 1.1, with a signal processing gain proportional to 1/N . The base station itself sends
the control signal to a collection of individual systems (users), hereon also referred to as
agents. Downlink channels are considered noiseless, however the controlled individual systems
are stochastic. The ith mobile user of the network transmits a signal proportional to the
(scalar) state xk,i, that is to say, βxk,i, where β is a constant parameter. Note that the
transmitted power is proportional to β2x2

k,i and that the larger the state, the more energy
will be involved in the transmission. The base station in turn computes the required control
based on received signal which also is tainted by interference and noises. In particular, the
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BS

Figure 1.1 N users using CDMA technology

output signal corresponding to the ith user (agent) is given by:

yk,i = αβxk,i + h′

N

N∑
j 6=i

αβxk,j + vthk,i + v′k,i, (1.1)

where α > 0 denotes the uplink channel gain of the network, vthk,i is the background thermal
noise process and v′k,i is the the local observation error after transmission (vthk,i and v′k,i are
modeled as zero mean Gaussian random variables) [see Abedinpour Fallah et al. (2016);
Huang et al. (2004); Koskie and Gajic (2006); Perreau and Anderson (2006)]. Note that the
resulting signal processing gain is assumed to be h′/N . Also, the actual controlling users
are assumed to be independent and simply using the base station as a communication tool.
Thus, by letting

c = αβ(1− h′

N
), h = αβh′, vk,i = vthk,i + v′k,i, (1.2)

the physics of CDMA transmission viewed as a networked control system with N agents can
be cast into a state space form with individual scalar dynamics described by

xk+1,i = axk,i + buk,i + wk,i (1.3)

and partial scalar state observations given by:

yk,i = cxk,i + h

 1
N

N∑
j=1

xk,j

+ vk,i (1.4)
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for k ≥ 0 and 1 ≤ i ≤ N , where xk,i, uk,i, yk,i ∈ R are the state, the control input and
the measured output of the ith agent, respectively. The random variables wk,i ∼ N (0, σ2

w)
and vk,i ∼ N (0, σ2

v) represent independent Gaussian white noises at different times k and at
different agents i. The Gaussian initial conditions x0,i ∼ N (x̄0, σ

2
0) are mutually independent

and are also independent of {wk,i, vk,i, 1 ≤ i ≤ N, k ≥ 0}. σ2
w, σ2

v and σ2
0 denote the variance

of wk,i, vk,i and x0,i, respectively. Moreover, a is a scalar parameter and b, c, h > 0 are positive
scalar parameters.

1.3 Objectives

The research presented in this thesis has been conducted with the objective of studying
the decentralized control of partially observed multi-agent systems with mutually interfering
measurements, from two distinct viewpoints: (i) A game theoretic viewpoint corresponding
to the study of a problem dual to that of standard mean field games where agents’ coupling
occurs only through cost and dynamics. This leads to questions of existence of Nash or ε-Nash
equilibria under arbitrary or particular classes of linear non anticipative decentralized output
feedback laws; (ii) A filtering/state estimation viewpoint whereby the coupling of estimation
with control leads implicitly to an embedded infinite sequence of estimation problems, in
that each agent attempts to produce an estimate of what other agents’ own state estimates
are, and in turn that agent needs to estimate what other agents think its own state estimate
is, etc. Thus in general, infinite memory filters are required, although the dynamics remain
completely linear.

1.4 Contributions

The main contributions of the thesis are as follows.

1.4.1 Dualization of mean field game theory-based formulation from control to
estimation situations

The decentralized control problem of partially observed multi-agent systems with N uni-
form agents described by linear stochastic dynamics, quadratic costs and partial linear ob-
servations involving the mean of all agents is formulated as a game.
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1.4.2 Establishing stability and optimality properties of the separated policies

The conditions are established under which a Luenberger like observer of the form

x̂k+1,i = (a− bf)x̂k,i +K(yk+1,i − c(a− bf)x̂k,i), (1.5)

where x̂k,i is an estimator of xk,i based only on local observations of the ith agent and f , K
are constant scalar gains, together with a constant state estimate feedback of the form

uk,i = −fx̂k,i, (1.6)

would be: (i) ideally optimal or a Nash equilibrium with respect to some long term average
performance measure given by

Ji , lim
T→∞

1
T
E
T−1∑
k=0

(x2
k,i + ru2

k,i). (1.7)

where lim denotes the limit superior and r > 0 is a positive scalar parameter, (ii) at least
stable. More specifically, the following questions are investigated thoroughly:

— How long can agents remain indifferent to interference if numbers are sufficiently high?
Assuming a > 0 for the sake of analysis, the threshold aNash is the (unique) value of
a if it exists, such that:

aNash − bfsup(aNash) = 0, (1.8)

which represents the maximum value of a past which it is not always possible to
apply so-called isolated optimal control policies without causing potential instability
problems. More specifically, if a < aNash, we have that (K∗(a), f ∗(a, r)) stabilizes the
population for all r, where K∗(a) is the Kalman gain as obtained when assuming zero
interference in the local measurements (setting h = 0 in (1.4)) and f ∗(a, r) denotes
the control gain obtained by the appropriate algebraic Riccati equation. For given
a, K∗(a), the stability region for f , if non empty, is an interval (finf(a), fsup(a)) such
that

finf(a) = (a− 1)(1− a(1− cK∗))
b(1− a(1− cK∗) + hK∗)

, if a < 1; (1.9)

finf(a) = a− 1
b

, if a ≥ 1; (1.10)
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fsup(a) = a+ 1
b

, if a ≤ −1; (1.11)

fsup(a) = (a+ 1)(1 + a(1− cK∗))
b(1 + a(1− cK∗) + hK∗)

, if a > −1. (1.12)

Moreover, we have:
(i) for a > aNash, a/b > fsup(a);

(ii) for a < aNash, a/b < fsup(a);

(iii) aNash can assume any positive value by properly modifying h. In partic-
ular, aNash > 1 for all h < (2 − cK∗(1))/K∗(1) and aNash < 1 for all h >

(2− cK∗(1))/K∗(1)).

— What ranges of r can agents still remain indifferent to interference if numbers are
sufficiently high, if a > aNash, and for what range of a?

The answer is given as r > rinf and a < asup. In particular, let S(a) designate the
(K, f) stability region associated with parameter a, also let f̄sup(a) = min{a/b, fsup(a)}
and define

rinf(a) = −b(a− bf̄sup(a))
f̄sup(a)[a(a− bf̄sup(a))− 1]

. (1.13)

Then there exists a threshold asup > max{aNash, 1}, which satisfies

asup[asup − bfsup(asup)]− 1 = 0, (1.14)

such that, for all a < asup, (K∗(a), f ∗(a, r)) ∈ S(a) for all r > rinf(a) ≥ 0 (with
rinf(a) = 0 for all a ≤ aNash). Moreover, rinf(a) → +∞ as a → asup, and, if a > asup,
(K∗(a), f ∗(a, r)) 6∈ S(a) for all r. In essence, for aNash < a < asup, (K∗(a), f ∗(a, r)) ∈
S(a) only if r is larger than a positive threshold rinf(a), and if a = asup, rinf(a) reaches
+∞.

— When does cooperation become crucial?

Past asup and up to as, it is no longer possible for the agents to remain indifferent to
interference. They must find cooperatively (k, f) pairs which lead to social optimality.
Past as, simple Luenberger type observers and constant state estimate feedback cannot
possibly maintain stability.

Let am(f) be the maximum value of a such that (K∗(a), f) ∈ S(a) and am = supf am(f).
Then up to am, given the optimal isolated Kalman gain K∗(a) and a pair (K∗(a), f) within
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the stability region, it is possible to reverse engineer the choice of parameter r > 0 in the
individual agent cost function (1.7) so that [K∗(a), f ] be an optimum isolated agent vector
of control and estimation gains for some rRev iff

0 < rRev = −b(a− bf)
f [a(a− bf)− 1] <∞ (1.15)

with a 6= 0. The main results are summarized in Table 1.1.

Table 1.1 The boundaries of stability regions of separated gains

a r (K, f)
0 < a < aNash 0 < r (K∗(a), f ∗(a, r)) ∈ S(a)
aNash < a < asup 0 < rinf(a) < r (K∗(a), f ∗(a, r)) ∈ S(a)
asup < a < am 0 < rRev = −b(a−bf)

f [a(a−bf)−1] <∞ (K∗(a), f) ∈ S(a)
am < a < as – (K, f) ∈ S(a)
as < a – (K, f) /∈ S(a)

1.4.3 Deriving the exact optimal decentralized filter under the class of certainty
equivalent constant feedback controllers

Since naive filtering reaches its stabilization capability (i.e. keeping costs finite), we explore a
class of controllers which includes the class utilized in the previous part as a special case: that
of certainty equivalent controllers under constant state feedback where the state estimate is
computed exactly. It turns out no sufficient statistic is available, and all information must
be kept to produce the best estimate. This means growing dimension filters. We compute
the expressions of the latter and carry out the calculations in a semi recursive manner. We
also explore finite memory implementation of the filters and the corresponding expressions.

Important observations:

— The proposed estimator (hereon also referred to as bulk filter) in combination with
an arbitrary (stabilizing under perfect state observations) state estimate feedback
gain, succeeds in maintaining the boundedness of the closed loop system even when
individual systems are highly unstable.

— Existence of a stationarity threshold ā(f,N) past which, the optimal filter gains never
stationarize, i.e. remain time-varying, and essentially periodic in the case of weakly
unstable agents.
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— The steady state bulk filter with mostly a few coefficients non zero could be recovered
by applying the naive Kalman filter equivalent equations.

— Persistently time varying behavior for large enough a

— Non-optimality of the Riccati gain (in general)

— The stabilizing capability of finite memory filtering approximations where only the
last n measurements are preserved, improves by increasing the memory length n.

1.4.4 Computation of Nash equilibria for special classes of output feedback con-
trol laws

The complexity of certainty equivalent controllers precludes for the time being analysis of
their stabilization abilities. However, inspired by the behavior of the filter, we explore nec-
essary conditions (fixed point equations) that would lead to Nash equilibria under a class
of total measurements preserving time varying output feedback stabilizing controllers, as N
goes to infinity, for a finite length 2 time horizon. Subsequently the corresponding expres-
sions are written for horizon larger than 2, by preserving only the contribution of the most
recent 2 measurements. This leads to a heuristic estimate of Nash equilibria under a class of
output time varying controllers with only recollection of the two most recent measurements.

1.5 Structure of The Thesis

The rest of this dissertation is organized as follows. Chapter 2 presents a critical review
of the pertinent literature in the context of the defined problems. Chapter 3 presents the
process for the research project as a whole and the general organization of the document,
indicating the coherence of the articles in relation to the research goals. Chapters 4, 5 and 6,
present the main results of this dissertation, which respectively, include Article 1, Article 2
and Article 3. Chapter 7 discusses the methodological aspects and results of this dissertation
linked with the critical literature review. Concluding remarks and suggestions for future
developments are stated in Chapter 8.
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CHAPTER 2 CRITICAL LITERATURE REVIEW

The literature on the subject of this thesis has expanded in a number of directions. In
this chapter, we provide a survey of those research directions.

2.1 Distributed estimation and control of multi-agent systems

We note that there is a vast literature on methods for distributed estimation and control
of multi-agent systems. Here we refer to some of them. In particular, a framework for the
design of collective behaviors for groups of identical mobile agents is described in Yang et al.
(2008). Their approach is based on decentralized simultaneous estimation and control, where
each agent communicates with neighbors and estimates the global performance properties of
the swarm needed to make a local control decision. The survey paper Garin and Schenato
(2010) refers to some works on distributed estimation and control applications using linear
consensus algorithms up to 2010. The authors in Le Ny et al. (2011) have considered an
attention-control problem in continuous time, which consists of scheduling sensor/target as-
signments and running the corresponding Kalman filters. In Olfati-Saber and Jalalkamali
(2012), a theoretical framework for coupled distributed estimation and motion control of
mobile sensor networks is introduced for collaborative target tracking (see also the references
therein). In Roshany-Yamchi et al. (2013) a novel distributed Kalman filter algorithm along
with a distributed model predictive control (MPC) scheme for large-scale multi-rate systems
is proposed, where the decomposed multi-rate system consists of smaller subsystems with
linear dynamics that are coupled via states. In this scheme, multiple control and estimation
agents each determine actions for their own parts of the system. Via communication and in
a cooperative way, the agents can take one another’s actions into account. Moreover, esti-
mation of population systems has been addressed in Ruess et al. (2011), where the authors
proposed a novel method for estimating the moments of chemically reacting systems. Their
method is based on closing the moment dynamics by replacing the moments of order n + 1
by estimates calculated from a small number of stochastic simulation runs. The resulting
stochastic system is then used in an extended Kalman filter, where estimates of the moments
of order up to n, obtained from the same simulation, serve as outputs of the system. Maha-
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jan and Nayyar (2015) investigated decentralized LQG systems with partial history sharing
information structure and identified finite-dimensional sufficient statistics for such systems.

2.2 Large population game theoretic models and mean field games

The very early interest in large population game theoretic models was already present
in the book by Neumann and Morgenstern (1953). Also, a general equilibrium featuring a
continuum of agents was presented in Aumann (1964). Since then there has been a vast liter-
ature on such models (see Khan and Sun (2002), Carmona (2004) and the references therein).
Large-scale stochastic games with unbounded costs were studied in Adlakha et al. (2008).
Since 2003, the mean field games (MFG) (or Nash certainty equivalence (NCE)) theory
has been developed as a decentralized methodology for large population stochastic dynamic
games with mean field couplings in their individual dynamics and cost functions, by Huang
together with Caines and Malhamé (see Huang et al. (2007); Huang et al. (2003); Huang
et al. (2006b), among others), and independently, in the context of partial differential equa-
tions and viscosity solutions by Lions and Lasry (see Lasry and Lions (2007); Lasry and
Lions (2006a); Lasry and Lions (2006b)). In Li and Zhang (2008), the mean field linear
quadratic Gaussian (LQG) framework was extended to systems of agents with Long Time
Average (LTA) (i.e., ergodic) cost functions such that the set of control laws possesses an
almost sure (a.s.) asymptotic Nash equilibrium property. The survey papers Buckdahn et al.
(2011); Gomes and Saúde (2014); Caines (2015) provide an overview on the mean field game
theory and also refer to some related works in this field. Moreover, the MFG methodology
has been applied to wireless power control in Huang et al. (2003); Tembine et al. (2010); Aziz
and Caines (2017), to coupled nonlinear oscillators subject to random disturbances in Yin
et al. (2012), to control of a large number of electric water heating loads in Kizilkale and
Malhamé (2014, 2016), to large population of Plug-in Electric Vehicles in Ma et al. (2013);
Zhu et al. (2016), and to some models in economics such as in Weintraub et al. (2008); Gomes
et al. (2016).

2.3 Stochastic non cooperative games with partial observation

The state estimation problem has been a fundamental and challenging problem in theory
and applications of control systems. Stochastic non cooperative games with partial obser-
vation have been of interest since the late 1960s. LQG continuous-time zero-sum stochastic
games with output measurements corrupted by additive independent white Gaussian noise
were studied in Rhodes and Luenberger (1969a,b) under the constraint that each player is
limited to a linear state estimator for generating its optimal controls. These results were
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extended to nonzero-sum non cooperative games in Saksena and Cruz (1982). In these works
the authors assumed that the separation principle holds. In Kian et al. (2002), discrete-time
nonzero-sum LQG non cooperative games with constrained state estimators and two different
information structures were investigated, where it is shown that the optimal control laws do
not satisfy the separation principle and the estimator characteristics depend on the controller
gains.

Distributed decision-making with partial observation for large population stochastic multi-
agent systems was studied in Caines and Kizilkale (2013, 2014, 2016); Firoozi and Caines
(2016); Huang et al. (2006a); Şen and Caines (2016); Wang and Zhang (2013), where the
synthesis of Nash strategies is investigated for the agents that are weakly coupled through
either individual dynamics or costs. A new formulation of particle filters inspired by the
mean-field game theoretic framework of Huang et al. (2007) was proposed by Yang et al.
(2011b), Yang et al. (2011a) where each particle is equipped with a control to minimize a
coupling cost. The authors in Pequito et al. (2011) introduced Mean Field Games (MFG)
as a framework to develop an estimator for a class of nonlinear systems, where the goal is to
minimize the expected minimum energy constrained to a consensus among all the possible
evolutions given the initial conditions.

2.4 Networked multi-agent games

Game theory has emerged as a well-established discipline capable of providing a resource-
ful and effective framework for addressing control of large scale and distributed networked
systems. In Eksin et al. (2014), a repeated network game where agents have quadratic
utilities that depend on information externalities (an unknown underlying state) as well as
payoff externalities (the actions of all other agents in the network) is considered. Agents
play Bayesian Nash Equilibrium strategies with respect to their beliefs on the state of the
world and the actions of all other nodes in the network. These beliefs are refined over subse-
quent stages based on the observed actions of neighboring peers. The authors introduce the
Quadratic Network Game (QNG) filter that agents can run locally to update their beliefs, se-
lect corresponding optimal actions, and eventually learn a sufficient statistic of the network’s
state. They demonstrate the application of QNG filter on a Cournot market competition
game and a coordination game to implement navigation of an autonomous team. Moon and
Başar (2014) considered discrete-time linear quadratic-Gaussian (LQG) mean field games
over unreliable communication links, where the individual dynamical system for each agent
is subject to packet dropping. Salehisadaghiani and Pavel (2016) present an asynchronous
gossip-based algorithm for finding a Nash equilibrium (NE) of a game in a distributed multi-
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player network in such a way that players make decisions based on estimates of the other
players’ actions obtained from local neighbors. In Lian et al. (2017), to enable economically
viable communication for multi-agent networked linear dynamic systems, a game-theoretic
framework is proposed under the communication cost, or sparsity constraint, given by the
number of communicating state/control input pairs. As this constraint tightens, the system
transitions from dense to sparse communication, providing the trade-off between dynamic
system performance and information exchange. Moreover, using the proposed sparsity con-
strained distributed social optimization and noncooperative game algorithms, they developed
a method to allocate the costs of the communication infrastructure fairly and according to
the agents’ diverse needs for feedback and cooperation.
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CHAPTER 3 PROCESS FOR THE RESEARCH PROJECT AS A WHOLE
AND GENERAL ORGANIZATION OF THE DOCUMENT
INDICATING THE COHERENCE OF THE ARTICLES IN

RELATION TO THE RESEARCH GOALS

The research project of this thesis was initialized by an effort to generalize the mean field
game theory (see Huang et al. (2007), for example) by possible dualization of mean field
control results from control to estimation situations. In particular, in Abedinpour Fallah
et al. (2013b) (see Appendix A), we proposed a distributed multi-agent decision-making with
partial observation by employing the mean-field theory based on the work by Huang et al.
(2006a). Under the assumption of rationality for each agent (where an agent is rational if it
optimizes its own cost while assuming rationality of other agents in optimizing their costs)
and using the state aggregation technique, our proposed Algorithm combines the Kalman
filtering for state estimation and the linear quadratic Gaussian (LQG) feedback controller.
For large N , as in the typical mean field analysis, we assumed in the first place that condi-
tions are satisfied so that controlled agents become asymptotically independent (in the limit
of large population), and furthermore the coupling term (mass effect) is approximated by a
deterministic continuous function (to be determined later). This leads to uncoupled measure-
ment equations, and therefore the optimal state estimation would be given by the standard
scalar Kalman filtering. Therefore, in Article 1 presented in Chapter 4, for a finite number
of agents, we establish that provided some constraints on cost and dynamic parameters are
satisfied, optimal separated control laws obtained by ignoring the interference coupling, are
asymptotically as the number of agents goes to infinity, individually optimal. Moreover, they
induce a Nash equilibrium, while and for finite N , they induce an ε-Nash equilibrium. More
generally though, optimal separated control laws may not be asymptotically optimal, and
can in fact result in unstable overall behavior. Thus we consider a class of parameterized
decentralized control laws whereby the separated Kalman gain is treated as the arbitrary
gain of a Luenberger like observer. The nature of optimal cooperative control policies within
the considered class is explored. Note also that even within the cooperative social setting,
we establish an upper limit on the degree of instability of individual agent systems, before
stabilization via feedback gains on Luenberger like state estimates becomes impossible.
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Since naive filtering reaches its stabilization capability (i.e. keeping costs finite), in Article
2 presented in Chapters 5, we explore a class of controllers which includes the class utilized in
the previous Chapter as a special case: that of certainty equivalent controllers under constant
state feedback where the state estimate is computed exactly. It turns out no sufficient
statistic is available, and all information must be kept to produce the best estimate. This
means growing dimension filters. We compute the expressions of the latter and carry out the
calculations in a semi recursive manner. We also explore finite memory implementation of
the filters and the corresponding expressions.

The complexity of certainty equivalent controllers precludes for the time being analysis
of their stabilization abilities. However, inspired by the behavior of the filter, in Article 3
presented in Chapter 6, we explore necessary conditions (fixed point equations) that would
lead to Nash equilibria under a class of total measurements preserving time varying output
feedback stabilizing controllers, as N goes to infinity, for a finite length 2 time horizon. Sub-
sequently the corresponding expressions are written for horizon larger than 2, by preserving
only the contribution of the most recent 2 measurements. This leads to a heuristic estimate
of Nash equilibria under a class of output time varying controllers with only recollection of
the two most recent measurements.

Table 3.1 provides an overview of these studies, their methodological approaches and their
main results.

Table 3.1 An overview of the articles

Article Approaches and their main results
1 Constant state feedback and Luenberger like naive observer with h = 0
1 Exploring limits of naive Kalman/Luenberger based Nash equilibria
1 Isolated (naive) policies can stabilize up to a < as
2 Stabilization via exact and approximate growing dimension filters
2 Boundedness of the closed loop system with highly unstable individual systems
2 Persistently time varying behavior for large enough a
2 Non-optimality of the Riccati gain (in general)
3 A heuristic estimate of Nash eq. under a classe of output feedback control laws
3 With only recollection of the two most recent measurements
3 A fixed point based algorithm
3 A forward sweep for state estimation
3 A backwards sweep for dynamic programming based optimization
4 An article on the continuous-time version of the models
4 Using the mean field game theory and state aggregation technique
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CHAPTER 4 ARTICLE 1 : A CLASS OF INTERFERENCE INDUCED
GAMES : ASYMPTOTIC NASH EQUILIBRIA AND
PARAMETERIZED COOPERATIVE SOLUTIONS

Mehdi Abedinpour Fallah, Roland P. Malhamé and Francesco Martinelli
Automatica, vol. 69, pp. 181-194, 2016.

4.1 Abstract

We consider a multi-agent system with linear stochastic individual dynamics, and indi-
vidual linear quadratic ergodic cost functions. The agents partially observe their own states.
Their cost functions and initial statistics are a priori independent but they are coupled
through an interference term (the mean of all agent states), entering each of their individual
measurement equations. While in general for a finite number of agents, the resulting optimal
control law may be a non linear function of the available observations, we establish that for
certain classes of cost and dynamic parameters, optimal separated control laws obtained by
ignoring the interference coupling, are asymptotically optimal when the number of agents
goes to infinity, thus forming for finite N , an ε-Nash equilibrium. More generally though,
optimal separated control laws may not be asymptotically optimal, and can in fact result in
unstable overall behavior. Thus we consider a class of parameterized decentralized control
laws whereby the separated Kalman gain is treated as the arbitrary gain of a Luenberger like
observer. System stability regions are characterized and the nature of optimal cooperative
control policies within the considered class is explored. Numerical results and an application
example for wireless communications are reported.

4.2 Introduction

There has been a surge of interest in the study and analysis of large population stochastic
multi-agent systems due to their wide variety of applications over the past several years. Many
practical applications and examples of these systems arise in engineering, biological, social
and economic fields, such as wireless sensor networks (Chong and Kumar (2003)), very large
scale robotics (Reif and Wang (1999)), controlled charging of a large population of electric



16

vehicles (Karfopoulos and Hatziargyriou (2013)), synchronization of coupled oscillators (Yin
et al. (2012)), swarm and flocking phenomenon in biological systems (Grönbaum and Okubo
(1994); Passino (2002)), evacuation of large crowds in emergency situations (Helbing et al.
(2000); Lachapelle (2010)), sharing and competing for resources on the Internet (Altman
et al. (2006)), to cite a few. Large-scale stochastic games with unbounded costs were studied
in Adlakha et al. (2008). Mean field game theory, which addresses a class of dynamic games
with a large number of agents in which each agent interacts with the average or so-called mean
field effect of other agents via couplings in their individual dynamics and cost functions, was
studied in Huang et al. (2007, 2012); Lasry and Lions (2007); Nourian et al. (2012); Wang and
Zhang (2012, 2014). In Li and Zhang (2008), the mean field linear quadratic Gaussian (LQG)
framework was extended to systems of agents with Long Time Average (LTA) (i.e., ergodic)
cost functions such that the set of control laws possesses an almost sure (a.s.) asymptotic
Nash equilibrium property.

Stochastic Nash games with partial observation have been of interest since the late 1960s.
LQG continuous-time zero-sum stochastic games with output measurements corrupted by
additive independent white Gaussian noise were studied in Rhodes and Luenberger (1969a,b)
under the constraint that each player is limited to a linear state estimator for generating its
optimal controls. These results were extended to nonzero-sum Nash games in Saksena and
Cruz (1982). In these works the authors assumed that the separation principle holds. In Kian
et al. (2002), discrete-time nonzero-sum LQG Nash games with constrained state estimators
and two different information structures were investigated, where it is shown that the optimal
control laws do not satisfy the separation principle and the estimator characteristics depend
on the controller gains.

Distributed decision-making with partial observation for large population stochastic multi-
agent systems was studied in Caines and Kizilkale (2013, 2014); Huang et al. (2006a); Wang
and Zhang (2013), where the synthesis of Nash strategies is investigated for the agents that
are weakly coupled through either individual dynamics or costs. In Abedinpour Fallah et al.
(2013a,b, 2014) the authors studied a somewhat dual situation whereby large populations of
partially observed stochastic agents, although a priori individually independent, are coupled
only via their observation structure. The latter involves an interference term depending on
the empirical mean of all agent states. The study of such measurement-coupled systems
is inspired by a variety of applications, including for instance the communications model
for power control in cellular telephone systems (Huang et al. (2004); Perreau and Anderson
(2006)), where any conversation in a cell acts as interference on the other conversations in
that cell. Indeed, despite the so-called signal processing gain achieved thanks to a user’s
specific coding advantage (and considered in our model to be of order 1/N where N is the
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total number of agents), the ability of the base station to correctly decode the signals sent
by a given mobile, remains limited by interference formed by the superposition of all other
in cell user signals. Viewed in this light, the studied problem can be considered as a game
over a noisy channel.

Individual agent dynamics are assumed to be linear, stochastic, with linear local state
measurements, and in the current paper, we focus on the case where the measurements
interaction model is assumed to depend only on the empirical mean of agents states in a purely
additive manner. In general, in such decentralized control problems, the measurement system
could be used for some sort of signalling, and control and estimation are typically coupled
(Witsenhausen (1968)). We assume that each agent is constrained to use a linear Kalman
filter-like state estimator to generate its optimal strategies. For a finite number of agents, we
establish that for certain classes of cost and dynamic parameters, optimal separated control
laws obtained by ignoring the interference coupling, are asymptotically optimal when the
number of agents goes to infinity, thus forming for finite N , an ε-Nash equilibrium. More
generally though, optimal separated control laws may not be asymptotically optimal, and
can in fact result in unstable overall behavior. Thus we consider a class of parameterized
decentralized control laws whereby the separated Kalman gain is treated as the arbitrary
gain of a Luenberger like observer. System stability regions are characterized and the nature
of optimal cooperative control policies within the considered class is explored.

The rest of the paper is organized as follows. The problem is defined and formulated
in Section 4.3. Section 4.4 presents the closed-loop dynamics model. In Section 4.5, a de-
centralized control and state estimation algorithm via stability analysis is described and a
characterization of its optimality properties is given. Section 4.6 presents parameterized
cooperative solutions. Also, both Section 4.5 and Section 4.6 provide some numerical sim-
ulation results. Section 4.7 presents an application example for wireless communications.
Concluding remarks are stated in Section 4.8.

4.3 Problem formulation

Consider a system of N agents, with individual scalar dynamics for simplicity of compu-
tations. The evolution of the state component is described by

xk+1,i = axk,i + buk,i + wk,i (4.1)
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with partial scalar state observations given by:

yk,i = cxk,i + h

 1
N

N∑
j=1

xk,j

+ vk,i (4.2)

for k ≥ 0 and 1 ≤ i ≤ N , where xk,i, uk,i, yk,i ∈ R are the state, the control input and
the measured output of the ith agent, respectively. The random variables wk,i ∼ N (0, σ2

w)
and vk,i ∼ N (0, σ2

v) represent independent Gaussian white noises at different times k and at
different agents i. The Gaussian initial conditions x0,i ∼ N (x̄0, σ

2
0) are mutually independent

and are also independent of {wk,i, vk,i, 1 ≤ i ≤ N, k ≥ 0}. σ2
w, σ2

v and σ2
0 denote the variance

of wk,i, vk,i and x0,i, respectively. Moreover, a is a scalar parameter and b, c, h > 0 are positive
scalar parameters.

The problem to be considered is to synthesize the linear time invariant decentralized
separated policies such that each agent is stabilized by a feedback control of the form

uk,i = −fx̂k,i, (4.3)

where x̂k,i is an estimator of xk,i based only on local observations of the ith agent, and f is
a constant scalar gain. For the purposes of the paper, the class of decentralized separated
policies (4.3) includes all control policies satisfying the following three conditions : (i) they
are defined by two time invariant feedback gains K and f , (ii) they are separated in that
the control is a linear feedback −fx̂k,i on the state estimate of xk,i, while the state estimate
x̂k,i is obtained from a Luenberger like observer equation under the assumed state estimate
feedback structure, i.e., it evolves according to:

x̂k+1,i = (a− bf)x̂k,i +K(yk+1,i − c(a− bf)x̂k,i), (4.4)

(iii) they are decentralized in that the state estimate is based solely on agent based observa-
tions yk,i.

Furthermore, when the gain K is the Kalman gain as obtained when assuming zero
interference in the local measurements (setting h = 0 in (4.2)), the resulting estimator (4.4)
will be called the naive Kalman filter. Moreover, the individual cost function for each agent
is given by

Ji , lim
T→∞

1
T
E
T−1∑
k=0

(x2
k,i + ru2

k,i). (4.5)

where lim denotes the limit superior and r > 0 is a positive scalar parameter.

Assumption 1. To simplify the synthesis procedure we assume zero mean for initial condi-
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tions of all agents, i.e., Ex0,i = x̄0 = 0, i ≥ 1.

Remark 4.1. To show that the decentralized control problem formulated here is a game, let
us assume for the sake of discussion that the original agent dynamics is unstable. Then it
suffices to observe that, for finite N at least, the inability of a single agent to stabilize its own
dynamics would have direct consequences on the ability of other agents to stabilize their own,
hence demonstrating the impact of that agent on other agents’ individual costs.

4.4 Closed-loop dynamics model

4.4.1 Closed-loop agent dynamics

In this section first we obtain the 4th order model of the closed-loop agent dynamics. In
particular, when local state estimate feedback (4.3) is included in the ith agent state equation
(4.1), the result is as follows:

xk+1,i = axk,i − bfx̂k,i + wk,i. (4.6)

In addition, anticipating the need to account for the influence of average states in the dy-
namics through the measurement equation, and letting a tilde (̃.) indicate an averaging over
agents operation, we define:

mk = 1
N

N∑
j=1

xk,j, m̃k = 1
N

N∑
j=1

x̂k,j, (4.7)

w̃k = 1
N

N∑
j=1

wk,j, ṽk = 1
N

N∑
j=1

vk,j. (4.8)

Now, combining (4.6), (4.7), (4.8), we obtain the population average state evolution:

mk+1 = amk − bfm̃k + w̃k. (4.9)

Also averaging the estimate x̂k+1,i given by (4.4), yields the population average state estimate
dynamics:

m̃k+1 = (a− bf)m̃k +K((c+ h)mk+1 − c(a− bf)m̃k + ṽk+1). (4.10)

Thus, combining (4.4) and (4.6) with (4.9) and (4.10) yields

Xk+1,i = AXk,i +DWk,i, (4.11)
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where the augmented state is

Xk,i = [xk,i, x̂k,i,mk, m̃k]T , (4.12)

and matrix A is given by

A =


a −bf 0 0

acK a(1− cK)− bf ahK −bfhK
0 0 a −bf
0 0 a(c+ h)K a4,4

 , (4.13)

with
a4,4 = a(1− cK)− bf(1 + hK), (4.14)

and also we have:

D =


1 0 0 0
cK hK K 0
0 1 0 0
0 (c+ h)K 0 K

 , Wk,i =


wk,i

w̃k

vk+1,i

ṽk+1

 . (4.15)

Furthermore, the covariance matrix of Wk,i is given by:

Σw =


σ2
w

σ2
w

N
0 0

σ2
w

N
σ2

w

N
0 0

0 0 σ2
v

σ2
v

N

0 0 σ2
v

N
σ2

v

N

 . (4.16)

4.4.2 Population average dynamics

The mean state and mean state estimate equation can be isolated from (4.11) as:
mk+1

m̃k+1

 =Ap

mk

m̃k

+Dp

 w̃k
ṽk+1

 , (4.17)

where

Ap =
 a −bf
a(c+ h)K a(1− cK)− bf(1 + hK)

 , Dp =
 1 0

(c+ h)K K

 . (4.18)
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Also, the covariance matrix of [w̃k, ṽk+1]T is given by:

Σw,p =
σ2

w

N
0

0 σ2
v

N

 . (4.19)

4.5 Decentralized controller and state estimator

4.5.1 The race between N and T

It may appear obvious that as N goes to infinity, from Assumption 1 and (4.7) we have
E[mk] = 0, and as a result at least asymptotically, the agent systems become essentially in-
dependent and individually optimal control laws are obtained via a Kalman filter K∗ coupled
with a gain f ∗ obtained from a Riccati equation. However, it turns out that while this is
indeed correct if N is allowed to go to infinity before the length of the control horizon T is, it
is no longer always true if instead T is allowed to go to infinity first. Theorem 4.1 establishes
the separation result when N goes to infinity before T . Thus, in general, interchanging the
orders of limits in N and T does not produce the same results.

Theorem 4.1. In the case of the infinite population limit, the separated optimal policies
consisting of the naive Kalman filter (4.4) denoted as K∗(a), and the control gain obtained
by the appropriate algebraic Riccati equation denoted as f ∗(a, r), define the optimal solution.

Proof : In the case of the infinite population limit, the agent i observes that given inde-
pendence and E[x0,j] = 0 for j ≥ 1, 1

N

∑N
j=1 x1,j ∼ 0 a.e. (∼ a.e. means converges pointwise

almost everywhere). The agent makes the assumption that this situation will persist in the
future and under this most optimistic assumption computes its optimal K∗ and f ∗ based
control law. At step 2, because the applied control inputs are independent from one agent
to the other, the agents states remain independent, and since the optimal control law is
stabilizing, the individual state variance remains bounded while the mean is still zero. Once
again then 1

N

∑N
j=1 x2,j ∼ 0, and the initial ith agent optimistic assumption is validated. In

general, by assuming that the separated optimal control law is applied and that at step k the
agents have zero mean independent states, one can establish that the property of zero mean
state independence persists at step (k + 1), thus yielding 1

N

∑N
j=1 x(k+1),j ∼ 0. As a result,

one can recursively establish that ∀k, under the K∗ and f ∗ based control law, the optimistic
assumption 1

N

∑N
j=1 xk,j ∼ 0 holds, while under that assumption K∗ and f ∗ would indeed

be parameters of the optimal control law. Since no improvement to estimation can occur
for N infinite, if 1

N

∑N
j=1 xk,j 6= 0, then K∗ and f ∗ will indeed define the optimal control law.�
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While one can suspect that K∗ and f ∗ will be asymptotically optimal in a number of
situations, it is not always so because as it turns out, stability is at the heart of the question.
In order to illustrate this point, we show a simulation of the behavior of an agent sample
path and the agents mean sample path for increasing values of N when a = 2.5, r = 1,
and the optimal separated gains K∗(a), f ∗(a, r) are applied. As established later in Section
4.2.1, for a = 2.5, and r = 1, the couple (K∗(a), f ∗(a, r)) is outside the mean square stability
region of the mean state, thus explaining the unstable behavior of the agents states observed
in Figures 4.1 and 4.2. As observed, in this case a larger but finite N , can only delay but
cannot indefinitely push away the onset of instability.

Numerical results I

The numerical results reported in this paper are obtained considering the following pa-
rameter setting: b = 1, c = 1, h = 1, σv = 1, σw = 1 and initial standard deviation σ0 = 1.
The value of a and f (or af = a − bf) will be specified in the different simulations. Figs.
4.1–4.2 which are obtained using the optimal Kalman-Riccati pair, show a simulation case
where the cost runs to infinity for N = 1000 and N = 1000000, respectively.

4.5.2 Stability analysis

It is desirable to investigate the necessary and sufficient conditions for the closed-loop
individual systems to be stable. By applying the Jury’s stability criterion Ogata (1995) to a
second order polynomial we firstly note that the following lemma holds.

Lemma 4.1. (Ritzerfeld (2005)) A second-order discrete-time linear system having the fol-
lowing characteristic polynomial

a0z
2 + a1z + a2, (4.20)

with real coefficients a0, a1 and a2, is stable iff

a0 + a1 + a2 > 0, (4.21)

a0 − a1 + a2 > 0, (4.22)

a0 − a2 > 0. (4.23)

Also, we have the following Lemma.

Lemma 4.2. The population average dynamics (4.17) is such that the pair (Ap, Dp

√
Σw,p)

is controllable.
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Figure 4.1 Unstable behavior of agent 1 and of the average of all the population when a = 2.5,
r = 1, and N = 1000.
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Figure 4.2 Unstable behavior of agent 1 and of the average of all the population when a = 2.5,
r = 1, and N = 1000000.
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Proof : It is not difficult to show that Dp

√
Σw,p is invertible. Therefore, the controllability

matrix associated with the pair (Ap, Dp

√
Σw,p) is full rank. �

Now the mean system mean square stability conditions are given by the following theorem
(see Xie and Khargonekar (2012) and the references therein for definition of mean square
stability).

Theorem 4.2. Mean system (4.17) is mean square stable (MSS) iff the following inequalities
are satisfied:

K(ac(1− a) + bf(ac+ h)) > bf(a− 1)− (1− a)2, (4.24)

K(−ac(1 + a) + bf(ac− h)) > bf(a+ 1)− (1 + a)2, (4.25)

|a(a− bf)(1− cK)| < 1. (4.26)

Proof : First note that since by Lemma 4.2, system (4.17) is controllable by noise, a
necessary and sufficient condition for the mean square stability of [mk, m̃k]T is the stability
of matrix Ap (see Theorem 3.13, p. 31 in Kumar and Varaiya (1986)). Now Ap will be stable
iff the Jury stability test (Ogata (1995)) is met. In particular, the characteristic polynomial
of (4.17) is given by:

z2 + (bf(1 + hK)− a(2− cK))z + a(a− bf)(1− cK). (4.27)

Thus, by applying Lemma 4.1 with

a0 = 1, (4.28)

a1 = bf(1 + hK)− a(2− cK), (4.29)

a2 = a(a− bf)(1− cK), (4.30)

the theorem is proved. �

The next theorem gives individual state mean square stability conditions.
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Theorem 4.3. Individual agent systems described by (4.11) are MSS iff:

K(ac(1− a) + bf(ac+ h)) > bf(a− 1)− (1− a)2, (4.31)

K(−ac(1 + a) + bf(ac− h)) > bf(a+ 1)− (1 + a)2, (4.32)

|a− bf | < 1, (4.33)

|a(1− cK)| < 1. (4.34)

Proof : We first note that, in view of the measurement structure of agent i, MSS of the
mean population dynamics is necessary for the MSS of individual agents. Thus, inequalities
(4.24)-(4.26) form necessary conditions. In addition since the pair (A,D

√
Σw) is controllable,

by Theorem 3.13, p. 31 of Kumar and Varaiya (1986), the complete state (including individ-
ual agent state and agent state estimate) is MSS iff matrix A is stable. However, given the
block triangular structure of matrix A, its eigenvalues are the union of those of the diagonal
blocks. Therefore, in addition to inequalities (4.24)-(4.26), one must also satisfy (4.33)-(4.34)
obtained from the Jury stability criterion for the upper block. The concatenation of all these
inequalities leads to (4.31)-(4.34) as necessary and sufficient conditions for MSS of individual
agent state and state estimate dynamics. �

Remark 4.2. For given a, the (K, f) stability region is independent of N because the stability
conditions (4.24)-(4.26) and (4.31)-(4.34) are independent of N .

The next lemma is about the stability region for f .

Lemma 4.3. For given a, K∗(a), the stability region for f , if non empty, is an interval
(finf(a), fsup(a)).

Proof : This lemma is proved using the stability conditions of Theorem 4.3. In particular,
under stability condition |a(1− cK∗)| < 1 and noting that c, h > 0, K∗ ≥ 0 we have:

−1 + a(1− cK∗)− hK∗ < 0, (4.35)

1 + a(1− cK∗) + hK∗ > 0. (4.36)

Moreover, condition (4.31) can be written as:

ac(1− a)K∗ + (1− a)2 > bf(−1 + a(1− cK∗)− hK∗). (4.37)

Thus, combining (4.35) and (4.37) yields

f >
1− a(1− cK∗)

1− a(1− cK∗) + hK∗
(a− 1

b
) . (4.38)
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Figure 4.3 Stability regions: the box inside the black frame defines the region where (4.33)
and (4.34) are met. This bounded area has been numerically explored to determine the
stability regions (brown areas).

Similarly, from condition (4.32) and (4.36) we have:

f <
1 + a(1− cK∗)

1 + a(1− cK∗) + hK∗
(a+ 1

b
) . (4.39)

Furthermore, condition (4.33) can be written as:

a− 1
b

< f <
a+ 1
b

(4.40)

Note that (4.38), (4.39), and (4.40) have to be all satisfied simultaneously. Therefore, noting
that

0 < 1− a(1− cK∗)
1− a(1− cK∗) + hK∗

< 1, (4.41)

0 < 1 + a(1− cK∗)
1 + a(1− cK∗) + hK∗

< 1, (4.42)
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we have:

finf(a) = (a− 1)(1− a(1− cK∗))
b(1− a(1− cK∗) + hK∗)

, if a < 1; (4.43)

finf(a) = a− 1
b

, if a ≥ 1; (4.44)

fsup(a) = a+ 1
b

, if a ≤ −1; (4.45)

fsup(a) = (a+ 1)(1 + a(1− cK∗))
b(1 + a(1− cK∗) + hK∗)

, if a > −1. (4.46)

�

Numerical results II

Fig. 4.3 is a representation of the stability regions defined by Theorem 4.3, and associated
with the parameter set in Section 4.5.1 when a varies from a = 0.2 to a = 5.5. It is observed
that the stability region gradually shrinks as a increases until it all but vanishes at a = 5.5.

4.5.3 Reverse engineering agent cost functions for stability

One of the main goals of the paper is to identify parameter sets for which asymptotically,
as the number of agents increases without bound, separated optimal control policies (i.e.,
based on K∗(a) and f ∗(a, r)) become optimal for the measurements coupled agent system
itself. Since stability is clearly a necessary condition for this to happen, to this end, we
shall be concerned with the following question: Given parameter a, the optimal isolated
Kalman gain K∗(a), and a pair (K∗(a), f) within the stability region, is it always possible
to reverse engineer the choice of parameter r > 0 in the individual agent cost function (4.5)
so that f = f ∗(a, r)? In order to answer that question, we develop the following steps called
Algorithm 1.

Algorithm 1

— Apply the naive Kalman filter

x̂k+1,i = (a− bf)x̂k,i +K(yk+1,i − c(a− bf)x̂k,i),

with the steady-state scalar gain

K∗(a) = cP (a)
c2P (a) + σ2

v

,
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where P is the unique positive solution of

c2P 2(a) + ((1− a2)σ2
v − c2σ2

w)P (a)− σ2
wσ

2
v = 0.

— For some fixed a, let
uk,i = −fx̂k,i,

and find the possible values of stabilizing f using Theorem 4.3.
— For each one such stabilizing f , reverse engineer if possible the cost structure

Ji , lim
T→∞

1
T
E
T−1∑
k=0

(x2
k,i + ru2

k,i),

for parameter r by verifying if 0 < −b(a−bf)
f [a(a−bf)−1] <∞. If so, set

r = −b(a− bf)
f [a(a− bf)− 1]

,

that is the unique value of r for which f is optimal.

Lemma 4.4. For a 6= 0, [K∗(a), f ] is an optimum isolated agent vector of control and
estimation gains for some r iff

0 < r = −b(a− bf)
f [a(a− bf)− 1] <∞. (4.47)

Proof : In order to reverse engineer the cost structure in Algorithm 1, we use the expression
of the optimal feedback gain assumed to be f to express Σ,

Σ = rf

b(a− bf)
, (4.48)

the positive solution of the algebraic Riccati equation in

b2Σ2 + (r − a2r − b2)Σ− r = 0. (4.49)

Then solving the resultant equation for the candidate r yields:

r = −b(a− bf)
f [a(a− bf)− 1]

. (4.50)

Thus for a 6= 0, whenever the expression in the right-hand side of (4.50) is strictly positive
and finite, the pair (K∗(a), f) will be isolated agent optimal policies for the corresponding
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value of r. Note that for a = 0, the optimal feedback gain is zero, and any r ∈ (0,∞) will
correspond to a potential reverse engineering cost solution. Except for the indetermination
at a = 0, either the reverse cost solution does not exist, or it exists uniquely. �

Numerical results III

The reverse engineering regions are depicted in Fig. 4.4 and Fig. 4.5. It is observed that
the stability limit on a is obtained as |a| ≤ 3.68. Moreover, for all a ∈ (−2.52, 2.52) and
(a, af ) in the stability region, where af is defined as af = a − bf , it is possible to reverse
engineer a cost parameter r for isolated optimality. In particular, Fig. 4.5 confirms Lemma
4.3; in fact, for each a and K∗(a), the stabilizing f belongs to an interval (finf (a), fsup(a)).
Lemma 4.4 has been used to evaluate if each stabilizing f corresponds to a positive value of
r (i.e., if reverse engineering holds for that f).

4.5.4 Asymptotic optimality and ε-Nash equilibrium properties

In this section, we first establish conditions for the asymptotic optimality of isolated agent
optimal gains.

Theorem 4.4. Let S(a) designate the (K, f) stability region associated with parameter a, and
let K∗(a) and f ∗(a, r), respectively, be the optimal estimation and control gains associated
with the isolated agent optimal control problem (when h = 0, i.e., with zero average coupling
term) for some 0 < r < ∞. If (K∗(a), f ∗(a, r)) ∈ S(a), then the couple (K∗(a), f ∗(a, r))
defines an asymptotically optimal policy for the coupled agents problem as N → ∞. Fur-
thermore, for N finite, it is ε-optimal with ε of order 1/N over any closed subset of S(a)
containing (K∗(a), f ∗(a, r)), that is to say,

Ji(K∗, f ∗)− ε ≤ inf
(K,f)∈S(a)

Ji(K, f) ≤ Ji(K∗, f ∗). (4.51)

Proof : We first note that for any (K, f) ∈ S(a), from conditions (4.33) and (4.34),
respectively, f and K will be bounded. Then using (4.3) and under the assumption that
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Figure 4.5 Stability and reverse engineering regions in (a, f) (same color meaning as Fig. 4.4)
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(K∗(a), f ∗(a, r)) ∈ S(a), a direct calculation of the actual cost functions yields

Ji = lim
T→∞

1
T
E
T−1∑
k=0

(x2
k,i + ru2

k,i),

= lim
T→∞

1
T
E
T−1∑
k=0

(XT
k,iQ̄Xk,i),

= lim
T→∞

1
T
E
T−1∑
k=0

Tr(Q̄Xk,iX
T
k,i),

= Tr(Q̄P̄∞), (4.52)

where

Xk,i =


xk,i

x̂k,i

mk

m̃k

 , Q̄ =


1 0 0 0
0 rf 2 0 0
0 0 0 0
0 0 0 0

 , (4.53)

P̄k = E[Xk,iX
T
k,i], and P̄∞ = limk→∞ P̄k. Note that P̄∞ can be directly calculated from

the covariance equation of the closed-loop system (4.11) and is given as the unique positive
definite solution of the Lyapunov equation:

AP̄∞A
T − P̄∞ +DΣwD

T = 0, (4.54)

where Σw denotes the covariance matrice of Wk,i. Now Σw can be written as:

Σw = Σw1 + 1
N

Σw2 , (4.55)

where

Σw1 =


σ2
w 0 0 0
0 0 0 0
0 0 σ2

v 0
0 0 0 0

 , Σw2 =


0 σ2

w 0 0
σ2
w σ2

w 0 0
0 0 0 σ2

v

0 0 σ2
v σ2

v

 . (4.56)

Since (4.54) is a linear equation, superposition holds and P̄∞ can be split into two components
respectively, P̄∞1 and P̄∞2 corresponding to the respective contributions of Σw1 and 1

N
Σw2 .

In addition, let the corresponding contributions to the total cost be respectively denoted
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α(K, f) and 1
N
β(K, f). Thus

Ji(K, f,
1
N

) = α(K, f) + 1
N
β(K, f). (4.57)

Since (K, f) belongs to S(a) the nature of which is independent of N , then both α(K, f)
and β(K, f) will be bounded. As a result, for every (K, f) ∈ S(a), the total cost converges
pointwise to α(K, f) as N goes to infinity. Furthermore, α(K, f) can be computed from
(4.52) as:

α(K, f) ≡Ji(K, f,
1
N

) |( 1
N

=0)= (−K3a4c3σ2
w − rK3a4cf 2σ2

v + 3K3a3bc3fσ2
w + rK3a3bcf 3σ2

v

− 3K3a2b2c3f 2σ2
w −K3a2b2cf 2σ2

v − rK3a2c3f 2σ2
w + rK3a2cf 2σ2

v +K3ab3c3f 3σ2
w

+K3ab3cf 3σ2
v + rK3abc3f 3σ2

w + rK3abcf 3σ2
v + 3K2a4c2σ2

w + rK2a4f 2σ2
v

− 9K2a3bc2fσ2
w − rK2a3bf 3σ2

v + 9K2a2b2c2f 2σ2
w +K2a2b2f 2σ2

v + rK2a2c2f 2σ2
w

−K2a2c2σ2
w − 2rK2a2f 2σ2

v − 3K2ab3c2f 3σ2
w −K2ab3f 3σ2

v − rK2abc2f 3σ2
w

+ rK2abf 3σ2
v +K2b2c2f 2σ2

w +K2b2f 2σ2
v + rK2c2f 2σ2

w + rK2f 2σ2
v − b2f 2σ2

w

− 3Ka4cσ2
w + 9Ka3bcfσ2

w + 3Ka2cσ2
w − 9Ka2b2cf 2σ2

w + 3Kab3cf 3σ2
w

− 3Kabcfσ2
w + a4σ2

w − 3a3bfσ2
w + 3a2b2f 2σ2

w − 2a2σ2
w − ab3f 3σ2

w + 3abfσ2
w

+ σ2
w)/((a2(1− cK)2 − 1)((a− bf)2 − 1)(1− a(a− bf)(1− cK))). (4.58)

On the other hand, the isolated (separated) agents cost with h = 0, denoted J
(s)
i , can be

similarly calculated. In particular, we have:

J
(s)
i (K, f) = lim

T→∞

1
T
E
T−1∑
k=0

(x2
k,i + ru2

k,i),

= lim
T→∞

1
T
E
T−1∑
k=0

xk,i
x̂k,i

T 1 0
0 rf 2

xk,i
x̂k,i

,
= lim

T→∞

1
T
E
T−1∑
k=0

Tr

1 0
0 rf 2

xk,i
x̂k,i

 xk,i
x̂k,i

T ,
= lim

T→∞

1
T

T−1∑
k=0

Tr

1 0
0 rf 2

 P̄s
,

= Tr

1 0
0 rf 2

 P̄s
, (4.59)
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where P̄s is directly calculated from the covariance equation given by

AsP̄sA
T
s − P̄s +DsΣw,sD

T
s = 0, (4.60)

with

As =
 a −bf
acK a(1− cK)− bf

 , Ds =
 1 0
cK K

 , Σw,s =
σ2

w 0
0 σ2

v

 . (4.61)

Solving (4.60) and replacing P̄s in (4.59) yields J (s)
i (K, f) = Ji(K, f, 0). In particular, denot-

ing (K∗, f ∗) the (K, f) couple minimizing J (s)
i (K, f), we have: J (s)

i (K∗, f ∗) = Ji(K∗, f ∗, 0).
Thus the isolated agent optimal policy is asymptotically optimal for the coupled agents pro-
vided that (K∗(a), f ∗(a, r)) ∈ S(a). Moreover, if (K, f) is constrained to an arbitrary closed
subset M of S(a) containing (K∗, f ∗), then invoking the continuity of β(K, f) over a closed
and bounded set, β(K, f) is uniformly bounded on M , and in view of equation (4.57), the
convergence of Argmin(K,f)∈M(Ji(K, f, 1

N
)) to (K∗, f ∗) will be uniform in M , as N goes to

infinity. As a result, over an arbitrary such M , and for N finite, the inequalities given by
(4.51) hold. In particular, note that the second inequality is trivial, and the first one can be
proven as follows. Since the minimum of α(K, f) is α(K∗, f ∗) and noting that the infimum
of a sum is greater than or equal to the sum of infimums, then using (4.57) we have

inf
(K,f)∈S

Ji(K, f,
1
N

) ≥ α(K∗, f ∗) + inf
(K,f)∈S

1
N
β(K, f). (4.62)

By adding and subtracting 1
N
β(K∗, f ∗) to the right hand side of (4.62), we get

inf
(K,f)∈S

Ji(K, f,
1
N

) ≥Ji(K∗, f ∗,
1
N

)− 1
N
β(K∗, f ∗) + inf

(K,f)∈S

1
N
β(K, f) (4.63)

Thus, for N finite, (K∗, f ∗) is epsilon optimal where epsilon is O( 1
N

). �

We proceed to study the ε-Nash equilibrium property by deriving the dynamics model
of a so-called deviant agent, say the ith0 agent that tries to improve its cost by choosing a
different set of control and estimation gains denoted by (K̃, f̃). In particular, define:

m−k = 1
N

N∑
j 6=i0

xk,j, m̃−k = 1
N

N∑
j 6=i0

x̂k,j, (4.64)

w̃−k = 1
N

N∑
j 6=i0

wk,j, ṽ−k = 1
N

N∑
j 6=i0

vk,j. (4.65)
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Then following a procedure similar to that in Section 4.4.1, the 4th order model of the closed-
loop deviant agent dynamics can be expressed as:

Xk+1,i0 = AdXk,i0 +DdWk,i0 , (4.66)

where the augmented state is

Xk,i0 = [xk,i0 , x̂k,i0 ,m−k , m̃−k ]T , (4.67)

and matrix Ad is given by

Ad =


a −bf̃ 0 0

a(c+ h
N

)K̃ a′2,2 ahK̃ −bhf ∗K̃
0 0 a −bf ∗

(N−1)
N2 ahK∗ − (N−1)

N2 bhf̃K∗ a′4,3 a′4,4

 , (4.68)

with

a′2,2 = a(1− cK̃)− bf̃(1 + h

N
K̃), (4.69)

a′4,3 = a(c+ (N − 1)
N

h)K∗, (4.70)

a′4,4 = a(1− cK∗)− bf ∗(1 + (N − 1)
N

hK∗), (4.71)

and also we have:

Dd =


1 0 0 0

(c+ h
N

)K̃ hK̃ K̃ 0
0 1 0 0

(N−1)
N2 hK∗ (c+ (N−1)

N
h)K∗ 0 K∗

 . (4.72)

Furthermore, the noise vector Wk,i0 and its covariance matrix Σw,d are given by:

Wk,i0 =


wk,i0

w̃−k
vk+1,i0

ṽ−k+1

 ,Σw,d =


σ2
w 0 0 0
0 (N−1)

N2 σ2
w 0 0

0 0 σ2
v 0

0 0 0 (N−1)
N2 σ2

v

 . (4.73)

The next lemma gives a necessary condition for mean square stability of the deviant agent
system.
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Lemma 4.5. A necessary condition for the closed-loop deviant agent dynamics (4.66) to be
MSS is that

|a2(1− cK∗)(1− cK̃)(a− bf ∗)(a− bf̃)| < 1. (4.74)

Proof : Since ∀N , Dd

√
Σw,d is invertible, then the pair (Ad, Dd

√
Σw,d) is controllable, and

by virtue of Theorem 3.13, p. 31 in Kumar and Varaiya (1986), the deviant agent system
(4.66) will be MSS iff Ad is a stable matrix. Now Ad will be stable iff the Jury stability test
is met. In particular, the characteristic polynomial of (4.66) is given by:

z4 + α3z
3 + α2z

2 + α1z + α0, (4.75)

where

α0 = a2(1− cK∗)(1− cK̃)(a− bf ∗)(a− bf̃), (4.76)

and the expressions of α1, α2, α3 are complex and are dropped for brevity. Now one of the
five stability conditions from the Jury test (see Ogata (1995)) is that |α0| < 1, which yields
(4.74). �

Theorem 4.5. The set of gains (K∗(a), f ∗(a, r)) ∈ S(a) defines an ε-Nash equilibrium.

Proof : The deviant agent must always opt for a (K̃, f̃) couple which would stabilize
matrix Ad (Hurwitz matrix), no matter what N is. Note that the set of such stabilizing
couples is non empty since it includes (K∗, f ∗) irrespective of N . Also, note that in view of
(4.74), K̃ can become unbounded only if a = bf̃ . Additionally, f̃ can be unbounded only
if cK̃ = 1. Let us refer to these cases as (i) and (ii), respectively. We now establish that
both (i) and (ii) are excluded if the deviant agent optimizes its choices. Indeed case (i)
would imply from (4.4) that limk→∞x̂k,i0 can only remain of bounded variance, if yk,i0 goes
to zero almost everywhere as k →∞. However, this is impossible in view of the independent
measurement noise that enters the ith0 agent observations. Case (ii) on the other hand, would
imply from (4.3) that limk→∞x̂k,i0 = 0 a.e., otherwise limk→∞E[u2

k,i0 ] → ∞; which would be
clearly suboptimal since f ∗, K∗ achieve a finite limiting cost. However, this cannot happen
since from (4.4) and K̃ 6= 0, this would mean limk→∞yk,i0 = 0 a.e., and we know the latter to
be impossible. As a result for any a ∈ Sopt(a, r), where Sopt(a, r) denotes the set of couples
{(a, r)|(K∗(a), f ∗(a, r)) ∈ S(a)}, K̃(N) and f̃(N) will be bounded. Thus, if the deviant
agent maintains its choice fixed of K̃(N0) and f̃(N0), for any N ≥ N0, then this choice
becomes eventually suboptimal for N large enough. Indeed, as N increases to infinity, the
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dynamics of [xk,i0 , x̂k,i0 ]T becomes entirely decoupled from that of [m−k , m̃−k ]T , as (N−1)
N2 xk,i0 ,

(N−1)
N2 f̃(N0)x̂k,i0 , K̃(N0)m−k , K̃(N0)m̃−k go to zero almost surely. In that case, the deviant

agent optimal choice for (K̃(N), f̃(N)) becomes precisely (K∗, f ∗). As a result, any cost
improvement attributed to some optimal decision (K̃∗(N0), f̃ ∗(N0)) by the deviant agent can
only improve its cost by ε(N), with ε(N) going to zero as N → ∞. This establishes that a
finite N0-based policy, is such that the (K∗, f ∗) policy is an ε-Nash equilibrium. Finally, note
that if the deviant agent starts at the outset with the N = ∞ policy, from Theorem 4.1, it
would have to pick the (K∗, f ∗) policy as an optimal response. �

Numerical results IV

In this section, we present a numerical example on the deviant agent (namely, the 50th

agent) in a population of N = 100 agents via simulations of T = 100000 steps. In particular,
we consider a = 2.44, where the optimal Kalman-Riccati couple (K∗ = 0.8595, af∗ = 0.3428)
belongs to the stability region and all the agents except the deviant agent, apply this couple.
We let the deviant agent apply another stabilizing couple (K̃ = 0.8307, af̃ = 0.3929) such
that all eigenvalues of Ad lie inside the unit circle. The improvement on the cost achieved by
the deviant agent i0 = 50 is shown in Figure 4.6. However, performing the same simulation
with N = 1000 agents, we observed that the cost difference has disappeared.

Boundaries of stability regions of separated optimal gains

Assuming a > 0 for the sake of analysis in the whole forthcoming discussion, we first
define a threshold on a.

Definition 4.1. aNash is the (unique) value of a if it exists, such that:

aNash − bfsup(aNash) = 0. (4.77)

Also, we have the following Lemma.

Lemma 4.6. Assume Eq. (4.77) admits a solution aNash, and let fsup(a) be given by (4.46).
Then we have:
(i) aNash exists uniquely;

(ii) for a > aNash, a/b > fsup(a);

(iii) for a < aNash, a/b < fsup(a);
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Figure 4.6 Cost comparison between the deviant agent and each of the other agents when
a = 2.44, under r = 1, N = 100, i0 = 50.

(iv) aNash can assume any positive value by properly modifying h.

Proof : First of all, from the expression of K∗(a) (see Algorithm 1), it is straightforward
to see that K∗(a) > 0 for all a and that cK∗(a) ∈ (0, 1) for all a. A direct computation of
the derivative of K∗(a) allows one to also verify that K∗(a) is a strictly increasing function
of a > 0 which ranges from 1

c(1+δ) when a = 0 (where δ , σ2
v/(c2σ2

w) is a positive quantity)
and goes toward 1/c as a→∞.

Consider now the difference fsup(a)− a/b, which can be written as follows:

fsup(a)− a/b = ag(a, h)
b[1 + a(1− cK∗(a)) + hK∗(a)]

, (4.78)

where
g(a, h) = 1− (c+ h)K∗(a) + 1/a. (4.79)

Notice that from (4.36) the denominator of (4.78) is positive for all a > 0, so the sign of
fsup(a) − a/b coincides with the sign of g(a, h) and fsup(a) = a/b if and only if g(a, h) = 0.
Given the aforementioned properties on K∗(a), we have that g(a, h) is strictly decreasing for
a > 0 and ranges from +∞ (when a→ 0) to −h/c (when a→∞). Therefore, by continuity,
g(a, h) will cross zero at some a = aNash, and by the strict decreasing character of g(a, h),
the intersection will be unique. This concludes the proof of (i) and also of (ii) and (iii) since,
as mentioned, the sign of fsup(a)− a/b coincides with the sign of g(a, h).

Property (iv) can be obtained by considering, for h2 > h1, the difference:

g(a, h2)− g(a, h1) = (h1 − h2)K∗(a) < 0. (4.80)
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In particular:
g(aNash1 , h2)− g(aNash1 , h1) = g(aNash1 , h2) < 0, (4.81)

which indicates: aNash1 > aNash2 , that is, the solution aNash(h) of (4.77) is strictly decreasing
with h. Moreover, as h → 0, we have aNash → +∞ and, as h → +∞, since fsup(a) → 0
then aNash → 0. Thus, by moving h from zero to infinity, one moves aNash over its complete
possible range. �

Remark 4.3. Noting the expression of g(a, h) given by (4.79), it is possible to evaluate the
threshold ht such that aNash crosses 1 (i.e. aNash > 1 for all h < ht and aNash < 1 for all
h > ht) which is ht = (2− cK∗(1))/K∗(1).

The threshold aNash represents the maximum value of a past which it is not always pos-
sible to apply so-called isolated optimal control policies without causing potential instability
problems. More specifically, if a < aNash, we have that (K∗(a), f ∗(a, r)) stabilizes the pop-
ulation for all r while, for a > aNash, the range of r progressively decreases. The following
proposition provides a formal characterization of this behavior.

Proposition 4.1. Assume a > 0, let f̄sup(a) = min{a/b, fsup(a)} and define

rinf(a) = −b(a− bf̄sup(a))
f̄sup(a)[a(a− bf̄sup(a))− 1]

. (4.82)

Then there exists a threshold asup > max{aNash, 1}, which satisfies

asup[asup − bfsup(asup)]− 1 = 0, (4.83)

such that, for all a < asup, (K∗(a), f ∗(a, r)) ∈ S(a) for all r > rinf(a) ≥ 0 (with rinf(a) = 0
for all a ≤ aNash). Moreover, rinf(a)→ +∞ as a→ asup, and, if a > asup, (K∗(a), f ∗(a, r)) 6∈
S(a) for all r.

Proof : See the Appendix. �

Remark 4.4. According to Proposition 4.1 and Lemma 4.6, for all 0 < a < aNash, (K∗(a),
f ∗(a, r)) ∈ S(a) for all positive r while, for aNash < a < asup, (K∗(a), f ∗(a, r)) ∈ S(a) only if
r is larger than a positive threshold rinf(a). Moreover, since r(f̄inf (a)) = +∞, for a = asup,
rinf(a) reaches +∞. So, at that point, the range of admissible r’s shrinks to zero. Past asup,
isolated interference indifferent optimal controls can no longer stabilize the system for any
value of r, and one has to resort to cooperative control.
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Numerical results V

Figure 4.7 shows a numerical investigation on rinf(a). More specifically, considering values
of a ranging on a grid with step 0.01 one can observe that:
— For 0 < a ≤ 1.79, we have rinf(a) = 0;
— For 1.8 ≤ a ≤ 2.53, rinf > 0 and rapidly goes toward infinity;
— For a = 0 and a ≥ 2.54, reverse engineering does not apply for any r, so rinf is not

defined.
Thus, we have: aNash = 1.79, and asup = 2.53. We note that the analytical values of aNash
and asup obtained through (4.77) and (4.83), i.e., respectively 1.7963 and 2.5369, confirm the
numerical findings.

4.6 Cooperative decentralized separated policies

Definition 4.2. Cooperative decentralized separated policies are defined as decentralized sep-
arated policies (see Section 4.3) with common gains K, f such that the resulting social cost

J (N)
soc = 1

N

N∑
j=1

Jj (4.84)

is minimized.

If a > asup, then agents must cooperate for otherwise, they risk having to pay an infinite
cost. This is a situation where the optimal Kalman-Riccati couple (K∗, f ∗) is outside of the
stability region. On the other hand, even when a ≤ asup, agents may still be interested in
achieving optimal cooperative decentralized separated policies. We have the following lemma
and proposition for the cooperative cost.

Lemma 4.7. (K, f) based local control policies, ∀(K, f) ∈ S(a), when uniformly applied by
all agents, for a given N lead to a steady-state cost given by:

Ji = Tr(Q̄P̄∞) (4.85)

where Q̄ = diag([1, rf 2, 0, 0]), and P̄∞ is the steady-state solution of the covariance equation
given by

P̄k+1 = AP̄kA
T +DΣwD

T (4.86)

Proof : See the cost calculations in Theorem 4.4. �
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Figure 4.7 rinf(a) as calculated using increments of 0.01 by evaluating for values of a ranging
on a grid of step 0.01.

Proposition 4.2. If the optimal Kalman-Riccati couple (K∗, f ∗) belongs to stability region
S(a), then it characterizes an ε-optimal cooperative decentralized separated control policy for
system (4.1), (4.2), (4.5), with ε of order 1/N , over any closed subset of S(a) including
(K∗, f ∗).

Proof : The proof follows readily by recalling individual cost expression (4.57), and rec-
ognizing that (i) β(K, f) is continuous in (K, f) over a closed subset of S(a), and therefore
is uniformly bounded over that subset, (ii) the minimum of α(K, f) is α(K∗, f ∗). �

In the following, we numerically explore the situation when (K∗, f ∗) does not belong to
the stability region S(a).

4.6.1 Numerical results VI

In this section, we present some numerical results on cooperative control. Figs. 4.8-4.12
show the simulation results for a = 2.44, where (K∗ = 0.8595, af∗ = 0.3428) belongs to the
stability region. It is observed that the optimal cooperative (K = 0.8307, af = 0.3929) is
near the Kalman-Riccati couple (K∗ = 0.8595, af∗ = 0.3428) and approaches this point as N
goes to infinity.

Moreover, the simulation results for a = 4 are depicted via Figs. 4.13-4.14. We note that
the reverse engineering of r does not apply for a = 4, and that K and af do not converge
toward K∗ and af∗ as N increases. Also in this case, (K∗ = 0.9414, af∗ = 0.2344) does not
belong to the stability region.

Furthermore, for a = 4, we present a numerical example on the deviant agent (i.e., the
50th agent) in a population of N = 100 agents via simulations of T = 100000 steps. In
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Figure 4.8 Optimal cost J∗i when a = 2.44, under r = 1, b = c = h = 1, x̄0 = 0, σ0 = σw =
σv = 1.

−1
−0.5

0
0.5

1

0.5

1

1.5
20

40

60

80

100

a
f

K
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Figure 4.14 Stability region (inside the red border) when a = 4, N = 100.

particular, all the agents except the deviant agent, apply the optimal cooperative couple
(K = 0.8365, af = 0.6955). We let the deviant agent apply another stabilizing couple
(K̃ = 0.8842, af̃ = 0.4857) such that all eigenvalues of Ad lie inside the unit circle. The
improvement on the cost achieved by the deviant agent i0 = 50 is shown in Figure 4.15.
We note that there does not exist an optimum cooperative control setting in the a > asup

region, but an infimum of the cost which would be its minimal value on the stability border
under the assumption that Ji(K, f) is strictly convex in K and f . For example, when a = 3,
we have performed long simulation runs to evaluate the isolated cost on a grid of the (K, af )
plane with a step of about 0.01 to determine the minimum. The population stability region
(inside the red dot points) is depicted in Figure 4.16, where we verify that the minimum of
the isolated cost on such stability region falls indeed on its border. It also shows the cost of
N agents as N increases, and the position of these minima. It is observed that the optimal
(K(N), af (N)) couple is actually approaching the optimal isolated cost on the border as N
increases. Moreover, considering the black segment in this figure (called segment Σ) which
comprises 100 points numbered from inside to the border of the stability region, Figure 4.17
illustrates the isolated cost versus the cost of N agents for different values of N . Furthermore,
we study the convergence rate with respect to N when approaching the stability border. In
particular, consider a couple of gains (K, f); let ε > 0 be a small positive number, and also
let Nmin be the number of agents such that |J (S)(K, f) − J (N)(K, f)| < ε for all N > Nmin,
where under (K, f), J (N) denotes the cost of each agent in a population of N elements and
J (S) is the isolated cost (see 4.59). As shown in Figure 4.18, it is observed that the minimum
value of N such that |J (S)(K, f)−J (N)(K, f)| < ε is rapidly increasing as one approaches the
stability border. In essence, these numerical results confirm: (i) the infimum cooperative cost
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is on the stability border; (ii) the slowing down of convergence of actual cost with N agents
to the isolated cost within the stability region, when N goes to infinity, as one approaches
the edge of the stability region.

4.7 Application to wireless communications

In this section, we present an application example for decentralized power control in code
division multiple access (CDMA) cellular telephone systems (Aziz and Caines (2014); Huang
et al. (2004); Koskie and Gajic (2006); Perreau and Anderson (2006)).

Following Tse and Hanly (1999); Verdú and Shamai (1999), we consider a mobile system
network in the context of a large number of users with a signal processing gain assumed to
be proportional to 1/N . Let p(m)

k,i and αk,i denote, respectively, the transmitted power and
the mean squared value of the uplink channel gain for the ith mobile user of the network and
let p(b)

k,i denote the received power at the base station for user i, where p(b)
k,i = αk,ip

(m)
k,i . Based

on the work in Perreau and Anderson (2006), we model the received power dynamics at the
base station by

p
(b)
k+1,i = p

(b)
k,i + uk,i + wk,i (4.87)

with observations given by:

yk,i = p
(b)
k,i + h

N

N∑
j 6=i

p
(b)
k,j + σ2

th + vk,i, (4.88)

which is the average over slot k of the power of the CDMA signal despread by the spreading
sequence of user i, where σ2

th is the variance of the background thermal noise process (modeled
as a zero mean Gaussian random variable). Note that the resulting signal processing gain is
assumed to be h/N .

The goal is to perform decentralized power control in order to design the control com-
mand ddBk,i

which updates the transmitted power (on the logarithmic scale, i.e., ddBk,i
=

10 log10(dk,i), for its ease of implementation in practical systems) according to

p
(m)
dBk+1,i

= p
(m)
dBk,i

+ ddBk,i
, (4.89)

so that the signal to interference plus noise ratio of each user achieves a target value γ
(common to all users), i.e., SINRk,i = γ. This is feasible at minimum power if the received
powers for all users are equal to p̄∗ given by Perreau and Anderson (2006)

p̄∗ = γσ2
th

1− γh(N − 1)/N
. (4.90)
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Therefore, we minimize the individual cost function for each user as defined by

Ji , lim
T→∞

1
T
E
T−1∑
k=0
{(p(b)

k,i − p̄∗)2 + ru2
k,i} . (4.91)

By applying change of variables

xk,i = p
(b)
k,i − p̄∗, y′k,i = yk,i − (1 + h− h

N
)p̄∗ (4.92)

to (4.87), (4.88) and (4.91), we obtain a system in the form of (4.1), (4.2) and (4.5) with
a = b = 1, c = 1− h

N
and v′k,i = σ2

th+vk,i. Note that we formulated this problem on the linear
scale and that it is trivial to derive a relative change in watts into a change in decibels.

4.7.1 Numerical results VII

In this section, we consider a network with N = 100 users which are assumed to be
equally spaced on a circle around the base station. Choosing γ = 0.95, σ2

th = 1 and h = 1
in (4.90) yields p̄∗ = 15.9664. We apply Algorithm 1 with a = b = 1, c = 0.99 and the pair
(K∗ = 0.5017, af = 0.8) within the stability region. Reverse engineering the cost structure
(4.5) for parameter r > 0, we get r = 20. Figure 4.19 shows the power tracking error
xk,i = p

(b)
k,i − p̄∗ for a representative user (namely, the 50th mobile user). Moreover, Figure

4.20 illustrates the transmitted power p(m)
dBk,50

with α50 = 0.7.

4.8 Conclusion

We have studied a class of interference induced games in a system of uniform agents
coupled via their distinct sets of partial observations, whereby each agent has noisy mea-
surements of its own state. We have shown that interference coupled agents can afford to
act non cooperatively provided their individual stability level as characterized by a quantity
called aNash, is sufficient relative to the signal to noise ratio in their observations and the
number of agents is sufficiently high. Moreover, there is a lack of stability threshold past
which, the only choice left for the majority of agents is to act cooperatively. The apparent
role of individual agent systems lack of stability in interference coupled systems, points at a
potential hitherto unsuspected role of instability in more classical mean field games where
the mean agent state enters individual dynamics (Huang et al. (2005)).

In future work, we will investigate the use of optimal (growing dimension) estimators to
improve the situation. We will also generalize our analysis to the multivariate case. Finally,
we note that the finite number of agents version of the game constitutes a challenging problem
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in signalling and decentralization.

4.9 Appendix

Proof of Proposition 4.1. First of all, f ∗(a, r) = abΣ/(b2Σ+r), where Σ is the positive
solution of (4.49). It is straightforward to see that, with a > 0, we have f ∗(a, r) > 0 and
f ∗(a, r) < a/b. This implies also that, if f ∗(a, r) is stabilizing, then 0 < a− bf ∗(a, r) < 1.

Based on (4.47), the fact that r(f) must be positive and taking into account that a −
bf ∗(a, r) > 0, we have that the possible range of f ∗(a, r) is (0,+∞) if a ∈ (0, 1], and
((a2 − 1)/(ab),+∞) if a > 1.

Finally, if f ∗(a, r) is stabilizing the population, then f ∗(a, r) ∈ (finf (a), fsup(a)), where
it is easy to verify that: finf (a) ≤ 0 if a ∈ (0, 1) (since f = 0 is stabilizing given that
with f = 0 and a ∈ (0, 1), Eqs. (4.31)-(4.34) are satisfied) and that, according to (4.44),
finf (a) = (a− 1)/b < (a2 − 1)/(ab) if a > 1.

Putting together all the above constraints, we can conclude that (K∗(a), f ∗(a, r)) ∈ S(a)
implies that f ∗(a, r) ∈ (f̄inf (a), f̄sup(a)), where f̄inf (a) = 0 if a ∈ (0, 1] and f̄inf (a) =
(a2 − 1)/(ab) if a ≥ 1. Notice that finf (a) ≤ f̄inf (a) for all a.

Now, for all f ∈ (f̄inf (a), f̄sup(a)), the derivative of r(f) with respect to f which is given
by:

∂r

∂f
= ab[(a− bf)2 − 1]
f 2[a(a− bf)− 1]2

, (4.93)

is negative. This happens as a result of the fact that the interval (f̄inf (a), f̄sup(a)) is included
in the stability interval (finf (a), fsup(a)) where (a− bf)2 < 1.

Notice also that r(f̄inf (a)) = +∞. So the values of r(f), for f ranging in (f̄inf (a), f̄sup(a)),
will decrease from +∞ down to the value rinf(a) given in (4.82). Furthermore, there is a one
to one map between f and the corresponding r.

Finally, in view of Lemma 4.6, for a ∈ (0, aNash), individuals applying optimal isolated
policies will stabilize for the whole range of r from 0 to infinity (since in this case f̄sup(a) = a/b

and hence rinf(a) = 0). For a past aNash, rinf(a) is strictly positive, since f̄sup(a) = fsup(a) <
a/b where r is still positive.

As a keeps on increasing past aNash, at some point we have f̄sup(a) ≡ f̄inf (a). This can
occur only if a > 1, since, for a ∈ (0, 1], f̄sup(a) > 0 and f̄inf (a) ≤ 0. On the other hand,
if a > 1, f̄sup(a) = f̄inf (a) if and only if a is such that (c + h)K∗(a) − 1 = 1

a
(hK∗(a) + 1).

Following a procedure similar to the one adopted in the proof of Lemma 4.6, it is possible
to show that the value of a > 1 such that (c+ h)K∗(a)− 1 = 1

a
(hK∗(a) + 1) uniquely exists

and that, denoting asup this value, we have asup > aNash.
Notice also that, for a > aNash, f̄sup(a) = fsup(a) and that, for a > 1, f̄inf (a) = (a2 −
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1)/(ab). For this reason, asup is the value of a such that fsup(a) = (a2 − 1)/(ab) which yields
(4.83).

For a > asup, f̄sup(a) = fsup(a) < (a2− 1)/(ab) = f̄inf (a), i.e., (K∗(a), f ∗(a, r)) 6∈ S(a) for
all r. This concludes the proof. �
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CHAPTER 5 ARTICLE 2 : FILTERING FOR DECENTRALIZED
CONTROL IN MULTI-AGENT INTERFERENCE COUPLED

SYSTEMS

Mehdi Abedinpour Fallah, Roland P. Malhamé, David Saussié and Francesco Martinelli
Submitted to IEEE Transactions on Control Systems Technology, January 2017

5.1 Abstract

The object of study in the recent theory of Mean Field Games has been primarily large
populations of agents interacting through a population dependent coupling term, entering
through individual cost or dynamics. However, there are situations where agents are es-
sentially independent, except for measurement interference. This is the case for example in
cellular communications networked control across noisy channels.

In previous work, we formulated the case of interference coupled linear partially observed
stochastic agents as a game. Conditions were developed under which naively ignoring the
interference term leads to asymptotically (in population size) optimal control laws which are
Riccati gain based. We tackle here the case of exact decentralized filtering under a class
of time invariant certainty equivalent feedback controllers, and numerically investigate both
stabilization ability and performance of such controllers as the state estimate feedback gain
varies. While the optimum filters have memory requirements which become infinite over
time, the stabilization ability of their finite memory approximation is also tested.

5.2 Introduction

Large population stochastic multi-agent systems have gained significant attention in the
control community in recent years. This is due to the rich theory associated with decen-
tralized control and system performance as well as to the growing number of important and
challenging applications in control of networked dynamical systems, such as wireless sen-
sor networks (Chong and Kumar (2003)), very large scale robotics (Reif and Wang (1999)),
controlled charging of a large population of electric vehicles (Karfopoulos and Hatziargyriou
(2013)), synchronization of coupled oscillators (Yin et al. (2012)), swarm and flocking phe-
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nomenon in biological systems (Grönbaum and Okubo (1994); Passino (2002)), evacuation of
large crowds in emergency situations (Helbing et al. (2000); Lachapelle (2010)), sharing and
competing for resources on the Internet (Altman et al. (2006)), to cite a few. It is common
in multi-agent systems to limit each individual agent in the system in terms of what it can
decide on its own, what it can do on its own, and what it can measure on its own about its
local environment. Owing to the limited sensing ability, it is not feasible for each individual
agent to collect all other agents’ state information, especially for large-scale dynamic systems.
Therefore, the design of decentralized control and estimation laws depending only on local
state measurements are required.

Several decentralized and distributed estimation schemes for large-scale systems have been
proposed to make the estimation problem computationally efficient. In Roshany-Yamchi et al.
(2013); Ruess et al. (2011) distributed and decentralized approaches to state estimation and
control were developed for large-scale multi-rate systems with applications to power networks
and plantwide processes, respectively. In Caines and Kizilkale (2013, 2014, 2016); Huang
et al. (2006a); Wang and Zhang (2013) distributed decision-making with partial observation
for large population stochastic multi-agent systems was studied, where the synthesis of Nash
strategies was investigated for the agents that are weakly coupled through either individual
dynamics or costs.

In previous work Abedinpour Fallah et al. (2016), the case of N uniform agents described
by linear stochastic dynamics with quadratic costs and partial linear observations involving
the mean of all agents was considered, and the problem was formulated as an interference
induced game. We explored conditions under which a Luenberger like observer, together
with a constant state feedback in individual systems would be : (i) ideally optimal, (ii) at
least stable. Our objective in the current paper is to extend the class of candidate stabilizing
control structures via optimal filtering. In particular, we study the optimal decentralized
filtering problem under a class of certainty equivalent controllers, and numerically investigate
both stabilization ability and performance of such controllers as the state estimate feedback
gain varies. While the optimum filters have memory requirements which become infinite over
time, the stabilization ability of their finite memory approximation is also tested.

The rest of the paper is organized as follows. The problem is defined and formulated in
Section 5.3. A summary of the previous work Abedinpour Fallah et al. (2016) is given at
the start of Section 5.4, followed by detailed derivations of the optimal growing dimension
filter and associated approximate finite memory filters. In Section 5.5, both stabilization
ability and performance of this class of state estimate feedback controllers are numerically
investigated. Section 5.6 presents an application example for a class of networked multi-agent
control systems. Concluding remarks are stated in Section 5.7.
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5.3 Model Formulation and Problem Statement

Consider a system of N agents, with individual scalar dynamics. The evolution of the
state component is described by

xk+1,i = axk,i + buk,i + wk,i, (5.1)

with partial scalar state observations given by

yk,i = cxk,i + h

 1
N

N∑
j=1

xk,j

+ vk,i, (5.2)

for k ≥ 0 and 1 ≤ i ≤ N , where xk,i, uk,i, yk,i ∈ R are the state, the control input and
the measured output of the ith agent, respectively. The random variables wk,i ∼ N (0, σ2

w)
and vk,i ∼ N (0, σ2

v) represent independent Gaussian white noises at different times k and at
different agents i. The Gaussian initial conditions x0,i ∼ N (x̄0, σ

2
0) are mutually independent

and are also independent of {wk,i, vk,i, 1 ≤ i ≤ N, k ≥ 0}. σ2
w, σ2

v and σ2
0 denote the variance

of wk,i, vk,i and x0,i, respectively. Moreover, a is a scalar parameter and b, c, h > 0 are positive
scalar parameters. In addition, the individual cost function for each agent is given by

Ji , lim
T→∞

1
T
E
T−1∑
k=0

(x2
k,i + ru2

k,i). (5.3)

where r > 0 is a positive scalar parameter, E{.} is the expectation operator, and lim is
lim sup.

The problem to be considered is to develop decentralized estimation policies such that
each agent is stabilized by a linear feedback control of the form

uk,i = −fx̂k,i, (5.4)

where f is a constant scalar gain, and x̂k,i is an estimator of xk,i based only on observations of
the ith agent. More specifically, the control is a linear feedback −fx̂k,i on the state estimate
of xk,i, while the state estimate x̂k,i is obtained based solely on agent i’s own observations
yk,i, yk−1,i, yk−2,i, yk−3,i, ....
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5.4 Filtering for a Class of Certainty Equivalent Controllers

5.4.1 Previous Work

In Abedinpour Fallah et al. (2016), we explored the conditions under which a Luenberger
like observer of the form

x̂k+1,i = (a− bf)x̂k,i +K(yk+1,i − c(a− bf)x̂k,i), (5.5)

together with a constant state estimate feedback in individual systems would be : (i) ideally
optimal, (ii) at least stable. It was found that (i) was asymptotically true (as N goes
to infinity) when state gain a is less than a value called aNash and which can be exactly
computed. Up to aNash, the optimum control policy is the isolated (naive) Kalman gain K∗

(obtained by assuming zero interference in the local measurements, i.e., setting h = 0 in
(5.2)) combined with the Riccati dictated optimal gain f ∗, with

K∗(a) = cP∞(a)
c2P∞(a) + σ2

v

, (5.6)

where P∞(a) is the unique positive solution of

c2P 2
∞(a) + ((1− a2)σ2

v − c2σ2
w)P∞(a)− σ2

wσ
2
v = 0, (5.7)

and
f ∗(a, r) = abΣ∞

b2Σ∞ + r
, (5.8)

where Σ∞ is the positive solution of the algebraic Riccati equation

b2Σ2
∞ + (r − a2r − b2)Σ∞ − r = 0. (5.9)

There is also asup greater than aNash such that when a is between aNash and asup, one can
reverse engineer a range of coefficients r for the cost functions in (5.3) for which the naive
Kalman gain K∗ combined with the feedback gain f ∗ dictated by the Riccati equation will
be asymptotically optimal. Finally, past asup, no optimal control interpretation is possible
any more, although there exist couples (K, f) which may still stabilize the system up to
a maximum value, and only cooperatively chosen common gains can get us to approach a
minimum cost. Let as be the limit past which constant Luenberger like observer and feedback
gains can no longer stabilize the system. The current paper is a continuation of stabilization
and optimality investigations for values of a past as.

From Abedinpour Fallah et al. (2016), for each fixed a it is possible to stabilize the system
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using a Luenberger like observer equation (5.5) and the pair (K, f) if and only if (K, f) is in
a stability region denoted by S(a), independent of N . Let af = a− bf , and also let am(f) (or
equivalently am(af )) denote the maximum value of a such that (K∗(a), af ) ∈ S(a) for some
af ∈ [0, 1). Moreover, let am = supaf∈[0,1) am(af ). Then we have the following numerical
results.

Numerical results

The numerical results reported in this paper are obtained considering the following pa-
rameter setting: b = c = h = 1 and σw = σv = σ0 = 1, with Ex0,i = x̄0 = 0 for all agents
i = 1, 2, . . . , N . In addition, we will only deal with the case a ≥ 0 (a symmetric property
holds for the a ≤ 0 case). The value of a and f will be specified in the different simulations.

By numerical investigation we have am ≈ 3.6 which is obtained by letting af go to 1.
Figure 5.1 is a representation of the stability regions for the assumed parameter setting when
a varies from a = 0.2 to as = 5.5. It is observed that the stability region gradually shrinks
as a increases until it all but vanishes at as = 5.5. More specifically, for all a < aNash,
all intersections of the horizontal line K∗(a) with all the vertical lines (marking values of
f which, given a , satisfy (5.8) for some value of input penalty coefficient r, where r goes
from 0 to infinity) belong to the stability region. For all a ∈ (aNash, asup) this holds only for
large enough r while for a = asup all the intersections cease to belong to the brown area. For
a = am the Kalman gain ceases to be in the stability region for all af ∈ [0, 1) and, for a = 5.5
the stability region becomes empty.

5.4.2 Exact Optimal Bulk Filter

The goal of this section is to extend the class of candidate stabilizing control structures via
exact optimal filtering with h 6= 0 in its formulation. In particular, when local state estimate
feedback (5.4) is included in the ith agent state equation (5.1), the result is as follows:

xk+1,i = axk,i − bfx̂k,i + wk,i. (5.10)

In addition, anticipating the need to account for the influence of average states in the dy-
namics through the measurement equation, and letting a tilde (̃.) indicate an averaging over
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Figure 5.1 The stability regions S(a) (brown shaded areas) in the (K, af ) plane. The ver-
tical lines represent the optimal Riccati gain f ∗(a, r) corresponding to all possible values of
parameter r while the horizontal line is the optimal isolated (naive) Kalman filter gain K∗(a).
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agents operation, we define:

mk = 1
N

N∑
j=1

xk,j, m̃k = 1
N

N∑
j=1

x̂k,j, (5.11)

w̃k = 1
N

N∑
j=1

wk,j, ṽk = 1
N

N∑
j=1

vk,j. (5.12)

Thus, combining (5.10), (5.11), (5.12), we obtain:

mk+1 = amk − bfm̃k + w̃k (5.13)

It appears that optimal decentralized estimation in our problem structure, does not lend
itself naturally to a recursive computation. Indeed, the sufficient statistic from the past
(adequate state description) appears to grow by 2 components at every step. More specifically,
average agent state (averaging over all agents) and average agent state estimate enter into
the dynamics of the controlled individual agents, through the −fx̂k,i term into the dynamics
(5.1), and thus the dynamics of both of these averages must be specified to complete the
estimation procedure. As a result, one has to augment the dynamics of (5.1) by at least that
of the agents states average term in the estimation at the first step. When optimal filtering
is applied to the augmented state, computations of both the innovation term and its gain
involve an expected value of the average state and the average state estimate (because the
latter enters the average agent state dynamics). This yields to the apparent infinite regress
effect.

A significant source of complexity in the analysis, is self dependency of filtering equations.
Roughly speaking, since the averaged agent state enters into individual measurements, the
effective stochasticity in a single agent’s measurements depends on how precisely other agents
are estimating their individual states. Thus by symmetry, the level of uncertainty in indi-
vidual state estimates depends on itself. Furthermore, the straightforward recursive Kalman
filter assumes that the internal and measurement sequences noises are uncorrelated with their
past (white noise property). However, in the sequence of expanding state models that we
need to construct for estimation purposes as the time index increases, the noise vectors are
also expanding, and are partially common from one stage to another.

However, given that all noise and initial random variables are jointly Gaussian and noting
that linearity is preserved in our control structure set up, optimal estimates will be linear
functions of the measurements. Hence, using the classical Gaussian unbiased minimum vari-
ance estimation theory (Bagchi (1993)), we derive the exact optimal growing dimension filter
whereby at every time step, all past and present available measurements are considered. In
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particular, let us denote by Kk the time-varying 1× k row vector of filter gains necessary for
computing x̂k,i. Also let Y k

1,i indicate the column vector of all measurements up to time k at
agent i. The minimum covariance estimator x̂k,i minimizes the mean square estimation error

Σk = E
[
(xk,i − x̂k,i)2 |Y k

1,i

]
, (5.14)

and is given by the exact growing dimension filter (the optimal Bulk filter) equations (Abe-
dinpour Fallah et al. (2013a); Bagchi (1993)):

x̂k,i = E [xk,i] +Kk

(
Y k

1,i − E
[
Y k

1,i

])
, (5.15)

Σk = Pxk,ixk,i
−KkP

T
xk,iY

k
1,i
, (5.16)

with optimal time-varying gain

Kk = Pxk,iY
k

1,i
P−1
Y k

1,iY
k

1,i
, (5.17)

where

Pxk,iY
k

1,i
= E

[
(xk,i − E [xk,i])

(
Y k

1,i − E
[
Y k

1,i

])T ]
, (5.18)

PY k
1,iY

k
1,i

= E
[(
Y k

1,i − E
[
Y k

1,i

]) (
Y k

1,i − E
[
Y k

1,i

])T ]
. (5.19)

The next theorem gives a semi-recursive computational scheme for the exact growing dimen-
sion filter (5.15)-(5.17), which uses all of the results from previous cycles up to time k− 1 to
compute Kk in one shot.

Theorem 5.1. The optimal decentralized state estimator x̂k,i is given by:

x̂k,i = (a− bf)kx̄0 +Kk


y1,i − (c+ h)(a− bf)x̄0

y2,i − (c+ h)(a− bf)2x̄0
...

yk,i − (c+ h)(a− bf)kx̄0

 , (5.20)

with optimal time-varying gain Kk, obtained from Levinson-like order-updating relations given
by:

Kk =
[
(a− bf)Kk−1 0

]
+
Pxk,iyk,i

− Pxk,iY
k−1

1,i
P−1
Y k−1

1,i Y k−1
1,i

PY k−1
1,i yk,i

Pyk,iyk,i
− P T

Y k−1
1,i yk,i

P−1
Y k−1

1,i Y k−1
1,i

PY k−1
1,i yk,i

[
−P T

Y k−1
1,i yk,i

P−1
Y k−1

1,i Y k−1
1,i

1
]
,

(5.21)
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with K1 = Px1,iy1,i
/Py1,iy1,i

, and

P−1
Y k

1,iY
k

1,i
=
P−1

Y k−1
1,i Y k−1

1,i

0(k−1)×1

01×(k−1) 0



+ 1
Pyk,iyk,i

− P T
Y k−1

1,i yk,i
P−1
Y k−1

1,i Y k−1
1,i

PY k−1
1,i yk,i

−P−1
Y k−1

1,i Y k−1
1,i

PY k−1
1,i yk,i

1

 −P−1
Y k−1

1,i Y k−1
1,i

PY k−1
1,i yk,i

1

T ,
(5.22)

where the covariances Pxk,iyt,i
and Pyk,iyt,i

are respectively defined as

Pxk,iyt,i
= E

[
(xk,i − E [xk,i]) (yt,i − E [yt,i])T

]
, (5.23)

Pyk,iyt,i
= E

[
(yk,i − E [yk,i]) (yt,i − E [yt,i])T

]
, (5.24)

for t = 1, ..., k, and are obtained recursively from the following equations:

Pxk,iyt,i
=


aPxk−1,iyt,i

− bfKk−1


Py1,iyt,i

...

Pyk−1,iyt,i

 , for t = 1, . . . , k − 1

cPxk,ixt,i
+ hPxk,imt , for t ≥ k

(5.25)

Pyk,iyt,i
=

cPxk,iyt,i
+ hPyt,imk

, for t = 1, . . . , k − 1

cPxk,iyk,i
+ hPyk,imk

+ σ2
v , for t = k

(5.26)

Pyk,imt =



cPxk,imt + hPmkmt , for t ≤ k

aPyk,imt−1 − bfKt−1


(c+ h)Pyk,im1 + Pyk,iṽ1

...

(c+ h)Pyk,imt−1 + Pyk,iṽt−1

 , for t > k
(5.27)
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Pxk,ixt,i
=



aPxk−1,ixt,i
− bfKk−1


Pxt,iy1,i

...

Pxt,iyk−1,i

 , for t = 1, . . . , k − 1

a2Pxk−1,ixk−1,i
− 2abfKk−1


Pxk−1,iy1,i

...

Pxk−1,iyk−1,i


+b2f 2Kk−1PY k−1

1,i Y k−1
1,i

KT
k−1 + σ2

w, for t = k

(5.28)

Pxk,imt =



aPxk−1,imt − bfKk−1


Py1,imt

...

Pyk−1,imt

 , for t = 1, . . . , k − 1

a2Pxk−1,imt−1 − abf(c+ h)Kk−1


Pxk−1,im1

...

Pxk−1,imt−1



−abfKk−1


Pxk−1,iṽ1

...

Pxk−1,iṽt−1

− abfKk−1


Py1,imt−1

...

Pyk−1,imt−1


+b2f 2Kk−1((c+ h)PY k−1

1,i Mt−1
1

+ PY k−1
1,i Ṽ t−1

1
)KT

k−1

+aPxk−1,iw̃t−1 + aPmt−1wk−1,i
− bfKk−1


Py1,iw̃t−1

...

Pyk−1,iw̃t−1



−bf(c+ h)Kk−1


Pm1wk−1,i

...

Pmt−1wk−1,i

+ Pwk−1,iw̃t−1 for t ≥ k

(5.29)
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Pmkmt =



aPmk−1mt − bfKk−1


(c+ h)Pm1mt + Pmtṽ1

...

(c+ h)Pmk−1mt + Pmtṽk−1

 , for t = 1, . . . , k − 1

a2Pmk−1mk−1 − 2abf(c+ h)Kk−1


Pmk−1m1

...

Pmk−1mk−1

− 2abfKk−1


Pmk−1ṽ1

...

Pmk−1ṽk−1


+b2f 2Kk−1((c+ h)2PMk−1

1 Mk−1
1

+ (c+ h)(PMk−1
1 Ṽ k−1

1
+ P T

Mk−1
1 Ṽ k−1

1
)

+PṼ k−1
1 Ṽ k−1

1
)KT

k−1 + σ2
w

N
, for t = k

(5.30)

Pyk,iwt,i
= cPxk,iwt,i

+ hPmkwt,i
, (5.31)

Pmkwt,i
=



0, for t > k − 1
σ2

w

N
, for t = k − 1

aPmk−1wt,i
− bf(c+ h)Kk−1


Pm1wt,i

...

Pmk−1wt,i

 , for t < k − 1

(5.32)

Pxk,iwt,i
=



0, for t > k − 1

σ2
w, for t = k − 1

aPxk−1,iwt,i
− bfKk−1


cPx1,iwt,i

+ hPm1wt,i

...

cPxk−1,iwt,i
+ hPmk−1wt,i

 , for t < k − 1

(5.33)

Pyk,iw̃t = cPxk,iw̃t + hPmkw̃t , (5.34)

Pmkw̃t =



0, for t > k − 1
σ2

w

N
, for t = k − 1

aPmk−1w̃t − bf(c+ h)Kk−1


Pm1w̃t

...

Pmk−1w̃t

 , for t < k − 1

(5.35)
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Pxk,iw̃t =



0, for t > k − 1
σ2

w

N
, for t = k − 1

aPxk−1,iw̃t − bfKk−1


cPx1,iw̃t + hPm1w̃t

...

cPxk−1,iw̃t + hPmk−1w̃t

 , for t < k − 1

(5.36)

Pyk,ivt,i
=


0, for t > k

σ2
v , for t = k

cPxk,ivt,i
+ hPmkvt,i

, for t < k

(5.37)

Pmkvt,i
=



0, for t > k − 1

−bfKk−1(k − 1)σ
2
v

N
, for t = k − 1

aPmk−1vt,i
− bfKk−1(t)σ

2
v

N
− bf(c+ h)Kk−1


Pm1vt,i

...

Pmk−1vt,i

 , for t < k − 1

(5.38)

Pxk,ivt,i
=



0, for t > k − 1

−bfKk−1(k − 1)σ2
v , for t = k − 1

aPxk−1,ivt,i
− bfKk−1(t)σ2

v − bfKk−1


cPx1,ivt,i

+ hPm1vt,i

...

cPxk−1,ivt,i
+ hPmk−1vt,i

 , for t < k − 1

(5.39)

Pyk,iṽt =


0, for t > k

σ2
v

N
, for t = k

cPxk,iṽt + hPmk ṽt , for t < k

(5.40)
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Pmk ṽt =



0, for t > k − 1

−bfKk−1(k − 1)σ
2
v

N
, for t = k − 1

aPmk−1ṽt − bfKk−1(t)σ
2
v

N
− bf(c+ h)Kk−1


Pm1ṽt

...

Pmk−1ṽt

 , for t < k − 1

(5.41)

Pxk,iṽt =



0, for t > k − 1

−bfKk−1(k − 1)σ
2
v

N
, for t = k − 1

aPxk−1,iṽt − bfKk−1(t)σ
2
v

N
− bfKk−1


cPx1,iṽt + hPm1ṽt

...

cPxk−1,iṽt + hPmk−1ṽt

 , for t < k − 1

(5.42)

where Kk(j) denotes the jth element of Kk, and Mk
1 , Ṽ k

1 respectively indicate the column
vector of m and ṽ from time 1 up to time k.

Proof : See the Appendix.

Remark 5.1. Note that the Bulk filter estimation at step k requires solving all the inter-
mediate steps from 1 to k, because this is a situation of dual control whereby the quality
of estimation at time step k depends on previous control actions, themselves a function of
previous filtering results.

Remark 5.2. Note also that all the above expressions capitalize on computations already
carried out at the previous time step; otherwise, the complexity of calculations would make
bulk filtering estimates an essentially insurmountable task.

The next Lemma gives the cross covariance of two arbitrary agents.

Lemma 5.1. The cross covariance of two arbitrary agents xk,i and xk,j over time are obtained



65

recursively from the following equations:

Pxk,ixt,j
=



aPxk−1,ixt,j
− bfKk−1


Pxt,jy1,i

...

Pxt,jyk−1,i

 , for t = 1, . . . , k − 1

a2Pxk−1,ixk−1,j
− abfKk−1


Pxk−1,iy1,j

...

Pxk−1,iyk−1,j

− abfKk−1


Pxk−1,jy1,i

...

Pxk−1,jyk−1,i


+b2f 2Kk−1PY k−1

1,i Y k−1
1,j

KT
k−1, for t = k

(5.43)

where

Pxk,iyt,j
=


aPxk−1,iyt,j

− bfKk−1


Py1,iyt,j

...

Pyk−1,iyt,j

 , for t < k

cPxk,ixt,j
+ hPxk,imt , for t ≥ k

(5.44)

Pyk,iyt,j
= cPxk,iyt,j

+ hPyt,jmk
, for t = 1, . . . , k (5.45)

Proof : See the Appendix.

5.4.3 Finite Memory Filtering Approximations

The optimal Bulk filter is an infinite impulse response (IIR) filter. Any stable IIR filter can
be approximated to any desirable degree by a finite impulse response (FIR) filter (Manolakis
et al. (2005)). In this section, we derive approximate finite-dimensional (time-varying) filters
to reduce memory requirements of the Bulk filter. Let any variable with superscript (n)
correspond to an approximate FIR filter of length n, where only the last n measurements
are preserved. In particular, let us denote by K

(n)
k the time-varying 1 × n row vector of

filter gains necessary for computing x̂(n)
k,i . Also let Y k

k−n+1,i indicate the column vector of n
measurements from time k− n+ 1 up to time k at agent i, and assume zero mean for initial
conditions of all agents, i.e., Ex0,i = x̄0 = 0, i ≥ 1. The minimum covariance estimator x̂(n)

k,i

minimizes the mean square estimation error

Σ(n)
k = E

[(
xk,i − x̂(n)

k,i

)2
|Y k
k−n+1,i

]
, (5.46)
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and is given by (Manolakis et al. (2005)):

x̂
(n)
k,i = K

(n)
k Y k

k−n+1,i, (5.47)

Σ(n)
k = Pxk,ixk,i

−K(n)
k P T

xk,iY
k

k−n+1,i
, (5.48)

with optimum time-varying gain

K
(n)
k = Pxk,iY

k
k−n+1,i

P−1
Y k

k−n+1,i
Y k

k−n+1,i
. (5.49)

The next theorem gives a semi-recursive computational scheme for the optimum finite mem-
ory filter (5.47)-(5.49), which uses all of the results from time k − n up to time k − 1 to
compute K(n)

k in one shot.

Theorem 5.2. The approximate optimal decentralized state estimator x̂(n)
k,i is given by:

x̂
(n)
k,i = K

(n)
k Y k

k−n+1,i, (5.50)

with optimal time-varying gain K
(n)
k , obtained from Levinson-like order-updating relations

given by:

K
(l+1)
k =

[
0 K

(l)
k

]
+

Pxk,iyk−l,i
− Pxk,iY

k
k−l+1,i

P−1
Y k

k−l+1,i
Y k

k−l+1,i
P T
yk−l,iY

k
k−l+1,i

Pyk−l,iyk−l,i
− Pyk−l,iY

k
k−l+1,i

P−1
Y k

k−l+1,i
Y k

k−l+1,i
P T
yk−l,iY

k
k−l+1,i

[
1 −Pyk−l,iY

k
k−l+1,i

P−1
Y k

k−l+1,i
Y k

k−l+1,i

]
,

(5.51)

for l = 1, ..., n− 1, with K(1)
k = Pxk,iyk,i

/Pyk,iyk,i
, and

P−1
Y k

k−l,i
Y k

k−l,i
=
 0 01×l

0l×1 P−1
Y k

k−l+1,i
Y k

k−l+1,i

+ 1
Pyk−l,iyk−l,i

− Pyk−l,iY
k

k−l+1,i
P−1
Y k

k−l+1,i
Y k

k−l+1,i
P T
yk−l,iY

k
k−l+1,i 1

−P−1
Y k

k−l+1,i
Y k

k−l+1,i
P T
yk−l,iY

k
k−l+1,i

 1
−P−1

Y k
k−l+1,i

Y k
k−l+1,i

P T
yk−l,iY

k
k−l+1,i

T , (5.52)

for l = 1, ..., n − 1, where the covariances Pxk,iyt,i
and Pyk,iyt,i

are obtained recursively from
the truncated covariance expressions (5.25)-(5.42) by considering k − n + 1 ≤ t ≤ k, and
replacing Kk with K(n)

k .

Proof : See the Appendix.
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5.4.4 The Steady State Isolated Kalman Sequence

In this section, we obtain the equivalent sequence for the isolated Kalman filter equation
in the steady-state.

Proposition 5.1. In the stability region, the isolated Kalman filter equivalent equation in
the steady-state is given by

x̂k,i = K ′1yk,i +K ′2yk−1,i + ...+K ′ky1,i, (5.53)

where
K ′j = (a− bf)j−1(1− cK∗)j−1K∗. (5.54)

Proof : Let K be given as (5.6) in (5.5). By rearranging (5.5) we have:

x̂k+1,i = (a− bf)(1− cK∗)x̂k,i +K∗yk+1,i. (5.55)

Then substituting
x̂k,i = K ′1yk,i +K ′2yk−1,i + ...+K ′ky1,i, (5.56)

and
x̂k+1,i = K ′1yk+1,i +K ′2yk,i + ...+K ′k+1y1,i, (5.57)

into (5.55) and applying the stationarity property by making the left-hand-side of the result-
ing equation equal to its right-hand-side, we get the fixed-point values (5.54).

5.5 Numerical Study of Filtering and Control Performance

In this section, we numerically investigate state tracking ability of both the exact (growing
dimension) bulk filter and its approximate finite dimension versions, as well as the control
performance of the associated certainty equivalent controllers.

5.5.1 Stabilization Ability of Certainty Equivalent Controllers

First, we numerically demonstrate the stabilization ability of our class of certainty equiv-
alent controllers using an arbitrary feedback gain f such that |af | < 1 (where af = a − bf)
on the bulk filter estimate. In particular, Figs. 5.2, 5.3 and 5.4 respectively, show the stable
behavior of a representative agent (namely, the 50th agent) when a = 10, a = 100, and
a = 1000.



68

0 50 100 150 200 250 300 350 400 450 500

time

-300

-200

-100

0

100

200

300
x

k,50

Estimate of x
k,50

Figure 5.2 The state and its estimate when a = 10, af = 0.9, σv = 1, N = 100, i = 50.
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Figure 5.3 The state and its estimate when a = 100, af = 0.9, σv = 1, N = 100, i = 50.
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Figure 5.4 The state and its estimate when a = 1000, af = 0.9, σv = 1, N = 100, i = 50.

5.5.2 Stationarization Conditions of Optimum Filter

It is numerically observed that the optimal bulk filter gains become asymptotically sta-
tionary for a < ā(f,N) or equivalently a < ā(af , N). We shall refer to ā(af , N) as the
stationarity threshold at af and N . For example, when a = 2.5, f = 2, N = 1000, we have:
KBulk = [. . . ,−0.0006, 0.0015, 0.0018, 0.0615, 0.8628].
Note that the weights of the past measurements are getting smaller and smaller and disap-
pear. The following index has been considered to investigate the stationarity of the Bulk
Filter:

∆ = ‖KT−1(1 : T − 1)−KT (2 : T )‖, (5.58)

where Kk(t1 : t2) = (Kk(t1), Kk(t1 +1), . . . Kk(t2)) comprises the elements from t1 to t2 of the
bulk filter gain vector. In particular, the quantity ∆ in (5.58) is the norm of the difference
between the gains of the Bulk Filter in the last two steps of the considered time horizon [0, T ].
If this quantity starts to increase when a is increased, it is an indication that the Bulk filter is
losing its stationarity property. The values of the stationarity index ∆ in (5.58) are reported
in Figure 5.5 when af = 0.5 (top) and af = 0.99 (bottom) for different values of N over an
horizon of T = 1000 steps. Moreover, the values of the thresholds ā(af , N) and am(af ) for
various af and N are reported in Tab. 5.1, where it is shown how the number of agents N
affects ā(af , N). For each fixed N , it can be observed that the threshold increases with af .
Also, as for the dependence on N , for small values of a (namely 0.3 and 0.5) the threshold
ā(af , N) roughly decreases with N while for large values of a (namely a = 0.8 and a = 0.99)
it increases. In essence, the dependence of the threshold ā(af , N) on N remains rather weak
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(at least for N ≥ 100) and the threshold is always very close to the threshold am(af ) where
the stationary Kalman gain ceases to stabilize (5.1) for the considered af , under the naive
filtering scheme (5.5).

Table 5.1 Thresholds ā(af , N) and am(af )

af ā(af , N = 100) ā(af , N = 1000) ā(af , N = 10000) am(af)
0.3 2.48 2.44 2.38 2.36
0.5 2.79 2.8 2.76 2.74
0.8 3.25 3.35 3.34 3.304
0.99 3.55 3.72 3.72 3.67

5.5.3 Relation with the Naive Kalman Filter Approach

When the Bulk filter becomes stationary, it is interesting to investigate the relation be-
tween its steady state gain coefficients and the isolated Kalman filter equivalent equations
given by (5.54). In particular, consider the following l2 norm based discrepancy index:

δp = ‖KBulk −Kisolated‖, (5.59)

where Kisolated = [. . . K ′3, K ′2, K ′1], with K ′j = (a− bf)j−1(1− cK∗)j−1K∗. Figure 5.6 shows
the discrepancy index δp between the Bulk Filter gains at step T and Kisolated as a function of
a when af = 0.5 (up), 0.99 (bottom), under different values of N over an horizon of T = 1000
steps. It is observed that the steady state bulk filter gain with mostly a few coefficients non
zero could be recovered by applying the isolated Kalman filter equivalent equations given by
(5.54) provided that N is sufficiently large. For example, when a = 2.5, f = 2, N = 109, we
have:

KBulk = [. . . 0.0003 0.0039 0.0584 0.8650],

whereas the stationary Kalman filtering sequence as given by (5.54) is given by:

Kisolated = [. . . 0.00026616 0.0039 0.0584 0.8650].

5.5.4 Persistently Time Varying Behavior for Large Enough a

For a ≥ ā(f,N) the optimal bulk filter gains remain time-varying. For example, when
a = 5, f = 4.5, N = 1000 Figs. 5.7, 5.8 and 5.9 respectively, show the last entry of Kk,
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Figure 5.5 Stationarity index ∆ as a function of a when af = 0.5 (top) and af = 0.99
(bottom), for different values of N over T = 1000 steps. The red vertical line represents the
threshold am(af ) where (K∗(a), af ) ceases to belong to the stability region S(a) in Fig. 5.1.
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Figure 5.7 Last entry of Kk when a = 5, f = 4.5, N = 1000.

the cross covariance of two arbitrary agents and the mean variance. It is observed that the
gains exhibit an oscillating behavior. In fact, we know that at a = 5 the line k∗(5) does not
intersect the stability region S(a) in Fig. 5.1, and thus the naive Kalman filtering scheme
cannot stabilize. When we apply the optimal Bulk filter, because of its accuracy and the
stability of the closed loop dynamics, individual agent dynamics are stabilized and as long as
the individual states remain weakly dependent, as N grows, the law of large numbers dictates
that the interfering mean term in measurement equation (5.2) go to zero. At that stage, the
agents are essentially independent (notice the periodic drop in interstate correlation, Fig. 5.8),
and non interfering and the optimal filtering gain vector ultimately becomes that associated
with the naive Kalman filter, i.e. stationary sequence (5.54), with K∗ = 0.9616. However,
we do know from Fig. 5.1 that such a filtering scheme fails to stabilize the mean dynamics,
and thus after a while, the interference term grows again, thus dominating the measurement
equation and creating a growing interstate cross correlation (see Fig. 5.8 again, and the
coincidence of its peaks with those of the variance of m in Fig. 5.9). The interdependence of
states prevents the size of N from helping in knocking out interference, and the bulk filter
starts again weighing more past measurements in its estimation (this can be observed in
Fig. 5.7 where the peaks of Kk roughly coincide with the minima of cross covariance terms
in Fig. 5.8). Thus persistent oscillations appear in the bulk filtering gain sequences. As
the degree of instability of a increases, the period of cycles gets larger and larger as the
filter has to fight longer to achieve stabilization, while the trail of non negligible coefficients
associated with past measurements becomes longer. At some point, a is sufficiently large
that it may become difficult to clearly distinguish cycles, and filter behavior becomes quite
complex to assess, although numerically, it appears to always maintain boundedness of closed
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loop behavior irrespective of the size of a. Also, the dependency of closed loop behavior
on N becomes non monotonic, as it contributes to worsening interference when states are
correlated, and quickly diminishing it when states become weakly dependent.

5.5.5 Non-Optimality of the Riccati Gain

It is observed that, in general, the Riccati gain f ∗ given by (5.8) is not asymptotically
optimal as the number N of agents goes to infinity when using the Bulk Filter. In particular,
in the range of a’s for which (k∗, f) is stabilizing, the coupling term of the mean asymptotically
disappears from the measurements. In that case, f ∗ is the optimum provided that f ∗ is in the
range of (k∗, f) couples which still stabilize the system, and indeed the bulk filter becomes
in that case equivalent to the naive Kalman filter. However, outside of the stationarization
range, the quality of estimation depends on the applied feedback gain (dual effect of the
control Feldbaum (1960); Witsenhausen (1968)) and this explains the non-optimality of the
Riccati gain in general. For example, Figs. 5.10 and 5.11 respectively, show the average
LQ cost of all the population for a = 2 (in stationarization region) and a = 5 (outside of
stationarization region) using different values of N , where each point in the figures represents
the average of 50 independent simulation runs and 5/4 markers illustrate the standard
deviation of the 50 simulations. Moreover, the vertical lines in the figures represent the
Riccati gain f ∗.

5.5.6 Performance of the Finite Memory Filter Approximations

Fig. 5.12 illustrates the cost defined as maxi |xT,i|, 1 ≤ i ≤ N , i.e. the maximum value of
the agent states in the last step of the simulation (saturated at 1000), obtained by adopting
the finite memory Bulk filters with memory lengths of n = 3, n = 5, n = 10 and n = 50, for
different values of a and af . It is observed that the stabilizing capability of the approximate
finite memory filter is improved by increasing the memory length n.

5.6 Application to Networked Control Systems

In Abedinpour Fallah et al. (2016), we presented an application example for decentralized
power control in code division multiple access (CDMA) cellular telephone systems with state
gain a = 1. In this section, we present an application example for control of multi-agent
systems over a CDMA network with arbitrary state gain a.

Following the works in Tse and Hanly (1999) and Verdú and Shamai (1999), we consider a
model of a CDMA based communication and control system in the context of a large number
of users with N users which share a channel and are assumed to be equally spaced on a circle
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Figure 5.10 The average LQ cost of all the population for a = 2 and different values of N
over T = 1200 steps, while the vertical blue line shows the Riccati gain f ∗.

4.6 4.65 4.7 4.75 4.8 4.85 4.9 4.95 5

f

1400

1450

1500

1550

1600

1650

1700

1750

L
Q

 c
o
s
t

a=5, N=100

4.6 4.65 4.7 4.75 4.8 4.85 4.9 4.95 5

f

1200

1250

1300

1350

1400

1450

1500

L
Q

 c
o
s
t

a=5, N=1000

4.6 4.65 4.7 4.75 4.8 4.85 4.9 4.95 5

f

1050

1100

1150

1200

1250

1300

1350

L
Q

 c
o
s
t

a=5, N=10000

Figure 5.11 The average LQ cost of all the population for a = 5 and different values of N
over T = 1200 steps, while the vertical blue line shows the Riccati gain f ∗.



77

0

10

500

1

n=3

a

5

af

1000

0.5

0 0

0

10

500

1

n=5

a

5

af

1000

0.5

0 0

0

10

500

1

n=10

a

5

af

1000

0.5

0 0

0

10

500

1

n=50

a

5

af

1000

0.5

0 0

Figure 5.12 Simulative evaluation of the finite memory approximate Bulk filters with memory
length of n when N = 100, T = 1000. The mesh reports the cost defined as maxi |xT,i|,
1 ≤ i ≤ N .

around the base station, with a signal processing gain proportional to 1/N . The base station
itself sends the control signal to a collection of individual systems (users), hereon also referred
to as agents. Downlink channels are considered noiseless, however the controlled individual
systems are stochastic. The ith mobile user of the network transmits a signal proportional to
the (scalar) state xk,i, that is to say, βxk,i, where β is a constant parameter. Note that the
transmitted power is proportional to β2x2

k,i and that the larger the state, the more energy
will be involved in the transmission. The base station in turn computes the required control
based on received signal which also is tainted by interference and noises. In particular, the
output signal corresponding to the ith user (agent) is given by:

yk,i = αβxk,i + h′

N

N∑
j 6=i

αβxk,j + vthk,i + v′k,i, (5.60)

where α > 0 denotes the uplink channel gain of the network, vthk,i is the background thermal
noise process and v′k,i is the the local observation error after transmission (vthk,i and v′k,i are
modeled as zero mean Gaussian random variables) [see Abedinpour Fallah et al. (2016);
Huang et al. (2004); Koskie and Gajic (2006); Perreau and Anderson (2006)]. Note that the
resulting signal processing gain is assumed to be h′/N . Also, the actual controlling users
are assumed to be independent and simply using the base station as a communication tool.
They would not want to share in any way their private information in a cooperative scheme
that would allow others to identify their state.
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Thus, by letting

c = αβ(1− h′

N
), h = αβh′, vk,i = vthk,i + v′k,i, (5.61)

the physics of CDMA transmission viewed as a networked control system with N agents can
be cast into a state space form with individual scalar dynamics described by (5.1) and partial
observations given by (5.2).

5.7 Conclusion

In this paper, we have studied a class of certainty equivalent controllers with time invari-
ant state estimate feedback gain for uniform agents that have linear stochastic individual
dynamics and are coupled only through an interference term (the mean of all agent states),
entering each of their individual measurement equations. The main challenge has been one of
developing a decentralized filtering scheme under the considered class of feedback controllers.
The optimum filters present several complicating features: (i) their form and performance
is control dependent and thus a “dual" control effect is present; (ii) the filters are growing
memory while no finite dimensional sufficient statistic appears within grasp. However, we
have succeeded in developing a semi-recursive computational scheme which capitalizes on
numerical results from all previous cycles, for otherwise numerical complexity rapidly ex-
plodes; (iii) It is impossible to produce a state estimate at some time k without proceeding
sequentially, i.e., without having to compute filtering state estimates for all steps before k.
We have numerically observed that the proposed estimator in combination with an arbitrary
(stabilizing under perfect state observations) state estimate feedback gain, succeeds in main-
taining the boundedness of the closed loop system even when individual systems are highly
unstable. Moreover, we have established existence of a stationarity threshold ā(f,N) past
which, the optimal filter gains never stationarize, i.e. remain time-varying, and essentially
periodic in the case of weakly unstable agents. An interpretation of such behavior was pro-
vided. Furthermore, we have derived approximate finite-dimensional filters to reduce memory
requirements of the exact growing dimension filter.

In future work, we will attempt to mathematically establish the stabilization ability of
our class of certainty equivalent controllers. Moreover, we will study the bulk filter properties
as a dynamical system when no periodicity is apparent.

5.8 Appendix

Proof of Theorem 5.1. We first note that the Bulk filter (5.15)-(5.17) is initialized
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with x̂0,i = x̄0, and therefore we have:

E [xk,i] = (a− bf)kx̄0, E [mk] = (a− bf)kx̄0, (5.62)

and

E [yk,i] = cE [xk,i] + hE [mk] (5.63)

= (c+ h)(a− bf)kx̄0.

Next, we partition PY k
1,iY

k
1,i

in (5.17) as

PY k
1,iY

k
1,i

=

PY k−1
1,i Y k−1

1,i
PY k−1

1,i yk,i

P T
Y k−1

1,i yk,i
Pyk,iyk,i

 . (5.64)

Then applying matrix inversion by partitioning lemma Noble and Daniel (1988) we get (5.22).
Moreover, by combining (5.22) and (5.17) we have:

Kk =
[
Pxk,iY

k−1
1,i

P−1
Y k−1

1,i Y k−1
1,i

0
]

+
−Pxk,iY

k−1
1,i

P−1
Y k−1

1,i Y k−1
1,i

PY k−1
1,i yk,i

+ Pxk,iyk,i

Pyk,iyk,i
− P T

Y k−1
1,i yk,i

P−1
Y k−1

1,i Y k−1
1,i

PY k−1
1,i yk,i

[
−P T

Y k−1
1,i yk,i

P−1
Y k−1

1,i Y k−1
1,i

1
]
. (5.65)

Furthermore, we note that for t = 1, ..., k − 1

Pxk,iyt,i
= E[(axk−1,i − bfx̂k−1,i + wk−1,i − E[xk,i])(yt,i − E[yt,i])]

= aPxk−1,iyt,i
− bfKk−1PY k−1

1,i yt,i
, (5.66)

therefore,

Pxk,iY
k−1

1,i
P−1
Y k−1

1,i Y k−1
1,i

= (aPxk−1,iY
k−1

1,i
− bfKk−1PY k−1

1,i Y k−1
1,i

)P−1
Y k−1

1,i Y k−1
1,i

= (a− bf)Kk−1. (5.67)

Thus, combining (5.65) and (5.67) yields (5.21).
Next, we show the derivations of the covariance expressions (5.25)-(5.42). In particular, for
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t = 1, . . . , k − 1 we have:

Pxk,iyt,i
=E[(xk,i − E[xk,i])(yt,i − E[yt,i])]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)(yt,i − E[yt,i])]

(5.68)

and for t ≥ k we have:

Pxk,iyt,i
=E[(xk,i − E[xk,i])(yt,i − E[yt,i])]

=E[(xk,i − E[xk,i])(c(xt,i − E[xt,i]) + h(mt − E[mt]) + vt,i)] (5.69)

thus (5.68) and (5.69) yield (5.25). Also,

Pyk,iyt,i
=E[(yk,i − E[yk,i])(yt,i − E[yt,i])]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk]) + vk,i)(yt,i − E[yt,i])] (5.70)

which yields (5.26). Moreover, for t ≤ k we have:

Pyk,imt =E[(yk,i − E[yk,i])(mt − E[mt])]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk]) + vk,i)(mt − E[mt])] (5.71)

and for t > k we have:

Pyk,imt =E[(yk,i − E[yk,i])(mt − E[mt])]

=E[(yk,i − E[yk,i])(a(mt−1 − E[mt−1])− bfKt−1


(c+ h)(m1 − E[m1]) + ṽ1

...
(c+ h)(mt−1 − E[mt−1]) + ṽt−1


+ w̃t−1)], (5.72)
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thus (5.71) and (5.72) yield (5.27). For t = 1, . . . , k − 1 we have:

Pxk,ixt,i
=E[(xk,i − E[xk,i])(xt,i − E[xt,i])]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)(xt,i − E[xt,i])]

(5.73)

and for t = k,

Pxk,ixt,i
=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)2] (5.74)

thus (5.73) and (5.74) yield (5.28). For t = 1, . . . , k − 1 we have:

Pxk,imt =E[(xk,i − E[xk,i])(mt − E[mt])]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)(mt − E[mt])]

(5.75)

and for t ≥ k,

Pxk,imt =E[(xk,i − E[xk,i])(mt − E[mt])]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)

(a(mt−1 − E[mt−1])− bfKk−1


(c+ h)(m1 − E[m1]) + ṽ1

...
(c+ h)(mt−1 − E[mt−1]) + ṽt−1

+ w̃t−1)] (5.76)
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thus (5.75) and (5.76) yield (5.29). For t = 1, . . . , k − 1 we have:

Pmkmt =E[(mk − E[mk])(mt − E[mt])]

=E[(a(mk−1 − E[mk−1])− bfKk−1


(c+ h)(m1 − E[m1]) + ṽ1

...
(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)

(mt − E[mt])] (5.77)

and for t = k,

Pmkmt =E[(mk − E[mk])2]

=E[(a(mk−1 − E[mk−1])− bfKk−1


(c+ h)(m1 − E[m1]) + ṽ1

...
(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)2]

(5.78)

thus (5.77) and (5.78) yield (5.30). Furthermore,

Pyk,iwt,i
=E[(yk,i − E[yk,i])wt,i]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk]) + vk,i)wt,i] (5.79)

which gives (5.31).

Pmkwt,i
=E[(mk − E[mk])wt,i]

=E[(a(mk−1 − E[mk−1])− bfKk−1


(c+ h)(m1 − E[m1]) + ṽ1

...
(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)wt,i]

=E[aPmk−1wt,i
− bf(c+ h)Kk−1


Pm1wt,i

...
Pmk−1wt,i

+ Pw̃k−1wt,i
] (5.80)
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which gives (5.32).

Pxk,iwt,i
=E[(xk,i − E[xk,i])wt,i]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)wt,i]

=E[aPxk−1,iwt,i
− bfKk−1


Py1,iwt,i

...
Pyk−1,iwt,i

+ Pwk−1,iwt,i
] (5.81)

which gives (5.33).

Pyk,iw̃t =E[(yk,i − E[yk,i])w̃t]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk]) + vk,i)w̃t] (5.82)

which gives (5.34).

Pmkw̃t =E[(mk − E[mk])w̃t]

=E[(a(mk−1 − E[mk−1])− bfKk−1


(c+ h)(m1 − E[m1]) + ṽ1

...
(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)w̃t]

=E[aPmk−1w̃t − bf(c+ h)Kk−1


Pm1w̃t

...
Pmk−1w̃t

+ Pw̃k−1w̃t ] (5.83)

which gives (5.35).

Pxk,iw̃t =E[(xk,i − E[xk,i])w̃t]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)w̃t]

=E[aPxk−1,iw̃t − bfKk−1


Py1,iw̃t

...
Pyk−1,iw̃t

+ Pwk−1,iw̃t ] (5.84)
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which gives (5.36).

Pyk,ivt,i
=E[(yk,i − E[yk,i])vt,i]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk]) + vk,i)vt,i] (5.85)

which gives (5.37).

Pmkvt,i
=E[(mk − E[mk])vt,i]

=E[(a(mk−1 − E[mk−1])− bfKk−1


(c+ h)(m1 − E[m1]) + ṽ1

...
(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)vt,i]

=aPmk−1vt,i
− bfKk−1


(c+ h)Pm1vt,i

+ Pṽ1vt,i

...
(c+ h)Pmk−1vt,i

+ Pṽk−1vt,i

 , (5.86)

which gives (5.38).

Pxk,ivt,i
=E[(xk,i − E[xk,i])vt,i]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)vt,i]

=aPxk−1,ivt,i
− bfKk−1


Py1,ivt,i

...
Pyk−1,ivt,i

 (5.87)

which gives (5.39).

Pyk,iṽt =E[(yk,i − E[yk,i])ṽt]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk]) + vk,i)ṽt], (5.88)
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which gives (5.40).

Pmk ṽt =E[(mk − E[mk])ṽt]

=E[(a(mk−1 − E[mk−1])− bfKk−1


(c+ h)(m1 − E[m1]) + ṽ1

...
(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)ṽt]

=aPmk−1ṽt − bf(c+ h)Kk−1


Pm1ṽt

...
Pmk−1ṽt

+ Pw̃k−1ṽt , (5.89)

which gives (5.41).

Pxk,iṽt =E[(xk,i − E[xk,i])ṽt]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)ṽt]

=aPxk−1,iṽt − bfKk−1


Py1,iṽt

...
Pyk−1,iṽt

+ Pwk−1,iṽt (5.90)

which gives (5.42). This concludes the proof.

Proof of Lemma 5.1. For t = 1, . . . , k − 1 we have:

Pxk,ixt,j
=E[(xk,i − E[xk,i])(xt,j − E[xt,j])]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)(xt,j − E[xt,j])]

(5.91)
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and for t = k, we have:

Pxk,ixk,j
=E[(a(xk−1,i − E[xk−1,i])− bfKk−1


y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)

(a(xk−1,j − E[xk−1,j])− bfKk−1


y1,j − E[y1,j]

...
yk−1,j − E[yk−1,j]

+ wk−1,j)] (5.92)

thus (5.91) and (5.92) yield (5.43). The rest of the proof is similar to that of Theorem 5.1.

Proof of Theorem 5.2. First, we partition PY k
k−l,i

Y k
k−l,i

in (5.49) as follows:

PY k
k−l,i

Y k
k−l,i

=

 Pyk−l,iyk−l,i
Pyk−l,iY

k
k−l+1,i

P T
yk−l,iY

k
k−l+1,i

PY k
k−l+1,i

Y k
k−l+1,i

 . (5.93)

Then applying matrix inversion by partitioning lemma Noble and Daniel (1988) we get (5.52).
Moreover, combining (5.49) and (5.52) yields (5.51). The rest of the proof is similar to that
of Theorem 5.1.
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NETWORKED CONTROL SYSTEMS AND A CLASS OF
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Mehdi Abedinpour Fallah, Roland P. Malhamé and Francesco Martinelli
Accepted for presentation at the 20th IFAC World Congress, Toulouse, France, July 2017

6.1 Abstract

Networked control systems must use communication links between control hubs and dis-
tributed components, possibly both to observe component states, and to send control com-
mands. We consider a model of a CDMA based communication and control system where
the signal sent from the components to the base station, acting as the control hub, is propor-
tional to their (scalar) state, and in turn, the base station sends back the required control
commands to the components. The systems are linear, and commands are constrained to
be linear, possibly time varying feedback laws on current and a limited set of recent mea-
surements. However, the individual measurements as decoded by the base station include
interference terms from the set of all other components, and this inadvertently creates an
interference induced game situation. The consequence is that controls have dual effects: they
steer individual systems, but they can also help create additional interference. We propose
an algorithm which accounts for a combination of control and estimation costs to compute
symmetric Nash equilibria if they exist.

6.2 Introduction

Networked Control System (NCS) refers to a decentralized control system in which the
components are connected through real-time communication channels or a data network.
Thus, there may be a data link between the sensors (which collect information), the controllers
(which make decisions), and the actuators (which execute the controller commands); and the
sensors, the controllers, and the plant themselves could be geographically separated (Yüksel
and Başar (2013)). Game theory has emerged as a well-established discipline capable of
providing a resourceful and effective framework for addressing control of large scale and
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distributed networked systems.
Following the works in Tse and Hanly (1999) and Verdú and Shamai (1999), we consider a

model of a CDMA based communication and control system in the context of a large number
of users with N users which share a channel and are assumed to be equally spaced on a circle
around the base station, with a signal processing gain proportional to 1/N . The base station
itself sends the control signal to a collection of individual systems (users), hereon also referred
to as agents. Downlink channels are considered noiseless, however the controlled individual
systems are stochastic. The ith mobile user of the network transmits a signal proportional to
the (scalar) state xk,i, that is to say, βxk,i, where β is a constant parameter. Note that the
transmitted power is proportional to β2x2

k,i and that the larger the state, the more energy
will be involved in the transmission. The base station in turn computes the required control
based on received signal which also is tainted by interference and noises. In particular, the
output signal corresponding to the ith user (agent) is given by:

yk,i = αβxk,i + h′

N

N∑
j 6=i

αβxk,j + vthk,i + v′k,i, (6.1)

where α > 0 denotes the uplink channel gain of the network, vthk,i is the background thermal
noise process and v′k,i is the the local observation error after transmission (vthk,i and v′k,i are
modeled as zero mean Gaussian random variables) [see Abedinpour Fallah et al. (2016);
Huang et al. (2004); Koskie and Gajic (2006); Perreau and Anderson (2006)]. Note that the
resulting signal processing gain is assumed to be h′/N . Also, the actual controlling users
are assumed to be independent and simply using the base station as a communication tool.
They would not want to share in any way their private information in a cooperative scheme
that would allow others to identify their state.

Recently there have been research efforts to treat the power control problem from base
station to individual cellular phone through a game theoretic view. In particular, a non
linear model of the channel is used by Aziz and Caines (2017) and they formulate a mean
field game problem to find Nash equilibrium strategies.

In this paper, we wish to use CDMA technology to achieve distributed control in a partic-
ular way over a network. It turns out that interference due to the convergence of information
signals to the base station creates a game situation, in which control laws both steer the
system and affect the quality of observations, thus creating a dual control environment (for
example, see Feldbaum (1960); Kim and Rock (2006)). We propose an approach to char-
acterize potential Nash equilibrium decentralized policies within a restricted class, that of
linear time varying output feedback policies involving a limited record of the most recent
measurements, despite this complex dual control environment.
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BS

Figure 6.1 N users using CDMA technology

The rest of the paper is organized as follows. The problem is defined and formulated
in state space in Section 6.3. Section 6.4 presents the main results concerning computation
of symmetric Nash equilibrium using output feedback dynamic programming and Kalman
filter based estimation. Section 6.5 illustrates some numerical simulation results. Concluding
remarks are stated in Section 6.6.

6.3 State space model formulation and problem statement

By letting
c = αβ(1− h′

N
), h = αβh′, vk,i = vthk,i + v′k,i, (6.2)

the physics of CDMA transmission viewed as a networked control system with N agents can
be cast into a state space form with individual scalar dynamics described by

xk+1,i = axk,i + buk,i + wk,i (6.3)

and partial scalar state observations given by:

yk,i = cxk,i + h

 1
N

N∑
j=1

xk,j

+ vk,i (6.4)

for k ≥ 0 and 1 ≤ i ≤ N , where xk,i, uk,i, yk,i ∈ R are the state, the control input and
the measured output of the ith agent, respectively. The random variables wk,i ∼ N (0, σ2

w)
and vk,i ∼ N (0, σ2

v) represent independent Gaussian white noises at different times k and at
different agents i. The Gaussian initial conditions x0,i ∼ N (x̄0, σ

2
0) are mutually independent
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and are also independent of {wk,i, vk,i, 1 ≤ i ≤ N, k ≥ 0}. σ2
w, σ2

v and σ2
0 denote the variance

of wk,i, vk,i and x0,i, respectively. Moreover, a is a scalar parameter and b, c, h > 0 are positive
scalar parameters. Furthermore, the individual cost function for each agent is given by

Ji , E
[
T−1∑
k=0

(x2
k,i + ru2

k,i) + x2
T,i

]
, (6.5)

where r > 0 is a positive scalar parameter.
In Abedinpour Fallah et al. (2013a, 2014), and for the infinite horizon problem, the class

of so-called separated policies (i.e. involving a constant gain feedback on the optimal local
state estimate) has been considered; it has been shown that if individual agent dynamics
are “sufficiently stable”, this class includes a particular feedback gain corresponding to an
asymptotic in population size Nash equilibrium. Furthermore, it has been numerically ob-
served that the class of separated policies appears to always contain stabilizing gain ranges
irrespective of the degree of instability of individual dynamics, while predictably so, the cor-
responding optimal filters are linear functions of the current and past observations, however
with coefficients which remain time varying. The latter observation leads us to consider
existence of potential Nash equilibria, however within the special class of growing dimension
time varying linear output feedback control policies given by

uk,i = −f1,kyk,i − f2,kyk−1,i − ...− fk−1,ky2,i − fk,ky1,i, (6.6)

where fj,k are time varying scalar gains. In this paper, we propose a methodology for the
computation of such policies for a finite horizon problem (which obviously we could make
as large as we wish). For analytical tractability and computability, we shall further narrow
the considered class of candidate policies to that of linear output time varying feedback
policies, with a limited look back at the most recent two measurements. One can make
the class wider by picking more measurements, and having a growing vector of time varying
gains as measurements accumulate. Thus, in the rest of the paper, we consider the problem of
synthesizing Nash equilibrium strategies within a class of time varying linear output feedback
control laws parameterized as follows:

uk,i = −f1,kyk,i − f2,kyk−1,i, (6.7)

i.e. the dependence is restricted to the most recent two measurements.
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6.4 Computation of Symmetric Nash Equilibrium

The idea of the calculation is based on a “generic" agent i0 attempting to develop a
consistency principle for identifying the likely Nash candidate policies within the restricted
class of interest, through the following steps:
— On a finite time horizon T , fix for every k the sequence of output feedback gains

(f1,k, f2,k) to be considered as a candidate.

— Assume everyone except agent i0 uses that feedback strategy.

— Consider N large enough that the actions of agent i0 have negligible impact on the
policies of other agents (the standard starting point of mean field games analysis - see
[Huang et al. (2007)] for example , i.e. decoupling of the mass from the individual).
Indeed, while an agent’s input does not affect the quality of its estimates in the linear
case, in reality the feedback gains used by i0 affect its state and through interference
will affect the ability of other agents to estimate their own state. This in turn impacts
the interference perceived by i0

— Consider the optimal control problem to be solved by individual agent i0. Note that
when solving for its best response to other agents’ actions using a dynamic programming
principle working backwards in time at some time k, based on the results at time (k+1),
it is assumed in light of the previous discussion, and for estimation purposes that up
to time k the agent has been using exactly the same feedback policy as the other agents.

— Under such conditions, agent i0 calculates the optimal feedback gains at time k, and of
course, a necessary condition for the posited feedback sequence to be Nash is that the
agent in question recovers the feedback gains he assumed optimal in the first place, i.e.
a fixed point result. In this process, unlike the standard LQG dynamic programming
solution, the estimation error cost depends on the chosen feedback gains, and thus also
the structure of the fixed point equations one needs to satisfy. Also, note that in positing
the quadratic structure of the optimal cost to go, we do neglect any dependencies on
measurements beyond the latest two (The most general analysis would instead need to
deal with optimal cost to go quadratic dependencies on a growing dimension vector of
measurements).
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We proceed to study the dynamical model of agent i0. In particular, define:

m−k = 1
N

N∑
j 6=i0

xk,j, k = 0, 1, ..., T, (6.8)

w̃−k = 1
N

N∑
j 6=i0

wk,j, ṽ−k = 1
N

N∑
j 6=i0

vk,j, (6.9)

and assume that all other agents (except agent i0) use (6.7). Thus, including (6.7) in (6.3)
and combining (6.3), (6.4), (6.8), (6.9), the 5th order model of the closed-loop dynamics can
be expressed as:

Xk+1,i0 = Ad,kXk,i0 +Bduk,i0 +Dd,kWk,i0 , (6.10)

with
yk,i0 = HdXk,i0 + vk,i0 , (6.11)

where the augmented state is

Xk,i0 = [xk,i0 , xk−1,i0 ,m
−
k ,m

−
k−1, ṽ

−
k−1]T , (6.12)

and matrix Ad,k is given by

Ad,k =



a 0 0 0 0
1 0 0 0 0

−bf1,k
(N−1)
N2 h −bf2,k

(N−1)
N2 h a′3,3 a′3,4 −bf2,k

0 0 1 0 0
0 0 0 0 0


, (6.13)

with

a′3,3 = a− bf1,k(c+ (N − 1)
N

h), (6.14)

a′3,4 = −bf2,k(c+ (N − 1)
N

h), (6.15)
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and also we have:

Bd =



b

0
0
0
0


, Dd,k =



1 0 0
0 0 0
0 1 −bf1,k

0 0 0
0 0 1


, Hd =



c+ h
N

0
h

0
0



T

. (6.16)

Furthermore, the noise vector Wk,i0 and its covariance matrix Σw,d are given by:

Wk,i0 =


wk,i0

w̃−k
ṽ−k

 ,Σw,d =


σ2
w 0 0
0 (N−1)

N2 σ2
w 0

0 0 (N−1)
N2 σ2

v

 . (6.17)

6.4.1 Optimal control using dynamic programming

Let x̂k,i denote the minimum mean square error estimator of xk,i based only on local
observations of the ith agent. Also let Y k

i indicate the column vector of all measurements up
to time k at agent i. Next, consider agent i0 with its cost function given by:

Ji0 , E
(
T−1∑
k=0

(x2
k,i0 + ru2

k,i0) + x2
T,i0

)
, (6.18)

and let Vk,i0 be the optimal expected value of Ji0 starting from time k on, knowing the
measurements Y k

i0 and using an optimal u∗k,i0 , i.e. the optimal cost to go starting from time
k. Then using the dynamic programming principle we have:

Vk,i0 = min
uk,i0

E{x2
k,i0 + ru2

k,i0 + Vk+1,i0|Y k
i0}. (6.19)

Now, for tractability, we make the approximation that the optimal cost-to-go is a quadratic
function of the last two most recent measurements. Recall however that in general, the opti-
mal cost to go will be a quadratic function of all current and past measurements. Therefore,
by substituting

Vk+1,i0 =
yk+1,i0

yk,i0

T q11,k+1 q12,k+1

q12,k+1 q22,k+1

 yk+1,i0

yk,i0

+ q̄k+1 (6.20)
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in (6.19) we get:

Vk,i0 = min
uk,i0

E{x2
k,i0 + ru2

k,i0 + q11,k+1y
2
k+1,i0 + q22,k+1y

2
k,i0 + 2q12,k+1yk,i0yk+1,i0 + q̄k+1|Y k

i0},

(6.21)

which can be written as:

Vk,i0 = min
uk,i0

E{(xk,i0 − x̂k,i0 + x̂k,i0)2 + ru2
k,i0 + q11,k+1(yk+1,i0 − ŷk+1|k,i0 + ŷk+1|k,i0)2

+ q22,k+1y
2
k,i0 + 2q12,k+1yk,i0 ŷk+1|k,i0 + q̄k+1|Y k

i0}, (6.22)

where ŷk+1|k,i0 = E
[
yk+1,i0|Y k

i0

]
. Now, using the orthogonality of estimation error with the

estimate itself (i.e., (xk,i0 − x̂k,i0) ⊥ x̂k,i) in (6.22) we get:

Vk,i0 = min
uk,i0

E{(xk,i0 − x̂k,i0)2 + x̂2
k,i0 + ru2

k,i0 + q11,k+1(yk+1,i0 − ŷk+1|k,i0)2 + q11,k+1ŷ
2
k+1|k,i0

+ q22,k+1y
2
k,i0 + 2q12,k+1yk,i0 ŷk+1|k,i0 + q̄k+1|Y k

i0}, (6.23)

which can be expressed as:

Vk,i0 = min
uk,i0

E{(xk,i0 − x̂k,i0)2 + x̂2
k,i0 + ru2

k,i0 + q11,k+1((c+ h

N
)(xk+1,i0 − x̂k+1|k,i0)

+ h(m−k+1 − m̂−k+1|k,i0) + vk+1,i0)2 + q22,k+1y
2
k,i0 + q11,k+1((c+ h

N
)x̂k+1|k,i0 + hm̂−k+1|k,i0)2

+ 2q12,k+1yk,i0((c+ h

N
)x̂k+1|k,i0 + hm̂−k+1|k,i0) + q̄k+1|Y k

i0}, (6.24)

where x̂k+1|k,i0 = E
[
xk+1,i0|Y k

i0

]
and m̂−k+1|k,i0 = E

[
m−k+1,i0|Y

k
i0

]
. Note here the dependence of

the cost to go on the expected state estimation error variance, itself a deterministic function
of all current and past state feedback gains in the control law, thus highlighting the dual
effects of controls in this context. Then replacing (6.3) and

x̂k+1|k,i0 = ax̂k,i0 + buk,i0 (6.25)

in (6.24) and also noting that m−k+1 is considered independent of uk,i0 because of the size of
N , we let ∂Vk,i0

∂uk,i0
= 0, which yields:

u∗k,i0 =−
b(c+ h

N
)

r + b2(c+ h
N

)2q11,k+1

(
a(c+ h

N
)q11,k+1x̂k,i0 + hq11,k+1m̂

−
k+1|k,i0 + q12,k+1yk,i0

)
.

(6.26)
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Moreover, using (6.10)-(6.12) the optimal controller u∗k,i0 can be expressed as:

u∗k,i0 =−
b(c+ h

N
)

r + b2(c+ h
N

)2q11,k+1
(q11,k+1ΦT

k X̂k,i0 + q12,k+1yk,i0), (6.27)

where

Φk =



a(c+ h
N

)− bf1,k
(N−1)
N2 h2

−bf2,k
(N−1)
N2 h2

[a− bf1,k(c+ (N−1)
N

h)]h
−bf2,k(c+ (N−1)

N
h)h

−bf2,kh


. (6.28)

Now, we assume that any estimate we make depends at most on the two most recent measure-
ments so that the quadratic assumption about the cost structure remains true from one step
to another (see the Kalman filtering section 6.4.2 for more details, as well as the calculation
of the filter gains in (6.46)-(6.48)). We then have:

X̂k,i0 = K̃1,kyk,i0 + K̃2,kyk−1,i0 . (6.29)

Thus, u∗k,i0 can further be expressed as follows:

u∗k,i0 = −f ∗1,kyk,i0 − f ∗2,kyk−1,i0 , (6.30)

where

f ∗1,k =
b(c+ h

N
)

r + b2(c+ h
N

)2q11,k+1

(
q11,k+1ΦT

k K̃1,k + q12,k+1
)
, (6.31)

f ∗2,k =
b(c+ h

N
)

r + b2(c+ h
N

)2q11,k+1

(
q11,k+1ΦT

k K̃2,k
)
. (6.32)

As stated, a necessary condition for the posited feedback sequence to be Nash is that the
agent i0 recovers the feedback gains he assumed optimal in the first place, i.e. the fixed point
equilibrium condition holds, which yields:

(f1,k, f2,k) = (f ∗1,k, f ∗2,k). (6.33)
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Furthermore, plugging in (6.23) the optimal controller u∗k,i0 and using estimate (6.29) we get,
after some calculations, the following backward coupled equations:

q11,k =q11,k+1(−bf1,k(c+ h

N
) + ΦT

k K̃1,k)2 + 2q12,k+1(−bf1,k(c+ h

N
) + ΦT

k K̃1,k) + q22,k+1

+ K̃
(x)
1,k

2 + rf 2
1,k, (6.34)

q22,k =q11,k+1(−bf2,k(c+ h

N
) + ΦT

k K̃2,k)2 + K̃
(x)
2,k

2 + rf 2
2,k, (6.35)

q12,k = K̃
(x)
1,k K̃

(x)
2,k + q12,k+1(−bf2,k(c+ h

N
) + ΦT

k K̃2,k) + rf1,kf2,k

+ q11,k+1(−bf1,k(c+ h

N
) + ΦT

k K̃1,k)(−bf2,k(c+ h

N
) + ΦT

k K̃2,k), (6.36)

q̄k =q11,k+1(ΦT
kPk|kΦk + (c2 + 2ch+ h2

N
)σ2

w + (1 + b2f 2
1,kh

2 (N − 1)
N2 )σ2

v) + q̄k+1 + P
(xx)
k|k ,

(6.37)

where K̃(x)
1,k , K̃

(x)
2,k are respectively, the first elements of the filter gain vectors K̃1,k, K̃2,k.

Moreover, P (xx)
k|k denotes the first entry in the main diagonal of the estimation error covariance

matrix Pk|k.

6.4.2 Kalman filter-based estimation

Applying the standard (time-varying) Kalman filter algorithm to the dynamics (6.10)-
(6.11) we have:

X̂k+1,i0 =Ad,kX̂k,i0 +Bduk,i0 +Kk+1(yk+1,i0 −Hd(Ad,kX̂k,i0 +Bduk,i0)) (6.38)

Pk+1|k =Ad,kPk|kATd,k +Dd,kΣw,dD
T
d,k (6.39)

Kk+1 =Pk+1|kH
T
d (HdPk+1|kH

T
d +Rd)−1 (6.40)

Pk+1|k+1 =(I −Kk+1Hd)Pk+1|k (6.41)

which is initialized via given X̂i,0 and P0|−1. Also, Rd = σ2
v . Then we note that the filtering

equation (6.38) can be written as

X̂k+1,i0 =(Ad,k −Kk+1HdAd,k)X̂k,i0 + (I −Kk+1Hd)Bduk,i0 +Kk+1yk+1,i0 (6.42)
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Thus, replacing

X̂k,i0 =(Ad,k−1 −KkHdAd,k−1)X̂k−1,i0 + (I −KkHd)Bduk−1,i0 +Kkyk,i0 (6.43)

in (6.42) we get:

X̂k+1,i0 =(Ad,k −Kk+1HdAd,k)[(Ad,k−1 −KkHdAd,k−1)X̂k−1,i0 + (I −KkHd)Bduk−1,i0 ]

+ (I −Kk+1Hd)Bduk,i0 + (Ad,k −Kk+1HdAd,k)Kkyk,i0 +Kk+1yk+1,i0 (6.44)

Now, we assume that any estimate we make depends at most on the two most recent mea-
surements so that the quadratic assumption relating to the cost structure remains true from
one step to another. Therefore, also letting the optimal u∗k,i0 = −f1,kyk,i0 − f2,kyk−1,i0 in
(6.44) we get:

X̂k+1,i0 =[−f1,k(I −Kk+1Hd)Bd + (Ad,k −Kk+1HdAd,k)Kk]yk,i0 +Kk+1yk+1,i0 . (6.45)

Hence, we have:

X̂k,i0 = K̃1,kyk,i0 + K̃2,kyk−1,i0 , (6.46)

where

K̃1,k =Kk, (6.47)

K̃2,k =− f1,k−1(I −KkHd)Bd + (Ad,k−1 −KkHdAd,k−1)Kk−1. (6.48)

6.4.3 Initialization

Over a finite time horizon [0, T ], the solution starts with a forward sweep whereby one
assumes an initial set of output feedback gains ([f1,1, f1,2, ..., f1,T ], [f2,1, f2,2, ..., f2,T ]), which
gives an expression of state estimates as well as their error covariances in terms of the assumed
gains and the measurements that will be gathered over time, through recursive equations
(6.39)-(6.41) and (6.46)-(6.48). Then, by proceeding through a backward sweep, one can use
these values to find q11,k , q22,k, q12,k, q̄k, for all k’s, through recursive equations (6.34)-(6.37)
and hence a new set of candidate output feedback gains. The forward-backward sweep stops
whenever one reaches a fixed point in the space of output feedback gains. In particular, after
a first Kalman filtering based forward calculations cycle, we initialize the backward sweep
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calculation at time T as follows:

VT,i0 = E{x2
T,i0|Y

T
i0 }

= E{(xT,i0 − x̂T,i0 + x̂T,i0)2|Y T
i0 }

= E{(xT,i0 − x̂T,i0)2 + x̂2
T,i0|Y

T
i0 }

= P
(xx)
T |T + (K̃(x)

1,TyT,i0 + K̃
(x)
2,TyT−1,i0)2 (6.49)

Thus, we get:

q11,T = K̃
(x)
1,T

2, q22,T = K̃
(x)
2,T

2, q12,T = K̃
(x)
1,T K̃

(x)
2,T , q̄T = P

(xx)
T |T . (6.50)

6.5 Numerical results

The numerical results reported in this section are obtained considering the following
parameter setting for a representative agent, i.e., the 1st agent: b = c = h = 1 and σw = σv =
1, with initial standard deviation σ0 = 1 and Ex0,i = x̄0 = 0 for all agents i = 1, 2, . . . , N . In
addition, we will only deal with the case a ≥ 0 (the symmetric property should hold for the
a ≤ 0 case). The value of a and f will be specified in the different simulations and r = 1.
We experiment first, close to the a stability region [0, 2.53] by Kalman-Riccati couple, and
initialize the gains using the steady-state isolated (naive) Kalman sequence (see Appendix for
details) and the Riccati control gain f ∗, where f ∗ is obtained based on the positive solution
of the associated algebraic Riccati equation

b2Σ2 + (r − a2r − b2)Σ− r = 0, (6.51)

with
f ∗ = abΣ

r + b2Σ
. (6.52)

In particular, we initialize the proposed algorithm by combining (6.52), (6.55) and (6.59)
with the two most recent measurements, which yields

f1 =f ∗K∗, (6.53)

f2 =f ∗(a− bf ∗)(1− cK∗)K∗. (6.54)

Then using a continuation approach, we let a go to a+∆a, and intialize the algorithm with the
latest sequence. It is observed that the proposed approach, which is the optimal solution with
limited memory, improves the previous value of asup = 2.53, obtained in Abedinpour Fallah
et al. (2016), up to the new value of 2.72, where asup is the maximum value of a such that
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Figure 6.2 Behavior of agent 1 using Kalman-Riccati couple K∗ = 0.809, f ∗ = 1.618, where
a = 2, N = 100, J̄ (N)/T = 15.65.
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Figure 6.3 Behavior of agent 1 using the proposed algorithm which is initialized by Kalman-
Riccati couple K∗ = 0.809, f ∗ = 1.618, where a = 2, N = 100, J̄ (N)/T = 15.08.
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the naive optimal Kalman-Riccati couple (K∗, f ∗) is inside of the stability region and can
stabilize the population (see section 4.4.2. in Abedinpour Fallah et al. (2016)). Moreover,
the behaviors of agent 1 using the Kalman-Riccati couple versus the proposed algorithm are
compared in Figs. 6.2-6.3 and Figs. 6.4-6.5 respectively, for a = 2 and a = 2.6, where J̄ (N)

denotes the LQ average cost over all the population, that is, J̄ (N) = 1
N

∑N
j=1 Jj. Furthermore,

Figs. 6.6-6.7 depict the behaviors of agent 1 using the Kalman gain with af = 0.9 (where
af = a− bf) versus the proposed algorithm for a = 2.6.

In addition, we illustrate the sequence of output feedback gains (f1,k, f2,k) that were
obtained in every case. In particular, for Figure 6.2 with a = 2 we have:

[f1,1, f1,2, ..., f1,50] = [1.309, 1.309, ..., 1.309],
[f2,1, f2,2, ..., f2,50] = [0.0955, 0.0955, ..., 0.0955],

which are obtained from (6.53)-(6.54). While for Figure 6.3 with a = 2, from the proposed
algorithm we have:

[f1,1, f1,2, ..., f1,50] = [1.1797, 1.2532, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445,
1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445,
1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445,
1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2445, 1.2444, 1.2442,
1.2435, 1.2404, 1.2276, 1.1688, 0.6857],

[f2,1, f2,2, ..., f2,50] = [0, 0.1338, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196,
0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196,
0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196,
0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196, 0.1196,
0.1195, 0.1193, 0.1180, 0.1126, 0.0663].

Similarly, for Figure 6.4 with a = 2.6 we have:

[f1,1, f1,2, ..., f1,50] = [1.9838, 1.9838, ..., 1.9838],

[f2,1, f2,2, ..., f2,50] = [0.0825, 0.0825, ..., 0.0825],

while for Figure 6.5 with a = 2.6 we have:

[f1,1, f1,2, ..., f1,50] = [1.7997, 1.9086, 1.8895, 1.8916, 1.8913, 1.8914, 1.8914, 1.8914, 1.8914,
1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914,
1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914, 1.8914,
1.8914, 1.8914, 1.8913, 1.8913, 1.8913, 1.8913, 1.8913, 1.8913, 1.8911, 1.8914, 1.8909, 1.8912,
1.8891, 1.8948, 1.8705, 1.8411, 1.0163],
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[f2,1, f2,2, ..., f2,50] = [0, 0.2280, 0.1964, 0.1988, 0.1980, 0.1981, 0.1981, 0.1981, 0.1981,
0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981,
0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981,
0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1981, 0.1982, 0.1982, 0.1986, 0.1980, 0.1992, 0.1986,
0.2016, 0.1909, 0.2220, 0.1831, 0.0640].

Moreover, for Figure 6.6 and Figure 6.7 with the same a = 2.6, respectively, we have:

[f1,1, f1,2, ..., f1,50] = [1.4849, 1.4849, ..., 1.4849],

[f2,1, f2,2, ..., f2,50] = [0.1691, 0.1691, ..., 0.1691],

and

[f1,1, f1,2, ..., f1,50] = [1.7918, 1.9039, 1.8942, 1.8971, 1.8960, 1.8963, 1.8964, 1.8963, 1.8964,
1.8964, 1.8964, 1.8964, 1.8964, 1.8964, 1.8964, 1.8964, 1.8964, 1.8964, 1.8964, 1.8963, 1.8963,
1.8963, 1.8963, 1.8962, 1.8962, 1.8961, 1.8960, 1.8960, 1.8958, 1.8957, 1.8955, 1.8953, 1.8951,
1.8948, 1.8945, 1.8942, 1.8938, 1.8933, 1.8928, 1.8923, 1.8917, 1.8910, 1.8902, 1.8892, 1.8884,
1.8875, 1.8820, 1.8825, 1.8563, 1.0179],

[f2,1, f2,2, ..., f2,50] = [0, 0.2272, 0.1787, 0.1912, 0.1914, 0.1904, 0.1908, 0.1907, 0.1907,
0.1907, 0.1907, 0.1907, 0.1907, 0.1907, 0.1907, 0.1907, 0.1907, 0.1907, 0.1908, 0.1908, 0.1908,
0.1909, 0.1909, 0.1910, 0.1911, 0.1912, 0.1914, 0.1915, 0.1917, 0.1920, 0.1923, 0.1926, 0.1930,
0.1935, 0.1940, 0.1946, 0.1953, 0.1960, 0.1968, 0.1976, 0.1985, 0.1997, 0.2011, 0.2025, 0.2037,
0.2053, 0.2106, 0.1962, 0.1651, 0.0671].

It is noted that up to the fixed point numerical convergence criterion, the fixed points
associated to Figure 6.5 and Figure 6.7 appear to be essentially equivalent, although the two
calculations were initialized differently.

6.6 Conclusion

In this paper, motivated by the application of CDMA based communication and control
system modeled as an interference induced game in a multi-agent networked control system,
we considered the computation of a symmetric Nash equilibrium within a restricted class
of output feedback policies. In particular, we explored necessary conditions (fixed point
equations) that would lead to Nash equilibria under a class of total measurements preserving
time varying output feedback stabilizing controllers, as N goes to infinity, for a finite length
2 time horizon. Subsequently the corresponding expressions were written for horizon larger
than 2, by preserving only the contribution of the most recent 2 measurements. This led to a
heuristic estimate of Nash equilibria under a class of output time varying controllers with only
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Figure 6.4 Unstable behavior of agent 1 using Kalman-Riccati couple K∗ = 0.8735, f ∗ =
2.2711, where a = 2.6, N = 100, J̄ (N)/T = 6.4582× 107.
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Figure 6.5 Behavior of agent 1 using the proposed algorithm which is initialized by Kalman-
Riccati couple K∗ = 0.8735, f ∗ = 2.2711, where a = 2.6, N = 100, J̄ (N)/T = 45.6167.
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Figure 6.6 Behavior of agent 1 using the Kalman gain K∗ = 0.8735 and af = 0.9, where
a = 2.6, N = 100, J̄ (N)/T = 151.
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Figure 6.7 Behavior of agent 1 using the proposed algorithm which is initialized by the
Kalman gain K∗ = 0.8735, and af = 0.9, where a = 2.6, N = 100, J̄ (N)/T = 44.75.
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recollection of the two most recent measurements. We have shown that for some instances,
the range of Nash equilibria obtained from the Kalman-Riccati couple can be extended using
the proposed methodology which involves limited measurements memory. In future work, we
shall investigate the existence properties of the Nash equilibria that can be achieved within
this set up.

6.7 Appendix: The steady-state isolated Kalman sequence

Definition 6.1. The isolated (naive) Kalman filter is a Luenberger like observer equation
under the assumed state estimate feedback structure

uk,i = −fx̂k,i, (6.55)

and assuming zero interference in the local measurements (setting h = 0 in (6.4)), i.e., it
evolves according to:

x̂k+1,i = (a− bf)x̂k,i +K∗(yk+1,i − c(a− bf)x̂k,i), (6.56)

with the steady-state scalar gain
K∗ = cP∞

c2P∞ + σ2
v

, (6.57)

where P∞ is the unique positive solution of

c2P 2
∞ + ((1− a2)σ2

v − c2σ2
w)P∞ − σ2

wσ
2
v = 0. (6.58)

Proposition 6.1. In the stability region, the isolated Kalman filter equivalent equation in
the steady-state is given by

x̂k,i = K ′1yk,i +K ′2yk−1,i + ...+K ′ky1,i, (6.59)

where
K ′j = (a− bf)j−1(1− cK∗)j−1K∗. (6.60)

Proof : By rearranging (6.56) we have:

x̂k+1,i = (a− bf)(1− cK∗)x̂k,i +K∗yk+1,i. (6.61)

Then substituting
x̂k,i = K ′1yk,i +K ′2yk−1,i + ...+K ′ky1,i, (6.62)
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and
x̂k+1,i = K ′1yk+1,i +K ′2yk,i + ...+K ′k+1y1,i, (6.63)

into (6.61) and applying the stationarity property by making the left-hand-side of the result-
ing equation equal to its right-hand-side, we get the fixed-point values (6.60). �
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CHAPTER 7 GENERAL DISCUSSION

In this chapter, we consider discussing the following salient aspects.

7.1 Stability in Mean field games

Mean field games constitute a class of non cooperative stochastic dynamic games, where
there is a large number of players or agents, who interact with each other through a mean
field coupling term (also known as the mass behavior, which describes the average of all the
agents’ states) included in the individual cost functions and/or each agent’s dynamics (see
Huang et al. (2007), for example). As a solution concept in non cooperative games theory,
one objective of the study of the mean field games is to obtain a characterization of Nash
equilibria under the assumption of rationality for each player. In general, however, such a
characterization is challenging and difficult because the complexity increases with the number
of players and the dimension of the state space. Moreover, it is more realistic that every agent
is able to access only his own state information, in which case the conventional centralized
dynamic programming approach as in the standard derivation of dynamic Nash equilibria
in Başar and Olsder (1998) cannot be applied. In Huang et al. (2007), an approximation
scheme was developed to estimate the actual mass behavior, which therefore provides an
approximated equilibrium solution to the mean field game. In particular, under the Nash
certainty equivalence (NCE) principle, the mean field game was analyzed through two steps:
i) solving a generic optimal control problem by replacing the mean field coupling term with an
arbitrary deterministic function, and ii) approximation of the mean field term by a fixed-point
analysis.

In this thesis, we have studied a somewhat dual situation whereby large populations of
partially observed stochastic agents, although a priori individually independent, are coupled
only via their observation structure. The latter involves an interference term depending on
the empirical mean of all agent states. Moreover, in Abedinpour Fallah et al. (2013b), for
the continuous-time version of the model in this thesis, we have used the state aggregation
technique to anticipate the mean field coupling term (see Appendix A). We have learned that
assuming independence of agents and also assuming separation between state estimation and
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control, even for large N , leads to poor local state estimation properties, and as a consequence
to poor control performance or even stabilization abilities for initially unstable agent systems.
This is because of persistent correlations between agent states by virtue of the coupling in
their state estimates which directly feed into their dynamics. The apparent role of individual
agent systems lack of stability in interference coupled systems, points at a potential hitherto
unsuspected role of instability in more classical mean field games where the mean agent state
enters individual dynamics (see Huang et al. (2005), for example).

7.2 Finding the best linear control strategies for decentralized LQG systems

As noted by Mahajan and Nayyar (2015), the problem of finding the best linear control
strategies for decentralized LQG systems has the following prominent characteristics:

(i) In general, linear control strategies are not globally optimal, i.e., there may exist non
linear control strategies that outperform linear strategies. To cite an instance, Witsen-
hausen (1968) gave a famous counterexample of a simple two-player decentralized LQG
problem whose optimal solution is nonlinear.

(ii) In general, the problem of finding the best linear control strategies is not convex.

(iii) In general, the best linear control strategy may not have a finite-dimensional sufficient
statistic. More specifically, it may not be possible to represent the best linear controller
by a finite set of estimates that are generated by recursions of finite order. For example,
see the two-controller completely decentralized system considered in Whittle and Rudge
(1974).

In this thesis, we showed that, in general, the Riccati gain f ∗ is not asymptotically optimal
as the number N of agents goes to infinity when using the Bulk Filter. In particular, in the
range of a’s for which (k∗, f) is stabilizing, the coupling term of the mean asymptotically
disappears from the measurements. In that case, f ∗ is the optimum provided that f ∗ is in the
range of (k∗, f) couples which still stabilize the system, and indeed the bulk filter becomes
in that case equivalent to the naive Kalman filter. However, outside of the stationarization
range, the quality of estimation depends on the applied feedback gain (dual effect of the
control, see Feldbaum (1960); Witsenhausen (1968)) and this explains the non-optimality of
the Riccati gain in general. Moreover, it turns out that the bulk filter developed in this thesis,
is growing memory while no finite dimensional sufficient statistic appears within grasp.
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

In this thesis, motivated by the application of code division multiple access (CDMA) based
communication and control system modeled as an interference induced game in a multi-agent
networked control system framework, we have studied a system of uniform agents coupled
via their distinct sets of partial observations, whereby each agent has noisy measurements
of its own state. The dissertation is presented in three main parts. Our first interest has
been to establish that for certain classes of cost and dynamic parameters, optimal separated
control laws obtained by ignoring the interference coupling, are asymptotically optimal when
the number of agents is sufficiently high. Moreover, there is a lack of stability threshold past
which, the only choice left for the majority of agents is to act cooperatively. The second part
has been focused on the extension of the estimation framework in the first part to utilize the
exact decentralized filtering under a class of time invariant certainty equivalent feedback con-
trollers. We have numerically observed that the proposed estimator in combination with an
arbitrary (stabilizing under perfect state observations) state estimate feedback gain, succeeds
in maintaining the boundedness of the closed loop system even when individual systems are
highly unstable. Furthermore, since the exact optimal filter is growing dimension, we have
devised approximate finite dimensional filters to reduce memory requirements. The final part
presented a fixed point based algorithm for identifying Nash equilibria within a restricted
class of output feedback policies, where unlike the standard LQG solution, the estimation
error cost depends on the chosen feedback gains, and thus the structure of the fixed point
equations one needs to satisfy also does.

We now conclude by outlining some recommendations and possible future research direc-
tions.
— Establishing stability properties of optimal filtered separated feedback laws.

— Understanding the dynamic properties, in particular periodicities, or chaotic behavior
of optimal bulk filters.

— Establishing if linear time varying output feedback is a sufficient class for best responses
in our system.

— Exploring the multidimensional situation.
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— Further investigating the impact of individual agents systems instability on the stabil-
ity in classical mean field LQG games, when the overall mean state term enters into
individual agent dynamics.

— Investigating necessary and sufficient conditions for stability of networked multi-agent
control systems subject to time-varying delays and data packet losses.

— Investigating the application of the proposed methodologies to power control of optical
networks using a game-theoretic model introduced by Pavel (2006), where a link level
power control scheme adjusts the optical signal-to-noise ratio (OSNR) value of the
signals toward channel OSNR optimization.
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APPENDIX A

ARTICLE 4 : DISTRIBUTED ESTIMATION AND CONTROL FOR LARGE
POPULATION STOCHASTIC MULTI-AGENT SYSTEMS WITH

COUPLING IN THE MEASUREMENTS

Mehdi Abedinpour Fallah, Roland P. Malhamé, and Francesco Martinelli
European control conference (ECC), pp. 4353-4358, 2013.

A.1 Abstract

In this paper, we investigate a class of large population stochastic multi-agent systems
where the agents have linear stochastic dynamics and are coupled via their measurement
equations. Using the state aggregation technique, we propose a distributed estimation and
control algorithm that combines the Kalman filtering for state estimation and the linear-
quadratic-Gaussian (LQG) feedback controller. Moreover, the stability analysis in terms of
exponential boundedness in the mean square is given for the proposed algorithm.

A.2 Introduction

In recent years, analysis and control design for large population stochastic multi-agent
systems have become an active area in the study and control of complex systems (Huang et al.
(2006a); Huang et al. (2012)). Many practical applications and examples of these systems
arise in engineering, biological, social and economic fields (Chong and Kumar (2003); Lachapelle
(2010)).

In conventional control systems, control laws are constructed based upon the overall
states of the plants. However, in complex systems with many agents, each agent has a self-
governed but limited capability of sensing, decision-making and communication. Therefore
an important issue is the development of decentralized solutions so that each individual agent
may implement a strategy based on its local information together with statistical information
on the population of agents. Just as stabilization and optimization are two fundamental issues
for single-agent systems, for large population stochastic multi-agent systems we are also
concerned with how to construct decentralized control laws that preserve closed-loop system
stability while optimizing the performance of agents in a cooperative or non-cooperative (the
focus of this paper) context.
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Agent to agent interaction during competitive decision-making is usually due to the cou-
pling in their dynamics or cost functions. Specifically, the dynamic coupling is used to
specify an environment effect to the individual’s decision-making generated by the popula-
tion of other agents. While each agent only receives a negligible influence from any other
given individual, the overall effect of the population (i.e., the mass effect) is significant for
each agent’s strategy selection.

The state estimation problem has been a fundamental and a challenging problem in the-
ory and applications of control systems. A new formulation of particle filters inspired by the
mean-field game theoretic framework of Huang et al. (2007), was presented in Yang et al.
(2011b), Yang et al. (2011a). Mean field based distributed multi-agent decision-making with
partial observation was studied in Huang et al. (2006a), where the considered agents were
weakly coupled through both individual dynamics and costs. In this paper, we study a
somewhat dual situation whereby large populations of partially observed stochastic agents,
although a priori individually independent, are coupled only via their observation structure.
More specifically, the “quality" of individual state measurements is affected by certain statis-
tics of the rest of agent states, such as mean, variance, and in the most general case, the
instantaneous empirical distribution of these states. It is the latter which in the limit of an
infinite population is referred to as the mean field.

Individual agent dynamics are assumed to be linear, stochastic, with linear local state
measurements, and in the current paper, the measurements interaction model is assumed
to depend only on the empirical mean of agents states, either in a purely additive manner
or through the variance of the local measurement. Each agent is associated with an expo-
nentially discounted individual quadratic cost function, and we look for possible, mean field
based, Nash equilibrium inducing decentralized control laws as the number of agents grows
without bounds.

The study of such measurement-coupled systems is inspired by a variety of applications,
for instance the communications model for power control in cellular telephone systems (Huang
et al. (2004)), where the received signal of a given user at the base station views all other
incell user signals, as well as other cell signals arriving at the base station, as interference or
noise. In general, the model is aimed at capturing various forms of interference effects from
the environment on individual agent observations.
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A.3 System Model and Problem Statement

Consider a system of n agents, each with scalar dynamics where the evolution of the state
component is described by

dzi = (azi + bui)dt+ σwdwi (A.1)

and the evolution of the measured output is given by either of the following
— Case (a):

dyi = czidt+ (σv + h

 1
n

n∑
j=1

zj

)dvi (A.2)

— Case (b):

dyi = (czi + h

 1
n

n∑
j=1

zj

)dt+ σvdvi (A.3)

for t ≥ 0 and 1 ≤ i ≤ n, where zi(t), ui(t), yi(t) ∈ R are the state, the control input and
the measured output of the ith agent, respectively. {wi, vi, 1 ≤ i ≤ n} denotes a sequence of
2n mutually independent standard scalar Wiener processes. The Gaussian initial conditions
zi(0) are mutually independent and are also independent of {wi, vi, 1 ≤ i ≤ n}. Moreover, σv
is a positive scalar number, and b, c, h > 0.

The problem to be considered is stated as follows.
Problem 1: Design coupled distributed estimation and control strategies based on a feedback
control of the form

ui(t) = −f ẑi(t) (A.4)

where f > 0 and ẑi(t) is an estimate of zi(t), such that each agent’s individual cost function
given by

Ji(ui) , E
∫ ∞

0
e−ρt(z2

i + ru2
i ) dt (A.5)

is optimized utilizing only its local information. Here it is assumed that ρ, r > 0.

A.4 Coupled Distributed Estimation and Control Algorithm

We combine the Kalman filtering for state estimation and the LQG feedback controller
into a closed-loop dynamics model. Noting the information constraints for the agents, the
Kalman filtering cannot be directly applied to the n dimensional system. That is also because
in our model there is not a central optimizer which can access all other agent’s outputs and
then form the optimal estimate of the state vector. However, for large n, as in the typical
mean field analysis (Huang et al. (2007)), we shall assume in the first place that conditions are
satisfied so that controlled agents become asymptotically independent (in large population
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limit), and furthermore the coupling term (mass effect) described by

m(t) = h

 1
n

n∑
j=1

zj(t)
 (A.6)

for t ≥ 0 and 1 ≤ i ≤ n, is approximated by a deterministic continuous function m∗(t)
defined on [0,∞) (to be determined later). It is implicitly predicated on the assumption
that the coupling in a stochastic process sense, between agent states becomes sufficiently
weak as n grows without bounds, and furthermore, that the individual state variance under
state estimate feedback remains bounded, so that by the law of large numbers the average
in (A.6) converges pointwise a.e. to its (deterministic) mean. This leads to uncoupled
measurement equations, and therefore the optimal state estimation for zi would be given by
the standard scalar Kalman filtering. Now in the large but finite population condition, it is
expected that the Kalman filtering structure will still produce a satisfactory estimate when
m(t) appears in the measurement equations (A.2) and (A.3) but is approximated by m∗(t)
when constructing the filtering equation. Here we simply proceed by presuming m∗(t) as a
given deterministic function, and the detailed procedure for obtaining this function will be
given after the control synthesis is described. In addition, we establish sufficient conditions
under which the variance of zi’s remains indeed bounded. This justifies, after the fact, our
initial deterministic assumption.

A.4.1 LQG Feedback Controller

Consider only the dynamic model (A.1) (without measurement equation (A.2) or (A.3))
and assume for the moment that the state zi is completely observable. For minimization
of Ji defined by (A.5), the admissible control set is taken as Ui = {ui|ui is adapted to the
σ-algebra σ(zi(s), s ≤ t), and Ji(ui) <∞}. The set Ui is nonempty due to controllability of
(A.1). Let f > 0 be the solution to the algebraic Riccati equation

bf 2 + (ρ− 2a)f − b

r
= 0 (A.7)

Moreover, if one assumes that E|zi(0)|2 <∞ and β1 = −a+ bf > 0, then the control law

ui(t) = −fzi(t) (A.8)

is stabilizing and further minimizes Ji(ui) for all ui ∈ Ui (Gelb (1974)).

Assumption 2.
a− bf < 0 (A.9)
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A.4.2 Kalman Filter

Now assume that zi’s are only partially observable and consider either of the two measure-
ment equations (A.2) or (A.3). Approximating and replacing m(t) with the same assumed
deterministic function m∗(t) for all agents, the standard (time-varying) Kalman filter would
produce the optimal state estimate using the following algorithm (Gelb (1974); Anderson
and Moore (1979)),

dẑi = (aẑi + bui)dt+K(t)(dyi − cẑidt) (A.10)
dP (t)
dt

= 2aP (t) +Q− c2R−1(t)P 2(t) (A.11)

K(t) = P (t)cR−1(t) (A.12)

where the process noise covariance matrice is Q = σ2
w and the measurement noise covariance

matrices are chosen as Ra(t) = (σv + m∗(t))2 and Rb(t) = σ2
v for case (a) and case (b),

respectively. Additionally, the separation principle holding, feedback of the state estimate in
(A.8) would also produce optimal performance.

Assumption 3. All agents have mutually independent Gaussian initial conditions with
Ezi(0) = ζ1 and Ez2

i (0) = ζ2 > 0 for all i, where ζ2 > ζ1
2.

Remark A.1. For agent i, the initial condition of the Riccati equation (A.11) is V ar(zi(0))
which yields the corresponding solution Pi(t). Under Assumption 3, V ar(zi(0)) = ζ2 − ζ1

2 =
ζ > 0 for all i, and therefore the same solution P (t) is obtained for all agents.

A.4.3 State Aggregation

Assume m∗(t) ∈ Cb[0,∞) is given, where Cb[0,∞) denotes the set of deterministic,
bounded and continuous functions on [0,∞). For the ith agent, after applying the optimal
control law (A.4), the closed loop equation is

dzi = (azi − bf ẑi)dt+ σwdwi (A.13)

Denoting z̄i(t) = Ezi(t) and taking expectation on both sides of (A.13) gives

dz̄i
dt

= az̄i − bfEẑi (A.14)

with the initial condition z̄i|t=0 = Ezi(0) assumed and shared by all agents. Also note
that in the view of the unbiasedness of the Kalman filter estimate, Eẑi = Ezi. Moreover,
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the population average of means is defined as z̄ , (1/n)∑n
i=1 z̄i and is simply called the

population mean. If as assumed z̄ becomes deterministic as n goes to infinity, then because
of independence of the individual controlled zi’s under Assumption (3), z̄ must converge
pointwise to its expectation, i.e. to Ez̄i of a generic agent with initial mean ζ1, where for the
considered uniform population of agents:

dz̄

dt
= (a− bf)z̄ (A.15)

which yields
z̄(t) = z̄(0)e(a−bf)t (A.16)

with condition (A.9) from Assumption 2 guaranteeing boundedness of z̄(t). Here, for sim-
plicity of the analysis, we assume that z̄(0) ≥ 0.

Furthermore, the population effect (1/n)∑n
j=1 zj is approximated by z̄. Since we wish to

have

m∗(t) ≈ m(t) = h

 1
n

n∑
j=1

zj(t)
 (A.17)

for large n, m∗(t) is expressed in terms of the population mean z̄(t) as

m∗(t) = hz̄(t) (A.18)

Remark A.2. Under Assumptions 2 and 3, m∗(t) does indeed belong to Cb[0,∞).

Remark A.3. The state aggregation equation (A.15) also holds in the case of perfect obser-
vation; that is, it is not affected by the partial observation situation.

A.4.4 Proposed Algorithm and Closed-loop Dynamics

The coupled distributed estimation and control strategies are presented in Algorithm
1. We proceed by obtaining the resultant closed-loop dynamics of the ith agent and of the
population mean.

Solution Algorithm 1

— Initialization
ẑi(0) = Ezi(0) = z̄(0) ≥ 0, P (0) = ζ > 0, 1 ≤ i ≤ n
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— State Aggregation

z̄(t) = z̄(0)e(a−bf)t

m∗(t) = hz̄(t)

— LQG Feedback Controller

ρf = 2af − bf 2 + b

r

ui(t) = −f ẑi(t), 1 ≤ i ≤ n

— Kalman filtering
— Case (a):

dẑi =(aẑi + bui)dt+K(t)(dyi − cẑidt)
dP (t)
dt

=2aP (t) + σ2
w − c2(σv +m∗)−2P 2(t)

K(t) =P (t)c(σv +m∗)−2

— Case (b):

dẑi =(aẑi + bui)dt+K(t)(dyi − (cẑi +m∗)dt)
dP (t)
dt

= 2aP (t) + σ2
w − c2σ−2

v P 2(t)

K(t) = P (t)cσ−2
v

Case (a):

Defining the estimation error as
z̃i = zi − ẑi (A.19)

and replacing (A.2) and (A.4) in (A.10), yields

dẑi = (a− bf)ẑidt+ P (t)c2(σv +m∗)−2z̃idt+ P (t)c(σv +m∗)−2(σv + h

 1
n

n∑
j=1

zj

)dvi

(A.20)
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Subsequently, using (A.1), (A.19) and (A.20) it follows that

dzi = (a− bf)zidt+ bf z̃idt+ σwdwi (A.21)

and

dz̃i = (a− P (t)c2(σv +m∗)−2)z̃idt+ σwdwi − P (t)c(σv +m∗)−2(σv + h

 1
n

n∑
j=1

zj

)dvi

(A.22)

In addition, letting z′n = (1/n)∑n
i=1 zi, ẑ′n = (1/n)∑n

i=1 ẑi, z̃′n = (1/n)∑n
i=1 z̃i, w′ = (1/

√
n)∑n

i=1 wi, and v′ = (1/
√
n)∑n

i=1 vi, where w′ and v′ are two independent standard Wiener
processes, we get

dz′n = (a− bf)z′ndt+ bf z̃′ndt+ 1√
n
σwdw

′ (A.23)

and

dz̃′n = (a− P (t)c2(σv +m∗)−2)z̃′ndt+ 1√
n
σwdw

′ − 1√
n
P (t)c(σv +m∗)−2(σv + hz′n)dv′

(A.24)

Case (b):

Similarly, using (A.3) in place of (A.2), it follows that

dzi = (a− bf)zidt+ bf z̃idt+ σwdwi, (A.25)

dz̃i =(a− P (t)c2σ−2
v )z̃idt− P (t)cσ−2

v h

 1
n

n∑
j=1

zj

 dt+ P (t)cσ−2
v m∗(t)dt

+ σwdwi − P (t)cσ−1
v dvi (A.26)

and
dz′n = (a− bf)z′ndt+ bf z̃′ndt+ 1√

n
σwdw

′, (A.27)

dz̃′n =(a− P (t)c2σ−2
v )z̃′ndt− P (t)cσ−2

v hz′ndt+ P (t)cσ−2
v m∗(t)dt

+ 1√
n
σwdw

′ − 1√
n
P (t)cσ−1

v dv′ (A.28)
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A.5 Stability Analysis

For stability analysis of the closed-loop dynamics (A.23)-(A.24) and (A.27)-(A.28) we
make use of the following concepts of boundedness for solutions of stochastic differential
equations.

Definition A.1. (Reif et al. (2000)) The stochastic process x(t) is said to be stochastically
sample path bounded, if for every δ > 0 there is a β(δ) > 0 such that

P[sup
t≥0
‖x(t)‖ ≤ β(δ)] ≥ 1− δ (A.29)

Definition A.2. (Reif et al. (2000)) The stochastic process x(t) is said to be exponentially
bounded in mean square, if there are real numbers η, ν, ϕ > 0 such that

E ‖x(t)‖2 ≤ ϕ ‖x(0)‖2 exp(−ηt) + ν (A.30)

holds for every t ≥ 0.

Definition A.3. (Reif et al. (2000); Mao and Yuan (2006)) Consider the continuous-time
stochastic process described by the Itô stochastic differential equation,

dx(t) = F (x(t), t)dt+G(x(t), t)dw̄(t) (A.31)

where x(t) ∈ Rnx is the state, and w̄(t) ∈ Rnw is a standard Wiener process. Moreover, the
nonlinear functions F and G are assumed to be continuously differentiable, and such that
(A.31) has a unique solution. Consider a nonnegative function V (x(t), t) which is continu-
ously twice differentiable in x and once in t, i.e., V (x, t) ∈ C2,1. The differential generator
of (A.31) associated with the Lyapunov function V (x, t) is defined by

LV (x, t) =∂V
∂t

(x, t) + ∂V

∂x
(x, t)F (x, t) + 1

2

nx∑
i=1

nx∑
j=1

∂2V

∂xi∂xj
(x, t)[G(x, t)GT (x, t)]i,j (A.32)

where x = [x1, . . . , xnx ]T , and [G(x, t)GT (x, t)]i,j is the matrix element of G(x, t)GT (x, t) in
the ith row and the jth column. Furthermore, the sum in (A.32) can be simplified as

nx∑
i=1

nx∑
j=1

∂2V

∂xi∂xj
(x, t)[G(x, t)GT (x, t)]i,j =tr(G(x, t)GT (x, t)Hessx[V (x, t)])

=tr(Hessx[V (x, t)]G(x, t)GT (x, t)) (A.33)

where Hessx[·] denotes the Hessian matrix with respect to x as the variable vector.
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Lemma A.1. (Reif et al. (2000)) Assume there is a sufficiently smooth function V (x(t), t) ∈
C2,1 of the stochastic process x(t) in (A.31) and real numbers ϑmin, ϑmax, µ, α > 0 such that

ϑmin ‖x(t)‖2 ≤ V (x(t), t) ≤ ϑmax ‖x(t)‖2 (A.34)

and
LV (x(t), t) ≤ −αV (x(t), t) + µ (A.35)

are satisfied. Then the stochastic process x(t) is exponentially bounded in mean square, i.e.,

E ‖x(t)‖2 ≤ ϑmax

ϑmin
‖x(0)‖2 exp(−αt) + µ

ϑminα
(A.36)

for every t ≥ 0. Moreover, the stochastic process is sample-path bounded.

Lemma A.2. Each system described by scalar dynamics (A.1) and either of

dyi = czidt+ (σv +m∗(t))dvi (A.37)

or
dyi = (czi +m∗(t))dt+ σvdvi (A.38)

is uniformly detectable.

Proof : For c > 0, any real number Λ such that Λ < −a
c

yields a + Λc < 0. Therefore,
according to definition 4.1 in Reif et al. (2000), the system is uniformly detectable. �

Lemma A.3. (Reif et al. (2000)) For each uniformly detectable system described by (A.1)
and either of (A.37) or (A.38), there are real numbers pmin, pmax > 0 such that the solution
P (t) of the scalar Riccati differential equation (A.11) satisfies the bounds

pmin ≤ P (t) ≤ pmax (A.39)

for every t ≥ 0.

Theorem A.1. If
f >

2a
b

(A.40)

and also if there exists a fixed real number l such that

2pmaxc
2h2

nσ4
v(bf − 2a) < l <

σ2
w

bfp2
max

+ c2

bf(σv + hz̄(0))2
, (A.41)
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then the stochastic process x(t) =
z′n(t)
z̃′n(t)

 verifying the closed-loop dynamics (A.23)-(A.24)

for 1 ≤ i ≤ n, is exponentially bounded in mean square and stochastically sample-path
bounded. Specifically,

E(z′n
2(t) + z̃′n

2(t)) ≤
max{l, 1

pmin
}

min{l, 1
pmax
}

(z′n
2(0) + z̃′n

2(0))e−αt +
(l + 1

pmin
)σ

2
w

n
+ 2pmaxc2

nσ2
v

min{l, 1
pmax
}α

(A.42)

holds with

α = 1
max{l, 1

pmin
}

min{l(bf − 2a)− 2pmaxc
2h2

nσ4
v

,−lbf + σ2
w

p2
max

+ c2

(σv + hz̄(0))2} (A.43)

Proof : Choosing
V (x(t), t) = xT (t)Π(t)x(t) (A.44)

with

Π(t) =
 l 0

0 P−1(t)

 (A.45)

where l is a fixed real number verifying (A.41) and applying Lemma (A.3) we can write

lz′n
2 + 1

pmax
z̃′n

2 ≤ V (x, t) ≤ lz′n
2 + 1

pmin
z̃′n

2 (A.46)

Therefore, (A.34) is verified with ϑmin = min{l, 1
pmax
} and ϑmax = max{l, 1

pmin
}. �

Next, considering the dynamic equations (A.23)-(A.24) as in the form of (A.31) with

F (x, t) =
 (a− bf)z′n + bf z̃′n

(a− P (t)c2(σv +m∗)−2)z̃′n

 , w̄(t) =
w′
v′

 (A.47)

and

G(x, t) =
 1√

n
σw 0

1√
n
σw − 1√

n
P (t)c(σv +m∗)−2(σv + hz′n)

 (A.48)
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and using (A.32) we have

LV (x, t) = xT (t)dΠ(t)
dt

x(t) + 2xT (t)Π(t)F (x, t) + 1
2tr[G(x, t)GT (x, t)Hessx(V (x, t))]

(A.49)

which can be expressed as

LV =(2aP−1(t)− 2c2(σv +m∗)−2 − Ṗ (t)P−2(t))z̃′n2 + 2l(a− bf)z′n2 + 2lbfz′nz̃′n
+ tr[GGTΠ(t)] (A.50)

Expressing Ṗ (t) by means of Riccati differential equation (A.11), and applying the inequality
2z′nz̃′n ≤ z′n

2 + z̃′n
2 yields

LV (x, t) ≤l(2a− bf)z′n2 + (lbf − σ2
wP
−2(t))z̃′n2 − c2(σv +m∗)−2z̃′n

2 + 1
n

(l + P−1(t))σ2
w

+ 1
n
P (t)c2(σv +m∗)−4(σv + hz′n)2 (A.51)

In addition, using the bounds from Lemma A.3, applying the inequality 2σvhz′n ≤ σ2
v +h2z′n

2

and noting that mint{σv + m∗(t)} ≥ σv > 0 and also maxt{σv + m∗(t)} ≤ σv + hz̄(0), after
some simplification in the right-hand side of (A.51), it can be written as

LV ≤(l(2a− bf) + 2pmaxc
2h2

nσ4
v

)z′n2 + (l + 1
pmin

)σ
2
w

n
+ 2pmaxc

2

nσ2
v

+ (lbf − σ2
wP
−2(t)− c2(σv + hz̄(0))−2)z̃′n2 (A.52)

Enforcing conditions (A.40) and (A.41) in (A.52) and using the bounds from Lemma A.3,
inequality (A.35) holds with α defined in (A.43) and

µ = (l + 1
pmin

)σ
2
w

n
+ 2pmaxc

2

nσ2
v

(A.53)

Therefore, it follows that (A.42) holds according to (A.36). This ends the proof for case (a).�

Theorem A.2. If
f >

a

b
, (A.54)

then the stochastic process x(t) =
z′n(t)
z̃′n(t)

 verifying the closed-loop dynamics (A.27)-(A.28)

for 1 ≤ i ≤ n, is exponentially bounded in mean square and stochastically sample-path
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bounded. Specifically,

E(z′n2(t) + z̃′n
2(t)) ≤

max{l, 1
pmin
}

min{l, 1
pmax
}

(z′n2(0) + z̃′n
2(0))e−αt +

(l + 1
pmin

)σ
2
w

n
+ pmaxc2

nσ2
v

+ σ−2
v h2z̄2(0)

min{l, 1
pmax
}α

(A.55)

holds with

α = 1
max{l, 1

pmin
}

min{2l(bf − a), σ
2
w

p2
max
} (A.56)

and a fixed real number l = chσ−2
v

bf
.

Proof : Considering the dynamic equations (A.27)-(A.28) in place of equations (A.23)-
(A.24) and following a similar procedure as in Theorem A.1, this theorem can be proved for
case (b). The details are omitted here for brevity. �

Remark A.4. Note that under our stability condition (A.40), inequality (A.42) is consistent
with our initial assumption that as n goes to infinity z′n(t) becomes deterministic. Indeed,
it confirms that as n goes to infinity, the variance of z′n(t) under measurement model (a),
goes to zero, provided the initial mean of z′n is known to all agents. Similarly, under stability
condition (A.54), inequality (A.55) indicates that if the initial agents’ mean estimate of z̄(0)
is correct and equal to zero, the variance of z′n(t) under measurement model (b) , goes to zero.
The same result can be shown to remain true if the initial mean of z̄(0) is strictly positive,
but again correctly estimated by all agents.

A.6 Numerical Example

The following numerical values were used with noise model (a): a = −0.5, b = c = h =
σw = σv = ρ = r = 1, Ezi(0) = 10 and V ar(zi(0)) = 1. The simulation results as depicted
in Figs. A.1 and A.2 illustrate a case where f ∗LQG satisfies the bound of Theorem 1, thus
guaranteeing convergence of the mean state when f ∗LQG is used, to a deterministic value. In
particular, Fig. A.1 illustrates the LQ cost J as a function of f , where the black vertical
line indicates f ∗LQG, the dashed green vertical line represents the bound 2a

b
, and the crosses

denote the points where one of the two conditions of Theorem 1 is not met. In this case, f ∗LQG
induces a Nash equilibrium. It also happens to be a socially optimal equilibrium. However,
in general the separation principle will not hold for noise model (a) even as n goes to infinity.



130

−1 0 1 2 3
20

40

60

80

100

120

140

160

f

J(
f)

 

 

n = 100
n = 1000

Figure A.1 The LQ cost J as a function of f

A.7 Conclusion

This paper addressed the distributed decision-making in a system of uniform agents cou-
pled via their measurement equations, whereby each agent has noisy measurements of its
own state. Specifically, a distributed estimation and control algorithm was developed using
a decentralized control synthesis in which each agent utilizes an estimate based on its lo-
cal information and a priori (shared) information on the initial mean state estimate for its
control strategy. One special feature of the proposed algorithm is the fact that it combines
the Kalman filtering for state estimation and the linear-quadratic-Gaussian (LQG) feedback
controller based on the anticipation of the collective effect (mean field) of all agents and
using the state aggregation technique to anticipate that effect. It was proved that under
certain conditions the closed-loop dynamics is exponentially bounded in mean square and
stochastically sample-path bounded.
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