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RÉSUMÉ 

Les mécanismes liant l’activité neuronale au changement local du flot sanguin sont regroupés 

dans un ensemble nommé couplage neurovasculaire. Ce lien neurovasculaire, qui est à la base de 

plusieurs principes d’imagerie fonctionnelle du cerveau, est altéré par l’épilepsie. Ces dernières 

années, des techniques d’imagerie tel l’IRMf, IOS et la NIRS ont été utilisées pour l’étude de 

cette maladie, montrant une forte corrélation entre l’activité épileptique et le signal mesuré. Par 

contre, la plupart de ces travaux se sont concentrés sur les changements d’hémoglobine, qui 

peuvent être liés à des phénomènes non-linéaires et qui ne renseignent pas directement sur la 

quantification de l’oxygène délivré localement. Le but de cette thèse est d’investiguer l’utilisation 

de la microscopie avec de nouvelles sondes moléculaires permettant l’imagerie de l’oxygénation 

des tissus durant les évènements épileptiques dans le cortex sensori-moteur de la souris. 

Dans un premier temps, une méthode de mesure de la pression partielle d’oxygène (PO2) en 

microscopie confocale du temps de vie de phosphorescence fut développée. Ce système permet 

une mesure minimalement invasive du PO2 dans les tissus corticaux à haute fréquences spatiale et 

temporelle lorsqu’il est utilisé conjointement avec la sonde phosphorescente OxyphorG4. Les 

mesures réalisées durant les crises épileptiques, induites avec l’agent 4-aminopyridine (4-AP), 

montrent des changements significatifs de l’oxygénation tissulaire. De plus, la distribution spatio-

temporelle de la chute initiale de la réserve en oxygène, à proximité du point d’injection et le 

long des artérioles, a été caractérisé durant ces mêmes épisodes épileptiques. Une corrélation 

positive entre la variation du PO2 durant cette première phase et la durée de la crise épileptique a 

aussi été mesurée. Cette mesure pourrait s’avérer utile dans la localisation des foyers épileptique 

et dans la prédiction de la durée des crises.  

La deuxième étude présentée dans cette thèse se concentre sur le possible rôle joué par les 

astrocytes, qui sont un des acteurs importants dans le couplage neurovasculaire, dans la 

propagation des crises épileptiques. La concentration en ions calciques libres à la base axonale 

des astrocytes, conjointement avec le diamètre des artérioles adjacentes a été mesuré in-vivo en 

simultané sur des souris durant les épisodes épileptiques. Pour la mesure du calcium, la sonde 

fluorescente OregonGreen BAPTA-1 AM (OGB-1) a été utilisée en imagerie du temps de demie-

vie de fluorescence avec un microscope 2-photons. Les résultats montrent que l’augmentation de 

calcium induirait une vasodilatation à chaque ictus dans la région du foyer épileptique. Dans les 
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régions plus éloignées, cette même mesure corrèlerait plutôt avec une vasoconstriction dans les 

premiers moments de la crise, suivi par une vasodilatation selon la durée de l’épisode. De plus, 

une augmentation lente du niveau absolu de la concentration calcique a été observé lors de 

longues séquences d’évènements. Cette tendance à la hausse semble induire à son tour une 

constriction des artérioles dans les régions adjacentes. Ces observations confirment le rôle des 

astrocytes dans le contrôle local de la microcirculation et suggèrent un second rôle de modulation 

du niveau de la concentration calcique autour de leur base axonale.  

Puisqu’il n’a pas été possible de mesurer le PO2 en profondeur dans le cerveau ou de pouvoir 

imager adéquatement les réseaux de capillaires en microscopie confocale, et suivant le 

développement d’une sonde sensible aux ions d’oxygène en microscopie 2-photons, il a donc été 

possible, dans le cadre de la dernière étude de cette thèse, d’acquérir cette mesure en profondeur 

durant des épisodes épileptiques. Des changements significatifs du PO2 dans les tissus et les 

vaisseaux ont pu être observés. La distribution spatiale de la chute initiale de ce paramètre autour 

des artérioles, des capillaires, des veinules et du tissu près du foyer a pu être caractérisée. Les 

résultats obtenus pourraient avoir des implications profondes dans notre compréhension des 

mécanismes de livraison de l’oxygène dans les tissus en profondeur et leur capacité à supporter le 

cortex adéquatement dans les situations pathologiques. Le potentiel de la microscopie dans 

l’étude du couplage neurovasculaire et des changements liés à des pathologies a pu être 

pleinement démontré par les travaux de cette thèse.  
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ABSTRACT 

Neurovascular coupling (NVC) is the mechanism that links a transient neural activity to the 

corresponding increase of cerebral blood flow (CBF). It underlies the local increase in blood flow 

during neural activity, forms the basis of functional brain imaging and is altered in epilepsy. For 

the last decades, functional imaging using BOLD fMRI, IOS and fNIRS and others have been 

applied to epilepsy, and yielded good correlation between epileptic activity and the measured 

signal. However, most previous work on epilepsy focused on the measurement of hemoglobin 

changes which sometimes leads to non-linear phenomena and does not quantify oxygen delivery 

in tissue. The aim of this thesis is to study oxygen delivery using microscopy with new oxygen 

sensitive molecular probes during epileptic events in the mouse somatosensory cortex.  

First, a confocal phosphorescence lifetime microscopy system for measuring brain oxygen partial 

pressure (PO2) was developed. This system enabled minimally invasive measurements of oxygen 

partial pressure in cerebral tissue with high spatial and temporal resolution using a dendritic 

phosphorescent probe, Oxyphor G4. Significant changes of PO2 in tissue were found at the 

epileptic focus and in remote areas during 4-aminopyridine (4-AP) induced epilepsy. The spatio-

temporal distribution of the “initial dip” in PO2 near the injection site and along nearby arterioles 

was characterized by investigating epileptic events. A positive correlation between the percent 

change in the PO2 signal during the “initial dip” and the duration of seizure-like activity was 

revealed in this work, which may help localize the epileptic focus and predict the length of 

seizures. Because astrocytic calcium signalling is involved in neurovascular coupling, the second 

study investigated the role of this pathway in epilepsy. The free calcium concentration in 

astrocytic endfeet and diameter of adjacent arterioles were simultaneously monitored with the 

calcium-sensitive indicator OGB-1 by two-photon fluorescence lifetime measurements following 

4-AP injection. Our results revealed that, increases in calcium concentration induced vasodilation 

for each ictal event in the focus. In the remote area, increases in calcium concentration correlated 

with vasoconstriction at the onset of seizure and vasodilation during the later part of the seizures. 

Furthermore, a slow increase in absolute calcium concentration following multiple seizures was 

observed, which in turn, caused a trend of arteriolar constriction both at the epileptic focus and 

remote areas. These observations confirmed the role of astrocytes in the control of local 

microcirculation and suggest a modulating role for baseline absolute calcium concentration in 
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astrocytic endfeet. Since the confocal phosphorescence microscopy system was not able to 

measure PO2 deep in the cortex or resolve capillaries, two-photon phosphorescence microscopy 

was then used in the last project to study the PO2 delivery during epilepsy in deep tissue and 

vessels. Significant changes of PO2 in tissue and vasculature were observed during epileptic 

events. The spatial landscape of “initial dip” in PO2 signals around arterioles, veins and tissue 

near the injection site was characterized. These results may have profound implications for 

evaluating microvascular oxygen delivery capacity to support cerebral tissue in disease. The 

results of this thesis confirmed the potential of using microscopy to study neurovascular coupling 

during epilepsy.  
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CHAPTER 1 INTRODUCTION 

1.1 Overview 

While neuron functioning consumes energy, the brain itself does not keep a reserve of energy 

substrates such as glucose or oxygen (Lecrux and Hamel, 2011). Instead, it relies on a constant 

supply of blood flow to provide these substrates, particularly during neural hyperactivity (Siesjö 

and Plum, 1971), and to remove metabolites, e.g. lactic acid. There is a tight coupling between 

the cerebral blood flow (CBF) and neural activity (Lecrux and Hamel, 2011). In the cortex, the 

adequate supply of blood during neural activation is ensured by the complex interactions among 

neurons, astrocytes and microvessels (Hamel, 2006). This mechanism is the basis of 

neuroimaging techniques that infer neural activity from the observation of the associated vascular 

responses, for example, variations in local blood volume or blood oxygenation levels. Currently 

there are various imaging techniques that indirectly record metabolic changes of neural activity in 

the central nervous system. In functional neuroimaging, participants are often asked to perform a 

task (e.g. finger-tapping) while their neural activity is measured non-invasively. Since the 

difference in neural activity between the task period and the resting period is believed to reflect 

the mental capacities of the subjects, the imaging of brain function can be used to observe human 

psychological state (Kosslyn, 1999). 

Human functional brain imaging techniques play a prominent role in neuroscience and 

physiological research nowadays. From the 1990s, functional magnetic resonance imaging (fMRI) 

has been used to detect blood-oxygenation-level-dependent (BOLD) signals associated with 

neuronal activity, based on the different paramagnetic properties of oxygenated and 

deoxygenated hemoglobin (Ogawa et al., 1990a).Using a surrogate marker of oxygen, positron 

emission tomography (PET) is another method that has been widely applied in brain imaging. 

With the application of these techniques, researchers invested substantial effort in improving our 

understanding of neuronal activity and brain functioning.  

The neurovascular coupling describes the relationship between neural activity and triggered 

hemodynamic changes (i.e. cerebral blood volume (CBV), oxygenation levels, and cerebral blood 

flow (CBF)), which are measurable with neuroimaging techniques. Important insights have been 

obtained by using animal models, in which researchers can use functional brain imaging and/or 
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neuronal and hemodynamic events to specifically underpin them (Berwick et al., 2005; Boorman 

et al., 2010; Mathiesen et al., 2000; Vazquez et al., 2012). Using animal models enables the 

exploration of neuroimaging signal changes of each component in the complex brain system. 

With such models, the general validity of BOLD signal changes obtained from fMRI as 

indicators of varied neuronal activity has been established: increased neuronal activity in healthy 

cortical structures is reflected by increases in BOLD signals in those structures (Logothetis et al., 

2001). However, the generalizability of this broad statement is becoming increasing important 

with brain studies now performed in both health and disease models.   

1.2 Epilepsy 

Epilepsy represents a chronic neurological disordered state that is characterized by recurrent, 

spontaneous seizures. Unlike normal neural processing, epileptic seizures consist of abnormal, 

excessive neuronal discharges, and therefore require supernormal energy to meet the demand of 

increased neural activity (Folbergrová et al., 1981; Zhao et al., 2009). Therefore, the 

neurovascular coupling in the normal brain processing state may not be applied to epileptic 

conditions. Between these ictal events (i.e. seizures), brief short-duration events may occur, and 

are thus called interictal spikes (de Curtis and Avanzini, 2001). Previous work studying 

neurovascular coupling in epilepsy has presented contradictory results both in humans and 

animals, using neuroimaging techniques such as PET, fMRI and intrinsic optical imaging (IOI). 

For example, although a local increase in blood perfusion associated with ictal events is generally 

observed in those studies, some showed that the increase in blood perfusion oversupplied the 

consumption of oxygen due to increased metabolism (Bénar et al., 2002; Lemieux et al., 2001; 

Nersesyan et al., 2004; Tenney et al., 2004), while other studies discovered the opposite, i.e. the 

blood hyperperfusion was inadequate to compensate for the oxygen loss(Ingvar, 1986; Kreisman 

et al., 1991; Tanaka et al., 1990). Therefore, the explicit relationship between oxygenation and 

perfusion during epileptiform events remains elusive. Given that perfusion is necessary for 

oxygen delivery and that brain tissue might be damaged in hypoxic conditions, understanding 

potential un-couplings in epilepsy is essential. 

The goal of this thesis is to study the neurovascular coupling during epilepsy using novel optical 

imaging techniques such as two-photon fluorescence lifetime microscopy and confocal 

phosphorescence microscopy. Phosphorescence lifetime imaging provides a measurement of the 
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partial oxygen pressure (PO2) in tissue and vessels, which leads to estimations of oxygen 

metabolism and therefore is considered to be more directly related to neural activity than 

hemoglobin concentration (Brieu et al., 2010). The recent emergence of this technique in two-

photon microscopy allows for direct measures of the oxygen in three-dimension with sufficient 

temporal and spatial resolution, providing access to deeper layers of the brain (Sakadzić et al., 

2010).  

1.3 Organization of the thesis by objectives  

Three objectives were defined in this thesis and each is associated with different hypotheses. 

Objective #1: Develop a confocal phosphorescence lifetime microscopy system and use the 

system to investigate the change of PO2 during epileptic events in the mouse brain in conjunction 

with a dendritic phosphorescence molecular probe, Oxyphor G4.   

Hypothesis #1-1: The confocal microscopy system in conjunction with Oxyphor G4 can provide 

a measurement of PO2 in-vivo in mice.  

Hypothesis #1-2: The PO2 changes associated with epileptic events can be reliably monitored in 

the mouse brain with the confocal phosphorescence lifetime microscopy system. 

The article that addressed this objective is:  

Article 1: Cong Zhang, Samuel Bélanger, Philippe Pouliot and Frédéric Lesage, “Measurement 

of local partial pressure of oxygen in the brain tissue under normoxia and epilepsy with 

phosphorescence lifetime microscopy,” PLOS One, 10, e0135536. 

doi:10.1371/journal.pone.0135536 (Aug 25, 2015). 

Objective #2: Simultaneously monitor the changes of absolute calcium signals in astrocytic 

endfeet and diameter changes of encased arterioles with two-photon microscopy during seizures 

in the mouse brain.  

Hypothesis #2-1: The two-photon microscopy system and specific scanning techniques can be 

used to simultaneously measure the absolute calcium signal in astrocytic endfeet and arteriolar 

diameter. 

Hypothesis #2-2: The calcium signal in astrocytic endfeet and arteriolar diameter correlate during 

epileptic seizures in the mouse brain.  



4 

 

Article 2: Cong Zhang, Maryam Tabatabaei, Samuel Bélanger, Hélène Girouard and Frédéric 

Lesage, “Astrocytic endfoot Ca2+ modulates arteriolar responses during epilepsy: an in vivo two-

photon lifetime microscopy study” was submitted to the journal of Cerebral Blood Flow & 

metabolism and is in revision. 

Objective #3: Measure the PO2 changes in tissue near arterioles and in cerebral vasculature in 

microdomains during epileptic seizures in mouse brain with a two-photon phosphorescence 

microscopy system. 

Hypothesis #3-1: Using two-photon phosphorescence microscopy, PO2 changes can be measured 

in 3D with an oxygen-sensitive dye (PtP-C343). 

Hypothesis #3-2: The PO2 changes in tissue are different around various size arterioles during 

epileptic events in the mouse brain.  

Hypothesis #3-3: The PO2 changes in vessels correlate with their size during epileptic seizures in 

the mouse cortex.  

Article 3: Cong Zhang, Mohammad Moeini and Frédéric Lesage, “Spatial landscape of oxygen 

in and around microvasculature during epileptic events” Neurophotonics 4, 010501-010501. 

doi:10.1117/1.NPh.4.1.010501 

This thesis is organized as follows. The second chapter gives a brief literature review of various 

techniques used in neurovascular coupling studies. The third chapter describes a basic theory of 

confocal phosphorescence lifetime system and two-photon microscopy. From the fourth chapter 

to the sixth chapter, three published papers are fully included to address the three objectives 

above. In the seventh chapter, a discussion of the advantages as well as limitations of the 

proposed methods is provided. Finally, the thesis is concluded in the eighth chapter.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Brief literature review 

Epilepsy is a most common human neurological disorder, impacting 1.2% of the word population 

(Hauser et al., 1991). The pharmacological treatment of epilepsy with one or several drugs 

achieves effective seizure control in 60-70% of the cases (Callaghan et al., 2007). The treatment 

of the remaining drug-resistant epilepsy cases relies upon identifying and surgically removing the 

epileptogenic zone. For example in temporal lobe epilepsy (TLE), surgically removing the 

epileptogenic zone was reported to lead to seizure freedom up to 70-80% of the patients (Engel, 

2003, 1993). In another study, neocortical resections yielded a successful treatment rate of 25% ~ 

40% (Rasmussen, 1991). There are several factors that may affect the outcome of surgical 

treatment in nonlesional neocortical epilepsy, most importantly, an accurate localization of the 

epileptic focus area. It is usually more difficult and variable to localize the epileptic region in 

neocortical epilepsy. Hardware and sequences in magnetic resonance imaging (MRI) have been 

improved, however, MRI remains unable to reveal the focus localization in up to 50% of drug-

resistant patients with focal epilepsy (Berg et al., 2003; Bernasconi et al., 2011; McGonigal et al., 

2007). For humans with longstanding seizures, there is an independent epileptogenic area in 

surrounding cortices (Berger et al., 1993; Cascino et al., 1994). Hence, in many patients, it is 

usually quite challenging to achieve an accurate localization of the epileptic region.   

Traditional localization of the ictal onset zone (IOZ) in neocortical epilepsy requires a surgical 

intervention to implant electrodes directly onto the exposed surface of the cortex, a technique 

called electrocorticography (ECoG), which may put the patients under the risk of clinical 

complications such as bleeding or infection (Shariff et al., 2006). Therefore, it is extremely useful 

to exploit new methods that are able to localize epileptic region in a noninvasive manner, e,g, 

using single-photon-emission computed emission tomography (SPECT), PET or fMRI. These 

techniques monitor neural activity indirectly by measuring associated hemodynamic variations, 

i.e. changes in CBF, glucose metabolism or BOLD signals. Based on the current understanding of 

neurovascular coupling, these techniques have been used to localize the IOZ by observing the 

temporal and spatial changes of the hemodynamic signals during epileptic events. However, these 

techniques are not suitable to be used to study the neurovascular coupling during epilepsy at a 
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more fundamental level, due to the limited temporal or spatial resolution Here we provide a 

review of the current understanding of neurovascular coupling during normal cortical processing 

and epilepsy, as well as the previous applications of the above described neuroimaging technique 

in the study of neurovascular coupling and EOZ localization in epilepsy. 

2.1.1 Neurovascular coupling in the brain during normal cortical processing 

and epilepsy 

Elevated neural activity leads to increased energy consumption of neurons and astrocytes. The 

increased consumption of energy imposes extra demands on the supply of two energy substrates, 

oxygen and glucose, from blood flow. Previous investigations have shown that blood vessels 

could be controlled to match the need of blood flow delivery (Attwell and Laughlin, 2001; 

Iadecola and Nedergaard, 2007). As a response to transient neural activity, local vessels dilate, 

which leads to a substantial increase in CBF. This mechanism, termed functional hyperemia, has 

its origin in a complex mechanism involving different vasoactive agents (Attwell et al., 2010; 

Iadecola and Nedergaard, 2007).   

Neurovascular coupling (NVC) is the phenomenon describing the activation of neuron to the 

associated increase of CBF (Huneau et al., 2015). The study of the neurovascular coupling 

focuses on examining the relationships among neuronal activity, tissue oxygenation, blood 

oxygenation, blood flow and metabolism. It has been widely accepted that the cerebral metabolic 

rate of oxygen (CMRO2) increases simultaneously with increasing neuronal activity,  which leads 

to a subsequent increase in CBF and CBV to compensate the consumption of  local oxygen (Roy 

and Sherrington, 1890). Several functional neuroimaging techniques rely on the NVC to infer 

cerebral functions. For example, the BOLD contrast measured by fMRI has been widely applied 

to study brain response to neural stimulations in human and animal (Buxton, 2013; Ogawa et al., 

1990a). Near-infrared spectroscopy (NIRS) can also be applied to detect hemoglobin changes in 

blood following the neural activity (Strangman et al., 2002). These techniques are based on the 

concentration changes of oxygenated or deoxygenated hemoglobin, and therefore they can only 

provide an indirect measure of the functional hyperemia (Figure 2-1). On the other hand, optical 

techniques, such as laser Speckle or laser Doppler flowmetry are able to measure blood flow and 

velocity variations in superficial cortical layers with a depth up to  ~500 µm in animal (Fukuda et 

al., 1995). Although there are still debates on the physiology mechanisms underlying local blood 
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flow and oxygenation variation in response to the focal neural activation, these optical imaging 

techniques have been widely accepted as useful tools to study brain functions (Attwell et al., 

2010; Hillman, 2014). 

 

Figure 2-1: Physiological signal detected with classical functional neuroimaging techniques 

(Huneau et al., 2015). 

Unlike normal brain processing, epileptic seizures (i.e. the ictal events) consist of excessive 

neural activity which causes an enormous increase of the metabolic rate of oxygen (Sheth et al., 

2004b). Therefore, the neurovascular coupling mechanism during normal brain functioning may 

not be applied to seizures. For example, there is a long-standing debate on whether or not the 

increase in CBF is enough to compensate the consumption of oxygen due to increased 

metabolism during epilepsy. Early studies proposed the hypoxia-hypoperfusion hypothesis where 

they assumed that tissue damage during epilepsy was a result of cerebral anoxia (Meldrum, 2002; 

Plum et al., 1968; Simon, 1985). However, later studies presented results that were discordant 

with this hypothesis  e.g. these studies have shown that the relative increase in CBF was more 

than the relative increase in cerebral metabolism (Zhao et al., 2009); that the tissue damage 
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during epilepsy was not identical to hypoxia (Siesjö and Wieloch, 1986); that seizures might 

produce increases in venous oxygenation (Pinard et al., 1984; Plum et al., 1968); that seizures 

induced increases in tissue oxygen partial pressure (PO2) (Kreisman et al., 1984, 1983); that 

tissue injury were caused in the absence of cerebral anoxia (Meldrum, 2002; Pinard et al., 1984); 

and that epileptic activity might be associated with oxidation in cytochrome oxidase, 

mitochondrial transport chain and nicotinamide adenine dinucleotide (NADH) (Jöbsis et al., 1971; 

Mayevsky and Chance, 1975). All these observations contributed to our current understanding of 

the neurovascular relationship in epilepsy, but they have been insufficient to make sense of the 

observations. In epilepsy, the supranormal demand on the brain modifies autoregulatory 

mechanisms leading to various confounding factors, e.g.  the abnormal vascular coupling, 

peculiar features of interictal activity and increased oxygen consumption during seizures 

(Folbergrová et al., 1981), which are factors that may modulate the neurovascular coupling 

(Osharina et al., 2010).   

2.2 Review of observations from functional neuroimaging during epilepsy 

2.2.1 Single-photon emission computed tomography (SPECT) 

SPECT is a neuroimaging technique that images regional cerebral blood flow (rCBF). In the 

SPECT scan, gamma ray emitting radiotracers (such as Tc-99m Hexamethyl-propylene Amine 

Oxime ([99mTc]-HMPAO) or Tc-99m Ethyl Cysteinate Dimer ([99mTc]-ECD) (Niels A. Lassen, 

1989; Walovitch et al., 1989)) are first injected to measure the blood flow of the subject. These 

radiotracers cross the blood brain barrier rapidly and are then trapped in tissue compartments 

seconds after the injection (~ 40s). The distribution of the radiotracers is able to be kept for a long 

time (up to four or five hours), which allows for subsequent imaging procedures. Therefore, 

SPECT images reflect an integration of CBF changes in the tissue during the first 40s following 

the injection (d’Asseler et al., 1997).  

The first clinical observation of an increase in local cortical blood flow induced by a seizure was 

made more than a century ago (Horsley, 1892), and was supported by more recent studies on 

animal models(Sierra-Marcos et al., 2016; Wang et al., 2014; Zeng et al., 2013). Based on these 

observations, SPECT can be applied to monitor the CBF distribution in the ictal state (named 

ictal SPECT) as a method to localize the EOZ. However, due to the time delay between the 
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seizure onset and tracer administration, brain regions showing increased CBF on ictal SPECT 

images are likely to include both the brain areas initiating the seizure and receiving propagated 

activity (So and O’Brien, 2012). Moreover, the initial hyperperfusion in the seizure onset zone 

and the propagated areas have been observed to be rapidly followed by a hypoperfusion in the 

same areas in temporal lobe epilepsy, presumably due to autoregulatory mechanisms limiting 

excitotoxic damage (Rowe et al., 1991). Therefore, it has been reported the radiotracer injection 

needs to be performed within 20s after the seizure onset time in order to yield a reasonable 

sensitivity and specificity in localizing the seizure onset region  (Lee et al., 2006; Patil et al., 

2007). 

SPECT is also routinely performed in the interictal period as a way to provide the baseline 

comparison for images taken in the ictal period to increase the localization accuracy. Limitations 

of the conventional interpretation of ictal SPECT images include the difficulty in distinguishing 

subtle changes resulting from different baseline patterns, the dose of injected medicine and the 

injection time (Kim and Mountz, 2011; Lee et al., 2000). Moreover, if the IOZ is hypoperfused 

during baseline (i.e. in the interictal period), the increase in CBF in the ictal period may appear to 

be obscure despite the presence of relative hyperperfusion (O’Brien et al., 1998). To overcome 

these limitations in ictal SPECT interpretation, subtraction methods have been proposed where 

SPECT images are also taken in the interictal periods to be subtracted from the ictal images(Kim 

and Mountz, 2011; Zubal et al., 1995). Compared to the conventional side by side visual analysis, 

the subtraction analysis was reported to yield a more favorable concordance rate between the 

localization results and the EOZ (Gaillard et al., 1995b; Lavy et al., 1976). Another subtraction 

method that was widely applied in ictal SPECT analysis is named subtraction ictal SPECT 

coregistered to MRI (SISCOM), which allows visualization of ictal activities in the brain by 

mapping abnormal neural perfusion onto surrounding neural structures. Similar to other 

subtraction methods, SISCOM was also shown to be able to significantly improve the 

localization accuracy over conventional visual analysis (O’Brien et al., 1998). Several previous 

studies reported that resecting the potential epileptogenic region identified by SISCOM could 

lead to good surgical outcome (G. D. Cascino et al., 2004; Gregory D. Cascino et al., 2004; 

O’Brien et al., 2004; Wichert-Ana et al., 2008). While these results seem to be encouraging, 

further work is still needed to determine the accuracy of SISCOM in surgical decision-making, 

and its predictive power for surgical outcomes.    
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2.2.2 Positron emission tomography (PET) 

PET is another minimally invasive nuclear medicine imaging technique that applies short-lived 

radiopharmaceuticals to measure and assess perfusion and metabolic activities in various organ 

systems (Tarkin et al., 2014). It provides information on the functional and metabolic conditions 

in the brain that is complementary to the anatomical information (Prvulovich and Bomanji, 1998). 

Various PET tracers exist, serving different purposes, e.g. in the measurement of glucose 

metabolism (18F-FDG-PET) or cerebral blood flow perfusion (15O-H2O-PET). The most widely 

used PET tracer in epilepsy studies is fluorine-18 fluorodeoxyglucose (18F-FDG), which is used 

to measure glucose metabolism as a reflection of neuronal activity. As an analog of glucose, FDG 

is transported to brain tissues and is phosphorylated by hexokinase in the same manner as glucose. 

However, unlike glucose, FDG cannot be consumed through metabolism and thus accumulates in 

the cell compartments. As proton-rich isotopes such as FDG decay, positrons are emitted. The 

positrons annihilate rapidly with nearby electrons. Each annihilation generates two photons 

traveling in opposite directions which can then be captured by multiple pairs of oppositely 

situated detectors surrounding the subject to produce images (Juhász et al., 2005).  

FDG-PET images are normally co-registered with MR images to combine functional and 

structural information. In epilepsy, PET scans are usually operated in the interictal phase as a 

result of a much longer tracer uptake time (from thirty to forty-five minutes), which is much 

longer than the lasting of most seizures (Sarikaya, 2015). FDG-PET localizes the epileptogenic 

zone based on the fact that the epileptogenic zone usually shows hypometabolism in the interictal 

period (Liu et al., 2001). Plenty of work have approved the feasibility of using FDG-PET in the 

presurgical localization of the epileptic focus in subjects with refractory partial seizures which 

have no contribution in EEG and MRI (Hikima et al., 2004). The localization sensitivity of FDG-

PET in TLE were first reported to be 84% in a meta-analysis research conducted in 1994 

(Spencer, 1994), while other studies presented a higher sensitivity of PET for TLE cases (87-90%) 

in the following years (Drzezga et al., 1999; Gaillard et al., 1995a; Kim et al., 2002; Knowlton et 

al., 1997). Previous studies reported a comparable localization accuracy using interictal FDG-

PET and ictal SPECT (Bouilleret et al., 2002; Ho et al., 1995; Hwang et al., 2001; Won et al., 

1999) or SISCOM (Desai et al., 2013; Perissinotti et al., 2014). For example, in 117 subjects with 

intractable epilepsy undergoing surgery, ictal SPECT and interical PET correctly localized the 

epileptic focus region in 70.3% and 77.7% of the subjects respectively (Hwang et al., 2001). In 
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another study, the correct lateralization rate was reported to be 85% and 73% using interictal PET 

and ictal SPECT respectively (Won et al., 1999). These results revealed the potential of using 

interictal FDG-PET as a routine procedure in the presurgical localization of epilepsy area in 

subjects with normal MR and no contribution of EEG. However, FDG-PET has a limitation, 

which is usually not able to precisely delineate the surgical margins of the resection area, as the 

region showing hypometabolism in the interictal period usually extends beyond the epileptogenic 

zone (Sarikaya, 2015).  

2.2.3 Combined EEG-fMRI 

Functional magnetic resonance imaging (fMRI) is another invasive functional neuroimaging 

technique and monitors neural activity with MRI technology. It depends upon the property of 

differential magnetic susceptibilities of deoxygenated and oxygenated hemoglobin. EEG-fMRI is 

a special application of fMRI incorporating information from EEG and was developed in 1992 by 

John Ives et al (Ives et al., 1993). EEG-fMRI strives to merge the temporal resolution of EEG 

and the structural resolution of fMRI (Stern, 2006). The epileptic events in the brain comprise 

synchronous firing from multiple neurons, which generate the local field potential. It can be 

measured by EEG as seizures or interictal epileptiform discharges. The fMRI recorded 

hemodynamic signal is the result of coupling between neural activity and the response of interest 

as hemodynamic fluctuation, which specifically is measured by exploiting the magnetic 

properties of blood (the BOLD) (Kwong et al., 1992; Ogawa et al., 1990b).  

The activation is an increased BOLD signal that is caused by increases in CBF outstripping 

changes in oxygen consumption (reduced HbR). Conversely, the deactivation is a decreased 

BOLD signal that is induced by decreases in CBF outstripping changes in oxygen consumption 

(increase HbR). Although the BOLD signal has the low temporal resolution (Vulliemoz et al., 

2010) and problems on the exact nature in relation to neural activity (Ekstrom, 2010; Logothetis 

and Wandell, 2004), BOLD fMRI has been used to study the cognitive and epileptic phenomena.   

During the past 10 years, several studies have revealed increases of BOLD signal in areas that 

were coupled with the area generating epilepsy (Bénar et al., 2002). Similar studies have 

approved that there were some BOLD signal changes in areas far away from presumed epileptic 

foci but no apparent EEG changes in these regions (Kobayashi et al., 2006a). In these 

surrounding areas increase in BOLD is most often observed but sometimes a decrease of BOLD 
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signal is obtained. These results indicate that BOLD signal can show the distance impact of 

interictal spikes. These areas of BOLD signal changes were verified with intracerebral electrodes 

(Bénar et al., 2006). There was the hope of supplying useful clinical information in patients when 

the location of epilepsy was evaluated before surgery. For localization of epileptic focus, EEG-

fMRI studies have shown it can supply complementary information in evaluation of patients with 

intractable epilepsy (Zijlmans et al., 2007). It was possible to localize epileptic focus in 

nonlesional frontal lobe epilepsy that was subsequently confirmed by other imaging techniques or 

pathologic analysis (Moeller et al., 2009). Some studies have shown that a good postsurgical 

outcome happens after the area of BOLD activation was removed surgically (An et al., 2013; 

Thornton et al., 2010). However, some studies have observed a paradoxical response and do not 

explain it: instead of an increase in BOLD signals, a decrease in BOLD signal was found during 

some spikes (Jacobs et al., 2009; Kobayashi et al., 2006b; Rathakrishnan et al., 2010). One 

limitation of understanding of EEG-fMRI signal is the low temporal resolution (around several 

seconds) (Heers et al., 2014).  

Unlike focal epilepsy, idiopathic generalized epilepsy (IGE) is described by an EEG signal with 

generalized spike wave discharges (GSWDs). Early EEG-fMRI studies observed short GSWDs 

in the EEG signal, which revealed that there was an activation in thalamus during GSWDs, but a 

deactivation was also found in lateral parietal and frontal cortex (Aghakhani et al., 2004; Gotman 

et al., 2005; Hamandi et al., 2006). Study with absence epilepsy indicated increased synchronous 

activity in the orbitofrontal cortex (Bai et al., 2011). During the period of GWSDs the increased 

synchronous connectivity was more widely observed (Luo et al., 2012). However, several studies 

showed decreased functional connectivity in the thalamus (Masterton et al., 2012; Wang et al., 

2012) and the attention network with absence seizures (Killory et al., 2011). Such studies on 

functional connectivity are needed to replicate further. In summary, EEG-fMRI was useful in 

investigating the temporal changes of paroxysms and provided novel insights into the mechanism 

of IGE.    

2.2.4 Functional near-infrared spectroscopy (fNIRS) 

FNIRS is an emerging technique that can continuous, non-invasive monitor the deoxygenated, 

oxygenated and total hemoglobin (Jöbsis, 1977). FNIRS uses optical emitters to send near-

infrared light with the wavelength of 650 ~ 900 nm onto the scalp and the hemoglobin in tissue 
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mainly absorbs the light. The scattered light can be collected by the sensors positioned near the 

emitters (a few centimeters). Local blood oxygenation changes on the cortex can be recorded in 

terms of deoxygenated hemoglobin (HbR) and oxygenated hemoglobin (HbO) (Delpy and Cope, 

1997; Irani et al., 2007). Compared to fMRI, fNIRS has some distinct advantages, such as 

portability, lower cost and long term recordings. It can also separate the concentrations of 

saturation of oxygen (SO2), HbO, HbR and total hemoglobin (HbT) when several wavelengths 

are applied simultaneously. There are several methods developed for fNIRS technique, involving 

the (1) frequency domain (FD) (2) continuous wave (CW), and (3) time domain (TD) methods, 

which have been used in brain imaging (Khan et al., 2011; Mesquita et al., 2010; Zhang et al., 

2005).   

In recent years, fNIRS has been widely used in study of epilepsy. fNIRS combined with 

continuous EEG has been applied to investigate the hemodynamic changes before, during and 

after epileptic seizures (Irani et al., 2007; Steinhoff et al., 1996; Villringer et al., 1994). In past 

decades, different groups have used EEG-fNIRS as an complementary method of epilepsy 

diagnosis (Adelson et al., 1999; Arca Diaz et al., 2006; Buchheim et al., 2004; Cooper et al., 

2011; Rizki et al., 2015; Seyal, 2014; Sokoloff et al., 2015). In most cases, there is an increase in 

CBV and HbO during partial seizures, which lasts beyond the seizure (Villringer et al., 1994). 

Some investigations have found an increase of CBV with 10 subjects with TLE in the lesion 

territories, which confirms earlier studies of partial epilepsy (Watanabe et al., 2002). The 

hemodynamic response of absence seizures shows a deoxygenation (increase in HbR, decrease in 

CBV and HbO), which is delayed by several seconds from the first spike (Buchheim et al., 2004; 

Roche-Labarbe et al., 2008). Two different groups have found preictal oxygenation changes in 

the frontal lobe with EEG-fNIRS (Seyal, 2014; Slone et al., 2012).  

Overall, EEG-fNIRS is a promising technique for study of epilepsy and preliminary work have 

confirmed its usefulness and clinical potential (Machado et al., 2014; Pellegrino et al., 2016; 

Peng et al., 2014; Vinette et al., 2015; Yücel et al., 2014). It may become a primary tool to 

manage epileptic patients (particularly neonates and children) in clinical routine, (Wallois et al., 

2010).    
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2.2.5 Optical imaging of intrinsic signals  

Intrinsic optical signal (IOS) was first applied to measure the neuronal response with stimulation 

in tissue by Hill and Keynes (Hill and Keynes, 1949). Optical imaging of intrinsic signals (OIIS) 

is a method for detecting hemodynamic changes in the brain, according to the absorption of 

neural tissue with enhanced light, which is induced by focal increases in HbO and CBF (Frostig 

et al., 1990; Malonek and Grinvald, 1996; Prakash et al., 2009). These changes in reflectance can 

be detected by a camera with various wavelengths, which can measure the hemodynamic changes 

with temporal resolution of millisecond and micrometer spatial resolution. Since OIIS requires 

brain surgery to show the cortex it is widely known as an “invasive” imaging. However, 

compared to the electrophysiological methods that insert electrodes directly into the human brain, 

the OIIS is non-invasive because the intraoperative IOS is operated in the operating room by 

adding a camera to the operating scope (Prakash et al., 2009).    

When the light illuminates the cerebral cortex, the active cortex and its corresponding vasculature 

have changes in reflective light compared to the inactive areas (Prakash et al., 2009; Zepeda et al., 

2004). Until now three sources of intrinsic signals are mostly used based on the spectral 

composition of measured light (Mayhew et al., 2000; Sheth et al., 2004a). Using the light with 

the wavelength ~500-599 nm, both HbO and HbR directly correlating with HbT or CBV can be 

measured since they reflect light equally (Mayhew et al., 2000; Nemoto et al., 2004). Using the 

light with the wavelength ~ 600-699 nm, deoxy-hemoglobin absorbs most of light, as HbR has 

three times of the absorption coefficient than HbO. Hence, an increase in reflection at these 

wavelengths implies a decrease in HbR. Finally, using the near infrared light (~700-800 nm), 

variations in cellular swelling are the main component of the intrinsic signal since hemoglobin 

minimally absorbs light (Malonek and Grinvald, 1996). Therefore, the OIIS can be applied to 

detect changes of HbO and CBV in the brain cortex. OIIS is a little bit different from fNIRS. For 

example, the whole surface of the cortex is illuminated and cameras that are sensitive to certain 

wavelengths are used to collect changes of hemoglobin concentration and CBV. OIIS also 

requires the exposure of the brain cortex and has high spatial resolution. 

OIIS has been used to study epileptic events in vitro using slices of cortex in rat brain (Borbély et 

al., 2014; Mané and Müller, 2012) and in vivo in rat (Chen et al., 2000; Schwartz and Bonhoeffer, 

2001; Suh et al., 2005), ferret (Schwartz, 2005, 2003; Schwartz and Bonhoeffer, 2001) and 
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mouse (Guevara et al., 2013). These work revealed that OIIS can localize the area of an interictal 

spikes as well as the site of surrounding (Schwartz, 2003; Schwartz and Bonhoeffer, 2001). OIIS 

could also be applied in preictal seizure that can be used to predict epileptic onset (Chen et al., 

2000). Besides, the relationship between epileptic events and HbR or CBV could be studied by 

OIIS (Bahar et al., 2006, 2005; Suh et al., 2005).   

OIIS has also been used to image epileptic focus and brain function activity during the surgery in 

human (Haglund et al., 1992; Sato et al., 2002; Schwartz et al., 2004; Zhao et al., 2007). Beyond 

localizing human physiological and pathological activity and studying hemodynamic response, it 

was also used to predict the pre-ictal changes in human epilepsy. Overall, OIIS measurements of 

hemodynamic response and CBF may become increasingly important for localizing and 

predicting epileptic seizures.   

2.2.6 Confocal and two-photon microscopy  

Confocal microscopy is an inestimable technique for high-resolution microscopy. The principle 

based on the confocal imaging is depicted by Marvin Minsky in 1957 (Prasad et al., 2007). It 

increases optical resolution and contrast using a confocal mechanism. In the conventional 

microscope, the image is obtained from some light that is out of focus, which has limitations on 

thickness and contrast of the sample (Prasad et al., 2007; Rudd et al., 2005). Confocal laser 

scanning microscopy scans the sample with a focused spot of laser and a small pinhole at the 

confocal plane, which only allows the light generating from the focus to pass (Rajadhyaksha et 

al., 1999, 1995). The photomultiplier tube (PMT) or an avalanche photodiode (APD) can detect 

the emitted light mapping the image, which is a function of the location of the scanning spot. 

Compared to the conventional microscopy, the confocal laser scanning microscopy has a better 

resolution. The pinhole needs to be near an extent in practice so that it can discard most of the 

light (Heintzmann et al., 2003). Confocal microscopy enables the reconstruction of three-

dimensional structures by stacking individual 2D images at different depths. 

In the past few years, there is remarkable progress in confocal microscopy, which includes using 

new optical methods to study ultrastructural issues and using other methods to study cellular 

dynamic in animals. The advancement in image analysis is propelling the availability of large-

scale anatomical reconstruction (Wilt et al., 2009). However, it is also important for 

advancements in complementary fields that involve animal preparation and strategies of labelling 
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fluorescence. In vivo, it can be used to obtain high resolution images in the superficial cortex 

(first 150um) because of the light diffusion of tissue. 

There is an approach for deep imaging into tissue that includes two-photon fluorescence 

microscopy (Denk et al., 1990) and other nonlinear optical techniques. Two-photon microscopy 

provides high-resolution (submicron) imaging with lower phototoxicity and deeper tissue 

penetration than single-photon microscopy. In two-photon excitation, two photons with a doubled 

wavelength are absorbed by the fluorophore, which then releases the energy to the ground state. 

To achieve reasonable excitation/collection efficiency, typical two-photon microscopy system 

focuses the excitation photons into a very tiny volume using a high numerical aperture objective 

lens and delivers them in a very short period of time (femtosecond pulse). The first practical two-

photon microscopy system was developed in 1990 (Denk et al., 1990). TPM uses longer 

wavelength light for excitation; therefore it can provide deeper penetration than single-photon 

microscopy. Because TPM requires two photons to arrive at the same time and same location to 

excite the molecule, the fluorescence signal depends upon the square of the illumination intensity. 

TPM can perform “optical sectioning” without using the physical pinhole that is used in confocal 

microscopy. As a result, TPM can collect signals more efficiently than confocal microscopy (So 

et al., 2000; Zipfel et al., 2003).  

Traditional TPM image technique uses 2D raster scanning (line-by-line scanning), which is slow 

for applications demanding high temporal resolution. Hence, other imaging approaches have been 

developed, including random-access scanning with acousto-optic deflectors (AODs), a device 

that can change beam deflection angle with tuning input electric frequency (Salomé et al., 2006), 

and parallel scanning with multiple beams (Kim et al., 2007). More recently, alternative scanless 

TPM using temporal focus has been developed (Oron et al., 2005). Moreover, typical TPM 

systems use an excitation wavelength at ~800 nm. To further improve the penetration depth of 

TPM, longer wavelength excitation at ~1300 nm can be used (Kobat et al., 2009). The achieved 

resolution ultimately depends on the excitation wavelength of the light (Hell, 2007), but the 

excitation light can be seriously degraded by optical scattering.  

The application of TPM in vivo has started to shed light in the field of neuronal function (Zhang 

et al., 2017). Since the TPM can study the cortex with a depth of several hundred micrometres in 

vivo (Denk et al., 1994). TPM was applied to image the activity of single neuron in dendrites in 
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vivo, which were loaded with a calcium indicator by a recording electrode (Svoboda et al., 1997). 

A number of laboratories have used TPM to study the activity of neurons with other bulk-loading 

methods that were previously applied in wild-field microscopy (Friedrich and Korsching, 1998, 

1997). These studies were operated in the somatosensory cortex in mice and rats (Kerr et al., 

2007; Sato et al., 2007), the cerebellum in rats (Sullivan et al., 2005), the visual cortex in rats, 

cats (Ohki et al., 2006, 2005) and mice (Mrsic-Flogel et al., 2007), the tectum in zebrafish (Niell 

and Smith, 2005) and the olfactory bulb in mice (Wachowiak et al., 2004) and zebrafish (Li et al., 

2005; Yaksi et al., 2007). In recent years time-lapse imaging becomes available in the 

mammalian brain with TPM conjunction with cellular labeling and transgenetically introduced 

protein-based fluorophores (Feng et al., 2000).   

Confocal and two-photon microscopy techniques have shown great promise for imaging 

biological structures at the cellular and molecular level. In the past few years, most studies were 

focused on the exploitation of new microscopy techniques. Major breakthroughs have been 

obtained in multiple technological fronts, imaging cellular properties and reconstruction large-

scale tissue in live animals. These new findings will expand the role of confocal microscopy in 

neuroscience research.   

2.2.7 High-resolution electroencephalogram (HR-EEG) and MEG 

The high-resolution electroencephalogram (HR-EEG) is an EEG recording with high spatial and 

temporal resolution (millisecond scale). MEG uses a magnetoencephalography platform to record 

the magnetic fields induced by the cerebral activity. These two techniques are entirely non-

invasive and apply the same mathematical tools to localize the sources of electromagnetic 

activities. MEG and EEG signals are converted into knowledge of localizing epileptic generators 

along cortical surface by these two techniques with solving an ill-posed inverse problem. HR-

EEG and MEG can help identify epileptic zones with the localization signals recorded during 

interictal spikes or seizures (Gadhoumi et al., 2015; Grova et al., 2006; Pellegrino et al., 2016). 

Some studies use the sensitivity and specificity of EEG and MEG to localize the irritative and 

epileptic zones. Recent studies showed a specificity of 88%  and a sensitivity of 84% with 

recorded spikes (Brodbeck et al., 2011). Several studies have revealed that these two techniques 

supplied additional information relative to other presurgical research (Jung et al., 2013; Knowlton 

et al., 2008, 2006) .  
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For some lesional epilepsy, localization of interictal spikes using HR-EEG and/ or MEG 

correlates the presurgical evaluation since the irritative or epileptic zones can be identified by an 

overlap (Chassoux et al., 2000; Gambardella et al., 1996).  Overall, these two techniques cannot 

be solely used to identify the exact surgical zone of interest. When the epileptic discharges have a 

high enough signal-to-noise ratio and are not disturbed by major artifacts, HR-EEG and MEG 

can be applied to localize the epileptic zone by ictal recording (Eliashiv et al., 2002; Koessler et 

al., 2010).  

In summary, preliminary work of other groups has measured hemoglobin providing an indirect 

way to study the mechanism of neurovascular coupling during epileptic events with various 

optical imaging techniques. However, there was no technique that could measure oxygen changes 

directly in tissue with high resolution in multiple locations during epilepsy. In this study, we 

investigate tissue oxygen delivery using a novel molecular probe based on phosphorescence and 

sensitive to oxygen to evaluate whether hypoxia plays a role in epilepsy. 
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CHAPTER 3 THEORY AND METHODOLOGY 

This chapter first gives a brief introduction of confocal phosphorescence lifetime microscopy and 

the hardware setup that was built for the first study. Then the principle and application of an 

extension to two-photon laser scanning microscopy are described. The rest of this chapter covers 

the theory of the Krogh-Erlang model used to simulate oxygen delivery in tissue. 

3.1 Confocal microscopy 

Confocal microscopy is nowadays widely used in biological imaging and can generate three-

dimensional images of nonbiological and biological specimens. Compared to the conventional 

wide-field microscopy the superior spatial resolution of confocal microscopy is beyond question. 

It has been shown that it is useful to study the neural function in small animal. This optical 

technique, combined with phosphorescence lifetime imaging can measure oxygen changes, 

providing direct measures of oxygen delivery to neural tissue with the perspective of linking 

oxygen to neural activity. Prior to our novel investigation in epilepsy, this method has been 

successfully used to study neural activity from the exposed cortex in the small animal (Golub and 

Pittman, 2008; Sakadžić et al., 2009; Yaseen et al., 2009). 

3.1.1 Principle and application of confocal microscopy 

Confocal microscopy is an optical technique that places a spatial pinhole at the confocal plane to 

eliminate out-of-focus light, which leads to a high optical resolution and contrast image. It can 

operate the three-dimensional reconstruction using sets of images from different depths. The 

principle of confocal laser scanning microscopy was patented in 1957 by Marvin Minsky 

(Minsky, 1988, 1961) and is diagrammatically shown in Figure 3-1. The laser system (light 

source) emits coherent light, which travels through the pinhole aperture and is focused on the 

specimen. The collected light reflected by the dichroic mirror passes through the second pinhole 

aperture located in front of the detector and is focused at the detector (Paddock, 2000). Compared 

to the conventional microscopy, confocal microscopy has several advantages as follows: (1) it 

can control the depth of the field. (2)  it reduces or eliminates the background noise from the 

focal plane. (3) it has the ability to image successive optical sections of the thick specimen. In 

confocal microscopy, the illuminating light and the detecting signals are focused on the same 

point in the specimen. Unlike conventional microscopy, the confocal microscopy technique only 
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measures one point of the objective lens rather than the whole field view each time (P. N. Dean, 

2001). The complete image is built point by point with moving the spot over the specimen. The 

most important advantage of the confocal microscopy is that applying spatial filtering methods 

can eliminate out-of-focus light and it can image the thick specimen (Graham et al., 2013). 

 

Figure 3-1: The principle of confocal microscopy. 

Confocal microscopy offers a way to obtain thin slice images with minimum interference from 

out-of-focus area of the specimen. This technique has been widely applied in biological science 

(Gourdie, 1994). The major application of confocal microscopy is in the optical sectioning, where 

the process is similar to apply a microtome to obtain brain slices except that it is operated 

optically (Phillip N. Dean, 2001). This procedure starts with an image taken at the top of the cell, 

followed progressively by more images taken in deeper layers. These steps are repeated until the 

whole cell is imaged.  

The crucial application of confocal microscopy in the biomedical field is to image the tissue with 

labeled fluorescent probes in vivo or in vitro. Using conventional light microscope to image these 

samples, the thickness of the slice in focus is usually more than 2µm or so. However, the 

confocal microscopy technique has the ability to exclude “out-of-focus” signal from thick labeled 

samples that has caused the explosion in its popularity (Paddock, 2000), therefore improving the 

resolution of the images. 
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3.2 Oxygen dependent phosphorescence imaging 

3.2.1 Principle of oxygen dependent phosphorescence imaging 

Oxygen dependent phosphorescence imaging provides a very sensitive measurement of oxygen 

partial pressure surrounding phosphorescent molecules. The intersystem crossing of Pd-

porphyrins can quantitatively convert the excited singlet state to the triplet state. A singlet state is 

an electronic state that all electron spins lack net angular momentum and are paired. The triplet 

state is the excited electrons that all electron spins are not paired. Hence, these compounds have 

little or no fluorescence, and therefore the quantum efficiency of phosphorescence is high. The 

phosphorescence lifetime can be rapidly measured by intensified video cameras and 

photomultipliers. The intensified video cameras apply arrays of detectors and each of the arrays 

must obtain sufficient light energy to measure the light intensity. Photomultipliers are single light 

detectors, which concentrate all phosphorescence light from the specimen on one detector 

(Diaspro, 2001; Wilson, 1992).  

For molecules capable of phosphorescence emission, an electronic transition from the excited 

triplet state to the singlet ground state generates a phosphorescent photon (Figure 3-2). When a 

large number of these molecules are excited simultaneously into the triplet state, the resulting 

emission can be empirically characterized by an exponential decay function (Shonat and Kight, 

2003). 

𝐼 𝑡 = 𝐼!exp  (−
!
!
)                                                                  (3-1)  

where I(t) is the intensity of phosphorescence at time t, I0 is the maximum phosphorescence 

intensity at time t=0, and τ (µs) is the apparent lifetime of the decay. In the presence of a 

quenching agent, the reduction in phosphorescence manifests itself experimentally as a 

shortening of the lifetime τ. This diffusion-controlled quenching is described by the Stern-

Volmer relationship: 

!!
!
= !!

!
= 1+ 𝐾!𝜏!𝑃𝑂!                                                         (3-2) 

where I0 and τ0 are unquenched intensity of phosphorescence and lifetime at PO2 = 0, 

respectively. I and τ are intensity of phosphorescence and lifetime at specified oxygen pressure. 

KQ is the quencher rate coefficient, and PO2 is the partial oxygen pressure, which is proportional 
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to the oxygen concentration in the solution (Diaspro, 2001). The calibration is used to determine 

the variables of τ0 and KQ as temperature and pH under reproducible experimental conditions. 

Phosphorescence lifetime is an accurate technique to measure oxygen partial pressure since the 

lifetime measurements do not depend on the probe concentration and the intensity of illumination 

light. Moreover, lifetime measurements are not affected by variations of other chromophores 

absorption in tissue, such as hemoglobin and myoglobin. 

 

Figure 3-2: Simplified Jablonski energy diagram of phosphorescence progress 

3.2.2 Phosphors for measuring oxygen by oxygen-dependent quenching of 

phosphorescence 

Several oxygen sensing molecules have been applied for different modes of phosphorescence-

based oximetry over the years. Generally, nanoparticle-based molecules are mainly used for 

oxygen measurements in cell culture, however, bio-distributions and aqueous solubility are 

specifically important for measurements in intact organisms (Palmer et al., 2010). Previously, the 

phosphorescent probes according to simple Pd porphyrins (Papkovsky and O’Riordan, 2005; 

Vanderkooi et al., 1987), required prebinding of macromolecular carriers (such as albumin) in 

order to enhance their aqueous solubility and brought their quenching parameters (τ0 and KQ) into 

a range compatible with physiological oxygen concentration. But foreign albumin potentially 
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offered immunogenic and toxicity responses. The presence of polyglutmatic dendritic porphyrins 

(such as Oxyphor R2 and G2) (Dunphy et al., 2002) supplied a way to solve this question. Poly-

glutmatic probes have the high aqueous solubility, which can be used into the vasculature directly 

without aggregation of albumin. However, R2 and G2 have the limitation in albumin-rich 

environments because of forming complexes with endogenous albumin, such as blood plasma. 

Recently, a general way to protect molecular oxygen probes that do not require supporting 

macromolecular carriers or albumin was discovered (Finikova et al., 2008; Lebedev et al., 2009). 

For such probes, phosphorescent metalloporphyrins are encapsulated inside the hydrophobic 

dendrimers, which protect shells and regulate the method’s sensitivity (Esipova et al., 2011). 

Oxyphor R4 and G4 were two new oxyphors, which were presented and widely applied in 

biological study. These probes are obtained based on the above general process. Besides, their 

components are optimized for better chemical stability (such as lack of prebinding albumin in 

aqueous solution and higher mono-dispersity) (Esipova et al., 2011). 

3.2.3 Principle of the calibration for phosphors  

The oxygen quenching properties can be detected as functions of pH, temperature and 

concentration. For calibration, solutions with controlled amounts of oxygen are manufactured. 

The easiest way is to prepare a solution with air, which is done by diluting phosphorescence 

molecules in deionized water. The obtained value of lifetime corresponds to an oxygen pressure 

of 160mmHg because of 21% of pressure in normal atmosphere. Using a completely 

deoxygenated solution, the lifetime of the probe in the absence of oxygen can be measured. With 

the glucose oxidase, each glucose molecule consumes one oxygen molecule, which is described 

by the reaction: 

2𝐺 + 2𝑂! + 2𝐻!𝑂
!"#$%&'  !"#$%&'

2𝐺𝑂 + 2𝐻!𝑂!                                                 (3-3) 

where G represents the glucose molecule and GO represents the gluconic acid. As the reaction 

produces hydrogen peroxide (H2O2), catalase is used to decompose H2O2, for which the reaction 

is: 

  2𝐻!𝑂!
!"#"$"%&

2𝐻!𝑂 + 𝑂!                                                              (3-4) 

If the reaction (3-3) and (3-4) are added, we obtain the reaction: 
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2𝐺 + 2𝑂! + 2𝐻!𝑂
!"#$%&'  !"#$%&'  !"#  !"#"$"%&

2𝐺𝑂 + 2𝐻!𝑂 + 𝑂!                                  (3-5) 

This reaction products approach zero amount of oxygen (0 mmHg) when properly dosed. For a 

completely deoxygenated probe, samples include catalase (12.5µg/ml), glucose oxidase (75µg/ml) 

and 0.3% glucose are required during phosphorescence measurement under anaerobic conditions 

(Vanderkooi et al., 1987). We followed this procedure to calibrate our probes below. 

A system combining the confocal microscopy and phosphorescence lifetime imaging was 

developed (see below), which can measure partial oxygen pressure in tissue and vessels with high 

transverse and axial resolution, avoiding phosphorescence signal contamination from neighboring 

voxels. To determine parameters (τ0 and KQ) in the Stern-Volmer equation, two oxygen pressures 

(0 mmHg and 160 mmHg) were measured under experimental conditions. At 0 mmHg partial 

oxygen pressure, the τ0 was obtained from the lifetime. The Stern-Volmer equation was then 

applied to calculate KQ with τ0 at 160 mmHg oxygen pressure.  All measures were done at 37C 

and 7.4pH to reproduce in vivo conditions. 

3.2.4 Overview of the confocal phosphorescence lifetime microscopy system 

and experiment  

A standard confocal microscope was built, integrating time-domain readout measures for lifetime 

estimates. A Matlab interface was developed to control the whole system consisting of a confocal 

scanner, camera and photon counting detection arm. From the interface of confocal 

phosphorescence microscopy system (Figure 3-3), we can adjust the laser power and the length 

of the pulse. Quality of images from the camera was controlled by adjusting the exposure time of 

the camera.  High concentration areas of the probe can be found by fitting the histogram while 

scanning at equal laser power. Points of interest can be scanned along a line or spiral. When the 

measurement started, all acquisition parameters on the interface were saved in a text file. 
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Figure 3-3: The interface of the confocal phosphorescence microscopy system 

Before the measurement started, the mouse was moved on the lab platform. A tungsten electrode 

was inserted in the cortex and reference electrodes as well as ground electrodes were put on the 

mouse brain to reduce the noise during local field potential measures. The imaging focus was 

achieved through images obtained by the camera, which was displayed in the interface (Figure 3-

3 and Figure 3-4). A spatial calibration was done by building an interpolation matrix between 

voltage sent to the galvanometer and positions of laser spot in the image. The calibration was 

checked manually in each experiment to ensure the points of interest were recorded.  
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Figure 3-4: Overview of the confocal phosphorescence microscopy system. 

Two steps were performed during the experiment. Initially, points of interest were selected for 

measuring PO2. Survey scan were obtained by scanning these points and summing photon counts 

at each point using an excitation pulse duration and phosphorescence detection window of 100 µs 

and 500µs respectively. From the survey scan counts of these points, the power of laser diode for 

each point was adjusted to minimize the photo-oxidative damage to tissue and limit consumption 

during the measurement based on the number of recorded counts in the survey. Following the 

survey scan, the same points were measured while averaging 100 times to increase the signal-to-

noise ratio at varying laser power. All experiments were recorded around 3 hours until the mouse 

did not have epileptic events.  

3.2.5 Characterization of confocal phosphorescence lifetime microscopy  

The signal to noise ratio (SNR) was calculated to characterize the system. The lifetime was 

obtained by fitting measured data with the exponential decay, which depends on the noise level 

and the stability of the signal. The SNR of lifetime is defined by the average of lifetime from the 

same condition over its standard deviation. These two parameters are shown in Table 2-1 for 
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equilibrium measurements with different concentration of the Oxyphor G4 and various duration 

of the pulse. The SNR of the lifetime decreases with the concentration of probe but remains 

relatively constant regardless of the pulse duration. This is explained by the fact that the noise is 

correlated with the intensity of the signal due to Poisson statistics. 

Table 3-1. The SNR of various measurements in equilibrium with air 

Concentration of the 

probe, pulse duration 

 

Lifetime SNR 

50 µM, 100µs 50.4 

25 µM, 100µs 34.0 

10 µM, 100µs 28.5 

50 µM, 50µs 52.7 

50 µM, 10µs 50.2 

The field of view of the confocal system in object plane is calculated by the following formula: 

∆𝑥 = 𝑓! ∙ tan  (
!!
!!
𝛽)                                                            (3-6) 

where the f1 is the effective focal length of the objective used, which is 18 mm. β is the largest 

angle that galvanometer system can turn, which is 15.5° in axis x and 18.8° in axis y (measured 

from the system). f1 and f2 are the focal lengths of two lenses used in the system as a telescope to 

map the galvo mirrors on the objective pupil. In here, f2 and f3 are 50 mm and 125 mm separately. 

From this formula we could obtain the field of view in x was 1.96 mm and the field of view in y 

was 2.38 mm. The resolution of the camera was 1024 × 1280. Hence, the pixel size in x and y 

were both 1.9 µm. The resolution is improved by a higher magnification objective with a large 

numerical aperture but this could result in decreasing the field of view.   
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3.3 Two-photon microscopy 

The theoretical basis of two-photon excitation was discovered by Maria Goeppert-Maye in 1931. 

This technique was first applied in experimental research by Kaiser and Garret in 1963 (Palikaras 

and Tavernarakis, 2001). Based on the nonlinear excitation of fluorophores, Webb Denk and 

colleagues developed a two-photon fluorescence microscopy system, which represents a  

revolutionary progress in the 3D imaging of cells and tissue in vivo (Denk et al., 1990). Two-

photon microscopy (TPM) has four unique capabilities, which are considered to be advantageous 

over the traditional biological imaging techniques (Nemoto et al., 2015). First, TPM can image 

living specimens because of great reduction of photodamage. Second, the wavelength of the light 

used to excite fluorophores in TPM is much larger, usually within the deep red and near infrared 

wavelength range. This means that the light is able to penetrate more deeply due to less scattering 

and absorption by endogenous chromophores, therefore leading to a considerably deeper imaging 

depth of TPM. TPM can image with depth of a few hundred micrometers (Yaroslavsky et al., 

2002). Third, TPM eliminates the contamination of fluorescence signal from the excitation light, 

allowing high-sensitivity imaging (Centonze and White, 1998). Fourth, TPM initiates 

photochemical reaction with a sub-femtoliter volume inside cells. Thanks to these advantages, 

two-photon fluorescence microscopy has now become a useful tool in studying biological 

function in vivo.  

3.3.1 Principle of two-photon excitation microscopy  

Photobleaching and phototoxicity are unavoidable issues in imaging of biological samples that 

are labeled with fluorophores. Photodamage (such as photobleaching and phototoxicity) limits 

the application of fluorescence microscopy in vivo. Each excitation event has the risk of 

photodamage. In order to minimize photodamage, two-photon fluorescence microscopy 

maximizes the measure of a signal photon in every excitation event. Compared to other methods, 

TPM dramatically improves the detection of photons especially in deep imaging  (Svoboda and 

Yasuda, 2006).      

Two-photon microscopy is a nonlinear process that the absorption of two photons is adequate to 

provide enough energy to elicit a molecular to an excited state. In Figure 3-5 we show a 

comparison between the two-photon absorption and the more conventional single-photon 
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excitation (So et al., 2000). In the single-photon excitation event, the fluorescent molecules of 

interest are excited by ultraviolet or visible light. The excitation occurs when the absorbed photon 

energy is enough to fill the gap of the energy between the excited electronic state and singlet 

ground state. The two-photon excitation process shares a similar basis, except that two less 

energetic photons are absorbed simultaneously. More explicitly, the molecule is excited to a 

virtual intermediate state with the absorbed energy of the first photon, while the absorption of the 

second photon eventually brings the molecule to the final excited state.  

 

Figure 3-5: Simplified Jablonski diagram of one-photon excitation (a) and two-photon excitation 

(b) (So et al., 2000). 

Two-photon fluorescence lifetime microscopy is a fluorescence process in which a dye molecule 

is excited by simultaneously absorbed two photons with approximately a doubled wavelength as 

that of the photon in the single-photon excitation. There are several additional constrictions with 

regard to the light source used in the two-photon excitation process. For example, the source 

needs to output a high intensity of light. This is because that the fluorescence can absorb two 

photons only when they hit the molecule simultaneously. With a high-power laser source, the 

possibility of having two photons hit simultaneously is much higher. However, continuous 
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lighting of lasers with a high average power may cause severe damage to the biological tissue. 

Therefore, in two-photon excitation microscopy, pulse-emitting lasers with low average power 

and high peak powers are usually applied. The high peak power is obtained by short light pulses 

at high repetition rates ~80Mhz (Rubart, 2004; Williams et al., 1994).  

In a focused laser spot, the intensity of the light is the highest at the center and decays with 

increasing distance from the center in a quadratic manner. Hence, fluorophores are excited in a 

diffraction-limited focal volume. With a high numerical aperture objective, the majority of 

fluorophores are excited in a focal volume that can be up to ~0.1 µm3 (Zipfel et al., 2003). All 

fluorescence photons from the focal volume are captured by the objective to produce an image of 

that volume. The laser then moves to another location and starts a same imaging procedure. This 

process is repeated until all the regions of interest in the specimen are scanned. 

3.3.2 Application of two-photon excitation microscopy  

Two-photon microscopy has been widely applied to detect physiological signals in many tissue 

types, such as salamander retina (Denk and Detwiler, 1999), the corneal structure in rabbit eyes 

(Buehler et al., 1999), human mucosa (Riegler et al., 1999), as well as the human and mouse 

dermal structures (So et al., 1998). Besides, TPM has also seen its application in embryology and 

neurobiology. In embryology field, TPM has been successfully used to study the calcium passage 

(Golshani and Portera-Cailliau, 2008; Russell, 2011). In neurobiology, TPM has been applied to 

study neuronal and cellular morphological changes in the neocortex (Helmchen, 2009; 

Kretschmer et al., 2016), the neuronal function in brain with slices (Girouard et al., 2010), the 

calcium signal changes in dendritic spine function (Rochefort and Konnerth, 2012; Takasaki and 

Sabatini, 2014), and hemodynamic changes in the rat brain neocortex (Driscoll et al., 2013; 

Lindvere et al., 2010), etc. However, several limitations exist when TPM is applied in tissue 

measures. First, on different types of specimens, the imaging depth of TPM can vary dramatically. 

Moreover, for deep tissue there is a major technical challenge in fluorescence labelling. Currently 

there is no standard method to label fluorescence in deep tissue, which is considered as the major 

obstacle of TPM in such applications (So et al., 2000).  

A promising direction of TPM is in clinical diagnosis and treatment. In clinical diagnosis, optical 

biopsy is a new technique. The removal and fixation of tissue are required in conventional biopsy. 

When these steps are prepared the histological procedure is poorly preserved in tissue 
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biochemical information. TPM has been successfully used to study the skin structure in clinical 

diagnosis (Masters et al., 1997). TPM has also been used in clinical treatment. Photodynamic 

therapy is a technique, which destructs specific tissue (such as tumor) with a photosensitizer. 

With laser illumination photosensitizer-loaded tissue is destroyed. Unfortunately, the normal 

tissue is often non-negligible taken because of the higher of photosensitizer uptake in tumorous 

tissue. The destruction of healthy tissue in photodynamic therapy is a common issue. The 

attractive opinion is that tumor is localized by TPM first and then photodynamic action is 

initiated at the selected site.  

3.4 Krogh-Erlang Model for oxygen diffusion in tissue 

The Krogh_Erlang model that depicts the oxygen diffusion in any cross-section of a cylinder near 

a vessel is mostly applied to model of oxygen transport (Krogh, 1919). The diffusion equation 

was described in a Krogh cylinder (Foster et al., 1991; Okunieff et al., 2006): 

!
!
!
!"

𝑟 !"
!"

+ !!!
!!!

− !
!
= 0                                                         (3-6) 

boundary conditions in tissue 𝑟! ≤ 𝑟 ≤ 𝑅, 0 ≤ 𝑧 ≤ 𝐿: 

𝑧 = 0, !"
!"
= 0;   𝑧 = 𝐿, !"

!"
= 0;                                                         (3-7a) 

𝑟 = 𝑅, !"
!"
= 0; 𝑟 = 𝑟!,𝑈! = 𝑈|!!                                                   (3-7b) 

and boundary conditions in the vessel 0 < 𝑟 < 𝑟!, 0 ≤ 𝑧 ≤ 𝐿: 

  𝜋𝑟!!𝑉
!!!
!"

= 2𝜋𝑟!𝐷
!"
!"
|!!,𝑈! 0 = 𝑈!                                                 (3-8) 

where 𝑈 = 𝑈 𝑟, 𝑧 ,𝑈𝑐 = 𝑈(𝑟, 𝑧) are oxygen concentrations in tissue and vessel, respectively, R 

is the radius of Krogh cylinder,L is the length of Krogh cylinder, Q is the rate of oxygen 

consumption which is the product of CMRO2 and the density of brain tissue, D is oxygen 

diffusion coefficient, r0 is radius of the vessel, V is speed of flow in the vessel, and U0 is 

concentration of oxygen in the vessel at the arterial end (Grinberg et al., 2005). 
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Figure 3-6: Sketch of the Krogh cylinder model where the blood vessel (radius r) provides 

oxygen with a tissue cylinder (radius R) by diffusion. 

The discrete oxygen distribution in the same level that is perpendicular to the vessel at any point 

𝑧! (the diffusion distance rj) of the vessel can be depicted with the classical Krogh equation: 

𝑃𝑂! 𝑧! , 𝑟! =   𝑃𝑂!!"# 𝑧! − !
!!"

(2𝑅! ln !!
!!

− (𝑟!! − 𝑟!!))                                      (3-9) 

When rj  is equal to R (the secondary boundary condition), the simplified Krogh-Erlang formula is 

applied to supply oxygen in the vasculature. 

𝑃𝑂! 𝑧! ,𝑅 =   𝑃𝑂!!"# 𝑧! − !
!!"

(2𝑅! ln !
!!

− (𝑅! − 𝑟!!))                       (3-10) 

By definition, we can obtain that the microregional oxygen pressure 𝑃𝑂! 𝑧! ,𝑅  at the cylinder 

boundary is rate limiting. Where 𝑃𝑂!!"# 𝑧!  is the oxygen concentration in the vessel at the point 

𝑧!, 𝛼 = 1.3×10!!𝑐𝑚!/(𝑐𝑚!×760𝑚𝑚𝐻𝑔) is oxygen solubility. 𝐷 = 1.5×10!𝜇𝑚!/𝑠 is oxygen 

diffusion coefficient, Q is oxygen consumption rate, r0 is capillary radius, rj is radial coordinate 

and 𝑟! ≥ 𝑟! ≥ 𝑅. We used literature values for Q, i.e. 2.6 µmol/g/min at baseline (Cui et al., 2013) 

and an increase of ~12% during epileptic seizures (Zhao et al., 2011). In my work, the tissue PO2 

and artery diameter are measured with two-photon phosphorescence lifetime microscopy. The 

Krogh model is used to simulate the relationship between PO2 in tissue and perpendicular 

distance from an artery.  
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This article addresses the first objective of this thesis which is to provide an invasive 

measurement of oxygen partial pressure in tissue during epileptic seizures in mouse brain by 

confocal phosphorescence lifetime microscopy. This article has been published in PLOS ONE in 

2015 (Zhang et al., 2015).  

4.1  Abstract 

In this work a method for measuring brain oxygen partial pressure with confocal 

phosphorescence lifetime microscopy system is reported. When used in conjunction with a 

dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive 

measurements of oxygen partial pressure (PO2) in cerebral tissue with high spatial and temporal 

resolution during 4-aminopyridine (4-AP) induced epileptic seizures. Investigating epileptic 

events, we characterized the spatio-temporal distribution of the "initial dip" in PO2 near the probe 

injection site and along nearby arterioles. Our results reveal a correlation between the percent 

change in the PO2 signal during the "initial dip" and the duration of seizure-like activity, which 

can help localize the epileptic focus and predict the length of seizure. 

Keywords: Confocal microscopy, phosphorescence lifetime system, oxygen partial pressure, 

epilepsy.    
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4.2 Introduction 

The nature of coupling between neuronal activity and the associated metabolic response is a 

subject of great debate (Arthurs et al., 2000; Lauritzen, 2001; Norup Nielsen and Lauritzen, 

2001). Evaluating tissue oxygen changes and quantifying oxidative metabolism is crucial for the 

understanding of neuropathologies in the brain, such as Parkinson’s disease, stroke, epilepsy, 

Alzheimer’s disease (Bahar et al., 2006; Cheng et al., 2014; Ferris et al., 2013; Nagata et al., 2002) 

and developing effective therapies. While blood oxymetry provides a proxy for tissue 

oxygenation, under conditions of large metabolic demand and/or non-linear hemodynamic 

response (Pouliot et al., 2012a), such as in epilepsy, measuring blood oxygenation alone is not 

sufficient. In order to investigate such conditions, monitoring of the spatio-temporal 

characteristics of oxygen changes in cerebral tissue is crucial.   

Several techniques have been developed to measure cerebral oxygenation in vivo, including 

positron emission tomography (PET), near-infrared spectroscopy (NIRS), blood-oxygenation 

level dependent functional magnetic resonance imaging (BOLD-fMRI) and oxygen polarimetric 

electrodes (Ances et al., 2001; Hyder et al., 2002; Mintun et al., 2001; Osharina et al., 2010). 

BOLD-fMRI and NIRS are noninvasive, while PET is minimally invasive (requires an 

exogenous marker), and all three are utilized widely in clinical research. However, each of these 

techniques has limitations. BOLD-fMRI measures oxygen consumption indirectly through a 

complex combination of flow, volume and deoxyhemoglobin concentration. PET provides 

measurements of oxygen by monitoring short-lived positron emitting radionuclides, such as 15O, 

and can thus be carried out only nearby a cyclotron. Thus, both PET and BOLD-fMRI require 

expensive and bulky instrumentation. NIRS, on the other hand, has the advantage of portability, 

low cost and excellent temporal resolution; however, it measures oxygen saturation of 

hemoglobin, which is a proxy of oxygen concentration in blood as opposed to partial pressure 

(PO2) in tissue. Moreover, the above techniques suffer from low spatial resolution, ranging from 

millimeters to centimeters. Measurements by oxygen sensitive electrodes – the gold standard of 

oximetry, are capable of fast assessment of PO2, but these are invasive by nature and confined to 

discrete locations.  

Among optical approaches, oxygen-dependent quenching of phosphorescence stands out in its 

ability to provide fast absolute measurements of PO2, which are not affected by optical 
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parameters of the tissue (Vanderkooi et al., 1987). Oxygen-dependent quenching 

phosphorescence is an optical method for oxygen sensing in biological systems, which offers 

excellent specificity, high sensitivity and relative simplicity of implementation (Papkovsky and 

Dmitriev, 2013; Quaranta et al., 2012; Vinogradov et al., 2011). One implementation of the 

technique is based on lifetime imaging in combination with microscopy and O2-sensitive 

phosphorescent probes (Golub and Pittman, 2008; Hogan, 1999; Shonat et al., 1997; Smith et al., 

2002). With the emergence of phosphorescent probes that are water-soluble and nontoxic 

(Vinogradov et al., 2011) the spatio-temporal evolution of oxygen in tissue can be investigated in 

greater details. Two distinct approaches have been used to experimentally determine the 

phosphorescence lifetime. A time-domain approach, whereby the phosphorescent probe is excited 

by a light pulse, and a frequency-domain approach whereby the probe is excited continuously by 

sinusoidally modulated light (Shonat and Kight, 2003). For imaging applications, the time-

domain approach has been the most common in vivo. Several examples of microscopic 

measurements of phosphorescence have been reported (Golub and Pittman, 2008; Plant and 

Burns, 1993; Torres Filho et al., 1994; Wilson et al., 2005), including recent improvements using 

new probes tailored for multiphoton excitation (Estrada et al., 2008; Finikova et al., 2008; 

Sakadzić et al., 2010). 

In this work we developed a confocal system to measure PO2 in tissue and vessels with high 

transverse and axial resolution, avoiding phosphorescence signal contamination from neighboring 

voxels. We optimized the recording conditions to reduce the prospect of measurement errors 

induced by photo-consumptive effects of the probe. The system allows fast data collection, 

avoiding excessively long data averaging, enabling us to perform PO2 measurement at multiple 

locations. We then exploited this system to investigate tissue oxygenation in a model of epilepsy. 

4.3 Materials and Methods 

4.3.1 Principle of phosphorescence quenching imaging 

Our methodology is based on oxygen-dependent quenching of phosphorescence of metallo-

porphyrins, whereby the phosphorescence decay rate is directly related to the concentration of O2 

molecules in the medium either in vitro or in vivo. Dynamical quenching of phosphorescence 

involves collisions between the quencher molecules and the probe (metalloporphyrin) in its 
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excited triplet state, resulting in radiationless deactivation and return to the ground state. 

Phosphorescence quenching by O2 is a function of the probability of collisions between the 

excited state probe and molecular oxygen, which is appropriately described by the Stern-Volmer 

equation (Vanderkooi et al., 1987) 

!!
!
= 1+ 𝐾! ∙ 𝜏! ∙ 𝑝𝑂!                                                      (4-1) 

where τ0 and τ represent the phosphorescence lifetimes in the absence of oxygen and at a given 

PO2, while Kq represents the quenching constant, both factors being dependent on the 

temperature. The phosphorescence decay time τ is a robust and quantitative indicator of oxygen 

in the environment, as it is not affected by the probe concentration, and/or absorption of light by 

endogenous biological chromophores, such as myoglobin, hemoglobin, or cytochromes.  

4.3.2 Phosphorescent probe Oxyphor G4 

Phosphorescence lifetime microscopy has been used previously to measure PO2 changes through 

phosphorescence of exogenous probes. Early phosphorescent probes, based on Pd porphyrins 

(Rumsey et al., 1988; Vanderkooi et al., 1987), required pre-binding to a macromolecular carrier 

(e.g. albumin) in order to enhance their aqueous solubility and bring their quenching parameters 

into the range compatible with physiological oxygen concentration (Dunphy et al., 2002; 

Vanderkooi et al., 1987). Moreover, the albumin was a potential source of toxicity. Recently, 

Esipova et al. (Esipova et al., 2011) developed a new probe, Oxyphor G4, which is free of these 

limitations. Oxyphor G4 is derived from Pd-meso-tetra-(3, 5-dicarboxyphenyl)-

tetrabenzoporphyrin (PdTBP) and belongs to the group of dendritic oxygen probe (Lebedev et al., 

2009). It is highly soluble in aqueous environments and does not permeate biological membranes. 

It can operate in either albumin-rich (blood plasma) or albumin-free (interstitial space) 

environments at all physiological oxygen concentrations, from normoxic to deep hypoxic 

conditions. Oxyphor G4 used in these studies was obtained from Oxygen Enterprises Ltd 

(University of Pennsylvania, Philadelphia, PA 19104-6059, USA). Received Oxyphor G4 was 

calibrated before the experiments, first equilibrated with room air (21% O2) and then with a 

completely deoxygenated solution at various temperatures (results of calibration are shown in 

Figure 4-1). In vivo the measured parameters (Kq and τ0) were selected at temperature ~37 ̊C. 
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The phosphorescence lifetimes of Oxyphor G4 range from ~23 to ~215 µs in the physiological 

PO2 range (160 mmHg-0 mmHg).  

 

Figure 4-1: Temperature dependencies of oxygen quenching constants (Kq) and lifetimes (τ0) for 

G4 (a and b). The measurements were performed using 50 µM solutions of the probes, pH 7.23.  

4.3.3 Animal preparation 

Animals were used according to the recommendations of the Canadian Council on Animal Care, 

and all procedures were approved by Animal Research Ethics Committee of the Montreal Heart 

Institute (Permit Number: 2013-32-01). Eight male C57BL/6 mice (8 weeks old, 20-25g weight) 

were anesthetized by injection of urethane (2 mg/g body weight) in a 10% (wt/vol) saline 

solution. Body temperature was maintained at 37 °C with controlled heating blanket. Mice were 

ventilated via a tracheotomy using ambient air. After positioning mice on a stereotactic frame, the 

scalp was retracted, and 5 × 5mm sections of the skin were removed over the coronal suture 

around bregma. The somatosensory cortex was exposed and the bone was removed over a region 

along the coronal suture closer to the bregma (AP: -1.5 mm DV: +1.5 mm). Following brain 

exposure, 500nL of 50µM solution of Oxyphor G4 was injected in the tissue via a 34G bevelled 

syringe with a microsyringe pump controller (uMC4, World Precision Instruments, Sarasota, FL) 

over a period of 10 min. The syringe was lowered to a depth ~300µm for injections. A glass 

coverslip window (5mm in diameter) was then installed using agarose gel and fixed with dental 

acrylic cement.  
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For epilepsy experiments, epileptiform activity was induced in 6 mice by injecting of 500nL of 

the K+-channel blocking agent 4-AP (A78403, Sigma-Aldrich, St. Louis, MO) solution (100mM), 

mixed with Oxyphor G4, through a syringe pump controller, similar to the injection of Oxyphor 

G4 alone described above. A higher concentration of 4-AP was required in this study to generate 

regular seizures, mixing with G4 may reduce the potency of 4-AP thus requiring these higher 

dosages. Following injection, a tungsten microelectrode (0.5-2 MΩ) was placed around the glass 

coverslip and inserted ~500µm into the cortex with an angle ~30° (leading to a depth of 250µm)  

in order to record extracellular local field potential (LFP).  At the end of experiments, animals 

were sacrificed by cervical dislocation while under anesthesia. 

4.3.4 Phosphorescence lifetime microscopy setup and PO2 estimation 

The confocal lifetime system is depicted in Figure 4-2. The excitation light is provided by a laser 

diode at 637 nm (Thorlabs: HL63133DG), controlled by a data acquisition (DAQ) board 

(National Instruments USB-6343). A galvanometer mirror positioning system (Thorlabs: 

GVS002) guides the excitation beam to selected points in the focal plane with a telescope 

consisting of two convex lens (f1 = 50 mm and f2 = 125 mm). The response time of 

galvanometric scanners was 3ms. A 10×magnification objective lens (Olympus PLN10x NA = 

0.25) is used to focus the light onto the sample. The phosphorescence light travels back through 

the telescope to be separated by a beam splitter (BS2, Semrock: FF685-DI02-25×36) and a band-

pass filter (Semrock: FF02-809/81-25, 768.5 nm ~ 849.5 nm), so that only the emitted 

phosphorescence signal is collected by a photon-counting avalanche photodiode (APD) (Micro 

Photon Devices: PDM series), whose active area (50 µm in diameter) functions as a pinhole. The 

APD amplifier outputs a TTL pulse for each detected photon and the pulsed are counted by the 

DAQ board. A second beam splitter (BS1, Semrock: FF520-DI02-25×36) is placed between the 

objective lens and the telescope to be used in combination with a camera (Thorlabs: DCC1545M) 

to gather anatomic references during experiments using LED illumination. The system is 

controlled by a computer running custom-designed software written in Matlab (The MathWorks, 

Natick, MA). The software allows adjustment of the length of the excitation pulse (temporal gate), 

and selection of points at which PO2 values are measured. The in-plane resolution of the system 

in non-diffusive media is ~1.9 µm and axial resolution ~20.1µm. Assuming a Gaussian beam, the 



39 

 

radius of each measured region is ~1.5 µm.  In all experiments below, the excitation power of 

laser diode after the objective was kept below 6.5mW. 

 

Figure 4-2: (a) Schematic of the confocal lifetime imaging system. Excitation light is provided by 

a laser diode (λ=637nm, 170 mW maximum power, which is collimated by a convex lens (L1) 
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and travels through the objective for illumination. It is focused onto the cranial window by a 

10×magnification objective (Obj), which is directed to the specific points using galvanometric 

scanners (xy). Emitted phosphorescence light is separated from excitation light using a beam 

splitter (BS2) and filter (F) and detected with an avalanche photodiode (APD). The system is 

controlled by a computer through a data acquisition card (DAQ). (b) In vivo measurements of 

PO2 vs mean counts per millisecond as controlled by the diode laser power. Higher laser powers 

correlate with higher consumption of O2 leading to a significant decrease of PO2 estimates over 

time (seen in the first point when average counts exceed 10000). When limiting to 3000 average 

counts, no significant decrease in PO2 could be measured over time. (c) Example of 

phosphorescence decay profiles under conditions where photo-consumption is negligible. Higher 

O2 concentration causes more quenching of phosphorescence signal, and consequently a faster 

decay (red profile). 

Experiments are performed in two steps. Focus is first achieved on the cortex and the animal is 

moved towards the objective to measure tissue at a depth of ~100 µm. Initially, a few points of 

interest are selected for measuring PO2. Survey scan phosphorescence recordings are obtained by 

scanning these points and summing photon counts at each point using an excitation pulse 

duration and phosphorescence detection window of 100 µs and 500 µs respectively. From the 

survey scan counts of these points, the power of the laser diode for each point is adjusted for 

ensuing scans to minimize the photo-oxidative damage to tissue and limit consumption according 

to the number of measured counts in the survey. A value of counts around 3000 was sought based 

on Figure 4-2(b). Thus following survey scans, the same points are measured while averaging 

100 times to increase the signal-to-noise ratio at varying laser power. Representative excitation 

and decay profiles are provided in Figure 4-2(c). Consequently, each PO2 measurement at a given 

location required around 250 ms. 

All data was processed using software custom-written in Matlab. Using a weighted least squares 

fitting routine, the resulting time decay curves at each point are fit with a single-exponential 

function:  

𝐼 𝑡 = 𝐼! exp − !
!
+ 𝑐                                      (4-2) 

where I(t) represents the light intensity at time t and I0 is the initial value of light intensity at time 

t=0. Here τ is the phosphorescence lifetime at the point being measured and c is the magnitude of 
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the baseline I0. Following the estimated parameter τ, the Stern-Volmer formula was applied to 

calculate the PO2 values.   

4.3.5 Normal and variable FiO2 experiments 

The system was first tested in vivo by monitoring PO2 in cortical tissue near an artery and by 

varying the fraction of inspired oxygen (FiO2). In the first mouse, PO2 values were measured in 

cortical tissue near the artery during the normal atmospheric gas fraction, which the FiO2 is 21%. 

In a second mouse, the inspired gas fractions was changed from normal to higher FiO2 from 21% 

to 40% for 10 minutes at t=260s. During each experiment, PO2 values were measured at multiple 

selected positions.    

4.3.6 PO2 values and LFP data analysis in 4-AP injected mice 

The LFP data was obtained from the tungsten electrode, which was filtered by a band-pass filter 

between 10 and 5000Hz, amplified 1000 times with a microelectrode AC amplifier (model 1800, 

A-M systems, Sequim, WA), and digitized at 10kHz. In post-processing the LFP data was filtered 

using a Butterworth digital filter between 0.2 and 130Hz. LFP data were acquired simultaneously 

to PO2 to measure the onset-time of seizures and their duration. Since all measures were started a 

few minutes following 4-AP injection, identifying a baseline value PO2 value was difficult. 

Therefore, the tissue PO2 data were converted to percent change by subtracting then dividing the 

average value obtained over a 15s block of time before the onset of the epileptic events by the 

formula: 

𝑉% = !!"#!!!"#$
!!"#$

×100%                                                          (4-3) 

where V% is the final value of PO2, Vraw is the raw value and Vmean is the average value over 15s  

block of PO2 before onset. All data were expressed as means ± SE of mean (SE). 

4.4 Results 

4.4.1 PO2 in normoxia and during variable FiO2   

The spatial PO2 profiles of tissue near an artery at 38 locations were measured in the 

somatosensory cortex of an anesthetized mouse during normoxia (Figure 4-3). Obtained PO2 
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values were within the range of 6-25mmHg, in concordance with previously established cortical 

PO2 levels by two-photon phosphorescence quenching technique (Sakadzić et al., 2010). 

Relatively high PO2 values were measured close to a large artery, with a rapid PO2 decrease at 

locations slightly further away from it reflecting values from the capillary bed. These results were 

in concordance with the fact that tissue PO2 gradients exist at the cortical surface near arteries 

(Sharan et al., 2008). 

 

Figure 4-3: Measured PO2 values during normoxia (color dots), overlaid with a grayscale 

angiogram of cortical pial tissue from an exposed window (with an artery shown by the red 

arrows) The size of scale bar is 0.2mm. 

Confocal lifetime measurements have the capability of simultaneously monitoring tissue PO2 at 

multiple locations. In a second animal, we obtained temporal PO2 profiles at selected tissue 

locations as the FiO2 was altered from 21% to 40% (Figure 4-4). During the first few minutes at 

21% FiO2, the surplus O2 in the tissue met the metabolic demand. Our measurements (13.9±4.1 in 

tissue during the first few minutes) were found within the range of 5 to 25mmHg. Upon 

increasing the FiO2 from 21% to 40%, PO2 increased greatly and then saturated. An increase of 

13.1 ± 3.1 mmHg in tissue from normoxic to hyperoxia was observed. Following this change in 

FiO2, PO2  values reached their peak after 191.5 ± 27.0 s in tissue.  
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Figure 4-4: (a) Grayscale angiogram of cortical pial tissue with points of interest (red dots). Scale 

bar size: 0.2mm (b) Corresponding temporal profiles of PO2 measured while altering FiO2. The 

gray segments denote the 10 minutes period during which FiO2 was increased up to 40%. 
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4.4.2 Tissue oxygenation at the focus and in the surrounding area during 

seizure-like activity 

Seizure-like activity was elicited with injection of 4-AP and recorded by local field potentials 

with a tungsten electrode, and were characterized by fast rhythmic spiking activity of increasing 

amplitude and decreasing frequency, evolving into rhythmic spikes and slow wave activity prior 

to gradual offset (see e.g. Figure 4-5). One hundred and twenty-one (121) seizure-like events 

were recorded in 6 mice with mean (±SE) duration of 68.9±35.1s.  

 



45 

 

Figure 4-5: Electrophysiology of 4-AP induced epileptic activity. Top: example of ictal 

discharges after the 4-AP injection. Middle: zoom on an ictal discharge. Bottom: expanded view 

of showing the onset of the discharge, the intermediate phase and the offset.   

To study simultaneously changes of tissue oxygenation at the focus and surrounding areas, points 

were selected both adjacent and distant from injection site in 3 mice (Figure 4-6a). An example of 

change in PO2 in the focus and surrounding areas from a single animal is shown in Figure 4-6b. 

At the focus, the typical PO2 profile was biphasic with an early dip after ictal onset 

(deoxygenation), followed by a longer duration increase in PO2 (hyperoxygenation). The early 

dip in the focus was described in previous papers during seizures (Bahar et al., 2006) and was 

present in most seizures measured here. At a distance from the ictal focus, the PO2 was 

monophasic and significantly increased, returning to the baseline at the offset of the seizure. 

These results were in agreement with tissue oxygen measured by oxygen microelectrodes (Zhao 

et al., 2009). To assess the spatial distribution of PO2 around the focus, points were scanned near 

the focus in the form of a spiral during epileptic activity, where initial dips were measured. 

Figure 4-6c shows an example of measured percent of initial dip for different locations overlaid 

on a grayscale anatomical image. The higher values were obtained near the focus, and PO2 

decreased when points were farther away from the focus. These data indicated that the influx of 

blood into the focus was inadequate to perfuse the hypermetabolic neurons, after which there was 

a period of hyperperfusion and hyperoxygenation.  

 

Figure 4-6: Obtained PO2 values in tissue near the focus and surround. (a) Grayscale angiogram 

of cortical surface and locations for pO2 measurement (red: focus; blue: surround). The artery 

was shown by the red arrows. Scale bar size: 0.2mm (b) Epileptic activity induced a transient dip 
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in tissue PO2 followed by an increase in PO2 in the focus. A sustained increase in PO2 was seen 

in the surround. The dashed vertical lines show the ictal onset (left) and offset (right). (c) 

Distribution of percent of initial dip at multiple locations (color dotted) during epileptic activity. 

The 4-AP injection site is shown by green circle. The artery was shown by the red arrows. Scale 

bar size: 0.2mm 

4.4.3 Correlation between the percent of initial dip and distance from the 

artery  

To study oxidative metabolism near arteries during epileptic activity, 3 mice were recorded with 

measures at multiple locations near an artery that was close to the injection site. The percent PO2 

value changes adjacent to the artery were significantly lower than values located farther away (an 

example shown in Figure 4-7a) despite some points being closer to the focus.  Figure 4-7b shows 

a linear relationship between arterial perpendicular distance and percent of initial dip which 

indicates a contribution of the vascular anatomy to define the focus-surround regions. Sites that 

were farther from an artery, located in the capillary bed, elicited a larger decrease in tissue PO2 

after onset. Extending data to the three mice, the slopes of these linear fit were combined over all 

seizures in Figure 4-7c, in all cases preserving the positive relationship. This data indicates that 

the vascular micro-environment contributes to oxygen consumption in the tissue during epileptic 

seizures.  

 

Figure 4-7: Correlation between percent change of the initial dip at multiple locations and 

distances from an artery (a) Measured PO2 values of different points near an artery during the 

epileptic seizure (color dots), overlaid with a grayscale anatomy (with an artery shown by the red 
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arrows). Scale bar size: 0.2mm (b) Relationship between distance from an artery for multiple 

points and initial dip during one epileptic seizure. The line of linear fit is, R2 = 0.70. (C) Boxplots 

of slopes of linear fits in 3 mice over 25 seizures.  

4.4.4 Correlation between initial dip and seizure duration 

Because seizures had different durations, it was of interest to see if correlations between 

oxygenation and electrographic seizure duration were present. Linear regressions between the 

initial dip expressed as a percent change and seizure duration indeed showed significant 

correlations (an example shown in Figure 4-8a). This data suggest that long epileptic seizures 

may be accompanied by early increased oxygen consumption in the tissue. The slopes of fit 

between epileptic seizure duration and initial dip, distributed over spatial location measurements 

(shown in Figure 4-8b) over all seizures. Data in all mice show similar results: a positive 

moderate correlation was found between early metabolism in the interstitial space near the focus 

and duration of epileptic activities though the relationship had significant variability across the 

population. 

 

Figure 4-8: a) Correlation between initial dip (% change) and duration of epileptic activity. The 

line of linear fit was, R2=0.81 (b) Statistical distribution of the slopes for all mice. M1 was the 

name of mouse and number in the bracket was the number of seizures that was calculated. The 

outliers were plotted with red plus sign. The average of goodness of fit (R2) was listed for each 

mouse.   
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4.5 Discussion 

The results of our investigation demonstrate that tissue oxygenation can be measured in the 

mouse cortex using a confocal phosphorescence lifetime measurements given appropriate 

excitation regime. With respect to brain studies, the key advantages of confocal lifetime system 

are its minimal disturbance of investigated tissue and the possibility to achieve high temporal and 

spatial resolution. The probe signal is independent of pH throughout the physiological range and 

is not affected by the presence of biological macromolecules (Esipova et al., 2011). However, 

each PO2 measurements required collection of 100 decays at each point to yield a reliable PO2 

value, thus limiting the temporal resolution of the method. Moreover, light scattering by brain 

tissue limits our confocal PO2 measurements to tissue located up to 100 µm deep near the cortical 

surface which may confound results investigating oxygen diffusion from arterioles. Combining 

lifetime-based PO2 monitoring with multiphoton excitation may help overcome some of these 

issues in future cerebral oxygenation investigations. 

We have successfully used confocal lifetime system to investigate tissue PO2 in somatosensory 

cortex during normal state and epileptic activity induced by 4-AP. Our findings bring new 

evidence regarding tissue oxygen changes during epileptic activity, by characterizing the 

relationship between tissue oxygen changes and seizure duration.  

4.5.1 Tissue PO2 gradient near arteries in normoxia  

Our work confirmed previous evidence that arteries are largely responsible for the heterogeneous 

oxygen distribution in the cortex. The observed variations in tissue PO2 values near brain arteries 

showed a drop in the PO2 values of points distant from an artery and located in the capillary bed 

during normoxia (Figure 4-3). Similar PO2 gradients were also found by several investigators 

employing different methods (Sakadzić et al., 2010; Sharan et al., 2008). For instance, near the 

pial artery in the rat cortex, a similar tendency was reported by Sakadzic et al. (Sakadzić et al., 

2010) with two-photon phosphorescence lifetime measurements. In addition, several theoretical 

models have predicted that steep PO2 gradients arise in the vicinity of blood vessels (Ivanov et al., 

1979; Secomb et al., 2000). Localized large tissue PO2 values suggests that arteries provide a 

major source of O2 to tissue (Sakadžić et al., 2014) while our PO2 values of locations far away 
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from arteries (above ~60µm) most likely rely on capillaries which are invisible from the cortical 

surface (Kasischke et al., 2011).  

4.5.2 Acute seizure activity leads to transient dip of PO2 near epileptic focus 

Some controversy remains in the literature as to whether local cerebral blood flow increases are 

adequate to meet supranormal oxygen demands throughout the ictus. Although the inadequacy of 

cerebral blood flow in addressing oxygen demands has been demonstrated by some investigators, 

there is also growing evidence of inadequate oxygenation at the onset or throughout shorter 

duration epileptic events (Nguyen et al., 2013; Schridde et al., 2008; Zhao et al., 2011). In this 

study, a clear transient decrease in tissue oxygenation at multiple locations near the injection site 

after onset was shown, indicating that the increased metabolism of oxygen overwhelms the 

ability of the brain to provide oxygenated blood by increasing cerebral blood flow during the 

seizure-like activity in and near the focus. This observation may be useful at predicting the 

location of seizures. A significant increase in tissue oxygen consumption at multiple locations 

close to the focus was observed in the somatosensory cortex when mice had seizure-like activity 

(Figure 4-6c). Moreover, farther away from the focus there was increase in tissue oxygen with 

respect to baseline. 

Previous literature using oxygen microelectrodes documented a transient dip in two locations: 

near the focus and an increase in the surround in epileptic rats during seizures (Zhao et al., 2009). 

In our present work, which focused on tissue oxygen changes at multiple locations (>2) during 

acute epileptiform events, we show a significant initial dip at multiple locations in our mice. With 

the ability of our system to gather spatial measures, our results indicate that the distance between 

the surround and the injection site (around 1.5mm) was a little smaller than what was measured 

in previous work (around 2mm) (Zhao et al., 2009). Whether the observed difference is due to 

changes in animal species, high metabolic demand at seizure locations near vessels remains to be 

investigated.   

4.5.3 The relationship between the initial dip and distance from arterioles 

Exploiting the spatial measures, we investigated how tissue oxygen pressure changed at different 

points near a surface arteriole located in the focus region during epileptiform activity. Despite 

increased consumption in the focus, arteriolar O2 diffusion remained partially unaffected: a 
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significant increase in the initial dip was observed with increased distance from the arteriole (see 

Figure 4-7) in three mice. These data are the first showing measurements of PO2 gradients in 

brain arterioles during epileptic activity confirming that the arteriolar wall played a significant 

role in oxygen exchange between blood and tissue (Zhao et al., 2009). Our microscopic 

assessments thus paint a more complex spatial picture of oxygen consumption during epileptic 

seizures since arteries take part in diffusional exchange of respiratory gases (mainly oxygen) to 

tissue. This is in contrast to previous studies showing uniform cerebral blood volume (CBV) and 

cerebral blood flow (CBF) increase in the focus during epileptic events (Masamoto et al., 2003; 

Thompson et al., 2003) (Guevara et al., 2013; Zhao et al., 2009) to supply oxygen to meet 

demands of neuronal activity. The vascular architecture thus generates a microscopic structure to 

the epileptic focus, as our data showing increased initial dips far away from arteries, in capillary 

beds, suggest. Our results further suggest that the increased CBF and CBV will supply more 

oxygen to the tissue near an artery, but may not meet the demands of oxygen metabolism far 

away from an artery. Potential associated tissue and neuronal damage is thus more likely to occur, 

microscopically, in areas far from these feeding arteries. 

4.5.4 The relationship between initial dip and seizure duration 

Our data indicate that initial dips of greater amplitude are predictive of seizures of greater 

duration. Few studies have investigated such a link between oxygen metabolism and seizure 

duration. However, some researchers observed that a biphasic deoxyhemoglobin (HbR) response 

to ictal events with an initial decrease in HbR followed by a longer increase in HbR measured by 

NIRS may be related to longer seizure duration (Nguyen et al., 2013). These previous findings 

proposed that increased seizure duration could lead to increased oxidative metabolism. The 

etiology of tissue oxygen changes as the duration of seizures is increased remains unknown. The 

possibility is that longer seizures were induced by increased initial neuronal activities, which will 

lead to more decrease in tissue oxygenation (Masamoto et al., 2003; Thompson et al., 2003). Our 

study indicates that it might be possible to predict seizure duration from the initial dip amplitude. 

4.5.5 Limitation 

While we limited the number of pulses and counts during recordings to diminish 

photoconsumptive effects, survey scans could lead to the production of singlet oxygen as some 
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areas were subject to higher light intensity than required by our 3000 counts estimation during 

the calibration phase. To address this issue, our acquisitions were careful to limit light intensity 

during survey scans and a pause was done between survey scans and acquisitions presented here 

to insure tissue oxygen is replenished. Despite these steps, we cannot completely rule out the 

possibility of tissue damage during survey scans due to singlet oxygen generated by the probe. 

Furthermore, the elongated focus of the confocal setup failed to precisely assess distribution of 

oxygen in the depth axis, limiting conclusions on oxygen diffusion during seizure, this we hope 

to revisit using the recently developed two-photon technique. Finally, a potential bias in 

measured PO2 values during epileptiform discharges may occur due to a small increase in 

temperature at the epileptic foci. Given the small change in decay parameters measured for G4 

with fractional temperature change, this was neglected in estimations above. 

4.6 Conclusion 

We developed an imaging technique that provides absolute values of PO2 in the brain cortex by 

means of confocal phosphorescence lifetime microscopy. The technique was applied to study 

partial oxygen pressure changes in tissue during epileptic activity in mice. To our knowledge, this 

is the first report of direct measurements of tissue oxygen at multiple locations (more than 2 

locations) during epilepsy. In our work, following 4-AP injection in the somatosensory cortex of 

mice, we observed significant changes of PO2 in tissue near the injection site, and investigated its 

changes along arteries and in the surround. This study supported the existence of an initial dip 

and characterized the spatial distribution of the initial dip around the focus and near pial arteries. 

In addition, we found a positive correlation between the early oxygen metabolism in tissue and 

the duration of seizures. With regards to clinical relevance, our observations may eventually help 

the cause of epileptic focus localization and elucidate the link relating seizure duration and initial 

dip amplitude. 
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CHAPTER 5 ARTICLE 2: ASTROCYTIC ENDFOOT CA2+ 

MODULATES ARTERIOLAR RESPONSES DURING EPILEPSY: AN 

IN VIVO TWO-PHOTON LIFETIME MICROSCOPY STUDY 
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This article aimed to address the second objective of this thesis. In this work, we applied the two-

photon lifetime microscopy to simultaneously measure the calcium concentration in astrocytic 

endfeet and diameter of precapillary arterioles during epileptic seizures in mouse cortex. Our 

results confirm that the role of astrocytes in the control of local microcirculation and suggest a 

modulating role for baseline absolute Ca2+ concentration in astrocyte endfeet. This article was 

submitted to Journal of Cerebral Blood Flow & Metabolism and it is in revision.  

5.1 Abstract 

Neurovascular coupling (NVC) underlying the local increase in blood flow during neural activity 

forms the basis of functional brain imaging and is altered in epilepsy.  Because astrocytic calcium 

(Ca2+) signaling is involved in NVC, this study investigates the role of this pathway in epilepsy. 

Here we exploit 4-AP induced epileptic events to show that absolute Ca2+ concentration in 

cortical astrocyte endfeet in vivo modulates the diameter of precapillary arterioles during neural 

activity. We simultaneously monitored free Ca2+ concentration in astrocytic endfeet with the 
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Ca2+-sensitive indicator OGB-1 and diameter of adjacent arterioles in the somatosensory cortex 

of adult mice by two-photon fluorescence lifetime measurements following 4-AP injection. Our 

results reveal that, regardless of the mechanism by which astrocytic endfoot Ca2+ was elevated 

during epileptic events, increases in Ca2+ induced vasodilation for each individual ictal event in 

the focus. In the remote area, increases in Ca2+ correlated with vasoconstriction at the onset of 

seizure and vasodilation during the later part of the seizure. Furthermore, a slow increase in 

absolute Ca2+ with time following multiple seizures was observed, which in turn, caused a trend 

of arteriolar constriction both at the epileptic focus and remote areas. These observations confirm 

the role of astrocytes in the control of local microcirculation and suggest a modulating role for 

baseline absolute Ca2+ concentration in astrocyte endfeet.  

Keywords: Two-photon fluorescence lifetime imaging, Astrocyte, Intracellular calcium, 

Diameter, Epilepsy 

5.2 Introduction 

The brain has high-energy demand and requires a constant and continuous supply of oxygen and 

glucose for normal function. To ensure that blood supply matches metabolic needs, the brain 

possesses a major control mechanism, namely neurovascular coupling. Neurovascular coupling 

(Arthurs et al., 2000; Attwell et al., 2010; Otsu et al., 2015; Shih et al., 2012) or functional 

hyperemia is defined as a local increase in cerebral  blood flow in response to neuronal activity. 

Part of this vascular regulation, via the synaptic activation of astrocytes, remains to be clearly 

defined. Astrocytes are a subtype of glial cells and a significant part of them are in close 

proximity of cerebral blood vessels with endfeet process almost completely enveloping cerebral 

blood vessels. The interplay between the astrocytic endfoot and the cerebral vasculature is an area 

of intense investigation. Recent evidence further suggests that neuronal activity is also encoded 

by astrocytes in the form of dynamic intracellular calcium (Ca2+) signals, which travel to 

astrocytic endfoot encasing the arterioles in the brain. Astrocytic Ca2+ signaling has been 

implicated in the dilatory response of adjacent arterioles, linking neuronal activity to enhanced 

local blood flow (Filosa et al., 2006; Girouard et al., 2010; Gordon et al., 2008; Howarth, 2014; 

Straub et al., 2006; Takano et al., 2006).  
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Epilepsy is a common neurological disease characterized by recurrent unprovoked seizures, 

which result from abnormal and excessive neuronal activity in the brain. At a cellular level these 

events reflect intense and highly synchronous discharges that involve large numbers of cortical 

neurons (Truccolo et al., 2011). In both animal models and patients, the epileptic discharges can 

evoke drastic increases in cerebral blood flow (CBF) to meet the high metabolic demand caused 

by this intense neuronal activity (Nguyen et al., 2013; Zhao et al., 2011, 2009, 2007). However, 

observations of the hemodynamic response during seizures have also displayed non-linear 

phenomena, mostly less response than linear phenomena (Pouliot et al., 2012a). Mechanisms 

underlying these observations are to be identified. In brain slices, using uncaged Ca2+ in 

astrocytic endfeet, it was shown that a high increase in the absolute concentration of Ca2+ leads to 

vasoconstriction (Girouard et al., 2010). Whether this phenomenon contributes to the non-linear 

inhibitory effects observed in epilepsy is an open question. The relationship between absolute 

Ca2+ concentrations in astrocytic endfeet and the vascular response during ictal events is 

unknown, and it is unclear whether or not changes in endfeet Ca2+ can account for the full 

spectrum of vascular responses to neuronal activity in epilepsy.  

In contrast to the common intensity-based measurements, fluorescence lifetime imaging (FLIM) 

techniques that use specific indicators to monitor nanometer-scale molecular interactions in live 

cells have been emerging (Pérez Koldenkova and Nagai, 2013; Zheng et al., 2015). It was also 

demonstrated that the fluorescence lifetime of some commonly used Ca2+ sensitive dyes, such as 

Oregon Green 488 BAPTA-1 (OGB-1), is sensitive to free Ca2+ in the physiological nanomolar 

range (Wilms et al., 2006; Wilms and Eilers, 2007). Compared to ratiometric methods to evaluate 

absolute concentration, the lifetime technique is immune to absorption and fluorescence 

bleaching effects making it more suitable for in vivo imaging. This property of OGB-1 has led to 

the successful evaluation of Ca2+ changes in astroglia of normal and Alzheimer’s disease mice 

models (Kuchibhotla et al., 2009; Zheng et al., 2015). In this work we designed a two-photon 

FLIM system that enables imaging of deep brain tissue in live animals with single cell spatial 

resolution. We adapted the FLIM technique to investigate the role of astrocytes in the response of 

cerebral blood vessels to epileptiform discharges. By using a 4-aminopyridine (4-AP) model of 

focal seizures in vivo, we found that ictal, seizure-like discharges were rapidly followed by large 

Ca2+ increases in astrocyte endfeet.  
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5.3 Materials and Methods 

5.3.1 Animal preparation 

Animals were used according to the ARRIVE guidelines and the recommendations of the 

Canadian Council on Animal Care. The Animal Research Ethics Committee of the Montreal 

Heart Institute approved all procedures. Fourteen male C57/BL6 mice (Charles-River, postnatal 8 

weeks old, 20-25g weight), of which three died before data acquisitions due to movement of the 

catheter in the femoral artery, were deeply anesthetized with 1-1.6g/kg urethane and body 

temperature was maintained at 37°C with a controlled physiological monitoring system that also 

monitored heart and respiration rates continuously (Labeotech Inc., CA). Mice breathed via a 

tracheal tube to reduce the risk of respiratory depression often seen with the use of this anesthetic. 

A moderate flow of ambient air lightly supplemented with oxygen was supplied next to the 

tracheotomy (10% oxygen, 90% air, 1 L/min). Animals were placed in a stereotaxic frame. A 

~2×2 mm cranial window was opened over one hemisphere to expose the somatosensory cortex 

and surrounding brain (AP: -1.5 mm, DV: +1.5 mm). A small hole was drilled next to the cranial 

window for the injection of 4-AP (Figure 5-1C). After injection of the Ca2+ indicators, the cranial 

window was sealed with 1% agarose in artificial cerebrospinal fluid (aCSF, 125 mM NaCl, 10 

mM HEPES, 10 mM glucose, 5 mM KCl, 1,5 mM CaCl2, 1 mM MgSO4) using a 150 µm-thick 

microscope coverslip. During the experiment, a catheter in the femoral artery was used to 

monitor the blood gases (PCO2, 36-39 mmHg, and PO2, 110-160 mmHg). The average blood 

pressure (80-110 mmHg) was obtained non-invasively by a tail-cuff blood pressure system (Kent 

Scientific). At the end of the surgery, 500 µL of saline was injected subcutaneously to avoid 

animal dehydration during imaging.  Surgery was started in the morning and imaging sessions 

debuted around noon. Prior to procedures, mice were kept in a 12:12 hours light-dark cycle in 

ventilated cages. 

5.3.2 Ca2+ indicator loading 

Multi-cell bolus loading was performed to load neurons and glial cells with the Ca2+ sensitive 

fluorescence indicator OGB-1 and the astrocyte specific fluorescence marker, Sulforhodamine 

101 (SR101). A patch pipette with a tip diameter of 30~60 µm was inserted into the cortex to a 

depth of ~300 µm from the surface. OGB-1 (50 µg, O-6807, Molecular probes-Invitrogen, CA, 
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USA) was dissolved in dimethyl sulfoxide (DMSO) containing 20% pluronic acid (F-127, 

Sigma-Aldrich) and mixed in 412 µM SR101 (Sigma-Aldrich) to a final concentration of 1 mM 

(Cirillo et al., 2012; Garaschuk et al., 2006). One uL OGB-1 and SR101 were injected with a 

micropipette using a microsyringe pump controller (UMP3, World Precision Instruments, 

Sarasota, FL) at a rate of 100 µL/min. After injection, we allowed one hour for loading. To label 

vasculature, Rhodamine B isothiocyanate-Dextran (200 µL of 100mg/mL solution, molecular 

weight ~ 70,000 Da, Sigma-Aldrich), which highlights blood plasma, was injected into the tail 

vein. Serial images from the pial surface to cortex layers 2/3 (~200 µm deep) revealed that OGB-

1 signals strictly co-localized with SR101 staining in astrocytes (Figure 5-1B).  

5.3.3 Epileptogenesis and electrophysiology  

Ictal discharges were induced by injecting the potassium channel blocker 4-aminopyridine (4-AP; 

Sigma; 15mM, 0.5 µL) through a glass microelectrode using a syringe pump controller into a 

small hole next to the cranial window (Zhao et al., 2007) (Figure 5-1C), similar to the injection of 

mixed OGB-1 and SR101 described above.  Extracellular local field potentials (LFP) were 

recorded with a tungsten electrode (impedance, 0.5-2 MΩ), and lowered to a depth of ~300 µm 

into the neocortex. The signal was filtered by a band-pass filter between 1 and 5000Hz, amplified 

1000 times with a microelectrode AC amplifier (model 1800, A-M system, Sequim, WA), and 

digital filtered between 0.2 and 130 Hz (Zhang et al., 2015).  
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Figure 5-1: (A) Schematic of the two-photon lifetime microscopy system. Excitation light is 

provided by a MaiTai-BB laser oscillator (Mai Tai-BB) through an acousto-optic modulator 

(AOM) followed by a polarizer (P) to adjust the gain. A telescope (L1 and L2) expands the galvo-

mirrors image onto the microscope objective pupil for illumination. Emitted fluorescence is 

separated using a first dichroic mirror (DM1). The return beams are then split by a second 

dichroic mirror (DM2) sending the signal to detectors centered at wavelengths of 520nm (F1) and 

593nm (F2). The Ca2+ concentration was monitored in the 520nm channel using a photon-counter 

for FLIM imaging. (B) In vivo fluorescence staining of neurons in green, astrocytes in yellow 

and vasculature in red. (C) Pictogram of measurement areas on the mouse brain. The craniotomy 

was done on the left side.  The 4-AP injection location and electrode recordings were done at the 

same site. The remote area was defined to be that further than 1.5 mm from the focus. (D) 

Calibration of the fluorescence decay of OGB-1 at 10 different buffer Ca2+ concentrations. In this 

range, fit lifetime varied from ~4.86ns to ~0.65ns for high/low concentrations respectively. (E) 

Typical images at 593nm for longitudinal vessel scan, used to measure the diameter. The right 

figure shows measurements of absolute [Ca2+]i in one astrocytic endfoot during resting state.    
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5.3.4 Two-Photon fluorescence lifetime setup 

Measurements were collected using a custom-built 2-photon laser scanning fluorescence 

microscope (Figure 5-1(A)) with 80 MHz, 150 fs pulses from a MaiTai-BB laser oscillator 

(Newport corporation, USA) with a maximum output of ~2W through an acousto-optic 

modulator (ConOptics) to adjust the gain for depth-dependent two-photon excitation intensity. 

The laser pulses were scanned in a raster pattern by galvanometric mirrors. Reflected light was 

collected by a water-immersion objective (20×, 1.0 NA; Olympus), and then separated into 2 

beams by dichroic mirrors. The beams were split and filtered around center wavelengths of 520 

and 593nm, and measured on 2 distinct photomultiplier tubes (H10682-210 for photon counting 

at 520nm, R3896 for CW measures at 593nm, Hamamatsu photonics, Japan). To monitor Ca2+ 

changes, the excitation was set to 800 nm and the laser power reduced to limit the count rate to a 

maximum of 5% of the total number of laser pulses to remain in single-photon counting regime 

(< 70mW). Emission counts at 520nm were recorded using a photon counter (PicoHarp 300, 

PicoQuant). Scanning and data recordings were controlled by custom-designed software written 

in Matlab (MathWorks, USA). 

Experiments were performed in two steps. Focus was first achieved on the cortex and then the 

objective was moved to a depth of ~200 µm. A point on the endfoot of interest and a 

perpendicular line on the encased vasculature by the endfoot were selected for measuring Ca2+ 

concentration ([Ca2+]i) and diameter. A custom scanning sequence, rapidly alternating between 

each type of measure was designed (gating the photon counter to only count while the beam was 

sitting on the endfoot) to have a simultaneous assessment of Ca2+ concentration and diameter 

(Figure 5-1E). Multiplexed Ca2+ measurements and line scan (200 lines) at a given location had a 

temporal resolution of 1s.  

5.3.5 Fluorescence lifetime calibration 

OGB-1 was used to monitor dynamic changes in intracellular Ca2+, which can be measured 

through changes in lifetime. For calibration, we used the standard calibration method provided by 

the Invitrogen Ca2+ calibration buffer kit manual. Absolute [Ca2+]i was determined independently 

of variations in dye concentration by measuring bound and unbound Ca2+ decay curves with 

fluorescence lifetime microscopy, which exhibit different lifetimes. The lifetime decay curves for 
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OGB-1 in each of 10 Ca2+ buffers were measured using samples of free dye in glass capillary 

tubes at varying Ca2+ concentrations (Lattarulo et al., 2011). In the absence of Ca2+, OGB-1 had a 

single, fast decay leading to an effective lifetime of ~0.65 ns accounting for the PMT response 

function. At saturating levels of Ca2+ (1.35µM), OGB-1 had a single, slow decay leading to a 

lifetime of ~4.86 ns. While decays are bi-exponential within this range, we adopted an effective 

strategy of fitting a single decay curve on the first 80% of the decay, which was found to be 

robust at lower counts that in turn allowed faster in vivo recordings. Using this technique, 

effective calibration curves were generated for each buffer lifetime (Figure 5-1 D) that were 

found to be reproducible from calibration to calibration (see error bars) and also when decreasing 

the total number of counts. 

5.3.6 Data analysis 

All analyses were performed with Matlab using in-house code. The relationship between the 

fluorescence lifetime and [Ca2+]i was obtained from the calibration (Figure 5-1 D, right). The 

resulting time decay curves obtained by the photon counter were fit with a single-exponential 

function from the maximum counts to 80% counts. The [Ca2+]i was then calculated by 

fluorescence lifetime at each second using calibration results.   

Due to the injected fluorescent dye (Rhodamine B), the plasma appears bright in the images 

while red blood cells appear as dark shadows (Figure 5-1 E left). Imaging plasma through 

successive line scans over the same region is the principle for measuring diameter (Desjardins et 

al., 2014b). The vessel diameter was defined by fitting to a Gaussian function whose full-width at 

half-maximum from the perpendicular scans was used as diameter (which may underestimate the 

real diameter) (Desjardins et al., 2014a). Small pre-capillary arterioles were chosen by size and 

identifying a surrounding endfoot process (to make sure it was not a capillary), a total of N=34 

arterioles were studied with a mean diameter of D=6.68µm. The diameter data were converted to 

percent change by subtracting and then dividing the median value of the scan.  

5.4 Results 

Using two photon fluorescence lifetime measurements, [Ca2+]i was measured in the 

somatosensory cortex astrocytes of anesthetized mice during normoxia. Resting Ca2+ 

concentration in glial cells was spatially heterogeneous; resting Ca2+ concentration in somatic 
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regions was significantly higher than in endfoot regions from 14 astrocytes in 7 mice (4-AP was 

injected after basal measurements) (Figure 5-2, paired t-test P<0.001) with mean values of 90.15 

± 1.62nM in the somata and 79.44 ± 1.63nM in endfeet which is in agreement with the sensitivity 

range of the dye and values previously obtained by in vivo two-photon florescence imaging 

(Kuchibhotla et al., 2009; Zheng et al., 2015) but slightly lower than ex vivo preparations 

(Girouard et al., 2010; Shain et al., 1989). We also quantified fluctuations of concentration over 

time and we observed no significant differences in fluctuations between somata and endfeet. 

 

Figure 5-2: Paired t-test of [Ca2+]i in astrocytic somata and endfeet during resting state. (A) 

Boxplot of the average of [Ca2+]i in somata and endfeet in basal state. The [Ca2+]i in somata was 

significantly larger than endfeet (p<0.001). (B) Boxplot of the standard deviation (SD) of [Ca2+]i 

in somata and endfeet during baseline over time. There was no difference in SD of [Ca2+]i 

between the somata and endfeet.  

5.4.1 Diameter changes in the epileptic focus and remote areas during the 

seizure-like activity 

Seizure-like activity was elicited with injection of 4-AP and recorded by local field potentials 

with a tungsten electrode. They were characterized by first rhythmic spiking of increasing 

amplitude and decreasing frequency, evolving into rhythmic spikes and slow wave activity prior 

to gradual offset (see e.g. Figure 5-3A top and Figure 5-3B top). 
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We simultaneously measured [Ca2+]i in astrocytic endfeet and diameter of adjacent arterioles in 

the somatosensory cortex of mice during epileptic events (Figure 5-3) to study how absolute 

[Ca2+]i in astrocytic endfeet modulate the diameter of adjacent arterioles in local (<1.5mm) and 

remote areas from 4-AP injection site (>1.5mm) (Zhang et al., 2015) (Figure 5-1C).  A typical 

time-course of changes in astrocytic endfoot Ca2+ and diameter at the epileptic focus (Figure 5-

3A) and remote areas (Figure 5-3B) is shown in Figure 5-3. During epileptic events, Ca2+ 

significantly increased, returning to the baseline after seizure both at the epileptic focus and 

remote areas. At distances over 1.5mm from the site of injection, we observed early arteriolar 

constriction followed by delayed dilation (Figure 5-3B) during seizure. These results were in 

agreement with previous works where similar vascular responses were observed with a two-

photon microscope (Zhao et al., 2011, 2009).     

 

Figure 5-3: Simultaneous measurements of absolute Ca2+ in astrocytic endfoot and diameter of 

adjacent arterioles during epileptic events in local (A) and remote (B) areas. The time course of 

LFP indicates seizure initiation (top of (A) and (B) panels). (A) Nearby the injection site, 

simultaneous measures of Ca2+ and diameter show that Ca2+ and diameter display a monophasic 

increase with ictal discharge. (B) In remote areas, arteriole constricted at the onset of ictal event, 

then dilated while Ca2+ remains elevated throughout seizures. 
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5.4.2 Astrocytic endfoot baseline Ca2+ determines the level of arterial response 

during seizures 

To investigate the relationship between astrocytic endfoot Ca2+ and arteriolar diameter changes at 

different distances from the epileptic focus, 7 mice were recorded with measurements close to the 

injection site and 4 mice were measured far away from the injection site (>1.5mm) (Figure 5-1C). 

Seizure-like activities evoked an increase in neuronal activity and a widespread increase in 

astrocytic Ca2+, and were also associated with vasodilation. Figure 5-4A shows representative 

data from one mouse comparing the relative changes across observed seizures and indeed shows 

a linear relationship between relative increase in diameter and relative increase in (rCa2+) for each 

seizure. We then analyzed the data by calculating the relative diameter and rCa2+ changes as a 

function of absolute baseline concentration [Ca2+]i (estimated between seizures) over 7 mice (90 

seizures, Figure 5-4B and Figure 5-4C). With increasing baseline [Ca2+]i, the relative diameter 

and rCa2+ changes decreased in amplitude either suggesting a constrictive modulation associated 

with increasing baseline [Ca2+]i or the fact that with increasing baseline [Ca2+]i, the vessels 

partially dilate decreasing remaining reserve to dilate further.   
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Figure 5-4: The relationship between [Ca2+]i in astrocytic endfoot and the arteriolar changes in 

diameter during epileptic events in the focus ((A), (B) and (C)) and remote areas ((D), (E) and 

(F)). (A) Relationship between the relative [Ca2+]i (rCa2+) and relative changes in diameter 

(rDiameter) during epileptic events at the focus over 8 seizures from one animal. Note that during 

ictal events, [Ca2+]i increases in the encasing astrocytic endfoot are accompanied by arteriolar 

dilations. (B) Correlation between the absolute baseline [Ca2+]i and relative changes in diameter 

in the focus (from 7 mice, 90 seizures). (C) Relationship between the relative [Ca2+]i and absolute 

[Ca2+]i at the focus (from 7 mice, 90 seizures). (D) Relationship between the relative [Ca2+]i  and 

relative changes in diameter during epileptic seizures in a remote area over two recording 

sessions (8 seizures) from one mouse. For each seizure, [Ca2+]i increased in the endfoot with 

arterioles constricting at the beginning of seizures followed by dilation. (E) Correlation between 

the absolute [Ca2+]i and relative diameter changes in remote areas (from 4 mice 58 seizures). (F) 

Relationship between the relative [Ca2+]i during seizures and absolute [Ca2+]i in remote areas 

(from 4 mice, 58 seizures).  
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To validate whether this observation reflected a difference in the resting state tone due to elevated 

Ca2+, which would lead to a reduced reserve for dilation, we analyzed the absolute diameter 

during seizures across the recording session for the same animal. By plotting diameter during 

seizures against the absolute [Ca2+]i (Figure 5-5A, two sessions, diameter normalized to its 

median), we observed a negative trend between single arteriole diameter and [Ca2+]i: at higher 

Ca2+ concentrations during seizures, the corresponding diameter decreased contradicting the 

reserve hypothesis. We also performed a correlation between the absolute Ca2+ concentration in 

all astrocytic endfeet and the median diameter over the time course of the experiments and 

observed no correlation (Figure 5-5C Correlation coefficient: R=0.09). Furthermore, we observed 

that in remote areas, the relative constriction with respect to baseline diameter also increased with 

increasing [Ca2+]i (despite a decrease in absolute diameter). 

 

Figure 5-5 Scatter plot illustrating the relationship between absolute [Ca2+]i in one astrocytic 

endfoot and the arteriolar diameter. (A) Correlation between the absolute [Ca2+]i and diameter 

during epileptic events in local area (over two recording sessions, 8 seizures from one animal). 

The linear fit is: y = -0.004x + 1.70, R2 = 0.13. (B) Correlation between the absolute [Ca2+]i and 

relative diameter change during epileptic seizures in remote areas (over two sessions (8 seizures) 

from one animal). The linear fit for undershoot is: y = -0.004x + 1.241, R2 = 0.22 while for the 

overshoot: y = -0.005x + 1.676, R2 = 0.35. (C) The relationship between the absolute [Ca2+]i and 

median of diameter over all measurements. The Spearman correlation coefficient is R=0.09.  

Consolidating data from all mice with measures at the focus (7 mice, 21 astrocytes, 90 seizures), 

the average of [Ca2+]i in astrocytic endfeet during seizures was significantly larger than baseline 



70 

 

level (Figure 5-6A, p<0.005). As expected, the increase in arterioles diameter was also significant 

during ictal discharges (Figure 5-6B p<0.001). However, when measuring diameter versus 

absolute [Ca2+]i over the time course of the session, we observed a significant negative 

association between [Ca2+]i and the diameter as quantified by their slope (Figure 5-6C,  one 

sample t-test of slope against zero), in all cases preserving the negative relationship seen in 

Figure 5-5A and Figure 5-5B.  

 

Figure 5-6: Relationship between absolute [Ca2+]i in the astrocytic endfeet and arteriole diameter 

over all mice (7 mice). (A) Paired t- test of the average and SD of [Ca2+]i values during baseline 

and epileptic seizures for all mice. The average [Ca2+]i during ictal discharges was higher than 

baseline (p<0.001). The SD of [Ca2+]i did not significantly vary between the seizure and basal 

level. (B) Paired t-test of the average and SD of diameter in all mice. The mean diameter had a 

significant increase with ictal events (p<0.001) and there were no significant differences in the 

SD of diameter between seizures and baseline. (C) Bar plots of the slopes of linear fits (as shown 

in Figure 5-4A and Figure 5-4B) in 21 astrocytes of 7 mice over 90 seizures. Slopes were 

significantly negative (both for basal (p=0.05) and for seizures (p=0.006), one sample t-test).  

5.4.3 Astrocytic endfoot baseline Ca2+ determines the level of arteriole 

constriction first then of dilation with seizures in remote areas 

To study the relationship between astrocytic endfoot [Ca2+]i and arteriolar diameter changes 

during epileptic events in remote areas, measurements at a distance over 1.5mm from the 

injection site were done in 4 mice. Seizure-like activities evoked an increase in astrocytic Ca2+ 
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that was associated with a constriction at the beginning of the seizure followed by dilation 

(representative data from one mouse shown in Figure 5-3(B)). We analyzed the data in a similar 

way than at the epileptic focus: first by calculating the changes of relative diameter and the 

relative [Ca2+]i (Figure 5-4D). Figure 5-4D shows that relative changes during seizures indeed 

show a biphasic vascular response (constriction followed by a vasodilation) while [Ca2+]i remain 

elevated at each seizure. However, when the full data (Figure 5-4E) is analyzed using absolute 

Ca2+ concentration, we observed a positive trend between relative arteriole constriction and Ca2+ 

increase, and a negative trend between relative arteriole dilation and Ca2+ increase. These results 

indicate that the higher the absolute [Ca2+]i, the weaker is the dilation or the stronger is the 

constriction for a given seizure. We also calculated the relationship between the relative [Ca2+]i 

and absolute [Ca2+]i over 4 mice (58 seizures). Figure 5-4(F) shows that the relative [Ca2+]i 

decreases as the absolute [Ca2+]i increases similarly to the focus.   

 

Figure 5-7: Relationship between absolute [Ca2+]i in the astrocytic endfoot and diameter in 

arteriole over all mice (4 mice) in the remote area. (A) Paired t- test of the average and SD of 

absolute [Ca2+]i values during undershoot or overshoot and baseline for all mice. The average of 

[Ca2+]i during the beginning of seizure and the duration of seizure was higher than baseline 

(p=0.025 and p=0.028). The SD of [Ca2+]i did not significantly vary between the undershoot or 

overshoot and basal level. (B) Paired t-test of the average and SD of the percent change of 

diameter in all mice. The mean diameter had a significant decrease during the beginning of 

seizure (p=0.001) and the average of diameter during the duration of seizure was higher than the 

baseline (p =0.038). There were no significant differences in the SD of diameter between 

undershoot or overshoot and baseline. (C) Bar plots of slopes of linear fits between relative 
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diameter changes and absolute [Ca2+]i (as shown in Figure 5-5D) in 13 astrocytes of 4 mice over 

58 seizures. Slopes were negative (For basal, p=0.014, for seizure, p=0.009, one sample t-test).  

Using data from all mice with measures in remote areas (4 mice, 13 astrocytes, 58 seizures), we 

observed that the average of [Ca2+]i in astrocytic endfeet during the undershoot and the overshoot, 

was significantly larger than at baseline level (Figure 5-7A, p=0.025 and p=0.028). The 

undershoot and overshoot periods were associated with a decrease and an increase in vascular 

diameter, respectively. The average decrease in arteriolar diameter was significant during the 

beginning of seizures (Figure 5-7B, p=0.001) as well as their ensuing increase (Figure 5-7B, 

p=0.038). When measuring the diameter versus absolute [Ca2+]i, we observed a significant 

constrictive trend quantified by their slope (Figure 5-7C), in all cases preserving the negative 

relationship seen in Figure 5-5B. This data indicates that seizure-like activities increase absolute 

[Ca2+]i which in turn, leads to an increased constriction during the undershoot, and a decreased 

dilation during the overshoot. This suggests that the baseline [Ca2+]i determines the fractional 

change of arteriole diameter during seizures in the remote area. 

5.5 Discussion 

In this work, we showed that absolute [Ca2+]i of astrocyte endfeet and diameter of adjacent 

arterioles can be simultaneously measured in the mouse cortex in vivo using two-photon 

fluorescence lifetime measurements with an appropriate excitation regime. In similar brain 

studies, the key advantages of two-photon fluorescence lifetime measures of Ca2+ are their 

relative immunity to changes in fluorophore concentration, light attenuation and bleaching thus 

opening the door to investigating quantitatively changes in Ca2+ at different depths in the cortex 

with good spatial resolution. Here we used this technique to investigate absolute [Ca2+]i changes 

in astrocytic endfeet and diameter of arterioles they were encasing during epileptic event induced 

by 4-AP. Our findings provide new correlative evidence regarding potential Ca2+ mediated 

diameter changes during epileptic activity, by characterizing the relationship between [Ca2+]i and 

diameter.  

The key findings of this study were the following: (1) the free [Ca2+]i in astrocytes was measured 

and a spatially heterogeneous distribution of Ca2+ was observed in astrocytic soma and endfoot. 

(2) seizure activity induced a Ca2+ elevation in endfeet with simultaneous arteriolar dilation at the 
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epileptic focus. In remote areas, the Ca2+ increase was associated with arteriolar constriction at 

the onset of seizure and dilation later during the seizure. (3) a negative relationship between  

basal Ca2+ in astrocytic endfeet and diameter changes in arterioles was found. These novel 

observations have implications for understanding the relationship between astrocytic endfeet 

[Ca2+]i and adjacent arteriolar diameter.     

5.5.1 Center-surround phenomena during acute seizure activity 

Using epileptic seizures induced by 4-AP in vivo, we investigated in this study the [Ca2+]i in 

astrocytic endfoot and diameter of adjacent arterioles simultaneously. Our data showed that, in 

the epileptic focus, the elevation of Ca2+ was accompanied by arteriolar dilation (Figure 5-3A). In 

the remote area, a clear transient decrease in the diameter of arterioles despite a sustained 

increase of Ca2+ in astrocytic endfoot was shown (Figure 5-3B). Similar diameter changes during 

ictal discharges were investigated by several investigators with various methods (Zhao et al., 

2011, 2009). The simplest explanation for this inhomogeneous response is a passive model 

whereby vasodilation response propagates upstream in a stepwise manner. Early in the seizure, 

vasodilation in the focus shunts blood from the surround to the focus. As vasodilation propagates 

further upstream, vessels dilate in the surround as well. This observation however seems to be in 

contradiction with our observed decrease of dilation at the focus and increase of constriction in 

the surround with increasing absolute [Ca2+]i. In the passive model, one would expect 

constriction to be reduced in the surround when dilation is reduced in the focus, which is not the 

case here. Alternatively, our observations could be due to neurotransmitters released by 

interneurons, e.g. neuropeptide Y (NPY), as 4-AP is known to induce the release of NPY which 

is a strong constrictor in remote areas.  

5.5.2 The relationship between calcium and diameter   

The elevation of [Ca2+]i in astrocytic endfoot dilated the arteriole with epileptic events at the 

epileptic foci. Our data is similar to results from sensory stimulation (Wang et al., 2006). 

Meanwhile, the slow increase of basal [Ca2+]i was also accompanied by a decrease of relative 

arteriolar dilation during seizures over the whole time course of the experiment.  

The link between astrocytic [Ca2+]i levels and arteriole dilation has been the subject of much 

debate (Bazargani and Attwell, 2016) an whether astrocytes regulate vasodilation remains 
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controversial: initial studies indicated that increase in levels of [Ca2+]i in astrocytes led to a 

release of arachidonic acid– derived messengers, prostaglandins, epoxyeicosatrienoic acids 

(EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE), each known to have a modulating role 

on vascular smooth muscles (Gordon et al., 2008; Mulligan and MacVicar, 2004; Zonta et al., 

2003). However this initial interpretation was mitigated by evidence showing that [Ca2+]i signals 

in astrocytes were slow when compared to blood flow elevation caused by neuronal activity 

(Nizar et al., 2013; Schulz et al., 2012; Schummers et al., 2008). In more recent work, this was 

again questioned with the observation that astrocyte processes had distinct [Ca2+]i transients that 

are more frequent than that found in the somata (Grosche et al., 1999). For these reasons we 

focused our measures on these processes. As our sampling rate (1 second) for the dual ([Ca2+]i 

and diameter) measures was slow, our work does not contribute new data related to the 

neurovascular response associated with astrocytes, rather we focus on slow fluctuations of basal 

[Ca2+]i and observed a negative correlation between response and absolute calcium values. One 

hypothesis is that this negative correlation corresponds to the relationship between vascular tone 

and extravascular potassium concentrations released by large-conductance calcium sensitive 

potassium channel, as was demonstrated in slices at higher endfeet [Ca2+]i (Girouard et al., 2010). 

This would suggest that the transition between vasodilation and vasoconstriction described in 

(Girouard et al., 2010) is gradual and proportional to [Ca2+]i.  

5.5.3 Non-linear hemodynamic responses to seizures 

Among original motivations for this work was the observation of inhibitory non-linear 

hemodynamic phenomena(Pouliot et al., 2012a) in epilepsy. Our data correlating the increase of 

basal [Ca2+]i to an inhibitory dilation of adjacent arterioles suggests that [Ca2+]i may indeed 

contribute to these observations. In the context of epilepsy, this decrease response may contribute 

to local hypoxia during seizures. More work is required however, using different epileptogenic 

agents and models as well as in vivo uncaging of calcium and chelators to further understand the 

relative importance of [Ca2+]i in this inhibitory phenomenon. 

5.6 Conclusion 

We developed a technique that simultaneously provided absolute values of [Ca2+]i in astrocytic 

endfoot and diameter in adjacent arteriole in the brain cortex by means of two-photon 
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fluorescence lifetime microscopy. The technique was applied to study how the astrocytic endfoot 

controls encased arterioles during epileptic activity in mice. To our knowledge, this is the first 

report of simultaneously measurements of absolute [Ca2+]i values and diameter changes during 

epilepsy. In our work, following 4-AP injection in the somatosensory cortex of mice, we 

observed significant changes of [Ca2+]i in endfoot and diameter in arteriole at focus and in the 

remote areas. This study support the existence of the elevation of [Ca2+]i causing arteriolar 

dilation at focus during stimulation. In addition, we found a negative correlation between basal 

[Ca2+]i in endfoot and the amplitude of dilation for all measurements, while, in the remote areas,  

there was a positive correlation between [Ca2+]i in endfoot during the onset of seizures and the 

level of vasoconstriction. This study provides information that could help to understand the 

association between astrocytic Ca2+ levels and the vascular tone.      
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CHAPTER 6 ARTICLE 3: SPATIAL LANDSCAPE OF OXYGEN IN 

AND AROUND MICROVASCULATURE DURING EPILEPTIC 

EVENTS 

Cong Zhang,a Mohammad Moeini,a,b and Frédéric Lesage a,b,* 

aÉcole Polytechnique de Montréal, Department of Electrical Engineering, C.P. 6079 succ.Centre-

ville, Montreal, Quebec, Canada, H3C 3A7 

bMontreal Heart Institute, 5000 Bélanger street, Montreal, Quebec, Canada, H1T 1C8 

This article aimed to address the third objective of this thesis. The main purpose of the article was 

to investigate the oxygen partial pressure in microvascular and tissue of anesthetized mice during 

epileptiform activity. The neurotoxin 4-Aminopyridine (4-AP) was used in live mice to model 

epileptiform activity. We characterized the distribution of the “initial dip” in oxygen partial 

pressure in arterioles, veins and tissue near the 4-AP injection site. These results reveal a 

correlation between the oxygen partial pressure signal during the “initial dip” and the diameter of 

arteries and veins. This article has been published to Neurophotonics. 

6.1 Abstract  

Measuring changes in cerebral oxygen in tissue microdomains during epilepsy is important to 

identify hypoxic potential and susceptibility for neural damage. Here, using a custom-built two-

photon microscopy system, we present microscopic measurements of oxygen partial pressure 

(PO2) in cortical microvessels and tissue of anesthetized mice during 4-AP induced epileptic 

seizures. Investigating epileptic events, we characterized the distribution of the “initial dip” in 

PO2 in arterioles, veins and tissue near the 4-AP injection site. Our results reveal a correlation 

between the percent change in PO2 during the “initial dip” and the diameter of nearest arteries 

and veins. 

Keywords: Two-photon phosphorescence lifetime microscopy, oxygen partial pressure, epilepsy. 
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6.2 Introduction 

The global architecture of blood supply to the brain consists of a planar mesh of pial arteries and 

veins branching and diving into the cortex, to supply and drain the blood (Dalkara and Alarcon-

Martinez, 2015; Duvernoy et al., 1981; Lauwers et al., 2008) in support of metabolic needs. A 

thorough understanding of the dynamics of oxygen supply and consumption in the cerebral 

cortex is important not only because neuronal activity relies on oxygen availability, but also 

because a large number of functional imaging techniques (e.g. functional magnetic resonance (Hu 

and Yacoub, 2012) and optical imaging of intrinsic signal (Bahar et al., 2006; Pouliot et al., 

2012b)) rely on the changes in blood oxygenation to image brain function. Oxygen is transported 

to the brain by blood and delivered to tissue at the arteriole and capillary level by diffusion. With 

increases in neural activity and metabolic consumption the delivery of oxygen to tissue increases 

through changes in cerebral blood flow (CBF) (Buxton and Frank, 1997; Zheng et al., 2002). 

Under normal conditions, blood flow increases slightly overshoot the need required to satisfy 

tissue oxygen consumption, an overshoot sometimes argued to be neuroprotective. However, 

during excessive neuronal activity, as seen in epilepsy, supply might be insufficient (Schridde et 

al., 2008).  

Epilepsy is a common neurological disease characterized by recurrent unprovoked seizures, 

which result from abnormal and excessive neuronal activity in the brain. In both animal models 

and patients, the epileptic events can evoke drastic increases in CBF to meet the high metabolic 

demand caused by this intense neuronal activity (Geneslaw et al., 2011; Zhao et al., 2011, 2007). 

Measures of oxygen partial pressure (PO2) in tissue during seizures have displayed an initial dip 

with various methods (Zhang et al., 2015; Zhao et al., 2009) but the spatial landscape of this 

phenomenon has not been thoroughly documented. In normal conditions, it was shown that most 

capillaries released little oxygen at baseline acting as an oxygen reserve that was recruited during 

increased neuronal activity (Sakadžić et al., 2014). Whether this redistribution of the delivery of 

PO2 around and in capillaries during itcal events remains valid is unknown, and it is unclear how 

larger vessels modulate the spatial landscape of the PO2 distribution. In this study, we used two-

photon microscopy (TPM) and the O2-sensitive phosphorescent dye PtP-C343 (Finikova et al., 

2008) to measure PO2 in arterioles, venules and tissue during epileptic events to characterize 

oxygen delivery during these periods of high demand.  
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6.3 Materials and Methods 

6.3.1 Animal preparation  

A total of N=11 male C57/BL6 mice (postnatal 8 weeks old, 20-25g weight) were used for this 

study, of which three died before data acquisitions. Four mice were used for vascular PO2 

measurements and four mice were used for tissue PO2 recording. The Animal Research Ethics 

Committee of the Montreal Heart Institute approved all surgical procedures, which were 

performed according to the recommendations of the Canadian Council on Animal Care. All 

procedures were done according to the ARRIVE guidelines. 

Animals were anesthetized with urethane (1-1.6g/kg, intraperitoneal injection (IP)), 

tracheotomized and maintained at constant body temperature (37 °C) with a controlled 

physiological monitoring system (Labeotech, CA). A moderate flow of ambient air lightly 

supplemented with oxygen was supplied next to the tracheotomy (10% oxygen, 90% air, 1L/min). 

The mice were then head-fixed with a stereotaxic device. After the injection of a local anesthetic 

(Xylocaine, subcutaneous (SC), 0.2%) under the scalp, a ~2×2 mm cranial window was opened 

over the right hemisphere to expose the somatosensory cortex and surrounding brain (AP: -1.5 

mm, DV: +1.5mm). A small hole was drilled next to the cranial window for the injection of 4-AP. 

For tissue PO2 measurements, ~1 µL of the oxygen-sensitive dye (PtP-C343, 200 µM, 

synthetized based on published procedures (Lecoq et al., 2011)) was injected into the tissue and 

the cranial window was sealed with 1% agarose in artificial cerebrospinal fluid (aCSF, 125 mM 

NaCl, 10 mM HEPES, 10 mM glucose, 5 mM KCl, 1,5 mM CaCl2, 1 mM MgSO4) using a 150 

µm-thick microscope coverslip. For vascular measurements, the same dye was injected through 

the tail vein at 10-15 µM initial concentration. A catheter in the femoral artery was used to 

monitor blood gases (PCO2, 36-39mmHg and PO2, 110-160 mmHg). The average blood pressure 

(80-110 mmHg) was measured using volume-pressure recordings (VPR) performed immediately 

prior to imaging. For each experiment, we labelled the blood plasma with fluorescein 

isothiocyanate (FITC) conjugated with dextran (Sigma; 128mM, 200µL) and used TPM to obtain 

a high-resolution structural image of the microvasculature. A larger image of the surface 
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microvasculature (~2×2 mm) was also obtained, which was later used for easier tracing of the 

pial arterioles and venules. 

6.3.2 Epileptogenesis and electriohysiology 

Epilepsy was induced by injection the potassium channel blocker 4-aminopyridine (4-AP; Sigma; 

15 mM, 0.5 µL) (Zhao et al., 2007) through a glass microelectrode using a syringe pump 

controller (UMP3, WPI) into a small hole with a depth of ~300µm next to the cranial window at 

a rate of 100 µL/min. Extracellular local field potentials (LFPs) were recorded with a tungsten 

electrode (impedance, ~1-2 MΩ) lowered to a depth ~300µm into the neocortex. The signal from 

the electrode was filtered by a band-pass filter (1~5000Hz), amplified with a  microelectrode AC 

amplifier (model 1800, A-M system, Sequim, WA), and digital filtered between 0.2 and 130 Hz 

(Zhang et al., 2015).) 

6.3.3 Two-photon microscopy setup, acquisition and processing  

Measurements were collected on a custom-built two-photon phosphorescence lifetime 

microscopy with 80 MHz, 150 fs pulses from a MaiTai-BB laser oscillator (Newport corporation, 

USA) with output going through an acousto-optic modulator (ConOptics) to adjust the gain for 

depth-dependent two-photon excitation intensity. Reflected light was collected by a water-

immersion objective (20×, 1.0 NA; Olympus), and then separated into 2 beams (phosphorescent 

photons and fluorescent photons) by dichroic mirrors. Phosphorescent light was passed through a 

filter centered at 680 nm and detected by a first photomultiplier tube (H7422, Hamamatsu, 

Photonics, Japan) and fluorescent light was filtered around center wavelength of 520 nm and 

detected by the second photomultiplier tube (R3896, Hamamatsu Photonics, Japan). Scanning 

and data recordings were controlled by custom-designed software written in Matlab (MathWorks, 

USA). Phosphorescence lifetime was fitted with a single-exponential function using a least-

squares method. The lifetime was converted to PO2 using a calibration plot obtained in 

independent oxygen titration experiments of the same dye batch (Finikova et al., 2008).   

For each animal, a picture of the craniotomy along with the real-time display of the surface 

vessels scanned was used to localize arterioles and venules. Then an angiogram was acquired as a 

3D scan over 600 µm × 600 µm × 400µm regions using depth steps of Δz = 5 µm. These were 

used to guide manual positioning of PO2 recordings on and along targeted vessels. The tissue PO2 
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measurements were at a depth ~200µm - 300µm and were chosen close to arterioles. The 

vascular PO2 measurements were recorded from the surface until a depth ~250µm. 

6.3.4 Simulation of oxygen diffusion in tissue using a Krogh-Erlang Model 

The Krogh model was used to simulate oxygen diffusion in the tissue and compare with 

experimental data using (Krogh, 1919) 

𝑃𝑂!(𝑥) = 𝑃𝑂!!"# −
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− !!!!!
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)                                                     (6-1) 

Here, PO2
VES is the vessel oxygen tension (atm) and PO2(x) is the tissue oxygen tension at radial 

distance x (cm) from the vessel center. The rate of oxygen consumption Q is equivalent to the 

product of the cerebral metabolic rate of oxygen (CMRO2) and the density ρ of brain tissue. The 

Krogh diffusion constant K is the product of the oxygen diffusion coefficient D (1.5×103µm2/s) 

and the oxygen solubility α (1.3×10-3cm3/(cm3×760mmHg)). The Krogh model postulates that a 

central vessel with radius r and infinite length supplies a concentric tissue cylinder with radius R 

with radially diffusing oxygen. The diffusion equation and Krogh model were applied to simulate 

the diffusion time used in tissue during epilepsy. For the mouse brain the CMRO2 was 2.6 

µmol/g/min at baseline (Cui et al., 2013) and increased ~12% during epileptic seizures (Zhao et 

al., 2011).  

6.4 Results 

6.4.1 PO2 changes in tissue at the epileptic focus during seizure-like activity 

Seizure-like activity was characterized by first rhythmic spiking of increasing amplitude and 

decreasing frequency, evolving into rhythmic spikes and slow wave activity prior to gradual 

offset (see e.g. Figure 6-1A middle and Figure 6-1B middle).  

Using two-photon phosphorescence lifetime microscopy, PO2 was measured in tissue close to 

arterioles. A typical change in tissue PO2 is shown in Figure 6-1A. The typical PO2 time-profile 

was biphasic with an early dip after ictal onset, followed by a longer duration increase in PO2. 

These results were in agreement with previous works where similar responses were observed 

using confocal microscopy or oxygen electrodes (Bahar et al., 2006; Zhang et al., 2015a).   
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Figure 6-1: Representative changes in oxygen partial pressure (PO2) in tissue (A) and artery (B), 

in response to epileptic events in a local area. Grayscale angiogram of cortical pial tissue with 

points of interest (with arteries shown by the red arrows, a vein shown by the blue arrow and a 

typical PO2 time course shown for the blue points, top of (A) and (B) panels). The time course of 

LFPs indicates seizure initiation. (A) Epileptic activity induced a transient dip in tissue PO2 

followed by an increase in PO2 at the focus. (B) In the artery, the PO2 profile was also biphasic 

with an early dip followed by an increase. 

We then investigated the spatial distribution of this dip along small arterioles. Four mice were 

used to measure the PO2 in tissue at multiple locations near an arteriole that was located in the 

epileptic focus, i.e. <1.5mm from the 4-AP injection site. Figure 6-2A shows that the percent PO2 

changes during the dip were significantly lower in tissue closer to arterioles than that located 
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father away. This change was vessel size-dependent as seen by separating data according to 

diameter in two groups, 12.60 ± 0.83 µm (n=38) and 14.65 ± 1.05 µm (n=25) with significantly 

larger changes in tissue surrounding smaller arterioles (t-test, p<0.001). 

 

Figure 6-2 : (A) Changes in the amplitude of the percent initial dip around small and large 

arterioles, as a function of the perpendicular distance. The solid line and dashed line show 

simulated results with small and large arterioles separately. Error bars represent standard error of 

the mean (SEM). (B) Timing of the dip extrema as a function of arteriolar size and perpendicular 

distance with simulated results. (C) Percent change of the initial dip in arteries and veins in 

response to seizure-like activity, grouped by vessel diameter, with corresponding standard error 



87 

 

reported. (D) The undershoot-minima time in arteries and veins, grouped by vessel diameter, with 

corresponding SEM. 

The undershoot-minima time (Figure 6-2B) was also seen to be lower when the point was located 

closer to the arteriole or next to a larger vessel (t-test, p=0.005). Both trends of initial-dip and 

undershoot-minima time could be predicted from simulations with the Krogh-Erlang model (lines 

in Figure 6- 2A and Figure 6-2B). 

6.4.2 Epileptic seizures induced PO2 response in vasculature at the epileptic 

focus  

Since smaller arterioles are likely to be located further downstream than larger ones, we 

investigated PO2 changes in upstream and downstream vascular segments during similar ictal 

events. Four mice were used to gather recordings at multiple locations in arteries and veins at the 

epileptic focus (<1.5mm from the injection site). Figure 6-2C and Figure 6-2D show the percent 

changes associated with the initial dip and undershoot-minima time in arterioles and veins 

categorized by diameter. Figure 6-2C shows a size dependent initial dip with smaller vessels 

seeing larger changes. Moreover, the observed variations in PO2 were larger in venules than 

arterioles (t-test with p=0.03). Figure 6-2D further indicates that the undershoot-minima time of 

large arterioles and veins occurred earlier than small arterioles and veins. There was also a 

significant difference between the undershoot-minima time values of the arterioles and veins (t-

test with p=0.01).  

6.5 Discussion 

Epilepsy-evoked changes in cerebral tissue oxygenation have been observed previously by Clark 

microelectrodes (Zhao et al., 2007) and confocal phosphorescence lifetime microscopy (Zhang et 

al., 2015). Polarographic electrode oxygen measurements have limited spatial accuracy, and are 

limited in the number of point measurements achievable. In our previous work, confocal 

phosphorescence lifetime microscopy was also limited due to its inability to reach deeper tissue 

making investigations of the impact of microvascular morphology on delivery difficult. To our 

knowledge, the current study is the first to perform absolute measurements of PO2 in multiple 

individual microvascular compartments and tissue locations with high spatial and temporal 

resolution during epileptic seizures. 
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6.5.1 The relationship between the initial dip and distance from arterioles 

Exploiting spatial measures around small arterioles, we investigated how tissue oxygen pressure 

changed near arterioles located in the epileptic focus region during epileptiform activity. Our data 

indicate an increase in PO2 percent changes surrounding small arteries during early phases of 

epileptic activity (initial dip) which can be attributed to increased tissue metabolic consumption 

using a Krogh-Erlang model. While a proportional shift of delivery may move towards capillaries, 

in these events they do not fully compensate for consumption needs with small and large 

arterioles remaining largely responsible for oxygen distribution in the cortex (Sharan et al., 2008). 

This is consistent with previous findings of oxygen exchange between large arteries and tissue 

(Zhang et al., 2015). Our results further suggest that it is tissue areas located far from larger 

arterioles, in the capillary bed, that are more susceptible to hypoxia rather than tissue next to 

arteries. Temporally, our data show that points far away from the arteriolar wall take more time 

to recover basal PO2 than locations near small arterioles with a size-dependent arteriolar 

influence. The delay times observed are larger than typical blood transit time (~2 sec) in the 

neurovascular unit. Overall these results suggest that the increased CBF and CBV in the focus 

during epileptic events will supply more oxygen to the tissue near arterioles, but may not meet 

the demands of oxygen metabolism in capillary areas.  

6.5.2 The relationship between the initial dip and diameter of arteries and 

veins 

It is interesting that the largest fractional decreases in vascular PO2 were measured in small veins 

and small arteries. In addition, the largest decrease in PO2 was calculated to take place in veins. 

The explanation of these results may be that the upstream vessels deliver more oxygen during 

intense neural activity. Temporally, the undershoot-minima time in vascular PO2 was first 

observed in the large arteries and veins followed by the small arteries and veins. The largest 

decrease in PO2 was observed in small veins.  Our results suggest that the blood flow-driven 

increases in PO2 start from arterioles and propagate to veins. 
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6.6 Conclusion 

In conclusion, this study provided absolute PO2 measurements in tissue, arteries and veins with 

two-photon microscopy during 4-AP evoked epileptic events. In this work, we observed 

significant changes of PO2 delivery as a function of the vascular architecture.  
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CHAPTER 7 GENERAL DISCUSSION 

This thesis reports recent results and progresses in using optical imaging techniques to study the 

neurovascular coupling in focal epilepsy. Three scientific papers were presented in chapter 4, 5 

and 6, focusing on the study of neurovascular coupling during focal epilepsy in the mouse cortex. 

This chapter reviews the objectives that are initially proposed in chapter 1, validates the 

corresponding hypotheses, and discusses the limitations of each article.  

7.1 Objective 1 

The first objective of this thesis was to develop the confocal phosphorescence lifetime 

microscopy system and use it to study the tissue PO2 changes during 4-AP evoked focal epilepsy 

in the mouse cortex. This article presented in chapter 4 addresses this objective, with developing 

a confocal phosphorescence lifetime microscopy system. The system was used to measure tissue 

PO2 during normoxia and epilepsy with a dendritic phosphorescent probe, Oxyphor G4. The 

system enabled minimally invasive measurements of PO2 in cerebral tissue with high spatial and 

temporal resolution during 4-AP induced epileptic seizures. 

On one hand, this study supports the idea that the tissue PO2 change associated with epileptic 

seizures can be observed by confocal phosphorescence lifetime microscopy. In this work, 

following 4-AP injection in the somatosensory cortex of mice, significant changes of  PO2 in 

tissue near the injection site were observed, and its changes along arteries and in the surrounding 

area were investigated.  This study supports the existence of an initial dip and characterizes the 

spatial distribution of the initial dip around the focus and near pial arteries. A positive correlation 

between the early oxygen metabolism in tissue and the duration of seizures was found, which 

may eventually help localize the epileptic focus and predict the length of seizure.  

However, the system had limitations: the confocal phosphorescence lifetime microscopy system 

may suffer from the photoconsumptive effects. To diminish the photonconsumption, survey scans 

were done before the recording, which could lead to the production of singlet oxygen as some 

areas were subject to higher light intensity than required by our 3000 counts estimation during 

the calibration phase. Our measurements were careful to limit the intensity during survey scans 

and a pause was done between survey scans and acquisitions to ensure tissue oxygen was 

replenished. Despite these steps, we cannot completely rule out the possibility of tissue damage 
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during survey scans.  Furthermore, the elongated focus of the confocal microscope in diffusive 

conditions failed to precisely assess distribution of oxygen in the depth axis and around small 

vessels, which limit conclusions on oxygen diffusion during seizures. Finally, a potential bias in 

measured PO2 values during epileptiform discharges may occur due to a small increase in 

temperature at the epileptic foci. Tokiwa et al found that the elevation of the focal brain 

temperature increased around 0.65 ± 0.24°C during epileptiform discharges in the rat brain 

(Tokiwa et al., 2013). There is a small change in decay parameters measured for Oxyphor G4 

with fractional temperature change, but this was not considered in this paper. 

7.2 Objective 2 

The second objective of this thesis was to simultaneously monitor the changes of calcium 

concentration in astrocytic endfeet and diameter of encased arterioles. The article presented in 

chapter 5 addresses this objective. In this objective, we developed two-photon microscopy and 

applied it to simultaneously measure the calcium concentration in astrocytic endfeet and diameter 

of adjacent arterioles with calcium-sensitive indicator OGB-1 under normoxia and epilepsy. This 

system enabled simultaneous measurement of calcium concentration and diameter with high 

spatial (~0.3µm) and temporal resolution (~ 0.9s).  

In this article, we exploited 4-AP induced epileptic events to show that absolute calcium 

concentration in cortical astrocytic endfeet in vivo correlates with the diameter of precapillary 

arterioles during neural activity. Two-photon fluorescence lifetime microscopy was applied to 

simultaneously monitor free calcium concentration in astrocytic endfeet with OGB-1 and the 

diameter of adjacent arterioles in the somatosensory cortex of adult mice following 4-AP 

injections. The results reveal that astrocytic endfoot calcium concentration was elevated during 

epileptic events and increases in calcium concentration induced vasodilation for each individual 

ictal event at the focus. In the remote area, increases in calcium concentration correlated with 

vasoconstriction at the onset of seizure and vasodilation during the later part of the seizure, which 

supports the existence of the elevation of calcium concentration causing arteriolar dilation at the 

focus during stimulation. Moreover, following multiple seizures a slow increase in absolute 

calcium concentration was observed, which caused a trend of arteriolar constriction at the 

epileptic focus and remote areas. This study confirms the role of astrocytes in control of local 
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microcirculation and provides information that could help to understand the association between 

astrocytic calcium concentration levels and the vascular tone.    

The first weakness of this study was that our data correlating the increase of basal calcium 

concentration to an inhibitory dilation of adjacent arterioles suggested that calcium concentration 

may indeed contribute to the observation of inhibitory non-linear hemodynamic phenomena in 

epilepsy. More work is required, using different epileptogenic agents and models as well as in 

vivo uncaging of calcium and chelators to further understand the relative importance of calcium 

concentration in this inhibitory phenomenon. In addition, the cerebral blood flow in arterioles 

was not measured simultaneously with calcium concentration in this study. According to Grubb 

et al. (Grubb et al., 1974), CBF and CBV can be related by a simple power law equation, which 

the coefficient was called the Grubb exponent. However, the Grubb exponent is known to change 

under neuropathologies in the brain. Hence, measuring CBF simultaneously with absolute 

calcium concentration would contribute additional useful information. Lastly, the length and 

frequency of the seizure were not considered in calcium concentration changes in astrocytic 

endfeet and diameter changes of arterioles. Our study has found the length of seizure was 

correlated with the PO2 changes in tissue and PO2 changes adjust the release of calcium 

concentration in astrocytic endfeet.  

7.3 Objective 3 

The last objective of this thesis was to measure the PO2 changes in tissue near arterioles and in 

cerebral vasculature during epileptic events induced by 4-AP in mouse brain with two-photon 

phosphorescence microscopy. The article presented in chapter 6 addresses this objective. In this 

study, we applied two-photon phosphorescence microscopy technique to measure the PO2 

changes in tissue near arterioles and in microvessels in mouse somatosensory cortex during 4-AP 

induced epileptic events. This system enables minimally invasive measurements of PO2 deeply in 

mouse cortex with high spatial (~0.3µm) and temporal resolution (~0.3s) following 4-AP evoked 

epileptic seizures.  

In this study, a custom-built two-photon microscopy system was used to measure the PO2 in 

tissue near various sizes of arterioles and in microvessels of different size with oxygen-sensitive 

dye (PtP-C343) during epileptic seizures. In this study significant PO2 changes were observed in 
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tissue near arterioles and in vessels following epileptic events in mouse somatosensory cortex 

and these changes were correlated with the size of the microvessels. The distribution of the initial 

dip in arterioles, veins and tissue were characterized near the 4-AP injection site. The results 

reveal that the arterioles contribute to oxygen consumption in the tissue and the percent change in 

PO2 signal during the initial dip is correlated with the diameter of arteries and veins during 

epileptic events. 

The first limitation of this study is the difficulty to measure the PO2 in small capillaries with two-

photon microscopy. During the experiment, we found the two-photon microscopy was sensitive 

to the position of the capillary because of the high spatial resolution. Thus PO2 in capillaries was 

not measured in this study, which may supply more information in the deep brain during epilepsy. 

In addition, CBF was not recorded in this study during epilepsy. When brain has epileptic events, 

the cerebral blood flow will increase and bring more glucose and oxygen to meet the demand of 

neural activity. In this work, an initial dip was found in tissue and vessel during epilepsy, which 

means that blood flow did not meet the demand of neuronal activity, which was not confirmed 

with direct measurements of CBF. 

Overall, 4-AP acts as a K+ channel blocker and a potent convulsant that was applied to induce the 

epileptic events in neocortex. Focal 4-AP injection in the neocortex generates focal epileptic 

seizures in vivo. 4-AP can also be applied to produce seizures with a generalized way in the 

whole slice in vitro (Yang et al., 2010). Besides, the epileptic events are generated in multiple 

layers and multiple locations and in an uncontrolled way in vitro. Some studies have showed that 

the γ-aminobutyric acid played an important role in the 4-AP induced epilepsy animal model 

(Avoli et al., 2002; Gonzalez-Sulser et al., 2011). Since 4-AP induced seizures are sensitive to 

anticonvulsants, combing with the γ-aminobutyric acid antagonist bicuculline was applied to 

induce pharmacoresistant activities (Brückner et al., 1999).  

   

 

 

 

 



96 

 

CHAPTER 8 CONCLUSION 

In this thesis, confocal microscopy was employed to study the neurovascular coupling changes in 

mouse somatosensory cortex during 4-AP evoked epileptic seizures. We first developed the 

confocal phosphorescence lifetime microscopy system that provided absolute values of PO2 in 

the brain cortex. We applied this technique to study PO2 changes in tissue during epileptic 

activity in mice. Following 4-AP injection in the somatosensory cortex of mice, the significant 

changes of PO2 in tissue near the injection site and in the surrounding were observed. This study 

supported the existence of an initial dip and investigated the spatial distribution of the initial dip 

around the focus and near pial arteries. The positive correlation between the early oxygen 

metabolism in tissue and the duration of seizures was found, which may eventually help localize 

the epileptic focus and predict the length of seizure.  

Following the first work, two-photon fluorescence microscopy was applied to simultaneously 

provide absolute values of calcium concentration in astrocytic endfoot and diameter in adjacent 

arteriole in the brain cortex. This technique was developed to study how astrocytic endfoot 

controls encased arterioles during epileptic activity in the mouse cortex.  In this work, following 

4-AP injection in the somatosensory cortex of mice, we observed significant changes of calcium 

concentration in endfeet and diameter in arterioles at focus and in the remote areas. In addition, 

we found a negative correlation between basal calcium concentration in endfoot and the 

amplitude of dilation for all measurements at focus, while, in the remote areas, there was a 

positive correlation between calcium concentration in endfeet during the onset of seizures and the 

level of vasoconstriction. This study could help to understand the association between astrocytic 

calcium concentration levels and vascular tone.  

However, the PO2 changes in the deep tissue near arterioles and in microvessels during epilepsy 

are also important to the calcium release from the astrocytic endfoot. To address that, we 

proposed to use two-photon phosphorescence microscopy with high spatial and temporal 

resolution to measure the PO2 changes in tissue and microvessels during epilepsy. The significant 

PO2 changes in tissue and microvessels were found in mouse somatosensory cortex during 4-AP 

induced epileptic seizures. In tissue, the positive correlation was revealed between the distance 

from arterioles and percent changes of initial dip or the undershoot-minima time, which 

correlated with the diameter of arterioles. In vessels, a negative correlation was shown between 
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the diameter of vessels and initial dip changes or the undershoot-minima time. This study could 

help to evaluate microvascular oxygen delivery capacity to support cerebral tissue in epilepsy.    
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