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RÉSUMÉ

Grâce au succès de la virtualisation, les solutions infonuagiques sont aujourd’hui présentes dans

plusieurs aspects de nos vies. La virtualisation permet d’abstraire les caractéristiques d’une ma-

chine physique sous forme d’instances de machines virtuelles. Les utilisateurs finaux peuvent

alors consommer les ressources de ces machines virtuelles comme s’ils étaient sur une machine

physique. De plus, les machines virtuelles en cours d’exécution peuvent être migrées d’un hôte

source (généralement hébergé dans un centre de données) vers un autre hôte (hôte de destination,

qui peut être hébergé dans un centre de données différent), sans perturber les services. Ce pro-

cessus est appelé migration en temps réel de machine virtuelles. La migration en temps réel de

machine virtuelles, est un outil puissant qui permet aux administrateurs de système infonuagiques

d’équilibrer les charges dans un centre de données ou encore de déplacer des applications dans

le but d’améliorer leurs performances et–ou leurs fiabilités. Toutefois, si elle n’est pas planifiée

soigneusement, cette opération peut échouer. Ce qui peut entraîner une dégradation significative de

la qualité de service des applications concernées et même parfois des interruptions de services. Il

est donc extrêmement important d’équiper les administrateurs de systèmes infonuagiques d’outils

leurs permettant d’évaluer et d’améliorer la performance des opérations de migration temps réel

de machine virtuelles. Des efforts ont été réalisées par la communauté scientifique dans le but

d’améliorer la fiabilité de ces opérations. Cependant, à cause de leur complexité et de la nature

dynamique des environnements infonuagiques, plusieurs migrations en temps réel de machines

virtuelles échouent encore.

Dans ce mémoire, nous nous appuyons sur les prédictions d’un modèle de classification (Random

Forest) et sur des politiques générées par un processus de décision markovien (MDP), pour décider

du moment propice pour une migration en temps réel de machine virtuelle, et de la destination qui

assurerait un succès a l’opération. Nous réalisons des études de cas visant à évaluer l’efficacité

de notre approche. Les défaillances sont simulées dans notre environnement d’exécution grâce à

l’outils DestroyStack. Les résultats de ces études de cas montrent que notre approche permet de

prédire les échecs de migration avec une précision de 95%. En identifiant le meilleur moment

pour une migration en temps réel de machine virtuelle (grâce aux modèles MDP), en moyenne,

nous sommes capable de réduire le temps de migration de 74% et la durée d’indisponibilité de la

machine virtuelle de 21%.
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ABSTRACT

Cloud computing has become commonplace with the help of virtualization as an enabling technol-

ogy. Virtualization abstracts pools of compute resources and represents them as instances of virtual

machines (VMs). End users can consume the resources of these VMs as if they were on a physical

machine. Moreover, the running VMs can be migrated from one node (Source node; usually a

data center) to another node (destination node; another datacenter) without disrupting services. A

process known as live VM migration. Live migration is a powerful tool that system administrators

can leverage to, for example, balance the loads in a data center or relocate an application to im-

prove its performance and–or reliability. However, if not planned carefully, a live migration can

fail, which can lead to service outage or significant performance degradation. Hence, it is utterly

important to be able to assess and forecast the performance of live migration operations, before

they are executed. The research community have proposed models and mechanisms to improve the

reliability of live migration. Yet, because of the scale, complexity and the dynamic nature of cloud

environments, live migration operations still fail.

In this thesis, we rely on predictions made by a Random Forest model and scheduling policies

generated by a Markovian Decision Process (MDP), to decide on the migration time and destination

node of a VM, during a live migration operation in OpenStack. We conduct a case study to assess

the effectiveness of our approach, using the fault injection framework DestroyStack. Results show

that our proposed approach can predict live migration failures with and accuracy of 95%. By

identifying the best time for live migration with MDP models, in average, we can reduce the live

migration time by 74% and the downtime by 21%.
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CHAPTER 1 INTRODUCTION

Nowadays, cloud computing is attracting many organizations thanks to its economical benefits (Wang

et al., 2016). Both industrial and academic organizations are moving applications to the cloud (Jamshidi

et al., 2013) (Armbrust et al., 2010). Users can lease the services of these applications, ramping

up or down their capacity and paying only for what they use.

Applications deployed in the cloud typically run in virtual machines (VMs) or containers, dis-

tributed across multiple physical machines hosted in data centers. To respond to changing users’

demands, organizations often have to migrate VMs out of overloaded and–or–overheated servers.

VM migration is also necessary during servers’ maintenance. When running instance(s) of a VMs

are moved (migrated) from a source node, say Node A (or a datacenter) to a destination node, say

Node B (or another datacenter), it is important to keep service downtime to its minimum.

Three VM migration techniques are currently supported in cloud environments: Cold migration

(which consists in moving VMs that are not running from one Node to another), Live Block migra-

tion (consisting in moving live VMs across Nodes without copying shared memory location and

VM disk over the network), and Live migration (consisting in moving live VMs across nodes with

shared memory location being copied over the network). During Live migrations, the VMs memory

state is copied from a source node to destination Nodes. In this work, we implements both the pre

and post-copy approach of copying VMs memory states from source nodes to destination nodes.

The pre-copy approach is fully supported in all releases of OpenStack and in most hypervisors.

However, the post-copy approach is support only for releases beyond Mitaka. In order to have a

larger impact, we experiment with both approaches in this study.

The pre-copy approach of VMs live migration consists in five steps: pre-migration, reservation,

iterative pre-copy, stop and copy, and finally commitment. Figure 3.3 presents the details of these

steps.

The post-copy approach also consists of five steps: pre-migration, reservation, stop & copy, post-

copy: paging and finally commitment. Figure 3.4 provides a detailed description of each of these

steps.

There are many benefits for doing live migration Clark et al. (2005); these include load balanc-

ing (work-load is distributed among computer nodes in an evenly manner to optimize the use of

available computation power–CPU and resources), server or datacenter consolidation, and disaster

recovering (VMs are evacuated from the disaster areas to safer areas).

However, live migration operations are not always successful. At times, failures may occur because
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of issues with the state of the nodes, or even the state of the VM itself. These states can be described

in terms of CPU, RAM (memory), or Network traffic (bandwidth) utilization etc., or a combination

of these resources. For example, a VM that is running a high intensive memory or CPU application

may fail live migration if the transfer of its state takes a longer time than it is allowed. Also, a

higher traffic over the network during live migration can cause the VM migration process to fail.

1.1 Research Objectives

This work aims at studying failures of VMs during live migration (if the live migration will be

successful or fail). Moreover, we want to make optimal decisions about where (the destination

Node –datacenter to sent the running VMs to) and when (the appropriate time to live migrate)

to live migrate VMs, with the aim to minimize the migration time Tm and the downtime Td of the

VMs. To achieve these goals, we have developed RISULM, a ReInforced and SUpervised Learning

Model that allows organizations to predict the failure of VMs (if migrated), and identify the time of

migration and the destination host that would ensure a minimum down time. We have implemented

RISULM on OpenStack, using both the KVM and Xen hypervisors, with pre-copy and post-copy

algorithms. We selected OpenStack because it is open-source, which allows us to modify its source

code. Both KVM and Xen meets the required condition for OpenStack to implement pre-, and

post-copy algorithm on live migration.

To assess the effectiveness of our proposed approach, we conduct a series of experiments comparing

the effectiveness of RISULM with those of Machine Learning based Downtime Optimization –

MLDO (Arif et al., 2016), and load balance fault tolerance Strategy – LBFT (Li et Wu, 2016)

approaches. Specifically, we address the following two research questions :

RQ1 – Can we accurately predict live migration failures?

Result: We capture the state of the environment i.e., the CPU%, RAM%, Network-bandwidth

utilization of the running virtual machines, the source Node and destination Node on both idle

and loaded conditions. We use these parameters to train a Random Forest model. The training was

performed in real time, as changes occurred in the environment. Results show that our proposed ap-

proach can predict live migration failures with 95% accuracy, using all combinations of algorithms

and hypervisors, whereas, MLDO achieves a 92% accuracy with both pre-copy (KVM, Xen) and

a 85% accuracy for post-copy (KVM, Xen). Also, LBFT achieves a 90% accuracy for pre-copy

(KVM, Xen) and a 88% accuracy for post-copy (KVM, Xen).
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RQ2 – Can live migration scheduling be improved using Markov Decision Processes?

Result: We implemented RISULM using Markov decision processes (MDP) to decide when and

where to migrate VMs. We compared the performance of RISULM against the native OpenStack

filter, MLDO, and LBFT approaches. Results show that RISULM can reduce VM migration fail-

ures by 23.3%, migration time by 74%, and VM downtime by 21%, whereas MLDO can reduce

migration failure only by 14.6%, migration time by 63% and downtime by 13%. Also, LBFT can

reduce migration failures only by 10.2%, migration time by 55% and downtime by 11%, using

post-copy KVM combination.
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1.2 Concepts and Definitions

This section provides brief summaries of concepts and definitions, that relate to our research work.

Cloud Computing: (Qian et al., 2009), the origin of cloud computing can be traced back to the

following prediction made in 1961 by John McCarthy : “If computers of the kind I have advocated

become the computers of the future, then computing may someday be organized as a public utility

just as the telephone system is a public utility. The computer utility could become the basis of a

new and important industry.”

Earl et al. (Erl et al., 2013) define cloud computing as “A specialized form of distributed com-

puting, which introduces utilization models for remotely provisioning scalable and measured re-

sources.”

On-premises: IT resources (utilities) that are locally available on the hosting enterprise (premises).

It is mutually exclusive to cloud computing resources (utilities).

Public Cloud: Cloud infrastructure whereby resources or utilities are made publicly available over

the Internet.

Private Cloud: Cloud infrastructure whereby resources or utilities are made privately available

only to particular organizations and are not made available to the entire Internet.

Community Cloud: Cloud infrastructure whereby resources or utilities are made available to a

group of organizations that form a community with common concerns.

Hybrid Cloud: A combination of both private and public clouds. Here organizations choose what

to share over the Internet and what to make private.

Vertical Scaling: Increasing or decreasing the capacity of an existing commodity such as hardware

or software, by adding or reducing its computational power.

Horizontal Scaling: Adding or removing hardware nodes in a cluster to increase or reduce its

capacity.

Open Source Software: The source code of a computer program that is made publicly available

with a license that allow users to access, study, and enhance. Whereas, enhanced works might not

be distributed freely.

Node: A physical computer also referred to as Host, in which VMs are managed i.e., created,

hosted, etc.

Latency: Network latency refers to the time delay data packet takes to go from one Node to another.

datacenter: A computer facility center where pools of storage, network, compute and associated

components are hosted.
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Kernel-based Virtual Machine (KVM): A full virtualization infrastructure that turns the Linux

kernel into an hypervisor.

IaaS: Infrastructure as a Service, provides users with virtualized computing utilities, such as an

entire datacenter over the Internet, or a pool of VMs. Openstack clouds are examples of IaaS.

PaaS: Platform as a Service enables users to deploy or manage their applications. It hides the

complexity of the underlying virtualized severs from users. An example of PaaS is Microsoft

Azure.

SaaS: Software as a Service enables users to have access to all the functionalities of a conventional

software applications through a web portal. Users can use this software on a pay-as-yo-go bases.

An example of SaaS is GMAIL.

Hypervisor: A hypervisor also known as Virtual Machine Monitor (VMM) is a piece of hardware,

firmware, or a computer software, that enables virtual machine management such as creating, run-

ning, live migrating, and deleting virtual machines.

Virtualization: Virtualization is the abstraction of pools of compute resources. The abstracted

resources are represented as instances of virtual machines (VMs) or containers. Virtualization is a

key technology of cloud computing. A key benefit of Virtualization is the isolation; each VM is

isolated from the physical system of the host and from other virtualized machines. Different types

of server virtualization can be implemented in a cloud environment:

• Full Virtualization virtual machines running on the guest OS are completely isolated and

simulates the entire underlying hardware;

• Partial Virtualization allows a portion of the underlying hardware to be simulated. Conse-

quentially, some guest applications might required modifications so as to function properly

in the virtualized environments;

• Paravirtualizaiton the guest OS is recompiled before it is installed inside a virtualized en-

vironment, in order to achieve the enhancement of virtualization. Whenever the guest OS

issues a call to the hardware, it is substituted instead with calls to the VMM;

• Hardware-assisted virtualization a platform virtualization, which provides full virtualization

with the help of the underlying hardware capabilities, and finally,

• OS-level Virtualization no hypervisor is needed for this type of virtualization. The host OS

has virtualization capabilities that allow him to play the role of an hypervisor.
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1.3 Thesis Plan

The rest of this thesis is organized as follows. In Chapter 2 we review the related literature and

in Chapter 3 we give a general overview of OpenStack and live migration in OpenStack cloud.

In chapter 5, we describe the Methodology used in this study and explain how we implemented

RISULM. In Chapter 6 we discuss the results of our case study that aimed at evaluating the effec-

tiveness of our proposed solution. In chapter 7 we present a summary of our work and outlines

some avenues for future works.
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CHAPTER 2 LITERATURE REVIEW

Several works on live migration, using different types of hypervisors (such as KVM, QEMU, Xen

etc.) exist in the literature. Some of these works have proposed models to predict the performance

of live migration operations, and mechanisms to optimize migration time. In this section, we

discuss works that are closely related to our research direction.

2.1 Live migration in Cloud Environment

(Biswas et al., 2016) investigated performance issues caused by improper resource management,

during live migration in Openstack. To conduct their study, the authors implemented a transatlantic

optic fiber network, and performed post-copy live migration of VMs, using KVM in OpenStack.

Memory intensive applications were running in the migrated VMs during the experiment. Through

these experiments, they observed that specific VM memory size patterns, under loaded or idle

conditions, can influence both the total migration time and the network data transfer rate. They

also observed that the network distance has no significant effect on the downtime of the migrated

VM. Similar to this study, our proposed approach RISULM uses VM size, CPU, Network, and

workload characteristics to predict failures prior to the migration of VMs. However, during our

experimentation, we considered both CPU and memory intensive applications, while this previous

work considered only memory intensive applications. Also, we are able to predict where and when

to migrate the VMs.

(Bunyakitanon et Peng, 2014) investigated the possibility of automating the live migration of VMs

in a cloud environment. A mechanisms that can significantly improve the load balancing of VMs

in a datacenter. The authors implemented Push and Pull Hybrid strategies, capable of identifying

heavy loaded and less-loaded Nodes in a datacenter, based on the characteristics of the Nodes.

They claim that using these strategies, system administrators will be able to automatically decide

on which VM to live migrate, and where to migrate the VM (the destination Node).

To evaluate their proposed strategies, the authors performed several migration attempts and mea-

sured the response time of the migrated VMs. They report that the response time of migrated

VMs is not affected by the workload being executed in the VM. A result that is not confirmed by

our study. In fact, we observed that workload characteristics can help predict VM live migration

failures. Nevertheless, they were able to validate their findings both through simulation and on a

testbed of workloads running in VMs created by both KVM and Xen. The VMs created with Xen

had better response times, while the number of migration attempts was lower for VMs created with
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KVM.

(Gustafsson, 2013) proposes a technique to reduce the total migration time of VMs, during live

migration operations.

The proposed techniques is based on a strategy that consists in sending only a subset of data that

are critical over the network. The remainder of the data is available through the shared storage

location.To assess the effectiveness of their proposed approach, the author implemented several

Linux benchmarks and performed VM migrations in pre-copy mode. The migrated VMs were

created using Xen.

One average, their proposed approach could reduce the total migration time by 40.48 seconds,

which was a 44% reduction of the total migration time. This approach is however limited to the Xen

hypervisor and implements only the pre-copy algorithm, whereas, our approach (i.e., RISULM)

implements both the pre- and post-copy algorithms on Xen and KVM hypervisors. Moreover,

results show that RISULM can achieve a better performance (in terms of total migration time) on

Xen, than their proposed approach.

(Liaqat et al., 2016) discusses issues related to memory transfer during live migration.

They propose to assign adaptive priorities to pages during VM live migrations, based on system, ap-

plication, and service demands. They categorized VM memory pages into several classes (depend-

ing on the type of the pages) and assigned different priorities to the classes. They also suggested

the use of scheduling algorithms, such as round robin, to assign time-slots to each page to transfer.

However, this work is mostly conceptual and no concrete implementation has been provided yet.

2.2 Performance Modeling of Concurrent Live Migration

(Kikuchi et Matsumoto, 2011) addresses the problem of multi-tenant concurrent live migration of

VMs in the cloud, which may result in spikes and–or outbursts that can degrade the performance

of VMs.

The authors propose a performance model, which evaluates parallel operations of VMs live mi-

gration in datacenters. This model uses PRISM (“a probabilistic model checker”), which enables

the performance model to derive the verification results as probability values and not as parameter

values. This probability values makes it easier for cloud system administrators to determine their

level of confidence before conducting live migration operations. Moreover, because the verifica-

tion results are obtained from a model checker, it is not necessary to re-run the experiments several

times, to obtain the probabilistic results for a given level of confidence.

The authors were able verify the PRISM language properties regarding the performance of live
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migration using their proposed model.

Results suggest that VMs have high chances to hang during live migration when multiple sender

servers target a single receiver, due to the delays incurred by the processing of concurrent live

migrations at the receiver side.In the future, we plan to verify RISULM using formal verification

techniques.

2.3 Prediction on Live Migration

(Arif et al., 2016) investigated live migration operations in Wide Area Networks (WAN) and ob-

served that, although several approaches have been proposed to reduce downtime during live mi-

gration, none have considered the case of VM migrations through a WAN.

To help fill this gap in the literature, they designed MLDO; a Machine Learning based Downtime

Optimization approach that uses predictive mechanisms to estimate the downtime of VMs during

live migration operations over WAN networks. The input of MLDO are system’s parameters (e.g.,

CPU, RAM, Network, and the load conditions of the machines). Our approach RISULM also uses

these parameters. MLDO has two complementary modules: a monitoring and a processing module.

Similarly to MLDO, RISULM also rely on two complementary models to make its decisions.

The monitoring module of MLDO collects data about changes occurring in the system (both in

physical and virtual machines). These data are used by the processing module to train classifiers

(e.g., the c4.5 algorithm) that are used to generate VM migration decisions. Using MLDO, the

authors were able to reduce downtime by 15%, during VM migration. In this thesis, in addition to

minimizing VM downtime, we also aim to reduce the migration time. In our analysis, we imple-

ment and compare the performance of RISULM with that of MLDO.

(Li et Wu, 2016) investigated load balancing mechanisms and proposed LBFT; a Load-Balancing

and Fault Tolerance Strategy that can help stakeholders decide about when to migrate a VM. Their

proposed strategy consists in monitoring resource usages, especially the patterns at which memory

is accessed by the workloads running on the nodes; in order to derive threshold values that can

help identify busy nodes that should be migrated to balance the workload in the cloud environment.

Similarly to LBFT, our approach also monitors the system to know which nodes are less busy, and

hence could receive more VMs.

The authors conducted a series of experiments to assess the effectiveness of their proposed ap-

proach, and concluded that LBFT can accurately predict migration time in 90% of cases, saving

between 35% to 50% of migration cost, in comparison to a random strategy. In this thesis, we

compare the performance of RISULM against the performance of LBFT.
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(Nathan et al., 2015) investigate factors that affect live migration in cloud environments, and which

they claim have been neglected by prior works.

They propose a model to predict VMs live migration time that uses both KVM and Xen hypervisors,

and the following three parameters: the size of the working set that is writable, the amount of pages

that the skip technique can be applied to, the correlation between the amount of skipped pages with

respect to page dirty rate, and the rate at which pages are transferred. The built models containing

different combinations of the aforementioned parameters and compare their performance on both

KVM and Xen. The results obtained on 53 workloads show that on average, their proposed models

can predict VM migration times with an error of 43 secs for KVM and 112 secs for Xen. Their

results also show that KVM performs better than Xen in terms of live migration time. Our work

goes further beyond this previous work, and use both pre-copy and post-copy algorithms on live

migration of VMs created using KVM and Xen. We also report better results, in terms of migration

time and downtime reduction.

(Akoush et al., 2010) investigated parameters that affects live migration time of VMs and pro-

posed two models that system administrators can use to predict VMs migration time: HIST (His-

tory Based Page Dirty Rate), and AVG (average page dirty rate). For the AVG model, page dirty

rates are assumed to be constant for all the VMs. The proposed models were tested under several

conditions, and results show that, in certain conditions, the AVG model can become impractical.

Results also show that both AVG and HIST can predict the total migration time of VMs with a 90%

accuracy, both on synthesized and real-world workloads. The proposed models (HIST, AVG) are

tied to Xen because they use built-in functions of Xen. To over come this limitation, our proposed

model RISULM uses different types of hypervisors and both pre-, and post-copy algorithms.

(Barrett et al., 2011) investigated scheduling issues in scientific workflow problems, which often

require extensive computational power, and generate significant data during experiments. Efficient

schedulers are required for workflow based applications, because the multiple dependencies that

exist among the tasks make their planning difficult. For example, all children tasks must only start

when their parents are completed.

The authors proposed a novel cloud workflow scheduling system, which is composed of three

main parts: Scheduling Engine (consisting of the genetic algorithm – solver Agents), Work-flow

Management System (consisting of a user interface, a planner and an Executor) and the Cloud (uses

GoGrid on Amazon EC2).

This system uses a Markov Decision Process (MDP) in the workflow execution process. The MDP

iteratively monitors the cloud base system (GoGrid) to make decisions. Our approach also uses an
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MDP to decide about when and where to live migrate VMs.

To evaluate their proposed scheduling system, the authors used Cloudsim, which is a cloud based

simulator. Results suggest that their proposed system can choose optimally from a set of workflow

schedules, even though, it initially incur high cost because it assigns the same probability to every

actions. Which results in time being wasted exploring less optimal actions, which are penalized.

Our RISULM implementation addresses this limitation by ensuring that no extreme probability

value (e.g., 0 or 1) is assigned to a node. For each node, we have a possibility of the VM not to

migrate, which implies that it can stay in the same node with a certain probability.
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CHAPTER 3 OPENSTACK CLOUD

3.1 OpenStack Overview

OpenStack is an open source operating system for cloud computing, which was initiated by the

National Aeronautics and Space Administration (NASA). In 2010, Rackspace Cloud joined the

project and together they created the first release of OpenStack. Since then, OpenStack has grown

into a mature project, supported by the OpenStack Foundation, with over 1M lines-of-code and

over 94K commits mostly writing in python. OpenStack is freely available under Apache license

2.0. Releases of OpenStack are named using alphabetical order from Austin “A” to Newton “N”

etc. Most Linux distributions support OpenStack, which is why most end users prefer OpenStack,

since they can easily install and manage the platform on their preferred Linux distribution that they

are already familiar with.

In July 2011, OpenStack was adopted by Ubuntu developers. Consequently, Ubuntu Linux became

the default reference implementation of OpenStack, with rich sets of documentations than any other

Linux distribution. That is why in our study, we are using OpenStack on Ubuntu.

OpenStack clouds provide Infrastructure-as-a-Service (IaaS) to users (see Figure3.1). These IaaS

are composed of pools of compute, storage, and networking resources. Recently, the Technical

Committee of the OpenStack Foundation (OSF), suggested changes in the mission statement that

reads:

“To produce the ubiquitous Open Source Cloud Computing platform that enables building interop-

erability public and private clouds regardless of size, by being simple to implement and massively

scalable while serving the cloud users’ needs.” 1

OpenStack aims at implementing scalable and rich sets of features; this is achieved through the con-

tributions of dedicated cloud computing experts and software developers from around the world.

OpenStack IaaS offer a variety of services. Each service can be accessed through an application

programming interface (API) that facilitates its integration. In Table 3.1, we present the main ser-

vices, project name and description that forms an OpenStack IaaS as defined by the OpenStack

Foundation and in Figure 3.2 we present the logical architectural design of OpenStack2.

1“https://governance.openstack.org/resolutions/20160106-mission-amendment.html”
2http://docs.openstack.org/admin-guide/common/get-started-logical-architecture.html
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Among the available open source cloud IaaS that exist, such as: OpenStack, OpenNebula, Euca-

lyptus, Apache CloudStack, etc., OpenStack happens to be the IaaS with the widest coverage in

terms of multiple services (projects) covering the majority of areas in cloud computing. It has a

distributed architecture and it is mostly used by large commercial enterprises. The source code

of OpenStack is mostly written in one language; Python, which are controlled/managed through

APIs (Ismaeel et al., 2015). OpenStack supports multiple hypervisors suck as KVM, Xen, QEMU,

VMware, Hyper-V, etc., and containers (Bell et al., 2013)(OpenStack, 2016).

As part of our study objectives, we are interested in comparing the performance of hypervisors that

uses both the pre- and post-copy algorithms for live migration. We are also interested in having a

scalable cloud infrastructure that allows us to add and remove services, and to modify the source

code (in order to implement our proposed approach). For all these reasons, OpenStack is the best

candidate for our study.

Figure 3.1 On-premises vs. Cloud Service Models Showing Separation of Responsibilities
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Table 3.1 OpenStack services and projects described

Service Project
Name

Description

Dashboard Horizon Provides a web portal that facilitates interactions with
other services in the stack. Users can create, lunch, or
migrate VM instances.

Compute Nova The principal service of the stack that manages pools of
compute resources such as instances in the IaaS stack en-
vironment. It is responsible for scheduling, spawning, pro-
visioning resources and terminating virtual machines on
demand.

Networking Neutron The network service of the IaaS. It is responsible for pro-
viding Network-as-a-Service to other services in the stack.
Users can define and customize their network with neutron
using its API.

Objects Storage Swift Provides storage and retrieval of unstructured objects in
the stack, using a RESTful API. It supports replication and
is highly scalable.

Block Storage Enables instances to use block storage that are persistent
in the stack. It has a pluggable architecture that manages
block storage devices in the stack.

Identity service Keystone Enables authentication and authorization as a service for
other services in the stack.

Image service Glance Provides image storage and retrieval to other services in
the stack. The Compute service uses the Image service
when provisioning an instance.

Telemetry Ceilometer Enables the stack to monitor usages and activities of other
services. It is principally use for billing but also provides
benchmarking and statistics about the performance of the
stack .
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Figure 3.2 The OpenStack Logical Architecture, courtesy of the OpenStack Foundation.3

3.2 Live Migration in OpenStack Cloud

OpenStack fully supports live migration. In this section, we briefly explain how live migration is

achieved in OpenStack cloud environments using both the pre- and post-copy algorithm as imple-

mented in KVM and Xen hypervisors. First and foremost, for live migration to work, one needs

a minimum of two physical machines. One of these physical machines should play the role of

controller and there should be at least one compute node in the cluster. Moreover, all the physical

machines that form the cluster (the computes and controller Nodes) should have identical CPUs,

for compatibility purpose.

OpenStack live migration supports pre-copy live migration for all releases and post-copy live mi-

gration for releases starting from Mitaka and beyond. In our study we use both the pre-copy and

post-copy, for this reason, we chose the Mitaka release of OpenStack that supports both pre- and

post-copy algorithm. We setup Openstack on a cluster of identical machines.

3Source:"https://docs.openstack.org/arch-design/design.html"

"https://docs.openstack.org/arch-design/design.html"
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Figure 3.3 and Figure 3.4 present the steps of the pre-copy and post-copy algorithms that are exe-

cuted during a live migration of VM in OpenStack.

In Figure 3.5 we also show the life-cycle of VMs during the migration, i.e., the possible states of

the VMs. Later on in this work, we will explain how we used these states to compute the migration

and downtime of a VM.

OpenStack supports a variety of hypervisors as shown in Figure 3.6. However, not all hypervisors

supports both the pre- and post-copy algorithm for live migration. Therefore, in this study, since

we want to experiment on hypervisors that supports both the pre- and post-copy algorithm on live

migration, we select the following hypervisors: KVM - Kernel-based Virtual Machine; and Xen
(using libvirt) for paravirtualization.

Figure 3.3 The live migration pre-copy algorithm.
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Figure 3.4 The live migration post-copy algorithm.

.

Figure 3.5 The possible states of a VM during a Live Migration
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.

Figure 3.6 Matrix – Cross-section of Hypervisor supported by OpenStack Nova Live Migration.
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CHAPTER 4 LEARNING MODELS

This chapter provides background information about the models used in this thesis.

4.1 Supervised and Reinforcement Learning Models

In this thesis, we propose a novel model (i.e., RISULM), which is made up of both a supervised

model (random forests) and a Reinforcement learning model (Markov decision process). In this

section, we will briefly explain how these models work and how we implemented them.

Supervised learning models regroup two main categories of algorithms: classification and regres-

sion algorithms. classification algorithms uses dataset that have categorical outcome values, that

is, where the data can be partitioned into specific classes. On the other hand, regression algorithms

uses dataset that have continuous outcome (output) value. The outcome of our dataset is either

“Success” or “Fail”, which is why we use a classification algorithm (i.e., Random Forests) instead

of a regression algorithm.

4.1.1 Classification Algorithm

To answer our first research question, i.e., RQ1: – Can live migration failures be accurately pre-

dicted?, we selected the following machine learning techniques : Naive Bayes (NB), K - Nearest

Neighbor (KNN with Euclidean distance), and Random Forests (RF). We choose these techniques

because they have been used in previous studies from the literature to build predictive models

(Caruana et Niculescu-Mizil, 2006), (Blaser et Fryzlewicz, 2016), (De Poalo et Howard, 2014),

(Xiong et al., 2012). We compared the performance of these algorithms and observed that RF

consistently outperforms NB and KNN on our data set. Hence, we selected RF to be included in

RISULM. In the following, we provide a brief description of RF models.

Random Forest Models

Random Forests (RF) uses a large number of classification trees, also known as decision trees

(DTs) to make its classification decisions. These DTs are nourished by the observations and the

most likely outcome from the DTs’s observation is then passed as an outcome. When there is a new

observation, it is fed to the trees that makes up the forest, each tree votes for a class (classification).

The forest chooses the classification with the majority of votes among all the trees that forms the

forest.
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Each tree that builds up into a forests grows as follows: for a training set of size N, where N is a

subset of the population P, (we use 80% : 20%, N=80% ), the training set is sampled at random

with replacement. The tree is then grow with the sample of N. For M input variables there exist m

such that m�M, at each node, with the m variables randomly selected from M. The optimum split

for m is the same that is used to split the node. Moreover, as the forest grows, m is held constant

and each tree grows to its possible limit without pruning. Additionally, if correlation exist between

any two trees, this will increase the error rate of the forest as it grow.

We implemented the k-fold cross-validation within the random forest, for k=10. The basic principle

of cross validation is explained below.

• Split the dataset P into k-folds randomly, (our case, k=10)

• With each of the k folds in P, build a model using (k - 1 = 9) folds of P. Then, use the kth fold

to test the model.

• keep track of each error as you do predictions.

• The previous steps are repeated until all k-fold are used as test set.

• The performance metric of the model is determined by the average error of k, which is known

as cross-validation error.

The algorithm of our Rf model presented on Algorithm 1, takes the dataset and splits it into two

(80 : 20), keeps track of the current state of resource utilization while the RF classifier builds the

model until the stopping conditions are met. Since the models keeps running as long as nodes have

VMs ready for live migration, the current utilization line 25 will always be above THD, therefore,

the loops continue, however, if all Nodes are idle and the THD value becomes greater than the

current utilization, the RF model stops. The outcome of our Rf model is Boolean (Yes or NO).

The algorithm is summarized in Figure 4.1, were we show an example of how the dataset is split

(training set over testing set), implementing the five steps of our algorithm on the training set

and after, computing the confusion metrics, accuracy and prediction. We use the Python package

(Buitinck et al., 2013) to build our RF model.
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Algorithm 1: Supervised_Learning(dataset)
Result: Migrate VMs at the optimum time (when)
Input :

1 Extract the environmental variables that describe the state of the systems
Output :

2 migration time, downtime

Local variable:
3 CPU ← sum of all current cpu utilization
4 RAM← sum of all current RAM utilization
5 BW ← sum of all current network utilization
6 V Mz← size of VMs to be migrated
7 bestTime← t0
8 currentTime← track_current_system_time
9 T HD← minVal

10 outcome← null
11 current_utilization← med(RAM,CPU,BW,V Mz)
12 repeat
13 trainSet, testSet← split_8020(datasetP)
14 model← splitK f oldRandom(trainSet)
15 per f ormMetrics← (crossValidErr)
16 con f usMatrics(testSet)
17 acc,outO f Bag← compute(con f usMatrics)
18 while model do
19 nn
20 for values of RAM, CPU, BW, VMz do
21 newFeatures← r f (RAM,CPU,BW,V Mz)
22 predictModel← (newFeatures,acc,outO f Bag)
23 outcome← predictModel
24 if outcome then

/* Migrate VMs here */
25 migrate V Ms
26 bestTime← currentTime
27 else
28 continue
29 end
30 end
31 end
32 until current_utilization < T HD
33 return bestTime
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Figure 4.1 Supervised Learning Model
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4.1.2 Reinforcement Learning : Markov Decision Process (MDP)

To answer our second research question, i.e., RQ2 – Can live migration scheduling be improved

using Markov Decision Processes?, we implemented a Reinforcement learning scheduler based on

Markov decision processes (MDP). This MDP technique uses the current state of the system to

make decisions. It learns over time as the state of the system changes, for example in Figure 4.2,

we show an MDP with five nodes (Nodes). These nodes represent our system. Suppose that one

wants to migrate a VM that is hosted in N1, the MDP will have to learn the optimal (best) policy

first. That is, each time it takes an action, it assigns a probability and reward to it. If the migration

fails the VM is rolled back to the node and we represent this with a loop back to the node with a

low probability (0.1), since we don’t encourages these types of actions, but can’t avoid it as well.

On the other hand, if the migration succeeds, we assign a probability and a reward to that action,

depending on if we encourage this type of action or penalizes it. In some cases, we had equal

probability but rewarded them differently, based on the current observed conditions of the system.

If the VM goes to a node that is more busy or having more loads that the other nodes, we penalize

this action. For example, N1 to N4 has a negative reward but equal provability with N1, N3 and N5.

After policy iteration, N4 will be avoided and N2 preferred based on that specific state of the system.

The MDP hence learn the best path, even though the system changes over time. In subsequent runs,

the MDP will reads the current state of the system and make timely decision without re-learning

the path over and over.

An MDP is defined as a tuple 〈S , A ,P , R, γ〉 where,

• S represents our set of finite states,

• A represents our set of finite actions,

• P represents a transitional probability function moving from state s to state s’ when action

a is taken,

• R represents an immediate reward that is obtained when action a is taken,

• γ represents a discounting, which can be finite or infinite. This actually determines our

termination criteria.

• π represents a policy that maps a state s to an action a. Our goal using MDP is to find optimal

policy that maximizes reward, as we iterate through the policies.

Our implementation of MDP uses policy iteration as shown in Algorithm 2. The purpose here is

to return the optimal policy, which is the best time to migrate a VM and the available destination.
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The process continues until there are no more changes in the system state, line 11 to 26. The most

subtle part of policy iteration is line 13, we will not go into the detail here. We loop from line 14,

16 to 24 and 25 observing if there is a change of policy, in the end, we return the optimal policy at

line 28. The simplified flowchart of our MDP is shown in Figure 4.3.
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Figure 4.2 MDP use-case live migration.

Figure 4.3 Flowchart of our MDP approach.
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Algorithm 2: Policy_Iteration(S ,A ,P,R,γ)

Input :
1 Extract the environmental variables that describe the current state of the systems

2 S ←{s1,s2, . . . ,sn}
3 A ←{a1,a2, . . . ,an}
4 P ← P(s′|s,a)
5 R← R(s,a,s′)

6 γ ∈ ]−1,0[

Output :
7 optimal policy π∗

Local variable:
8 action_array π[S]

9 real_array V [S]

10 π∗← π ′

11 repeat
12 sysChange← False

13 V [S] = ∑s′∈S P(s′|s,π[s])(R(s,a,s′)+ γV [s′])

14 for each s ∈S do
15 Q_global← V [s]

16 for each a ∈A do
17 Qs,a = ∑s′∈S P(s′|s,a)(R(s,a,s′)+ γV [s′])

18 if Qs,a > Qglobal then
19 π[s]← a

20 Qglobal ←Qs,a

21 sysChange← True

22 else

23 end
24 end
25 end
26 until (sysChange = False)

27

28 return π∗
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CHAPTER 5 METHODOLOGY AND DESIGN

5.1 Context and Problem

Previous works have shown that migration time can be predicted (Akoush et al., 2010) and down-

time optimized (Mansour et al., 2016), (Li et Wu, 2016) during live migration, however, none of

the available approaches have attempted to predict if a live migration would fail before migrating

the VM. Moreover, to the best of our knowledge, none of the previous studies have experimented

with both pre-copy, and post-copy algorithms and different types of hypervisors. The goal of this

empirical study is to propose a novel approach, which uses supervised and reinforcement learning

techniques that rely on the current environmental state of the system, to predict the optimal time

and node, where a VM should be migrated to.

5.2 Study Definition and Design

Our empirical study aims at assessing the effectiveness of our proposed approach RISULM. We will

compare the results of RISULM, with those of previous approach from the literature, i.e., MLDO

and LBFT, which were proposed to predict migration time and optimize migration downtime. We

will compare the performance of these approaches for both the pre-copy and post-copy algorithms,

using KVM and Xen hypervisors. In the following, we introduce the specific research questions

that were investigated in this study and we describe the experimental setup used to answer the

research questions.

5.2.1 Research Questions

This thesis answers the following research questions:

(RQ1) Can live migration failures be accurately predicted?

(RQ2) Can live migration scheduling be improved using Markov Decision Processes?
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Figure 5.1 Our approach, showing both models with Fault Injection Framework
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5.2.2 Experimental Setup

To answer these research questions, we designed and conducted two sets of experiments. In each

set of the experiment, we compared the result of our RISULM, MLDO, and LBFT against that

of OpenStack using the default schedulers. We used a fault injection framework (Xiaoyong et al.,

2014) for OpenStack, which we customized, to randomly select one of the compute nodes and inject

faults to the nodes, which will make the node to degrade up to the point of shunting down. This

way we examine how our model can simulate a real world scenario, when a node becomes faulty

or inconsistent in a cluster or a datacenter. In our configurations, we implemented our models in a

cluster of five nodes consisting of a controller node, which is also the NFS server, and four compute

nodes. We used the same topology for both experiments with 1-Controller node and 4-Compute

nodes, see Figure 5.2. Our configuration allows libvirt to listen to connections on the TCP port.

All our nodes have two network interface cards (NIC), one for the LAN and the other for VMs

via Neutron. It is important an recommended by OpenStack to have separate network domain for

VMs and nodes, when using neutron. This way, with Neutron, we can configure our Nodes on the

same subnet mask, for example in private class C, and our VMs on a different network for example

private class A. In our approach, we use the OpenStack (devstack) Mitaka release. We provide all

the configurations and scripts used in this study, in our on-line bit bucket repository 1.

To connect all our nodes together, we used a local area network (LAN) with a high bandwidth

switch (1 Gbits/s) that connects to the internet. The specifications of our system (all nodes have the

same specifications) is as follows:

• CPU: Intel R© Xeon R© Processor E5-2690 (20M Cache, 2.90 GHz, 8.00 GTs Intel R© QPI)

• RAM: 128GB

• QEMU version 2.6.0

• Libvirt v1.3.2

• Nova (Liberty) 12.0.5, with python-novaclient 2.30.2

• Hard Disk Drive (HDD) SATA : 2TB, western digital RED.

• Ubuntu 14.04

1“https://bitbucket.org/foundjem/thesis/”
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Table 5.1 Flavors used in this studies.

Flavor VCPUs Disk(in GB) RAM(in MB)
m1.tiny (t) 1 10 1024
m1.small (s) 1 20 2048
m1.medium (m) 2 40 4096
m1.large (l) 4 80 8192
m1.xlarge (xl) 8 160 16384

Figure 5.2 Our experimental setup and configuration

Experiment 1

In the first set of experiments which aims to investigate if we can accurately predict failures (using

our random Forests model) when live migrating VMs, we first performed two sets of runs with the

fault injection framework. A first run with OpenStack schedulers as shown in Figure 5.3 and the

second with RISULM (implementing random forests), MLDO and LBFT models. We compare

the result of these models against those of OpenStack schedulers and reports their accuracy in

Figures: 6.1, 6.13, 6.14 6.15, and 6.16. For the p-values with cliff’s delta effect sizes, we show our

results in Tables 5.4, 5.5 and 5.6.
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Figure 5.3 OpenStack Experimental Setup

Experiment 2

Our second set of experiments (shown in Figure 5.4), aims at investigating if an MDP can improve

live migration scheduling of VMs. We implemented RISULM with and without the fault injection

framework (FF). We observed the behavior of RISULM and computed its accuracy. Then, we also

introduced both the MLDO and LBFT models and observed their behaviors and computed their

accuracy as well. Our results are shown in Figures: 6.13, 6.14, 6.15 and 6.16.
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Figure 5.4 RISULM Conceptual Architecture, showing input models and Output results
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Figure 5.5 Implementation of our proposed system, Using different models and hypervisors.
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5.2.3 Implementation of Models

We implemented RISULM using both the random forest and an MDP algorithm in python. RISULM

is a hybrid predictive model that works as a scheduler for the live migration of VMs in OpenStack

cloud. Figure 5.4 shows the architectural design of RISULM, describing how it is implemented in

OpenStack cloud. We have implemented RISULM in a unified framework, consisting of a random

forest model, an MDP model, a fault framework (FF) and the native OpenStack IaaS, with possibil-

ities for including other models, such as MLDO, LBFT, etc. This framework allows us to compare

the performance of these models against the performance of the native OpenStack scheduler. More-

over, each model in our framework (such as the RF model, the MDP-model, MLDO, or LBFT) can

be used separately to measure its performance against native OpenStack scheduler. Our implemen-

tation includes all four combinations of Pre-copy (KVM), Post-Copy(KVM), Pre-Copy(Xen), and

Post-Copy(Xen) algorithms.

Currently, no approach exist that uses both supervised and reinforced learning model on live mi-

gration, even though machine learning have been used previously. We consider recent works in the

literature that have been tested to predict live migration with high accuracy equal to or greater than

90% and can minimize migration and downtime.

After doing a survey in the literature, we chose these two models MLDO and LBFT, to compare

our result with. MLDO and LBFT models happens to be the existing approaches in the literature,

which have been applied on live migration studies and closely relate to our approach.

We capture the state of the machines in our cloud environment, (i.e., the VM, compute and con-

troller nodes), by using Stress-ng (Casanovas et al., 2009), Unixbench (Mullerikkal et Sastri,

2015). We used iper f (Barayuga et Yu, 2015) to generate workloads on the VMs, the Controller

and Compute Nodes. Then we use bash and Python scripts with regular expressions to extract data

about the execution of migration operations and analyze them.

Therefore, immediately before we initiate a VM(s) for live migration, for example at any arbitrary

time (tn). The present state of the entire system, represented by these parameters in table 5.2 is

known by our model, which we train dynamically. If the state of the system predicts that the

live migration will not be successful, the decision to live migrate the VM will not be issued. The

outcome of RISULM (using RF model) is a Boolean value (i.e., F for failure and S for success).

We launch2 125 VMs (that is twenty five instances for each of the five flavors: Tiny, Small, Medium,

Large and xLarge) and, execute live migration with all the flavor types of VMs in our experiments.

2create VMs and keep them running on the node where they were created
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In total, we execute 5003 VMs live migration and capture the metrics values. We modified the tiny

flavor of OpenStack as shown in table 5.1, by upgrading the RAM from 512 to 1GB and the Disk

from 1 to 10GB. The minimum capacity that the Ubuntu 14.04 image used in this study can handle

is 5G, but because of the capacity of workloads that we are running on each VM, we increase the

images size of the tiny flavor from 5GB to 10GB, in this study.

Random Forests - RF model

After training and testing our models, which took about 10 min to predict live migration failures,

with all the metrics values and having over 500 data points, we could now implement RISULM

dynamically. That is, we captured the current state of the environment (system) and introduced it

into RISULM, which predicts the outcomes dynamically as the states of the system changed over

time, see Figure 4.1. Since we are observing the current state t0 of the VMs, the controller and

compute nodes to make decision if migration will be successful or not at time t1, from a source

to some destinations, where t1 - t0 gives us a window interval. We run a script that collects and

computes the systems utilization every 2(sec), we chose this time window because our real-time

prediction model takes approximately one sec to execute. Therefore, we decided to use a time that

will not overlap with the prediction time, so we double the time to give more window for prediction.

Then, we continue observing if the state of the environment (systems) if they have changed, this

would enable us to take the next action.

Markov Decision Process - MDP

Using our configuration as shown in Figure 5.2, each Node represents a node where VMs could

migrate from one node to another by applying an action. The state of the nodes at the present

moment determines which action to take. Since we are using a shared storage location (NFS),

each node is keeping track of its own environment. This way, we limit the amount of ssh client

connections to each node and VMs. That is, each node periodically monitors its state and updates

the current value to a data structure in the shared location, since we know the size of each node

and the size of the VMs each node knows how much space is available or occupied, the CPU%,

RAM%, and bandwidth currently used. The controller reads the data structure and knows which

node is ready to receive VMs and the amount of VMs it can receive, depending on its available size

at that moment. If more than one nodes are ready, the comparator decides which nodes first sent

a request and respect the priority by applying an action based of first come first save policy. Our

policy π ← 〈 V Ms, V Md , a1, r1, outcome 〉 This policy allows us to obtain a reward r1 when an

3125-VMs x 4-models(RISULM, MLDO,LBFT, OpenStack)
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action a1 is implemented during a live migration from a source V Ms to a destination node V Md , and

to keep track of the number of times that it would be successful. This is necessary to implement

reinforcement learning.

The input to our system is the immediate environment variables such as CPU% RAM% Bandwidth

etc., and we want to minimize migration time and downtime. Therefore our outputs (outcomes) are

the migration time and downtime.

π represents a policy that maps a state s to an action a. Our goal using MDP is to find optimal

policy that maximizes reward, as we do policy iteration.

Machine Learning based Downtime Optimization (MLDO) approach

This approach proposed by (Arif et al., 2016) is similar to our random forests approach as it uses a

machine learning technique to do VM live migration predictions. It implements a decision tree that

decides whether or not VM should be migrated; a binary decision. However, the implementation

is independent of our random forests approach. Also, MLDO uses the percentage utilization of

the CPU, RAM and network (BW) to train and predict whether to live migrate VMs. That is,

metrics parameters (RAM, CPU and BW) are monitored dynamically, using our setup shown in

Figure 5.2, we build a scheduler using the python package “sklearn.tree.DecisionTreeClassifier”

(Buitinck et al., 2013). We implemented the prediction algorithm proposed by Arif et al., and

computed values of the confusion metrics. We report our results in Table 6.1, which shows an

accuracy of within 92%. The key idea behind MDLO is that, it uses threshold values for all the three

metrics parameters with the CPU, RAM and BW arranged in the order of precedence, depending

on how they affect live migration, as shown in Figure 5.6. To decide on the threshold values of our

parameters, we had to run live migration several times.

Load Balance and Fault Tolerance - Strategy (LBFT)

In this implementation, we use all the five nodes in our cluster as shown in Figure 5.2, two of the

nodes are loaded with CPU and memory intensive applications, we called these two nodes “hot-

spots” that means, some of the VMs in these nodes should be migrated to the other nodes in order to

balance the work loads that the nodes are running. The main idea behind this strategy is that it uses

a threshold value (on CPU and RAM) to decide on which VM should be migrated, and where. To

decide on which node is less busy (i.e., CPU and RAM usage doesn’t exceed the threshold value),

we have implemented a shared storage (NFS) that all the nodes can access and write to.

To inject failures in the cluster, we follow the same approach as in the case of MDP. In Algorithm

3, the median values of the current resource consumption of VMs is computed regularly in, line 13,
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Figure 5.6 MLDO - decision tree using threshold values of metrics parameters to decide migration.

and based on that, and on the set of VMs (as stopping condition in line 14), we compute the cost

function and predict the migration time. This allows us to decide on the VM that should be migrate

(using the index i in line 18, 19 and 22).

We implemented Algorithm 3 proposed by (Li et Wu, 2016), at the optimal time (Topt), to migrate

the VMs. The cost function is also computed. In line 18 of the LBFT Strategy, the predictions

are computed and based on that, we computed the accuracy using the actual measured (migration)

time, predicted time of each workload and each flavor (i.e., VM type) used in this study. We also

computed the prediction error of the LBFT. We repeated the analysis for the two hypervisors (KVM

and Xen), using both pre-copy and post-copy algorithms.



38

Algorithm 3: LBFT–Strategy
Result: Migrate VMs when threshold is reached

Input :
1 Extract variables utilization that describe state of Node and running VMs

Output :
2 V Mmigrate

Local variable:
3 V MSET ←− {V M1,V M2, . . .V Mn}
4 CPU ← sum of all current cpu utilization

5 RAM← sum of all current RAM utilization

6 BW ← sum of all current network utilization

7 nodeSize← updatedNodes capacity

8 cost← t0
9 F ← null

10 index,Ta← t0
11 T hd← minVal

12 outcome← null

13 current_utilization← median(RAM,CPU,BW,V Mz)

14 while V MSET 6= /0∧ current_utilization≤ T hd do
15 foreach vm ∈ VMSET do
16 outcome← model

17 if outcome then
18 Topt ← predict(migrationTimeCost)

19 Fcost ← costFunct(costPara)

20 V MSET ←− /0

21 if Fcost > cost then
22 index← i

23 end
24 end
25 end
26 V Mmigrate←V MSET [i]

27 end
28 return V Mmigrate
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5.2.4 Choice of Metrics

We observed from our experimentations that VMs with high CPU rate, high RAM intensity work-

loads, heavy traffic on the network, high rate of dirty pages, and the size of the VM memory

(VMZISE) were more likely to cause failure of VMs during live migration operation. For ex-

ample, VMs with high rates of dirty pages failed to live migrate because the rate at which pages

were getting dirty was higher than the copy rate. However, we also observed that when the VMs

were running low RAM intensity workloads, the rate at which the pages were getting dirty was

lower than the rate at which the pages were being copied, which resulted in live migration suc-

ceeding. We investigated the outcome of VMs migrations, while varying the characteristics of the

VM and the workloads, and identified threshold values (expressed in term of percentage of usage

of the resource that is captured by the metric) beyond which live migration always fail. We used

the Spearman’s rank correlation coefficient (Spearman’s ρ , −1 6 ρ 6 1) to capture the correla-

tion among the metrics, and found that only the CPU, the RAM and the Network load were not

correlated. We therefore eliminated the other metrics that were strongly correlated.

Data Extraction

We mined the log files located at /opt/stack/logs. This location keeps an up-to date record (that

is, from the first time the stack was up running till present) of all the enabled services running

under OpenStack. This also includes the n-cpu.log files that keeps an up-to date record of VMs

(instances) management metrics, such as the time and location of the VMs when they were created,

lunched, deleted, migrated etc., all the signals captured by nova are recorded in this log file. We

also have the n-net.log for networking and the like.

Using the n-cpu.log file, we were able to extract informations about the states of VMS (instances)

that were created and executed on the Nodes during live migration operations (Libvirt, 2016). We

used a regular expression to process the log files and grep specific patterns such as "PAUSED" (see

Figure 5.7), since the logs are written in the order in which they occurred. We use this information

to create a csv file for each instance (using instance_id) with their corresponding attributes such as,

date in the Combined date-time in UTC format. We mapped the time an instance entered the stop

and copy phases from the source Node A, and links this information to the same instance and the

time when the VM Resumed (Life cycle Event) at the destination; Node B. Since this time is exact

and it is extracted from the log files, we believe that it allows us to compute the downtime of VMs

more precise, than the approach implemented by (Salfner et al., 2012), they compute the VM

downtime using information about the amount of ping messages that are lost, and consider the lost

pings as the downtime. However, this method turns out not to be an accurate measure for downtime
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because, while using the ping command on a VM that is under live migration, from source node to

destination node, there are certain intervals where the ping messages get lost whereas the VM is still

on the source node and Slafner et al. did not account for these lost ping, but consider it as the total

downtime of the VM under live migration. However, these lost pings are not due to the time when

the VM is turn off in the source node till the time it is turn on in the destination node (downtime).

Therefore, this method adds noise to the computation of downtime. In addition to computing VM

downtime, we also extracted information such as data copy rate and live migration time as shown

in Figure 5.7 etc. To gather information about the impact of VM workloads on the outcome of VM

migrations, we executed Unixbech, sysbench and stress-ng benchmarks and collected informations

on input/output write and read rate, network traffic, hard disk read/write, virtual memory rate, and

faults.

To capture the impact of the network, we used a configuration that included links with two different

speeds : 100Mbps and 1Gpbs. For the CPU%, RAM% and bandwidth, we used the i f top, top and

iper f tool to extract the percentage of RAM that each Node is using at any given time tsec, using a

regular expression. We were able to extract the total RAM%, CPU% , and bandwidth by summing

up all the individual processes that were ruining at a particular time. For example, since top tools

displays their values on columns (RAM, CPU, VIRT etc.) and rows (processes running) format,

we extract the particular column of interest and sum all the running processes and return the sum,

which we then write to the Node location of the shared memory data structure. This is updated at

regular interval, and processed in real-time by RISULM.

Figure 5.7 A cross section Log file on of Node A, in VM "PAUSE" state, during live migration.
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Figure 5.8 Failed live-migration Figure 5.9 Successful live-migration.

Effect of page dirtied rate on Live migration.
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5.2.5 Hypotheses

To answer our research questions, we formulate the following null hypotheses:

• H1
0 : There is no difference between the average downtime of VMs that are live migrated

using the OpenStack scheduler and RISULM.

• H2
0 : There is no difference between the average migration time of VMs when the live migra-

tion is performed using the OpenStack scheduler and RISULM.

• H3
0 : There is no difference between the average downtime of VMs that are live migrated

using the OpenStack scheduler and MLDO.

• H4
0 : There is no difference between the average migration time of VMs when the live migra-

tion is performed using the OpenStack scheduler and MLDO.

• H5
0 : There is no difference between the average downtime of VMs that are live migrated

using the OpenStack scheduler and LBFT.

• H6
0 : There is no difference between the average migration time of VMs when the live migra-

tion is performed using the OpenStack scheduler and LBFT.
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5.2.6 Analysis Method

We use the Mann-Whitney U test to test our null Hypotheses Hx
0 , for x ∈ {1,2, . . .6}. The Mann-

Whitney U test is a non-parametric statistical test used for assessing whether two independent

distributions have equally large values. Non-parametric statistical methods make no assumptions

about the distributions of the assessed variables. We set α to 0.05. Moreover, we consider a Mann-

Whitney test result to be statistically significant if and only if the p-value is below α . Additionally,

we compute the effect-size of the difference using Cliff’s δ (cohen 1998) (Macbeth et al., 2011),

which is also a non-parametric statistic test, effect size measure, which measures how often values

in one distribution are larger than values in another distribution. Cliff’s δ or d values lies between

[-1,1] and is considered small for 0.148 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474, and large for

d ≥ 0.474. Our results are reported in tables 5.4, 5.5, 5.4, and 5.6. We report only significant

p-values for our studies.

Furthermore, we used the Spearman’s rank correlation coefficient to capture the correlation among

our different variables. This a non-parametric measure of rank correlation that measures statistical

dependence between the ranking of two variables. It assesses how well the relationship between

two variables can be described using a monotonic function. Mukaka et al. explain how to interpret

the values of ρ (Mukaka, 2012).
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Table 5.2 Metrics used in our study to predict VMs live migration and the rationales.

Metrics of Our Study
Metrics Source Node Destination Node Virtual Machine
RAM% Host running memory

intensive applications
are likely to fail during
live migration opera-
tions in OpenStack.

The memory state of
the destination machine
can determine if the
VM will success or not
and also, how long it
will take to complete
migration.

VMSIZE, running
memory intensive
application have high
changes of failure, that
is directly proportional
to the size of the VM.

CPU% Intensive workload
may have scheduling
problem and delay live
migration.

Intensive workload on
the destination, will
prolong migration time.

vCPU, intensive appli-
cations running on a
live migrated VM may
disrupt it state 4

Network% Bandwidth available
during live migration
might affects downtime
and migration time.

Bandwidth congestion
of destination node
might affects live
migration time and
downtime.

Bandwidth available
for VM, might affects
the applications run-
ning on it ans might
also affects downtime
and migration time.

Page Dirtying
Rate %

Higher rate have high
chances of failure, dur-
ing iterative pre-copy
phase.5

However, this might in-
crease migration time
as more pages get dirt-
ied in Node A.

Pages copied until the
rate of copying be-
comes more than rate
of dirtying. This might
affects stopping condi-
tion and fails migration.

Table 5.3 Metrics used to determine live migration of VMs outcome and description.

Metrics Description
Migration Time Total time TM(sec) taken to live migrate a VM from a Node A to a

Node B. This time starts from the initialization of the VM live migration
process to the moment when the VM starts running on the Node B.

Downtime During the Stop and copy phases as explained in both the pre-, and post-
copy algorithms, refers to the time when the VM is suspended in Node
A and resumes on Node B. For optimal operation we need to keep this
time to its minimal.
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Table 5.4 p-value and cliff’s-δ showing results of significant p-values for Migration time,
RISULM against OpenStack Scheduler with different hypervisors and algorithms.

Flavors Pre-Copy KVM Post-Copy KVM Pre-Copy Xen Post-Copy Xen
p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ

Tiny 2.101x10−06 large 1.250x10−08 large 1.140x10−05 large 1.240x10−06 large
Small 2.123x10−06 large 1.206x10−08 large 1.310x10−05 large 1.480x10−06 large

Medium 3.148x10−06 large 1.185x10−08 large 1.515x10−05 large 1.619x10−06 large
Large 1.501x10−06 large 1.421x10−09 large 1.701x10−05 large 1.872x10−07 large

xLarge 1.731x10−06 large 1.578x10−09 large 1.813x10−05 large 1.990x10−07 large

Table 5.5 p-value and cliff’s-δ showing results of significant p-values for Migration time, MLDO
against OpenStack Scheduler with different hypervisors and algorithms.

Flavors Pre-Copy KVM Post-Copy KVM Pre-Copy Xen Post-Copy Xen
p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ

Tiny 2.250x10−05 large 2.101x10−07 large 4.740x10−05 large 2.211x10−06 large
Small 2.320x10−05 large 2.232x10−07 large 4.940x10−05 large 2.275x10−06 large

Medium 1.115x10−05 large 2.341x10−07 large 4.995x10−05 large 2.104x10−06 large
Large 1.553x10−06 large 2.481x10−08 large 5.142x10−05 large 1.117x10−06 large

xLarge 1.866x10−06 large 2.663x10−08 large 5.013x10−05 large 1.654x10−06 large

Table 5.6 p-value and cliff’s-δ showing results of significant p-values for Migration time, LBFT
against OpenStack Scheduler with different hypervisors and algorithms.

Flavors Pre-Copy KVM Post-Copy KVM Pre-Copy Xen Post-Copy Xen
p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ

Tiny 4.343x10−04 Medium 4.376x10−06 large 4.401x10−04 Medium 4.248x10−05 large
Small 4.305x10−04 Medium 4.310x10−06 large 4.521x10−04 Medium 4.534x10−05 large

Medium 2.535x10−04 Medium 2.485x10−06 large 2.745x10−04 Medium 4.618x10−05 large
Large 2.901x10−05 large 2.898x10−07 large 2.894x10−05 large 4.957x10−06 large

xLarge 2.881x10−05 large 2.878x10−07 large 2.713x10−05 large 4.597x10−06 large
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Table 5.7 p-value and cliff’s-δ showing Downtime results of significant p-values for RISULM
against OpenStack with KVM, Xen, using pre-, and post-copy algorithm.

Flavors Pre-Copy KVM Post-Copy KVM Pre-Copy Xen Post-Copy Xen
p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ

Tiny 8.341x10−06 large 8.014x10−06 large 8.625x10−06 large 8.521x10−06 large
Small 6.224x10−06 large 6.545x10−06 large 7.332x10−06 large 2.320x10−06 large

Medium 6.512x10−06 large 2.445x10−06 large 4.515x10−06 large 3.237x10−06 large
Large 5.409x10−06 large 2.011x10−06 large 4.611x10−06 large 3.012x10−06 large

xLarge 5.029x10−06 large 2.058x10−06 large 6.310x10−06 large 2.072x10−06 large

Table 5.8 p-value and cliff’s-δ showing Downtime results of significant p-values for MLDO
against OpenStack with KVM, Xen, using pre-, and post-copy algorithm.

Flavors Pre-Copy KVM Post-Copy KVM Pre-Copy Xen Post-Copy Xen
p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ

Tiny 3.352x10−05 large 2.108x10−07 large 3.541x10−05 large 3.521x10−06 large
Small 2.551x10−05 large 1.987x10−07 large 2.019x10−05 large 1.782x10−06 large

Medium 2.971x10−05 large 3.490x10−07 large 2.210x10−05 large 3.341x10−06 large
Large 3.051x10−06 large 3.018x10−08 large 4.701x10−05 large 3.902x10−06 large

xLarge 2.131x10−06 large 2.921x10−08 large 3.333x10−05 large 2.990x10−06 large

Table 5.9 p-value and cliff’s-δ showing Downtime results of significant p-values for LBFT against
OpenStack with KVM, Xen, using pre-, and post-copy algorithm.

Flavors Pre-Copy KVM Post-Copy KVM Pre-Copy Xen Post-Copy Xen
p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ p-value Cliff’s δ

Tiny 1.481x10−04 Medium 1.233x10−04 Medium 1.602x10−04 Medium 1.098x10−04 Medium
Small 1.322x10−04 Medium 1.012x10−04 Medium 2.319x10−04 Medium 1.663x10−04 Medium

Medium 1.215x10−04 Medium 1.549x10−04 Medium 3.022x10−04 Medium 1.308x10−04 Medium
Large 2.901x10−04 Medium 1.424x10−04 Medium 2.894x10−04 Medium 2.115x10−04 Medium

xLarge 2.881x10−04 Medium 2.318x10−04 Medium 2.713x10−04 Medium 2.097x10−04 Medium
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To draw and compute the area under the ROC curve, we use information from Table 5.10, where TP,

FP, TN, and FN are true positives, false positives, true negatives, and false negatives, respectively.

In tables 5.11, 5.12, 5.13, and 5.14, we show the respective confusing metrics for all combinations

of Algorithms and hypervisors.

Table 5.10 Evaluation indicators of our Studied Parameters.

Indicator Expression Description
True
Negative
Rate (TNR)

T N
(FP+T N)

the percentage of correctly predicted mi-
gration as fail

Negative
Predictive
Value (NPV)

T N
(FP+T N)

when migration is predicted fail, what
proportion are wrong?

Positive
Predictive
Value (PPV)

T P
(T P+FP)

When migration is predicted successful,
what proportion is correct?

True Positive
Rate (TPR)

T P
(T P+FN)

the percentage of correctly predicted mi-
gration as successful

False Positive
Rate (FPR)

FP
(FP+T N)

migration predicted unsuccessful, how
often is migration unsuccessfully?

Accuracy
(ACC) (T N +T P)

(T P+FP+T N +FN)

Overall, how often does our model clas-
sify correctly?
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Table 5.11 The confusion metrics of RISULM Using KVM pre-copy.

Actual migration
Accuracy: 0.95 Positive (P) Negative (N)

Predicted migration
Positive (P) TP = (67) FP (α = 2) Ö PPV (0.97)
Negative (N) FN (β = 3) TN (28) Ö NPV (0.90)

×

TPR
(0.96)

×

TNR
(0.93)

Table 5.12 The confusion metrics of RISULM Using KVM post-copy.

Actual migration
Accuracy: 0.95 Positive (P) Negative (N)

Predicted migration
Positive (P) TP = (68) FP (α = 4) Ö PPV (0.94)
Negative (N) FN (β = 1) TN (27) Ö NPV (0.96)

×

TPR
(0.99)

×

TNR
(0.87)

Table 5.13 The confusion metrics of RISULM Using Xen pre-copy.

Actual migration
Accuracy: 0.95 Positive (P) Negative (N)

Predicted migration
Positive (P) TP = (66) FP (α = 2) Ö PPV (0.97)
Negative (N) FN (β = 3) TN (29) Ö NPV (0.91)

×

TPR
(0.96)

×

TNR
(0.94)

Table 5.14 The confusion metrics of RISULM Using Xen post-copy.

Actual migration
Accuracy: 0.95 Positive (P) Negative (N)

Predicted migration
Positive (P) TP = (67) FP (α = 4) Ö PPV (0.94)
Negative (N) FN (β = 1) TN (28) Ö NPV (0.97)

×

TPR
(0.99)

×

TNR
(0.88)
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5.2.7 Independent Variables

The parameters in Table 5.2, i.e., the CPU, RAM, Network utilization and the dirty page rate in

Table 5.3 of the Nodes and VMs are the Independent variables of this study. The rationale behind

choosing these metrics is that, they form the major factors that affect the performance of VMs

under live migration, which determines if the VMs would migrate successfully or not, and also the

amount of time it will take to migrate instances of VMs across the cloud.

5.2.8 Dependent Variables

The dependent variables of this study are shown in Tables 6.1, and 5.3. They measures the accuracy

of our predictions of VMs live migration failures, the total migration time and the downtime of VMs

during live migration. These metrics allow us to assess the effectiveness of our proposed approach,

since we aim at reducing the total time it takes to migrate VMS across the cloud and to keep the

downtime as smaller as possible.
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CHAPTER 6 EVALUATION OF OUR PREPOSED APPROACH RISULM

To assess the effectiveness of our proposed approach (RISULM), we compare its performance

against the OpenStack native scheduler, MLDO, and LBFT.

6.1 Results of Experiment 1

In this section, we report the result obtained for RQ1. These results suggest that, RF model can

predict failures of VM (i.e., if a VM live migration will be successful or not) with an accuracy of

95%. Our MDP, which we use in RQ2 give an accuracy of 95%.

Furthermore, we observed that for the models with higher accuracy, the total migration time and

downtime were also lower than those with lover accuracy. Therefore, based on the obtained p-

values and large effect sizes, we can therefore reject the null hypotheses that there is no differ-

ence between migration time and downtime using OpenStack schedulers and RISULM (sl-model).

Moreover, the accuracy of our prediction model (sl-model) is higher than the accuracy of Open-

Stack native scheduler, as well as those of MLDO and LBFT.

Summary RQ1: In this section, we have shown that we can accurately predict live migration

failures using a Random Forest model. Moreover, we were able to predict live migration failure

with an accuracy of 95%, which intrinsically reduces both the total migration time and downtime,

as shown in Table 6.1.

6.2 Results of Experiment 2

In this section, we report the result obtained for RQ2. Without injecting the FF, the MDP had an ac-

curacy of 94% see figure 6.14, and with the FF injected, we observe 95% accuracy see figure 6.15.

Moreover, we also observe p-values that are statistically significant with large effect size as shown

in tables 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9.

Therefore, we rejected the null hypotheses (H1
0 , ... H6

0 . ) that there are no significant difference on

average migration time and downtime using RISULM, MLDO, LBFT against OpenStack sched-

ulers on live migration. As we were able to observe a statistically significant differences on average

migration time and downtime for RISULM (H1
0 , H2

0 ), MLDO (H3
0 , H4

0 ) and LBFT (H5
0 , H6

0 ) We

also observe that, as the accuracy of MDP goes up from 94% to 95%, the accuracy of RISULM

also goes up from 95% to 95.1%, whereas the random forests model (rf-model) did not notice

any change, since the RISULM uses both rf-model and MDP models, we concluded that the MDP
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model is responsible for this overall increase in accuracy, because we used the same treatment (in-

jecting the FF) to the system.

Summary RQ2: Our findings shows that, using MDP, we can accurately improve where our VMs

will be live migrated within an accuracy of 95.1%, we use table 5.10 to compute and show the

accuracy of our study in table 6.1. We also observed that, the MDP model gives best accuracy

when the system state changes more at node (datacenter) level rather than within the individual

VMs.

6.2.1 Evaluation of RISULM

In this section, we discuss how our proposed model (RISULM) was evaluated. (i) We compare

the performance of RISULM (especially the accuracy on predicting failures of live VMs during

migration, the total migration time, and the downtime) against OpenStack native scheduler. (ii)

We also use existing approaches from the literature (MLDO and LBFT) and compare their perfor-

mance against OpenStack scheduler, (iii) then we analyze the performance of RISULM, MLDO,

and LBFT against OpenStack with different hypervisors using both the pre-copy, and post-copy

algorithms.

First and foremost, RISULM uses both SL and RL to make decision, firstly, we run an experiment

with SL (rf-model) which uses random Forests. We did this to understand how accurate our model

can predict failures of live VMs before we migrate them. Secondly, we run an experiment with the

MDP implementation, which enable us to make timely decisions on where and when to migrate

live VMs. Thirdly, we combined both random Forests model (RF - model) and the MDP - Model,

which forms a hybrid model (RISULM), to understand if the performance of the MDP could im-

prove the performance of RISULM.

The output of both models (rf-model and MDP) are Boolean ("YES", "NO"), thereafter, we com-

bined both outputs using a conservative method to build RISULM. Conservative in the sense that,

we want to maximize the possibility of success (YES, YES) before we migrate live VMs, which is

why we use a logical AND gate that consumes both outputs of the rf-model and the MDP to output

either a "YES" or a "NO". Keep in mind that since there are two possible inputs (N –number of

inputs) into the AND gate, there ought to be 2N – 4 possible conditions into the AND gate, which

then outputs either a YES or a NO. This way, we are sure that both models (rf-model and the MDP)

should agree with a YES each before migrating live VMs.

In our experiments, we use the stress-ng tool (Casanovas et al., 2009). With these tools, we set

various categories of workload on the VMs and Nodes before migrating them. Base on our ob-
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servations during the initial phase of our experiment, while trying all possible cases of failures

and successes of live migrating VMs. We did several combinations of workloads and found that,

we could categorize the VMs workload such as idle, 25%, 50%, 75%, and 100% load conditions.

However, we observe that, when the VMs are loaded above 75% workload they always fail live mi-

gration, whereas below 25% of workload they always success live migration under stable network

conditions.

Therefore, we consider 75% as full loaded condition, 50% as average loaded conditions and 25%

as unloaded condition (idle) of the VM size (VMSIZE). In our experimental setup, all the nodes

are connected through a 1Gbps link (switch), to implement the models in this study; OpenStack

scheduler, MLDO, LBFT, and RISULM, see Figures 5.2 and 5.5; using KVM and Xen hypervi-

sors with both post-copy and pre-copy algorithms. Values for migration time, downtime and data

transfer rates were also recorded on all our experimental setup and as shown in Figure 6.5, 6.6, 6.7

, and 6.7; for migration time, Figure 6.9, 6.10, 6.11, and 6.12; for downtime, and Figure 6.1, 6.2,

6.3, and 6.4; for data transfer rates. We also tested our models on the effects that latency and link

speed has on both the downtime and migration time on VMs during live migration see Figures:

6.25, 6.26, 6.27, and 6.28; for migration time and 6.29, 6.30, 6.31, and 6.32; for downtime. On

link speed,Figures: 6.17, 6.18, 6.19, and 6.20; for migration time and Figures: 6.21, 6.22, 6.23, and

6.24; for downtime.

(i) - RISULM against OpenStack: We did live migration on all our 125 VM instances using

OpenStack scheduler with the FF injected see Figure 5.3, we computed the performance of the

studied metrics, we computed an accuracy (ACC) of 83% and record our findings in Table 6.1. The

rationale for doing this is to know how OpenStack native schedulers perform on live migration, in

terms of migration time and downtime. Once these values are known, we can now build our own

scheduler aiming to improve the observed results.

Similarly, did live migration on all our 125 VM instances, using our proposed approach –RISULM

as explained above; implementing the Algorithms 1 and 2. Even though we observe tremendous

improvements with our proposed model; RISULM, we computed the performance of the studied

metrics, we computed an accuracy (ACC) of 95% see Figure 6.16. We record our findings in

Table 6.1, we did not just conclude at this point on the performance of RISULM, however, we

needed more evidences based on known approaches that have good performances on live migration,

which is why we went one step forward to implement MLDO and LBFT.

(ii) - MLDO against OpenStack: We ran MLDO against OpenStack native scheduler, using 125

VM instances. We maintained the same experimental conditions and noticed that MLDO performs

better that OpenStack native scheduler but it is less performant than RISULM, we record our find-



53

ings in Table 6.1.

(iii) - LBFT against OpenStack: Last, we ran LBFT strategy against OpenStack native scheduler,

we observe that it can achieve an accuracy of 90%, see Table 6.1. We computed the metrics values

for this study as in the other models. However, LBFT performs less than MLDO and RISULM but

better than OpenStack scheduler.

Both LBFT and MLDO were originally designed for different uses cases on live migration, and

both perform better than OpenStack as expected, and since all the models used in this study were

subjected to the same treatments, we could now conclude that, RISULM outperforms prior models

that aim at optimizing migration time and down time on VMs during live migration, in a wider

range of use cases spanning those of MLDO and LBFT. Also, our predicting model has the best

prediction so far in the literature 95% accuracy. Moreover, our approach uses different types of

hypervisors and both the pre-copy and post-copy algorithms. This is a novel approach that sug-

gests the categories of applications or workload to use during live migration and on which specific

hypervisors (KVM, Xen, etc.,) and algorithm (pre-copy or post-copy) should be chosen.

6.2.2 Scalability

We executed our proposed model (RISULM) against OpenStack native scheduler, MLDO, and

LBFT on 3 to 15 nodes (3 and 15 nodes, which were chosen arbitrary to test for scalability.) on

WAN links using AWS EC21 extra large instances. We set up 30, 60 and 150 VMs. We aim at

finding how scalable RISULM could be; that is, when Nodes are added to or reduced from the

pool of available Nodes. RISULM turns out to be scalable, which can handle a variable number of

Nodes and VMs in a datacenter. In all runs, our results were consistent to that of our experimental

set-up reported in the results section.

6.3 Discussion of our Result

For both the downtime and migration time computed, we observe a statistically significant differ-

ence using RISULM, MLDO, and LBFT. Moreover, we found a decrease of migration time and

downtime with RISULM, MLDO, and LBFT against the OpenStack scheduler. Also, the perfor-

mance of these models vary depending on the choice of the hypervisor used and the algorithm,

this is true for all types of flavors and workloads respectively. On average, the KVM had higher
1htt p : //docs.aws.amazon.com/AmazonECS/latest/developerguide/ECSGetStarted.html
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Table 6.1 Contingency table showing results of the studied Models.

Models Metrics Type of hypervisor and Algorithm

Pre-copy(KVM) Post-copy(KVM) Pre-copy(Xen) Post-copy(Xen)

RISULM ACC 0.95 0.95 0.95 0.95
TPR 0.96 0.99 0.96 0.99
TNR 0.93 0.87 0.94 0.88
PPV 0.97 0.94 0.97 0.94
NPV 0.90 0.96 0.91 0.97

MLDO ACC 0.92 0.85 0.92 0.85
TPR 0.92 0.91 0.93 0.95
TNR 0.93 0.74 0.90 0.68
PPV 0.97 0.87 0.96 0.83
NPV 0.82 0.81 0.84 0.89

LBFT ACC 0.90 0.88 0.90 0.88
TPR 0.94 0.97 0.96 0.97
TNR 0.81 0.71 0.78 0.71
PPV 0.92 0.86 0.90 0.86
NPV 0.86 0.93 0.89 0.93

OpenStack ACC 0.83 0.76 0.81 0.74
TPR 0.85 0.88 0.84 0.84
TNR 0.77 0.54 0.74 0.56
PPV 0.91 0.78 0.90 0.77
NPV 0.65 0.70 0.63 0.67
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Figure 6.1 Pre-copy with KVM

Figure 6.2 Post-copy with KVM

Figure 6.3 Pre-Copy with Xen.

Figure 6.4 Post-Copy with Xen.

Data Transfer Rate of Models using Pre-, Post-copy Algorithm in KVM and Xen
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Figure 6.5 Post-copy with KVM

Figure 6.6 Post-copy with Xen

Figure 6.7 Pre-Copy with KVM.

Figure 6.8 Pre-Copy with Xen.

Migration Time of VMs, different Flavors and Models using Pre-, Post-copy Algorithms
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Figure 6.9 Post-copy with KVM

Figure 6.10 Post-copy with Xen

Figure 6.11 Pre-Copy with KVM.

Figure 6.12 Pre-Copy with Xen.

Downtime of VMs, different Flavors and Models using Pre-, Post-copy Algorithms
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Figure 6.13 Accuracy of rf-model before and af-
ter FF.

Figure 6.14 Accuracy of MDP before

Figure 6.15 Accuracy of MDP after.

Figure 6.16 RISULM Optimal Result

Results showing RISULM improvement by MDP
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Figure 6.17 Pre-Copy KVM Models.

Figure 6.18 Post-Copy KVM Models.

Figure 6.19 Pre-Copy Xen Models.

Figure 6.20 Post-Copy Xen Models.

Effect of Link speed on Migration time
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Figure 6.21 Pre-Copy KVM Models.

Figure 6.22 Post-Copy KVM Models.

Figure 6.23 Pre-Copy Xen Models.

Figure 6.24 Post-Copy Xen Models.

Effect of Link speed on Downtime.
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Figure 6.25 Pre-Copy KVM Models.

Figure 6.26 Post-Copy KVM Models.

Figure 6.27 Pre-Copy Xen Models.

Figure 6.28 Post-Copy Xen Models.

Effect of Latency on Migration time.
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Figure 6.29 Pre-Copy KVM Models.

Figure 6.30 Post-Copy KVM Models.

Figure 6.31 Pre-Copy Xen Models.

Figure 6.32 Post-Copy Xen Models.

Effect of Latency on Downtime.
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accuracy on predicting failures than Xen and post-copy algorithm performs better than pre-copy in

terms of optimizing migration time and downtime.

This observation is important to note because depending on the type of application being deploy on

the VM during live migration, the choice of the algorithm and hypervisor might affects how likely

it will success to migrate, which might also affects the migration time and downtime of the VMs.

we observe the following decreases in migration time and downtime respectively as shown in table

6.2, while using different combination of algorithm and hypervisors. Results are summarized as:

Table 6.2 Percentage Reduction on Migration time and Downtime for Different hypervisors and
Algorithms.

Moreover, there was no significant different of either downtime, migration time when the workload

was below 25% (idle conditions); the VMs have identical characteristics. For these reasons, we

sub divided our workloads into 25%, 50% and 75% (idle, average and full loaded conditions) of

workloads, before we live migrate the VMs.

We observe that flavor types tiny (t), small (s), and medium (m), we have relatively smaller data

transfer rate than the large (l) and xLarge (xl) flavors. Moreover, with flavor m, there is a huge

increase of data transfer rate see Figure 6.1, 6.2, 6.3, and 6.4. In Table 5.1 from t to xl, the

flavors parameters for Disk and RAM are doubled linearly, i.e., Disk size for t = 10G, s=20G etc.,

and CPU except for t and s with 1 vCPU each. Our setup and configuration for live migration

uses shared storage (NFS), which means the disk could not be any possible reason for this sudden
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increase of data transfer rate. Therefore, the RAM and vCPU should be responsible, which justify

why we use these parameters for our metric studies.

Furthermore, this hike in data transfer also affects the total migration time per flavor type, see fig-

ures: 6.5, 6.6, 6.7, and 6.8 as the migration time grows exponentially irrespective of the algorithm

used but differs in magnitude depending on the hypervisor type, for example KVM in general have

a lower migration time than Xen and post-copy has a shorter migration time than pre-copy. On the

other hand, we observe a different pattern on the downtime see Figures: 6.9, 6.10, 6.11, and 6.12.

(t and s), (m and l) having the same amount of downtime, which is contrary to our expectations, we

were expecting to see different amount of downtime for t,s and m. Also, we were expecting to see a

hike downtime for l and xl flavors due to their parameters, but it didn’t turns out to be as expected,

the downtime actually grows as a step function. From this observation, we revisit the pre-copy 3.3,

and post-copy 3.4 algorithms mentioned above, we noticed that pre-copy has a longer downtime

than post-copy. This is consistent with our results as shown above.

RISULM Takes all these observations into consideration, as it monitors the environment of the

system (Nodes and VMs) before making a decision to migrate a VM across Nodes.

Another finding we observed is the effect that network links speed and latency has on both migra-

tion time and downtime.

On link speed (our switch goes up-to 1GPbs), on all the flavors type, we vary the link speed and

measure the migration time and downtime of the VMs instances. We observe the impact that link

speed has on both migration time and downtime, and report our results. For migration time against

link speed, we report our results in Figures: 6.17, 6.18, 6.19, and 6.20 and for downtime we report

our results in Figures: 6.21, 6.22, 6.23, and 6.24.

Regarding latency, we measure the time it takes to transfer data on the VMs during live migration,

as the VMs goes from source node to destination node.

We use all four combinations of algorithms and hypervisors in our study, on RISULM, MLDO,

and LBFT models including the OpenStack scheduler. We observe the effects latency has on both

migration time and downtime, and report the results of our findings for migration time in figures:

6.25, 6.26, 6.27, and 6.28 and for downtime in figures: 6.29, 6.30, 6.31, and 6.32.

Our observations suggest that, migration time increases exponentially as latency increases. Initially,

between 0 to 10 ms latency, RISULM, MLDO and LFBT were at par but clearly distinct after 3 ms

where RISULM started deviating from MLDO and LBFT throughout whereas MLDO moves at part

with LBFT up-to 50 ms. This clearly shows that in most applications, RISULM will be optimal

in terms of latency. For downtime, we had these observations: As the link speed increases, we
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observe a shape linear drop of downtime between 13ms to 25 ms, (we had observe an exponential

decrease of migration time within this range earlier). and from 25 ms to 1Gbps, the conclusion we

make here is that even though both migration time and downtime are directly proportional, their

relationship is not necessarily linearly.

The reported p-value and cliff’s delta values in tables 5.4, 5.5, and 5.6 show statistically signifi-

cantly p-values, which implies that, the p-values are significantly different with RISULM showing

better performance than MDLO and LBFT models.

Therefore, based on the results of our findings, we can conclude that, RISULM outperforms both

MLDO and LBFT modes in terms of accuracy, migration time and downtime.

RISULM was also tested for horizontal scalability and robustness using the fault injection frame-

work. Also, our approach is capable of predicting where and when VMs should be live migrated to.

Since we have implemented a prediction model, we observe both categories of error, which are

involved in prediction; that is false positives and false negatives. Moreover, RISULM on average

tolerates false negatives more than it will tolerate false positives see Table 6.1, this is desirable for

the kind of problems we are anticipating to solve, which might heavily penalize false positives than

it would for false negatives, because, if our model should predict migration as successful whereas

it fails, this is a situation we don’t want (no tolerant to this kind of error).
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6.4 Threats to Validity

In this section, we discuss the limitations of our work following common guidelines for empirical

studies.

• Construct validity threats Relates to the meaningfulness of our measurement results, in

other words, this threat is solely due to errors in the measurement of metrics. To compute

our metrics, we use top, htop, i f top and other scripts to capture parameters for our studies

such as RAM usage, CPU, Bandwidth, VIRT, dirty page rate, etc. We did not measure the

accuracy of these tools and their accuracy can have direct impact on our results. However,

they have been used in the literature repeatedly. Additionally, there is a latency when reading

data from the log files and our data structure on the shared location (NFS); therefore values

obtained might be staled sometimes. In the future, we plan to learn resource usage patterns

to overcome this issue.

• Threats to internal validity Relates to alternative explanations to describe our finding. The

implementation of the MDP and ML-Model can be a threat to our study, moreover, our design

window (the time frame we set to capture environment parameters) can also be a potential

threat because all the Nodes are not running the same application synchronously, even though

the time is synchronized. Also, in this thesis we didn’t considered synchronizations between

the controller Node and its replica(s), which could have an impact on the observed migration

time and downtime. We plan to investigate this in the future.

• Threats to External validity Relates to possible generalizing our studies. More valida-

tion with different machine learning techniques, possible unsupervised techniques. Different

method of ensemble could be used as well to understand the impart of MDP on migration

time and downtime.

• Reliability validity threats Replication is important in science. Hence, we have attempted

to provide all necessary details to replicate our study in this thesis.

• Conclusion validity threats Describe relation between the treatment and it outcome. To

address this, we were attentive not to violate the assumptions of our null hypothesis.
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CHAPTER 7 CONCLUSION

7.1 Summary

In this study, we examine live migration of virtual machines in OpenStack cloud. We proposed a

novel approach, RISULM that uses supervised and reinforcement learning techniques to study live

migration. This approach aims at studying if failures in live migration could be accurately predicted

and if the MDP model could improve live migration scheduling in order to accurately determine

where and when virtual machines should be migrated. Moreover, we compared the performance of

RISULM against state of the art models from the literature, i.e., MLDO and LBFT, and found that

RISULM outperforms both models in terms of accuracy, migration time and downtime.

To simulate a real world scenarios, we used a fault injection framework, which we adapted in our

implementation to inject faults on targeted Nodes. In other to test the accuracy of our models, we

collected real-time data of the system for both models.

Our results suggest that, we can accurately predict failures of VMs with a 95% accuracy. Our

results also suggest that MDP model can improve live migration scheduling, reducing the downtime

of VMs by approximately 21% and migration time by approximately 74%.

We also implemented our proposed model; RISULM on different hypervisors using both the pre-

copy and post-copy algorithm. Results suggest that post-copy algorithms have better migration

time and downtime as compare to pre-copy algorithm. Which suggests that depending on the

application, the choice of hypervisor and algorithm to use is critically important.

7.2 Limitations of our Approach.

Even though our results are promising, our approach still have some limitations. For example, we

did not considered a real world scenario for a natural disaster, which actually disrupts power, com-

munications links, etc., also, our implementations use a central Controller Node, which doesn’t

fully reflects the distributed nature of the cloud. Moreover, we did not implement concurrent

scheduling decisions in our MDP approach, and hence we could not investigate cases of conflicting

policies, i.e., multiple VMs being picked for migration to the same destination at the same time.

Presently, the training time for our MDP policy scheduler depends on the size of the cluster, which

affects the cost (and consequently the frequency) of trainings.
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7.3 Future Work

For future work, we would like to address our limitations, first, by implementing replicating Nodes

on the Controller and also addressing the problem of concurrent policy scheduling, which will

avoid conflicting scheduling policies. We would also like to improve our MDP training time as the

size of our cluster increases. Furthermore, we would like to simulate a real world scenario of a

natural disaster, where power is disrupted on some nodes and communications links are interrupted

between some nodes, to assess the robustness of our proposed approach.

Then, we would like to suggest our model to be implemented in OpenStack cloud or any other

cloud infrastructure, we will also like to extend this study using many Nodes in different geoloca-

tions, to investigate if we could obtain the same promising results. In addition, we would like to

implement RISULM on more hypervisors such as VMWare and Hper-v etc., and experiment with

real world used cases.
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