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RÉSUMÉ

Dans le cadre du développement du code déterministe multi-filières APOLLO3, il est néces-
saire de mettre au point et valider les nouveaux schémas de calcul permettant d’améliorer la
prédiction des grandeurs neutroniques d’intérêt. Les études neutroniques du cœur CFV du
futur prototype ASTRID (RNR refroidi au sodium) demandent notamment un calcul précis
des concentrations isotopiques tout au long de son évolution sous irradiation.

Le schéma ECCO/ERANOS utilisé actuellement pour les calculs des cœurs de RNR est
constitué des deux étapes classiques réseau et cœur. Les sections efficaces microscopiques
autoprotégées et condensées à 33 groupes sont déterminées une seule fois en début de vie à
partir de calculs 2D ECCO de cellules ou assemblages en réseau infini (avec une concentra-
tion infinitésimale pour les noyaux lourds et les produits de fission non présents en début de
vie). Elles sont ensuite utilisées dans une modélisation 3D ERANOS pour réaliser les calculs
du cœur complet en évolution microscopique. Ce schéma fait l’hypothèse que les sections
efficaces microscopiques n’évoluent pas avec l’irradiation et la modification de composition
des différents milieux fissiles.

La mise en place de nouveaux schémas de calcul avec le code multi-filières APOLLO3
est l’occasion de revenir sur cette hypothèse puisque d’autres possibilités utilisées jusqu’à
présent dans les schémas APOLLO2/CRONOS2 des REL sont dorénavant disponibles. Elles
reposent sur un paramétrage des sections efficaces autoprotégées, macroscopiques comme mi-
croscopiques, en fonction du taux de combustion, obtenues en faisant évoluer les motifs 2D
élémentaires cellules ou assemblages. Ces sections sont stockées dans des bibliothèques dites
"évoluantes" permettant une interpolation à l’étape cœur. L’évolution cœur peut alors être
menée de 2 façons :

• macroscopique : le code cœur extrapole les taux de combustion locaux pour chaque
pas d’évolution et récupère, via une interpolation linéaire, les sections efficaces macro-
scopiques de la bibliothèque évoluante pour calculer le pas suivant.

• microscopique : le code cœur résout les équations d’évolution isotopiques en temps
(équations de Bateman) suivant des stratégies plus ou moins précises (simple extrapo-
lation ou méthodes de type prédicteur-correcteur) en interpolant les sections efficaces
microscopiques en fonction du taux de combustion local. Cette méthode est a priori plus
précise que la méthode ECCO/ERANOS puisqu’elle prend en compte les modifications
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de l’autoprotection et du spectre avec l’évolution.

L’objectif de ce travail est de valider l’hypothèse “temps 0”, c’est à dire que les sections
efficaces ne changent pas sous irradiation. Pour faire ça, trois géométries 2D seront étudiées:
une cellule, un cluster fissile-fertile et une tranche de coeur. Pour ces géométries, il sera
montré que l’hypothèse “temps 0“ introduit une différence de réactivité liée au changement
du spectre du flux avec lequel les sections efficaces microscopiques sont condensées. Cette
différence, par contre, est faible et elle peut être éliminée en utilisant un modèle microscopique
avec bibliothèques ”évoluantes“ dont le paramétrage est composé par seulement deux points
de tabulation en burn-up: le point initial et le point final. Ce modèle permettra d’avoir
la précision envisagée en doublant seulement le temps de calculs côté réseau et la mémoire
requise pour le stockage des sections efficaces. Pour le cas cellule, les calculs d’évolution coté
réseau seront validés par rapport à des calculs Monte Carlo faits avec TRIPOLI4 évoluant et
à des calculs ECCO/ERANOS.
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ABSTRACT

In the frame of the development of the new multi-purpose deterministic code APOLLO3, it
is necessary to develop and validate the new calculation schemes capable of improving the
prediction of the neutronic quantities of interest. The neutronic studies on the CFV core of
the new prototype ASTRID (sodium cooled FNR) notably demand an accurate calculation
of the isotopic concentrations during its evolution under irradiation.

The ECCO/ERANOS scheme, currently used for FNR core calculations, is constituted by
the two classic steps: lattice and core. Microscopic cross sections, self-shielded and condensed
into 33 energy groups, are determined only one time at the beginning of life from 2D ECCO
cell or assembly calculations in infinite lattice (with an infinitesimal concentration of heavy
nuclei and fission products not initially present). They are, then, used for 3D ERANOS
modelization of the whole core in micro-depletion. This scheme makes the hypothesis that
microscopic cross sections do not evolve during the irradiation and the composition change
of the different fissile materials.

The development of the new APOLLO3 calculation schemes is an opportunity to re-discuss
this hypothesis, because other possibilities, currently used in PWR APOLLO2/CRONOS2
calculation schemes, are available. They lie on the parametrization of self-shielded cross sec-
tions, both macroscopic and microscopic, as a function of the burn-up. These cross sections
are obtained performing 2D cell or assembly depletion calculations. They are, then, stored
in “evolving” libraries which allow their interpolation at core step. Core depletion can be
performed in two ways:

• macroscopic: the core code extrapolates the local burn-up for each evolution step and
interpolate the macroscopic cross sections from the “evolving” library in order to eval-
uate the following time step.

• microscopic: the core code solves the Bateman equations with a more or less accurate
strategy (simple extrapolation or predictor-corrector methods), interpolating the mi-
croscopic cross sections as a function of the local burnup. This model is, a priori, more
accurate than the ECCO/ERANOS one, because it takes into account self-shielding
and spectrum changes during the evolution.
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The aim of this work is the validation of the “time 0” hypothesis, i.e. that cross sections do
not change under irradiation. To do so, 3 different 2D geometries will be studied: a cell, a
fissile-fertile cluster and a core plane. For these geometries, it will be shown that the “time
0” hypothesis introduces a reactivity difference due to a change in the flux spectrum the
microscopic cross sections are condensed with. This difference, nevertheless, is small and it
can be eliminated using a microscopic model with “evolving” libraries whose parametrization
is composed by only two burn-up tabulation points: the initial point and the final one. This
model reaches the required accuracy only by doubling the calculation time at lattice step and
the memory storage for the libraries. For the cell case, lattice depletion calculations will be
validated with respect to Monte Carlo evolving TRIPOLI4 calculations and ECCO/ERANOS
ones.
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CHAPTER 1 INTRODUCTION

1.1 Generation IV: Challenges and Solutions of the Nuclear Industry

Nuclear technologies for electricity generation were considered mature at the beginning of the
21th century. Nevertheless, the objectives to be reached and the challenges to be accepted were
still uncountable, because of the growth of energy demand and of the collective consciousness
focused on sustainability and environmental issues [1]. If, in fact, nuclear energy has many
advantages, it has also disadvantages, as every technology in the delicate world of energy
production. Criticisms, fueled by major accidents, have always been casted on this way to
produce electricity, demanding higher and higher standards and quality assurances to the
nuclear industry. An industry of high level and of strategic importance, capable of enriching
a country both with its assets and high level formation. An industry capable of exploiting
a carbon free and high density energy source as the fission one; but also misunderstood
by the major public, because perceived as the awkward tamer of sinister and destructive
forces (the “original sin” of the nuclear bomb) and as the producer of long term highly
radioactive waste. Contrasting opinions on nuclear safety and sustainability, and the constant
threatening of the proliferation, existed at that time and they were incapable to attract the
sympathies of the local political legislation of several countries. As a consequence, moved by
the necessity of giving an answer to the major questions of the future energy policies, and
conscious that a “bold new idea” [1] was necessary for a change in mentality, 9 countries
(Argentina, Brazil, Canada, France, Japan, Republic of Korea, Republic of South Africa,
United Kingdom and United States) signed the Generation IV International Forum Charter
in July 2001. Switzerland, Euratom, Russian Federation and People’s Republic of China
joined in between 2002 and 2006.
The aim of this international organization is to coordinate an international cooperation for
the Research and Development (R & D) for advanced nuclear energy systems. Four goals to
be achieved in such systems have been established:

• Sustainability: Generation IV energy systems must decrease CO2 production and
reduce polluting emissions. They must exploit better the natural resources in order to
minimize nuclear waste production.

• Economics: Generation IV energy systems must be competitive with respect to those
exploiting other energy sources.

• Safety and Reliability: Generation IV energy systems must be more safe and reliable.
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Severe accidents less probable and no offsite emergency response are key features of
these systems.

• Proliferation Resistence and Physical Protection: Generation IV energy sys-
tems must be an unattractive way to produce weapon usable materials, and they must
provide enhanced physical protection against act of terrorism.

As a result of group discussions and collective deliberations, 6 nuclear reactor systems have
been chosen satisfying the desired criteria. These reactors are shown in table 1.1. It is
important to note that 4 out of 6 of these design concepts exploit fast neutron spectrum.
The reason for such a choice, and its importance for the future, is the subject of the next
section.

1.2 FNR: Fast Nuclear Reactor

A nuclear reactor is a device where the energy released by fission is exploited in a controlled
way in order to produce electricity. Indeed, a chain reaction is sustained. A delicate equilib-
rium in the neutron population of the core is assumed: each fission event produces several
neutrons, but, amongst them, one and one only undergoes another fission reaction (criti-
cality condition). The average number of secondary neutrons produced by fissile isotope is
currently defined with ν. This number is not constant and it increases, more or less linearly,
with the incident neutron energy. At the same time, the neutrons which do not lead to a
fission event, they undergo other nuclear reactions, such as radiative capture, both in the fuel
and in the surrounding materials, or they escape the reactor. The isotopes which undergo
fission events are called fissile and they are the “fuel” of our reactor. Differently from other
technologies, however, these isotopes can not only be consumed by fission events or other
reactions, but also be produced. An isotope which can transmute into a fissile one after a
nuclear reaction is called fertile. The most important fertile isotopes are Th232 and U238.

Table 1.1 Characteristics of the six Generation IV nuclear reactor systems

System Neutron Coolant Size (MWe)
spectrum

VHTR (very high temperature reactor) Thermal Helium 100-300
SFR (sodium-cooled fast reactor) Fast Sodium 50-1500
SCWR (super-critical water cooled reactor) Thermal/Fast Water 1000-1600
GFR (gas-cooled fast reactor) Fast Helium 1000
LFR (lead-cooled fast reactor) Fast Lead, Pb/Bi 20-1200
MSR (molten salt reactor) Epithermal Fluoride Salt 1000
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The transmutation of the two is subjected to the following:

232
90 Th+1

0 n −→233
90 Th −→233

91 Pa+ e−

233
91 Pa −→233

92 U + e−

238
92 U +1

0 n −→239
92 U −→239

93 Np+ e−

239
93 Np −→239

94 Pu+ e−

where it is possible to see that the fertile isotopes transmute into the fissile ones U233 and
Pu239 after a radiative capture and the occurrence of β− decays.
Quantitatively, the conversion ratio C [2] describes this phenomenon. It is defined as the
ratio between the average number of fissile atoms produced and the ones consumed in a re-
actor. This ratio is of major importance and having it greater than unity is an advantageous
situation, allowing to define the breeding gain G = C − 1. This number describes, on the
average, the fissile isotopes “gained” per atom consumed. Building a nuclear reactor where
such conversion constraint is satisfied requires another condition in addition to the criticality
one: each fission event must imply another fission event and also a neutron which transmutes
a fertile isotope. In order to satisfy this second constraint, it is necessary to build a reactor
where ν is higher and where parasitic captures are inhibited. Both these conditions are met in
Fast Nuclear Reactors (FNRs), i.e. reactors which exploit fission by neutron having energies
higher than 100KeV.
Nowadays, thermal reactors are the most common technology used for electricity genera-
tion from nuclear power. They exploit neutron with energies lower than 1eV. Historically,
they were the first operated reactors, because of the smaller mass required to assure critical
condition, with the fission reaction being more probable at thermal energies. Neutrons are
produced by fission with an average energy of the order of the MeV and then thermalized by
means of a moderator. For example, Pressurized Water Reactor (PWR) light water is used
both as a coolant, to remove thermal energy released by fission, and as a moderator. It is
obvious that, in such a system, a loss of coolant, or simply a decreasing of water density due
to more power released, does not allow to satisfy the criticality condition, because of lack
of moderation. In FNR, on the other hand, the moderator is not used - neutrons are not
thermalized - but, of course, the coolant is required. The latter is chosen to be as transparent
to neutrons as possible in order not to thermalize nor to capture them. A loss of coolant,
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in such a system, not only can allow to satisfy criticality condition, but also it can decrease
the number of parasitic captures making the reactor supercritical (on the average more than
one fission event generated after an initial fission). These discussions introduce the subjects
of the next sections: sodium cooled FNR and the ASTRID project.

1.3 SFR: Sodium-cooled Fast Reactor

In 1973, an oil crisis led country such as Japon and France, greatly penalized by oil import,
to start a massive nuclear program. France, from its side, started to equip itself with the U.S.
PWR technology. Electricity production for nuclear energy, then, has grown throughout the
years, resulting in an increasing consumption of natural resources, uranium in this case. This
element, in fact, is the fuel of PWRs. But not the whole uranium mass is exploited, only the
0.7% of it, equal to the mass concentration of U235 in natural uranium, principally composed
by U238. At the beginning of 21th century, the same period GIF Charter was signed, it was
common knowledge that actual exploitation of uranium resources was not guaranteed to last
until the end of the century, even in the best possible scenario [3]. FNRs were introduced
as a promising technology: fast spectrum, as already explained, allows to transmute U238
in Pu239 opening the possibility to a full exploitation of the natural uranium. But it is
important to notice that the idea of fast spectrum reactor was not new at that time. In 1951,
the first reactor to produce electricity was a liquid metal cooled fast reactor named EBR1.
Technologically, it was easier to build: liquid metals present high conductivity and they can
operate at high temperature and at atmospheric pressure. But also another reason moved the
realization of a first generation of FNRs: in the first decade after WWII plutonium seemed
easier to produce than natural uranium to find. Localization of ores and their exploitation
was not easy at the beginning [4]. If, at the moment, FNRs seem the only way to assure
a less polluting and durable energy source, SFRs have already been operated. Concerning
the French situation, PHENIX and SUPERPHENIX were built and operated in the past.
Such kind of reactors, now, will guarantee, with the actual french stock of uranium, energy
production from nuclear source for the next 5000 years [3]. Five millenniums against less
than a century.
Along with a better utilization of natural resources, FNRs will be used to close the fuel cycle
of plutonium, burning in such systems the mass of this element that has been continuously
produced in the operation of previous reactors. In addition, this kind of reactors will consume
the transuranic, reducing, therefore, the intrinsic radiotoxicity of nuclear waste. Such a
scenario will be of unutterable interest for the future.
Even if few technological advantages have already been enlisted, concerning the realization of
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Figure 1.1 SFR scheme

this kind of reactors, other challenges are present, beginning from the choice of the coolant.
Sodium seems to be an optimum candidate, because it is available at low price and it possesses
a good thermal range of operation, with a fusion point at 97.85◦C and a boiling one at
882.85◦C. A good margin before boiling is also guaranteed, with a latent heat more than
twice that of water. As other liquid metals, it is an excellent thermal conductor and it does
not require to be operated at high pressure. Moreover, from a neutronic point of view, it is
almost transparent to neutrons and it does not present major activation problems. On the
other hand, it is very reactive and it is only present bounded to other elements in nature. It is
unstable and easily reacts with water, requiring an intermediate circuit between the primary
and the power ones for safety reasons. In figure 1.1, it is possible to distinguish the primary
circuit, which removes the heat from the core, and the intermediate circuit, which is used as
a junction of the primary with the power circuit, the one whose fluid actually operates the
turbines.
Furthermore, another disadvantage of sodium is its opacity, that makes reactor inspections
harder. Nevertheless, several attempts of SFR construction have already been made in the
past (PHENIX, SUPERPHENIX, MONJU) identifying the major problems and technological
challenges, but also giving the opportunity to enrich the knowledge about such systems and
to gain the right skills and expertise. In such a scenario, the ASTRID prototype introduces
itself as the first GENIV FNR to be build. This reactor is a sodium-cooled one (SFR).
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1.4 ASTRID: Advanced Sodium Technological Reactor for Industrial Demon-
stration

In October 1945, General de Gaulle created the “Commissariat à l’Énergie Atomique” (CEA),
making France the first country in the world in having a civil organization concerned to the
study of nuclear energy and its application. A civil organization, but with a particular
regard on defence matters. The nuclear bombs of that year, in fact, particularly concerned
the leader, conscious that an answer was required to those “travaux d’apocalypse” (works of
apocalypse) as he called them in his Mémoires. From that time everything has changed, even
the name of this organization. CEA now stands for “Commissariat à l’Énergie Atomique et
aux énergies alternatives”, reflecting the new challenges and the new needs this institution is
called to cope with. In the first section, the major concerns of the GIF have been introduced.
This forum was an occasion for few countries - France among them - to realize analysis and
studies in order to evaluate the technological level achieved and the knowledge accumulated
previously regarding nuclear technologies. As a result, SFR seems the technology where
France has acquired a competitive edge [5].
In June 2006, the French government passed a law focused on the disposition of long life high
activity waste. A prototype, capable of transmutation and separation of long life isotopes, was
scheduled for the end of 2020. ASTRID project began and CEA was given the responsibility
for the operational management, core design and R& D work. CEA, along with its industrial
partners (French ones: EDF, AREVA etc. and international ones: TOSHIBA etc.), presented
a first timetable in 2012 (see figure 1.2).
As already said, ASTRID is the prototype of a GENIV reactor and, as a consequence, it
must achieved the requirements established by the GIF. The major objective, of course, is
to build a prototype which can exploit better the natural resources (uranium, transuranic)
and which can allow to close the fuel cycle. Being a prototype, this reactor will be only the
first step of a long path; a path that will lead to the beginning of a new reactor series CO2-
free, sustainable and profitable from an economic point of view. Indeed, the choice of the
power (600MWe) is reasonable to extrapolate a business plan for future analogous reactors.
Reactors that must reach a target reliability of 80%, assuring a constant power production,
one weak side of PHENIX and SUPERPHENIX.
All these goals must be reached in a structure of improved safety. Water-sodium reactions,
a major problems in SFR, are avoided using a N2 power cycle: a Brayton cycle at 180 bar.
The research of an increased thermal inertia to assure passive safety along with a better
inspectability of the structures, results in a new core conception. This core, that resolves
major reactivity problems related to SFR, is called “Coeur à Faible Vidange” (CFV), and it
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Figure 1.2 Overall schedule of the ASTRID project

will be the subject of the next paragraph.

1.5 CFV: Coeur à Faible Vidange

The chain reaction is sustained in the core. A multiplicative medium is, then, designed in
order to guarantee the desired performances. But not only neutronic considerations move
core designers. Structural and thermohydraulic necessities are also taken into account. As
already introduced in section 1.2, a coolant is required in order to remove heat from the core
and guarantee the normal operation of the reactor. While in thermal reactors the coolant
can also give a neutronic advantage moderating neutron, in fast reactors it is a source of
parasitic absorptions. If void replaces the coolant, a reactivity gain can be theoretically
reached. The same occurs if the structure collapses or the core melts down at the bottom
of the vessel: neutron multiplication in the geometry is enhanced due to the removal of all
the structures interposed between the multiplicative mediums. This effect can be relatively
reduced increasing the fuel to coolant surface ratio. ASTRID fuel pins, indeed, have a larger
radius and a reduced height. The core of a FNR is not at its most reactive geometry [6].
CFV conception, therefore, is a trade off between performances (zero or positive breeding
gain, weak reactivity loss during the cycle) and safety concerns. The latter want to avoid
more reactive geometries. Doppler effect is enhanced in the core conception so that power
excursion are limited. Neutron induced reactions are inhibited where neutron temperature
increases. Consequently, an increase in neutron population, that is translated in an increase
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of fission events, makes fuel temperature rise, introducing a negative feedback, the Doppler
effect, which decreases the neutron population.
In addition, as it is possible to see in figures 1.3 and 1.4, fertile and fissile zones are created
within the core in order to increase the flux heterogeneity. A sodium plenum zone is located
in the upper part of the core, under an absorbing protection. Axial dimension are reduced in
order to exploit neutron leakage in case of “voided” configurations, i.e. configurations where
sodium mass is reduced or is absent. In such states, sodium absorption is reduced and,
in order to ensure a neutron balance so that production is not enhanced, leakage towards
the upper regions increases. Neutrons are, then, absorbed in the absorbing protection, that
prevents them from returning into the core. Sodium boiling or core draining, therefore, does
not lead to more reactive geometries. This conclusion has been extrapolated also to larger
industrial cores [6]. This conception, as a result, satisfies the following objectives:

• favourable transient in case of unprotected loss of flow and heat sink

• no sodium boiling in case of unprotected loss of station supply power (ULOSSP)

• favourable behaviour in case of control rod withdrawal (CRW)

In conclusion, CFV is a core conception of enhanced safety. This result is achieved through-
out a core design which guarantees limited power excursion if fuel temperature increases
(Doppler effect), and which does not assure a reactivity gain if sodium boils or core is com-
pletely drained; a core design which has, and wisely exploits, its non homogeneous neutron
population distribution.

1.6 APOLLO3: A new code for new challenges

The heterogeneities described in the previous section and the importance of correctly eval-
uating the physical quantities of interest during SFR operation require new numerical tools
for reactor simulation. As a result, in 2009, CEA, with the support of AREVA and EDF,
decided to focus on the development of the new deterministic multi-purpose code APOLLO3
and on its fast reactor applications.

1.6.1 Nuclear Code Scenario

From its conception to the actual operation of a nuclear reactor, it is of major importance
to know the distribution of neutron population throughout the core. In order to do so, an
equation, that will be presented in the following chapter, must be solved. This equation was
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Figure 1.3 CFV core layout Figure 1.4 CFV core geometry

first introduced by Ludwig Boltzmann to describe transport phenomena in gas. Lately, with
the beginning of reactor physics, it was reformulated, to describe neutron transport phe-
nomena as well. This equation simply takes into account that neutrons are neutral particles
which move in a certain geometry, generally a reactor core or a part of it for the purpose
of this thesis work. Being neutral particles, they are not subjected to electromagnetic fields
and their paths proceed in a straight line. Neutrons can escape the geometry under con-
sideration, or induce a reaction. They can collide - beginning a new straight path with a
different orientation - or be absorbed. Absorption can imply different nuclear reactions, and
fission is among them. Fission produces other neutrons that start again an analogous cy-
cle. Each part of this neutron cycle is described by a proper mathematical operator in the
Boltzmann equation. Unfortunately, this equation can’t be solved analytically. Numerical
solution methods, consequently, are required. Nuclear codes are computer programs aiming
to solve numerically the Boltzmann equation in practical situations introducing reasonable
hypothesis.
Nowadays, nuclear codes are divided into two major categories: Monte Carlo and deter-
ministic codes. The former use a stochastic approach and are based on the random walk
concept: neutron paths are simulated, generations after generations, no matter the geome-
try of interest. Neutron distribution is acquired through the minimum possible number of
hypothesis. The disadvantage is that such precision is reached with a great computational
effort. This effort, which is translated in a great computational time for ordinary computer,
is accomplished for reference calculations only, for the time being. Excluding supercalcula-
tor, widespread present technologies are not capable to perform Monte Carlo calculations in
reasonable time. Consequently, for industrial applications, deterministic codes are preferred.
These codes are based on a proper discretization of the Boltzmann equation.
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At the present time, full core calculations are performed in two steps. These steps are per-
formed using different resolution techniques, applied on different geometries and with different
spatial and energy meshes. The first one is the lattice step, performed with the utilization of
lattice codes. Such codes resolve the transport equation in reference geometries - usually 2D
cells or assemblies - with a finer energy mesh and spatial discretization. The aim of such step
is the energy condensation and the spatial homogenization of the parameters of interest for
the following step, the core one. These parameters are for example cross sections, isotopic
concentrations, leakage coefficient etc. They are stored in Multi Parameter Database and
used as input data for next calculations.
The core step performs full core calculations with a coarser energetic mesh and spatial dis-
cretization. Proper techniques are used to deal with 3D reactor geometries and apply ther-
modynamical and kinetic models in order to simulate operational and accidental conditions.
As it is possible to note, core calculations are the result of a synergistic effort of more than
one code. Along with lattice and core codes, it is necessary to take into account all the codes
which elaborate the nuclear data. All these codes, together, compose a platform. In France,
the platform used by CEA, EDF and AREVA is composed by: a code that treats nuclear
data and estimates uncertainties: CONRAD [7]; a code that evaluates proper input data
libraries for deterministic and stochastic codes: GALILEE [8]; a reference Monte Carlo code:
TRIPOLI4 [9]; a deterministic lattice code used principally for thermal and epithermal reac-
tors, APOLLO2, and its core counterpart CRONOS2 ; a deterministic lattice code used for
fast reactors, ECCO, and its core counterpart ERANOS [10]. As it will be discussed later,
during the fuel cycle, inside and outside the core, material compositions change, because
of neutron induced reaction and radioactive decay. A depletion code which describes such
evolution is consequently required to complete the platform. DARWIN3 is currently used by
the French organization presented above [11].

1.6.2 APOLLO3: General Objectives

A neutronic platform is a simulation tool and its aim is the evaluation of certain physical
quantities in certain configurations, applying proper models. As seen in previous sections,
reactor configurations and core conceptions change, requiring new simulation tools. Tools
that can also implement new physical models and new mathematical algorithms, exploiting
new computer architectures. That’s why the life cycle of nuclear codes is equal to, more or
less, 40 years. APOLLO3 aims to replace the codes APOLLO2, CRONOS2 and ERANOS.
It is coupled with the depletion code MENDEL [12].
APOLLO3 is a new code whose key objective is to merge together the lattice and core steps
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in one single code, in order to accomplish one step calculations in the future. In order to do
so, computer architectures must be exploited at their best. This is accomplished through the
use of massive parallelization. Three main levels of parallelization are considered [13]:

• Multi Parametrized calculations: through core subdivision in macro geometries.
Multi parameters assemblies calculations are a classical example.

• Multi Domain calculations: through the subdivision of the considered geometry
in smaller ones and the utilization of domain decomposition techniques in order to
reconstruct the mutual dependencies between them

• Grain Parallelization of the solvers: exploiting the parallelism of the numerical
methods used

However computational time is not the only request of nuclear industry. Other objectives
are the following [14]:

• Flexibility: from high precision calculations to industrial design

• Easy coupling with Monte Carlo and Thermohydraulical/ Thermomechanical codes,
including coupling with the SALOME platform [15]

• Extended application domain: performing criticality and shielding calculations for
all kinds of reactors (a multi spectrum code for FNR, PWR and experimental reactors)

• Uncertainties assessments using perturbation methods

1.6.3 APOLLO3: A Core Physics Simulation Tool for ASTRID CFV

As already said, an important goal is to develop a multi-purpose code. Of major interest for
this thesis are APOLLO3 applications in the simulation of ASTRID CFV core. The major
problems arising from ASTRID innovative features are related to the correct simulation of
the following elements [13]:

• radial blanket loaded with minor actinides

• neutron shielding and reflector

• sodium plenum and fertile plate

• flux distribution in a core with outer core height greater than inner one (Diabolo
effect)
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All such problems must be taken into consideration and evaluated in order to supply a reliable
code to users and designers. That’s why a rigorous method, called VVUQ (Verification,
Validation and Uncertainty Quantification), has been used. The general scheme is composed
in the following way:

• Verification: internal coherence and numerical results of the solvers are verified
through non regression test

• Validation: in order to evaluate the accuracy of neutronic models and calculation
schemes, comparisons with the reference Monte Carlo code TRIPOLI4 are performed

• Uncertainty Quantification: the global package, including APOLLO3, the codes
which treat the evaluated nuclear data and the nuclear data themselves, is tested com-
paring it with measurements from dedicated experimental programs. Experimental
uncertainties are transposed to neutronic design parameters

Inside such scheme, it is possible to introduce the work of the author, as it will be explained
in the next section.

1.7 Objective of the Thesis

The aim of this thesis is to validate a depletion model which is capable to correctly represent
the isotope evolution in a SFR core. As will be explained in section 3.2, two major cate-
gories of depletion models can be distinguished: macroscopic depletion and micro-depletion.
Because depletion models are applied to core calculations, they use condensed and homog-
enized quantities deriving from proper lattice steps. For thermal reactors, depletion lattice
calculations are performed and their quantities are stored, at each time step, in proper time-
dependent multi-parameterized libraries (known as SAPHYB or MPO databases in french
chain of calculation). The ECCO/ERANOS calculation scheme for fast reactors, on the
contrary, performs only time zero lattice calculations in order to create a time zero library.
A proper micro-depletion model, then, is applied for core calculations. In this work, this
model will be called MICRO SIGMA ZERO (σ0). It is based on the approximation that
multi-parameterized libraries in SFRs are time independent. This approximation leads to
a time-saving model (no lattice depletion calculations are performed, only time zero ones)
which require less memory for the library storage. Libraries, in fact, are not time parame-
terized.
This thesis is an opportunity to re-discuss this approximation and to answer the question: Is
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the ECCO/ERANOS MICRO SIGMA ZERO model accurate enough to describe the isotope
evolution in CFV configuration with the aid of APOLLO3 code?

1.8 Contents of the Thesis

In order to answer the research question previously introduced, this thesis will be organized
in 6 chapters. After a brief introduction on the background of the ASTRID project and
the French nuclear code scenario, a proper literature review of the methods used to solve
the Boltzmann and the depletion equations is proposed in chapter 2. In chapter 3, different
depletion models are introduced and compared for a single cell geometry. Lattice depletion
is validate with respect to TRIPOLI4 and ECCO. Optimized evolution parameters are found
and set for the following lattice calculations.
In chapter 4, a fissile-fertile cluster geometry is discussed. The first part of the chapter
focuses on the lattice evolution geometry, while the second compares the depletion models.
In chapter 5, a 2D core plane geometry is investigated. Although several approximations
are made, this geometry gives an idea of the behaviour of the models in a more complex
configuration. In chapter 6, conclusions are discussed and future work is proposed.
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CHAPTER 2 LITERATURE REVIEW

2.1 The Transport Equation

The linear form of the Boltzmann transport equation is derived in this section. Particle
balance in a control volume during time interval ∆t is assured, neglecting neutron-neutron
interaction. This simplifies the problem avoiding the introduction of a non linear term. The
notation used in this work follows [16]. Further information can be also found in [2, 17].
First of all, the concept of neutron density n is defined:

n(~r, ~Ω, vn, t) = #neutrons
unit volume, soldid angle and velocity

[
neutrons

cm3 · cm/s · sr

]

n is a probability density and, as it is possible to notice, it depends upon 7 variables:

• 3 spatial variables ~r, describing the position where the neutron density is evaluated

• 2 angular variables ~Ω, describing the direction this neutron population is travelling to

• 1 energy variables vn, describing the speed the neutron population is travelling at (that
in a non relativistic approximation can imply a kinetic energy equal to Ek = 1

2mnv
2
n,

where mn is the neutron mass)

• 1 time variable t, describing the time which the neutron population is considered at.

In a control volume C, the total number of neutrons whose speed is included in the interval
[vn, vn + dvn] and whose travelling direction sweeps the solid angle d2Ω is equal to

ntot =
∫
C
d3r n(~r, ~Ω, vn, t)dvnd2Ω (2.1)

This integral neutron population can change in the time interval ∆t. The change ∆ntot is
equal to

∆ntot =
∫
C
d3 r

[
n(~r, ~Ω, vn, t+ ∆t)− n(~r, ~Ω, vn, t)

]
dvnd

2Ω (2.2)

In this time interval, the neutron population can decrease due to collision events or leakage.
Introducing the concept of total macroscopic cross section Σ(~r, vn, t), which quantifies the
interaction probability per unit of travelling path with one of the possible present nuclei,
for a neutron located in ~r with a speed vn, no matter the incident direction, the number of
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collision in the control volume C in the time interval ∆t is equal to:

∆Coll =
∫
C
d3r Σ(~r, vn, t)

[
vnn(~r, ~Ω, vn, t)

]
dvnd

2Ω∆t (2.3)

where Σ(~r, vn, t)vn identifies the probability per second of a collision event.
The number of neutrons which escapes the control volume, then, is

∆Leak =
∫
δC
d2r

[
(~Ω · ~N)vnn(~r, ~Ω, vn, t)

]
dvnd

2Ω∆t (2.4)

where δC identifies the surface of the control volume and ~N its outgoing normal vector.
Applying the divergence theorem:

∆Leak =
∫
C
d3r

[
~∇ · (~Ωvnn(~r, ~Ω, vn, t))

]
dvnd

2Ω∆t (2.5)

It is possible to collapse the product between the neutron speed and the population density
introducing a scalar quantity called angular neutron flux:

φ(~r, ~Ω, vn, t) = vnn(~r, ~Ω, vn, t)
[

neutrons

cm2 · s · cm/s · sr

]

However, during the time interval, in the control volume, neutrons can be generated. For the
time being a source density, which will be properly described later in this work, Q(~r, ~Ω, vn, t)
is introduced, making possible to express the generation term as follows:

∆Gen =
∫
C
d3r

[
Q(~r, ~Ω, vn, t))

]
dvnd

2Ω∆t (2.6)

It is possible to sum up all this information writing the following balance:

∆ntot = −∆Coll −∆Leak + ∆Gen (2.7)

Discarding the volume integral and making explicit the angular flux where it is possible, the
balance can be rewritten:

n(~r, ~Ω, vn, t+ ∆t)− n(~r, ~Ω, vn, t)
∆t =

= −~∇ · (~Ωφ(~r, ~Ω, vn, t))− Σ(~r, vn, t)φ(~r, ~Ω, vn, t) +Q(~r, ~Ω, vn, t)

Considering that the neutron travelling direction does not depend on the spatial variables ~r
and taking the limit ∆t→ 0, it is possible to write the differential form of the transport
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equation:

1
vn

∂φ(~r, ~Ω, vn, t)
∂t

+ ~Ω · ~∇φ(~r, ~Ω, vn, t) + Σ(~r, vn, t)φ(~r, ~Ω, vn, t) = Q(~r, ~Ω, vn, t) (2.8)

2.2 Cross Sections

In the previous section, the total macroscopic cross section Σ(~r, vn, t) has been introduced.
This cross section is the sum of all the macroscopic cross sections which describe neutron
induced nuclear reactions such as capture, scattering, fission and spallation reactions, only
to list the most important in reactor physics:

Σ(~r, vn, t) =
∑
x

Σx(~r, vn, t) (2.9)

where x is a general neutron induced nuclear reaction.
These reactions can occur with more than one isotope, making these terms the results of a
summation over the Niso isotopes considered as well:

Σx(~r, vn, t) =
Niso∑
i=1

Σx,i(~r, vn, t) (2.10)

Σx,i(~r, vn, t) is linearly proportional to the isotope concentration Ni throughout a coefficient
σx,i(vn):

Σx,i(~r, vn, t) = Ni(~r, t)σx,i(vn) (2.11)

σx,i(vn) is called microscopic cross section and it is a physical property of the considered
isotope. This quantity is a proportional coefficient introduced to estimate the effective inter-
action area which a motionless nucleus seen by an incident neutron. Its unit of measure is
the barn, defined as follows:

1b = 10−24cm2

Microscopic cross sections are the fundamental data required in reactor physics calculations.
The correct evaluation of these cross sections is greatly important and it is the result of
experiments, theoretical models and uncertainty quantification. These evaluated data are
stored in JEFF (Joint Evaluated Fission and Fusion file) libraries, following an American
format called ENDF (Evaluated Nuclear Data File). These data libraries are constantly
revised and are set to JEFF3.1.1 version for this work [18]. JEFF libraries contain all the
data of interest in reactor physics and criticality application, including neutron and photon
induced reactions, for a range of incident neutron energy from 10−5 eV to 150 MeV. Cross
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section values are stored in a pointwise format and interpolation functions are provided in
order to reconstruct continuous function σ(En).
In figure 2.1, it is possible to see the microscopic cross section of U238, as a function of the
incident neutron energy, for capture and fission. It is possible to notice that σ(En) is not a
monotonous function, but presents a large number of peaks called resonances. Nuclear energy
levels are not continuous, but discrete. Incident neutron energies, which correspond to well
defined excitation levels, present higher interaction probability. Resonances are studied with
experimental data, but above 10 keV they become impossible to resolve for heavy nuclei.
Statistical approach and theoretical models are used in order to cope with this problem.
CEA uses CONRAD [7] in order to create its evaluated nuclear data libraries to be included
in JEFF3.1.1; this code merges empirical results and theoretical estimations in order to
guarantee high quality evaluations with the associated uncertainties.
In figure 2.2, it is possible to observe a scheme which shows how input cross section libraries
are created for stochastic and deterministic code. The major difference is that stochastic
codes use pointwise libraries, while deterministic codes use groupwise ones. The latter present
group-averaged cross sections: to each energy group an averaged value is associated based
on equation:

Σg(~r) = 1
φg(~r)

∫ Eg

Eg+1
dE Σ(~r, E)φ(~r, E) (2.12)

This multi-group approach tends to flatten the resonances observed in figure 2.1: only one
value must represent an energy domain that can contain numerous resonances. In order to
account for the resonances, preserving group-wise cross section libraries, probability tables
are introduced. They are created using CALENDF code [19]. A description of how they
are created is beyond the purpose of this work. For the moment, it is worth saying that
probability tables provide quadrature formulas to evaluate Lebesgue integral. Each weight
ωk is associated to the probability that, inside the energy group G, the cross section σx,i

assume a certain value σ̂x,i. Probability tables are also used in Monte Carlo codes for the
resonance description of the unresolved energy domain (E > 10 keV) [20].
Concerning the resonances, another effect must be accounted. σx,i(vn) has been defined
to represent the interaction probability between an incident neutron at vn velocity and a
motionless nucleus. However in reactor physics application nuclei are not motionless, they
have a proper temperature and velocity vA. The probability distribution of the nuclei velocity
for materials at thermal equilibrium, follows the Maxwell-Boltzmann distribution [16]. The
interaction probability, hence, is not related to the incident neutron velocity vn, but to the
relative neutron-nucleus one:

vR = |~vn − ~vA|



18

10 -6 10 -4 10 -2 10 0

ENERGY (MeV)

10 -10

10 -5

10 0

10 5
X

s
 [
b

]
Incident Neutron Data / JEFF-3.1.1 / U238 // Cross Section

(n,fission)

(n, γ)

Figure 2.1 Capture (n,γ) and Fission (n,fission) U238 cross sections

EVALUATION

POINTWISE
CROSS SECTION

RECONSTRUCTION

PROBABILITY
TABLE

CREATION

CROSS SECTION
POINTWISE
LIBRARIES

PROBABILITY
TABLES

MULTI-GROUP
CROSS SECTION

CREATION

DETERMINISTIC
TRANSPORT

CODE

MONTE CARLO 
TRANSPORT

CODE

Figure 2.2 Input Cross section library creation scheme



19

Figure 2.3 Doppler-Broadening Effect

p(~vA) is the Maxwell-Boltzmann probability distribution at a defined temperature T . The
actual cross sections used in input libraries are a convolution, throughout the whole energy
domain, of the 0 K cross sections by p(~vA):

σ̄x,i,T (vn) = 1
vn

∫
∞
d3vAp(~vA) |~vn − ~vA|σx,i(|~vn − ~vA|) (2.13)

The effect of the convolution is observable in figure 2.3. Increasing the temperature, the peak
height decreases. This fact can be explained thinking about the resonance peak associated
to vn velocity at 0 K. If the nucleus is motionless, there is only one neutron velocity vn

associated to that energy of the neutron-nucleus system; if the nucleus starts moving, more
neutron velocities can compose the energy required for the interaction. The probability peak
is reduced, spread over a greater number of velocities. It is important to notice that formula
2.13 preserve the total number of interactions. This is true if an infinite dilution is consid-
ered. Considering a finite geometry, a nuclear reactor for instance, this fact is no longer true.
Increasing the temperature reduces the interaction probability. This phenomenon is called
Doppler effect and it is of major interest for the safety concerns of ASTRID conception.
In APOLLO3, a new modelization of the Doppler-broadening in the resonance domain has
been introduced in order to rigorously describe the phenomenon [21]. In addition, the way
scattering events are simulated has been improved [22].
Returning to the macroscopic cross section Σx,i(~r, vn, t), formula 2.11 underlines that, while
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the microscopic cross sections are time-independent physical properties (this statement will
be re-discussed in 2.4.4), isotope concentrations change in time and space. For the purpose of
this work, the time variation of the concentrations is of primary interest. It is important, then,
to explain why concentrations vary: some nuclear reactions - principally neutron capture,
fission and spallation ones- modify the target nuclei. Operating a nuclear reactor, therefore,
means to ensure a neutron balance taking into account changes in the isotope concentrations.

2.3 Depletion Calculation

In a nuclear reactor, as previously discussed, isotope concentrations continuously change.
This fact modify the composition of the materials. In the fuel, for instance, radiative capture
and fission occur. Isotopes transmute and fission products appear. This change continuously
modifies the macroscopic cross sections which appear in 2.8.
Steady-state reactor physics does not solve the time dependent Boltzmann equation. Op-
erational requirements are set to exploit the reactor at certain condition; but, to account
for concentration evolution, an approximation must be made in order to neglect the time
variable dependence. Time is discretized into time steps: t1, t2, ... , tN , ... At each time
step tN , the steady-state Boltzmann equation is solved by means of a transport code, both
stochastic and deterministic:

~Ω · ~∇φ(~r, ~Ω, vn, tN) + Σ(~r, vn, tN)φ(~r, ~Ω, vn, tN) = Q(~r, ~Ω, vn, tN) (2.14)

The flux distribution and the reaction rates are evaluated at tN . These information are
used to compute the new concentrations at tN+1, which provide the new macroscopic cross
sections to solve the Boltzmann equation at the new time step. It is possible to observe
the scheme in figure 2.4. The time interval ∆t = tN+1 − tN must be smaller than the time
scale of the flux change, for the approximation to be verified. The flux distribution changes
at each time step, but not considerably so that it can be represented by a straight line
or a parabola. It is possible, hence, to decouple the concentration evolution and the flux
distribution evaluation. For the former, a system of equations must be solved: the Bateman
equations. These ones account for concentration variations. For each isotope k, the variation
is equal to the difference between the rates of its production and of its transmutation due to
absorption or spontaneous decay. The source term is:

Sk(t) =
J∑
j=1

 G∑
g=1

Y g
k,j < σf,jΦ >g (t)

Nj(t) +
K∑
j=1

λj→k(t)Nj(t) (2.15)
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where:

• J is the number of fissile isotopes

• K is the number of depleting isotopes

• G is the number of fission yield groups

• < σf,jΦ >g (t) is the volume averaged fission reaction rate of isotope j integrated over
the energy fission yield group g

• Y g
k,j is the fission yield of g group for the production of isotope k from fissionable isotope
j

• λj→k(t) is equal to the radioactive constant λj or < σx,jΦ > (t) reaction rate, integrated
over the whole energy domain, for production of isotope k by j.

The transmutation term is equal to:

Λk(t)Nk(t) = (λk+ < σa,kΦ > (t))Nk(t) (2.16)

The first order system of K equations is

dNk

dt
+ Λk(t)Nk(t) = Sk(t) (2.17)

for all the depleting isotopes k =1,...,K.
Replacing the time dependent reaction rates with the Greek letter τ , it is possible to write
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the Bateman equations in a matrix form:

d ~N

dt
= ¯̄A(λ, τ(t)) · ~N(t) (2.18)

where it is possible to separate in matrix ¯̄A the time independent component depending on
the decay constants, which are physical properties of the nuclei, from the reaction rates,
which are time dependent and vary with the reactor operating condition. A description of
matrix ¯̄A is presented in section 2.5, along with a discussion about the representation of the
reaction rate time variation (linear or parabolic). The importance of flux normalization will
be discussed in section 2.5.1.
All the fundamental equations, which this work deals with, have been presented at the
moment. The chapter, from now on, will focus on the numerical methods used to solve these
equations. The first section will discuss the numerical methods and the solvers used for the
Boltzmann equation; the second one will concern the numerical methods used to solve the
Bateman equations.

2.4 Solution of the Boltzmann Equation

2.4.1 Different Forms of the Transport Equation

Beside formula 2.14, it is possible to distinguish other forms of the Boltzmann equation.
These forms can be used in certain resolution methods of the transport equation. From now
on, the neutron velocity vn will be replaced with its kinetic energy E in the formula. Another
quantity the neutron energy can be described with is the lethargy u = ln

(
E0
E

)
, where E0 is

the neutron reference energy, usually set to 10 MeV.

The Characteristic Form

Defining with the greek letter Γ a characteristic (a straight line with direction ~Ω, correspond-
ing to a possible neutron trajectory), it is possible to parametrize the neutron position along
this direction: starting from ~r ∈ Γ, each neutron position in the characteristic is described
by ~r − s~Ω. Equation 2.14 can be, consequently, reformulated in its characteristic form:

− d

ds
φ(~r− s~Ω, ~Ω, E, tN) + Σ(~r− s~Ω, E, tN)φ(~r− s~Ω, ~Ω, E, tN) = Q(~r− s~Ω, ~Ω, E, tN) (2.19)
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The Integral Form

Integrating the equation 2.19 on an infinite domain, the integral form of the transport equa-
tion is obtained:

φ(~r, ~Ω, E, tN) =
∫ +∞

0
ds e−τopt(s,E,tN )Q(~r − s~Ω, ~Ω, E, tN) (2.20)

where the optical path τopt is introduce to account for the neutron density attenuation along
the characteristic. It is defined as follows:

τopt(s, E, tN) =
∫ s

0
ds′Σ(~r − s′~Ω, E, tN) (2.21)

If a finite domain is considered, the integral form becomes:

φ(~r, ~Ω, E, tN) = e−τopt(b,E,tN )φ(~rf , ~Ω, E, tN) +
∫ b

0
ds e−τopt(s,E,tN )Q(~r − s~Ω, ~Ω, E, tN) (2.22)

where ~rf represents the position where the characteristic enters the domain and b = |~r−~rf |.
In order to simplify the notation, from now on, the dependency of the quantities from the
time step tN won’t be explicitly written. Of course, if nothing else is said, this dependency
will continue to implicitly exist.

2.4.2 Source Density

The source density Q(~r, ~Ω, E) has been previously introduced in order to define the particle
balance. It is composed by a fission term, a scattering term and a term accounting the
external sources (spontaneous fissions or other reactions):

Q(~r, ~Ω, E) = Qscatt(~r, ~Ω, E) +Qfiss(~r, ~Ω, E) + Sext(~r, ~Ω, E) (2.23)

At nominal condition, the external source term is negligible and it is not taken into account.
The scattering neutron source density, on the contrary, is considered. It describes the source
of neutrons, which sweep a certain solid angle d2Ω with a certain energy in [E,E + dE],
produced by a scattering event of incident neutrons in d2Ω′dE ′ phase space. In order to
represent this term, the macroscopic differential scattering cross section Σs(~r, E ← E ′, ~Ω←
~Ω′) is introduced. It corresponds to the probability density that an incident neutron in
d2Ω′dE ′ is scattered into the d2ΩdE phase space. In the assumption of isotropic materials:

Qscatt(~r, E, ~Ω) = 1
2π

∫
4π
d2Ω′

∫ +∞

0
dE ′Σs(~r, E ← E ′, ~Ω · ~Ω′)φ(~r, E ′, ~Ω′) (2.24)



24

where a Legendre polynomial expansion can be performed on the differential scattering cross
section. A description of the Legendre polynomial expansion is beyond the point of this
work. Every information can be found in [16]. For the time being, it is worth saying that the
Legendre polynomial expansion of the macroscopic scattering cross section is limited to order
L (Σs,L(~r, E ← E ′)). L = 0 means isotropic scattering, whereas L = 1 describes linearly
anisotropic scattering. In this work, to correctly account for flux gradient, L = 3 is used for
the future calculations.
The fission source term, now, can be discussed. Usually, in reactor calculations, it is supposed
to be isotropic and it describes the neutrons produced by fission events on the fissile isotopes.
Incident neutron energy is represented with E ′, whereas E describes the secondary neutron
energy. Neglecting the dependency of the secondary neutron fission spectrum on the incident
neutron energy, the fission source term is written as follows:

Qfiss(~r, E, ~Ω) = 1
4πQfiss(~r, E) = 1

4π

J∑
j=1

χj(E)
∫ +∞

0
dE ′νj(~r, E ′)Σf,j(~r, E ′)φ(~r, E ′) (2.25)

where

• J is the number of fissile isotopes

• Σf,j(~r, E ′) : macroscopic fission cross section of isotope j,

• νj(~r, E ′) : average secondary neutron number for the fissile isotope j,

• χj(E) : energy averaged secondary neutron fission spectrum (normalized to 1),

• φ(~r, E) =
∫

4π d
2Ω φ(~r, E, ~Ω) : integrated flux (or scalar flux).

It is important to notice that, because steady-state conditions are considered, no distinction
between prompt and delayed neutron is made.
The major part of the actual deterministic codes —APOLLO2 and ECCO are an example—
uses 1 energy averaged fission spectrum for transport calculations. Secondary neutron energy-
independent fission spectra are averaged using weighting functions which are typical of the
reactor applications.
However, in APOLLO3 and in Monte Carlo codes, it is possible to relate the secondary
neutron fission spectrum to the incident neutron energy, writing the fission source term in
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the following way:

Qfiss(~r, E) =
J∑
j=1

∫ +∞

0
dE ′νj(~r, E ′, E)Σf,j(~r, E ′, E)φ(~r, E ′) (2.26)

This is the most rigorous way to write the fission source term. The numerical methods
to treat with this term will be explained in section 2.4.3, after introducing the multigroup
approach. The energy discretization of this term will be presented, such as performed in
TRIPOLI4 and in APOLLO3.

Eigenvalue Problem

In most reactor physics applications, an eigenvalue problem must be solved. The external
source in the source density is neglected during reactor operations at nominal conditions. This
leads to the presence of the neutron flux in each term of the transport equation. Physically,
this means that the neutron flux itself is the only cause of the presence of a neutron flux.
Because the solution of the steady-state transport equation 2.14 is the aim of transport codes,
an equilibrium between the neutrons produced and the ones absorbed or escaping the system
must be set, in the calculation domain, to assure steady-state condition. This justifies the
introduction of an artificial parameter k which divides the neutron fission source to adjust
the neutronic equilibrium. The source term is consequently written as follows:

Q(~r, ~Ω, E) = Qscatt(~r, ~Ω, E) + 1
4πkQfiss(~r, E) (2.27)

The following eigenvalue problem must then be solved:

Aφ = 1
k
Fφ (2.28)

where
Aφ = ~Ω · ~∇φ(~r, ~Ω, E) + Σ(~r, E)φ(~r, ~Ω, E)−Qscatt(~r, ~Ω, E) (2.29)

and
Fφ = 1

4πQfiss(~r, E) (2.30)

The solution of equation 2.28, over a certain geometry domain and with certain boundary
conditions, leads to a discrete number of eigenvalue ki to which corresponding eigenfunctions
φi are associated.
The eigenfunction φ0, associated to the maximum eigenvalue k0, is called fundamental mode.
It is the only function among φi which do not change sign in the geometry domain and it is
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representative of the real flux present in the system [16].
The eigenvalue k0 is called effective multiplication factor keff (or infinite multiplication factor
kinf , if leakage are not accounted and infinite geometries are considered). This value can be
demonstrated to be real, positive and non degenerate. If it is equal to 1, the system is
in steady state condition (criticality is assured). On the contrary, if it is greater than 1,
super-critical condition is set and neutron population diverges in time (the fission production
is higher than required). Neutron population decreases in time if keff < 1. Sub-critical
condition is met and the fission production is smaller than required to maintain a steady
state neutron balance.

2.4.3 Multigroup Approach

The independent variables of the steady state Boltzmann equation are the three components
of the space vector ~r, the energy and the two components of the solid angle ~Ω. In order to
reduce the number of unknowns, a multigroup approach is used. This approach results in the
utilization of energy averaged quantities. Consequently, G energy groups create a system of
G Boltzmann equations whose properties are energy condensed. The G transport equations
are:

~Ω · ~∇φg(~r, ~Ω) + Σg(~r)φg(~r, ~Ω) = Qg(~r, ~Ω) (2.31)

for 1 ≤ g ≤ G.
Defining the energy boundaries as follows:

0 < EG+1 < EG < ... < Eg+1 < Eg < ... < E1 < +∞

it is possible to introduce the quantities of interest:

φg(~r, ~Ω) =
∫ Eg

Eg+1
dE φ(~r, E, ~Ω) (2.32)

φg(~r) =
∫ Eg

Eg+1
dE φ(~r, E) =

∫
4π
d2Ω φg(~r, ~Ω) (2.33)

Σg(~r) = 1
φg(~r)

∫ Eg

Eg+1
dE Σ(~r, E)φ(~r, E) (2.34)

Concerning the fission source density, equation 2.26 can be rewritten. It is possible to consider
the fission source as a function of both energy group g′ of the neutron causing the fission and
energy group g of the neutron produced by the fission. For each energy group pair g and g′,
it is possible to introduce a component of the multigroup fission matrix σg

′→g
f,j : it represents
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the secondary neutron number produced in the energy group g by an incident neutron in g′

from a single target nucleus of the isotope j. It incorporates the prompt and delayed fission
neutron components obtained with a nuclear data elaboration code as GALILEE [8].
Using the multigroup fission matrix, the fission term becomes:

Qg
fiss(~r) =

J∑
j=1

G′∑
g′=1

Nj(~r)σg
′→g
f,j φg

′(~r) (2.35)

where φg′(~r) is the scalar flux integrated over the energy group g′ (see 2.4.3).
The multigroup fission matrix approach is currently used for Monte Carlo nuclear code as
TRIPOLI4 [9]. This approach is far more accurate than the one presented in equation
2.25, but it is not easy to implement in deterministic code. Different iterative procedures
have been implemented to better estimate the fission source for APOLLO2 calculations [23,
24]. Nevertheless, for fast neutron system, 4 macro-group secondary neutron fission spectra
have been demonstrated to be accurate enough for the fission source representation [24].
APOLLO3 is capable to deal with 4 macro-group spectra. The influence of the number of
spectra in depletion calculations will be analyzed in chapter 3.
In table 2.1, it is possible to see the energy boundaries of the macro-groups. Using a number
NMG of macro-groups, the fission term becomes:

Qg
fiss(~r) =

J∑
j=1

NMG∑
mg=1

χgj,mg

Sup(mg)∑
g′=Inf(mg)

Nj(~r)νg
′

j (~r)σg
′

f,j(~r)φg
′(~r) (2.36)

where

χgj,mg =
∑Sup(mg)
g′=Inf(mg) σ

g′→g
f,j wg

′

∑Sup(mg)
g′=Inf(mg) ν

g′

j σ
g′

f,jw
g′

(2.37)

Inf(mg) and Sup(mg) are respectively the upper and lower boundaries of the macro-group
mg. wg′ is the proper weighting function, integrated over the energy group g′.
Considering the scattering source term introduced in 2.36, it is possible to write the source

Table 2.1 Energy Boundaries of fission spectrum macro-groups

Sup(mg) Inf(mg)
I 20 MeV - 1.35 MeV
II 1.35 MeV - 497 keV
III 497 keV - 183 keV
IV 183 keV - 10−5 eV
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density as follows:

Qg(~r, ~Ω) = 1
2π

∑
g′

∫
4π
d2Ω′ Σg′→g

s (~r, ~Ω′ · ~Ω)φg′(~r, ~Ω′) + 1
4πkQ

g
fiss(~r) (2.38)

where

Σg′→g
s (~r, ~Ω′ · ~Ω) = 1

φg′(~r, ~Ω′)

∫ Eg

Eg+1
dE

∫ Eg′

Eg′+1

dE ′ Σs(~r, E ′ → E, ~Ω′ · ~Ω)φ(~r, ~Ω′, E ′) (2.39)

The distinction between lattice step and core one for deterministic nuclear codes has already
been introduced in 1.6.1. One of the major difference between these steps is the number of
energy groups G used. For SFR applications, in lattice calculations G is set to 1968, while
it is equal to 33 at core step.
Input cross section libraries, read by APOLLO3, are created with GALILEE [8], performing
a condensation of the JEFF3.1.1 evaluated data into 1968 energy groups. In equation 2.34, it
is possible to see that a proper flux φg must be used to conserve the reaction rates. Because
the flux φg is the quantity to be evaluated, a weighting function wg proper of fast systems is
used to guarantee accurate results in the widest range of applications.
The choice of the number of energy groups is made so that the wider resonances are rep-
resented by the group cross sections themselves, while the narrower ones can be treated
in narrow resonance approximation in the sub-group method (see 2.4.4) [25]. In the next
section, self-shielding will be discussed.

2.4.4 Self-Shielding

The multigroup approach has been previously discussed. Energy averaged quantities are used
and, in order to preserve the reaction rates, the flux is used as weighting function. But the
flux is the quantity to be evaluated, so, as already discussed, weighting functions wg are used.
These weighting functions, nevertheless, do not take into account the spatial distribution of
the flux. They just represent an energy spectrum. But, in a nuclear reactor, heterogeneities
are present and the flux assumes also a spatial distribution. Resonances are more effective
in a region where an higher flux φg(~r) is present.
As a result, a spatial distribution for the microscopic cross sections σ̄x,i,T (E,~r) arises because
of resonance condensation into energy groups. In thermal reactor, a phenomenon called rim-
effect is present inside the fuel pin. The pin flux distribution is not homogeneous but it
presents a peak in the external region and a depression in the internal one. Reaction rates
are, then, higher in the outer regions. This phenomenon is absent in fast systems where a
flatter flux is present (see appendix A).
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A self-shielding method, therefore, creates a microscopic cross section library which is space
dependent. To do so, cross section values are interpolated from input libraries with the aid
of dilution parameters and the Livolant-Jeanpierre approximation; or they are evaluated by
means of a flux calculation with sub-groups. The latter is called sub-group method and will
be presented later. For more information, it is possible to consult [16, 17, 26].
Before discussing in detail the sub-group method and its variation by Tone, it is worth
reminding that the flux distribution used in the multigroup approach is time dependent.
The self-shielding method, then, introduces also a time dependency on the microscopic cross
section library σ̄x,i,T (E,~r, tN). The variation of the microscopic cross section library, and
its effect on the multiplication factor during the reactor operation, will be studied in 3.1.1,
where self-shielding re-iteration will be discussed.

Sub-Group Method

In the sub-group method, Riemann integrals are replaced with Lebesgue ones. Cross sections
are considered the integration variable:

I = 1
∆u

∫ ug+1

ug
F [σ(u)]du =

∫ maxg(σ)

ming(σ)
F (σ)π(σ)dσ (2.40)

where u is the lethargy defined previously and π(σ) is σ probability density.
Integral 2.40 is solved using a quadrature formula. The probability tables produced by
CALENDF [19] contains a number K of couples {σk, ωk} for each group g, with ∑K

k=1 ωk = 1.
Each k is a sub-group in the energy group g. The probability density is written in the following
way:

π(σ) =
∑
k

δ(σ − σk)ωk (2.41)

so that
I =

∑
k

F (σk)ωk (2.42)

Resonant isotopes are treated one at a time and, for fast systems, no significant correlation
occurs in mixtures. The resonant isotope is defined with “*” superscript, whereas “+” iden-
tifies the other non resonant isotopes. The subscript “i”, meanwhile, identifies quantities
integrated over the region Vi. For region i, the total cross section is equal to:

Σi(u) = Σ+
i (u) +N∗i σ

∗(u) (2.43)
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and the source term is decomposed in a fission, (n,xn), an inelastic and an elastic scattering
contribution:

Qi(u) = Qf,i(u) +Q(n,xn),i(u) +Qinel,i(u) +Qel,i(u) (2.44)

The contribution of the non resonant isotopes is highlighted in the elastic scattering term:

Qel,i(u) = Q+
el,i(u) +N∗i r

∗ (φi(u)) (2.45)

where r∗ (φi(u)) is the slowing-down operator term defined as follows:

r∗ (φi(u)) =
∫ +∞

0
du′

∫
Vi
d3r σ∗s(~r, u← u′)φ(~r, u′) (2.46)

The ECCO sub-group method and the one used for APOLLO3 calculations imply the narrow
resonances hypothesis. Resonances, then, are considered narrow and isolated. A collision in
u′ is considered out of the resonance zone [24, 26]. This means that the flux distribution in u′

is not affected by resonances. A constant distribution of the flux φ(~r, u′) can be consequently
supposed. The slowing-down operator is rewritten as a constant:

r∗ (φi(u)) = σ∗p (2.47)

The narrow resonance assumption is valid in the energy region exploited by fast neutron
systems, if a proper energy mesh is used.
The multigroup transport equation becomes for region i:

~Ω · ~∇φgi (~Ω, u) + (Σg+
i +N∗i σ

∗(u))φgi (~Ω, u) =

= 1
4π

(
Qg
f,i(u) +Qg

(n,xn),i(u) +Qg
inel,i(u) +Qg+

el,i(u) +N∗i σ
∗
p

)
(2.48)

with u ∈ [ug, ug+1].
Applying the quadrature formula and considering the neutron balance satisfied for each sub-
group k, the sub-group transport equation to be solved becomes:

~Ω · ~∇φgi,k(~Ω) + (Σg+
i +N∗i σ

∗
k)φ

g
i,k(~Ω) =

= 1
4π

(
Qg
f,i(u) +Qg

(n,xn),i(u) +Qg
inel,i(u) +Qg+

el,i(u) + 1
ωk
N∗i σ

∗
p

)
(2.49)

for 1 < k < K.
Applying the collision probability method (see 2.4.6), the K sub-group transport equations
are solved for each group g. A fundamental hypothesis is made: the neutron source is
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supposed to be decorrelated from resonant cross sections. This is true if resonances are
numerous and statistical distributed or if the multigroup energy mesh is fine [26].
For the resonant isotope, the cross section for x reaction can be now evaluated in region i:

σ∗,gx,i =
∫
g σ
∗
x(u)φi(u)du∫
g φi(u)du =

∑K
k=1

∑
j ωkσ

∗
x,kpij,kQ

g
j∑K

k=1
∑
j ωkpij,kQ

g
j

(2.50)

where pij,k is the reduced collision probability term of the sub-group k. This term is evaluated
by means of the probability table pij,k = pij(σk). An iterative procedure, on the contrary,
must be set for the flux calculation, required by the sub-group self-shielding. The Qg

j source
term is updated at each power iteration.

Tone’s Method

This method has been implemented by Tone in 1975 [27]. The time saved is of the order
of a factor 30 with respect to the previous method. This occurs mainly because only 1 Pij
per group is calculated and not K sub-group pij,k. The method is applied before, separately.
The collision probability method is applied also in this case. With respect to the ordinary
CPM (see section 2.4.6), a major assumption is made concerning the neutron flux in region
j coming from region i: φij(u) is proportional to the group averaged flux φgij by means of a
coefficient αj(u) which depends only on region j:

φij(u) = Vi
Vj

Pij(u)
Σj(u)Qi(u) ≈ αj(u)φgij (2.51)

where u ∈ [ug, ug+1] and Pij(u) is the collision probability term.
The total flux over the region j is φj(u) = ∑

i φij(u). After doing few manipulations and
distinguishing the resonant isotope, it is possible to explicit φj(u):

φj(u) =
∑
i ViQ

g
iP

g
ij∑

i ViN
∗
i (σ∗(u) + σ∗,g0,i )P

g
ij

; u ∈ [ug, ug+1] (2.52)

where the dilution cross section is identified (macroscopic cross sections of the n nuclei
different from the resonant one divided by the resonant isotope concentration):

σ∗,g0,i =
∑
n6=m

Nn
i σ

n,g
i

N∗i
(2.53)



32

and P g
ij =

∫
g Pij(u)du.

For the resonant isotope, the cross section for reaction x can be now evaluated in region i:

σ∗,gx,i =
∫
g σ
∗
x(u)φi(u)du∫
g φi(u)du (2.54)

with

∫
g
σ∗x(u)φi(u)du =

∫
g

σ∗x(u)du∑
i ViN

∗
i (σ∗(u) + σ∗,g0,i )P

g
ij

=
K∑
k=1

ωkσ
∗
x,k∑

i ViN
∗
i (σ∗x,k + σ∗,g0,i )P

g
ij

(2.55)

and

∫
g
φi(u)du =

∫
g

du∑
i ViN

∗
i (σ∗(u) + σ∗,g0,i )P

g
ij

=
K∑
k=1

ωk∑
i ViN

∗
i (σ∗x,k + σ∗,g0,i )P

g
ij

(2.56)

Tone’s method does not require a flux calculation. The source term does not appear in
formula 2.54. However, the group averaged collision probabilities P g

ij are evaluated by means
of an iterative procedure. In fact, macroscopic cross sections Σ∗,gx,i are required to calculate
the collision probabilities, but the collision probabilities themselves are required in equation
2.54.
It is important to notice that the fundamental hypothesis of the Tone method is related, in
a sort of way, to the assumption that the region, where the nuclide is located, is spatially
isolated. It is “distant” or slightly sensitive to the presence of other materials containing the
same isotope. This assumption is reasonable in CFV core configuration because fuel pins are
separated and no major spatial self-shielding effect is observed.
In section 3.1.1, the validity of the application of the Tone method during the evolution will
be discussed, comparing this method with the sub-group one previously introduced.

2.4.5 General Resolution Algorithm

After a self-shielding method is applied, the multigroup macroscopic cross section library can
be created in order to perform the flux evaluation in a number G of energy groups. Equation
2.28 must be solved in the multigroup approach. A system of G equations is set and, although
numerous numerical methods have been implemented to solve it (see 2.4.6 and 2.4.7), the
general iteration procedure is described below. It involves an inverse power method: a first
initialization of the flux vector ~φ0 is made and an initial value of the multiplication factor,
usually k0 = 1, is set. It is the beginning of an outer iteration (index e).
Every energy group equation is separately resolved: internal iterations are made (index
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i). Energy group equation is solved following the neutron slowing-down (from 1 to G).
The diffusion source term Qg

scatt is evaluated and, inverting the A operator of the group g

(identified with Ag), it is possible to write:

φgi+1 = 1
ke

(Ag)−1Fφi (2.57)

A Gauss-Seidel fixed point iteration method is usually implemented for equation 2.57 [28].
The scattering source term is updated every time φg is converged before starting evaluating
φg+1. If neutrons are supposed to up-scatter, up-scattering iteration are required. Once that
all the energy spectrum is treated, the multiplication factor, and consequently the fission
source, is updated and a new outer iteration starts, until convergence is reached:

ke+1 = ke
Fφe+1

Fφe
(2.58)

The inverse power method converges to the eigenvector associated to the highest eigenvalue,
i.e. the fundamental mode solution k0, φ0.
The difficult part is to explicitly write equation 2.57 with (Ag)−1 term. In fact, the solution
of the transport equation becomes the solution of mono-energetic fixed source equations.
Before discussing the actual numerical method used to solve the transport equation, another
important aspect of the problem modelization is introduced: the boundary conditions.

Boundary Conditions

Different boundary conditions can be applied to close the system of equations:

• Albedo boundary conditions:
In the neutron boundary surface S, with outgoing normal vector ~N , in position ~rb ∈ S,
the incoming flux with direction ~Ω′ is proportional to the outgoing flux φg(~rb, ~Ω) by a
factor β:

φg(~rb, ~Ω) = β φg(~rb, ~Ω′) ; β ∈ [0, 1] (2.59)

with
~Ω = ~Ω′ − 2| ~N · ~Ω′| ~N (2.60)

If β = 0, a vacuum boundary condition is set. If it is equal to 1, a specular reflective
boundary condition is set.

• Periodic boundary conditions:
In a periodic lattice grid, this boundary condition corresponds to a case where the flux
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in a surface S is equal to another in a surface S ′, parallel to the first one:

φg(~rb, ~Ω) = φg(~rb + ∆r, ~Ω) (2.61)

where ∆r is the lattice pitch.

• White boundary conditions:
If an incident neutron strikes the boundary surface S, it is reintroduced with a reflective
condition in the volume, following an isotropic angular distribution.

2.4.6 TDT Solver

Numerical methods to solve the multigroup transport equation will be presented in this
section and in the following one. Only the methods actually used in this work will be
treated. For further information, on the methods exposed and on the ones not discussed, it
is possible to consult ad hoc manuals [16, 17, 28].
All the methods discussed are present in APOLLO3 code. They are written mainly in
C++ and FORTRAN 90, incorporating and extending the capabilities of previous codes:
APOLLO2, CRONOS2 and ERANOS. For lattice calculations, i.e. calculations with a fine
energy mesh and small geometries, IDT and TDT solvers are provided. They implement
respectively short and long characteristic methods [29].
However, only the TDT solver will be discussed. In fact, it is the solver that has been used
to perform the lattice calculations presented later in the work. In TDT, the solution of the
transport equation can be obtained in two ways: the Collision Probability Method (CPM)
and the Method of Characteristics (MOC).

CPM

The CPM solves the integral form of the transport equation (formulas 2.20 and 2.22). As it
can be noticed, this form is nothing else but an integration of the transport equation along
a certain track. The track follows a particular direction ~Ω and the exponential term is a
damping factor. Equation 2.20 can be integrated over all the solid angle. Supposing the
source term to be isotropic, the integrated flux is the following:

φg(~r) = 1
4π

∫
4π
d2Ω

∫ ∞
0

e−τopt(s)
g

Qg(~r − s~Ω)ds (2.62)

The isotropy of the source is a limit of this method that can be partly overcome with a
“transport correction”. This correction modifies the total cross section Σ and the order 0
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expansion of the scattering cross section Σs0 to account for anisotropic effect.
The total reaction rate over the region defined by the volume Vj can now be evaluated:

∫
Vj

Σg(~r)φg(~r)d3r = 1
4π

∫
Vj

Σg(~r)d3r
∫

4π
d2Ω

∫ ∞
0

e−τopt(s)
g

Qg(~r − s~Ω)ds

VjΣg
jφ

g
j = 1

4π

∫
Vj

Σg(~r)d3r
∫

4π
d2Ω

∫ ∞
0

e−τopt(s)
g

Qg(~r − s~Ω)ds

with
φgj = 1

Vj

∫
Vj
φg(~r)d3r

Σg
j = 1

Vjφ
g
j

∫
Vj

Σg(~r)φg(~r)d3r

A new, more comfortable, variable can be introduced defined as follows ~r′ = ~r − s~Ω. Its
differential is equal to d3r′ = s2d2Ωds. Then the source term is integrated over all the region
i that appears in the lattice (that are infinite in this case, that’s why the volume is defined
with the notation V ∞i ). In order to simplify the previous equations the following quantity is
defined:

Qg
i =

∫
V ∞
i
Qg(~r′)s−2eτopt(s)

g
d3r′∫

V ∞
i
s−2eτopt(s)gd3r′

and finally the following expression can be written:

VjΣg
jφ

g
j =

∑
i

[
Qg
i

1
4π

∫
Vj
d3rΣg(~r)

∫
V ∞
i

d3r
′ e−τopt(s)

g

s2

]
(2.63)

where the summation over all the region i composing the unit cells in the lattice is made.
Equation (2.63) is further manipulated. The following quantity is introduced

P g
ij = 1

4πVi

∫
Vj
d3rΣg(~r)

∫
V ∞
i

d3r′
e−τopt(s)

g

s2 (2.64)

that expresses the probability for a neutron born in whatever region i to interact in the
particular region j considered. Actually, using the term ’born’ both the meaning of fission
born and scattered born is taken into account.
In case of constant cross section in region j, Σg

j , it can be written

pgij =
P g
ij

Σg
j

= 1
4πVi

∫
Vj
d3r

∫
V ∞
i

d3r′
e−τopt(s)

g

s2 (2.65)
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pgij are the coefficients composing the reduced collision probability matrix that is aimed to
be evaluated in this section.
Returning to equation (2.63), the compact notation is

VjΣg
jφ

g
j =

∑
i

Qg
iViP

g
ij (2.66)

Two properties must be introduced: the reciprocity and the conservation. The first is math-
ematically defined as follows

pgijVi = pgjiVj (2.67)

which means that the product between the reduced probability and the volume of the region
where the neutron is born remains the same if the neutron is born in one of the regions i and
reacts in region j or vice versa.
The second property is the conservation one. It claims that in an infinite lattice all the
neutron born somewhere in a region i must necessarily react somewhere in a region j:

∑
j

pgijΣ
g
j = 1,∀i (2.68)

Equation (2.66) can finally get its last formulation, applying the previous properties:

φgi =
∑
j

Qg
jp
g
ij (2.69)

Now a system made of I equations is built, where I is the number of regions in the unit cell
composing the lattice. Solving it means having the value of the flux in the different regions.
To get the fluxes φgi a tracking procedure must be implemented.
It is possible to divide a major geometry in a certain number of sub-geometries. The CPM
method is applied independently on these geometries. Then, they can be coupled by means
of escape and transmission probabilities. This method is called Interface Current (IC).

MOC

The method of characteristics is now synthetically introduced. For further information con-
cerning the tracking procedure, the boundary conitions and the acceleration techniques, it is
possible to consult Le Tellier [30]. The notation used to introduce the method also derives
from his work.
Before starting to present the equations involved, it is important to underline the advantages
that explain why this method is the preferred one for lattice calculations. With respect to
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Figure 2.5 MOC integration formalism

CPM, it allows the treatment of anisotropic source and it does not produce full matrix of
the order of number of regions. This leads to the use of a more refined tracking mesh and to
more accurate results.
In this method, the tracking procedure is of major importance. In figure 2.5, it is possible to
visualize its role. A neutron in ~r, with a certain direction ~Ω, is projected on the trajectory
defined by ~T at the point defined by the line variable s. Neutron flux variables become (s, ~T ).
This parametrization of the space in tracking lines provides, as a consequence, a discretiza-
tion of the angular directions and of the characteristic density on the plane ΠΩ. In addition,
a subdivision in K segments occurs where a tracking line crosses a calculation region. For
each segment k, equation 2.19 can be integrated over the sub-domain of length Lk =

∫ sk+1
sk

ds:

φg(sk+1, ~T )− φg(sk, ~T ) +
∫ sk+1

sk

ds Σg(s, ~p)φg(s, ~T ) =
∫ sk+1

sk

ds Qg(s, ~T ) (2.70)

Equation 2.70 is nothing else than a balance in the sub-domain k between the outgoing and
incoming flux, the collision and the source term.
Because of memory and time calculation matters, the Step Characteristic (SC) scheme is
currently used. This scheme is based on the assumption that the source term and cross
sections are constant inside each sub-domain k: Σg(s, ~p) = Σg

k(~p) and Qg(s, ~T ) = Qg
k(~Ω).

Other schemes, which assume a polynomial variation of the two terms, can eventually be
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used.
As a consequence of the SC scheme, equation 2.19 can be analytically integrated. The
transmission and the balance equations are respectively presented:

φgk+1(~T ) = φg(sk+1, ~T ) = φgk(~T )e−τ
g
k,opt +Qg

k(~Ω)1− e−τ
g
k,opt

Σg
k(~p)

(2.71)

Lkφ̄k(~T ) =
∫ sk+1

sk

ds φ(s, ~T ) = φk(~T )1− e−τ
g
k,opt

Σg
k(~p)

+Qg
k(~Ω) Lk

Σg
k(~p)

1− 1− e−τ
g
k,opt

τ gk,opt

 (2.72)

with τ gk,opt =
∫ sk+1
sk

ds Σg
k(~p) = LkΣg

k(~p).
Sweeping all the tracking lines over all the sub-domains, from 1 toK, it is possible to evaluate
the flux distribution. Because of the tracking parametrization, it is possible to reconstruct
the outgoing flux from a surface Sα, with outgoing normal vector ~N out

α , integrating all over
the tracking lines concerned:

Jg,outα =
∫
Sα
d2rb

∫
~Ω· ~Nout

α >0
d2Ω(~Ω · ~N out

α )φg(~rb, ~Ω) MOC=
∫

Υ
d4Tχα(~rk+1)φ(sk+1, ~T ) (2.73)

where ~rb describes all the position vectors which lie on the surface Sα and χα(~rk+1) is the
characteristic function. This function describes Sα with the tracking parametrization of the
space. The subscript k+1 underlines the fact that the outgoing boundary of the sub-domain
K is considered for the concerned tracking lines.
In conclusion, it is important to say that, in order to reduce calculation time, the flux must
be correctly initialized and accelerated. Numerous acceleration techniques are implemented
in TDT solver [31, 32].

2.4.7 MINARET Solver

For core calculations, APOLLO3 presents three different solvers: MINOS, MINARET and
PASTIS. In this work, MINARET solver is the only one that will be used. This solver
allows performing 2D/3D transport calculations using the Simplified Spherical Harmonics
method (SPn) or the Discrete Ordinates method (Sn) [29]. The latter will be used for core
calculations in 33 energy groups. This solver will be used for the depletion models that will
be implemented.
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Sn

In Sn method, the transport equation is solved for a discrete number of angular directions ~Ωn.
A quadrature formula is applied for the angular integration. The unit sphere is decomposed
into areas of weight wn. As a consequence, the scalar flux becomes:

φg(~r) =
∫

4π
d2Ω φg(~r, ~Ω) ≈

∑
n

wnφ
g(~r, ~Ωn) (2.74)

The number of angles N , the unit sphere is discretized into, is an even number. The choice
of the angular directions is important and subjected to symmetry constraint. The aim is the
conservation of the maximum number of moments. This allows to correctly represent the
source term and its heterogeneities, reducing the ray-effect [16].
For a particular direction ~Ωn, the differential form of the Boltzmann equation is solved:

~Ωn · ~∇φg(~r, ~Ωn) + Σg(~r)φg(~r, ~Ωn) = Qg(~r, ~Ωn) (2.75)

In MINARET, the previous equation is solved with a Discontinuous Galerkin Finite Element
Method (DGFEM). A spatial mesh is introduced to discretize the 2D/3D geometry. This
mesh is usually triangular (or prismatic by extrusion) [33]. In each element Vα, equation 2.75
is integrated after projecting it on a basis function ψ(~r). Integrating by part and applying
the divergence theorem, the following equation is obtained:

∫
Vα
d3r [Σg(~r)φ(~r, ~Ωn)− φg(~r, ~Ωn)~Ωn · ~∇]ψ(~r) =

= −
∫
Sα
d2rb ~Ωn · ~N out

α φg(~rb, ~Ωn)ψ(~rb) +
∫
Vα
d3rQg(~r, ~Ωn)ψ(~r) (2.76)

where Sα is the surface of the element, ~N out
α is its outgoing normal vector and ~rb identifies

the position vectors on the surface Sα. The basis function ψ(~r) is a polynomial. Its degree
can be zero (P0), one (P1) or two (P2).
This method works by propagating the flux evaluation as a wave front. External elements
are the starting point, then neutron directions are followed. Equation 2.76 is then solved for
each element, assuring the integral neutron balance in Vα. An estimation of the flux inside
the volume is required. Therefore, the flux variation in the volume is expanded on the basis
function ψ(~r) (Galerkin). As with every finite element method, it is important to correctly
interface each element to the other, using the flux coming from the first as the incoming of
the second.
In order to assure the convergence, preconditioning techniques must be implemented. The
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Diffusion Synthetic Acceleration (DSA) is used in MINARET. After each internal iteration,
an error estimation is done using the diffusion operator or a transport one with less angular
directions. This accelerates the external iterations. But, because the same discretization of
the variables is not accomplished, instability problems could arise. They are eliminated by
introducing a stabilization parameter α [33, 34].
In order to reduce the calculation time, parallelization techniques are implemented. A first
parallelization technique is the one which concerns the angular directions, that are treated
independently and then coupled. A second technique lies on a domain decomposition method
(DDM): the spatial mesh is divided into macro-domains. The macro-domains are constituted
by more elements where the flux is independently evaluated. They are then interfaced to
assure the consistency of the flux evaluation in the whole geometry [35].

2.4.8 Homogenization and Condensation

The lattice step provides flux evaluations on reduced reference geometries with fine energy
meshes. These fluxes are then used as weighting functions to average the cross sections over
the space (homogenization) and energy (condensation) domain. Because more operational
conditions are studied at lattice step, multi-parametrized cross section libraries are created
to be used for core calculations. If depletion calculations are made, cross sections are usually
parametrized also in burn-up.

Space Homogenization

The scalar flux is used to homogenize the cross sections over the volume:

Σg =

∫
V
d3r Σg(~r)φg(~r)∫
V
d3r φg(~r)

(2.77)

The flux-volume homogenization allows the preservation of reaction rates and is applied to
the homogenization of fission and differential cross sections. In this work, formula 2.77 is the
only one used to homogenize the cross sections.

Energy Condensation

The input cross section library is further condensed from G to H energy groups. Considering
all the energy groups g which are contained in the macro-group h, the condensation is done
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in the following way:
Σh(~r) =

∑
g∈h Σg(~r)φg(~r)∑

g∈h φg(~r)
(2.78)

Differential scattering cross sections are also condensed in this way:

Σh′→h
s (~r) =

∑
g′∈h′

∑
g∈h Σg′→g

s (~r)φg′(~r)∑
g′∈h′ φg′(~r) (2.79)

2.4.9 Leakage Model

Lattice calculations are usually performed on reference cell geometries with reflective or
periodic boundary conditions. This allows to simulate an infinite lattice grid (fundamental
mode). Of course, the flux deriving from these calculations is not representative of the
actual flux present in a finite reactor. The presence of a leakage term can modify the flux
spectrum and, as a consequence, the cross sections used at core step. Therefore, in order to
better represent the flux distribution cross sections are condensed with, a leakage model is
introduced. Because no information on the real core geometry and operation conditions is
assumed, the best approximation is to suppose the system to be in steady-state condition (i.e.
keff = 1). In Bn models, a buckling parameter B2 is introduced to represent the curvature of
the flux throughout the grid, which is implicitly reduced to finite dimension. B2 is adjusted
so that a critical medium is considered.
In this work, the homogeneous B1 leakage model will be applied. Few words, then, are spent
on this model in appendix B. For additional information, it is possible to consult Hébert [16]
or Faure’s master thesis [36].

2.4.10 Stochastic approach and Monte Carlo method

In the previous sections, the great number of approximations deterministic codes are sub-
jected to have been introduced. This number can be reduced by replacing the deterministic
solution of equation 2.14 by a stochastic approach based on Monte-Carlo simulation of the
neutron-transport process. However this reduction is reached by means of an increase calcu-
lation effort.
In this approach, calculation geometry is first tracked as in MOC and CPM. This is done
not to implement a numerical method, but to create a possible neutron path. Neutrons, in
fact, are directly simulated from their first appearance in the geometry to the time they dis-
appear, as they undergo absorption reactions or escape the geometry. For a single neutron,
each collision and flight direction is associated to a number sampled from a random number
generator.
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Random number generators are very important. Each aspect of the neutron lives is sam-
pled from them, so that Monte Carlo codes are based on random number sequences. These
sequences are created with numbers ri ∈ [0, 1]. These values are then projected on the prob-
ability distribution to represent. Unfortunately, it is not possible to create pure random
numbers with a numerical algorithm. That’s why pseudo-random sequences are used. In
TRIPOLI4, they are created using a linear congruential algorithm [9, 37].
Neutron lives are then randomly simulated with a random walk algorithm. Neutrons are spa-
tially (position, flight direction) and energy located and a statistical weight wi is associated
to each one of them. The energy variable can be treated continuously or using a multigroup
approach (multigroup Monte Carlo).
Statistical instruments are then used to process the information deriving from the collection
of the neutron simulations. Neutron flux and other quantities are evaluated, associating to
them a statistical uncertainty. These uncertainties can be reduced if more neutrons are con-
sidered [16].
In criticality calculations, neutron histories are divided into cycles. A cycle is called batch
and consists in a certain number N of neutrons. This number allows to estimate the fission
neutron distribution. Dividing the secondary fission neutron number by N , it is possible to
estimate the multiplication factor keff at each batch. The particles of the successive batch
are then distributed following the evaluated fission source. At the end of the simulation, in
order to get a converged fission source, the first batches are discarded.
It is important to note that Monte Carlo methods lie on a statistical estimation of the desired
quantities. The reaction rate formula is reminded for a reaction x and an isotope iso:

τ∆E
x,V,iso =

∫
V
d3r

∫
∆E

dE Σx,iso(~r, E)φ(~r, E) (2.80)

where ∆E is the energy domain considered and V the volume.
Three different estimator can be introduced:

• Analog estimator: This estimator is directly related to the simulation process. The
actual collisions are summed during the random walk, considering the weight wi of the
particle:

(τ∆E
x,V,iso)analog =

I∑
i=1

wi (2.81)

where I is the total number of scored values. Only x reaction with the isotope iso in
V with energy in ∆E are scored.

• Collision estimator: The summation is multiplied by the fractional reaction proba-
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bilities:
(τ∆E
x,V,iso)collision =

I∑
i=1

wi
Σg

x,iso,k

Σg
k

(2.82)

with g ∈ ∆E and k ∈ V . This estimator is more efficient than the analog one because
scores are recorded even if reaction x does not occur.

• Track-length estimator: The scalar flux is equal to the total length travelled by the
neutrons present in one cubic centimetre volume in one second. This definition is used
to sum over the considered volume the track-length ∆Li of each particle:

F =
IV∑
i=1

wi∆Li (2.83)

where IV is the number of particles crossing V . Starting from the flux estimation, the
reaction rate is:

(τ∆E
x,V,iso)track−length =

IV∑
i=1

wiΣg
x,iso,k∆Li (2.84)

If the number of neutron histories tends to infinite, the three estimators converge to the same
value.

2.5 Solution of the Bateman Equations

The matrix form of the Bateman equations was presented in 2.18. It is here re-proposed.
The system to be solved is: 

d ~N
dt

= ¯̄A(λ, τ(t)) · ~N(t)
~N(0) = ~N0

(2.85)

where ~N0 is the concentration vector at time zero.
The Aij elements of the evolution matrix ¯̄A are decomposed in the sum of a constant and a
time-dependent term:

• (Aij)j 6=i = λij + τij(t): non diagonal elements corresponding to the formation of a
nucleus i from j. λij is the decay constant of nucleus j towards i and (τij(t))j 6=i =∫+∞

0 dE σij(t, E)φ(t, E) is the formation by neutron reaction of nucleus i from j

• Aii = −(λi + τi(t)): diagonal elements corresponding to the disintegration of nucleus i.
λi is the decay constant of nucleus i and τi(t) =

∫+∞
0 dE σi(t, E)φ(t, E) its disintegration

rate by neutron reaction.
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Before presenting the numerical methods to solve the system, the importance of the flux
normalization and of the depletion chain is discussed.

2.5.1 Flux Normalization

The solution of equation 2.28, in multigroup approach, results in an eigenvector ~φ0. This
vector is not normalized. Its normalization is a key point in the creation of an evolution
matrix ¯̄A representative of the actual evolution of the system. In fact, the flux term is used
to account for the reaction rates, which describe the disintegration and formation of the
isotopes.
Defining t0 the initial time of the evolution interval, and with tf its final time, it is possible
to distinguish two normalization techniques:

• Constant flux depletion:
the flux is imposed to be the same, equal to a value F , at the beginning and at the end
of the interval:

G∑
g=1

φg(t0) =
G∑
g=1

φg(tf ) = F (2.86)

where G is defined as the number of energy groups.

• Constant power depletion:
at the beginning and at the end of the time interval, the power released is imposed
equal to W (in MW):

J∑
j=1

 G∑
g=1

κgf,jσ
g
f,j(t0)φg(t0)

Nj(t0) +
Niso∑
j=1

 G∑
g=1

κgγ,jσ
g
γ,j(t0)φg(t0)

Nj(t0) =

=
J∑
j=1

 G∑
g=1

κgf,jσ
g
f,j(tf )φg(tf )

Nj(tf ) +
Niso∑
j=1

 G∑
g=1

κgγ,jσ
g
γ,j(tf )φg(tf )

Nj(tf ) = C0W

(2.87)

where κgf,j and κ
g
γ,j are the energy released in MeV respectively per fission and radiative

capture in the energy group g of the isotope j, J is the number of fissile isotope, Niso

the number of all the isotope present and C0 is a conversion factor from MW to MeV.

It is important to underline that the flux normalization is only imposed at the beginning and
at the end of the time interval, not within the interval. In this work, the constant power
depletion technique will be used.
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2.5.2 Depletion Chain

The depletion chain describes the father-daughter relations of the different nuclides. It con-
tains information on the neutron induced reactions and disintegration modes of each nuclide
j: the daughter nuclides that can be formed, the relative importance of each reaction or decay
mode ρ (called branching ratio βρ,j) and the decay constant λj. Usually, nuclides are divided
into two major categories: actinides (or heavy nuclei) and fission products. A third category
contains the structural materials. In fact, also the nuclei in the cladding, for instance, are
modified by neutron induced reactions.
In figure 2.6, it is possible to see the uranium cycle. This cycle is of primary interest in a
fast reactor charged with MOX fuel. It is important to underline that, in a reactor, actinides
different from the ones present in the fresh fuel can be produced. These actinides can be
distinguished into fissile isotopes or not fissile isotopes. Fissile isotopes produce fission prod-
ucts with a certain probability Y (A,E), where A is the atomic mass number of the fission
product and E is the energy the fission reaction occurs at. This probability is called fission
product yield. The probability distribution is usually normalized to 2. Two fission products
are produced per fission if ternary fission is neglected.
In figure 2.7, it is possible to see the fission product yields for U235 at 0.0253 eV. The points
represent the fission product. In a depletion chain, not all the possible fission products are
considered. In fact, the aim of the depletion chain is not to physically describe all the pro-
ductions and transmutations that occur in a reactor (that is a number incredibly high), but
to represent the reactivity loss during the reactor operation. As a consequence, only a limited
number of fission products and actinides is considered in a lattice or micro-depletion calcula-
tion, usually lumping those isotopes which quickly disintegrate with more stable ones. Only
the isotopes with a time-scale comparable with the one of the reactor operation, and which
are important to describe the reactivity loss, are taken into account in the depletion chain.
As a consequence of the lumping procedure, the values and the fission-daughter relations that
appear in a depletion chain do not directly derive from the JEFF evaluation, but they are
properly re-elaborated. Since the description of the reactivity loss is different in each kind of
reactor (PWR,SFR,CANDU,...), different depletion chain can be used. The dependency of
the fission yields from the incident neutron fission energy is condensed into energy groups:
Y g(A).
In this work, the CEA-V5 depletion chain is used. This is a multi-purpose depletion chain
which contains 126 fission products, 26 actinides and 5 additional isotopes. Comparing it
with a reference chain with far more isotopes (885 fission products and 26 actinides), it rep-
resents the 99.9% of the reactivity loss in a SFR [38]. Fission yields are defined both for
thermal fission (< 2.5 KeV) and fast fission (> 2.5 KeV).
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Figure 2.6 Depletion chain of the uranium cycle
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Figure 2.7 Fission product yields for U235 @0.0253 eV
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2.5.3 ERANOS depletion solver

The ERANOS depletion solver is based on the assumption that the evolution matrix ¯̄A is
time independent. During the time interval ∆t = tf − t0, the reaction rates are supposed
to be constant: ¯̄A(λ, τ(t0)). An analytic technique can be used to solve system 2.85. The
exponential matrix e ¯̄A(λ,τ(t0))t is introduced:

~N(tf ) =
(
e

¯̄A(λ,τ(t0))tf
)
· ~N0 (2.88)

This matrix is represented by a Taylor’s series:

e
¯̄A(λ,τ(t0))t = ¯̄I + ¯̄At+ 1

2
¯̄A · ¯̄At2 + ... (2.89)

Unfortunately, it is not possible to have an infinite Taylor’s series to exactly reproduce the
exponential matrix. ∆t is consequently divided into sub-interval whose length follows a power
of 2. The first sub-interval is half the second which is a quarter of the third and so on. This
sub-division reduce the expansion order of the Taylor’s series required.

2.5.4 MENDEL depletion solver

The DARWIN depletion solver can be used in various application fields such as nuclear
fuel cycle, dismantling, thermonuclear fusion, accelerator driven systems, medicine etc [11].
MENDEL offers iso-capacity with DARWIN and aims to be its successor [12]. In this
work, MENDEL is used for reactor physics calculations, coupled with a transport code as
APOLLO3 or TRIPOLI4. Among the various methods implemented to solve the depletion
equations, in this case, a 4th order Runge-Kutta integration method is used to solve the
integral:

~N(tf ) = ~N(t0) +
∫ tf

t0

¯̄A(λ, τ(t)) · ~N(t)dt (2.90)

Integral 2.90 requires an estimation of the time variation of the evolution matrix ¯̄A. Reac-
tion rates continuously change, even if ∆t is small enough to assure a weak variation of the
operative conditions. τ(t) can be assumed constant or it can be linearly or quadratically
extrapolated. Imposing a variation of the reaction rates allows to deal with a linear problem.
Once that the reaction rate variation is set (a constant, or a linear/quadratic polynomial),
the monostep approach consists only in applying the Runge-Kutta integration method to get
~N(tf ).
For the multistep approach, more complex algorithm are implemented. This complexity re-
sults in more accurate estimations of ~N(tf ). That’s why multistep methods are preferred
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in solving differential equations. Two different multistep algorithms, that will be later pre-
sented, are implemented for TRIPOLI4 and APOLLO3: the first is a predictor-corrector
scheme, while the second is a predictor-evaluation-corrector scheme.
However, both monostep and multistep approaches solve integral 2.90 with the same numeri-
cal method. Defining the sub-interval h = ti+1−ti ∈ ∆t, the 4th order Runge-Kutta method
is the following: 

~k1 = h ¯̄A(ti) · ~Ni

~k2 = h ¯̄A(ti + h
2 ) · ( ~Ni + ~k1

2 )
~k3 = h ¯̄A(ti + h

2 ) · ( ~Ni + ~k2
2 )

~k4 = h ¯̄A(ti + h) · ( ~Ni + ~k3)
~Ni+1 = ~Ni + ~k1

6 + ~k2
3 + ~k3

3 + ~k4
6 +O(h5)

(2.91)

with ~Ni = ~N(ti) and ~Ni+1 = ~N(ti+1).
In figure 2.8, it is possible to get a visual representation of the method. An increment of
the function is evaluated once at ti and twice at the midpoint. It is then evaluated at ti+1.
The Simpson integration formula is then applied to estimate ~Ni+1 [39]. Proper algorithms
are implemented to optimize the size of the integration step h.

TRIPOLI4 Predictor-Corrector scheme

In TRIPOLI4, a predictor-corrector scheme is implemented. This scheme is a multistep
method implemented to solve a system of differential equation. Differently from the monostep
scheme, where only one flux evaluation is required, this one requires two flux evaluations.
This fact doubles the calculation time. Increasing the calculation effort, however, allows to
get more accurate results. The scheme is here described:
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Figure 2.8 Fourth order Runge-Kutta integration method
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• Predictor step: ~N(tf )(p) is evaluated using constant reaction rates at t0: τ(t0). Flux
φ(tf )(p) is then evaluated at tf , using ~N(tf )(p).

• Corrector step: ~N(tf )(c) is evaluated using φ(tf )(p) and ~N(t0) to compute the reaction
rates τ(t0)(c).

Finally, the concentrations at tf are the average of the concentrations evaluated at the pre-
dictor and corrector steps:

~N(tf ) =
~N(tf )(p) + ~N(tf )(c)

2 (2.92)

In this work, all the TRIPOLI4 depletion calculations are performed with this multistep
method.

APOLLO3 Predictor-Evaluation-Corrector scheme

In APOLLO3, a predictor-evaluation-corrector scheme is implemented. This scheme is a
multistep method implemented to solve a system of differential equation. Differently, from
the predictor-corrector scheme, an evaluation step is added. As it will be later explained, the
scheme is more complex, but it ensures a convergence test on the results.
The first major difference with the TRIPOLI4 scheme is that reaction rates can be assumed to
vary linearly or quadratically. Or they can just be a constant. But if a variation is assumed, an
extrapolation of the reaction rate behaviour is done by considering an interpolation between
t0 and the previous step t−1 in the case of linear variation, t0, t−1 and t−2 in the case of
quadratic polynomial.
The interpolated polynomial is then used to extrapolate the reaction rates at tf . This assure
a non-constant evaluation matrix ¯̄A. But, if the operation conditions vary considerably
between t0 and tf , the extrapolation of the reaction rates cannot ensure positive values. This
fact is physically unacceptable. That’s why a constant evolution matrix is used if large flux
variations between the initial and final states are expected.
Once that reaction rates are extrapolated, concentrations are evaluated at tf . To ensure the
convergence of the results, the predictor-evaluation-corrector scheme is implemented:

• Predictor step: τ (p)
ext(t) is extrapolated using τ(t0), τ(t−1) (linearly) and τ(t−2) (quadrat-

ically). Concentrations ~N (p)(tf ) are evaluated.

• Evaluation step: ~N (p)(tf ) is used to evaluate the flux ~φ(p)(tf ) at tf . Reaction rates
τ (p)(tf ) are then computed and used to interpolate τ (ev)

int (t) along with τ(t0) (linearly)
and τ(t−1) (quadratically). A new evaluation matrix allows to evaluate the concentra-
tions ~N (ev)(tf ). If || ~N (ev)(tf ) − ~N (p)(tf )|| < ε, where ε is the convergence parameter,
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the convergence is assumed and ~N(tf ) = ~N (p)(tf ), ~φ(tf ) = ~φ(p)(tf ) and τ(tf ) = τ (p)(tf ).
Otherwise, if convergence is not reached, the corrector step is required.

• Corrector step: ~N (ev)(tf ) is used to evaluate the flux ~φ(ev)(tf ). Reaction rates τ (ev)(tf )
are then computed and used to interpolate τ (c)

int(t) along with τ(t0) (linearly) and τ(t−1)
(quadratically). A new evaluation matrix allows to evaluate the concentrations ~N (c)(tf ).
If || ~N (c)(tf ) − ~N (ev)(tf )|| < ε, the convergence is assumed and ~N(tf ) = ~N (ev)(tf ),
~φ(tf ) = ~φ(ev)(tf ) and τ(tf ) = τ (ev)(tf ). Otherwise, if convergence is not reached, the
time interval ∆t = tf − t0 is reduced: ∆t→ ∆t̃ = α∆t with α ∈ (0, 1).
Usually the time interval is split in 2 (α = 0.5). All the scheme is consequently repeated
for t ∈ [t0, t0 + α∆t] and then for t ∈ [t0 + α∆t, tf ].

In this work, the APOLLO3 evolution scheme will be studied in 3.1.1. The differences
between the monostep and multistep method and the different extrapolation/interpolation
functions will be investigated.

2.5.5 Treatment of statistical uncertainties in Monte Carlo burn-up codes

The last few words on the solution of the depletion equations must be spent on the treatment
of the statistical uncertainties in Monte Carlo burn-up code. In fact, interfacing a Monte
Carlo transport code with a depletion solver means interfacing probabilistic estimations with
deterministic results. The problem in the propagation of the statistical uncertainties is re-
lated to the fact that, once that the flux and the reaction rates are estimated, with a certain
uncertainty σ associated, these values are inserted in the Bateman equations without σ.
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Figure 2.9 Independent transport-depletion simulations
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Bateman equations are solved with the values given by the transport code, but the uncer-
tainties associated to these values are not propagated. At each time interval, uncertainties
are eliminated when it is time to interface TRIPOLI4 and MENDEL, so that the values in-
troduced in the depletion equations are treated as deterministic results and not as statistical
estimated quantities.
Therefore, in order to correctly propagate the uncertainties and to associate σ also to the
concentrations, not only one simulation with a great number of neutron histories is accom-
plished, but more independent simulations with a smaller number of histories [40]. These
simulations allow to evaluate isotope concentrations more times with different flux estima-
tions and consequently to reproduce a statistical distribution of the concentrations. Using
statistical instruments, it is then possible to associate a certain statistical uncertainty to the
concentrations at each time step. This procedure is visualized in figure 2.9 and it allows to
correctly propagate the uncertainties also for flux, multiplication factor and reaction rates.
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CHAPTER 3 EVOLUTION OF A CFV CELL GEOMETRY

The aim of this chapter is to present depletion calculations performed on a CFV elementary
cell geometry. It is divided into two part in order to distinguish the lattice depletion and the
core one. Comparing core depletion models is the aim of this work but, in order to do so,
depletion calculations on the lattice part of APOLLO3 must be validated. It is important,
before starting, to stress the point that APOLLO3 is able to perform both lattice and core
calculations. From now on, if not expressed otherwise, the term “lattice” will describe 1968
energy group calculations with the transport solver TDT-MOC. The term “core” will describe
33 energy group calculations with the transport solver MINARET. Other differences, that
will be explained later, are present. All APOLLO3 calculations, nevertheless, use MENDEL
depletion solver.

3.1 Lattice Depletion

This introductory part does not aim to start answering to the research question, but it in-
troduces and validates the instruments that will be used in section 3.2.
In fact, its purpose is to validate lattice depletion calculations in APOLLO3. In order to
do so, the Monte Carlo reference code TRIPOLI4 has been used. This code shares with
APOLLO3 the depletion solver MENDEL. To exclude the presence of possible errors in
MENDEL, the chain of codes ECCO/ERANOS has been added to this inter code validation
procedure. ERANOS, in fact, has its own depletion solver and can provide a third party
guarantee. The descriptions of the depletion solvers has been provided in section 2.5.
Before starting with the actual validation, it is necessary to discuss certain option and mod-
elling choices which concern APOLLO3 calculations:

• Evolution Temporal Scheme: focusing on reaction rates’ extrapolation/interpolation
type and monostep/multistep scheme differences

• Self-shielding reiteration during the evolution: is it necessary? For what nuclei? At
which time step?

• Does the use of the Tone method (see section 2.4.4) introduce a drift of the reactivity
difference during the evolution?

All the calculations will be performed on the geometry shown in figure 3.1. This geometry
represents 1/12 of an hexagonal CFV cell. 4 zones are identified:
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Figure 3.1 CFV cell geometry

• the external coolant zone containing the sodium

• the external ring representing the cladding, a Ni-Fe-Cr alloy

• the voided gap embracing the fuel

• the internal circular surface containing MOX fuel.

Both lattice and core APOLLO3 calculations are performed with specular reflective boundary
conditions. It is important to say, before starting, that both the evolution and self-shielding
geometries that will be used for lattice calculations do not divide the fuel region in sub-region
to account for the rim effect. In fast reactors, in fact, the flux distribution inside the fuel
pin is almost constant, contrarily from thermal reactors (see appendix A). At higher energy,
neutrons are less likely to interact, and this increases their mean free path, flattening the
flux distribution. Thus, sub-region inside the fuel, then, are not required.

3.1.1 Preliminary Studies

Evolution Temporal Scheme

In order to validate the evolution temporal schemes, a depletion calculation, where the
self shielding of only the heavy nuclei is reiterated at each time step, has been considered.
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Figure 3.2 Convergence of CFV cell kinf in the different evolution temporal scheme of “lattice”
APOLLO3 (reference: parabolic scheme)

Amongst the eight heavy nuclei initially present in the fresh fuel, five are those self-shielded
at each time step (U235, U238, Pu239, Pu240, Pu241). In such a case, the next section will
show that a good estimation of the reactivity loss is obtained with respect to a calculation
where 74 fission products, representing 99% of anti-reactivity, are considered.
Constant and linear extrapolation/interpolation options have been compared to a reference
parabolic calculation with splitting of the time step in 2. The results of figure 3.2 show:

• the linear option, with or without time splitting in 2, is perfectly converged: differences
are smaller than 0.2 pcm all the evolution long. The chosen time steps are well adapted
to describe the phenomenon.

• the constant option, even with the time splitting in 2, introduces a linearly increasing
drift during the time evolution: this one is equal to +50 pcm at 1440 days. The
inflection point at 340 days is the moment when the time step passes from 50 to 100
days. For this option, a convergence criterion of 10−5 does not seem satisfying.

These results are interesting because they shows that the linear schemes - and among them
even the TRIPOLI4 one- are reliable and provide good results.
For all the following calculations, the linear scheme will be used. This option will limit the
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number of flux calculations and the information storage with respect to the parabolic one.
The possibility of the time-step splitting in 2 is conserved even if, in this case, it is not
invoked.

Self-shielding reiteration

Self-shielding with the method of the sub-group (see 2.4.4) is time demanding and expensive.
Despite this, it is the reference method for SFR. This method, indeed, requires a great number
of exact 2D collision probability calculations, performed with the module TDT-CPM. An
alternative is the Tone method. This one is slightly less accurate but it is greatly faster
(up to 30 times). This characteristic makes it more interesting if reiterated self-shielding is
required during the evolution.
For time issues, it is not contemplated to self-shield all the heavy nuclei and fission products
during the evolution. Four calculations, performed with Tone method and 4 macro groups
of fission spectra, have been compared:

1. self-shielding is not reiterated

2. self-shielding is reiterated. Heavy nuclei only are self-shielded.

3. self-shielding is reiterated. Heavy nuclei and the 11 fission products which contribute
the most to the capture (60% of the fission product capture) are self-shielded.

4. self-shielding is reiterated. Heavy nuclei and the 74 fission products (99% of the fission
product capture) are self-shielded.

The last one is considered as a reference. In figure 3.3, reactivity differences between the
reference and the others are shown. Before commenting these results it is important to note
that the self-shielding is reiterated at each time step, which is without a doubt unnecessary
and can be optimized. Returning on figure 3.3, a limited difference is observed at 1440 days
if the number of fission products is reduced to 11 (-6 pcm) or to 0 (-13 pcm). If self-shielding
is not reiterated, the difference is a little bit higher. The maximum is at 940 days and it is
equal to +19 pcm. At 1440 days, the difference is reduced to +10 pcm.
The detailed analysis of the reactivity balance shows that the error of +19 pcm is the result
of minor compensations.
It is not necessary, consequently, to reiterate the self-shielding during the evolution. The
shielding of the heavy nuclei only at time zero is enough. However, in order to strictly test
core evolution calculations, option number 2 has been chosen and used for the rest of the
study. Self-shielding of the heavy nuclei is reiterated.
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Figure 3.3 Impact of the evolution self-shielding of heavy nuclei and fission products on CFV
cell kinf

Tone Method Validation

At time zero the reactivity difference between the Tone and the sub-group methods is equal
to -2 pcm. Its behaviour during the time evolution must be validated. In figure 3.4, it is
possible to notice the reactivity difference between the first three models introduced in the
previous paragraph. It has not been possible to compare the fourth model. Tone and sub-
group methods have been applied for the self-shielding. The drift of the reactivity difference
is limited to 3 pcm during the evolution. Tone method will be used from now on.
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3.1.2 Inter-Code Validation

APOLLO3, TRIPOLI4, ECCO/ERANOS

It is useful, before starting the inter-code validation, to remind the reasons why the “lattice”
APOLLO3 has been compared to TRIPOLI4 and ECCO/ERANOS:

• TRIPOLI4 flux calculation is used as reference if the number of neutron histories is
high enough: for a 2D CFV cell, 2 billion histories are necessary to reach a precision
of 3 pcm (1σ) for the multiplication factor at time 0; 500 million histories provide
a precision of 5 pcm (1σ) at 1440 days. In depletion calculations, such a number of
histories can’t be simulated, because the transport solver can’t be parallelized. In this
case, 256 independent simulations have been performed. At each time step, 25.6 million
histories have been launched, increasing by a factor 10 the statistic uncertainty: ±30
pcm (1σ).

• The chain of code ECCO/ERANOS guarantees that APOLLO3 and TRIPOLI4 are
not subjected to the same errors, because both of them use MENDEL depletion solver
and an identical decay chain. ERANOS has its own depletion solver. The decay chain
has been translated from the MENDEL one (the same nuclei are present, apart few
exceptions of minor entity, and fast fission yields - > 2.5keV - from JEFF3.1.1 are the
same) 1.

1 Dy165 and Te131m have been neglected and their fission yields added to Ho165 and I131 respectively.
Am241 has been modified:

MENDEL chain:

Am241 −→ (n, γ) −→ Am242m , 13%
−→ Cm242 , 72.4%
−→ Pu242 , 14.6%

ERANOS chain:

Am241 −→ (n, γ) −→ Am242m , 15%
−→ Am242g , 85% −→ β− −→ Cm242 , 84%

−→ E.C. −→ Pu242 , 16%

Am242g has been added in order to write an interpretable chain for the ERANOS depletion solver.
Another difference is that MENDEL chain presents thermal (< 2.5keV ) and fast (> 2.5keV ) fission yields.
This division is not interpretable by ERANOS, whose fission yields are independent of the incident neutron
energy. Because a SFR is considered, the assumption that all the fissions are fast ones is made. The
quantitative discussion of this assumption is postponed to section 3.2.1.
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Concerning ECCO, the geometry is not hexagonal but cylindrical (sodium volume is con-
served). In addition, isotropic (white) and not specular boundary conditions have been used.
The bias related to these approximations is of the order of a few pcm.

Time 0

In table 3.1, it is possible to see the infinite multiplication factors obtained with the three
codes and their comparison with the reference code TRIPOLI4. For APOLLO3 calculations,
a particular importance is given to the number of spectra used. If one secondary neutron
fission spectrum is used, equation 2.25 describes the fission source and the secondary neutron
distribution is independent from the incident neutron energy. Equation 2.36 describes a
fission source where NMG macro groups of fission spectra are used. A dependency of the
secondary neutrons on the incident neutron energy is introduced.
It is possible then to notice that the difference is limited to a maximum of +29 pcm for
the APOLLO3 calculations with 4 macro groups of fission spectra. However, the results are
strongly influenced by the number of fission spectra used. In figure 3.5, it is possible to
observe the fuel flux difference between the deterministic codes and the Monte Carlo one.
This difference is normalized to the energy integrated flux, that has, from its side, been
already normalized to the total production (∑i

∑
g (νΣf )gi φg = kinf , where g is the number

of energy group and i the number of the fissile and fissionable isotope).
With respect to 4 spectra, 1 spectrum calculation tends to underestimate the flux distribution
over 1 MeV and overestimate it below (see figure 3.6). This is translated, and it is possible
to see it in table 3.2, in an underestimation of the U238 fission reaction, that is a threshold
reaction (fissionable isotope), and an overestimation of the Pu239 fission, that is a fissile
isotope. These effects can compensate to reduce the reactivity difference. In 4 spectra
APOLLO3 calculations, where this compensation does not occur, the reactivity difference is
higher, even if a better estimation of U238 fission reaction rate is done.
Before passing to depletion calculations, it is important to note that 1 spectrum APOLLO3
calculations are made considering the thermal fission spectrum only (figure 3.7), whereas the
ECCO fission spectrum is ad hoc averaged for SFR application.

Depletion Calculations

Depletion calculations are now compared. All the results are listed in appendix C, together
with the time mesh used for the MOC reference calculations and cross section library cre-
ation. In figure 3.8, the results are shown. The error bars are not negligible in this case. The
explanation has already been discussed at the beginning of section 3.1.2. It is interesting to
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Table 3.1 Inter-code validation: Time 0

TRIPOLI4
kinf σ [pcm]

1.54609 ±3
APOLLO3

1 SPECTRUM 4 SPECTRA
kinf ∆ρ [pcm] kinf ∆ρ [pcm]

1.54580 -12 1.54678 +29
ECCO

1 SPECTRUM
kinf ∆ρ [pcm]

1.54643 +14

notice that the reactivity difference between the two codes is constant during the evolution
and this explains the fact that the three curves are parallel all the evolution long. The num-
ber and the type of fission spectra have a dominant role in the neutron balance, as already
observed in the previous paragraph. The APOLLO3 4 spectra curve lies inside the error
bars during most of the evolution, demonstrating that the choice of 4 macro groups is the
most accurate for depletion calculations. Concerning the concentrations, in the appendix D,
it is possible to see the final concentrations (time 1440) for the 18 most important actinides
and the 74 fission products that contribute for 99% of the total fission product capture. In
the table, the concentrations evaluated with TRIPOLI4 and their uncertainties are listed.
The relative comparison is made between these results and the concentrations evaluated with
APOLLO3 and ECCO.
Focusing on the concentrations obtained with APOLLO3, it is possible to observe that no
major difference are present if 4 macro groups of fission spectra are used instead of 1. The
difference in the concentration estimation is limited in both the two cases. For the actinides
a maximum of ±1.91% for the Cm244 and Np237 is observed in 1 spectrum calculations. In
4 spectra ones, the difference is limited to 1.72%. The concentration differences are not high
enough to alter significantly reaction rate estimation and, consequently, the neutron balance
(see table 3.3).
Before passing to the ECCO concentrations, it is important to remind the modifications
applied to the decay chain. These modifications have been made to make the chain inter-
pretable for ECCO code, but they have altered a little bit the results. Modifying the Am241
chain, in fact, a difference has been introduced. At 1440 days, the Am242M concentration
is highly overestimated (+14.86%). The other actinides, on the contrary, suffer from errors
which are comparable with the APOLLO3 ones (Np237: -2.10%).
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Few fission products, equally, present a not negligible difference. Xe131, In115 and Br81 are
the ones whose effects on the reactivity is more important. The differences, in this case, arise
from the fact that only fast fission yields are used. However, concentration differences slightly
affect the neutron balance. Their effects will be discussed in the next section (see table 3.3).
It will be possible to conclude that, even if the three codes are not perfectly coherent in the
concentration estimation, they are perfectly coherent in the anti-reactivity representation:
they describes the loss of reactivity the cell undergoes with good agreement.

Time 1440

The multiplication factor of the 500 million histories TRIPOLI4, made with the final con-
centrations of the TRIPOLI4 depletion calculation, is shown in table 3.4. The comparisons
between TRIPOLI4 reaction rates and the one obtained with APOLLO3 and ECCO are
shown in table 3.3. The same considerations made for time 0 can be done: the difference
between a spectrum which depends on the neutron incident energy and one which does not is
that the flux is a little bit softer (as observed in figure 3.6). U238 fission, which is a threshold
reaction, is underestimated and thermal absorption of Pu239 overestimated. The formation
of Pu240, a fissionable isotope similar to U238, shows the same tendency: fission reactions
are underestimated.
Concerning APOLLO3, the compensation, in this case, is particularly favourable for 4 spec-
tra; a difference of +52 pcm is present in 1 spectrum case.
Concerning ECCO, in table 3.3, even the reaction rates of the fission products whose concen-
tration differences are not negligible are listed. It is possible to show that their importance in
the neutron balance is minor. An overall compensation and the use of a SFR averaged fission
spectrum lead to a multiplication factor that is located, as shown in figure 3.8, between the
APOLLO3 4 and 1 spectra calculations.
To sum up, it is possible to say that the validation is successful and no major errors are
encountered in the MENDEL solver. In fact, even if concentrations differences are observed,
the three codes are coherent to describe the anti-reactivity of the fission products, and the
evolution of the actinides, without affecting the neutron balance.
In the following section, a reactivity analysis will be done in order to decompose the reac-
tivity loss the CFV cell undergoes. A hierarchy of the fission products will be instituted in
order to determine the isotopes which contributes the most to the neutron capture. One
spectrum APOLLO3 will be considered, because of the importance it will assume in section
3.2. It will be the reference case for our depletion models. It has not been possible, in fact,
to perform core calculations with more than one fission spectrum. This because the author
has not found the function already coded at the moment of the calculations.
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Table 3.2 Inter-code validation: Time 0 (in pcm, reaction rates normalized to 105 neutron
production)

APOLLO3/ TRIPOLI4 [pcm]
1 SPECTRUM

Absorption Capture NuFission Fission N,xN
U238 -11 15 -84 -26 -6
Pu239 34 10 59 23 0

4 SPECTRA
Absorption Capture NuFission Fission N,xN

U238 -2 -2 1 0 2
Pu239 23 5 53 18 0

ECCO/ TRIPOLI4 [pcm]
1 SPECTRUM

Absorption Capture NuFission Fission N,xN
U238 -13 10 -75 -23 -7
Pu239 45 4 112 41 0
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Table 3.3 Inter-code validation: Time 1440 (in pcm, reaction rates normalized to 105 neutron
production)

APOLLO3/ TRIPOLI4 [pcm]
1 SPECTRUM

Absorption Capture NuFission Fission N,xN
U238 -12 12 -76 -24 -5
Pu239 10 2 15 8 0
Pu240 -12 -5 -22 -6 -4

Am242M 10 9 0 0 0
Np237 -2 -2 -1 0 0
Cm244 2 1 2 1 0

4 SPECTRA
Absorption Capture NuFission Fission N,xN

U238 -4 -2 -5 -2 -1
Pu239 1 -2 10 3 0
Pu240 -11 -8 -9 -3 4

Am242M 9 9 1 0 0
Np237 1 1 1 0 0
Cm244 2 1 2 1 0

ECCO/ TRIPOLI4 [pcm]
1 SPECTRUM

Absorption Capture NuFission Fission N,xN
U238 -1 21 -70 -22 -6
Pu239 10 -3 31 13 0
Pu240 -13 -5 -28 -8 4

Am242M 12 2 34 10 0
Np237 -2 -2 -1 0 0
Cm244 0 0 0 0 0
Xe131 8 8 0 0 0
Ze93 2 2 0 0 0
Cd111 1 1 0 0 0
I127 4 4 0 0 0
Rb85 0 0 0 0 0
Cd113 0 0 0 0 0
Br81 0 0 0 0 0
In115 1 1 0 0 0
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Table 3.4 Inter-code validation: Time 1440

TRIPOLI4
kinf σ [pcm]

1.31691 ±5
APOLLO3

1 SPECTRUM 4 SPECTRA
kinf ∆ρ [pcm] kinf ∆ρ [pcm]

1.31600 -52 1.31687 -2
ECCO

1 SPECTRUM
kinf ∆ρ [pcm]

1.31641 -29
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3.1.3 Reactivity Analysis

Reactivity Difference Reconstruction

A nuclear reactor shows a delicate balance between the neutrons which are continously pro-
duced and the ones which are continously absorbed or which escape. In order to sustain a
chain reaction, the multiplication factor kinf is introduced in the steady state Boltzmann
equation. The aim of this factor is to adjust the fission source so that a perfect balance can
be achieved. In the case where a single cell with reflective boundary conditions is considered,
the multiplication factor becomes nothing else than the ratio between the total number of
neutrons produced by fission over the absorbed ones. There is no neutron loss due to the
leakage.
It is possible to define with PRODtot the total production reaction rate, with ABStot the
total absorption reaction rate and with NEXCtot the (n,xn) reaction rate. The produc-
tion reaction rate PRODtot takes into account the secondary fission neutrons and the ones
from (n,xn) reactions. The last term, as a convention in APOLLO3, is added also to the
macroscopic absorption cross section:

Σr,g
ABS = Σr,g

fiss + Σr,g
capture +

∑
x

xΣr,g
NxN (3.1)

Because, usually, reactions where x is greater than 2 give a negligible contribution, the
absorption cross section is corrected subtracting only one time the (n,xn) contribution in
order to approximately reduce to 1 the weight factor x which multiplies Σr,g

Nx:

Σr,g
ABS −

∑
x

Σr,g
NxN ≈ Σr,g

fiss + Σr,g
capture +

∑
x

Σr,g
NxN (3.2)

The multiplication factor can be then operatively defined as follows:

kinf = PRODtot

ABStot −NEXCtot
(3.3)

where

PRODtot =
R∑
r=1

Nr
f∑

i=1

G∑
g=1

τ r,i,gprod

ABStot =
R∑
r=1

Nr∑
i=1

G∑
g=1

τ r,i,gabs

NEXCtot =
R∑
r=1

Nr∑
i=1

G∑
g=1

τ r,i,gnexc
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and R is the total region number, N r
f are the fissile isotopes in region r, N r are the isotope

in region r and G is the energy group number; τ r,i,gx is the reaction rate for nuclear reaction
x, for the isotope i in region r and for the energy group g. τ r,i,gx is defined as follows:

τ r,i,gx = N r
i σ

g,r
x,iφ

r
gVr (3.4)

where N r
i is the concentration of the isotope i in region r, σg,rx,i is its cross section for g energy

group, φrg the scalar flux and Vr the region volume. The production reaction rate is defined
by the following:

τ r,i,gprod = N r
i

(
νg,rf,i σ

g,r
f,i +

∑
x

xσg,rNxN,i

)
φrgVr (3.5)

Then, the integral reaction rate is defined as

τ r,ix =
G∑
g=1

τ r,i,gx (3.6)

Usually, the code does not print out normalized reaction rates, so they are normalized to
total production, indicating with the star the reaction rates before normalization:

τ r,i,gx = (τ r,i,gx )∗ kinf
PROD∗tot

· 10−5 = (τ r,i,gx )∗
ABS∗tot −NEXC∗tot

· 10−5

The following relationships are, then, defined:

PRODtot = kinf · 10−5

ABStot −NEXCtot = 10−5

In general NEXCtot << ABStot and so ABStot ≈ 10−5.
The reactivity difference is the major objective. It is defined between state 1 and 2, with the
following relationship:

∆ρ = 1
k1
inf

− 1
k2
inf

≈ ABS1
tot

PROD1
tot

− ABS2
tot

PROD2
tot

=

=
R∑
r=1

Nr∑
i=1

G∑
g=1

(
(τ r,i,gabs )1

PROD1
tot

− (τ r,i,gabs )2

PROD2
tot

)

from which it is possible to define the reactivity difference due to the isotope i in region r as
follows:

RDi,r =
G∑
g=1

(
(τ r,i,gabs )1

PROD1
tot

− (τ r,i,gabs )2

PROD2
tot

)
(3.7)
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The reactivity ∆ρ is, then, the summation of all the reactivity difference due to every isotope
i in every region r:

∆ρ =
R∑
r=1

Nr∑
i=1

RDi,r (3.8)

The importance of isotope i belonging to region r is:

I = RDr,i

∆ρ∗ (3.9)

where ρ∗ can be the overall reactivity or the one due to a group of few isotopes, e.g. the
reactivity difference only related to fission products (∆ρFP ).

Reactivity Loss

At the beginning of the calculation scheme the multiplication factor for the MOC reference
calculations is kinfBOC = 1.54580. At the end of the calculations it is kinfEOC = 1.31601.
There is a difference ∆ρ = 1

kinfEOC
− 1

kinfBOC
= 11296pcm.

This reactivity difference is composed by two parts: one due to the absorption reactivity
loss and the one due to the NEXC (nuclear reactions: N2N, N3N, ...) reactivity gain. The
former is equal to 11313pcm and the latter to 17pcm. The reactivity gain due to NEXC
is, consequently, negligible. Focusing on the reactivity loss due to absorption, this term can
be split into three terms: 4669pcm due to actinides (41.26%), 6189pcm due to the fission
products (54.72%) and the remaining 455pcm due to the structural materials (coolant and
fuel clad) (4.02%). In table 3.5, it is possible to observe a list of all the fission products
sorted by order of contribution to the fission product anti-reactivity ∆ρFP . It is important
to notice that results not dissimilar to [38] have been obtained. An overall idea of the fission
product reactivity loss can be given by figure 3.9. Key Isotopes are:

ACTINIDES: - U238
- Pu239
- Pu240

STRUCTURES - Fe56

FISSION - Pd105
PRODUCTS - Ru101

- Rh103
- Tc99
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Figure 3.9 Reactivity loss due to fission products

It is now interesting to investigate the reactivity loss due to Fe56. Before doing it, it is
important to remind that reaction rates in formula 3.7 are normalized to 105 neutron source
and then divided for the total production. The absorption relative effects of each isotope
on the neutron balance, and not their absolute values, are observed. In fact, if a nuclear
reactor is operated at constant power without fuel change, the flux, and consequently all
the reaction rates of those isotopes whose concentration does not vary, increases with time:
fissile material concentrations diminish, then more neutrons are required to obtain the same
number of fission. But this happens when the flux is normalized at constant power, not to
105 neutron source as in this case. Observing Fe56 absorption reaction rate τFe56

abs is equal
to 708 at time zero and to 790 at 1440 days. In this case, however, the reactivity difference
is reconstructed not considering the absolute number of absorptions per 105 neutron source,
but relativizing it to the secondary neutrons produced. In figure 3.10, it is possible to observe
an increase of the relative absorption localized between 1.2-2 keV. Refering to annexe E, it
is possible to observe a slight migration of the flux to lower energy. This affects the capture
of Fe56. This softening of the flux can be explained with the fact that Pu239 concentration
diminishes by 20% with respect to initial concentration. Two concurrent effects take place:
the production of fission products, which increase the absorption in the epithermal region
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Figure 3.10 τFe56
abs /PRODtot comparison between the beginning and the end of the calculation

(0.1-10 keV), tends to increase the average energy of the neutrons, while the consumption of
actinides tends to decrease the absorptions in the same energy region. In this case, the latter
is the dominant effect and a flux softening is observed. If an energy condensation of the cross
sections is required, a flux shifting means a different weight distribution. A change in flux
distribution during the time, for core calculations where energy condensation to 33 groups is
performed, means a change in the cross sections to be used. The importance of this change
and the effect it can have on the reactivity difference will be the subject of the next section.
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Table 3.5 List of all Fission Products by order of contribution to anti-reactivity ∆ρFP

Contribution in % of ∆ρFP
Pd105, Ru101, Rh103, Tc99, Pd107, Cs133, Sm149, Mo97, Sm151, Nd145,

> 1% Cs135, Mo95, Pm147, Ru102, Nd143, Ag109, Ru104, Xe131, Eu153, Sm147,
Pd106, Mo100, Mo98, Pr141
Pd108, Zr93, I129, Xe132, Sm152, Xe134, Cd111, Nd146, Eu154, Nd148,

0.1 - 1% I127, Ce142, Nd144, Eu155, Zr91, La139, Cs134, Cs137, Nd150, Zr92,
Sm150, Gd157, Ru106, Ru103, Zr94, Ru100, Pd104, Sm148, Rb85, Zr96,
Ce140, Gd155, Gd156, Kr83, Pd110, Cd113, Sm154, Nb95, Cd112
Ce144, Br81, Te130, Ce141, In115, Tb159, Cd110, Y89, Ba134, Ba138,

0.01 - 0.1% Sr90, Te128, Pm148M, Eu151, Ba136, Xe136, Kr84, Sb125, Gd158, Pr143,
Mo96, Ba137, Nd147, Rb87, Sb121, Zr95, Sb123, Te125, Cd114, Dy161,
Se79, Pm149, Gd154, Xe130, Dy160, Ag110M, Mo99, Rh105, Kr85
I131, Nd142, Kr86, Xe133, Gd160, Te127M, La140, Dy162, Dy163, Pm148,

<0.01% Cs136, Te129M, Sr88, Ba135, Ho165, Xe135, Ru105, Dy164, Li6, Eu156,
Te131M, Tb160, Er166, Pm151, Sm153, Eu157, I135, Dy165, H3
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3.2 Core Depletion

The present ECCO/ERANOS calculation scheme for SFR core simulation is composed by
the usual two-step scheme: lattice and core. While lattice calculations are performed with
1968 energy groups, core ones use 33 energy group cross sections. Such cross sections, self-
shielded and condensed, are evaluated at time zero from 2D ECCO infinite lattice calculations
of cells or assemblies (with an infinitesimal concentration of actinides and fission products
not present at the initial time). They are then used in 3D ERANOS models to realize full
core calculations with a micro-depletion model. This scheme is based on the hypothesis that
the 33 energy group microscopic cross sections do not change with the irradiation and the
evolution of the composition of the different fissile materials.
The development of a new SFR calculation scheme with APOLLO3 gives us the opportunity
to revisit the hypothesis which concerns the core evolution. In fact, other possibilities are
present, as the ones used in PWR with the code chain APOLLO2/CRONOS2. The idea is
to store self-shielded and condensed macroscopic or microscopic cross sections, parameteriz-
ing them in burn-up. These libraries, called “evolving”, are obtained performing depletion
calculations at lattice step. They allow, then, the interpolation of the proper cross sections
in core calculations. Core evolution can, consequently, be done in 2 ways:

• macroscopic depletion: extrapolating the local burnup variation at each evolution step,
the core code performs a linear interpolation of the macroscopic cross sections from the
evolving library before evaluating the flux at the new time step.

• micro-depletion: core code solves Bateman equations in order to evaluate isotopic evolu-
tion of the nuclei listed in the depletion chain. Used methods are more or less accurate.
They have been discussed in section 2.5: constant, linear or parabolic reaction rate ex-
trapolation/interpolation and multistep/monostep methods. Microscopic cross sections
are linearly interpolated from the burn-up parameterized evolving libraries.

In the previous chapter, it has been shown that a 1968 group energy mesh does not require
the reiteration of the self-shielding during the evolution. This means that microscopic cross
sections does not change significantly with the irradiation and the fissile materials’ evolu-
tion. Such conclusion must be extended to 33 energy groups and, in addition, homogenized
geometry. The aim of the chapter is to compare/validate, on a CFV elementary cell, the 3
evolution methods that can be used for core evolution:

• MACRO: macroscopic depletion

• MICRO SIGMA EVOLVING: micro-depletion with evolving libraries
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• MICRO SIGMA ZERO: micro-depletion with time 0 microscopic cross sections.

MICRO SIGMA EVOLVING model is, without a doubt, the more precise. This precision
requires more memory storage and time. Cross section libraries must be created. Deple-
tion calculations, consequently, must be performed also at lattice step, differently from the
ECCO/ERANOS model. This takes time. The results at each time step must be stored in
the parameterized library. This requires memory. It’s not without disadvantages that the
MICRO SIGMA EVOLVING model- but similarly, with the limitation will see in chapter 5,
the MACRO depletion one- is implemented. That’s why the possibility of applying MICRO
SIGMA ZERO is considered.
The comparison is realized with MINARET - method of the discrete ordinates (see 2.4.7) -
on the exact hexagonal cell geometry or the homogenized one. The reference is the MOC
APOLLO3 lattice calculation (1968 energy groups) which has created the cross section li-
braries (self-shielding reiteration of the heavy nuclei only).
The calculations have been done with one fission spectrum only. Consequently, there is no
dependence of the fission spectrum from the incident neutron energy. It was not possible,
in fact, to perform 4 spectra core calculations at the moment of the study. It is interesting,
in figure 3.11, to observe the drift of the reactivity difference between 1 and 4 macro groups
during the evolution. This drift is limited to 10 pcm between 0 and 1440 days (115000MWd

ton
).

3.2.1 Preliminary Studies

Validation of the 1968 group micro-depletion

The aim of this section is to verify that the behaviour of the core evolution is similar to the
lattice one. For doing so, 2 microscopic cross section libraries, one heterogeneous and one
homogeneous, both of them with 1968 energy groups, have been created at time zero and with
1 fission spectrum. They are used to perform the evolution with MINARET core solver. The
results are compared with a lattice calculation where self-shielding is not reiterated during
the evolution. Microscopic cross sections do not vary. In figure 3.12, the results are shown.
At time zero, the reactivity difference is equal to +6 pcm for the heterogeneous case. This
difference is related to the fact that TDT-MOC and MINARET solvers do not discretize
equally spatial and angular variables in flux evaluation. On the contrary, the homogeneous
case present a reactivity difference smaller than 1 pcm. This is related to the fact that the
flux is flat and isotropic. The transport equation, then, becomes a balance equation which
is necessarily preserved by the flux-volume homogenization.
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Figure 3.11 Impact of the use of 1 energy independent fission spectrum on the CFV cell kinf
(ref: 4 macro groups of fission spectra)
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During the evolution, the drifts of the reactivity differences are limited to +15 pcm for the
heterogeneous case and +10 pcm for the homogeneous one. Concerning the concentrations,
the two cases show, for the fission products, a maximum difference of -3.20% for the Sb123.
In table 3.5, it has been shown that its contribution to anti-reactivity is smaller than 0.1%.
For the actinides, in the heterogeneous case, the difference is limited to -0.53% for Cm246
and it is equal to +0.03% for Pu239.
The concentration differences of the fission products arise from the fission yields. These
are defined both for thermal fission (< 2.5keV ) and fast fission (> 2.5keV ). While lattice
calculations take into account the two groups, the core code uses only the fast one. In table
3.6 and 3.7, it is possible to observe the fission proportions at the beginning and at the
end of the calculation. The hypothesis of considering the whole fissions as fast ones seems
reasonable. Of course, this approximation introduces errors, as in the case of Sb123. Its
difference can be related to the fact that this isotope is principally produced by the thermal
fission of Pu239. The same occurs for Gd160 (-3.63%) produced by thermal fission of Pu241.
Other isotopes (Dy165, Ho165 and Er166), whose concentrations are smaller than 1017 atoms

cm3 ,
are not correctly estimated (-7.47%, -7.97% and -8.39%).
However, as it is possible to observe from the multiplication factors, the anti-reactivity is
correctly represented. The hypothesis is acceptable and this results validate the MINARET
solver and the time zero cross section libraries for depletion calculations.

33 energy group condensation

It is not possible to perform, with actual technologies, 1968 energy group core calculations.
The memory size of the libraries will be unacceptable and the calculation time a limitation. A
classical energy condensation to 33 energy groups [25] is done and used for both homogeneous
and heterogeneous calculations. In the appendix F, it is possible to observe the energy

Table 3.6 Fission Proportions: Time 0

Fast Thermal
Am241 99.41% 0.59%
Pu238 93.40% 6.60%
Pu239 93.67% 6.33%
Pu240 98.70% 1.30%
Pu241 90.77% 9.23%
Pu242 99.73% 0.27%
U235 90.20% 9.80%
U238 99.99% 0.01%
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mesh. It is important to notice that cross sections are, by definition, time independent:
they represent the virtual surface a nucleus presents to the incident neutron. The larger the
surface is, the greater is the probability to react.
In the multigroup approach, however, self-shielding for lattice steps and condensation for
core ones introduce a time dependence of the cross sections. They are no more physical
quantities; they become flux averaged quantities for particular applications. The finer the
energy mesh is, the larger is the range of applications. This is true especially for the input
libraries a nuclear code uses. Cross sections are averaged over a flux that is representative of
the applications it will be used for. At lattice step, in order to create cross section libraries for
core calculations, the actual flux of the cell or of the assembly is used for the condensation.
If the energy mesh is coarser, the size of the library is smaller; but the disadvantage is that
its application is limited to a flux similar to the one the cross sections have been condensed
with. If evolution takes place, a flux shifting can occur, as in this case (see appendix E). This
shifting changes the weight function and, consequently, the cross sections. A time zero self-
shielded cross section library with 1968 energy groups is capable to reproduce this shifting
and correctly estimates the reaction rates which compose the neutron balance. What about
a similar library with 33 energy groups? Answering to this question, considering a single cell,
is the purpose of this chapter.
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Table 3.7 Fission Proportions: Time 1440

Fast Thermal
Am242M 90.20% 9.80%
Am243 99.55% 0.45%
Cm242 97.13% 2.87%
Cm243 90.46% 9.54%
Cm244 99.12% 0.88%
Cm245 89.36% 10.64%
Np237 99.91% 0.09%
Np239 100.00% 0.00%
U234 99.68% 0.32%
U236 99.29% 0.71%
Am241 99.33% 0.67%
Pu238 92.74% 7.26%
Pu239 93.04% 6.96%
Pu240 98.51% 1.49%
Pu241 90.05% 9.95%
Pu242 99.68% 0.32%
U235 89.47% 10.53%
U238 99.99% 0.01%
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3.2.2 Validation: No Leakage Model

In figure 3.13 and 3.14, it is possible to observe the results of the comparison of the 3 mod-
els. The reactivity differences between MOC reference case (1 spectrum and self-shielding
reiteration of the heavy nuclei only) and the core depletion models is shown. MACRO iden-
tifies the macro depletion model; MICRO SIGMA EVOLVING identifies the micro depletion
model with the “evolving” cross section libraries (APOLLO2/CRONOS2); MICRO SIGMA
ZERO identifies the micro depletion model used in ECCO/ERANOS chain of codes. Two
geometries are considered:

• HETEROGENEOUS CASE: the same hexagonal cell geometry of lattice MOC calcu-
lations is used. 4 zones are distinguished.

• HOMOGENEOUS CASE: an homogenized hexagonal geometry is used. 1 zone is
present.

At time zero, the reactivity difference is equal to +5 pcm for the heterogeneous case. The
same difference has been observed in section 3.2.1 and related to a different discretization
of the spatial and angular variables in the flux evaluation. At the same time, also the ho-
mogenous case shows the same tendency observed in section 3.2.1. The reactivity difference
is smaller than 1 pcm. The balance is preserved in the homogenization. This characteristic
is maintained during the evolution. At the end of the calculation, for the homogeneous case,
the macro depletion model presents a reactivity difference equal to +1.4 pcm.
The other models present a drift. Nevertheless, that is more or less important in one case
or another. In the heterogeneous case, the macro depletion model presents a drift equal
to +24 pcm. Because the macroscopic cross sections are interpolated from the “evolving”
libraries, the difference must be related only to the behaviour of the numerical method used
to solve the evolution equations. Concerning the MACRO model, in table 3.8, it is possible
to observe an underestimation of the absorption reaction rate of Fe56 (+10 pcm), U238 and
Pu239 (+4 pcm). The results present in table 3.8 and 3.9 are obtained using the formula 3.7.
The reactivity difference between the reference MOC calculation (state 1) and the MACRO
model (state 2) is reconstructed at the end of the calculation.

Moreover, it is possible to compare the reaction rates for the micro depletion models. In
this case, the microscopic cross sections are stored. Before passing to the comparison of
the absorption reaction rates, a few words must be written concerning the concentration
estimation. On figure 3.15 and 3.16, it is possible to observe the time evolution of the
relative concentration differences of the 4 fission products which contribute the most to the
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Figure 3.13 Heterogeneous case: CFV cell kinf comparison between MOC reference and core
depletion models
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Figure 3.14 Homogeneous case: CFV cell kinf comparison between MOC reference and core
evolution models
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Figure 3.15 Heterogeneous case: Relative difference of the fission product concentrations
during the evolution
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Figure 3.16 Homogeneous case: Relative difference of the fission product concentrations
during the evolution
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anti-reactivity. These differences are limited to -0.70% (Tc99).
However, the use of only one group fission yields leads to a difference in the estimation of
the fission product concentrations. This difference, as discussed in 3.2.1, is around -8% for
Dy165, Ho165 and Er166. The contribution to the global anti-reactivity of these isotopes is,
after all, limited. Excluding the isotopes listed in 3.2.1, concentration differences are limited
to -2.20% for Cd113 in the homogeneous MICRO SIGMA EVOLVING model.
Focusing on the neutron balance at the end of the calculation, it is possible to begin, first
of all, considering the flux. In figure 3.17 and 3.18, flux relative differences are shown,
normalized to the energy integrated reference flux. In the homogeneous case, MACRO and
MICRO SIGMA EVOLVING models do not present any difference. The reactivity difference
at the end of the calculation for the SIGMA EVOLVING model is only related to differences
in fission product estimation. In the heterogeneous case, this contribution must be added to
a drift in the flux evaluation associated with the MACRO depletion model. The drift of the
reactivity difference with respect to the initial time for the homogeneous MICRO SIGMA
EVOLVING model is equal to +17 pcm; +39 pcm in the heterogeneous geometry.
Concerning the SIGMA ZERO model, the drift is equal to +92 pcm in the homogeneous
case; +94 pcm in the heterogeneous one. This drift arises from the fact that reaction rates
of U238, Fe56, Pu239, Pu240 and Pu241 are not accurately described (table 3.8 and 3.9).

In figure 3.19, it is possible to observe that the U238 absorption reaction rate is underesti-
mated between 1.2-2 keV by the MICRO SIGMA ZERO model. Because reaction rates are
the product of three terms, there are more quantities to consider. First of all, concentrations:
U238 concentration is estimated with an error of 0.05%; Pu239 of -0.17%. Concentration dif-
ference is not the cause of this underestimation, because an error in the estimation of the
concentration results in a scale factor for the reaction rate: all the groups are modified. This
is not the case. Then, the flux: a maximum error of 0.04% is made around 100 keV. Between
1.2-2 keV, a strong depression of the flux is not observed. Finally, the microscopic cross sec-
tions. These must be the cause of the differences. The softening of the flux, in fact, requires
cross sections condensed on softer flux in order not to underestimate the importance of lower
energy groups.
As already discussed, this phenomenon has not been observed with 1968 groups. With 33
energy groups, it occurs and introduces a drift. In an global reactivity loss of -11296 pcm
the drift represents 0.8% of the total.
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Figure 3.17 Heterogeneous case: CFV cell flux comparison in the fuel region between MOC
reference and core depletion models at 1440 days
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Table 3.8 Heterogeneous case: Absorption rate comparison at 1440 days

MICRO MICRO
MACRO SIGMA ZERO SIGMA EVOLVING
[pcm] [pcm] [pcm]

U238 +4 +124 +5
Pu239 +4 +12 +3
Pu240 +1 -4 +3
Pu241 +0.6 -9 +0.8
Fe56 +10 +7 +10
Tc99 +0.2 +1.5 +3
Ru101 +0.2 -3 -1
Rh103 0 0 +2
Pd105 +0.2 +0.6 +3
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Table 3.9 Homogeneous case: Absorption rate comparison at 1440 days

MICRO MICRO
MACRO SIGMA ZERO SIGMA EVOLVING
[pcm] [pcm] [pcm]

U238 +0.3 +123 +2
Pu239 +0.3 +11 -0.5
Pu240 0 -5 +1
Pu241 +0.1 -9 +0.1
Fe56 0 +7 +0.2
Tc99 0 +1.5 +3
Ru101 0 -3 -1
Rh103 0 0 +2
Pd105 0 +0.6 +2
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3.2.3 Validation: Leakage Model

In order to subsequently perform full core calculations, leakage models are applied at lattice
step. They simulate a finite reactor geometry, even if an infinite lattice is considered. Apply-
ing an homogeneous B1 leakage model to a single cell, a softening of the flux is observed even
in this case. The flux softens more in this case with respect to the one without leakage model
(see figure 3.20). MICRO SIGMA ZERO, then, is expected to be less accurate in the repre-
sentation of the time evolution of a cell. Before presenting the values of the multiplication
factors, it is important to remind that a leakage model solves the B.15 transport equation. A
finite periodic lattice grid, and not an infinite one, is considered. The infinite multiplication
factor, then, is just a ratio between neutrons absorbed and produced (neglecting leakage)
and do not represent the kinf of an infinite lattice grid. That’s why the infinite multiplication
factors of this section and of the previous one are different.
At time zero, the MOC reference calculation presents the infinite multiplication factor kinf =
1.72421 and the effective one equal to unity. At the end of the calculation, the infinite mul-
tiplication factor is equal to kinf = 1.40024. The effective multiplication factor is always
equal to unity because the critical buckling is searched. The leakage term diminishes with
the irradiation, and the reactivity difference between the infinite multiplication factor at time
0 and after 1440 days is equal to -13419 pcm. The major importance of the softening can
be explained by the fact that the introduction of a leakage term reduces the chance of the
neutron to be thermalized before escaping. The flux is then harder. Reducing the leakage
term during the irradiation tends to soften it. The loss of reactivity and the decrease of
Pu239 concentration is another concurrent phenomenon that tends to soften the flux. These
two effects synergically reduce the average energy of the flux spectrum, explaining why the
relative softening is more important.
Concerning the core depletion model, only the homogeneous geometry is considered, in order
to neglect the reactivity difference introduced by the different discretization of the MINARET
solver in the heterogeneous case.
In figure 3.21 and 3.22, the results of the models are shown. The effective and infinite mul-
tiplication factor are compared with the reference. It is worth underling, before presenting
the results of the depletion models, that the leakage model, and so the search of the critical
buckling, is applied only at lattice step. Cross sections are then condensed with the evalu-
ated flux and stored in libraries either “evolving” (MACRO, MICRO SIGMA EVOLVING)
or not (MICRO SIGMA ZERO). In this case the leakage term DB2, that is computed for
each time step by the B1 homogeneous model, is manually added to the transport equation
solved by MINARET, in order to have 33 group MINARET calculations analogous to 1968
group MOC ones. Usually, condensed cross sections are directely used in real core geometries
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without any leakage term.
Considering the MACRO depletion model, the reactivity differences at the end of the cal-
culation are less than 1 pcm for keff and kinf . The neutron balance is preserved during
the evolution. In figure 3.23, it is possible to observe the relative difference in flux distribu-
tion, normalized to the reference energy integrated flux. The difference is negligible for the
MACRO model. This fact has already been encountered in the previous section.
Focusing now on the concentration at the end of the calculation, major differences arise from
the 1 group fission yield approximation. As before, the isotopes listed in 3.2.1 present the
most relevant differences. In MICRO SIGMA ZERO depletion model, concentration differ-
ence for Dy165 is equal to -5.41%, -2.20% for Sb123 and +1.32% for Cd113. More or less
the values observed for the MICRO SIGMA EVOLVING depletion model. However, these
isotopes do not affect the neutron balance, and the concentration differences of the 4 most
absorbing fission products - Tc99, Ru101, Rh103, Tc99- are limited to -0.47% for Tc99 (see
figure 3.24).
Comparing the infinite multiplication factors, the reactivity difference of the MICRO SIGMA
EVOLVING model is equal to +16 pcm. It increases to +24 pcm if effective multiplication
factors are compared. These differences are coherent with the one observed in the previous
section and they are mainly related to the estimation of the fission product concentrations.
In table 3.10, formula 3.7 has been used to decompose the reactivity difference of the infi-
nite multiplication factor between the reference MOC calculation (state 1) and the depletion
models MACRO, MICRO SIGMA ZERO and MICRO SIGMA EVOLVING (state 2). At the
end of the calculation, the concentration difference of U238 is equal to +0.02% for MICRO
SIGMA EVOLVING and +0.06% for MICRO SIGMA ZERO. Considering Pu239, +0.03%
for MICRO SIGMA EVOLVING and -0.16% for MICRO SIGMA ZERO.
Nevertheless, their contribution to the reactivity difference of the infinite multiplication fac-
tor is relevant, as it is possible to see in table 3.10. These differences, and the flux distribution
ones (see figure 3.23), can be eliminated using an “evolving” cross section library. It is im-
portant to notice that differences are larger if the leakage model is applied, increasing the
flux softening phenomenon.
In an overall reactivity loss of -13419 pcm, the drift represents 2% of the total.
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Figure 3.20 Relative spectrum variation of the fuel flux within 0 and 1440 days for CFV cells
with or without leakage.
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tion models at 1440 days



91

0 500 1000 1500

time [days]

-0.475

-0.47

-0.465

-0.46

-0.455

-0.45

-0.445

-0.44

-0.435

∆
 C

 /
 C

re
f
[%

]

Tc99

SIGMA ZERO

SIGMA EVOLVING

0 500 1000 1500

time [days]

-0.31

-0.305

-0.3

-0.295

-0.29

-0.285

-0.28

∆
 C

 /
 C

re
f
[%

]

Pd105

SIGMA ZERO

SIGMA EVOLVING

0 500 1000 1500

time [days]

-0.35

-0.345

-0.34

-0.335

-0.33

-0.325

-0.32

-0.315

-0.31

∆
 C

 /
 C

re
f
[%

]

Rh103

SIGMA ZERO

SIGMA EVOLVING

0 500 1000 1500

time [days]

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

∆
 C

 /
 C

re
f
[%

]

Ru101

SIGMA ZERO

SIGMA EVOLVING

Figure 3.24 Leakage case: Relative difference of the fission product concentrations during the
evolution

Table 3.10 Leakage case: Absorption rate comparison at 1440 days

MICRO MICRO
MACRO SIGMA ZERO SIGMA EVOLVING
[pcm] [pcm] [pcm]

U238 +0.1 +165 +3
Pu239 +0.2 +60 -0.2
Pu240 0 +10 +1
Pu241 0 +6 -0.1
Fe56 0 +6 +0.2
Tc99 0 +3 +2
Ru101 0 +0.7 -0.4
Rh103 0 +2 +2
Pd105 0 +3 +2
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3.3 Burn-up parametrization of the cross section libraries

In the previous section, it has been shown the importance of the cross section time depen-
dency for core calculations. In a cell case, where no leakage model is applied, the MICRO
SIGMA ZERO model leads to a reactivity difference of the order of 100 pcm (0.8% of the
overall reactivity loss). The flux shifts towards lower energy and the cross sections are not
condensed using the proper time-dependent weight flux. Until now, the MICRO SIGMA
EVOLVING model has used a cross section library with a number of burn-up tabulation
points equal to 34. The lattice depletion is performed following the time steps enlisted in the
table of appendix C. 33 time intervals ∆t are used in lattice depletion. These intervals are
accurate to represent, during the evolution, actinide and fission product concentrations. The
correct representation of Np239 equilibrium concentration, for instance, explains the high
number of time steps at the beginning of the calculations. Actinides and fission products are
correctly estimated and this fact allows to properly represent the reactivity variations.
Nevertheless, the aim of lattice calculations is the creation of cross section libraries and not
the correct representation of isotope concentrations. As a consequence, the number of time
intervals can be diminished in lattice depletion calculations. In fact, it is not important, at
lattice step, to correctly represent the reactivity variations and time intervals can be reduced
in order to create cross section libraries with a coarser burn-up mesh parametrization. The
goal is to provide a cross section library which is more accurate than the MICRO SIGMA
ZERO one, but which does not require a number of lattice steps equal to 34 to be created.
Concerning TDT-MOC 1968 energy group lattice calculations, evolution time intervals ∆t
have been consecutively divided by 2, from 33 to 16,8,4,2 and, finally, to a single interval
covering the evolution from 0 to 1440 days. Corresponding cross section libraries have been
created. Constant integration scheme has been used in order to avoid negative values for the
reaction rates. Convergence test has not been performed in order to avoid the division of the
time interval by 2.
From cross section libraries with 34, 17,9,5,3 and 2 tabulation points, core depletion is per-
formed: 33 energy group MINARET calculations for an homogeneous cell geometry and 33
evolution time intervals ∆t. A monostep calculation with a linear extrapolation/interpolation
of the reaction rates is used by the depletion solver.
The results are shown in figure 3.25. Only one time interval ∆t from 0 to 1440 days is required
to obtain, with a difference of few pcms, the results of the MICRO SIGMA EVOLVING using
33 ∆t. With respect to a MICRO SIGMA ZERO model whose difference at the end of the
calculation is equal to +92 pcm, the model using a 2 points cross section library gives a final
difference equal to +23 pcm (only +5 pcm higher than MICRO SIGMA EVOLVING).
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Figure 3.25 Homogeneous case without leakage: CFV cell kinf comparison between 34 point
MICRO SIGMA EVOLVING calculation and core evolution models with 17, 9, 5, 3, 2 burn-
up tabulation points in the cross section libraries or only 1 (SIGMA ZERO).

Time and memory are saved without reducing the accuracy of the results. This remarkable
result, which can be explained by the great linearity of the phenomenon, justifies the use of
a burn-up parametrization of the cross sections in the SFR project calculation scheme with
APOLLO3.

3.4 Conclusions

In this chapter, a CFV cell geometry charged with MOX fuel has been studied. In the
first section, APOLLO3 lattice calculation options have been investigated. Indications have
been provided about the correct temporal evolution scheme and the necessity of repeating or
not self-shielding calculations. Then, an inter-code validation has been performed between
APOLLO3, TRIPOLI4 and ECCO/ERANOS neutronic codes. The results have been shown
to be coherent and sensitive to the fission spectra used. Before passing to core depletion,
a reactivity analysis has been done in order to underline the isotopes which contribute the
most to the reactivity loss. Considering the actinides,these isotopes are U238, Pu239; Pd105,
Ru101, Rh103 and Tc99 are the most reactive fission products.
In the second section, three depletion models have been presented and compared. Two of
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them are actually used in thermal reactor simulations: the MACRO depletion model and
the MICRO SIGMA EVOLVING one. The other one is currently used in ECCO/ERANOS
SFR calculation schemes: the MICRO SIGMA ZERO depletion model. Although this model
is more rapid and less memory demanding, it overestimates by around 100 pcm (∼ 0.8% of
the overall reactivity loss) the final reactivity difference in a case where no leakage model is
applied. If a leakage model is applied, this difference doubles.
In the last section, in order to reduce the calculation time and the memory storage required,
a study on the number of burn-up tabulation points in cross section library is performed.
The MICRO SIGMA EVOLVING model is applied using cross section libraries different from
the ones created in the reference calculations. The high linearity of the phenomenon allows
to use only two tabulated points in the libraries: the one at the beginning and the one at
the end of the calculations. The small reactivity difference justifies the use of a burn-up
parametrization against a SIGMA ZERO model: an higher accuracy is obtained without
significantly affecting the calculation time and the memory storage, which are only doubled.
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CHAPTER 4 EVOLUTION OF A FISSILE-FERTILE CLUSTER
GEOMETRY

The previous chapter has presented a certain number of elementary validations on the CFV
cell case. The aim of these validations is to select the right parameters in order to perform
depletion calculations where the reactivity difference is reduced to minimum, while calculation
time and memory remain affordable for industrial applications. This part wants to confirm
these choices on a more demanding geometry: a cluster composed by a fertile assembly
surrounded by 6 fissile semi-assemblies. Due to the symmetries of the cluster, 1/12 of it is
considered as a calculation motif (see figure 4.1). The fissile material is charged with MOX
fuel, as in the cell case; the fertile one with depleted UOX (0.2% weight enrichment in U235).
An hexagonal tube, composed of a steel alloy, surrounds each assembly.
The chapter is divided in two parts: the first dealing with lattice evolution; the second
presenting the results of the core depleting models discussed in the previous chapter:

• MACRO

• MICRO SIGMA EVOLVING

• MICRO SIGMA ZERO

Figure 4.1 1/12 cluster fissile-fertile geometry
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It is important to notice that all the depletion calculations are made with the parameters
previously defined (see section 3.1.1):

• linear extrapolation/interpolation of the reaction rates

• multistep method for lattice depletion; monostep for core one

• reiteration of the Tone self-shielding method of the heavy nuclei

• 1 macro group of fission spectrum

Both lattice and core calculations are performed with specular reflective boundary conditions.
It is worth reminding that, while lattice depletion is performed with two fission yield groups
(a fast and a thermal group), core depletion is performed using the fast fission yield group
only.

4.1 Lattice Depletion

Before comparing the results of the core depletion models, it is important to discuss the
evolution geometry for lattice depletion. Concerning the self-shielding, for each assembly two
calculation zones are distinguished: one zone including the outer ring, the other composed by
all the inner rings. In figure 4.1, it is possible to identify the two zones by the different colours
used. This calculation geometry has been validated for static calculations [41]. The purpose
here is to validate the geometry for depletion calculations. In fact, during the evolution,
asymmetries can arise due to concentration variations. Consequently, at first, a reference
evolution geometry is introduced: each fuel pin is distinguished and separately evolved.

4.1.1 Reference Evolution Geometry

The infinite multiplication factor at time zero is equal to 1.28212. The energy integrated flux
distribution is represented in figure 4.2. The flux is normalized to 105 neutron production. It
is possible to observe that the flux is higher in the fissile region than in the fertile one; but,
inside the assemblies, flux differences are limited. The flux distribution is more or less flat,
explaining why only 2 self-shielding regions are required. Differences are located principally
in the external ring. This distribution also explains why it’s not necessary to self-shield at
each time step for 1968 energy group calculations (see 3.1.1) and why, differently from PWR,
only 1 region is used to self-shield the fuel (no rim-effect, see appendix A).
After 1440 days, the multiplication factor becomes 1.16629. The reactivity loss is equal to
7746 pcm. Its decomposition will be performed in the following paragraph. For the moment,



97

it is important to observe the energy-integrated flux distribution in figure 4.3. No major
asymmetries arise in the flux distribution due to depletion. The maximum and the minimum
values are located in the same cells, but the relative differences with respect to the average
values have diminished. Flux distribution is further flatten. The assembly-averaged flux is
smaller in the fertile region than in the fissile one, but also this difference is reduced with
respect to time 0.
Concerning the isotope concentrations, during the evolution, actinides are produced and
burnt both in fissile and fertile regions. At 1440 days, however, actinides have globally
diminished in the fissile region and increased in the fertile one. Fission products are produced
everywhere, even if mostly in the fissile region where the number of fissions is higher. In figure
4.4 and 4.5, it is possible to observe the concentration maps, at the end of the calculation,
for Pu239 and Pd105. Pu239 is burnt more or less uniformly in the fissile. In the fertile,
the production is more important on the external ring where the flux is higher. Focusing on
Pd105, then, the same uniformity in the production is observed in the fissile region, while
in the fertile one this is not completely true. In the external ring, Pd105 concentration is
+2.63% higher than the average. However, no notably asymmetries are observed. In 4.1.3, it

Figure 4.2 Reference Evolution Geometry - Flux distribution at t = 0 days (normalized to
105 neutron production)
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Figure 4.3 Reference Evolution Geometry - Flux distribution at t = 1440 days (normalized
to 105 neutron production)

will be possible to comment on the results stemming from the application of the self-shielding
geometry for depletion calculations.
The flux distribution observed in figure 4.2 and 4.3 are integrated over the whole energy
domain. Integrating the flux over the assembly, on the other hand, can highlight the presence
of a flux shifting in the fissile or fertile region. In figure 4.6, it is possible to observe the flux
differences normalized to the initial energy-integrated flux value. In the fertile region, an
hardening of the flux is observed. The production of Pu239 and fission products, which are
thermal absorbers, increases the average value of the flux energy. In the fissile region, a slight
softening of the flux is observed. This softening is smaller than the one observed in the cell
case.
Before treating the simplified evolution geometry, consisting of only two evolution regions
actually used only for self-shielding, a reactivity study is accomplished in order to decompose
the reactivity loss.
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Figure 4.4 Reference Evolution Geometry - Pu239 distribution at t = 1440 days
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Figure 4.5 Reference Evolution Geometry - Pd105 distribution at t = 1440 days
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4.1.2 Reactivity Decomposition

The overall reactivity loss is equal to 7746 pcm. Formula 3.8 decomposes the loss, so that
it can be related to certain reactions and isotopes. First of all, the reactivity loss due to
absorption is equal to 7753 pcm, while the reactivity gain due to (n,Xn) reactions is equal
to 7 pcm. Then, after decomposing the loss due to the absorption term, it is possible to
observe the results in table 4.1. The total actinide contents decrease in the fissile region and
increase in the fertile one. Nevertheless, at the end of the calculations, the fissile material
contents globally diminish. Consenquently also their contribution to the relative absorption
diminishes, resulting in a reactivity gain of 127 pcm. The reactivity loss is principally due
to the fission products: -6956 pcm (89.80%). The major part of this loss is related to the
absorption in the fissile region (-6145 pcm, 88.34%). In figure 4.7 and 4.8, it is possible to
observe the contribution of the most absorbing fission products to the reactivity loss, both
for the fissile and fertile region. The hierarchy is similar to the one tabulated in 3.5.
Concerning the absorption due to structural materials, most of it is due to the softening of
the flux in the fissile region (790 pcm, 85.5%). The importance of the structural materials
in the neutron balance has already been discussed in section 3.1.3. The same considerations
apply for this geometry.
Finally, in order to underline the importance of actinides production, the infinite multiplica-
tion factors of the fissile and fertile regions are presented. In this case, the adjective infinite
is not particularly appropriate. An infinite lattice grid of the fissile and fertile assemblies is
not considered. The neutron balance is just accomplished accounting the reactions in the two
regions independently. For region x, the infinite multiplication factor is evaluated separately
from the other regions:

kxinf = PRODx

ABSx −NEXCx
(4.1)

where the superscript x underlines that only rates of isotopes in x are considered.
kfissileinf is equal to 1.45610 at the beginning of the calculation. The depletion leads to a

Table 4.1 Reactivity loss decomposition at 1440 days

∆ρ[pcm] rel
ACTINIDES +127 +1.64%

FP -6956 -89.80%
STRUCTURES -924 -11.93%

ABSORPTION LOSS -7753 -100.09%
NEXCESS GAIN -7 -0.09
OVERALL LOSS -7746 -100%
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Figure 4.7 Reference Evolution Geometry - Reactivity loss due to fission products in fissile
region

Figure 4.8 Reference Evolution Geometry - Reactivity loss due to fission products in fertile
region
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multiplication factor equal to 1.22244. As expected, the fissile region loses reactivity. The
fertile one, on the other hand, gains some. At the beginning, the multiplication factor is
equal to 0.22905; then, after 1440 days, it is equal to 0.95034.

4.1.3 Simplified Evolution Geometry

The evolution geometry used till now is replaced with the self-shielding one. For each assem-
bly only 2 evolution zone are identified: one composed by the outer cell ring, the other by
the internal rings. In section 4.1.1, it has been demonstrated that during the evolution no
major asymmetries arise. This assumption is further supported by figure 4.9: the reactivity
difference between the reference evolution geometry and the simplified one is smaller than 1
pcm during the evolution.
Comparing the assembly-averaged concentrations, the maximum difference is equal to -0.23%
for Cm247 in the fissile region; equal to +0.22% for Ba135 in the fertile one.
At the end of the calculation, the isotope concentrations are well estimated and the reactivity
difference is equal to 0.7 pcm, even if a major simplification of the evolution geometry has
been done. The advantage of this simplification is the possibility of creating evolving cross
section libraries reducing heavily the time calculations and without affecting the accuracy.
In the next part, in fact, core depletion will be discussed.

4.2 Core Depletion

The geometry that will be used in the following calculations is represented in figure 4.10.
Fissile and fertile assemblies are homogenized and 2 zones are identified: the fissile one (in
blue) and the fertile one (in red).
Calculations will be performed with 33 energy groups in order to compare the depletion
models, as in the cell case. The simplified evolution geometry is used for the creation of
the cross section libraries, both for the fissile region and the fertile one. Core calculations
will be compared to the reference one. As it will be explained in 5.2, in the actual SFR
ECCO/ERANOS core calculation scheme, fissile cross sections are not evaluated, at a lattice
step, accounting for the surrounding materials (the presence of the fertile assembly in this
case). An infinite lattice of fissile assemblies is considered to create the cross section libraries.
In this part, the effect of this approximation won’t be taken into account, but it will in section
5.4.
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Figure 4.9 Fissile-Fertile Cluster kinf comparison between the reference evolution geometry
and the simplified one

Figure 4.10 Homogenized core geometry representing 1/12 fissile-fertile cluster
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Figure 4.11 Fissile-Fertile Cluster kinf comparison between MOC reference and core evolution
models

4.2.1 Comparison of the Depletion Models

In figure 4.11, it is possible to observe the reactivity difference between the core depletion
models and the reference calculation. At time 0, the multiplication factor obtained with
MINARET is equal to 1.28182. The reactivity difference compared with the reference is
equal to -18 pcm.
In table 4.2, it is possible to see the decomposition of the difference. The values proposed are
obtained with formula 3.7. The underestimation of 18 pcm is due to a slight overestimation of
Pu239 and U238 absorption in the fissile region, not totally compensated by a corresponding
absorption of these isotopes in the fertile region.
This fact is principally due to the homogenization/condensation. Following the evolution

Table 4.2 Fissile-Fertile Cluster: Time 0 Absorption Comparison: homogeneous MINARET
at 33 groups/ heterogeneous reference TDT-MOC (in pcm)

NUCLEUS FISSILE ASSEMBLY FERTILE ASSEMBLY
U238 -11 +17
Pu239 -22 0
Pu241 -6 0



106

of the MACRO depletion model, it diminishes with time. At the end of the calculation,
the absorption difference of Pu239 and U238 are limited and globally compensated, as it is
possible to observe in table 4.3. The reactivity difference is equal to -6 pcm. Even in this
case, a little overestimation of the absorption in the fissile region, which does not overcome
-8 pcm for Pu239, is present. Differently from time 0, a compensation with the fertile region
is observed. Nevertheless, these differences are smaller in this case. This can be explained
by the fact that the flux flattens during the evolution (see section 4.1.1). The cross section
homogenization, then, provides better results.
Concerning the micro depletion models, the concentration estimation is always affected by
the 1 fission yield approximation. In the fissile region, Sb123 concentration difference is equal
to -4.84%; Ho165 to -11.69%. Excluding the isotopes more sensitive to thermal fission pro-
duction (discussed in 3.2.2), it is possible to see, in figure 4.12, that the difference is limited
to 1.10% in MICRO SIGMA ZERO for Tc99. This is one of the most absorbing isotope (see
figure 4.7).
In figure 4.12, it is also possible to notice that MICRO SIGMA ZERO concentrations are
overestimated, in absolute value, with respect to MICRO SIGMA EVOLVING.
In the fertile region, concentration differences are higher, as it is possible to see in figure
4.13. In this case, MICRO SIGMA ZERO model tends to underestimate, in absolute value,
the concentration difference with respect to MICRO SIGMA EVOLVING. The behaviour of
these differences in the two models is not similar: while the absolute value of the concen-
tration difference increases during the evolution for the fissile region, the fertile one shows a
decrease. Concentrations are not correctly estimated at the initial steps. This is due to the
fact that, while at time zero the fission product concentrations are initialized to zero, before
solving the first time interval evolution, a trace of each isotope is assumed in order to avoid
numerical instability. A concentration of the order of 10+14 nuclei

cm3 is introduced. Because
this number can differ in the core step and in the lattice one, a concentration difference can
be observed in the initial step. Its relative importance is higher for those isotopes whose
concentration is small. Tc99, for instance, presents a relative concentration difference after
one day operation equal to 23% (absolute value at time zero: N ref

Tc99 = 6.88 · 10+14 nuclei
cm3 ).

Table 4.3 Fissile-Fertile Cluster: Time 1440 Absorption Comparison: homogeneous
MINARET at 33 groups/ heterogeneous reference TDT-MOC (in pcm)

NUCLEUS FISSILE ASSEMBLY FERTILE ASSEMBLY
U238 -5 +5
Pu239 -8 6
Pu241 -1 0
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Figure 4.12 Fissile-Fertile Cluster: Relative difference of the fission product concentrations
during the evolution in the fissile region
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Figure 4.13 Fissile-Fertile Cluster: Relative difference of the fission product concentrations
during the evolution in the fertile region
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At the end of the calculation, the concentration difference for Tc99 is 4.93% for the MICRO
SIGMA EVOLVING model and 4.22% for the MICRO SIGMA ZERO one (absolute value
at 1440 days: N ref

Tc99 = 2.71 · 10+19 nuclei
cm3 ).

Actinides are better estimated with the MICRO SIGMA EVOLVING model as well. At the
end of the calculation, this model shows a concentration difference for Pu239 equal to -0.26%
in the fertile region (see figure 4.14). The same isotope is evaluated with an error of -1.13%
in the MICRO SIGMA ZERO model. For U238, the error is limited to +0.12% in the fertile
region (+0.03% for MICRO SIGMA EVOLVING - see figure 4.15).
In table 4.4, it is possible to see the influence of these isotopes on the global reactivity. The
decomposition has been made with the formula 3.7.
At the end of the calculation, the reactivity difference for the MICRO SIGMA ZERO model
is equal to +46 pcm. The drift, the difference between the time 0 and time 1440 days kinf is
equal to +65 pcm. However, the drift is not monotonous and present a maximum of +100
pcm at 840 days.
For the MICRO SIGMA EVOLVING model, the reactivity difference at 1440 days is equal
to +1 pcm, with a drift of +20 pcm. In this case the curve is monotonous and no peak is
present.
In figure 4.16 and 4.17, the relative differences, normalized to the reference energy-integrated
flux, between MOC reference and core depletion models are presented. In the fertile region,
differences are higher. The MACRO and MICRO SIGMA EVOLVING depletion models
behave in a similar way: they estimate an harder flux for the fertile and a softer one for the
fissile. The difference in the fissile region is smaller than the one in the fertile. The SIGMA
ZERO model tends to overestimate the flux around 1 keV and underestimate it around 1
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Figure 4.14 Fissile-Fertile Cluster: Relative difference of Pu239 concentration during the
evolution
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Figure 4.15 Fissile-Fertile Cluster: Relative difference of U238 concentration during the evo-
lution

MeV.
Considering the reaction rates in table 4.4, the MICRO SIGMA EVOLVING model over-
estimates the importance of parasitic absorptions in the fissile region (a reactivity loss is
observed) and underestimates it in the fertile (a reactivity gain is observed). This compen-
sation, already discussed for the MACRO depletion model, is a little bit more important.
The absolute difference of Pu239 is equal to +22 pcm, whereas it is limited to -8 pcm for the
MACRO depletion.
This phenomenon is not observed in the MICRO SIGMA ZERO depletion model. Absorp-
tion reaction rate is considerably underestimated for U238 in both fissile and fertile regions.
This gain in reactivity can be explained, as in the cell case, saying that the time zero cross
sections are not adapted to follow the flux shifting.
In conclusion, comparing the three core evolution models for a fissile-fertile cluster geometry,
a drift equal to +100 pcm (the same order of the one in the cell case) is observed with the
MICRO SIGMA ZERO depletion model. This drift is equal to 1.3% of the reactivity loss
and can be reduced to +20 pcm (0.26%) if evolving cross section libraries are used.
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Figure 4.16 Fissile-Fertile Cluster: homogenized fissile flux comparison between MOC refer-
ence and core depletion models at 1440 days
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Table 4.4 Fissile-Fertile Cluster: Absorption rate comparison at 1440 days

FISSILE REGION
MICRO MICRO

MACRO SIGMA ZERO SIGMA EVOLVING
[pcm] [pcm] [pcm]

U238 -5 +131 -8
Pu239 -8 -6 -19
Pu240 +1 -32 -4
Pu241 -1 -23 -4
Fe56 -1 +12 -1
Tc99 0 -9 -5
Ru101 0 -11 -6
Rh103 0 -2 +3
Pd105 0 -1 +3

FERTILE REGION
MICRO MICRO

MACRO SIGMA ZERO SIGMA EVOLVING
[pcm] [pcm] [pcm]

U238 +5 +94 +2
Pu239 +6 -3 +22
Pu240 0 -5 +3
Pu241 0 -2 +1
Fe56 +1 +5 +1
Tc99 0 -3 -3
Ru101 0 -2 -2
Rh103 0 0 0
Pd105 0 0 +1
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4.2.2 Burn-up parametrization of the cross section libraries

In the previous chapter, a study on the effect of the burn-up tabulation points in the MI-
CRO SIGMA EVOLVING model has been performed for a CFV cell geometry. Analogously,
such a study will be performed for the fissile-fertile cluster geometry. The MICRO SIGMA
EVOLVING model which uses the cross section libraries deriving from the reference calcu-
lations (34 burn-up tabulation points) is compared with the analogous model which uses
the cross section libraries with only 2 burn-up tabulation points: one for the beginning and
one for the end of the calculations. These libraries are created performing monostep lattice
depletion with constant reaction rate integration scheme. Only one time interval covers the
time span from 0 to 1440 days.
The results are shown in figure 4.18. The maximum difference between the 34 point SIGMA
EVOLVING model and the 2 point one is equal to +4 pcm at 540 days. Otherwise, there’s
no significant difference between the two MICRO SIGMA EVOLVING models. This 2 point
model, which reduces to 20 pcm the reactivity difference (in spite of 100 pcm for MICRO
SIGMA ZERO), is accurate enough and it requires a reasonable amount of time to create
the cross section libraries. The accuracy of the 2 point model underlines that the involved
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Figure 4.18 Fissile-Fertile Cluster: kinf comparison between 34 point MICRO SIGMA
EVOLVING and core evolution models with 2 burn-up tabulation points in the cross section
libraries or only 1 (SIGMA ZERO)
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phenomenon is mostly linear.

4.3 Conclusions

In this chapter, a fissile-fertile cluster geometry has been studied. One fertile assembly,
charged with depleted UOX, is surrounded by 6 fissile assemblies, charged with MOX fuel.
Each assembly is composed by elementary cells and it presents a proper flux distribution
inside. This distribution, however, does not present great heterogeneities.
In the first section, it is shown that an evolution geometry, where only the external ring is
distinguished, correctly represents the cluster during the evolution. This simplification of the
evolution geometry, with respect to a cell-by-cell evolution, greatly reduces the calculation
time.
In the second section, then, the depletion models have been compared on an assembly-
homogenized geometry. No leakage model has been applied. The MICRO SIGMA ZERO
model presents a drift equal to +100 pcm (1.3% of the overall reactivity loss), whereas the
one of the MICRO SIGMA EVOLVING model is equal to +20 pcm (0.26%).
These results show the importance of a burn-up parametrization of the cross section libraries.
The reference parametrization presents 34 tabulation points but, thanks to the great linearity
of the phenomenon, only 2 burn-up tabulation points are required to correctly represent the
cluster evolution.
Consequently, the 2 point MICRO SIGMA EVOLVING model is preferred to the MICRO
SIGMA ZERO one, because an higher accuracy is reached only by doubling the calculation
time and the memory storage.
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CHAPTER 5 EVOLUTION OF A 2D CORE PLANE GEOMETRY

The aim of this chapter is, first of all, to answer to the question: “How is the reactivity
difference associated to the MICRO SIGMA ZERO model propagated throughout the core?”
As it will be possible to explain later in this chapter, the numerical answer that will be given
will be limited by certain assumptions: geometry used, boundary conditions and the absence
of a leakage model, in lattice calculations, to condense the cross sections.
The second question this chapter would answer is: “Is it possible to simplify the calculation
scheme adapting it to the currently used one?” The currently used calculation scheme will
be briefly introduced in section 5.2, before validating its application during the evolution in
section 5.4.

5.1 Geometry

A 2D geometry that aims to be representative of a CFV plane is now considered. The geom-
etry in figure 5.1 is constituted by an hexagonal lattice: 13 rings, with reflective boundary
conditions applied on the external one. As a consequence of this boundary conditions, a
major hypothesis, which helps to simplify the calculations, is made: a perfect reflector is
supposed to surround the core.
The hexagons represent homogenized assemblies, equal, concerning the geometry, to the ones
observed in the previous chapter. Different kinds of assemblies are taken into account to sim-
ulate the different materials and the heterogeneities present in the CFV. In fact, two different
fissile materials are used:

• C1 : MOX fuel with higher Plutonium weight fraction (21%)

• C2: MOX fuel with lower Plutonium weight fraction (7%)

A fertile material is also considered:

• FCAI : UOX fuel with depleted uranium (0.2%)

In figure 5.1, it is possible to observe the regions which occupies each materials:

• the 3 external rings contain FCAI.

• the following 3 rings contain C2. The outer ring, in contact with the fertile material,
has been distinguished.
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Figure 5.1 Core Plane Geometry

• the inner region contains C1.

• the central assembly and three of the second ring (30◦, 150◦, 270◦) contain FCAI. The
fissile region containing C1 in contact with these assemblies has been distinguished.

It is important to highlight the fact that this plane does not belong to the CFV design
project (figure 1.3 and 1.4). This geometrical configuration has been designed for this partic-
ular application in order to have a simplified super-critical geometry. In fact, no CFV plane
is super-critical. The third dimension, as already discussed in chapter 1, is of major impor-
tance to make the reactor critical and respect safety requirements. Consequently, neutron
leakage is more important throughout the axial dimension than the radial one. This justifies
the assumption of an external perfect reflector. The low neutron leakage throughout radial
dimension justifies another major assumption: all lattice calculations used to condense the
cross sections have been performed without applying a leakage model. This last assumption
is related to a technical problem encountered by the author at the moment of the calcula-
tions: the leakage models coded in APOLLO3 had not been optimized yet to allow depletion
calculations with a large number of isotopes in a reasonable time.
Once described the geometry and presented all the assumptions, it is time to describe the
depletion geometry. Before this, however, the spatial mesh used to perform MINARET cal-
culations is worth being illustrated. After a convergence analysis, it has been decided to
divide each hexagon in 6. The reactivity difference with a case where 12 triangles have been
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Figure 5.2 Spatial Mesh and Depletion geometry

used is limited to 0.4 pcm. This spatial mesh, depicted in figure 5.2, has also been used as
depletion geometry. 547 hexagonal assemblies are presented with 3282 depletion regions.

5.2 Cross Sections

Before starting to present the results, few words must be written concerning the condensed
cross sections used in these core calculations. In section 5.3, 6 materials will be used:

• FCAI_C2 : contained in the outer fertile region.

• C2 : contained in the C2 fissile region in contact with the fertile one. Lattice calcu-
lations for energy condensation are similar to the ones presented in the chapter which
deals with the fissile-fertile cluster.

• C2_ABS: contained in the inner C2 fissile region. An infinite lattice of this kind of
assembly alone has been considered for energy condensation.

• C1_ABS: contained in the outer C1 fissile region. Lattice calculations analogous to
C2_ABS.

• C1: contained in the inner C1 fissile region. Lattice calculations analogous to C2.
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• FCAI_C1: contained in the central fertile region.

However, this 6 materials calculation scheme appears to be more refined than the industrial
one used to simulate sodium reactors. The actual calculation scheme implies at lattice step:

• infinite lattice calculations for fissile materials (similar to the ones used to condense
the cross sections for C1_ABS and C2_ABS).

• external source calculations for the fertile ones.

The external source is chosen in order to represent the energy integrated neutron flux ob-
tained from the infinite lattice calculations. In the considered case, however, fertile materials
have been evaluated, at lattice step, close to a fissile region in order to have a sustain flux.
For the time being, in fact, APOLLO3 does not solve external source problems. Section
5.4 is the occasion to analyze the validity of such calculation scheme during the evolution.
Consequently, 4 materials will be used:

• FCAI_C2 : contained in the outer fertile region.

• C2_ABS: contained in the C2 fissile region.

• C1_ABS: contained in the C1 fissile region.

• FCAI_C1: contained in the inner fertile region.

The results will be compared to the MICRO SIGMA EVOLVING model with 6 materials,
that will be considered the reference calculation for the next sections.

5.3 Results: 6 Materials

The multiplication factor at time zero is equal to 1.40728 . The flux distribution is presented
in figure 5.3. The outer C1 fissile region presents the flux peak, whereas the lowest value
of the flux is, obviously, in the external ring of the lattice. The peak is 340 higher than
the lowest value. A depression of the flux is present in the inner fertile region. The flux is
normalized to a total power of 10 MW/cm and after 1440 days a reactivity loss equal to 6567
pcm is observed. The ratio between the flux peak and its lowest value is reduced to 197. It
is possible to observe the flux distribution at the final time step in figure 5.4.
Of course, a change in isotope concentrations occurs. While the fertile regions gain reactivity
due to the production of actinides, the fissile region loses reactivity due to the creation of
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Figure 5.3 Intial time flux distribution

Figure 5.4 Flux distribution at 1440 days
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Figure 5.5 Tc99 concentration map at 1440 days

Figure 5.6 Pd105 concentration map at 1440 days
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fission products and to the consumption of fissile materials. This creation follows the flux
distribution as it is possible to see in figure 5.5 and 5.6 for Tc99 and Pd105.
At 1440 days, for Tc99, the ratio between the highest concentration and the lowest one is
equal to 2201 and the average concentration of the inner fertile region is equal to 0.25 the
maximum value. For Pd105, the ratio between the highest concentration value and the lowest
one is equal to 12665 and the average concentration of the inner fertile region is equal to
0.20 the maximum value. In table 5.1 other analogous data are presented. The last line
of this table shows that the three models are able to predict the flux distribution and its
gradient after 1440 days. The macro depletion model, however, does not seem accurate to
estimate the fission product distribution. Fission products are highly underestimated in the
outer fertile region (-83.54% for Tc99). This shows that the macro depletion model is not
capable to follow the core evolution. At the same time, it is possible to note that U235
and U238 are correctly interpolated (with a 3% maximum difference), revealing a major
coding effort to optimize the interpolation rule that describes the variations of these two
isotopes. This optimization seems to lack for the fission products and for the Pu239, which is
underestimated in the outer fertile region by almost 90%. In the fertile external ring, fission
products are underestimated, as well as Pu239 conversion. This leads to a flux distribution
that is higher in the inner regions and lower in the outer ones, whose importance in the
neutron balance is smaller. As a consequence, this particular flux distribution results in a
less important reactivity loss (+516 pcm with respect to the reference case). Comparing the
MACRO multiplication factor with the reference, the reactivity difference linearly increases
(figure 5.7).
On the contrary, the MICRO SIGMA ZERO depletion model seems accurate to predict not
only the flux distribution but also the concentrations. For the isotopes treated in table 5.1
the concentration difference does not exceed 0.3%. Observing the average concentration of

Table 5.1 6 Materials: Comparisons of isotope concentrations and flux at 1440 days

Peak/Lowest Value Ratio Peak/Inner Fertile Averaged Value
EVOLVING ZERO MACRO EVOLVING ZERO MACRO

U238 1.405 1.405 1.406 1.071 1.071 1.071
U235 2.191 2.192 2.224 1.734 1.739 1.734
Pu239 225 225 2177 2.645 2.651 2.679
Pd105 12665 12699 16608 5.238 5.246 5.290
Tc99 2201 2207 13166 4.032 4.043 4.351
Ru101 4540 4553 3450 4.449 4.462 4.589
Rh103 8699 8722 157136 4.766 4.778 5.025
Flux 197 197 199 1.088 1.087 1.090
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Figure 5.7 Comparison of the MACRO and MICRO SIGMA ZERO evolution calculation
with respect to the MICRO SIGMA EVOLVING one.

all the isotopes in the 6 macro-regions containing the 6 materials used, it is possible to
note a maximum difference of +3% for Pu241 in FCAI_C1 and +2% for Nd142 in C1.
These absolute concentration values, however, are small: 4.30 · 1017 atoms

cm3 for Nd142 and
1.05 · 1018 atoms

cm3 for Pu241. To sum up, the overall reactivity difference, at 1440 days, is
equal to +61 pcm. Because no major concentration differences are observed, and the flux is
correctly evaluated, this difference must be related to the fact that cross sections at time zero
does not exactly estimate reaction rates when a flux shifting occurs. This is the phenomenon
already observed for cell and fissile-fertile cluster geometry.
It is important to note here that this phenomenon, which introduces an error, does not
propagate, or reach an higher value, in a core 2D geometry. The reactivity difference remains
smaller than 1% of the overall reactivity loss.

5.3.1 Burn-up parametrization of the cross section libraries

It has been shown that a reactivity difference equal to +61 pcm arises if time zero cross section
libraries are used. The reference calculation, in this case, is a MICRO SIGMA EVOLVING
model which uses cross section libraries with 34 burn-up tabulation points. It is interesting
to observe if this burn-up parametrization can be reduced, as already done in the cell and
cluster geometry cases. Lattice calculations are performed in order to create 2 point cross
section libraries. A time interval covering from 0 to 1440 days is used. A constant integration
scheme for the reaction rates is applied in order to avoid negative values and the convergence
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test is not accomplished so that the time interval is not divided by 2.
The results are shown in figure 5.8. The difference between the 2 point model and the
reference one is limited to +4 pcm at the end of the calculation. It is a remarkable result
which justifies doubling the calculation time and memory storage.

5.4 Results: 4 Materials

The multiplication factor at time zero is equal to 1.40694 and this value is 17 pcm smaller
than the one presented in the previous section. It is obtained using the same condensed cross
sections for the couple of materials C1 , C1_ABS and C2 , C2_ABS. These cross sections
come from the condensation of an infinite fissile assembly lattice calculation. Whereas in the
previous section the cross sections have been condensed for the fissile regions closer to the
fertile ones accounting for the presence of the latter, in this section all the cross sections for
the fissile regions are condensed without taking into account the nearby assemblies. This
approximation, of course, introduces an error. In this case, this error is equal to 17 pcm and
it is acceptable. But how does it change during the evolution? Does it increase? Does it
diminish?
In figure 5.9, it is possible to observe that, applying the MICRO SIGMA EVOLVING de-
pletion model (using cross section libraries with 34 burn-up points), this error diminishes.
At 1440 days, it is equal to -11 pcm. This decrease is easily explained by the fact that,
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during the evolution, the flux distribution tends to flatten, reducing the heterogeneities. If
this occurs, the fissile assemblies are less influenced by the surrounding ones.
Concerning the MICRO SIGMA ZERO depletion model, at 1440 days, the reactivity differ-
ence is equal to +45 pcm. In figure 5.9, it is possible to observe the drift that the reactivity
difference undergoes from the initial to final step: 62 pcm, almost the same value observed
in the previous section. This shows that, even in this case, the same phenomenon presented
before occurs. It also propagates in the same way throughout the 2D core geometry. At 290
days, a compensation occurs almost eliminating the reactivity difference.
In table 5.2, it is possible to see that no major error is introduced by the depletion models

Table 5.2 4 Materials: Comparisons of isotope concentrations and flux at 1440 days

Peak/Lowest Value Ratio Peak/Inner Fertile Averaged Value
EVOLVING ZERO EVOLVING EVOLVING ZERO EVOLVING

ABS ABS ABS ABS
U238 1.405 1.405 1.405 1.071 1.071 1.071
U235 2.191 2.192 2.190 1.734 1.735 1.731
Pu239 225 225 225 2.645 2.656 2.649
Pd105 12665 12698 12673 5.238 5.272 5.258
Tc99 2201 2206 2202 4.032 4.062 4.047
Ru101 4540 4552 4542 4.449 4.482 4.465
Rh103 8699 8721 8703 4.766 4.801 4.784
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in the estimation of the concentration ratio. Focusing, now, on the average concentrations
for the 6 macro-regions defined for the reference model, for the MICRO SIGMA ZERO the
maximum concentration difference is -2.58% for Np237 in the inner fertile region (absolute
value: 1.68 · 1018 atoms

cm3 ). It is possible to observe that this is 3 order of magnitude smaller
than the one for the U238 concentration.
Concerning the MICRO SIGMA EVOLVING depletion model, the maximum concentration
difference is observed, even in this case, in the inner fertile region: Pu241 presents a difference
equal to -1.06% (absolute value: 1.05 · 1018 atoms

cm3 ).

5.5 Conclusions

In this chapter, a 2D core plane geometry has been investigated. Approximation and hypoth-
esis have been introduced in order to have an idea of the behaviour of the MICRO SIGMA
ZERO model in a core configuration.
In section 5.3, it has been shown that this model leads to a reactivity difference equal to
+61 pcm. This value is coherent with the ones observed in the previous chapters. A correct
parametrization of the burn-up tabulation points in the cross section libraries can reduce
the difference to +4 pcm, only by doubling the calculation time with respect to the MICRO
SIGMA ZERO model. This remarkable result justifies the use of burn-up parameterized
cross section libraries in core calculations.
Another result that is worth discussing is the drift in the reactivity difference shown by the
MACRO depletion model. This model is not accurate enough for core calculations where
major heterogeneities are present.
In addition, in section 5.4, the importance of the surrounding materials in the fissile cross
section condensation has been studied. Four cross section libraries have been used instead
of six. Fissile assemblies have been considered in an infinite lattice and the presence of sur-
rounding fertile materials have been neglected in the condensation. This leads to a maximum
reactivity difference of -20 pcm for the 34 point MICRO SIGMA EVOLVING model. The
drift of the MICRO SIGMA ZERO is equal to +62 pcm. This value is coherent with the one
previously observed.
A study on the burn-up parametrization has not been performed in this case. It can be
concluded, nevertheless, that the cross section condensation of the fissile materials is not
strongly affected by the surrounding assemblies. This assumption can, theoretically, reduce
the number of cross section libraries used in full core calculations, even if more representative
3D geometry must be investigated.
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CHAPTER 6 CONCLUSION

The aim of this project was the validation of a depletion model. This validation has been
performed on three different 2D geometries: an elementary cell, a fissile-fertile cluster and a
core plane.

The model to validate is the one usually used by the ECCO/ERANOS SFR calculation
scheme. In this work, it has been called MICRO SIGMA ZERO. Core depletion calculations
are performed using time zero microscopic cross sections. It has been shown that this model
presents a reactivity difference that is of the order of 100 pcm if no leakage model is applied.
The presence of leakage can double the difference, as shown for the elementary cell. However,
the reactivity difference is maintained below 2% of the overall reactivity loss.

This model makes the assumption that microscopic cross sections do not vary during the
evolution and fissile material change. This assumption is re-discussed in this occasion.
This depletion model is, in fact, compared with two depletion models currently used in
APOLLO2/CRONOS2 thermal reactor calculations: the macroscopic depletion model (here
called MACRO) and the micro-depletion model which uses “evolving” microscopic cross sec-
tion libraries (here called MICRO SIGMA EVOLVING). The former uses macroscopic cross
section libraries which are burn-up parametrized. Bateman equations are not solved in core
calculations and proper values of the cross sections are interpolated from the libraries. The
latter uses microscopic cross section libraries which are burn-up parametrized as well. Bate-
man equations are solved in core calculations. This model is the more refined, because it
is able to take into account flux distribution heterogeneities in more complex geometries,
where the macro depletion model fails (see chapter 5). Unfortunately, the MICRO SIGMA
EVOLVING model requires burn-up parametrized microscopic cross section libraries, that
require lattice depletion calculation to be created and memory to be stored.

The reactivity difference observed in the MICRO SIGMA ZERO model is principally due
to a flux shifting towards lower energy for the fissile materials and to higher energy for the
fertile ones. This change modifies the weighting function used for the microscopic cross sec-
tion condensation and introduces a time dependence for 33 energy group core calculations.
Fortunately, this phenomenon has a minor impact and it can be linearly approximated. The
MICRO SIGMA EVOLVING model, then, can be applied using microscopic cross section
libraries parametrized in burn-up with only 2 tabulation points: one at the beginning and
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one at the end of the calculation. Microscopic cross sections are linearly interpolated between
the two points and the results do not differ more than a few pcm in comparison to the case
where 34 points have been used to create the libraries.

In conclusion, the MICRO SIGMA ZERO model has not been validated. Instead, a MICRO
SIGMA EVOLVING model with two burn-up tabulation points in the microscopic cross sec-
tion libraries is preferred. An higher accuracy of the results is reached only by doubling the
calculation time at lattice step and the memory storage. Of course, these conclusions are
limited to the cases considered here. Future work must be done to validate the model in
presence of leakage and for 3D geometries. A study of the whole CFV configuration is thus
suggested.
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APPENDIX A Rim Effect

Time zero calculation of a CFV cell (figure 3.1) is performed subdividing the fuel zone in 4
regions. Fuel regions are numbered so that the external is the number 1 and the internal the
number 4. The percentage of the surface of fuel zone covered by each region is 10%, 10%,
30% and 50% for region 1 to 4. This is the actual fuel zone subdivision used to perform
self-shielding calculations in thermal reactors. Region-averaged fluxes φr are compared with
the cell-averaged flux φ̄, using the following formula:

φ̂r = φr − φ̄
φ̄

(A.1)

In table A.1, it is possible to see that the flux distribution is flat. However, because the flux
integrated over the whole energy region is considered, this does not mean that subdividing
the fuel zone in 4 regions does not affect the neutron balance. Flux gradients, in fact, can
be relevant in those energy regions where resonances are present. But this is not the case.
In table A.2, it is possible to observe the behaviour of the flux φgr integrated over the energy
region 1.2-2 keV. This region is representative, because it contains an important resonance
of the U238. The relative differences φ̂gr are shown in the table. It is possible to observe that
the gradient is limited.

Table A.1 Relative differences in integrated flux distribution at time zero

ZONE REGION φ̂r · 104

SODIUM - +1.09
CLADDING - +0.17
VOID - -2.3
FUEL 1 -0.16

2 +0.08
3 +0.12
4 -0.90
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Table A.2 Relative differences in flux distribution in the energy group 1.2-2 keV at time zero

ZONE REGION φ̂gr
SODIUM - +1.26%
CLADDING - +0.66%
VOID - +0.35%
FUEL 1 +0.01%

2 -0.24%
3 -0.65%
4 -1.40%
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APPENDIX B Homogeneous B1 Leakage Model

In order to account for a finite dimension of the lattice grid that contains the reference
geometry the fundamental mode approximation is assumed:

φg(~r, ~Ω) = ϕg(~r, ~Ω)ei ~B·~r (B.1)

The flux φg is decomposed into two terms: the fundamental flux ϕg(~r, ~Ω), which represents
the flux distribution inside the reference geometry composing the grid, and the macroscopic
distribution ei ~B·~r. This distribution contains the buckling, which is a real number, and it is
defined as B2 = ~B · ~B. The buckling adjusts the curvature of the flux distribution φg(~r, ~Ω)
throughout the lattice grid so that keff = 1.
The transport equation to solve becomes:

(
~Ω · ~∇+ Σg(~r) + i~Ω · ~B

)
ϕg(~r, ~Ω) = Qg(~r, ~Ω) (B.2)

The leakage model that will be presented is called homogeneous B1, because the buckling
term B2 is introduced and equation B.2 is solved on an homogeneous geometry with an order
L = 1 of the Legendre polynomial expansion (linearly anisotropic scattering source).
Supposing only one fissile isotope and one secondary neutron fission spectrum to simplify the
notation, for an homogeneous geometry (a geometry where ~r dependency is lost), equation
B.2 becomes:

(
Σg + i~Ω · ~B

)
ϕg(~Ω) = 1

4π
∑
g′

Σ̂g′→g
0 ϕg

′ + 3
4π

∑
g′

Σg′→g
s,1 ~jg

′ · ~Ω (B.3)

where the homogeneous current ~jg is defined as

~jg =
∫

4π
d2Ω ϕg(~Ω)~Ω (B.4)

and
Σ̂g′→g

0 = Σg′→g
s,0 + χg

keff
νΣg′

f (B.5)

The leakage model is composed of two equations. The first is obtained by integrating B.3
over 4π, while the second is obtained by multiplying equation B.3 by a weight function
w(~Ω) = (Σg + i ~B · ~Ω)−1 before integrating it over 4π. The weight function aims to eliminate
the directional dependence of the homogeneous current ~jg.
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The first equation becomes:

Σgϕg + i~jg · ~B =
∑
g′

Σ̂g′→g
0 ϕg

′ (B.6)

while the second:

ϕg = α[B,Σg]
∑
g′

Σ̂g′→g
0 ϕg

′ − 3i
∑
g′

Σg′→g
s,1 ~jg

′ · ¯̄β[B,Σg] · ~B (B.7)

where α[B,Σg] is defined as

α[B,Σg] =



1
B

tan−1
(
B

Σg

)
if B2 > 0

1
Σg
− B2

3(Σg)3 + B4

5(Σg)5 −
B6

7(Σg)7 + ... if B2 ∼= 0

1
2Im{B} ln

(
Σg + Im{B}
Σg − Im{B}

)
if B2 < 0

(B.8)

and
¯̄β[B,Σg] = 1

B2 (1− α[B,Σg]Σg) ¯̄I (B.9)

¯̄I is the identity matrix and Im{B} is the imaginary component of B in the case a subcritical
medium is considered.
The directional dependence of the homogeneous current is removed introducing:

jg =
~jg · ~B
B

(B.10)

The leakage coefficient is then defined as:

Dg
B = i

B

jg

ϕg
(B.11)

Introducing the quantities previously defined, the new set of B1 equations becomes:

[
Σg +Dg

BB
2
]
ϕg =

∑
g′

Σ̂g′→g
0 ϕg

′

Dg
B = 1

3γ[B,Σg]

1 + 3
∑
g′

Σg′→g
s,1 Dg′

B

ϕg
′

ϕg

 (B.12)

with
γ[B,Σg] = B2

3Σg

α[B,Σg]
(1− α[B,Σg]Σg) (B.13)
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The leakage rate Lg is naturally defined as:

Lg = Dg
BB

2ϕg (B.14)

This term is then added to the heterogeneous transport equation:

(
~Ω · ~∇+ Σg(~r) +Dg

BB
2
)
ϕg(~r, ~Ω) = Qg(~r, ~Ω) (B.15)

To sum up, when the critical buckling is searched (i.e. B1 is adjusted so that keff = 1), the
homogeneous B1 leakage model works in this way:

1. A first transport calculation in heterogeneous geometry and without leakage is per-
formed in order to evaluate a flux distribution that will be used to homogenize the
quantities of interest (ϕg,Σg,...)

2. The set of B1 equations (B.12) is solved imposing keff = 1 to find the leakage rate Lg

3. Lg is considered in equation B.15. A new flux distribution and a new multiplication
factor are evaluated.

4. If keff 6= 1, the new flux distribution is used for the homogenization of the quantities
of interest and the procedure restarts from point 2.

Concerning the solution of the equation B.15, the leakage term is treated in three different
ways:

• Dg
BB

2 is added to the macroscopic total cross section Σg

• Dg
BB

2 is subtracted from the within-group scattering cross section Σg→g
s,0

• Qg(~r, ~Ω) is multiplied by a non-leakage probability

P g
NL = 1− Dg

BB
2

Σg +Dg
BB

2 (B.16)

Currently, the homogeneous B1 leakage model is extensively used to account for leakage,
even if the homogenization procedure eliminates the heterogeneities inside the geometry. An
overall leakage term is evaluated and no preferential leakage direction is considered. These
assumptions seem reasonable for PWR in nominal conditions but, if a loss of coolant ac-
cident (LOCA) or a SFR are considered, streaming effects occur in the regions where the
moderator is absent or where the sodium is present. These effects require an heterogeneous
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representation of the leakage.
In this work, heterogeneous leakage and streaming effect have not been considered. If it is
necessary to consider them, the heterogeneous B1 leakage model can be applied. If simplify-
ing approximations are made, the streaming effect can be considered isotropic [25]. However,
in APOLLO3, anisotropic streaming effects can be modelled since the TDT-MOC solver
implements a rigorous technique to solve the transport equation in fundamental mode ap-
proximation and in the case of geometries with central symmetry [42]. The angular flux
evaluated with this technique has been proved a satisfying weighting function for the partial,
total and transfer cross section condensation [43].
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APPENDIX C CFV Cell Infinite Multiplication Factor

TRIPOLI4 APOLLO3 ECCO
1 SPECTRUM 4 SPECTRA

Time [days] kT 4
inf σ k

AP 3/1
inf ∆ρ [pcm] k

AP 3/4
inf ∆ρ [pcm] kECCO

inf ∆ρ [pcm]
0 1.54648 29 1.54580 -28 1.54678 12 1.54643 -2
1 1.54584 26 1.54540 -19 1.54637 22 1.54603 8
2 1.54611 29 1.54505 -44 1.54602 -4 1.54568 -18
3 1.54500 28 1.54474 -11 1.54572 30 1.54537 15
5 1.54507 29 1.54421 -36 1.54519 5 1.54484 -9
7 1.54417 29 1.54375 -18 1.54473 23 1.54438 9
10 1.54358 29 1.54313 -19 1.54411 22 1.54376 8
15 1.54308 30 1.54217 -38 1.54315 3 1.54280 -12
20 1.54153 29 1.54124 -12 1.54222 29 1.54186 14
25 1.54126 29 1.54031 -40 1.54129 1 1.54093 -14
30 1.53992 27 1.53938 -22 1.54036 19 1.54000 4
35 1.53892 28 1.53846 -20 1.53943 22 1.53907 6
40 1.53817 26 1.53753 -27 1.53851 14 1.53814 -1
50 1.53652 29 1.53568 -36 1.53665 6 1.53628 -10
60 1.53437 29 1.53383 -23 1.53480 18 1.53442 2
80 1.53051 26 1.53014 -16 1.53111 26 1.53072 9
100 1.52705 27 1.52646 -25 1.52743 16 1.52703 -1
120 1.52356 29 1.52280 -33 1.52377 9 1.52336 -9
140 1.51984 28 1.51915 -30 1.52012 12 1.51970 -6
190 1.51077 28 1.51010 -29 1.51106 13 1.51063 -6
240 1.50137 26 1.50114 -10 1.50210 33 1.50166 13
290 1.49299 27 1.49228 -32 1.49324 11 1.49279 -9
340 1.48429 26 1.48352 -35 1.48449 9 1.48402 -12
440 1.46692 25 1.46633 -28 1.46728 17 1.46685 -3
540 1.45061 25 1.44954 -51 1.45049 -6 1.45007 -26
640 1.43386 26 1.43316 -34 1.43410 12 1.43370 -8
740 1.41762 25 1.41719 -21 1.41812 25 1.41772 5
840 1.40245 25 1.40161 -42 1.40254 5 1.40214 -16
940 1.38753 25 1.38643 -57 1.38734 -10 1.38694 -31
1040 1.37203 25 1.37162 -22 1.37253 27 1.37212 5
1140 1.35814 26 1.35719 -51 1.35808 -3 1.35767 -25
1240 1.34389 22 1.34312 -43 1.34400 6 1.34357 -17
1340 1.33014 22 1.32939 -42 1.33027 7 1.32982 -18
1440 1.31741 25 1.31600 -81 1.31687 -31 1.31641 -58
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APPENDIX D CFV Cell Isotope Concentrations

TRIPOLI4 APOLLO3 ECCO
1 SPECTRUM 4 SPECTRA

CT4
1440 σ C

AP3/1
1440 [%] C

AP3/4
1440 [%] CECCO1440 [%]

ACTINIDES
U238 1.44E-002 0.05% 1.44E-002 0.02% 1.44E-02 0.02% 1.44E-002 0.02%
PU240 1.34E-003 0.10% 1.34E-003 -0.10% 1.34E-03 -0.12% 1.34E-003 -0.16%
PU239 2.30E-003 0.10% 2.30E-003 0.00% 2.30E-03 0.00% 2.30E-003 -0.06%
AM243 4.70E-005 0.37% 4.72E-005 0.34% 4.71E-05 0.25% 4.72E-005 0.29%
AM241 6.66E-005 0.11% 6.66E-005 0.05% 6.66E-05 0.09% 6.64E-005 -0.21%
PU242 3.54E-004 0.07% 3.54E-004 -0.13% 3.54E-04 -0.14% 3.54E-004 -0.18%
CM244 1.22E-005 0.79% 1.24E-005 1.91% 1.24E-05 1.72% 1.22E-005 0.12%
NP237 8.36E-006 3.92% 8.20E-006 -1.91% 8.46E-06 1.14% 8.19E-006 -2.10%
AM242M 3.21E-006 0.23% 3.17E-006 -1.11% 3.17E-06 -1.14% 3.68E-006 14.86%
NP239 3.83E-006 0.96% 3.85E-006 0.66% 3.85E-06 0.56% 3.82E-006 -0.13%
CM242 5.22E-006 0.43% 5.22E-006 -0.01% 5.22E-06 -0.07% 5.13E-006 -1.63%
CM245 1.02E-006 1.17% 1.04E-006 1.73% 1.03E-06 1.45% 1.02E-006 -0.05%
U234 2.89E-006 0.22% 2.88E-006 -0.11% 2.89E-06 -0.06% 2.88E-006 -0.17%
U236 4.34E-006 0.28% 4.34E-006 -0.01% 4.33E-06 -0.08% 4.34E-006 -0.03%
CM243 4.01E-007 0.69% 4.01E-007 -0.03% 4.00E-07 -0.18% 3.94E-007 -1.75%
U235 1.39E-005 0.36% 1.39E-005 0.12% 1.39E-05 0.19% 1.39E-005 0.11%
PU238 8.98E-005 0.17% 8.97E-005 -0.20% 8.97E-05 -0.11% 8.94E-005 -0.46%
PU241 2.33E-004 0.17% 2.33E-004 -0.04% 2.33E-04 -0.05% 2.33E-004 -0.03%

FISSION PRODUCTS
PD105 1.21E-004 0.31% 1.21E-004 -0.06% 1.21E-04 -0.06% 1.21E-004 -0.26%
RU101 1.52E-004 0.32% 1.51E-004 -0.07% 1.51E-04 -0.06% 1.52E-004 0.43%
RH103 1.47E-004 0.33% 1.46E-004 -0.11% 1.46E-04 -0.11% 1.46E-004 -0.35%
TC99 1.32E-004 0.32% 1.32E-004 -0.08% 1.32E-04 -0.06% 1.32E-004 -0.52%
PD107 7.39E-005 0.30% 7.38E-005 -0.08% 7.38E-05 -0.09% 7.39E-005 0.03%
CS133 1.66E-004 0.33% 1.66E-004 -0.12% 1.66E-04 -0.11% 1.66E-004 -0.01%
SM149 2.65E-005 0.33% 2.65E-005 -0.17% 2.65E-05 -0.13% 2.66E-005 0.15%
MO97 1.24E-004 0.33% 1.24E-004 -0.09% 1.24E-04 -0.07% 1.24E-004 -0.22%
SM151 1.39E-005 0.32% 1.39E-005 -0.03% 1.39E-05 0.01% 1.39E-005 0.42%
ND145 7.62E-005 0.33% 7.61E-005 -0.13% 7.61E-05 -0.11% 7.63E-005 0.08%
CS135 1.85E-004 0.34% 1.85E-004 -0.12% 1.85E-04 -0.12% 1.85E-004 0.10%
MO95 1.02E-004 0.36% 1.02E-004 -0.10% 1.02E-04 -0.08% 1.02E-004 -0.26%
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TRIPOLI4 APOLLO3 ECCO
1 SPECTRUM 4 SPECTRA

CT4
1440 σ C

AP3/1
1440 [%] C

AP3/4
1440 [%] CECCO1440 [%]

ACTINIDES
PM147 2.91E-005 0.21% 2.91E-005 -0.01% 2.91E-05 0.02% 2.91E-005 -0.18%
RU102 1.83E-004 0.37% 1.83E-004 -0.09% 1.83E-04 -0.10% 1.84E-004 0.47%
ND143 1.07E-004 0.34% 1.07E-004 -0.07% 1.07E-04 -0.06% 1.07E-004 -0.10%
AG109 3.38E-005 0.32% 3.38E-005 -0.04% 3.38E-05 -0.07% 3.36E-005 -0.53%
RU104 1.63E-004 0.34% 1.63E-004 -0.10% 1.63E-04 -0.11% 1.64E-004 0.45%
XE131 8.87E-005 0.34% 8.86E-005 -0.08% 8.86E-05 -0.08% 9.36E-005 5.53%
EU153 8.32E-006 0.31% 8.30E-006 -0.26% 8.30E-06 -0.24% 8.34E-006 0.24%
SM147 1.58E-005 0.51% 1.58E-005 -0.10% 1.58E-05 -0.06% 1.58E-005 -0.03%
PD106 8.86E-005 0.52% 8.86E-005 -0.07% 8.86E-05 -0.10% 8.89E-005 0.28%
MO100 1.66E-004 0.34% 1.66E-004 -0.11% 1.66E-04 -0.10% 1.66E-004 -0.08%
MO98 1.47E-004 0.36% 1.47E-004 -0.10% 1.47E-04 -0.09% 1.46E-004 -0.21%
PR141 1.24E-004 0.35% 1.24E-004 -0.11% 1.24E-04 -0.10% 1.23E-004 -0.25%
PD108 6.75E-005 0.42% 6.75E-005 -0.03% 6.74E-05 -0.08% 6.73E-005 -0.20%
ZR93 1.01E-004 0.34% 1.01E-004 -0.14% 1.01E-04 -0.12% 1.03E-004 1.76%
I129 3.13E-005 0.33% 3.12E-005 -0.09% 3.12E-05 -0.11% 3.12E-005 -0.09%
XE132 1.31E-004 0.35% 1.31E-004 -0.09% 1.31E-04 -0.10% 1.31E-004 0.02%
SM152 2.21E-005 0.43% 2.20E-005 -0.13% 2.20E-05 -0.15% 2.21E-005 -0.01%
XE134 1.89E-004 0.34% 1.89E-004 -0.09% 1.89E-04 -0.09% 1.90E-004 0.41%
CD111 9.71E-006 0.32% 9.70E-006 -0.04% 9.70E-06 -0.07% 9.88E-006 1.82%
ND146 7.40E-005 0.37% 7.39E-005 -0.09% 7.39E-05 -0.08% 7.41E-005 0.10%
EU154 2.37E-006 0.65% 2.37E-006 0.27% 2.37E-06 0.21% 2.37E-006 0.14%
ND148 4.53E-005 0.34% 4.52E-005 -0.12% 4.52E-05 -0.10% 4.54E-005 0.17%
I127 1.02E-005 0.32% 1.02E-005 -0.04% 1.02E-05 -0.06% 1.12E-005 9.76%
CE142 1.26E-004 0.34% 1.26E-004 -0.10% 1.26E-04 -0.09% 1.26E-004 -0.18%
ND144 7.48E-005 0.46% 7.47E-005 -0.16% 7.47E-05 -0.15% 7.46E-005 -0.25%
EU155 3.68E-006 0.39% 3.68E-006 -0.03% 3.67E-06 -0.06% 3.69E-006 0.49%
ZR91 6.77E-005 0.35% 6.76E-005 -0.12% 6.76E-05 -0.09% 6.78E-005 0.26%
LA139 1.45E-004 0.35% 1.45E-004 -0.10% 1.45E-04 -0.10% 1.45E-004 -0.32%
CS134 8.40E-006 0.81% 8.42E-006 0.24% 8.41E-06 0.15% 8.41E-006 0.12%
CS137 1.55E-004 0.33% 1.55E-004 -0.09% 1.55E-04 -0.09% 1.55E-004 0.31%
ND150 2.66E-005 0.34% 2.66E-005 -0.10% 2.66E-05 -0.08% 2.67E-005 0.23%
ZR92 8.09E-005 0.35% 8.08E-005 -0.12% 8.08E-05 -0.10% 8.10E-005 0.12%
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TRIPOLI4 APOLLO3 ECCO
1 SPECTRUM 4 SPECTRA

CT4
1440 σ C

AP3/1
1440 [%] C

AP3/4
1440 [%] CECCO

1440 [%]
SM150 9.12E-006 0.86% 9.13E-006 0.07% 9.12E-06 0.01% 9.10E-006 -0.22%
GD157 2.17E-006 0.36% 2.17E-006 0.00% 2.17E-06 -0.01% 2.19E-006 0.62%
RU106 3.73E-005 0.10% 3.73E-005 -0.07% 3.73E-05 -0.09% 3.69E-005 -1.04%
RU103 6.86E-006 0.11% 6.87E-006 0.06% 6.87E-06 0.05% 6.85E-006 -0.21%
ZR94 1.09E-004 0.35% 1.09E-004 -0.08% 1.09E-04 -0.07% 1.07E-004 -1.64%
RU100 1.56E-005 0.76% 1.56E-005 -0.01% 1.56E-05 -0.09% 1.55E-005 -0.64%
PD104 1.63E-005 0.82% 1.63E-005 0.08% 1.63E-05 -0.01% 1.62E-005 -0.49%
SM148 8.13E-006 0.81% 8.12E-006 -0.17% 8.11E-06 -0.23% 8.09E-006 -0.44%
RB85 1.21E-005 0.35% 1.21E-005 -0.07% 1.21E-05 -0.04% 1.26E-005 4.04%
ZR96 1.27E-004 0.35% 1.27E-004 -0.11% 1.27E-04 -0.10% 1.27E-004 -0.04%
CE140 1.40E-004 0.35% 1.39E-004 -0.09% 1.39E-04 -0.08% 1.39E-004 -0.07%
GD155 8.39E-007 0.56% 8.38E-007 -0.17% 8.38E-07 -0.15% 8.27E-007 -1.44%
GD156 3.93E-006 0.47% 3.92E-006 -0.12% 3.92E-06 -0.14% 3.94E-006 0.21%
KR83 7.39E-006 0.33% 7.38E-006 -0.09% 7.38E-06 -0.09% 7.44E-006 0.74%
PD110 1.88E-005 0.34% 1.88E-005 -0.06% 1.88E-05 -0.10% 1.90E-005 1.34%
CD113 3.28E-006 0.36% 3.28E-006 -0.05% 3.28E-06 -0.07% 3.36E-006 2.39%
SM154 6.86E-006 0.34% 6.86E-006 -0.05% 6.86E-06 -0.05% 6.85E-006 -0.15%
NB95 4.17E-006 0.07% 4.17E-006 -0.10% 4.17E-06 -0.10% 4.16E-006 -0.40%
CD112 5.76E-006 0.42% 5.75E-006 -0.04% 5.75E-06 -0.09% 5.86E-006 1.82%
CE144 2.67E-005 0.08% 2.66E-005 -0.10% 2.66E-05 -0.09% 2.66E-005 -0.31%
BR81 2.85E-006 0.33% 2.85E-006 -0.08% 2.85E-06 -0.08% 3.00E-006 5.28%
TE130 6.70E-005 0.35% 6.70E-005 -0.08% 6.70E-05 -0.10% 6.71E-005 0.17%
CE141 4.22E-006 0.09% 4.23E-006 0.08% 4.23E-06 0.09% 4.22E-006 -0.06%
IN115 1.61E-006 0.33% 1.60E-006 -0.05% 1.60E-06 -0.06% 1.82E-006 13.28%
TB159 6.25E-007 0.32% 6.24E-007 -0.06% 6.24E-07 -0.07% 6.16E-007 -1.37%
CD110 4.38E-006 0.77% 4.38E-006 -0.13% 4.37E-06 -0.26% 4.33E-006 -1.14%
Y89 4.71E-005 0.35% 4.70E-005 -0.13% 4.70E-05 -0.09% 4.73E-005 0.51%
BA134 3.89E-006 1.00% 3.90E-006 0.19% 3.89E-06 0.11% 3.90E-006 0.20%
BA138 1.53E-004 0.35% 1.53E-004 -0.09% 1.53E-04 -0.09% 1.53E-004 -0.24%
SR90 5.14E-005 0.33% 5.13E-005 -0.12% 5.13E-05 -0.09% 5.15E-005 0.29%
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APPENDIX E Flux Spectrum Shifting
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Figure E.1 Homogenised lattice flux spectrum comparison between BOC and EOC
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Figure E.2 Fuel lattice flux spectrum comparison between BOC and EOC
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Figure E.3 Relative flux difference between BOC and EOC
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APPENDIX F 33 group energy mesh

Energy Mesh [MeV]
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