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RÉSUMÉ

Les plantes sont généralement flexibles et se déforment significativement lorsqu’elles sont

soumises à un écoulement aérodynamique. Ce changement de forme, qui généralement ré-

duit la trâınée, est appelée reconfiguration. Plusieurs études dans la littérature ont apporté

une compréhension fondamentale de la reconfiguration des plantes en la modélisant comme

une poutre en flexion. Bien que cette approche permette de capturer l’essence de la flèche

bidimensionnelle des plantes, leur flèche tridimensionnelle est ignorée. En effet, en raison de

leur structure fibreuse, les plantes se tordent significativement sous un écoulement, montrant

une reconfiguration tridimensionnelle. De plus, de nombreuses plantes ont une morphologie

chirale, ce qui induit une flèche très complexe. Le présent travail de recherche vise à étudier

l’effet de la torsion et de la chiralité dans la reconfiguration des plantes en combinant expé-

rimentation et modélisation pour comprendre comment une tige élastique se plie et se tord

avec grande amplitude sous le vent. Pour l’étude expérimentale, des tiges composites sont

fabriquées en mousse de polyuréthane et renforcées à l’aide de fibres de nylon qui apportent

un couplage de torsion-flexion à la structure finale. Pour reproduire une structure chirale, les

fibres suivent un patron hélicöıdal le long dans la tige. Afin d’enrichir l’étude expérimentale,

des rubans chiraux en plastique ABS sont aussi conçues. Tous les spécimens sont testés dans

une soufflerie sous différentes conditions d’écoulement. Pour l’étude numérique, la reconfi-

guration tridimensionnelle des tiges et des rubans sera simulée utilisant la théorie de tiges

de Kirchhoff couplée avec une formulation semi-empirique pour introduire les forces aérody-

namiques. Les résultats de ces études montrent que ces structures, fortement anisotropes,

se tordent pour ensuite fléchir selon la direction de moindre rigidité en flexion. De plus, la

reconfiguration tridimensionnelle d’une tige peut être caractérisée par une flexion bidimen-

sionnelle en choisissant le bon ensemble de paramètres adimensionnelles. Il est aussi constaté

que les rubans chiraux font face à un compromis, en fonction la configuration géométrique,

entre la résistance au flambage plus élevé mais aussi le moment de flexion plus élevé à la base.

Finalement, la chiralité rend la flèche de ces structures moins dépendante de la direction de

chargement.
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ABSTRACT

Plants are generally flexible and deform significantly when subjected to flow. This defor-

mation which generally leads to a drag reduction is termed reconfiguration. Fundamental

understanding of this phenomenon has been sought by modeling them as bending beams.

Although bending beams capture the essence of the two-dimensional deformation of plants,

their three-dimensional deformation is ignored. Because of their fibrous structure, plants

twist significantly under fluid loading showing a three-dimensional reconfiguration. More-

over, many plants are found with a chiral morphology which undergo a complex deformation

under loading. The present research aims to model the reconfiguration of plants with an

elastic rod undergoing a large deformation, to study the effect of torsion and chirality in

reconfiguration. In the experimental investigation, composite rods are made of polyurethane

foam and reinforced using nylon fibers which have a bending-torsion coupling. To simulate

a chiral structure, the reinforcing fibers are twisted along the length of the rod. Moreover,

chiral ribbons are made using ABS plastic. All the specimens are tested in a wind tunnel

for a variety of flow and structural properties. The three-dimensional reconfiguration of rods

and ribbons is also modeled numerically using the Kirchhoff theory of rods coupled with a

semi-empirical drag formulation and the blade element theory. It is shown that a rod with

structural anisotropy twists in such a way to bend in its less rigid direction. Moreover, the

three dimensional reconfiguration of a rod can be characterized as a two dimensional bend-

ing by choosing the right set of dimensionless parameters. It is found that chiral ribbons

face a trade-off between higher self-buckling strength but also higher root bending moment.

Moreover, chirality renders the deformation of rods and ribbons less dependent to the loading

direction.
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1

CHAPTER 1 INTRODUCTION

Mechanical engineering structures are typically rigid and do not deform significantly under

loading. In contrast, plants are flexible and deform with large amplitude when subjected

to fluid flow and gravity. The deformation of plants under fluid loading can be very large

leading to structural failure. This phenomenon is generally known as “wind damage” which

has adverse effects on human life. Moreover, mechanical stresses exerted by fluid loading can

permanently alter the structure of plants and change their geometry and growth rate. These

phenomena have motivated numerous studied on the deformation of plants in nature. Many

types of plants have been tested to study their interaction with fluid flow. Furthermore,

fundamental understanding of the deformation of plants in flow has been undertaken by

modeling them as simple structures such as bending beams and plates. This has led to better

understanding the underlying mechanisms of deformation and the drag reduction of plants

in nature.

While simple bending structures cover the essence of the deformation of plants, their twisting

mechanism is ignored. Moreover, many plants have geometrical complexities which cannot

be studied using a simple bending beam. In this research, we simulate the arbitrary large

deformation of plants using an elastic rod model. A rod is a slender beam capable of having

a torsional deformation in addition to the bending deformation. Our goal is to understand

the deformation mechanisms of plants in the presence of torsion. We evaluate the effect of

torsion in the drag scaling of plants as flexible structures. To do this, a mathematical model

for an arbitrary deformation of rods is developed and wind tunnel tests are performed. In the

next section, the motivation behind this study is discussed. This is followed by an exploration

of the existing knowledge in the field. The main questions of the present research are then

precisely defined.

1.1 Motivation

The destructive effects of wind and water flow on plants including windthrow, uprooting and

lodging (see Fig. 1.1a) are a big concern around the world since they have many adverse effects

on human life. Wind damage to trees causes severe environmental changes in forests and

affects the regeneration of trees (Ulanova, 2000). In addition, human injuries, road blockage,

power outage and the reduction of construction materials are examples of problems linked

with windthrow. Lodging can cause an 80 percent reduction in the crop production in addition

to making harvesting more difficult and decreasing the quality of the products (Berry et al.,
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2004).

In recent decades, many approaches have been developed to predict the response of individual

plants or plants in a canopy to flow. In order to evaluate the drag force and the uprooting

strength, it is necessary to consider several parameters such as the plant’s height, diameter

and stiffness as well as soil strength. There exist software packages such as HWIND (Peltola

et al., 1999) and ForestGALES (Gardiner et al., 2000) which can calculate the critical wind

speed or snow loading needed to damage or uproot some types of trees like pine and spruce.

These packages take the geometry of trees in a canopy, spacing between them, wind speed

and material properties to calculate the risk of wind damage and the critical wind speed.

They use a simple mathematical model considering an average wind speed and drag coeffi-

cient, to evaluate the root moment without considering the deformation of trees. Researchers

have also developed mathematical models to predict the risk of lodging of cereals using the

aforementioned parameters (Baker et al., 1998; Berry et al., 2003, 2006). In addition, theories

and mathematical models have been established to study the strategy of plants to withstand

large deformations with an optimized structural mass (Pasini and Mirjalili, 2006; Brulé et al.,

2016) and increase their buckling stability (Speck et al., 1990; Spatz et al., 1990; Burgess and

Pasini, 2004).

The prediction and control of wind damage has made it possible to decrease the occurrence

of tree failure and crop lodging in recent decades by applying proper field management and

genetic or chemical manipulation. For instance, between the 1960s and 1970s, many efforts

were made to alter crops to generate smaller varieties known as dwarf or semi-dwarf which

were more resistant to lodging. As a result, cereal yields have been increased by 0.5 to 1

ton per hectare each decade in many countries in Asia, Europe and North America. These

methods are now used around the world. For example, in France, the United Kingdom and

Germany which are among the top grains producers in the world, these manipulations are

applied to more than 70 percent of the wheat fields (Berry et al., 2004).

Wind damage is intrinsically a fluid-structure interaction problem. The main fluid force acting

on plants is the drag force. In the aforementioned failure risk evaluation models, a constant

drag coefficient is considered to calculate the wind loading on plants. In general, these models

use an empirical value for the drag coefficient which is obtained experimentally. They mainly

focus on limited types of trees and crops and cannot be generalized to all types of plants. In

general, plants have long slender structures e.g. trunks, petioles and stems. In engineering,

beams are long and slender structures therefore we can model plants as elastic beams defor-

ming in flow. This approach is advantageous over testing each species of plants separately

because it is simple and reproducible. Using a beam model, we can fundamentally investigate
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(a) (b)

Figure 1.1 The effect of wind on plants. (a) Lodging of crops caused by severe storm (Tho-
mison, 2011). (b) Permanent change in the shape of a tree due to the wind and gravity as
known as “flag tree” (Geoff, 2009)

the deformation of plants under fluid loading.

Wind can cause permanent changes in the plant shape.“Flag tree” is a graphic example as

shown in Fig. 1.1b. Wind also affects plant growth through what is known as “Thigmomor-

phogenesis” (Niklas, 1998). Environmental conditions such as fluid loading, sunlight direction

or external mechanical stresses such as gravity, lead to the production of chemicals in plants

which alter their growth rate and stiffness. For example, sugar maple trees from open and

windy sites have smaller and more flexible leaves than those from wind protected sites (Nik-

las, 1996). The change in the growth rate under the mechanical perturbation is illustrated

in Fig. 1.2 which shows that radial growth rate increases in the direction of the applied per-

turbation. This means that plants adapt themselves to external loading and their growth

rate increases where the load is applied (Mattheck and Bethge, 1998; Mattheck et al., 2003;

Mattheck, 2006). As another example, Telewski and Jaffe (1986a,b) report an increase in

radial growth rate and a decrease in the flexibility of loblolly pine and fraser fir induced by

mechanical perturbation. This is also observed in aquatic plants. For instance, the rigidity

and consequently the canopy height of eelgrass is strongly affected by the magnitude of water

flow (Abdelrhman, 2007). Moreover, experiments on giant kelp show that species which live

in fast moving water flows have narrower blades with lower drag, preventing structural failure

(Koehl and Alberte, 1988; Johnson and Koehl, 1994).

The interaction between plants and fluid flow is inspiring in engineering. Plants are able

to passively extend their stability envelope and decrease the mechanical loading on their
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structure by being flexible. This can be used to address several problems in mechanical and

aerospace engineering where the interaction between fluid and structure is important. For

instance, to improve the mission adaptability and stability of micro aerial vehicles (MAVs),

extremely flexible rotor blades are considered which undergo a large amplitude of deformation

(Sicard and Sirohi, 2012, 2014, 2016). A wind turbine can be designed to cone passively in

high winds to cope with the excessive wind loading. This means that the turbine blades

can bend downwind around a hinge to create a cone-shaped swept area. This concept was

originally developed to deal with the bending moment caused by the weight of heavy steel

blades. However, modern blades are made of light composites and the concept of coning can be

used to increase their operational wind speed range. Wind turbines are commonly designed for

wind speeds up to 15 ms−1 (Jamieson, 2011). By implementing the passive coning mechanism,

fluid loading on the blades can be reduced in high winds to avoid structural failure (Curran

and Platts, 2006).

Passive adaptive wind turbine blades based on the concept of aeroelastic tailoring are also an

example of adaptation to the flow. These blades are used to bypass extreme loading (Lago

et al., 2013). Aeroelastic tailoring can also be used to build adaptive rear wings for Formula

1 cars. This type of rear wing is able to create high downward forces at low speeds and low

drag force at high speeds (Thuwis et al., 2009). Moreover, it can be applied to flexible wings

to create high lift-to-drag ratio and increased stability (Stanford et al., 2008; Ifju et al., 2002)

and flexible marine propellers for improved performance (Liu and Young, 2009).

The aforementioned applications can be modeled as flexible structures interacting with the

flow. Understanding the underlying mechanisms of deformation of these structures by means

of mathematical modeling can therefore reduce the production cost and increase the reliability

(a) (b)
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Figure 1.2 Demonstration of the effect of mechanical perturbation on the trunk of loblolly
pine. Transverse section of trunk (a) under controlled conditions and (b) under mechanical
stress (Telewski and Jaffe, 1981)
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of design (Lago et al., 2013). The mathematical modeling can also be applied to engineering

applications dealing with slender structures bending and twisting under a loading other than

a fluid force. An example of this case is a soft actuator made of a shape memory alloy which

twists and bends by applying an electric current (Shim et al., 2015). Many of these engineering

components can be modeled as flexible beams and rods deforming under external forces and

torques. Therefore, in this research we aim to develop a generic mathematical framework

capable of modeling the complex deformation of plants and slender structures under external

loading.
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CHAPTER 2 LITERATURE REVIEW

In this section we review the existing knowledge on the experimental and theoretical modeling

of plants and slender structures interacting with the flow.

2.1 Reconfiguration

In contrast to mechanical structures, plants are flexible and deform significantly under fluid

loading. This deformation which usually leads to a drag reduction is termed “reconfiguration”

in the literature (Vogel, 1984, 1989). The drag force D of a rigid bluff body is proportional

to U2 where U is the flow velocity. However, plants are subjected to a drag which is not

proportional to the square of the flow velocity. As suggested by Vogel (1984), the reconfigu-

ration of different natural species may be compared by studying their divergence from the

drag scaling of rigid bluff bodies. To do this, he introduces the Vogel exponent ϑ as the slope

of the logarithmic plot of D/U2 or “speed specific drag” versus the flow velocity. The drag

force on flexible structures is proportional to U2+ϑ :

D ∝ U2+ϑ . (2.1)

The Vogel exponent ϑ quantifies the effect of reconfiguration in the drag velocity relation.

For rigid bluff bodies, ϑ is null since they do not reconfigure. Conversely, for flexible struc-

tures, ϑ is generally negative. The more negative ϑ is the more the drag reduces due to the

reconfiguration.

There are two main mechanisms of reconfiguration although the deformation of natural

flexible structures in the flow is complex. In general, the drag force is proportional to the drag

coefficient and the frontal area therefore decreasing these two parameters, reduces the drag

force. For instance, Fig. 2.1a shows an undeformed tulip tree leaf and Fig. 2.1b shows the leaf

reconfiguring in wind by rolling around itself. This reduces the wind loading by decreasing

the frontal area and by streamlining which is equivalent to the drag coefficient reduction.

Flexible plants use these two mechanisms to reduce the pressure drag, but the effect of each

method on the reduced drag is different depending on the plant. For example, Fig. 2.1c shows

measurements of the drag coefficient and the frontal area for the unpruned crown of black

cottonwood. It illustrates how the drag coefficient and the frontal area decrease with increa-

sing wind speed or increasing magnitude of deformation. In this plot, the drag coefficient is

calculated using the still-air frontal area, therefore it only represents the effect of streamlining
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(Vollsinger et al., 2005).

2.2 Drag Scaling of Natural Structures

Researchers in the fields of biology, botany and forestry, have worked on the deformation

and the drag scaling of plants, terrestrial and aquatic vegetation. They have studied passive

methods which plants employ to cope with the wind and water loading. Observing flexible

structures in nature, they came up with the following question : what is the effect of fluid flow

on plants ? To answer the question, many types of plants, crops, algae, leaves and trees were

tested individually or in communities in wind tunnels, water canals or their natural habitats

to obtain the drag scaling. The results show that the drag scaling of natural flexible structures

is different from the drag scaling of rigid bodies (Vogel, 1984). For instance, Fig. 2.2 shows

the drag scaling of a giant reed, a flexible slender and upright plant, measured by Speck

(2003). Comparison is made with the drag of an equivalent rigid bluff body which follows the

curve of U2. In the figure, the drag force on the flexible giant reed follows the drag force of

the rigid body at low wind speeds but starts to diverge from this scaling on increasing the

flow velocity.

Many types of aquatic plants and algae have flexible structures and reconfigure in water

flow. Giant kelp or mermaid’s bladder as an example, is a kind of kelp which grows in the

cold waters of the American Pacific coast. It has a long stipe which is attached to a float

and blades. Also, a holdfast keeps this plant attached to the substrate as shown in Fig. 2.3.

Observations show that the giant kelp bends in water flow and also clumps its blades. This

reduces its frontal area and makes it more streamlined which decreases the drag force on its

structure (Koehl and Alberte, 1988; Johnson and Koehl, 1994). Because of the gas filled float

in the plant, a buoyancy force acts in addition to inertial and hydrodynamic forces (Koehl,

1977).

In addition to aquatic plants, researchers have studied many types of terrestrial species such

as crops, trees and leaves in wind tunnels or in open sites to obtain their drag scaling and

observe their reconfiguration. In this context, studies have been done on tree crowns (Rudni-

cki et al., 2004; Vollsinger et al., 2005), crops (Sterling et al., 2003) and leaves (Vogel, 1989)

in wind tunnels or their natural setting to understand the effect of the streamlining and the

frontal area reduction on their drag scaling. Researchers have also investigated the dynamical

behavior of plants experimentally for terrestrial (Rodriguez et al., 2012) and aquatic plants

(Abdelrhman, 2007) or theoretically for trees (Saunderson et al., 1999; Spatz et al., 2007)

and grasses (Brüchert et al., 2003; Speck and Spatz, 2004), studying for instance the damped

oscillations of plants. Reconfiguration is found to be a method to make plants stable and to
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Figure 2.1 Main mechanisms of drag reduction and reconfiguration. a) An undeformed tulip
tree leaf and b) the leaf reconfiguring in wind by reduction of the frontal area and the drag
coefficient. b) Measurements on the crown of black cottonwood which show the reduction of
the frontal area and the drag coefficient due to reconfiguration (Vollsinger et al., 2005). The
image of the leaf is adapted from Vogel (1989).

reduce the chance of structural failure due to flutter. For example, edges of the London pla-

netree leaf curl to form a structure similar to a delta wing which can reduce the wind-induced

vibrations and stabilize the leaf. With increasing wind speed, the leaf rolls up and becomes

more stable in different modes of reconfiguration. Figure 2.4 shows the reconfiguration of a

London planetree leaf in the wind tunnel for different wind speeds. In this experiment, the

Reynolds number is in the range of 104 to 105 (Shao et al., 2012).

0
0 4 6 8 10

1

2

2

3

Giant reed

Rigid body

U(ms−1)

D(N)

Figure 2.2 Comparison between the drag scaling of a flexible plant (giant reed) with its
equivalent rigid body. Data is obtained from Speck (2003).
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Figure 2.3 A schematic of giant kelp showing its stipe, clumped blades and the holdfast. The
figure is reproduced from Johnson and Koehl (1994).

2.3 Fundamental Investigations on Reconfiguration

In the preceding sections, studies on the reconfiguration of plants whether aquatic or ter-

restrial were reviewed. These studies mainly deal with trees, algae, leaves and flowers. In

general, plants have greater material and structural complexity in comparison with enginee-

ring structures. They have complex geometries, they are not identical and they are made of

anisotropic materials. Their material properties are also not constant and change with dif-

ferent parameters such as moisture content and weather humidity (Glass and Zelinka, 1999).

It is therefore difficult to gain a fundamental understanding of the underlying mechanisms

of their reconfiguration. To gain this understanding, it is necessary to idealize plants with a

simpler structure ignoring geometrical and material complexities and provide a general model

which can be applied to different species of plants while giving reproducible results. So far

we have seen that plants usually have flexible and slender structures and reconfigure when

subjected to flow. One approach to model this phenomenon is to study simple mechanical

structures with similar behavior to plants such as flexible beams and plates.

2.3.1 Dimensionless Parameters in Reconfiguration

Due to the diversity of specimens and flow conditions, it is essential to use dimensionless

parameters to define the state of the system. The Cauchy number CY is a dimensionless

parameter which is useful in fluid-structure interaction modeling. The Cauchy number repre-
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U

U = 0.7 U = 2 U = 4.8 U = 7
Figure 2.4 Different modes of reconfiguration of the London plane tree leaf in different wind
speeds to reduce the drag force and to make it more stable. The unit of velocity is ms−1.
Images are obtained from Shao et al. (2012).

sents the ratio of the fluid force to the bending rigidity of the flexible body (Chakrabarti,

2002; de Langre, 2008; Gosselin et al., 2010; Gosselin and de Langre, 2011). The Cauchy

number is also called “dimensionless velocity” (Alben et al., 2002, 2004) or “elastohydrody-

namical number” (Schouveiler and Boudaoud, 2006). For bending plates and beams fixed at

one end, the Cauchy number is defined as :

CY = ρU2dL3

2EI
, (2.2)

where d and L are respectively, the width and the length of the beam or plate. In addition,

ρ is the flow density and EI is the bending rigidity.

The reconfiguration number (Gosselin et al., 2010) and similarly the “effective length” (Luhar

and Nepf, 2011) demonstrate the effect of flexibility on the drag force which is exerted on

a flexible body. The reconfiguration number is defined as the ratio of the drag force on the

flexible body to the drag force of an equivalent rigid body with a similar geometry :

R = D
1
2ρU

2CD,rigidA
. (2.3)

The reconfiguration number is a measure of the drag reduction of a flexible structure because

of its flexibility. It is suggested by Gosselin et al. (2010) that the reconfiguration number is

a function of a constant drag coefficient and the Cauchy number. They define the “scaled

Cauchy number” as CYCD ; this makes the reconfiguration number a function of the scaled

Cauchy number only.

Figure 2.5 shows the variation of the reconfiguration number versus the Cauchy number for
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three different plants and a bending fiber in fluid flow. In all cases the reconfiguration number

decreases with increasing Cauchy number. For small Cauchy numbers, the reconfiguration

number is near one which means that the deformation of the structure is small. This regime

is equivalent to a Vogel exponent of zero. By increasing the Cauchy number, the flexible

structure starts to deform therefore its drag scaling diverges from the drag scaling of rigid

bodies. This reduces the reconfiguration number. In the large deformation regime where the

Cauchy number is large, the drag scaling slope reaches a constant Vogel exponent.

2.3.2 Two-Dimensional Reconfiguration

A flexible beam undergoing bending due to flow is a simple academic representation of re-

configuration. For instance, to study two-dimensional reconfiguration of beams, Alben et al.

(2002, 2004) tested glass fibers in a very thin layer of soap film to create a two-dimensional

flow and be able to visualize the flow. In this experiment, a vertical soap film flow was used

with film flow thickness of 1 to 3 µm and flow velocity ranging from 0.5 to 3 ms−1. Thin glass

fibers were then used as flexible beams to study two-dimensional reconfiguration. To theo-

retically model the bending fiber in the soap film flow, the authors coupled Euler-Bernoulli

beam theory with an exact potential flow solution using Helmholtz’s free streamline theory.

The free streamline theory is used in this case to account for the wake behind the fiber. In

the model, a constant pressure, different from the free stream pressure, is considered for the

wake. However they had to introduce an empirical factor to account for the back pressure in

the wake. Figure 2.5 shows the experimental drag measurements for a flexible glass fiber in

dimensionless form. The Vogel exponent is found to be close to zero for small CY meaning

that the glass fiber acts as a rigid body in this regime. The Vogel exponent reaches −2/3 in

the large deformation regime (Alben et al., 2002). As Gosselin et al. (2010) explain in detail,

using dimensional analysis, the Vogel exponent can be predicted for large deformation where

the initial length scale vanishes. This regime is called the asymptotic condition. In theory,

this happens when the flexible structure is fully deformed and aligned with the flow so only

a small fraction of the structure near its support produces pressure drag force. The regime

of large deformation or asymptotic conditions cannot be reached completely in experiments

because of flutter instabilities encountered for high Cauchy numbers. In this regime the initial

length scale of the structure loses its role. For bending plates and beams we thus deal with a

problem which can be defined by the bending rigidity per unit width, flow velocity, density

and the drag force per unit width. According to the Buckingham π theorem (Buckingham,
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Figure 2.5 The variation of the reconfiguration number with the Cauchy number for different
natural species (de Langre, 2008) compared with a fiber bending in flow (Alben et al., 2002).

1914), the following single dimensionless number is sufficient to define the problem :

D

d2/3(EI)1/3ρ2/3U4/3 ,

thus by comparing the power of the flow velocity in this dimensionless number with the

definition of the Vogel exponent we obtain D ∝ U4/3 or equivalently ϑ = −2/3.

Bending plates and cut disks have been modeled theoretically by coupling a semi-empirical

drag formulation and the Euler-Bernoulli beam theory (Gosselin et al., 2010). The theoretical

model was then solved with the shooting method and Runge-Kutta integration along the

beam’s length. It was found that the reconfiguration of an elastic plate deforming in wind

is similar to the bending fiber in soap film flow studied by Alben et al. (2002). Experiments

on bending plates were also done in a wind tunnel with different geometries and material

properties as well as cut disks, all made of transparent covers.

To study flexible aquatic plants, the Euler-Bernoulli beam model and semi-empirical drag

formulation were coupled, this time considering the effect of buoyancy (Luhar and Nepf,

2011, 2016). They showed that buoyancy works against the drag force, therefore it delays the

reconfiguration compared with a bending beam in wind with no buoyancy effect (Gosselin

et al., 2010). It was also found that for a beam bending in the water flow, the Vogel exponent

is equal to −2/3 for large deformations ; the same result was previously obtained for bending

plates in the wind flow (Gosselin et al., 2010), bending fibers in soap film flow (Alben et al.,
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2002) and tapered beams (Lopez et al., 2013).

2.3.3 Three-Dimensional Reconfiguration

Although bending beams and fibers are suitable for modeling the two-dimensional bending

of plants, they cannot be used for all forms of reconfiguration. Plants can also twist under

fluid loading. The “twist-to-bend ratio” (Vogel, 1992; Faisal et al., 2016) is defined as a

dimensionless number denoted by η which is the ratio of the bending rigidity EI to the

torsional rigidity GJ :

η = EI

GJ
, (2.4)

where E is the Young’s modulus, I is the second moment of area or area moment of inertia,

G is the shear modulus and J is the torsional constant. High values of η represent a structure

which has a larger bending rigidity in comparison with the torsional rigidity so it can twist

more easily than it can bend. The Young’s modulus and the shear modulus are material

properties while the second moment of area and the torsional constant are geometrical. For

homogeneous and isotropic materials, the Young’s modulus and the shear modulus are linearly

related ; E = 2G(1+ ν) where ν is the Poisson’s ratio. However, this linear relationship is not

typically applied for plants because their structure is usually inhomogeneous.

Leaves attached to petioles are good examples of twisting structures in nature. For example,

the banana leaf has a coupling between the bending and torsional deformation due to a

petiole with a hollow U-shape cross section. In this case, the torsional rigidity is less than the

bending rigidity giving rise to a twist-to-bend ratio of approximately 70 (Ennos et al., 2000).

This causes the leaf to twist easily under the wind loading and consequently to bend in the

direction with the lower bending rigidity.

Another interesting example of coupling between twisting and bending in nature is the daffodil

flower. The daffodil’s stem holds the flower horizontally and shows a combination of twisting

and bending in reconfiguration. It was observed (Etnier and Vogel, 2000) that the daffodil

stem has a large twist-to-bend ratio (see table 2.1) so the stem tends to twist to face downwind

reducing its drag coefficient as illustrated in Fig. 2.6. The combination of twisting and bending

deformation allows the daffodil flower to reduce the wind loading on its structure.

Large values of the twist-to-bend ratio have been observed in many structures in nature.

Table 2.1 shows a comparison between the twist-to-bend ratios of some natural structures.

In general, structures with a circular or semi-circular sections show a smaller twist-to-bend

ratio compared with other section types because of the ratio of I/J (Pasini and Mirjalili,

2006). For comparison, a homogeneous and isotropic circular section has a twist-to-bend
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Figure 2.6 Comparison between the drag coefficient of a Daffodil flower facing downwind and
upwind. Data has been extracted from Etnier and Vogel (2000).

ratio equal to 1+ν or 1.5 for materials that maintain their volume in deformation. Also for a

metallic circular rod, the twist-to-bend ratio is about 1.3 assuming a Poisson’s ratio of 0.3.

2.3.4 Similarity in Reconfiguration

Figure 2.7a and Fig. 2.7b show the similarity between a palm tree and a poroelastic ball. In

both cases, fluid passes through the bodies in addition to flowing around them. Theoretical

modeling and experiments on a poroelastic ball consisting of multiple flexible filaments (Gos-

selin and de Langre, 2011) shows that in this case, the Vogel exponent varies depending on

the density of filaments on the surface. The Vogel exponent is −2/3 for low surface density.

This shows that in low surface density where filaments are few, each individual filament is

not affected by the surrounding ones and thus acts like a simple bending fiber which leads

to ϑ = −2/3. The Vogel exponent reaches −1 for high surface density which has been found

for coniferous trees (Vogel, 1984; Rudnicki et al., 2004). This is because of an additional

drag reduction mechanism for poroelastic structures which is the reduction of fluid’s effective

velocity as it passes through the structure.

Figure 2.7c and Fig. 2.7d show the resemblance between a tulip tree leaf and a circular flexible

sheet cut along one radius which rolls up in fluid flow. The reconfiguration of a circular flexible

sheet which rolls up in fluid flow was studied by Schouveiler and Boudaoud (2006). In the

theoretical modeling, the bending angle of a circular plastic sheet which rolls up in fluid

flow was found by minimizing its total potential energy due to the elastic bending and fluid

pressure. The fluid pressure on the circular sheet was obtained from an exact solution of the

potential flow since viscous effects are negligible for the range of the Reynolds number in
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Table 2.1 The average of twist-to-bend ratio for some natural structures

Species Geometry η Reference
Cucumber stem semi-octagon 5.4 Vogel (1992)

Tomato stem semi-circle 3.9 Vogel (1992)
Red maple petiole semi-circle 2.8 Vogel (1992)
Sweet gum petiole semi-pentagon 5.1 Vogel (1992)

Banana petiole U-shape 68 Average of data from Ennos et al. (2000)
Sedge stem semi-triangle 65 Average of data from Ennos (1993)

Daffodil stem semi-circular 13.3 Vogel (2007)
Tree trunk semi-circular 7.34 Vogel (2007)

their experiments. Circular plastic sheets with different size and rigidities were also tested in

a water channel. The Vogel exponent was found to be −4/3 in the theoretical model and −1

experimentally.

Table 2.2 shows a comparison between the Vogel exponent of a variety of aquatic plants

(Gaylord et al., 1994), terrestrial ones (Vogel, 1984; de Langre et al., 2012) and simple struc-

tures. This table shows the difference between the reconfiguration of species quantified by

the Vogel exponent. Vogel exponents which are marked with an asterisk * are the theoretical

values for the asymptotic regime of large deformations where the initial length scale is no

longer applicable. Due to instabilities and high level of fluctuations at large deformations, the

theoretical Vogel exponent can sometimes not be reached in experiments. All aforementioned

flexible structures, from a bending fiber to a poroelastic ball, have different geometries, ma-

terials and flow conditions. The goal of the fundamental investigation of flexible structures

with similar reconfiguring behavior to plants, is characterizing all these systems similarly. The

review of the reconfiguration of some mechanical structures in addition to some species of

plants, showed that they have similar reconfiguration characteristics when subjected to flow.

For instance, plants with mainly two-dimensional reconfiguration, have a Vogel exponent of

around -0.67 which is similar to that of bending beams and plates. As mentioned before, des-

pite the differences between plants and simple engineering structures, similar trends are found

when their reconfiguration is characterized by the reconfiguration number and the Cauchy

number. This similarity is presented in Fig. 2.8 for different flexible structures subjected to

fluid flow. In this logarithmic plot, the experimental reconfiguration number for several idea-

lized structures as well as the mathematical model for a bending beam is plotted as a function

of the Cauchy number. For all cases, R is approximately one for small Cauchy numbers. This

1. In soap film flow
2. In water flow
3. With flat blades
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(a) (b) (c) (d)

Figure 2.7 Similarity of simple mechanical structures with natural ones by comparing a)
a palm tree with b) a poroelastic ball, and c) a tulip tree leaf with d) an elastic circular
sheet which rolls up. The image of the palm tree is taken by Verdier (2003). The image
of the poroelastic ball is extracted from Gosselin and de Langre (2011) and the others are
reproduced from Schouveiler and Boudaoud (2006); Vogel (1989).

Table 2.2 The Vogel exponent for some flexible structures, aquatic and terrestrial organisms

Organism or structure ϑ Condition Reference
Rigid bluff body 0 In fluid flow -
Bending plate −2/3 * U = 5 ∼ 30 ms−1 Gosselin et al. (2010)
Bending fiber −2/3 * U = 0.3 ∼ 3 ms−1 1 Alben et al. (2002)

Rolling up circular plate −4/3 * U = 0 ∼ 1 ms−1 2 Schouveiler and Boudaoud (2006)
Daffodil flower −0.6 U = 2 ∼ 16 ms−1 de Langre et al. (2012)

Poplar with leaves −0.71 U = 2 ∼ 12 ms−1 de Langre et al. (2012)
Giant kelp −1.11 U = 1.3 ∼ 2 ms−1 3 Gaylord et al. (1994)

Feather boa kelp −0.49 U = 0.5 ∼ 3 ms−1 Gaylord et al. (1994)
Loblolly pine −1.13 U = 8 ∼ 19 ms−1 Vogel (1984)
Tulip tree leaf −1.18 U = 10 ∼ 19 ms−1 Vogel (1984)

means that the amplitude of deformation is very small therefore a flexible structure acts as a

rigid structure. Between CY ≈ 1 and 10, depending on the case, the reconfiguration number

starts to diverge from unity and decrease with increasing Cauchy number. This shows that

the reconfiguration of these structures is fundamentally similar.

2.4 Chirality in Natural Structures

Many aquatic and terrestrial plants possess a slender structure with a chiral morphology. In

mechanical engineering, a chiral structure is a structure which is twisted around its centerline

in its natural state. Chirality is also found in organic structures such as DNA (Arbona et al.,

2012; Zhao et al., 2015), synthesized ones such as polymers (Ye et al., 2010) and nanoma-

terials (Chen et al., 2005; Ji et al., 2012; Zhao et al., 2014). For example, Fig. 2.9a shows a
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Figure 2.8 Similar trend of experimental results of different specimens subjected to flow and
characterized by the reconfiguration number and the scaled Cauchy number for cut disks △
and a bending rectangular plate ◯ (Gosselin et al., 2010), poroelastic ball × (Gosselin and
de Langre, 2011), circular flexible plate which rolls up in flow ◇ (Schouveiler and Boudaoud,
2006) and bending fibers ◻ (Alben et al., 2004). The line represents the mathematical model
for the two-dimensional reconfiguration of a plate in flow (Gosselin et al., 2010). Images are
extracted from the mentioned references.

carbon nanotube rope and Fig. 2.9b shows a cattail leaf both with a chiral morphology. In

nature, it seems that upright plants with chirality are less vulnerable to wind loading and

buckling (Schulgasser and Witztum, 2004; Zhao et al., 2015; Rowlatt and Morshead, 1992).

For instance, Schulgasser and Witztum (2004) show that large twist angles in flat upright

leaves can lead to approximately 25 percent increase in the critical buckling length under

self-weight loading. Thus, it is concluded that chirality helps upright plants to grow higher

than untwisted ones without undergoing structural failure under their own weight. This may

be evidence of adaptation of this type of plants to their environment through a long evolution

process. The evolutionary aspect of chirality in biological structures has been discussed in

many studies. For instance, it is of great interest to know whether the chiral morphology of

DNA was a requirement or an outcome of evolution (Lunine et al., 1999) since the chiral

morphology of DNA leads to a minimum free energy (Ji et al., 2012).
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(a)

(b)

2µm

Figure 2.9 a) a carbon nanotube rope with a chiral morphology (Zhao et al., 2014) and b) a
chiral cattail leaf .

Chiral structures have been studied fundamentally using different mathematical models. For

example, the Timoshenko beam model has been used to study the dynamics of twisted beams

(Chen et al., 2013) and the static stability of chiral upright plants (Zhao et al., 2015). In the

latter, the authors use a linear Timoshenko beam theory with a twisted section to model

aquatic macrophytes assuming that the beam is linearly elastic with homogeneous and iso-

tropic properties. In their buckling analysis, they assume a distributed compressive load along

the length of the beam to mimic its weight plus a compressive point force at the free end to

simulate a head organ. For the aerodynamic loading, they assume a distributed force which is

simply proportional to the projected area of an undeformed beam. Importantly, they assume

small deformations. Within their linear framework, they conclude that chirality improves the

stability and resistance of upright emergent leaves against high winds and buckling.

To consider large three-dimensional deformations, Kirchhoff theory of rods has been used

in several studies related to chirality such as in the behavior of tendrils of climbing plants

(Goriely and Tabor, 1998), dynamics of helical strips (Goriely and Shipman, 2000), nanos-

prings (da Fonseca and Galvão, 2004), formation of chiral nanomaterials (Wang et al., 2012)

and chiral carbon nanotube ropes (Zhao et al., 2014). For example, (da Fonseca and Galvão,

2004) use a classic Kirchhoff rod with intrinsic twist and curvature to study the structural

properties of nanosprings. They evaluate the Hooke’s constant of the nanosprings directly

from their twist and curvature. Wang et al. (2012) also use a modified Kirchhoff model to

take into account the effect of surface stresses. They state that the morphology of quasi-

one-dimensional nanotubes is affected by the the surface stress. Despite the vast use of the

Kirchhoff rod model, it is not applicable for the problems which involve elongation. To take

elongation into account, Wang et al. (2014) develop a Cosserat rod model to study the growth

of towel gourd tendrils.
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2.5 Theoretical Framework for Modeling Plants

As noted earlier, plants can be modeled as slender flexible structures which bend in fluid flow.

However, plants twist and bend simultaneously under fluid loading and their deformation can

be very large. Therefore, an appropriate model is necessary to simulate large deformations

of slender structures subjected to flow. Euler-Bernoulli beam is a mathematical model which

has been used widely to model the deformation of plants (Alben et al., 2002; Gosselin et al.,

2010; Luhar and Nepf, 2011). There is also the Timoshenko beam model to include the shear

deformation which is ignored in the Euler-Bernoulli beam. However, for structures that are

slender enough, the Euler-Bernoulli beam is generally accurate.

Although the Euler-Bernoulli beam model is simple and convenient, it does not take into

account three-dimensional deformation. Therefore, in the present study, we consider the Kir-

chhoff model of elastic rods. An elastic rod is a three-dimensional slender structure where

its length (L) is much larger than the other two dimensions which make its cross section.

Kirchhoff’s theory of rods is a classic theory considering finite displacements while neglecting

the shear deformation and assuming small strains (Dill, 1992). In the theory, the rod is re-

presented by an “inextensible” curve in three-dimensional space. As detailed by Audoly and

Pomeau (2010), to track the twist of the centerline, a “material frame” is defined as a moving

coordinate system (ex,ey,ez) attached to the centerline (Fig. 2.10). Based on the Kirchhoff

rod model, it is assumed that ez is tangent to the centerline and remains perpendicular to

the cross section through the rod’s deformation. Without loss of generality, we consider that

ey is along the more rigid direction of the cross section. Due to the small strain assumption,

the defined material frame remains orthonormal. This is also called the Euler-Bernoulli hypo-

thesis or the unshearable rod assumption. The set comprising the centerline and the material

frame is sometimes called the “Cosserat curve” (Audoly and Pomeau, 2010).

For a rod under distributed and point forces, the total applied force is written :

F(s) = (∫ L

s
p(s′)ds′) + p(L) , (2.5)

where s is the arclength, p is the distributed loading and p(L) is a point force at s = L. In

addition, F(s) is the vector of external forces which is also equivalent to the vector of internal

forces at the cross section located at s. Using the principle of virtual work we have :

dM(s)
ds

+ ez(s) ×F(s) + q(s) = 0 , (2.6)

where M(s) is the vector of internal moments and q(s) is the vector of distributed external



20

torques in the three directions of the material frame. The Kirchhoff model of rods is usually

written as a set comprising Eq. (2.6) and the spatial derivative of Eq. (2.5). These two

equations are evaluated for each of the three directions of the material frame which leads to

a system of six differential equations. The curvatures around ex and ey are termed κx and

κy, and the twist around ez is termed τ . The material frame is connected to the centerline

of the rod and follows its twist and deformation (Audoly and Pomeau, 2010).

There are several approaches to represent the rotation of the material frame with respect to

a fixed Eulerian frame. “Euler angles” are the most common three-parameter representation

and are named pitch θ, roll φ and yaw ψ. These angles are related to curvatures and twist

using three differential equations (Love, 1944) :

κx = dθ
ds

sinφ − dψ
ds

sin θ cosφ , (2.7)

κy = dθ
ds

cosφ + dψ
ds

sin θ sinφ , (2.8)

τ = dφ
ds

+ dψ
ds

cos θ . (2.9)

The state of the rod can be fully defined by coupling these three equations with the Kirch-

hoff model of rods. Although the Euler angles are directly identifiable in 3D problems and

minimize the number of governing equations of a rod, they have some limitations. Equations

Y

X

Z

ey

ey

ex

ex

ez

ez

Figure 2.10 A rod connected to a fixed coordinate system with moving material frames
connected to its centerline.
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which relate the Euler angles to curvatures have sine and cosine terms which make them

non-linear and difficult to solve. Solving these equations also implies mathematical singulari-

ties at specific angles where the determinant of the Jacobian matrix approaches zero. These

singularities are discussed in detail by Ang and Tourassis (1987).

Another method to represent the moving material frame is using “quaternions” (Hamilton,

1853). Quaternions form a four-parameter representation of the rotation of the material frame

without singularities unlike the Euler angles. According to Euler’s theorem of rotation, the

orientation of the material frame can be represented by a single rotation angle Φ about a

vector b = (bx, by, bz) (Lazarus et al., 2013). The combination of these four parameters make

a quaternion as :

Q̃ = [bX sin
Φ

2
, bY sin

Φ

2
, bZ sin

Φ

2
, cos

Φ

2
] . (2.10)

The “direction cosines” are another representation of the material frame’s rotation (Love,

1944). They do not have singularities and their equations are linear unlike the Euler angles.

They are also conceptually simple while the quaternions are more abstract. Direction cosines

are the cosines of the angles between a vector and the three directions forming the fixed

coordinate system. Since the material frame and the fixed frame have three directions each,

nine direction cosines are needed to define the material frame. Six of the direction cosines

are independent and the others can be calculated from these six independent ones. Table 2.3

shows a comparison of the advantages and disadvantages of the three different representa-

tions of the material frame presented above. Since singularities should be avoided, the Euler

angles are rejected. Direction cosines are chosen over quaternions despite requiring more dif-

ferential equations because they are conceptually simple. Direction cosines will be detailed

in Chapter 3.

A special case of the deformation of a rod is pure bending under a distributed load. Since

the deformation is two-dimensional, the flexible structure acts as a beam. The twist of the

material frame is not needed and the beam can be defined by its centerline using Eq. (2.5)

and (2.6). In this case, p(s) is the distributed load acting in the bending direction and the

bending moment is M(s) = −EIdθ/ds where θ is the bending angle. In addition, the tensile

Table 2.3 A comparison between advantages and disadvantages of three different representa-
tions of the material frame

Euler angles Quaternions Direction cosines
Singularity free ✓ ✓

Conceptually simple ✓ ✓
Fewer equations ✓ ✓



22

force in the beam is neglected. Simplifying the Kirchhoff equations, one differential equation

known as the Euler-Bernoulli beam model can define the state of the bending beam :

EI
d3θ

ds3
= p (s) . (2.11)

The present study deals with the deformation of rods therefore the geometry and the ae-

rodynamic loading are not constant and change with the state of rod. CFD methods are a

possibility to find the aerodynamic loading on deformed rods but these method demand a

great computation time. An approximate alternative is to calculate the fluid loading on a

flexible structure using the exact solution for inviscid and incompressible flow or the poten-

tial flow using the free streamline theory. Since the exact potential flow solution leads to

zero drag force, which is known as d’Alembert’s paradox, it is necessary to use Helmholtz’s

free streamline theory to predict the separation behind a structure in fluid flow. Using this

approach, it is possible to obtain the pressure drag exerted on structures in fluid flow (Sobey,

2000). In the method, the free streamline divides the flow around the body to two regions

one of which is the wake behind the body and the other is the inviscid and irrotational flow

outside the wake (Alben et al., 2002).

The Finite Element Method and the Finite Difference Method are also candidates to solve

problems which include the fluid-structure interaction. These methods have been used in

several studies such as a swinging filament in uniform flow (Huang et al., 2007), a flapping

filament in a soap film (Zhu and Peskin, 2002), a largely deformed net in water flow (Moe

et al., 2010) and a hanging aerial fuel hose (Zhu and Meguid, 2007).

Taylor (1952) suggested a semi-empirical formulation to obtain the drag force on an oblique

cylinder in three-dimensional flow. This method can also be used to estimate the drag force

on a deformed rod. It was suggested that for the range of Reynolds number Re from 20 to

105, the pressure drag coefficient is approximately constant. For this range, the coefficient of

friction drag normal to the centerline is 4Re−0.5 (Taylor, 1952). Taylor stated that only the

normal component of the flow velocity to the cylinder’s centerline contributes to the pressure

drag force. This method is preferred in the present work due to its simplicity and will be

explained in Chapter 3. The normal drag force on an oblique cylinder is thus calculated as :

pn = 1

2
ρU2A(CD,psin2θ + 4Re−0.5sin1.5θ) , (2.12)

where CD,p is the pressure drag coefficient and θ is the local angle between the cylinder’s

centerline and the flow direction. In this equation, the first term is the contribution of fluid

pressure and the second term the contribution of the friction drag. The longitudinal force
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along the centerline of the deformed rod is due to the friction force along the length of the

rod :

pz = 1

2
ρU2A(5.4Re−0.5 cos θ.sin0.5θ) . (2.13)

The inviscid dynamic fluid force on a deformed rod can be calculated using slender-body

theory (Lighthill, 1960; Schouveiler et al., 2005). According to this theory, the dynamic fluid

force is proportional to the curvature of the rod :

Fd = −ρAU2dθ

ds
cos2 θ . (2.14)

where ρA is the added mass of fluid per unit of length. This force is produced because of

the changing of the relative velocity of a body in fluid flow. In the present study, the large

deformation of rods will be evaluated by coupling the Kirchhoff rod model with the afore-

mentioned semi-empirical drag formulation. In the model, the normal and the longitudinal

friction drag in addition to the dynamic fluid force will be ignored because in the present

study, they are negligible compared with the normal drag force.

2.6 Biomimetics : Aeroelastic Tailoring

The passive reconfiguration of plants in nature inspires the design and fabrication of flexible

wings and wind turbine blades with “morphing capabilities”. This concept is usable in air-

planes (Shirk et al., 1986), drones (Ifju et al., 2002; Weisshaar et al., 1998), wind turbine

blades (De Goeij et al., 1999) and sport cars (Thuwis et al., 2009). In the context of mor-

phing structures, aeroelastic tailoring was developed for aerospace applications to design

flexible structures to take advantage of deformation under flow loading. In general, aeroelas-

tic tailoring is defined as “the embodiment of directional stiffness (rigidity) into an aircraft

structural design to control aeroelastic deformation, static or dynamic, in such a fashion as to

affect the aerodynamic and structural performance of that aircraft in a beneficial way” (Shirk

et al., 1986). Directional rigidity or asymmetric stiffness (De Goeij et al., 1999) refers to the

existence of different bending rigidities in different directions. Using aeroelastic tailoring, the

aerodynamic center of the wing’s section can be located behind the shear center (elastic axis

or torsional axis) to produce a negative pitching moment which has a stabilizing effect when

considering static divergence (Lago et al., 2013). The shear center is a point on the cross

section of the body where the applied force does not create torsional deformation.

Aeroelastic tailoring is not limited to the aerospace industry. In fact, directional stiffness can

have many applications where flexible structures made of composite materials are used to

improve the aerodynamic performance of structures (De Goeij et al., 1999). For example,
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in Formula 1 cars, a large downward force is needed to provide enough grip to stabilize the

vehicle in tight turns. The major part of this force is provided by aerodynamic surfaces such

as the front and rear wings (Zhang et al., 2006). In this case, the goal of aeroelastic tailoring

is to build a wing which can generate a high downward force coefficient at low speeds and

deform passively to create less drag coefficient at high speeds allowing the car reach higher

velocities in straight line (Thuwis et al., 2009). In wind turbines, aeroelastic tailoring is used

to couple bending and torsional deformation in blades. Using this approach, any change in

wind speed causing bending deformation induces torsional deformation which alters the angle

of attack. This has two advantages : first it can increase the fatigue life of blades because

changing the angle of attack can reduce the effect of sudden loads caused by gusts. Secondly,

tailored turbine blades can be designed to have an optimum angle of attack at each wind

speed for optimum power generation (De Goeij et al., 1999).

2.7 Problem Identification

Fundamental studies on simplified structures such as beams and plates have made it possible

to understand the underlying mechanisms of reconfiguration of plants. This approach can help

to predict the behavior of plants and even prevent wind damage. In this context, researchers

have studied different flexible structures with a variety of geometries, materials and flow

conditions to model plants as a classic fluid-structure interaction case. However, we deal

with very large deformations in the reconfiguration of plants unlike in most engineering

components such as wind turbine blades. Due to the simplicity of the beam models used

to simulate the plants, researchers could investigate the effect of a range of parameters on

reconfiguration. For example, the reconfiguration of plants can be characterized by the Vogel

exponent. Similar values of the Vogel exponent are found for plants with similar mechanisms

of reconfiguration. Although these studies cover the essence of reconfiguration, they mainly

focus on the bending deformation (Alben et al., 2002; Schouveiler et al., 2005; Gosselin et al.,

2010; Luhar and Nepf, 2011). However, it is well known that plants also twist. In fact,

many plants have large twist-to-bend ratios and twist when subjected to flow (Vogel, 1992;

Etnier, 2003; Vogel, 2007). The following question therefore arises : What is the effect of

torsional deformation in reconfiguration of plants and flexible structures ? The answer to this

question is of great importance since it leads to a better and more accurate understanding

of reconfiguration of plants in nature. However, to our knowledge, this is missing from the

literature. Thus, further studies are required to evaluate the effect of torsional deformation

in the reconfiguration of plants. Since the model of the bending beam cannot represent the

torsional deformation of plants, a rod model is used to idealize plants.
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Many species of plants have upright stems and leaves with a chiral morphology. These struc-

tures show a coupled bending and torsional deformation when subjected to flow and gravity.

Studies on the chiral morphology of plants suggest that chirality increases the buckling sta-

bility (Schulgasser and Witztum, 2004; Zhao et al., 2015). In addition, chirality seems to

have an important role in the formation of different biological (Ji et al., 2012) and artificial

microstructures (Zhao et al., 2014). Despite all the research in this field, a comprehensive

study of the reconfiguration of chiral plants undergoing an arbitrary large deformation in

fluid flow is missing from literature. In the present study, we aim to evaluate how chirality

affects the drag reduction and the buckling stability of plants.

Finally, a mathematical model is developed to study a wide range of plants whether aqua-

tic or terrestrial, chiral or non-chiral as an elastic rod undergoing a large deformation. The

aerodynamic model used in this study is simple and at the same time accurate enough to

simulate a real flow around plants with different cross sections. Moreover, the concept of pas-

sive reconfiguration of plants has been used in designing many mechanical structures which

interact with fluid flow such as wings and blades with morphing capabilities. These struc-

tures are built flexible to have a better aerodynamic and structural performance. Although

this concept is well established, very large deformations of flexible structures with morphing

capabilities have not been studied thoroughly. Therefore, the present mathematical frame-

work could also be used to model the interaction of these structures with the flow in large

deformations.
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CHAPTER 3 ARTICLE 1 : LARGE COUPLED BENDING AND

TORSIONAL DEFORMATION OF AN ELASTIC ROD SUBJECTED TO

FLUID FLOW

M. Hassani, N. W. Mureithi and F. P. Gosselin, 2016, published in the journal of Fluids and

Structures.

Abstract

In the present work, we seek to understand the fundamental mechanisms of three-dimensional

reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow.

Flexible rods made of polyurethane foam and reinforced with nylon fibers are tested in a wind

tunnel. The rods have bending-torsion coupling which induces a torsional deformation during

asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod

theory with a semi-empirical drag formulation. Different alignments of the material frame

with respect to the flow direction and a range of structural properties are considered to study

their effect on the deformation of the flexible rod and its drag scaling. Results show that

twisting causes the flexible rods to reorient and bend with the minimum bending rigidity.

It is also found that the Vogel exponent of a reconfiguring rod is not affected by torsion.

Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod

is characterized as a beam undergoing a pure bending deformation.

3.1 Introduction

In contrast to engineering structures, plants are generally flexible and deform significantly

under fluid loading. This deformation typically causes drag reduction and is called reconfigu-

ration in biomechanics (Vogel, 1984, 1989). Unlike rigid bluff bodies, the drag force on plants

is not proportional to the square of the flow velocity. The drag force on flexible plants varies

with the flow velocity as

D ∝ U2+ϑ, (3.1)

where ϑ is the Vogel exponent. This exponent quantifies the effect of flexibility on the drag

scaling and is typically negative for plants (Vogel, 1984). Plants reconfigure using two main

mechanisms : frontal area reduction and streamlining. The more negative ϑ is, the more the

drag is reduced due to reconfiguration.
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Many experimental drag measurements have been performed on trees (Vollsinger et al., 2005),

crops (Sterling et al., 2003) and algae (Koehl and Alberte, 1988) whether in wind tunnels,

water flumes or their natural setting. This was done to quantify the effect of streamlining and

frontal area reduction on drag scaling. Understanding reconfiguration is necessary to predict

or prevent the adverse effect of strong winds or water flows on plants such as windthrow,

uprooting and lodging (Rudnicki et al., 2004; Berry et al., 2004). Thigmomorphogenesis, or

the influence of mechanical stimuli such as wind loading on the growth of plants, is another

area where a better understanding of plant-flow interaction can make a contribution (Niklas,

1998).

In general, plants are slender and a fundamental understanding of their reconfiguration has

therefore been sought by modeling them as bending beams and plates (Alben et al., 2002,

2004; Gosselin et al., 2010; Luhar and Nepf, 2011; Gosselin and de Langre, 2011; Schouveiler

and Boudaoud, 2006). A flexible beam undergoing bending due to flow is a simple academic

representation of reconfiguration. For instance, the deformation and the drag of flexible glass

fibers have been measured in a two-dimensional soap film flow which allows modeling and flow

visualisation (Alben et al., 2002, 2004). To theoretically model the bending fiber in the soap

film flow, the authors coupled the Euler-Bernoulli beam theory with an exact potential flow

solution using the Helmholtz free streamline theory. Bending plates made of transparency

films were also studied in a wind tunnel (Gosselin et al., 2010). Theoretical representation

of these experiments was done by coupling a semi-empirical drag formulation and the Euler-

Bernoulli beam theory.

Although bending beams and fibers capture the essence of the two-dimensional deformation

of plants, they cannot represent all forms of reconfiguration. Other effects are important in

reconfiguration and can influence the Vogel exponent such as buoyancy (Luhar and Nepf,

2011), poroelasticity (Gosselin and de Langre, 2011) and three dimensional bending defor-

mation (Schouveiler and Boudaoud, 2006). Moreover, the approach of using simple structures

was also employed to study inelastic brittle reconfiguration, i.e., pruning (Lopez et al., 2011;

Eloy, 2011).

While the aforementioned fundamental studies focus on bending deformation, torsion has

been ignored in reconfiguration. However, it is known that plants twist significantly under

fluid loading. For instance, the stem of a daffodil holds the flower horizontally and twists at

the slightest breeze aligning the flower downwind thus reducing its drag (Etnier and Vogel,

2000). The trunks of trees with crown asymmetry also undergo significant twist under wind

loading. Because of their fibrous construction, plants and trees are known to twist more

easily than they bend (Vogel, 1992; Skatter and Kučera, 1997). This is quantified by the
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twist-to-bend ratio,

η = EI

GJ
, (3.2)

where EI is the bending rigidity and GJ is the torsional rigidity. High values of η represent

a structure which can twist more easily than it can bend. Table 3.1 shows a comparison

between the twist-to-bend ratios of some natural and engineering structures. In comparison

to engineering structures, branches, petioles and stems have a significantly larger value of η

(Vogel, 1992; Pasini and Mirjalili, 2006). Figure 3.1a shows a schematic of the U-shape cross

section of a banana petiole with a large twist-to-bend ratio of 68. As a result, a banana leaf

twists while bending downwind (see Fig. 3.1b and c). For comparison, a homogeneous and

isotropic material with circular section has a twist-to-bend ratio equal to 1 + ν or 1.3 for

metallic materials assuming the Poisson’s ratio is about 0.3 (Vogel, 1992).

Since many plants twist when subjected to flow, the following question arises : What is the

effect of torsional deformation on the reconfiguration of plants and flexible structures, and

how does it change their drag scaling, i.e., their Vogel number ? The bending beams and plates

of the previous studies cannot represent the torsional deformation of plants. Therefore a new

approach is necessary to idealize plants with simple structures. In this paper, we consider

the reconfiguration of an elastic rod which can twist and bend. A mathematical model is

developed considering the arbitrary large deformation of a rod subjected to fluid flow. Tests

are also done in a wind tunnel on flexible rods made of polyurethane foam with strategically

placed reinforcements to tailor their twist-to-bend ratio and their twisting-bending coupling.

Table 3.1 The average of twist-to-bend ratio for some natural and engineering structures

Species Geometry η Reference
Isovolumetric material circular 1.5 -

Metallic rod circular 1.3 -
Daffodil stem semi-circular 13.3 Vogel (2007)

Banana petiole U-shape 68 Ennos et al. (2000)
Sedge stem semi-triangle 65 Ennos (1993)
Tree trunk semi-circular 7.34 Vogel (2007)
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(a) (b) (c)
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Figure 3.1 Schematics of a banana leaf (a) U-shape cross section of its petiole with a large
twist-to-bend ratio ; (b) upright banana leaf ; and (c) leaf twisting to bend downwind. Inspired
by Ennos et al. (2000).

3.2 Methodology

3.2.1 Experimental Procedure and Materials

The large deformation of a flexible rod bending and twisting under pressure drag is studied.

The tests are performed in the closed-loop wind tunnel of the laboratory of Aerodynamics

and Fluid-Structure Interactions at École Polytechnique de Montréal. The wind tunnel has

a square test section of 60 × 60 cm2 and can produce a maximum air speed of 90 ms−1.
Figure 3.2 shows the custom-made load measuring equipment used for the wind tunnel tests.

The test setup consists of a force balance (3), a speed reduction gearbox (2), and a rotary

servo motor (1) mounted on the gearbox. The 6-axis force balance (ATI GAMMA, ATI

Industrial Automation, Apex, North Carolina) used in the present experiment, measures the

aerodynamic forces in addition to the bending and twisting moments. The set of the servo,

gearbox and force balance is mounted on an aluminum frame (4) and a wooden panel (5)

which is used to support the setup on top of the wind tunnel. The rod (6) is fixed to the

force balance inside the test section of the wind tunnel.

The ATI GAMMA force transducer was calibrated to measure a maximum 32 N of transverse

loading, 100 N of axial loading and 2.5 Nm of torque and bending moments. The resolution

of the force transducer is 6.25 × 10−3 N for the transverse loading, 12.5 × 10−3 N for the axial

loading and 0.5 × 10−3 Nm for the moments. From static tests with a calibration weight of
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200 g, we estimate the precision of the static force measurement to be within 1 percent of

the time-averaged reading. Moreover, in the wind tunnel tests, the standard deviation of the

time fluctuating forces and moments, mainly due to turbulence buffeting, was evaluated to

be between 4 and 10 percent of the time-averaged measurement. For the velocity range of

the present experiments, vortex shedding excitation is not significant because the predicted

shedding frequency for a Strouhal number of 0.2 is more than 40 Hz while the fundamental

frequency of the specimens is of the order of 1 Hz. Hence the measurements represent static

values of the lightly fluctuating loads averaged over 30 seconds.

Rods are slender structures which can bend and twist. Rods with circular sections are used

to simplify the geometry and the aerodynamic loading evaluation. For non-circular rods,

fluid loading depends on the angle of each section of the rod with the flow direction i.e. the

local angle of attack. The loading on a circular rod, however, is independent of the twist

of the rod’s sections. Moreover, the flow on a normal cylinder is on average symmetric and

is not expected to generate a twisting moment. Coupling between torsional and bending

deformation is achieved through directional rigidity which induces torsional deformation in

a bending rod. This coupling gives rise to three-dimensional deformation. Herein, directional

U

1

2 4

5 5

3

6

Figure 3.2 Schematic of the test setup installed on top of the wind tunnel. The setup consists
of a servo (1), gearbox (2), force balance (3), aluminum frame (4), wooden panel (5) and a
rod specimen (6).
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rigidity or asymmetric stiffness (De Goeij et al., 1999) refers to different bending rigidities in

different directions.

Using this concept, composite rods are made using polyurethane foam and are reinforced in

one direction using nylon fibers (see Fig. 3.3). Nylon fibers are pre-aligned along the axis of a

non-stick Teflon tube. They are distributed along one diameter in the cross section of the rod

to achieve directional rigidity. Two types of nylon fibers with different diameters and Young’s

moduli are used : df = 0.3 mm and Ef = 3300 MPa, df = 0.75 mm and Ef = 2360 MPa. The

two-component polyurethane foam used (Flexfoam-iT, Smooth-on Inc., Easton, Pennsylva-

nia) expands up to 6 times its original volume upon mixing. The mixture is poured and

pressurized in the tube and left to harden over 4 to 5 hours (see Chapter 5 for more detail).

The rigidity of the rod depends on the amount of foam inside the mold, diameter of the

fabricated rod, thickness and the distance of the fibers from the rod’s neutral axis. Three-

point bending tests are performed to determine the bending rigidities in the x and y-directions

(Fig. 3.3). The directions x and y construct a material frame defined with the alignment of

the reinforcement fibers.

The torsional rigidity of the rod is determined by measuring the frequency of torsional oscil-

lation of the rod attached to a heavy weight at one end and fixed at the other. The system

is designed to oscillate around the rod’s centerline so the torsional rigidity is calculated from

the measured frequency as GJ = LJmωn2. In this equation, Jm is the mass moment of inertia

of the system around the rod’s centerline and ωn is the measured natural frequency of the

rotational oscillation (see Chapter 5 for more detail). Table 3.2 shows the characteristics of

tested specimens made of polyurethane foam.

In the experimental study, the rod is attached to the 6-axis force balance on one end via a

10 cm mast and is free at the other end. Normally, a cantilever rod under transverse loading

is considered to have a fixed position and slope at the fixed end. However, in our experiments,

the rod is made of a soft material which cannot be easily clamped to maintain a constant slope

at its fixed end when subjected to wind loading. Trying to clamp the fixed end of the foam

rod pinches it, thus inducing a rotation about its fixed end instead of a smooth deformation

Table 3.2 Physical properties of tested specimen

Specimen L (cm) d (cm) (EI)y(Nm2) (EI)y
GJ

(EI)y(EI)x Weight (g)
R1 30 3.17 0.0563 1.00 0.41 120
R2 28 2.54 0.0262 1.26 0.24 65
R3 25 1.58 0.0033 1.20 0.21 20
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along its length. To take into account this imperfection in the boundary condition, the fixed

end is considered as a torsion spring in the mathematical model. The torsion coefficient of the

spring (ks) is then evaluated using the measured in-plane bending moment and the rotation

angle at the clamped end captured from photographs. A linear relation is considered between

the in-plane bending moment and the rotation angle :

MY = ksαs , (3.3)

where MY is the in-plane bending moment at the clamped end while Y is perpendicular to

the flow direction (Fig. 3.3). In addition, αs is the rotation angle at the clamped end (see

Chapter 5 for more detail).

The fixed end of the rod is rotated incrementally around its central axis in the wind tunnel

using the servo motor shown in Fig. 3.2. This is done to expose different alignments of the

reinforcement direction at the clamped end with respect to the flow direction making an

angle of incidence ψ0 (see Fig. 3.3). For each angle of incidence, the drag scaling is evaluated

for a range of flow velocities. A variety of dimensions, structural rigidity and bending-torsion

coupling are therefore considered to study the effects of various parameters on the deformation

of the flexible rod and its drag scaling. Measurements are performed for flow velocities ranging

from 5 ms−1 to 65 ms−1 and angles of incidence ranging from 0 to 90 degrees. The Reynolds

number for the tests varies from approximately 1.5×104 to 105 for R1 and R2 and from 5×103

to 6.5 × 104 for R3.

U

Y

X

ψ

y

x

Foam rod

Nylon fibers

Figure 3.3 Photograph of a flexible rod’s section made of polyurethane foam and reinforced
with nylon fibers which have an angle of incidence ψ with the flow. The angle of incidence at
the clamped end is defined by ψ0.
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Images of the test specimens are captured in the wind tunnel using a DSLR camera. For the

side view, a 60 × 60 cm2 LED panel was placed behind the test specimen outside the wind

tunnel to capture high contrast images with a white background. For the frontal view, the

camera was installed inside the wind tunnel far upstream of the specimens. Consequently,

due to the large wind loading on the camera inside the wind tunnel, it was not possible to

capture front view images in high velocities.

3.2.2 Theoretical Model

An elastic rod is a three-dimensional slender structure (Audoly and Pomeau, 2010) where its

length, L, is much larger than its two other dimensions. Kirchhoff’s theory of rods is a classic

theory considering finite displacements while assuming small strains (Dill, 1992). The rod is

represented by a curve which can deform in three-dimensional space. It can also twist around

this curve. The curve is defined as the centerline of the rod which is assumed inextensible

(Audoly and Pomeau, 2010). It is assumed that each cross section of the rod remains planar

and normal to the centerline. Bending moments are proportional to the curvatures, κx and

κy and the twisting moment is proportional to the twist τ . The constitutive relation for a

bending and twisting rod made of isotropic material is then written as (Audoly and Pomeau,

2010) :

M = (EI)yκyex + (EI)xκxey +GJτez . (3.4)

where M is the vector of internal moments.

To track the rod twist, a material frame is defined as a moving coordinate system connected

to the centerline of the rod following its twist and deformation (Audoly and Pomeau, 2010).

Herein, we represent this frame by three unit vectors ei(s) for i = x, y and z. Since the material

frame moves and twists with the centerline of the rod, s is considered as the distance in the

curvilinear or Lagrangian coordinate system along the rod’s centerline from its fixed end

to its free end. The unit vector ez is tangent to the rod’s centerline and ex and ey are

principal directions of curvature in the cross sectional plane (Audoly and Pomeau, 2010) as

illustrated in Fig. 3.4. Due to the assumption of small strains, the directions of the material

frame are considered approximately orthonormal. The set comprising the centerline and the

material frame is sometimes called the Cosserat curve (Audoly and Pomeau, 2010). The rod

is connected to a fixed Eulerian coordinate system which is shown by X, Y and Z with unit

vectors eX , eY and eZ as illustrated in Fig. 3.4.

To evaluate the full state of a Kirchhoff rod, the rotation of the material frame around the

centerline should be considered. The direction cosines are a representation of the material
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Figure 3.4 Schematic of a rod connected to a fixed coordinate system with moving material
frames attached to its centerline.

frame’s rotation. They form a transformation matrix [c(s)] relating the material frame to

the fixed frame as : ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ex

ey

ez

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=
⎡⎢⎢⎢⎢⎢⎢⎣
c11 c12 c13

c21 c22 c23

c31 c32 c33

⎤⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
eX

eY

eZ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (3.5)

where cij is a direction cosine (Love, 1944). The three direction cosines of each row of the

matrix [c] form a unit vector representing a direction of the material frame (Love, 1944).

Consequently, six of the direction cosines are independent and the others can be calculated

from these six independent ones. Alternatively to direction cosines, quaternions could have

been used (Lazarus et al., 2013). Following the approach explained in detail by Audoly and

Pomeau (2010), the spatial derivative of each direction of the material frame with respect to

s is defined by :

e′x(s) = τ(s)ey(s) − κy(s)ez(s) , (3.6a)

e′y(s) = −τ(s)ex(s) + κx(s)ez(s) , (3.6b)

e′z(s) = κy(s)ex(s) − κx(s)ey(s) , (3.6c)

where a prime ( ′) denotes a spatial derivative with respect to s. Using this approach, nine

first order differential equations, six of which are independent, are derived (refer to Appendix

A).
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The Kirchhoff equations for the equilibrium of forces and moments in a rod are written as :

F′(s) + p(s) = 0 , (3.7)

M′(s) + ez(s) ×F(s) + q(s) = 0 , (3.8)

where p(s) is the vector of external forces per unit length and q(s) is the vector of external

moments per unit length in the three directions of the material frame. F(s) is the vector of

internal forces, namely the shear forces Nx, Ny and the axial tension T , i.e.,

F = Nxex +Nxey + Tez . (3.9)

Finally, by expanding Eqn. (3.7) and Eq. (3.8) and using Eq. (3.6), we obtain six separate

differential equations which define the centerline curve of the rod.

The weight of the rod and the fluid loading are considered as external loading. The weight

of the rod is calculated as the rod’s mass m times the gravitational acceleration g acting

in the Z-direction. To evaluate the fluid loading on a deformed rod, we use Taylor’s semi-

empirical formulation (Taylor, 1952) of the pressure drag force on an oblique cylinder in

three-dimensional flow. This method was used successfully in previous reconfiguration studies

on bending beams (Gosselin et al., 2010; Luhar and Nepf, 2011). In the method, only the

component of the flow velocity normal to the cylinder centerline contributes to the pressure

drag force. The normal force on an oblique cylinder is proportional to sin2θ, where θ is the

local angle that the cylinder centerline makes with the flow velocity vector. Without loss of

generality, we consider a flow aligned with the X-axis, thus :

cos θ = ez.eX∣ez ∣ ∣eX ∣ = c31 , sin θ = √
1 − c231 . (3.10)

For Reynolds numbers ranging from 103 to 105, the drag coefficient of a cylinder is nearly

constant. Thus, the normal force per unit length on an oblique cylinder is calculated as :

pn = 1

2
ρdCD(Usinθ)2 , (3.11)

where CD is the drag coefficient obtained from experiments on rigid circular rods with the

same aspect ratio and surface roughness. For the range of the Reynolds number studied,

the drag coefficient measured for the rigid test rods is approximately 0.95. Although the

fluid model is simple, we expect that the complicated fluid mechanics and turbulence effects

are reasonably accounted for by the drag measured on the rigid structure. The drag on a
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deformed rod is therefore written in integral form :

D = 1

2
ρdCDU

2∫ L

0
sin3 (θ(s))ds . (3.12)

A drag coefficient is sufficient to define the fluid loading since the lift and pitching moment

coefficients are zero on a circular rod section. Consequently, all external moments in Eq. (3.8)

are null. The aerodynamic loading and the gravitational force on the rod are then decomposed

into the x-, y- and z-directions of the material frame to obtain the external forces in Eq. (3.7).

By expanding Eqns. (3.7) and (3.8) in three directions and introducing the external forces

and moments, the Kirchhoff equations are written as :

dNx

ds
= Nyτ − Tκy − pn.c11 −mgL−1.c13 , (3.13)

dNy

ds
= Tκx −Nxτ − pn.c21 −mgL−1.c23 , (3.14)

dT

ds
= Nxκy −Nyκx −mgL−1.c33 , (3.15)

dκx
ds

= 1(EI)x [(EI)yκyτ −GJκyτ +Ny] , (3.16)

dκy
ds

= 1(EI)y [GJκxτ − (EI)xκxτ −Nx] , (3.17)

dτ

ds
= 1

GJ
[(EI)xκxκy − (EI)yκxκy] . (3.18)

To develop dimensionless equations of a deforming rod, the Cauchy number is introduced :

CY = CD ρU2L3d

2(EI)y . (3.19)

The Cauchy Number CY represents the ratio of the fluid force to the minimum bending

rigidity of the flexible body (Chakrabarti, 2002; de Langre, 2008; Gosselin and de Langre,

2011). The square root of the Cauchy number is similar to the dimensionless velocity (Alben

et al., 2002, 2004) or the elastohydrodynamical number (Schouveiler and Boudaoud, 2006)

which do not include the drag coefficient in their definition.

The reconfiguration number (Gosselin et al., 2010) and similarly the effective length (Luhar

and Nepf, 2011) represent the effect of flexibility on the drag force. The reconfiguration

number is defined as the ratio of the drag force of the flexible body to the drag force of an

equivalent rigid body :

R = D
1
2ρU

2CDdL
. (3.20)
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It is a measure of the drag reduction of a flexible structure due to its flexibility. The Vogel

exponent relates the Cauchy number (Eq. (3.19)) to the reconfiguration number (Gosselin

et al., 2010) as : R∝ CY
ϑ
2 . (3.21)

The bending rigidity ratio, is defined as :

λ = (EI)y(EI)x , (3.22)

where (EI)y and (EI)x are bending rigidities about the y and x-directions respectively. By

definition, we take (EI)y < (EI)x. The flexible rods therefore have directional rigidity which

causes a bending-torsion coupling when transverse loads are not aligned with the x or y

axes. Based on the aforementioned directional rigidity, we redefine the twist-to-bend ratio

(Eq. (3.2)) as :

η = (EI)y
GJ

. (3.23)

The following dimensionless parameters are also required :

s̄ = s/L κ̄x = κxL κ̄y = κyL τ̄ = τL ,

N̄x = NxL2

(EI)y N̄y = NyL2

(EI)y T̄ = TL2

(EI)y W = mgL2

(EI)y .
By applying the external loading in the equations, the deformed shape of the rod’s centerline

(Eq. (3.13) to (3.18)) can be defined by the following six dimensionless equations :

dN̄x

ds̄
= N̄y τ̄ − T̄ κ̄y −CY√1 − c231.c11 −W.c13 , (3.24)

dN̄y

ds̄
= T̄ κ̄x − N̄xτ̄ −CY√1 − c231.c21 −W .c23 , (3.25)

dT̄

ds̄
= N̄xκ̄y − N̄yκ̄x −W .c33 , (3.26)

dκ̄x
ds̄

= (λ − λ
η
)κ̄y τ̄ + λN̄y , (3.27)

dκ̄y
ds̄

= (1

η
− 1

λ
)κ̄xτ̄ − N̄x , (3.28)

dτ̄

ds̄
= (η

λ
− η)κ̄xκ̄y . (3.29)

As previously mentioned, the three direction cosines can be calculated from the six inde-

pendent ones. Arbitrarily, using Eq. (3.6), the six equations defining the x- and z-directions
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of the material frame are considered as the six independent equations. By coupling these six

equations with Eqns. (3.24) to (3.29), the full state of a deforming rod can be defined. The

set of twelve ordinary differential equations is solved with the bvp4c solver of MATLAB. The

boundary conditions at the rod’s free end (s̄ = 1) and the rod’s fixed end (s̄ = 0) are :

N̄x(s̄ = 1) = 0 , N̄y(s̄ = 1) = 0 , T̄ (s̄ = 1) = 0 ,

κ̄x(s̄ = 1) = 0 , κ̄y(s̄ = 1) = 0 , τ̄(s̄ = 1) = 0 ,

c11(s̄ = 0) = cos(αs) cos(ψ0) , c12(s̄ = 0) = cos(αs) sin(ψ0) , c13(s̄ = 0) = − sin(αs) ,
c31(s̄ = 0) = sin(αs) , c32(s̄ = 0) = 0 , c33(s̄ = 0) = cos(αs) ,

where αs is the rotation of the clamp due to the imperfect boundary condition evaluated with

Eq. (3.3). A continuation method is used to calculate the full state of the rod for a range

of Cauchy numbers. In this method, the solver uses an initial guess for all twelve variables

of the governing equations for a very small Cauchy number i.e. CY = 0.1. The solution of

this step is then used as the initial guess for the next iteration for a higher Cauchy number.

This procedure is repeated until the Cauchy number reaches its specified higher limit i.e.

CY = 1000.

It is expected that the rod undergoes a bifurcation when ψ0 = 90○. However, the developed

MATLAB code is unable to predict static instabilities for this angle of incidence because

it cannot calculate and follow more than one branch of the solution. Thus, for ψ0 = 90○, a

software package AUTO (Doedel and Kernevez, 1986) is used with the same aforementio-

ned governing equations and boundary conditions. This software package has been developed

to solve continuation and bifurcation problems. According to the Implicit Function Theo-

rem (Inayat-Hussain et al., 2003), the system of ordinary differential equations presented in

Eq. (3.24) to Eq. (3.29), has a stationary solution. In the software, using a successive conti-

nuation approach, the governing equations are solved starting from an initial known solution

for a range of a continuation parameter values. In the present work, the Cauchy number

is considered as the continuation parameter. Bifurcation points are detected by seeking the

singularities in the Jacobian of the governing equations where eigenvalues change signs. A

cross-comparison for cases with ψ0 ≠ 90○ between the MATLAB code and the AUTO solver

shows identical results to 7 significant figures.

3.3 Results and Discussion

Three flexible rods made of polyurethane foam (Table 3.2) were tested in the wind tunnel

to investigate the effect of bending and torsion on rod drag. In Fig. 3.5, highly contrasted
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photographs depict the frontal and side views of specimen R3 in the wind tunnel for three

flow velocities and three angles of incidence. In this figure, the thin solid lines represent

the shape of an equivalent rod predicted using the mathematical model. The rod undergoes

a two-dimensional bending or in-plane deformation for ψ0 = 0○. In this condition, the rod’s

material frame with the minimum bending rigidity (EI)y is aligned with the flow therefore the

reconfiguration is in pure bending. The magnitude of deformation increases with increasing

flow velocity. For a non-zero angle of incidence, e.g. ψ0 = 45○, where the rod’s material frame

is not aligned with the flow, the magnitude of the in-plane deformation is smaller compared

to the case ψ0 = 0○. This is due to the increasing contribution of the reinforcement fibers to

the bending rigidity leading to less deformation. However, for non-zero angles of incidence,

because of asymmetric bending, the rod undergoes a three-dimensional deformation showing

both in-plane and out-of-plane deformation. This out-of-plane deformation creates a moment

arm about the rod’s root which twists the rod to realign it with the flow. For ψ0 = 90○,
the rod’s material frame is aligned with the flow but with the maximum bending rigidity(EI)x. Because of symmetry, the rod does not show an out-of-plane deformation at 10 ms−1.
Compared with ψ0 = 0○, at ψ0 = 90○ the deformation is smaller. At ψ0 = 90○, for larger flow

velocities (U = 20, 30 ms−1), the symmetry is broken and significant out-of-plane deformation

is observed. In this case, the rod undergoes a supercritical and static pitchfork bifurcation

which is discussed below. The difference between the experimental and mathematical results

is mainly due to imperfect boundary conditions in the experiments.

Figure 3.6a shows the variation of the X-component displacement (Xtip) of the tip of spe-

cimen R3 with increasing flow velocity for different angles of incidence. Experimental data

points extracted from photographs are also presented with markers for reference. To visualize

the out-of-plane deformation, the camera had to be placed inside the wind tunnel. There-

fore, there are no experimental data points for flow velocities higher that 30 ms−1 due to

technical limitations in taking photographs. For all incidence angles, the X-component of

the tip increases with flow velocity. However, the rate of increase of Xtip becomes conside-

rably small for high velocities therefore Xtip asymptotically approaches a constant value. It

is also seen that by increasing the angle of incidence, the magnitude of the in-plane defor-

mation decreases. This is due to the increasing bending rigidity with the angle of incidence.

Figure 3.6b shows the out-of-plane deformation of specimen R3 by providing the variation of

the tip’s Y -component displacement (Ytip) with velocity. For ψ0 = 0○ the rod does not have

an out-of-plane deformation, thus Ytip = 0. For ψ0 = 30○, 45○ and 60○, Ytip variation shows

an initial increase in the out-of-plane deformation. However, the experimental results and

the mathematical predictions show that Ytip starts to decrease as the rod twists back and

becomes more aligned with the flow. For ψ0 = 90○, Ytip is zero prior to a critical velocity of
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Figure 3.5 Photographs of deformed shapes of the specimen R3. Thin lines represent the
deformation of an equivalent rod predicted by the mathematical model. The velocity unit is
ms−1.

approximately 26 ms−1, thus the rod does not undergo an out-of-plane deformation below

this velocity. Beyond the critical velocity, Ytip undergoes a jump to a maximum or minimum

value approximately ±31 mm exhibiting a pitchfork bifurcation. Ytip then decreases with flow

velocity showing the rod becoming aligned with the flow. Prior to the bifurcation point, the

symmetric bending of the rod is stable but beyond that point, the rod loses its stability and

jumps to a stable branch to either sides showing a sudden out-of-plane deformation. The
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post-bifurcation displacement is triggered by an infinitesimal out-of-plane deformation along

with the resulting moment arm about the root. This moment arm twists sections of the rod to

an angle of incidence smaller than 90, inducing a larger out-of-plane deformation. The larger

out-of-plane deformation amplifies the moment arm and this interaction continues until the

rod finds a new three-dimensional equilibrium state. Similarly to Fig. 3.5, for ψ0 = 90○, the

experimental and mathematical results are not in exact agreement due to imperfect boundary

conditions in the experiments which advances the bifurcation.

Figure 3.7 presents the variation of the measured drag of the specimen R3 with increasing

flow velocity for a range of angles of incidence. The measured drag for an equivalent rigid

structure is also shown for reference. The drag on the rod increases with the flow velocity as

well as the angle of incidence. For low flow velocities, the drag on the flexible rod is similar to

the drag force on an equivalent rigid structure following the U2 scaling curve. However, with

increasing flow velocity, the drag force on the flexible rod increases in a less pronounced way

than the equivalent rigid bar. This divergence from the U2 scaling results from the increase in

the static deformation. The divergence is delayed by increasing the angle of incidence. Thus,

the drag on the flexible rod increases monotonically with the angle of incidence because of

the increasing contribution of fibers to the rod rigidity.

The twisting moment at the root (MZ), simply referred to as the torque hereafter, is a direct

indicator of the magnitude of torsional reconfiguration. The torque is measured directly by

the force transducer as the twisting moment about the Z-axis. Figure 3.8 shows the variation

of the torque with flow velocity for a range of angles of incidence for R3. For ψ0 = 0○, the

torque is null because there is no out-of-plane deformation to create a moment arm. For a

non-zero angle of incidence, the torque remains approximately zero for low flow velocities

since the rod does not deform significantly to create a moment arm. For U greater than ap-

proximately 10 ms−1, the deformation of the rod creates a moment arm. The torque increases

with increasing flow velocity as well as angle of incidence. This is due to the combined increase

in the moment arm and fluid loading. The reinforced rods under study make it possible to

control the amount of twisting reconfiguration by varying the angle of incidence.

In Fig. 3.8, the calculated torque for a rod equivalent to specimen R3 at the same angles

is presented. The mathematical model shows a good agreement with the experiments for

ψ0 < 90○. However, for ψ0 = 90○, the mathematical model is shifted as compared to the

experimental data points. The mathematical model predicts that prior to a critical flow

velocity of U ≈ 27 ms−1 the torque is null due to symmetric bending. Beyond this critical

flow velocity, the symmetry is broken due to the rod undergoing a pitchfork bifurcation.

The difference between the experimental and mathematical results for ψ0 = 90○ is likely due
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Figure 3.6 Mathematical evaluation of the in-plane and out-of-plane deformation of specimen
R3 for three angles of incidence by showing a) the variation of the tip’s X-component, b) the
tip’s Y -component and c) the tip’s Z-component with flow velocity. Some experimental data
points are provided for reference as markers. Error bars represent the standard deviation of
the time fluctuations of the tip position.

to imperfect symmetry in the experiments which causes early bifurcation. This imperfect

symmetry may be caused by an error in the angle of incidence, imperfect clamped boundary
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Figure 3.7 Time-averaged drag of the specimen R3 for a range of ψ0 from 0○ to 90○. Drag
loading on an equivalent rigid rod is provided as a line for reference. Error bars represent the
standard deviation of the time fluctuations for series ψ0 = 45○. Time fluctuations are similar
for other series.

condition, heterogeneous mass distribution or a slight natural curvature in the rods. Figure 3.8

shows that there is a limiting behavior which leads to a bifurcation at ψ0 = 90○. Moreover, the

mathematical result for ψ0 = 85○ represents a better agreement with the experimental results

for ψ0 = 90○. This suggests that the combined effect of the aforementioned factors particularly

the angle of incidence may lead to a large imperfection responsible for the inconsistency

between the numerical and experimental results for ψ0 = 90○.

3.3.1 Dimensionless Representation

The system of equations (3.24) to (3.29) representing the arbitrary large deformation of

a rod is rendered dimensionless by introducing the Cauchy number in Eq. (3.19). From

the experimental drag measurements, the variation of the reconfiguration number of the

specimens R3 with increasing Cauchy number is presented in Fig. 3.9 for a range of ψ0 from

0○ to 90○ degrees. By definition, the dimensionless drag scaling of a rigid bar is presented

with a horizontal line at R = 1 in this figure. It is seen that for small Cauchy numbers the

reconfiguration number is approximately 1 which means that the drag force on the flexible

rod is close to that acting on an equivalent rigid bar. Between CY ≈ 3 and 20, depending
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Figure 3.8 Twisting moment at the root of the specimen R3 varying by the flow velocity and
angle of incidence. The mathematical evaluation of the root’s twisting moment is provided
as lines for reference.

on the angle of incidence, the reconfiguration number starts to diverge from that of the

equivalent rigid bar and decreases with increasing Cauchy number. This divergence is delayed

by increasing the angle of incidence due to the increasing contribution of the fibers in the

bending rigidity against the flow.

The variation of R with CY calculated with the mathematical model is presented as lines

in Fig. 3.9 for three angles of incidence. The reconfiguration number is 1 for small Cauchy

numbers but it diverges from R = 1 for Cauchy numbers greater than unity. Similarly to the

experimental measurements, the reconfiguration number decreases with the Cauchy number

and increases with increasing angle of incidence. All experimental drag measurements in

dimensionless form are found to fall between the two limiting mathematical curves for ψ0 = 0○
and ψ0 = 90○.
For Cauchy numbers greater than 100, the experimental data points for each angle of incidence

can be fitted with a power law which appears as a straight line on the R−CY log-log plot. The

slope of this line is the exponent of the power law. According to Eq. (3.21), the Vogel exponent

is twice this slope. In Fig. 3.9, the slope of −0.33, equivalent to ϑ = −0.66 expected for pure

bending (Alben et al., 2002, 2004; Gosselin et al., 2010), is provided for reference. Table 3.3

presents the Vogel exponents calculated from the experimental data points for specimen R3

for different angles of incidence and CY > 100. The Vogel exponent is found to vary from−0.62 to −0.86 and the average coefficient of determination for the fitted data is 0.85. With

the mathematical model, the predicted Vogel exponent does not change significantly with the

variation of angle of incidence. It remains approximately −0.7 for any angle of incidence and

very high Cauchy numbers. However, in the experiments the predicted mathematical Vogel

exponent is not reached for all angles of incidence because for higher angles, the maximum
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Figure 3.9 Experimental drag scaling of the specimen R3 represented by the Cauchy number
and the reconfiguration number. The equivalent mathematical model for ψ0 = 0○, 45○ and 90○
is provided as lines.

Cauchy number attainable in the wind tunnel is not sufficient to align the rod with the

flow. The small difference between the predicted Vogel exponent in our mathematical model

and that of previous studies in pure bending is due to the non-negligible weight of the rod in

the present model (see Luhar and Nepf (2011)).

The torsion of a rod alters its effective bending rigidity in the flow direction for non-zero

angles of incidence. The choice of (EI)y is therefore not representative when computing the

Cauchy number (Eq. (3.19)) for a non-zero angle of incidence. An alternative is proposed in

Table 3.3 The Vogel exponent for a range of angle of incidence calculated from the experi-
mental data points and the mathematical simulation of R3

ψ0 0○ 15○ 30○ 45○ 60○ 75○ 90○
ϑ (Exp. CY > 100) −0.70 −0.62 −0.66 −0.66 −0.68 −0.86 −0.86

ϑ (Math. 100 < CY < 300) −0.76 −0.76 −0.76 −0.76 −0.74 −0.74 −0.76
ϑ (Math. 300 < CY < 500) −0.72 −0.72 −0.72 −0.72 −0.70 −0.68 −0.68
ϑ (Math. 500 < CY < 1000) −0.7 −0.72 −0.72 −0.72 −0.70 −0.68 −0.68

Exp. Coeff. of Determination 0.88 0.85 0.76 0.97 0.82 0.94 0.95
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the following which considers the effect of torsion on the bending rigidity and the Cauchy

number.

3.3.2 Equivalent Bending Rigidity

We seek a modification to the Cauchy number to account for the effective bending rigidity

which lies somewhere between (EI)x and (EI)y. This effective rigidity depends on the angle

the material frame makes with the flow, thus it depends on the incidence angle ψ0 and the

torsional rigidity. A dimensionless representation is proposed in the following which considers

the effect of the angle of incidence and the rigidity ratios (λ and η) on the equivalent bending

rigidity and the Cauchy number.

The rigidity of a flexible rod comes from a contribution of the foam matrix and reinforcement

fibers : (EI)eq = (EI)matrix + (EI)fiber . (3.30)

For the configuration shown in Fig. 3.3, in the undeformed case and based on the parallel

axis theorem, the equivalent bending rigidity is written as :

(EI)eq = (EI)matrix +Ef nf∑
1

If,0 +Af(r sinψ0)2 . (3.31)

where r is the radial distance of each fiber from the rod’s centerline, Af is the fiber sectional

area, nf is the number of fibers and If,0 is the second moment of area of each fiber around its

neutral axis. Since the fibers are very thin relative to the rods, EfIf,0 is negligible. Therefore

the bending rigidity around the two directions of the material frame can be approximated

as :

(EI)y ≈ (EI)matrix , (3.32)

(EI)x ≈ (EI)matrix +Ef nf∑
1

Afr
2 . (3.33)

By subtracting Eq. (3.32) from Eq. (3.33) and introducing the result into Eq. (3.31), the

equivalent bending rigidity can be written as :

(EI)eq = (EI)y + [(EI)x − (EI)y] sin2ψ0 , (3.34)

where [(EI)x−(EI)y] sin2ψ0 is the contribution of the reinforcement fibers in the equivalent

bending rigidity. This could be an improved definition of the bending rigidity to construct the

Cauchy number. However, according to Eq. (3.18) the reinforced rod twists proportionally
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to :

ζ = (EI)x − (EI)y
GJ

= η
λ
(1 − λ) . (3.35)

As a result, the equivalent bending rigidity of the rod varies with the twist angle. When

the rod bends in the flow, it also reorients to bend in its most flexible direction by aligning

the x-direction of the material frame with the flow. Therefore the angle of incidence at each

section of the rod may become smaller than the initial angle of incidence ψ0. This decreases

the contribution of the reinforcement fibers in the bending rigidity and consequently reduces

the overall bending rigidity of the rod. We therefore propose the following ansatz for an

improved equivalent bending rigidity definition :

(EI)eq = (EI)y + [(EI)x − (EI)y] sin2ψ0

1 + ζβ , (3.36)

where β > 0 is an exponent to be defined. In Eq. (3.36), the bending-torsion coupling para-

meter ζ varies the contribution of the reinforcement fibers in the equivalent bending rigidity.

If ζ ≪ 1, the rod is rigid in torsion and the correction found in Eq. (3.34) holds. If ζ ≫ 1, the

rod twists freely, it reorients under the slightest load to bend in its most flexible direction and(EI)eq ≈ (EI)y. Assuming small deformations, the curvatures κx and κy are approximated

as :

κx = d2 (weq sinψ0)
ds2

, (3.37)

κy = d2 (weq cosψ0)
ds2

, (3.38)

where weq is the deformation in the flow direction due to a uniform pressure. This deformation

is calculated from linear Euler-Bernoulli beam theory as :

weq = pns2[6L2 − 4Ls + s2]
24(EI)eq . (3.39)

The equivalent bending rigidity is a bulk property. By substituting Eq. (3.37), (3.38) and

(3.39) in Eq. (3.18) and rewriting it in integral form, we obtain the average twist :

τavg = 1

2
ζ sin (2ψ0)∫ L

0
(d2weq
ds2

)2

ds

= pn2
40
L5 sin (2ψ0) ζ[(EI)eq]2 , (3.40)

Equation (3.40) shows that for a given load, the average twist remains constant if (EI)eq ∝
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ζ1/2 which leads us to choose β = 1/2. An equivalent Cauchy number is then defined as :

C∗
Y = CD ρU2L3d

2(EI)eq , (3.41)

The variation of R with CY (Eq. (3.19)) for the three flexible rods (Table 3.2) and for a

range of angle of incidence from 0 to 90 is presented in Fig. 3.10a. As seen in the figure, the

reconfiguration number is approximately 1 for all three specimens for small Cauchy numbers,

which means that the drag is close to that of the equivalent rigid bar. Starting from mid-

range Cauchy numbers between CY ≈ 5 and 20, the reconfiguration number decreases with

increasing Cauchy number. The maximum reachable Cauchy number is less than 100 for

the rods R1 and R2 due to the limitation of the test equipment. The slope of the log-log

plot is therefore less than −0.33 for these two specimens. The variation of R with CY using

the mathematical model is presented as lines for R3 in Fig. 3.10a. It is found that all the

experimental drag measurements fall between the two limiting curves for ψ0 = 0○ and 90○.
However, the measurements for the three specimens do not collapse on a single curve.

Figure 3.10b presents the dimensionless drag measurements for all three specimens obtained

using the equivalent Cauchy number (Eq. (3.41)) for the range of angles of incidence from

0 to 90. The results show that the reconfiguration number is approximately 1 for small

equivalent Cauchy numbers and starts to diverge from R = 1 near C∗
Y ≈ 2 to 8. It decreases

CY C∗Y

R

0.1
1

1

110 10100 100

R∝ CY
−0.33 R∝ C∗Y −0.33
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Model-ψ0 = 90

a b

R1 R1

R2 R2

R3 R3

-0.33 -0.33

Figure 3.10 The reconfiguration number of the three specimens (table 3.2) for a range of
ψ between 0○ and 90○ plotted versus a) the Cauchy number and b) the equivalent Cauchy
number to find a generic representation of the drag scaling. The Mathematical models for
ψ0 = 0○ and ψ0 = 90○ are presented as lines.
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with increasing equivalent Cauchy number and a constant power law exponent is reached for

large equivalent Cauchy numbers. In the figure, the R−C∗
Y plots of the mathematical model

for specimen R3 for ψ0 = 0○ and 90○ are presented for reference. As shown, all experimental

results effectively collapse onto a single curve regardless of test conditions. The single curve,

representing the two-dimensional bending deformation for ψ0 = 0○, can quantify the drag

scaling of bending and twisting rods independently of their geometry, material properties

and angle of incidence. This means that using the right set of dimensionless numbers (R
and C∗

Y ), the three-dimensional reconfiguration of a rod and the bending deformation of a

beam are similar, both governed by a single parameter (C∗
Y ). In this representation, the Vogel

exponent of a bending-twisting rod approaches the Vogel exponent of the two-dimensional

bending case, −0.66.

To have a better understanding of the torsion of the rod along its length, the variation of

the dimensionless twist (τ̄) along the dimensionless length of the rod is studied using the

mathematical model. The dimensionless twist represents the variation of the sectional angle

of incidence. Figure 3.11 shows the variation of the dimensionless twist for specimen R3 along

its length for small to very high equivalent Cauchy numbers and two angles of incidence. This

figure is an illustration of the magnitude of torsion at each section of the rod. By definition,

the area under each curve in Fig. 3.11 gives the total twist angle of the rod’s tip relative to

its root.

The figure shows that most of the torsion occurs close to the fixed end of the rod. In addition,

as the equivalent Cauchy number increases, the generated torsion also increases close to the

fixed end. The reason being that as the Cauchy number increases, sections of the rod far

from the fixed end become aligned with the flow. As a result, no significant moment arm is

created about these sections. At the same time, this aligned part of the rod acts as a moment

arm for the sections close to the fixed end. As the equivalent Cauchy number increases, more

sections become aligned with the flow increasing the torsion near the fixed end. In general, τ̄

at the rod’s root increases with the equivalent Cauchy number due to increasing fluid loading

and out-of-plane deformation. For ψ0 = 45○, the maximum dimensionless twist is found at

the fixed end of rod. However, for ψ0 = 90○, the location with the maximum torsion is found

within the first quarter of the rod ; the maximum torsion location then moves towards to

the fixed end as the equivalent Cauchy number increases. The reason is probably due to the

non-uniform out-of-plane deformation of the rod for ψ0 = 90○ (see for instance Fig. 3.5). As

seen in Fig. 3.5, generally the rod has an out-of-plane deformation towards the right side.

However, for ψ0 = 90○ and U = 30 ms−1 (≈ C∗
Y = 30), the rod deforms to the left up to a

certain point along its length and beyond this point, it twists and bends to the right. Thus,

for ψ0 = 90○, τ̄max is found close to this turning point rather than the root. This also explains
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the reduction of the torque for ψ0 = 90○ compared to the smaller angles in Fig. 3.8 since the

torque at the root in ψ0 = 90○, is not the maximum twisting moment along its length.

To better understand the rod’s twist, the following torsion length (`) is proposed :

` = GJψ0

MzL
, (3.42)

where ψ0 is in radians. The torsion length ` is the dimensionless length the rod would need

to twist by an angle ψ0 under the torque Mz measured at its root. Figure 3.12 shows the

variation of the torsion length of specimen R3 with increasing equivalent Cauchy number on

a logarithmic scale. For small CY , the torsion length is large and thus the rod does not twist

to align itself with the flow. With increasing equivalent Cauchy number, the torsion length

decreases, corresponding to an increase in torsion. As CY is increased further, ` becomes

smaller than unity. The rod can thus align its most flexible direction with the flow and

the torsion increases and becomes more localized at the root. This is due to the increasing

out-of-plane deformation and moment arm magnitude which lead to a larger torque. Once

the rod is twisted and aligned with the flow, the rod shows a reconfiguration similar to a

bending beam. For ψ0 = 90○, the torsion length is infinite prior to the bifurcation because

the deformation is symmetric, but the torsion length decreases suddenly beyond a critical

equivalent Cauchy number. Once the bifurcation occurs, a moment arm is created which leads

to a larger torque and smaller torsion length. As seen in Fig. 3.12, in the asymptotic regime

of large deformation, the torsion length scales as ` ∝ C∗
Y
−0.33. This is interesting because as

we observed in Fig. 3.10, the same scaling emerges for R as a function of C∗
Y .
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Figure 3.11 Mathematical demonstration of torsion of R3 along its length by plotting the
variation of τ̄ with s̄, C∗

Y and ψ0.



51

ℓ∝ C∗Y −0.33

C∗Y

0.1

1

1

10

10

100

100

ℓ

ψ0 = 15
ψ0 = 30
ψ0 = 45
ψ0 = 60
ψ0 = 75
ψ0 = 89
ψ0 = 90

Figure 3.12 Experimental evaluation of the torsion length of specimen R3 varying with the
equivalent Cauchy number. The mathematical model is provided as lines for comparison.

3.4 Conclusion

The three-dimensional reconfiguration of plants was studied using flexible rods with structural

anisotropy. The work aims to answer the following question : What is the effect of torsion

on reconfiguration ? It was shown that reinforcing the flexible rods in one direction leads to

coupling between torsional and bending deformation. This allowed us to benefit from the

simplicity of circular rods while being able to alter the bend-twist coupling. As observed in

the experiments, the drag scaling of a flexible rod diverges from a U2 relation with increasing

magnitude of deformation.

It was shown that the direction of reinforcement with respect to the flow (ψ0) is a key

parameter in the effective bending rigidity of the rod. Based on this parameter, the definition

of the Cauchy number was modified by introducing an equivalent bending rigidity. It was

concluded that the equivalent Cauchy number and the reconfiguration number effectively

characterize the three-dimensional reconfiguration of the rod as a beam undergoing a two-

dimensional bending.

The Vogel exponent of the reconfiguring rod approaches −0.7 which is the exponent of ben-

ding beams and plates considering their weight. This shows that the three-dimensional re-

configuration of the rod becomes approximately two-dimensional in the regime of very large
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deformations. It is concluded that in the large deformation regime, torsion has no effect on

the Vogel exponent since the exponent was found to be independent of the angle of incidence.

A mathematical model was developed by coupling the Kirchhoff theory of rods with a semi-

empirical drag formulation. The model predicted that the Vogel exponent reaches −0.7

for high Cauchy numbers independently of the angle of incidence, the rod’s material and

geometrical characteristics. A pitchfork bifurcation was also predicted for ψ0 = 90○. However,

due to imperfect symmetry and flow perturbations in the experiments, the mathematical

model overestimated the critical velocity at which bifurcation occurs. It would be interesting

to evaluate and implement the imperfection of the boundary conditions to obtain a better

prediction of the bifurcation.

While this paper focused on the effect of torsion on the reconfiguration of flexible rods, stu-

dying the three-dimensional reconfiguration of slender lifting surfaces might be of interest. In

addition, the present work considers a rod which is initially undeformed. It would be of inter-

est to study the reconfiguration of a rod with a pre-twisted material frame along its length.

This case can be found in the structure of many plants with chiral morphology.
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CHAPTER 4 ARTICLE 2 : BENDING AND TORSIONAL

RECONFIGURATION OF CHIRAL RODS UNDER WIND AND GRAVITY

M. Hassani, S. Molgat Laurin, N. W. Mureithi and F. P. Gosselin, 2017, published in the

journal of Extreme Mechanics Letters.

Abstract

We seek to understand the effect of chirality on the reconfiguration and the self-buckling

strength of chiral plants subjected to wind and gravity by experimental and theoretical mo-

deling of their large deformation. Chiral rod and ribbon specimens are made of polyurethane

foam reinforced with nylon fibers and ABS plastic. Wind tunnel tests are performed to eva-

luate the effect of chirality on flow-induced reconfiguration. A theoretical model is developed

by coupling the Kirchhoff rod theory with a semi-empirical formulation for aerodynamic

loading evaluation. A range of geometrical, material and flow parameters are studied in

the experimental and theoretical model. It is shown that for rods, chirality decreases the

maximum root bending moment. For ribbons, chirality leads to a trade-off with higher self-

buckling strength but also higher root bending moment. Moreover, chirality reduces the effect

of the loading direction on deformation. Chirality plays an important structural role in the

interaction of slender structures with fluid flow and gravity loading.

4.1 Introduction

In general, plants and vegetation are flexible and are prone to significant deformation under

fluid loading, their own weight or precipitation load. The deformation of plants which usually

leads to a drag reduction, is termed reconfiguration (Vogel, 1989). The reconfiguration of

plants has been studied fundamentally by modeling them as simple mechanical structures

such as bending beams (Luhar and Nepf, 2011), fibers (Alben et al., 2002, 2004) and plates

(Gosselin et al., 2010; Gosselin and de Langre, 2011; Schouveiler and Boudaoud, 2006). Al-

though these aforementioned models can simplify the two-dimensional deformation of plants,

they are not representative for all forms of reconfiguration. For instance, many plants grow

with a chiral morphology which cannot be modeled by a simple bending beam.

Chirality can be found in many biological and artificial structures, from DNA and several

types of plants (Zhao et al., 2015) to some polymers (Ye et al., 2010) and nano-materials

(Chen et al., 2005; Zhao et al., 2014). Many aquatic plants such as cattail, threeleaf arrowhead,
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sweet flag, bur-reed (Zhao et al., 2015) and terrestrial plants such as daffodil and pancratium

possess chiral leaves or stems (Schulgasser and Witztum, 2004). In general, the evolutionary

aspect of chirality in biological structures has been discussed in many studies. For instance,

it is of great interest to know whether the chiral morphology of DNA was a requirement or an

outcome of evolution (Lunine et al., 1999). Moreover, it has been claimed in some studies that

erect plants with chiral morphology are less vulnerable to distributed transverse loading and

Euler buckling (Zhao et al., 2015; Schulgasser and Witztum, 2004; Rowlatt and Morshead,

1992). The latter may be evidence of adaptation of this type of plants to their environment

through a long evolution process.

Chiral structures have been studied mathematically using different theories such as Timo-

shenko pre-twisted beams (Zhao et al., 2015; Schulgasser and Witztum, 2004), Kirchhoff rods

(Zhao et al., 2014; Goriely and Shipman, 2000; Wang et al., 2012), and Cosserat rods (Wang

et al., 2014). However, the mathematical study of the large deformation of chiral plants ben-

ding and twisting in flow is missing from the literature. Therefore, the goal of this work is to

study the reconfiguration mechanisms of chiral plants subjected to wind and gravity through

a combination of chiral rod simulations and wind tunnel experiments. We seek to understand

the effect of chirality on the ability of plants to withstand the fluid loading and their own

weight.

4.2 Methodology

4.2.1 Experimental Procedure and Materials

The tests on flexible specimens with chiral morphology were performed in a wind tunnel

located at École Nationale d’Aérotechnique (Saint-Hubert, QC, Canada). The wind tunnel

has a square test section of 60×60 cm2 and can produce a maximum air speed of 38 ms−1. As

detailed in (Hassani et al., 2016), a six-axis force transducer (ATI GAMMA, ATI Industrial

Automation, Apex, North Carolina) was used in the present experiments to measures the

aerodynamic forces and moments in three orthogonal directions. It can measure transverse

forces, axial forces and moments up to 32 N, 100 N and 2.5 Nm, respectively. The resolution

of the force transducer is 6.25× 10−3 N and 12.5× 10−3 N for the transverse and axial loading

and 0.5×10−3 Nm for moments. The force transducer was fixed to the top of the wind tunnel

test section. The specimens were clamped to the force balance at one end using a mast to

subtract the effect of boundary layer on the tunnel wall from the measurements. In each test,

the root incidence angle of a specimen was fixed within a range of ψ0 = 0○ to 90○ or 90○ to

180○, then the flow velocity was increased from 3.5 ms−1 to more than 30 ms−1 depending



55

on the stability of the specimen. A Labview code was used to acquire and save aerodynamic

forces and moments.

Two types of flexible specimens were used in the experiments : circular rods and flat ribbons.

The circular rods are made using polyurethane foam and are internally reinforced with nylon

fibers as described in (Hassani et al., 2016) and Chapter 5. The fibers are positioned along one

diameter of a cylindrical mold and twisted around its centerline. Foam is poured and and left

to expand in the closed mold, then cure over several hours. As a result, the rod is conferred

with anisotropic bending rigidity (EI)y/(EI)x < 1 and a natural twist (Fig 4.1a). To evaluate

the uniformity of foam rods, a specimen was cut to smaller pieces of equal size. Measuring the

weight of pieces showed that the density of the foam varies by approximately seven percent

along the length of a rod, which is uniform enough for the purpose of this study. Moreover,

the foam rigidity is significantly smaller than that of fibers therefore the effect of this non-

uniformity is minimized. To maintain the uniformity of fibers inside the foam, they were kept

apart with small spacers to ensure a uniform twist and a constant distance between them. A

circular section was used in order to simplify the fluid loading evaluation in the theoretical

model. The flat ribbons, on the other hand, have intrinsic directional rigidity due to their

greater-than-unity width to thickness ratio (Fig 4.1b). They are made of ABS plastic and

twisted along their length with a range of intrinsic twist angles τ0. Annealing at 100 C for

several hours was performed to make the twisted state of the rods their stress-free state (see

Chapter 5 for more detail).

The anisotropic bending rigidity of the rods and the ribbons form a material frame (ex,ey,ez)
where ey is along the more rigid direction (Fig 4.1c and d) and ez is tangent to the centerline

(Fig 4.1e). For a chiral ribbon, fluid loading depends on the alignment of its sections with

respect to the flow direction i.e. the local angle of incidence ψ (Hassani et al., 2016). The

directional rigidity gives rise to a three-dimensional deformation in asymmetric bending. In

the tests, the clamped end of each specimen was rotated around its centerline to have different

values of incidence angle at the clamped end ψ0. Eleven specimens, as listed in Table 4.1,

were made for a range of intrinsic twist angles τ0 varying from 0○ to 720○. The specimens

named C are circular reinforced rods made of polyurethane foam and the specimens named S

are ribbons made of ABS plastic. Three-points bending tests were performed with a universal

testing frame to evaluate the bending rigidity of the rods and ribbons. The Young’s modulus

for all ribbon specimens is the same. For the circular rods, it is assumed that the Young’s

modulus of the foam part has a linear relation with the rod’s density. The maximum and

minimum bending rigidity for a circular rod with τ0 = 0○ was measured and the rigidity of

the other circular rods was reconstructed based on the aforementioned assumption.
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Figure 4.1 a) Schematics of chiral rods with an intrinsic twist angle varying from 0○ to 360○
as well as a real rod specimen. b) Schematics of chiral ribbons with an intrinsic twist angle
varying from 0○ to 360○ a well as a real twisted ribbon. c) Section of a chiral rod and d)
section of a chiral ribbon both with an incidence angle of ψ. e) Schematic of a chiral ribbon
deformed in the flow with a moving material frame attached to its centerline.

Table 4.1 Physical properties of tested specimens

Specimen L (cm) d (cm) t (cm) (EI)y(Nm2) (EI)y
GJ

(EI)y(EI)x Weight (g) Twist τ0
C1 26 1.9 - 0.0036 1.25 0.16 25 0○
C2 26 1.9 - 0.0036 1.25 0.16 25 90○
C3 26 1.9 - 0.0036 1.25 0.16 25 180○
C4 26 1.9 - 0.0029 1.25 0.13 20 270○
C5 26 1.9 - 0.0029 1.25 0.13 20 360○
C6 26 1.9 - 0.0029 1.25 0.13 20 720○
S1 40 2.5 0.12 0.010 0.675 0.0022 13 0○
S2 40 2.5 0.12 0.010 0.675 0.0022 13 90○
S3 40 2.5 0.12 0.010 0.675 0.0022 13 180○
S4 40 2.5 0.12 0.010 0.675 0.0022 13 270○
S5 40 2.5 0.12 0.010 0.675 0.0022 13 360○

4.2.2 Theoretical Model

The three-dimensional reconfiguration of chiral structures is modeled theoretically using the

Kirchhoff theory of rods. In the model, a rod is represented by a deforming three-dimensional
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and inextensible curve with the assumption of small strains (Dill, 1992). It is also assumed

that each cross section of the rod remains planar and normal to the centerline. The rod

is attached to a fixed coordinate system (eX ,eY ,eZ) from one end and moving material

frames (ex,ey,ex) are attached to its centerline (Fig 4.1e). Bending moments and the twisting

moments are proportional to the curvatures, (κx , κy) and the twist (τ), respectively :

Mx = (EI)xκx , My = (EI)yκy , Mz = GJτ , (4.1)

where (EI)y and (EI)x are the bending rigidities and GJ is the torsional rigidity. In this

model, the natural twist and curvature of a rod is represented by κx,0, κy,0 and τ0. As detailed

in (Hassani et al., 2016), the equilibrium Kirchhoff equations are :

dNx

ds
= Nyτ − Tκy − Px −Wx , (4.2)

dNy

ds
= Tκx −Nxτ − Py −Wy , (4.3)

dT

ds
= Nxκy −Nyκx − Pz −Wz , (4.4)

(EI)xdκx
ds

= (EI)y(κy − κy,0)τ −GJ(τ − τ0)κy +Ny , (4.5)

(EI)y dκx
ds

= GJ(τ − τ0)κx − (EI)x(κx − κx,0)τ −Nx , (4.6)

GJ
dτ

ds
= (EI)x(κx − κx,0)κy − (EI)y(κy − κy,0)κx , (4.7)

where Nx and Ny are shear forces and T is the internal tensile force. Moreover, P is the

external loading and W = mgL−1 is the weight per unit length in the Z-direction, both

decomposed in the three directions of the material frame. The material frame (ex,ey,ez) is

related to the fixed frame (eX ,eY ,eZ) through the direction cosine matrix [c] :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ex

ey

ez

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=
⎡⎢⎢⎢⎢⎢⎢⎣
c11 c12 c13

c21 c22 c23

c31 c32 c33

⎤⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
eX

eY

eZ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (4.8)

The direction cosines represent the rotation of the material frame and they are the cosines

of the angles between a direction of the material frame and the directions of the fixed frame.

The spatial derivative of a direction of the material frame with respect to the arclength s is

(Audoly and Pomeau, 2010) :
dei
ds

= Ω × ei , (4.9)
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where ei is a direction of the material frame and Ω is the Darboux vector :

Ω = κxex + κyey + τez . (4.10)

Substituting Eq.(4.10) in Eq.(4.9) leads to a system of nine equations, six of which are

independent. In the model, the six independent spatial derivative equations are coupled with

the Kirchhoff equations (Eq.(4.2) to Eq.(4.7)) to define the full state of the deformed rod.

A semi-empirical formulation of the aerodynamic force on a rod is also used to evaluate the

loading on the deformed specimens (Hassani et al., 2016; Taylor, 1952). In this method, the

local lift and drag of a rod element depends only on the element’s orientation and the normal

component of the flow velocity to the centerline at the element. The flow velocity is taken to

be in the X-direction :

U = UeX = Uzez +Unen , (4.11)

where U is the magnitude of the flow velocity and en is the direction normal to the centerline

in the XZ-plane. The local angle θ between the centerline of the rod and the flow velocity

direction is :

cos θ = ez.eX = c31 , sin θ = √
1 − c231 . (4.12)

Therefore, the component of flow velocity normal to the centerline is :

Un = U√
1 − c231 . (4.13)

The friction drag along the centerline produced by Uzez is not considerable therefore we

neglect it in the model. The drag normal to the centerline per unit length is in the direction

of the normal velocity :

D = 1

2
ρdCDUn

2en , (4.14)

where CD is the drag coefficient. Similarly, the normal lift force per unit of length is written

as :

L = 1

2
ρdCLUn

2el , (4.15)

where CL is the lift coefficient and el is the direction of the normal lift force. The direction

of the normal drag en is parallel to the projection of eX on the xy-plane :

en = eX − (eX .ez)∣eX − (eX .ez)∣ = c11ex + c21ey√
1 − c231 , (4.16)
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Similarly, the direction of the normal lift el is parallel to the projection of eY on the xy-plane :

el = eY − (eY .ez)∣eY − (eY .ez)∣ = c12ex + c22ey√
1 − c232 . (4.17)

By extending this approach, the normal lift and drag forces of a deformed ribbon element

δs can be evaluated locally by introducing the sectional drag and lift coefficients CD(s) and

CL(s) which depend on the local orientation of the rod. This is based on the assumption that

the cross section of rods and ribbons does not deform. To evaluate the sectional drag and lift

coefficients for ribbons whether chiral or straight, wind tunnel measurements are performed

on rigid straight metallic strips with a similar geometry and the same sectional aspect ratio√(Ix/Iy) for a range of angles of incidence ψ0. Consequently, the variation of CD and CL

as a function of the angle of incidence is obtained for a rectangular section. In addition, the

variation of the sectional angle of incidence for a deformed ribbon, as a function of the arc

length s, is calculated in the mathematical model. Therefore, CD and CL as a function of

the arc length s can be evaluated. For a circular rod, CD(s) is a constant and CL(s) is null.

It is assumed that for Reynolds numbers within the range of 103 to 105, the drag and lift

coefficients do not change with flow velocity.

The external loading P in Eq.(4.2) to Eq.(4.4) for a rod in fluid flow is the resultant of the

drag and lift forces. By decomposing the external loading in the directions of the material

frame we have :

Px = D.ex +L.ex , (4.18)

Py = D.ey +L.ey , (4.19)

Pz = 0 . (4.20)

The angle between the x and y-components of the normal drag is the sectional angle of

incidence. Therefore, using Eq.(4.18) and Eq.(4.19)

ψ = arctan(−c21
c11

) . (4.21)

In the model we assume that the positive rotation is clockwise thus a negative sign is imposed

in Eq.(4.21).
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Dimensionless Equations

Dimensionless Kirchhoff equations of a deforming rod are written using the Cauchy number :

CY = ρU2L3d

2(EI)y . (4.22)

The Cauchy Number is the ratio of the fluid force to the minimum bending rigidity of the

flexible body (Gosselin and de Langre, 2011; Chakrabarti, 2002; de Langre, 2008). The follo-

wing dimensionless parameters are also introduced in the Kirchhoff equations (Hassani et al.,

2016) :

s̄ = s/L κ̄x = κxL κ̄y = κyL τ̄ = τL ,

N̄x = NxL2

(EI)y N̄y = NyL2

(EI)y T̄ = TL2

(EI)y W = mgL2

(EI)y .
By introducing the aforementioned dimensionless parameters in Eq.(4.2) to Eq.(4.7), dimen-

sionless Kirchhoff equations are written as follows :

dN̄x

ds̄
= N̄y τ̄ − T̄ κ̄y − P̄x −Wx , (4.23)

dN̄y

ds̄
= T̄ κ̄x − N̄xτ̄ − P̄y −Wy , (4.24)

dT̄

ds̄
= N̄xκ̄y − N̄yκ̄x − P̄z −Wz , (4.25)

dκ̄x
ds̄

= λ(κ̄y − κ̄y,0)τ̄ − (λ
η
)(τ̄ − τ̄0)κ̄y + λN̄y , (4.26)

dκ̄x
ds̄

= (1

η
)(τ̄ − τ̄0)κ̄x − (1

λ
)(κ̄x − κ̄x,0)τ̄ − N̄x , (4.27)

dτ̄

ds̄
= (η

λ
)(κ̄x − κ̄x,0)κ̄y − η(κ̄y − κ̄y,0)κ̄x , (4.28)

where the dimensionless external forces are

P̄x = CYCD(s)√(1 − c312)c11 +CYCL(s)1 − c312
1 − c322 c12 , (4.29)

P̄y = CYCD(s)√(1 − c312)c21 +CYCL(s)1 − c312
1 − c322 c22 . (4.30)
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Dimensionless parameters λ and η are the bending rigidity ratio and the twist-to-bend ratio,

respectively (Hassani et al., 2016) :

λ = (EI)y(EI)x , (4.31)

η = (EI)y
GJ

. (4.32)

Since the dimensionless weight of the rod is in the Z-direction of the fixed frame, it is

decomposed in the three directions of the material frame as :

Wx =W .c31 , (4.33)

Wy =W .c32 , (4.34)

Wz =W .c33 . (4.35)

The system of equations including Eq.(4.23) to Eq.(4.28) coupled with Eq.(4.9) is solved using

MATLAB as a boundary value problem using the bvp4c solver. As explained in (Hassani et al.,

2016), a continuation approach is used to solve the system of equations. In the method, an

initial guess for all twelve variables is considered. The solution is then evaluated step by

step for an increasing Cauchy number. This approach is continued up to a higher limit of

Cauchy number i.e. 1000. However, to study the cases including a static instability such

as buckling, the governing equations are solved using AUTO (Doedel and Kernevez, 1986).

This software package solves problems which can include bifurcations. In the software, a

continuation parameter is considered and the governing equations are solved for a range of

that parameter. For this buckling problem, the dimensionless weight W is the continuation

parameter. A cross-comparison has been done for cases without bifurcation between the

MATLAB code and the AUTO solver which show identical results to seven significant figures

(Hassani et al., 2016).

4.3 Results and Discussion

4.3.1 Mathematical Model Verification

A comparison has been performed in (Hassani et al., 2016) on the three-dimensional deformed

shape of non-chiral rods, obtained from wind tunnel tests and the present mathematical

model. Herein, only the validation of the chirality component in the mathematical model is

investigated. To validate the mathematical model, the numerical and experimental results for

the deformation of circular chiral rods with different τ0 are presented in Fig. 4.2a. In the test,
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the rods were clamped from one end horizontally, and deforming under their own weight.

Each specimen was rotated around its centerline to have different values of incidence angle

at the clamped end ψ0. In the figure, the tip vertical deflection is plotted as a function of

the incidence angle for three different intrinsic twist angles. Markers represent the measured

values and curves represent the mathematical prediction. Results show that the maximum

vertical deflection and consequently the effective bending rigidity varies with the incidence

angle ψ0. Moreover, by increasing the intrinsic twist angle, the deflection of the rods becomes

less dependent upon the direction of loading. The mathematical model shows good agreement

with the experimental results. Another verification is carried out by comparing the measured

drag and lift coefficients of a rigid twisted rod (τ0 = 90○) with the mathematical model which

is provided in Chapter 5.

4.3.2 Buckling

It has been noted that chirality is beneficial to plants since it increases their strength against

buckling under their own weight or that of their head organ (Zhao et al., 2015; Schulgasser

and Witztum, 2004). We study the buckling of chiral ribbons and rods under their own

weight which are similar to upright slender plants without a head organ such as a cattail

leaf. Figure 4.2b illustrates the effect of chirality on the relative critical length of buckling

Lr =Lcr/Lcr,0 where Lcr,0 is the critical length of a non-chiral rod or ribbon (τ0 = 0○) buckling

in the plane of least resistance (ψ0 = 0○). It should be mentioned that according to our

mathematical modeling and also the Euler buckling theory, Lcr,0 ≈ 3
√

7.837(EI)y/γ for a self

weight buckling case where γ is the weight per unit length. In the figure, Lr is plotted

for several bending rigidity ratios and for a range of intrinsic twist angle from 0○ to 720○.
Each curve corresponds to a value of the bending rigidity ratio while the other structural

parameters are kept constant. It is shown that increasing the intrinsic twist angle increases the

critical buckling length meaning that the buckling strength is increased. Moreover, decreasing

the bending rigidity ratio or equivalently increasing the sectional aspect ratio, increases the

influence of chirality on the critical buckling length. This means that chirality is more effective

for ribbons with a small λ than rods with a circular section and large λ. In addition, the twist-

to-bend ratio η does not affect the critical buckling length.

4.3.3 Drag and Lift Coefficients

As mentioned before, for the mathematical model it is necessary to evaluate the sectional

drag and lift coefficients of the rods as a function of the sectional angle of incidence. For

circular rods, the drag coefficient of an equivalent rigid rod is measured as CD = 0.95 which
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Figure 4.2 a) Static bending test for chiral circular rods. The rods are fixed horizontally
from one end and their maximum vertical deflection is plotted vs. the angle of incidence at
the fixed end. Markers represent the experimental results. b) The effect of chirality and the
bending rigidity ratio of rods on their critical buckling length.

is used as the sectional drag coefficient. For the ribbons, the drag and lift coefficients of an

equivalent flat metallic strip were measured for a range of incidence angles. To simplify the

model, the average of the drag and lift measurements for Re = 10000 and 20000 were fitted

using trigonometric functions (see Chapter 5) :

CD(ψ) = 1.37 ∣cos(ψ)∣ + 0.05 , (4.36)

CL(ψ) = 0.80 sin(2ψ) . (4.37)

The flat metallic strip possessed the same dimensions as the flexible ribbons (400×25.4 mm).
Moreover, the measured pitching moment was found to be very small with respect to the

torsional rigidity of ribbons therefore it was neglected in the mathematical model.

4.3.4 Drag of Flexible Specimens

Herein, the wind tunnel results represent the time-averaged values of fluctuating loads mea-

sured over 30 seconds. The time-averaged values exhibit a standard deviation of less than

10 percent, or else are deemed unacceptable and are discarded. At high velocities, the rods

and the ribbons underwent large amplitude vibrations possibly due to turbulence buffeting,

although some flutter or galloping phenomena cannot be ruled out. For the lowest flow velo-

city in the experiments, the vortex shedding frequency is estimated to 40 Hz for a Strouhal

number of 0.2. This frequency is largely beyond the fundamental frequency of the tested

ribbons and circular rods which is of the order of 2 Hz (Hassani et al., 2016). In the results
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presented here, only the static deformations of the rods and ribbons are considered.

In reality, plants can be subjected to wind loading from any direction. The present work

shows that the drag on a specimen is highly dependent on the incidence angle. Figure 4.3a

and Fig. 4.3b show rose plots of drag force on chiral circular rods at U = 13 ms−1 and ribbons

at U = 15 ms−1, respectively. On the rose plots, the radial distance of points indicates the drag

loading magnitude as a function of the angle of incidence, i.e. the loading direction. In the

figures, each curve represents a simulation for a fixed value of the intrinsic twist angle while

symbols represent its equivalent experimental data. The aforementioned flow velocities were

selected for large deformations with a maximum number of valid wind tunnel tests. A range

of 90○ for ψ0 was tested in the wind tunnel. However, depending on the initial alignment and

the handedness of chiral specimens, either the range of ψ0 = 0○ to 90○ or ψ0 = 90○ to 180○ was

measured. As seen, the drag force strongly varies with the wind direction for a non-chiral

rod and ribbon. As the intrinsic twist angle increases, both plots approach a perfect circle

meaning that the drag becomes less direction dependent. It should be noted that some of

the experimental data are missing in the plots because they were not acceptable due to a

standard deviation larger than 10 percent.

To better understand the effect of chirality, for each intrinsic twist angle, we vary the incidence

angle to maximize and minimize drag. Figure 4.3c and Fig. 4.3d show the mathematical

prediction of these extremums for chiral circular rods and ribbons for a range of the intrinsic

twist angle τ0 from 0○ to 720○. In these figures, the relative drag of rigid circular rods as well

as the maximum and minimum drag of equivalent rigid ribbons are provided for reference.

In the mathematical model, the relative drag of chiral rods and ribbons with a specific chiral

angle τ0, is evaluated for a range of ψ0 from 0○ to 360○. The maximum and minimum relative

drag can be found at any angle in this range depending on τ0. The relative drag force is

calculated as Dr =D/D0 where D0 is the drag of a rod with τ0 = 0○ and ψ0 = 0○. The markers

represent the experimental drag data regardless of the incidence angle. The relative drag force

of a non-chiral rod is maximum at ψ0 = 90○ and minimum at ψ0 = 0○. On the other hand,

the relative drag force of a non-chiral ribbon is maximum at ψ0 ≈ 45○ and the minimum at

ψ0 = 90○. The reason is that the projected area of a circular rod does not change with ψ0 but

the projected area of a non-chiral ribbon is minimum at ψ0 = 90○ and maximum at ψ0 = 0○.
This is valid only for non-chiral rods and ribbons and it is not necessarily applied to chiral

ones. In Fig. 4.3c, the flow velocity is U = 13 ms−1 which is equivalent to CY = 10 where

reconfiguration is important. For the mathematical model, the average mechanical properties

of the circular rods in Table 4.1 were used. Moreover, a constant CD = 0.95 was considered.

As seen, the maximum relative drag decreases and the minimum relative drag increases. This

means that the difference between the maximum and the minimum drag decreases indicating
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that the drag becomes direction independent for high intrinsic twist angles. This is similar

to the static bending results presented in Fig. 4.2a which shows that the chirality makes the

deformation of a rod less dependent on the loading direction. It can also be found in Fig. 4.3c

that chirality is beneficial for circular rods since it decreases the fluid loading. Higher drag

forces usually lead to higher stresses therefore chirality should be helpful for plants with

circular or semi-circular sections in reducing the probability of structural failure.

Fig. 4.3d presents the relative drag force on chiral ribbons for U = 15 ms−1 or CY = 20. It

is seen that the minimum and the maximum relative drag increase up to a value of τ0 of

90○ and 180○, respectively. Beyond 180○, the maximum drag decreases. Similarly to Fig. 4.3c,

the range between the maximum and the minimum drag values decreases with increasing

intrinsic twist angle. In addition, the drag of rigid ribbons also becomes less directional and

approaches an asymptotic value. Similarly, it was reported in (Cucuel, 2016) that the drag

coefficient of a rigid chiral ribbon approaches a constant value for very high twist angles.

The maximum and minimum drag of rigid ribbons exhibit a periodic variation with chirality.

This periodic variation is less pronounced for flexible ribbons. The reason is that in general,

the drag of flexible ribbons is less than rigid ones therefore the variation amplitude of their

maximum and minimum drag is also smaller. Moreover, flexible ribbons deform and become

aligned with the flow. This reduces the effect of chirality on their drag.

This trend is not present for circular chiral rods because it is related to the complex aerody-

namic loading on chiral ribbons. For a chiral cylinder, the aerodynamic loading is governed

by a single constant drag coefficient regardless of the intrinsic twist angle. In this case, the

structural effect of chirality governs the drag scaling. On the other hand, a chiral ribbon is

affected by both the structural and the aerodynamic aspects of the chiral morphology. The

competition between these two aspects of chirality leads to a more complex response in chiral

ribbons.

4.3.5 Curvature and Bending Moment

Chirality induces a non-uniform distribution of curvature along the length of the rod or rib-

bon. This is shown in Fig. 4.4 for ribbons using the mathematical model. The results are qua-

litatively similar for circular rods (not shown). In Fig. 4.4a, the deformed shape of a non-chiral

ribbon with ψ0 = 0○ under a terminal dimensionless bending moment M̄Y =MYL/(EI)y = 1.2

is shown. As expected, the deformation is uniform with a constant curvature. On the other

hand, Fig. 4.4b shows the deformed shape of a chiral ribbon with τ0 = 360○ under the same

loading. As indicated with small arrows, the deformed shape includes three regions of concen-

trated curvature which we call “nodes”. Moreover, the amplitude of deformation is smaller
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Figure 4.3 Rose plot of drag as a function of the intrinsic twist angle, τ0 and the incidence
angle, ψ for a) chiral circular rods with U = 13 ms−1 and b) chiral ribbons with U = 15 ms−1.
c) Maximum and minimum relative drag of chiral circular rods at U = 13 ms−1 and d)
chiral ribbons at U = 15 ms−1 among a range of incidence angles. Markers represent the
experimental data and lines show the mathematical prediction. The maximum and minimum
drag of equivalent rigid rods and ribbons are also provided for reference.

compared with a non-chiral ribbon because the overall effective bending rigidity is increased

due to the twist of the material frame along the centerline. To understand this, the total

curvature κt = √
κ2x + κ2y of weightless deforming ribbons under a terminal moment M̄Y = 1.2

with ψ0 = 0○ is presented as a contour plot in Fig. 4.4e. The contour shows the variation of

the total curvature along the ribbon’s length for a range of τ0 from 0○ to 720○. The nodes

can be recognized in the contour as the dark regions. For instance, for τ0 = 360○ we can

find three distinctive dark regions in the contour which represent three nodes. As seen, by

increasing the intrinsic twist angle, the number of nodes increases. Therefore, we say that
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chirality “discretizes” the deformation.

Figure 4.4c shows a non-chiral upright ribbon and Fig. 4.4d shows a chiral upright ribbon(τ0 = 360○) both deforming under wind and gravity with CY = 30 and ψ0 = 0○. Similarly to

the previous case, the non-chiral ribbon undergoes a smooth deformation while the deformed

chiral ribbon has two distinctive curvature nodes. Moreover, the deformation of the chiral

ribbon is smaller because its overall rigidity is higher due to chirality. Fig. 4.4f shows a contour

of the total curvature for upright ribbons in flow with the same aforementioned conditions.

Similarly to the case with a terminal moment, it is found that chirality “discretizes” the

deformation and the number of nodes increases with chirality. For instance, there are two

nodes for τ0 = 360○ at s̄ = 0 and 0.4 and four nodes for τ0 = 720○ at s̄ = 0, 0.25, 0.5 and 0.75.

An excessive turning moment may uproot a plant. To study the effect of chirality on the

maximum root bending moment of chiral plants, we model mathematically five cases as

described in Table 4.2 to cover a variety of structural and flow parameters. It should be

noted that a negative value for W indicates that the specimen is upright and a positive value

represents a buoyant one. The structural properties for the flexible ribbons and weightless
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Figure 4.4 Theoretical evaluation of the deformed shape of weightless ribbons under a terminal
moment with a)τ0 = 0○ and b)τ0 = 360○. Deformed shape of upright ribbons under the wind
loading with c)τ0 = 0○ and d)τ0 = 360○. Contour of the total curvature κt for e) weightless
chiral ribbons under a terminal moment and f) upright ribbons in the flow. The terminal
moment is M̄Y = 1.2, the Cauchy number is CY = 30 and ψ0 is null for all cases. Small arrows
show the curvature nodes on the deformed ribbons.
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Table 4.2 Physical properties of study cases

Case Section L (cm) d (mm) t (mm) (EI)y(Nm2) η λ W CY
Flexible Ribbon Rectangular 40 25.4 1.2 0.01 0.675 0.0022 −1.93 30

Ealgrass Rectangular 40 8 0.35 2.8e − 5 1 0.0019 20 30
Cattail leaf Rectangular 65 7.6 1.26 0.87e − 3 1 0.032 −6.6 30

Weightless Rod Circular 26 19 - 0.0033 1.25 0.16 0 30
Daffodil Stem Semi-circular 27 8.5 - 0.012 13.3 0.5 −0.92 30

rods are based on our experimental specimens. The structural properties of eelgrass (Zostera)

and daffodil stem are taken from (Luhar and Nepf, 2011; Abdelrhman, 2007) and (Etnier and

Vogel, 2000), respectively. It should be noted that the effect of the daffodil flower on top of the

stem is not modeled here. For the cattail leaf (Typha angustifoli), the values are the average

of measurements which we did on several leaves. Twelve mature leaves were collected from the

Voyageur Provincial Park (ON, Canada) in August, 2016. Three-points bending tests were

done on segments of the leaves to evaluate their bending rigidity, one day after being collected.

It was found that the bending rigidity of a cattail leaf decreases significantly from root to tip

mainly due to the reduction of its thickness. Therefore, the average of the bending rigidity,

width and thickness of multiple leaf segments was used in the mathematical model. Based

on present experiments on cattail leaves, the bending rigidity varies from 0.03×10−3 Nm2 for

the tip section to 3.9× 10−3 Nm2 for the root section. This shows two orders of magnitude of

change in the bending rigidity from tip to root. The average bending rigidity for the cattail

leaves is 0.87 × 10−3 Nm2. Moreover, λ varies for the tested cattail leaves from 0.0025 to 0.1

with an average of 0.032 (see Chapter 5 for more detail). Using the model, the maximum value

of the dimensionless bending moment M̄max computed over a range of incidence angles from

0○ to 180○ is plotted for the aforementioned cases in Fig. 4.5, where M̄ = L√M2
x +M2

y /(EI)y.
The plots illustrate the variation of M̄max at root as a function of the intrinsic twist angle

τ0. For the daffodil stem, an aerodynamic model similar to a circular rod is used although

in reality, the cross section is semi-circular or elliptic. Moreover, the bending rigidity ratio λ

for the daffodil stem is calculated as the ratio of the second moment of area around the two

sectional axes of symmetry (Iy/Ix). As seen, the variation of M̄max is different between the

ribbons with rectangular sections and rods with circular or semi-circular sections. For the

circular or semi-circular cases, M̄max at root decreases with increasing τ0 and approaches a

constant value for very high intrinsic twist angles. However, for the cases with a ribbon-like

structure, M̄max increases up to a certain value of τ0 between 120○ and 150○ ; beyond that, it

decreases and approaches a constant value. The mathematical model showed that for cattail

leaves in air flow, M̄max is not significantly sensitive to the variation of λ and the bending

rigidity. Moreover, the peak value of M̄max is found at 150○ for all the study cases. At first
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glance, the figure suggests that an untwisted structure is better for plants to reduce the root

bending moment. However, as we understood from Fig. 4.2b, chirality increases the buckling

strength of upright ribbons which reduces the chance of structural failure. Therefore, chirality

brings a trade-off for upright plants with increased buckling strength but also higher root

bending moment. For instance, cattail leaves are chiral and according to our measurements,

their average intrinsic twist angle is 380○ ± 110○. The shaded area in Fig. 4.5 represents the

distribution of twist angles of the cattail specimens which we have collected. It should be

noted that the intrinsic twist angle of plants may vary with environmental parameters.

The results show that eelgrass is subjected to a larger root bending moment with respect

to an upright ribbon and a cattail leaf. The reason is that the buoyancy effect decreases

the deformation magnitude which leads to a larger drag as suggested by Luhar and Nepf

(2011). A larger drag on the plant’s body leads to a larger root moment. In comparison, an

upright ribbon and a cattail leaf are subjected to a smaller root moment since their weight

contributes to the deformation and drag reduction. On the other hand, the reconfiguration of

the daffodil stem is highly affected with its large η. This means that the daffodil stem easily

reorients to its less rigid direction which leads to a large deformation. The large deformation

of the daffodil then reduces the drag and the root moment. However, as seen in Fig. 4.5, a

weightless rod with a smaller η than the daffodil stem, has a larger root bending moment.

This is specifically interesting since it is known that many plants twist more easily than they

bend (Vogel, 1992), which shows that low torsional rigidity is beneficial for plants to reduce

the risk of uprooting.

According to Eq.(4.1), M̄max is created at the root due to the contribution of the curvatures in

the x and y-directions. Although κx is usually smaller than κy, its contribution to the bending

moment is usually more important due to the higher bending rigidity. This means that

uprooting happens because of an excessive bending moment created in the stiffer direction of

the plant. Finally, the difference in behavior between structures with rectangular sections and

those with circular or semi-circular sections comes from the different aerodynamic loadings

on these structures.

4.4 Concluding Remarks

The reconfiguration and buckling of chiral plants was studied using flexible rods and ribbons

with a chiral morphology. Wind tunnel experiments were conducted using circular rods with

internal reinforcement as well as chiral ribbons. For the theoretical analysis, a Kirchhoff

rod model was coupled with a semi-empirical drag and lift formulation. The theoretical

model provides a general framework to study the large deformation of rods and ribbons
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Figure 4.5 Maximum dimensionless bending moment at root of five study cases at CY = 30.
Plots are predicted using the mathematical model. The shaded area represent the range of
the most probable intrinsic twist angle of the cattail specimens collected for this study. The
small histogram plot shows the distribution of the collected specimens in terms of the intrinsic
twist angle.

as well as slender wings in flow. It was shown that chirality increases the critical buckling

length and consequently the buckling strength of upright slender structures under their own

weight. Chirality was found to render the rods and ribbons less dependent on the direction

of external loading such as gravity or wind. Moreover, chiral rods and ribbons show a non-

smooth deformation with one or more nodes in their deformed shape due to their geometrical

twist. Thus chirality can be said to “discretize” the deformation.

The theoretical model predicts that for circular rods, chirality decreases the root bending

moment. On the contrary, the root bending moment of chiral ribbons is higher than a straight

ribbon, especially at intermediate angles of chirality around τ0 ≈ 150○. Despite this, many

upright plants show a chiral morphology possibly due to its aforementioned benefits including

higher buckling strength and weaker dependency on the loading direction. Our measurements

on chiral cattail leaves showed that the distribution of their inherent twist angle bypasses the

intermediate chiral angles and is centered around a large chiral angle. However, it is of interest

to perform measurements on more chiral species which grow upright, to verify their angle of

chirality. It is also recommended to account for the variation of the sectional area and bending

rigidity along the length in the mathematical model to represent real plant organs such as

leaves and stems. Moreover, further experimental and theoretical investigations should be

done to study the effect of chirality on the dynamic stability of chiral plants against flutter

and vortex-induced vibration.
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CHAPTER 5 DETAILS OF EXPERIMENTS

In this chapter, experimental approaches and the fabrication procedure of specimens in the

present study is detailed.

5.1 Specimen Fabrication

Both the chiral and straight circular rods were made using polyurethane foam reinforced with

nylon fibers. This type of flexible specimen was used for several reasons. First, polyurethane

foam is very flexible and can undergo large elastic deformation. Moreover, it is very light

which reduces the effect of oscillations on measured loads in the wind tunnel experiments. A

circular section was selected due to its simple aerodynamics for the mathematical modeling.

However, isotropic circular rods do not twist in flow therefore reinforcement fibers were used

to induce anisotropy and torsion. As a result, this study could benefit from the simplicity

of circular rods and an induced bending-torsion coupling at the same time. It should be

mentioned that the number and the position of nylon fibers were not an interest of this

study as they only served to create anisotropy in circular rods. To achieve a proper foam

density and flexibility, several types of polyurethane foam from Flexfoam-iT series (Smooth-

on Inc., Easton, Pennsylvania) were used to fabricate rod samples. Based on these samples,

FlexFoam-iT ! X was selected which provided the best flexibility and integrity for the purpose

of this study.

In the fabrication process, nylon fibers were aligned along the axis of a cylindrical mold

shown in Fig. 5.1. Fibers were slightly stretched through small holes on the two end caps of

Fibers
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Figure 5.1 Photograph of the mold used to fabricate circular rods.
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the mold. Special attention was paid to prevent over-stretching the fibers as it could cause an

unwanted natural curvature in the rods after demolding. As seen in the figure, small spacers

were used to ensure a uniform twist and a constant distance between fibers. FlexFoam-iT ! X

has two liquid components which were mixed for 30 seconds by equal volume before pouring

in the mold. A quick release agent was used to prevent foam from sticking to the mold. After

pouring the foam from a hole located in the middle of the mold, it expands up to 6 times

through an exothermic process. It should be noted that this process releases gas therefore

the mold should have a few small ventilation holes otherwise the final result will not have

a proper uniformity and integrity. In the case of this study, the produced gas could pass

through small fiber holes on the caps. The initial volume of the foam components was found

through trial and error for a proper integrity and uniformity. To ensure the uniformity of the

fabricated foam rods, a foam specimen without fibers was cut to smaller pieces of equal size.

By measuring the weight of each piece, it was found that the density of the foam varies by

approximately seven percent along the length of the rod. By performing measurements on the

foam rods, it was found that their Young’s modulus varied approximately in a linear manner

with their density. Therefore, it was concluded that the variation of the Young’s modulus and

the bending rigidity should be approximately seven percent along the length. This amount

of variation was negligible in this study because the rigidity of the fibers was largely greater

than that of the foam. In this study, the relative density of the foam was not an important

factor because measurements were performed on each fabricated specimen to evaluate their

weight, bending rigidity and torsional rigidity. An upside down M4 screw was also placed

halfway inside each foam rod during the molding process to facilitate their fixture (Fig. 5.1)

To fabricate ribbons, ABS strips with the thickness of 0.12 cm (3/64 in) and the width

of 2.54 cm (1 in) (McMaster-Carr, Elmhurst, Illinois) were used. ABS strips were cut into

multiple 42 cm ribbons. Each ribbon was twisted to an angle between 0○ and 360○. The

twisted ribbon was fixed in a wooden fixture to prevent it from returning to its initial state

because of its elasticity. The assembly was then placed in an oven for several hours at 100 C

for annealing. The annealing process made the twisted state of the ribbons their stress-free

state.

5.2 Bending and Torsional Rigidity

A standard three-point bending test was performed on non-chiral rod and ribbon specimens

to measure their bending rigidity. Therefore, the bending rigidity of each specimen was cal-

culated directly from the slope of the load-deflection plot at its middle point. The purpose

of these measurements was evaluating the bending rigidity ratio (λ = (EI)y/(EI)x) for all
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Figure 5.2 Schematic of the test setup used to measure the torsional rigidity of a rod. In this
test setup, the rod (1) is attached to the center of a rectangular aluminum plate (2) which
can rotate around a pin (3) freely. The pin limits the movement of the aluminum plate to
rotation around its center.

specimens. For ribbons, the minimum bending rigidity (EIy) and the Young’s modulus was

measured for a straight ribbon and the maximum bending rigidity (EIx) was evaluated based

on the measured Young’s modulus and the calculated second moment of area in x-direction(Ix). For straight rods, (EIy) was measured at ψ0 = 0○ and (EIx) was measured at ψ0 = 90○
where the incidence angle was defined based on the direction of gravity. However, it was

impossible to measure the bending rigidity ratio for chiral rods directly therefore their rigi-

dity was evaluated based on the straight rod rigidity and the assumption of linear relation

between the foam density and rigidity.

The torsional rigidity of ribbons was calculated based on their cross sectional dimension :

GJ = 0.33Gdt3 , (5.1)

where the shear modulus G was calculated from the measured Young’s modulus :

G = E

2(1 + ν) . (5.2)
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For a circular rod, the torsional rigidity was evaluated by measuring the torsional vibration

frequency of the rod attached to a flywheel (Fig. 5.2). In this test, the assembly of a foam rod

(1) and a rectangular aluminum plate (2) was constrained to rotate around the rod centerline

using a pin (3). For each rod, the natural frequency of the rotational oscillation of the rod-

plate assembly ωn was measured several times to evaluate the rod torsional rigidity using the

following :

GJ = LJmωn2 , (5.3)

where Jm is the sum of the mass moment of inertia of the foam rod and the aluminum plate

around the rod centerline as shown in the figure.

5.3 Drag of Rigid Specimens

To evaluate the reconfiguration number, the drag coefficient of an equivalent rigid specimen

with similar geometry was required. For circular rods, the equivalent rigid specimen was

made by placing a threaded metallic rod inside the same mold used to make circular rods.

Therefore, the surface of the rigid specimen was similar to the circular foam rods. The drag

coefficient of the rigid circular rod was measured and found to be approximately constant at

CD = 0.95 over the range 5000 < Re < 30000 of the wind tunnel tests. For the ribbons, an

aluminum ribbon with the same dimensions as the ABS ribbons was used as an equivalent

rigid structure. Figure 5.3 shows the variation of the drag and lift measurements averaged over

Re = 10000 and Re = 20000 for the aluminum ribbon as a function of the ribbon’s incidence

angle. To simplify the mathematical model, the average of the drag and lift measurements

were fitted using trigonometric functions (Eq. (4.36) and Eq. (4.37))

Figure 5.4 presents the variation of the lift and drag coefficients of a twisted metallic strip

(τ0 = 90○) as a function of the incidence angle ψ0. The dimensions of the metallic strip are

similar to the flexible ribbons used in experiments. In the wind tunnel test, the clamped end

of the twisted metallic strip is rotated around its centerline to impose a range of incidence

angles from 0○ to 90○. In the figure, the lines represent the mathematical prediction for the

thickness of t = 1.5 mm and t = 3 mm. Moreover, the symbols represent the experimental data

for two different Reynolds numbers : Re = 10000 and Re = 20000. As seen, the experimental

and the mathematical results are in agreement.

5.4 Details of Wind Tunnel Tests

Test specimens whether rigid or flexible were attached to the force balance using a cylindrical

mast to eliminate the effect of the wall boundary layer. To evaluate the drag scaling of each
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Figure 5.3 Wind tunnel measurements of the lift and drag coefficients of a metallic ribbon
equivalent to flexible ABS ribbons averaged over Re = 10000 and Re = 20000. Markers
represent experimental values and lines are fitted trigonometric functions (Eq. (4.36) and
Eq. (4.37)).

specimen, the drag of the mast was measured separately and subtracted from the total drag

of the mast-specimen assembly. The mast used for circular rods is shown in Fig. 5.5a. This

is also shown in Fig. 3.2 between the test specimen and the force transducer. As seen in

Fig. 5.5a, This mast consists of a circular rod made of acrylic (2a) which can be connected to

the force transducer using a circular adapter (1a). A small sleeve (3a) is glued to the acrylic

rod with the same internal diameter as the diameter of foam rods. Since the circular foam

rods were very soft, their M4 screws were fixed in a threaded hole (4a) and the sleeve was

used for additional support. The sleeve was designed to fit around the foam rod and ensure

a better clamped boundary condition. Despite these efforts, it was impossible to maintain

a perfect clamped condition for the foam rods due to their soft structure. The sleeve of

the mast dug into the foam rods when they were subjected to flow. To compensate for this

imperfection at the clamped end, a modification was made in the mathematical model. For

this modification, the clamped boundary condition was relaxed into a torsion spring. The

side view photographs of the foam rods in flow at ψ0 = 90○ were used to estimate the rotation
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of the rods around their clamped end as a function of flow velocity. The incidence angle of

90○ was chosen because at this angle rods are very rigid and they do not deform significantly

along their length therefore they can be considered as a straight rod. Using this assumption,

it was possible to evaluate the bending moment around the clamped end MY for each flow

velocity. Therefore, the torsion coefficient of spring ks could be evaluated considering a linear

spring. By knowing ks, a Robin boundary condition can be formulated for the attached end

(Eq. (3.3)).

The mast used for ribbons is shown in Fig. 5.5b. As seen, this mast is an acrylic rod (2b)

connected to the force transducer using a circular adapter (1b). At one end of the acrylic rod,

there is a slot (3b) to hold ribbons using a screw which goes to a threaded hole (4b). The slot

was slightly smaller than the thickness of ribbons to ensure a tight fit. The reference point or

the origin of the fixed coordinate system used for all results considering the rod shape such

as Fig. 3.6, is shown schematically in Fig. 5.5a and b as small green ellipses at the end of the

masts.

Drag and lift measurements were performed in a wind tunnels. For each test, an incidence

angle was set and the flow velocity was changed from 5 ms−1 to a maximum velocity before

strong instabilities occur. During the tests, aerodynamic loading and the air pressure at the

test section were monitored and saved using a Labview program for at least 30 seconds.

Each angle of incidence for a specific specimen was tested once. The time-average and the
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Figure 5.4 Variation of a) the lift and b) the drag coefficients for a rigid chiral ribbon with
τ0 = 90○ as a function of the incidence angle ψ0. The length and width of the ribbon are
400 mm and 25.4 mm respectively. Lines represent the mathematical model for two different
thicknesses. Symbols represent the experimental results for two different Reynolds numbers.
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Figure 5.5 a) Photograph of the mast used for testing circular rods. It consists of a circular
adapter for connection to the force transducer (1a), an acrylic rod (2a), a sleeve (3a) and a
threaded hole to hold the M4 screw of circular rods (4a). b) Photograph of the mast used for
testing ABS ribbons. It consists of a circular adapter for connection to the force transducer
(1b), an acrylic rod (2b), a slot (3b) and a threaded hole to keep ribbons in place (4b). Small
ellipses at the end of masts represent the reference point schematically.

standard deviation of fluctuating forces and moments were considered in the present study.

For instance, the experimental points in Fig. 3.7 were the average of time fluctuating drag for

a specific incidence angle and flow velocity. Similarly, each error bar in this figure represents

the standard deviation of the time fluctuating drag for a single test including a specific

incidence angle and a specific flow velocity. Images and videos were also captured during the

tests using a DSLR camera. To capture the out-of-plane deformation of rods used in Fig. 3.5

and Fig. 3.6, the camera was fixed inside the wind tunnel at a distance of 1.5 m upstream

from the test specimen. No aerodynamic loads were measured when the camera was inside

the wind tunnel.

A special case for the reconfiguration of reinforced rods in the present study was at ψ0 = 90○
with the occurrence of a pitch-fork bifurcation. In this angle of incidence, a rod underwent a

two-dimensional bending in its rigid direction. Prior to the bifurcation point, the symmetric

bending of the rod was stable but beyond that point, the rod lost its stability and jumped

to a stable branch showing a sudden out-of-plane deformation. This phenomenon was very

sensitive to imperfections in the rod structure, its clamped condition, and the accuracy of

the imposed incidence angle. Due to the presence of several imperfections especially in the

clamped boundary condition, the bifurcation happened earlier than the mathematical model

prediction.
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Figure 5.6 Test setup for the static bending test showing a cantilever rod (2) deforming under
its own weight. The rod is attached to a disk (1) which can be rotated around its center to
impose different incidence angles. The definition of the incidence angle is shown at the lower
left of the figure.

5.5 Static Bending Test

A static bending test was conducted in this study to validate the mathematical model. The

test setup is shown Fig. 5.6. As seen, a rod (2) is clamped from one end horizontally and

deforms under its own weight. The clamped end of the rod is attached to a disk (1) which

can be rotated around its center to impose an incidence angle on the rod. The definition

of the incidence angle in this test is shown in the lower left of the figure. In the test, the

gravitational force was in the Y -direction. For each test, the vertical deflection of the rod tip

was measured from a horizontal line (as shown in the figure) for a range of incidence angles

from 0○ to 180○. Figure 4.2a shows the variation of the measured tip vertical deflection as a

function of the incidence angle.

5.6 Details of Measurements on Cattail Leaves

In the study of chiral plants, cattail leaf (Typha angustifoli) were collected from the Voyageur

Provincial Park (ON, Canada) in August, 2016 (Fig. 5.7). Twelve mature leaves were cut from

their lowest point outside the water. The leaves were cut to segments of 12 cm to 20 cm for

the three-point bending test one day after being collected. In the test, the distance between

the supports was 10 cm and the downward velocity of the middle point was 1 cms−1. Leaves

were kept in the room temperature after collection as well as during the three-point bending
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Figure 5.7 Photograph of cattail leaves at the the Voyageur Provincial Park in Ontario,
Canada.

test. The minimum bending rigidity (EI)y of leaf segments was measured in the three-point

bending test. This value was mainly used to estimate the dimensionless weight W . However,

the bending rigidity ratio λ and the twist-to-bend ratio η were evaluated based on an average

rectangular section for the cattail leaves. Based on the mathematical model, it was found

that the reconfiguration of cattail leaves is not significantly sensitive to the variation of(EI)y despite a two order of magnitude of change in the measured values.
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CHAPTER 6 GENERAL DISCUSSION

In the literature, a bending beam is a common academic representation of plants. However,

plants generally undergo a combination of bending and torsion under external loading. In

this study, plants were modeled as a circular rod due to the simplicity of their aerodynamics.

However, circular rods are completely symmetric and do not twist under drag loading. As a

result, the circular rods used in this study were reinforced with nylon fibers to impose direc-

tional rigidity. This innovative approach helped to induce a controlled torsional deformation.

In the wind tunnel tests and the mathematical modeling, the rods were rotated around their

fixed end to alter their bending-torsion coupling.

Researchers usually use the Elastica model to study the reconfiguration of plants such as

the work done by Alben et al. (2002) on bending fibers. However, a more general model is

required to study the anisotropic circular rods. Thus, in this study the Kirchhoff rod model

was used coupled with the Taylor semi-empirical drag formulation. This drag formulation is

simple and accurate enough for the purpose of this study and has been proved to be effective

in previous studies (Gosselin et al., 2010; Luhar and Nepf, 2011). The mathematical model

along with the wind tunnel tests showed that the torsional deformation in the reconfiguration

of plants reduces their drag by letting them to bend in their less rigid direction. However,

in large deformations, torsion has a small effect because the reconfiguration becomes nearly

two-dimensional. Consequently, it was found that the Vogel exponent of anisotropic circular

rods is similar to that of bending beams which is −2/3 (Gosselin et al., 2010) if the equivalent

Cauchy number is used.

Another significant aspect of this research was studying the effect of chirality on the recon-

figuration of plants such as cattail. Few studies were found on this subject such as a study

on aquatic emergent macrophytes (Zhao et al., 2015). However, fundamental understanding

of the large reconfiguration of chiral plants using an accurate structural and aerodynamic

model was missing from the literature. In this research, chiral ribbons made of ABS plastic

and circular rods with an internal chiral reinforcement were modeled and tested in a wind

tunnel for a variety of flow conditions and structural properties. In contrast to the circular

rods, chiral ribbons generate a lift force in addition to the drag force. Therefore, the existing

mathematical model was modified to account for the chirality and lift. The mathematical

model showed that chirality increases the self-buckling strength in plants which was also in

agreement with another study on chiral upright plants (Schulgasser and Witztum, 2004). If

was found from the mathematical model that chirality makes the deformation of rods inde-



82

pendent of the loading direction which was also supported by a simple static bending test

and the wind tunnel tests. Moreover, the mathematical model was used to simulate the effect

of chirality on several real plants such as daffodil (Etnier and Vogel, 2000), eelgrass (Abdel-

rhman, 2007; Luhar and Nepf, 2011) and cattail. It was found that chirality has different

effects on plants with circular and non-circular sections. For circular plants, chirality redu-

ced the bending moment at the root. However, for ribbon-like plants such as cattail, the root

bending moment was found very high for intermediate chirality angles. In addition, there was

a compromise between a high self-buckling strength and a high root bending moment. The

measurements on chiral cattail leaves showed that the distribution of their chirality bypasses

the intermediate chiral angles and is found around a large angle.
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CHAPTER 7 CONCLUSION

The present study provided a fundamental understanding of the underlying mechanisms of

plants reconfiguration which undergo three-dimensional deformation in flow. This multidisci-

plinary problem is intrinsically a fluid-structure interaction case initiated from a problem in

the field of biology and forestry. The existing state of knowledge in this field was improved

by using a better model to evaluate the reconfiguration of plants.

7.1 Contribution

In the literature, plants have been modeled as bending beams and plates neglecting their

torsional deformation. However, many species of plants possess an asymmetric body, a chi-

ral morphology or an internal fibrous structure which induces a bending-torsion coupling.

These plants can twist more easily than bend under the flow (Vogel, 1992). In this study,

the effect of torsional deformation and chirality on reconfiguration was investigated. Plants

were modeled as slender rods which bend and twist under loading, giving a more accurate

image of their reconfiguration. An innovative experimental and mathematical approach was

introduced using elastic circular rods made of foam and reinforced with fibers. The reinfor-

cement created a directional rigidity which induced a torsional deformation in asymmetric

bending. This directional rigidity was quantified by the bending rigidity ratio. Along with

this, the orientation of the reinforcement fibers at root or the incidence angle, was another

key parameter to alter the bending-torsion coupling. In this study, circular rods were used

due to their simple aerodynamic model. In addition to the circular rods, elastic ribbons made

of ABS plastic with a twisting chirality were tested and modeled to mimic chiral plants. The

similarity of elastic ribbons to slender wings, has opened an opportunity to analyze large

deformations of lifting surfaces.

The mathematical model was based on the Kirchhoff theory of rods coupled with a semi-

empirical drag formulation and the blade element theory. Using this model, it was possible

to study an extended range of flow and structural parameters in the three-dimensional re-

configuration of rods. In the model, the evaluation of the aerodynamic loading was simple

and accurate enough which largely reduced the computational time. For flexible ribbons, the

blade element theory was applied to account for the variation of the sectional drag and lift co-

efficients where torsional deformation happens. This methodology proved to be in agreement

with experiments regardless of its simplicity. The same approach can be applied for modeling

flexible wings and turbine blades, as they are intrinsically similar to a ribbon bending and
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twisting in flow. The model provides a generic mathematical framework that can be used

for practical engineering problems with a minimum number of inputs. It is also capable of

analyzing the large deformation of rods under external loads and torques other than the fluid

loads.

The reconfiguration of chiral rods and ribbons subjected to flow and gravity was studied.

Chirality was introduced into the model as an intrinsic twist angle. Based on the mathema-

tical and experimental model, it was found that the deformation of chiral structures is less

sensitive to the loading direction. In nature, this could be beneficial for upright plants to

cope with harsh winds coming from an arbitrary direction. Moreover, chirality is possibly

advantageous for the light interception of plants through the day since the sunlight direction

changes from sunrise to sunset. Self-buckling is a limiting factor for the growth of upright

plants. It was shown that chirality increases the self-buckling strength of upright plants

which reduces the risk of structural failure. This is possibly the reason why chiral plants,

such as emergent aquatic macrophytes (Zhao et al., 2015), are very long with respect to their

small cross section. The mathematical model showed that chirality can prevent uprooting

of rods with a circular or semi-circular section by decreasing the root bending moment. On

the contrary, it was found that chiral ribbons have a larger root bending moment compared

with straight ribbons, specially around τ0 = 150○. Despite that, chirality provides benefits for

plants including higher buckling strength and weaker dependency on the loading direction.

Measurements were performed on a cattail species which showed that on average, their chiral

angle is approximately two times greater than τ0 = 150○, meaning that they bypass the large

root bending moment. Measurements on a different cattail species showed that their average

chiral angle is 670○ (Zhao et al., 2015).

In the studies on the reconfiguration of plants, researchers usually use the Cauchy number

or its equivalents to characterize the problem. In this study, a modified definition of the

Cauchy number was provided based on the incidence angle and the directional rigidity, ter-

med the equivalent Cauchy number. This dimensionless number let us include the effect of

torsion in reconfiguration. Using this number and the reconfiguration number, it was pos-

sible characterize the three-dimensional reconfiguration of rods as a simple bending beam. It

was shown that all experimental drag measurements of anisotropic rods, regardless of their

material and structural properties collapse on a single curve representing a two-dimensional

reconfiguration. Consequently, the Vogel exponent of the three-dimensional reconfiguration

in the asymptotic regime of large deformations, was found to be similar to that of a bending

beam ϑ = 0.67. Therefore, it was shown that torsion does not alter the Vogel exponent. The

reason is that in large deformations, rods twist in such a way to bend in their less rigid

direction. As a result, a three-dimensional deformation becomes essentially two-dimensional
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in the asymptotic regime.

7.2 Limitations and Future Work

To support our theoretical study on chirality, measurements were performed on a cattail

species. These measurements included the length, sectional area, chirality and the bending

rigidity. It was shown that this chiral plant bypasses small chirality angles which according

to the mathematical model, leads to a high buckling strength and low root bending moment.

However, it is necessary to obtain more experimental data for different chiral plants to verify

the effect of chirality on their buckling strength and root bending moment. There are not

many studies covering the chirality in plants therefore few experimental results are available

in the literature. It seems that the chirality of plants has not been detailed enough as an

important and distinctive characteristic. Therefore, it is of great interest to identify more

chiral species and measure their structural and material properties. Moreover, in the mathe-

matical model, the sectional area and the rigidity of rods and ribbons are assumed constant

along the length. However, the cross section of plants usually become smaller from root to

tip which alters their sectional rigidity. As a result, it is recommended to modify the exis-

ting mathematical model to account for the variation of the sectional area and rigidity along

the length. This could lead to a more accurate model especially for the buckling strength of

upright plants. Furthermore, it is interesting to verify the possibility of applying the existing

mathematical model to other types of chiral structures, such as DNA, chiral polymers and

nano-materials.

The deformation of slender ribbons was evaluated by coupling the blade element theory

to the existing model. This method proved to be effective for slender ribbons with a large

sectional aspect ratio. It is of great interest to apply this model to slender wings, rotors and

turbine blades undergoing a large three-dimensional deformation. To do this, it is necessary

to measure the variation of the sectional lift, drag and pitching moment coefficients with the

incidence angle and introduce it to the model. In this case, the model can provide an accurate

simulation for the primary stages of design and optimization since it requires a very small

computation power compared with a conventional FSI analysis. This approach can be used to

design and analyze the large deflection of modern wind turbine blades with a bending-torsion

coupling (Larsen et al., 2004). Similarly, the simulation of very flexible helicopter rotors used

in MAVs (Sicard and Sirohi, 2012) and Formula 1 rear wings (Thuwis et al., 2009) is within

the range of the existing model. From the experimental perspective, it is recommended to

fabricate very flexible slender wings using foam reinforced with fibers. If the reinforcement

fibers are not located on the shear center of the wing section, a bending deformation can



86

induce a torsional deformation. Therefore, it is possible to design a wing which reduces its

angle of attack and consequently its drag passively. The existing mathematical model is

capable of simulating this type of wing.

The existing mathematical model simulates the static reconfiguration of rods and ribbons

subjected to wind and gravity. Therefore, the outcome of the model represents the equi-

librium state. As a future work, it is strongly recommended to perform a linear stability

analysis on the dynamic Kirchhoff rod model. This is done by introducing a small time-

dependent perturbation to the equilibrium solution and solve the governing equations using

an optimization approach or a finite difference scheme. This can largely extend the applica-

tion of the existing model to study the static and dynamic stability of slender structures at

the same time. For instance, the dynamic model will be capable of simulating the divergence

and the flutter instability of aeroelastically tailored wings and turbine blades undergoing a

large three-dimensional deformation.
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Spatz, Hanns-Christof and Brüchert, Franka and Pfisterer, Jochen (2007). Multiple reso-

nance damping or how do trees escape dangerously large oscillations ? American Journal of

Botany, 94 (10), 1603–1611.

Speck, Olga (2003). Field measurements of wind speed and reconfiguration in arundo donax

(poaceae) with estimates of drag forces. American Journal of Botany, 90 (8), 1253–1256.



93

Speck, Olga and Spatz, Hanns-Christof (2004). Damped oscillations of the giant reed arundo

donax (poaceae). American Journal of Botany, 91 (6), 789–796.

Speck, TH and Spatz, H and Vogellehner, D and others (1990). Contributions to the bio-

mechanics of plants. I. Stabilities of plant stems with strengthening elements of different

cross-sections against weight and wind forces. Botanica Acta, 103 (1), 111–122.

Stanford, Bret and Ifju, Peter and Albertani, Roberto and Shyy, Wei (2008). Fixed mem-

brane wings for micro air vehicles : Experimental characterization, numerical modeling, and

tailoring. Progress in Aerospace Sciences, 44 (4), 258–294.

Sterling, M and Baker, CJ and Berry, PM and Wade, A (2003). An experimental investiga-

tion of the lodging of wheat. Agricultural and Forest Meteorology, 119 (3), 149–165.

Taylor, G. (1952). Analysis of the swimming of long and narrow animals. Proceedings of the

Royal Society A : Mathematical, Physical and Engineering Sciences, 214 (1117), 158–183.

Telewski, Frank W and Jaffe, MJ (1981). Thigmomorphogenesis : changes in the morphology

and chemical composition induced by mechanical perturbation in 6-month-old pinus taeda

seedlings. Canadian Journal of Forest Research, 11 (2), 381–388.

Telewski, Frank W and Jaffe, Mordecai J (1986a). Thigmomorphogenesis : anatomical,

morphological and mechanical analysis of genetically different sibs of pinus taeda in response

to mechanical perturbation. Physiologia Plantarum, 66 (2), 219–226.

Telewski, Frank W and Jaffe, Mordecai J (1986b). Thigmomorphogenesis : the role of ethy-

lene in the response of pinus taeda and abies fraseri to mechanical perturbation. Physiologia

Plantarum, 66 (2), 227–233.

Thomison, P. (2011). Effects of wind lodging on corn performance. Agronomic Crops

Network, 1.

Thuwis, Glenn A. A. and Breuker, Roeland and Abdalla, Mostafa M. and Gürdal, Zafer
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APPENDIX A DIRECTION COSINES

The direction cosines are a representation of the material frame’s rotation. They are the

cosines of the angles between a vector and the three directions forming the fixed coordinate

system. Since the material frame and the fixed frame have three directions each, nine direction

cosines are needed to define the material frame. As detailed by Audoly and Pomeau (2010),

the spatial derivative of ei(s) with respect to s is defined by :

e′i(s) = Ω(s) × ei(s) , (A.1)

where i = x, y and z. The parameter Ω(s) is the rotation velocity or the Darboux vector

defined by :

Ω(s) = κx(s)ex(s) + κy(s)ey(s) + τ(s)ez(s) . (A.2)

By introducing Eq. (A.2) in Eq. (A.1), spatial derivatives of the directions of the material

frame are calculated as Eq. (3.6). Each direction of the material frame is defined by the

vector contained in a row of the matrix [c] (Eq. (3.6)), e.g. ex = (c11, c12, c13). Therefore, by

expanding Eq. (3.6), we have :

dc11
ds

= τc21 − κyc31 dc12
ds

= τc22 − κyc32 dc13
ds

= τc23 − κyc33 , (A.3)

dc21
ds

= −τc11 + κxc31 dc22
ds

= −τc12 + κxc32 dc23
ds

= −τc13 + κxc33 , (A.4)

dc31
ds

= κyc11 − κxc21 dc32
ds

= κyc12 − κxc22 dc33
ds

= κyc13 − κxc23 . (A.5)
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