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RÉSUMÉ 

Les infrastructures critiques sont les actifs physiques qui fournissent aux sociétés modernes les 

services et besoins nécessaires pour le bon fonctionnement d’activités sociales et économiques 

essentielles. L'importance de ces infrastructures complexes est largement reconnue et la nécessité 

de protéger ces réseaux contre des événements destructifs—intentionnels ou accidentels—attire 

l'attention de plusieurs chercheurs et experts en sécurité. Il est également bien reconnu que le coût 

et les efforts associés à la protection totale représentent un énorme défi. La société réalisera son 

plus grand retour sur investissement en identifiant, en priorisant et en protégeant stratégiquement 

les actifs les plus vulnérables de son portefeuille d'infrastructures. Cela implique la nécessité 

d'une méthodologie de sélection permettant de cibler les actifs les plus cruciaux et de mesurer 

efficacement la vulnérabilité globale d'un réseau donné, ce qui nous permettra d'évaluer les 

niveaux de risque actuels et d'évaluer les améliorations techniques proposés. Le travail à suivre 

tente de mesurer la robustesse des systèmes d'infrastructures critiques en utilisant une approche 

basée sur les conséquences, évaluant la fonctionnalité de ces réseaux suite à la survenance d'un 

événement destructeur. Pour ce faire, des applications empiriques de deux approches 

différentes—une première utilisant la méthodologie fondée sur la théorie des réseaux et une 

deuxième méthodologie, proposé pour la première fois, fondée sur l'entropie—ont été réalisées 

sur les réseaux de transport d'électricité des quatre plus grandes provinces canadiennes en 

utilisant l'information disponible dans le domaine public. 

Notre enquête sur les similitudes entre ces deux méthodologies distinctes n’a fourni aucune 

similarité définitive lors de la comparaison de la vulnérabilité des provinces, mesurée selon les 

différentes approches, mais a éclairée des avenues prometteuses pour de la recherche future. 
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ABSTRACT 

Critical infrastructure systems are the physical assets that provide modern societies with the 

fundamental resources required to conduct essential economic and social operations, from power 

and electricity to drinking water and telecommunications. The crucial importance of these vast, 

complex and ubiquitous infrastructures is widely acknowledged and as such, the necessity to 

protect these networks from destructive events—both intentional and accidental—has garnered 

the attention of researchers and security experts alike. Similarly, it is also well recognized that the 

cost and effort associated with total protection presents an enormous challenge. Society will 

achieve its greatest return on investment by correctly identifying, prioritizing and protecting the 

most vulnerable assets in its infrastructure portfolio. This implies the need for a screening 

methodology by which we can target the most crucial assets, and effective metrics with which to 

gauge the vulnerability of a given network as a whole, allowing us to assess risk levels and 

evaluate proposed or completed engineering changes. The following work studies the robustness 

of critical infrastructure systems using a consequence-based framework, assessing the 

functionality of networks conditional on some destructive event having taken place. In order to 

do so, empirical applications of two different approaches—the network theory-based 

methodology and a novel entropy-based methodology—were carried out on the electrical 

transmission networks of the four largest Canadian provinces, using information available in the 

public domain.  

Our attempt to investigate the similarities between the separate methodologies failed to provide 

any meaningful consistencies when comparing provinces’ robustness according to the different 

grading schemes, but did provide promising avenues for future research.  
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CHAPTER 1 INTRODUCTION 

The developed world relies on the rapid, reliable and inexpensive delivery of goods and services. 

Each day, billions of dollars in trade are secured onto cargo ships and make their way across the 

globe, navigating the ocean’s network of shipping lanes to their final port of delivery. Deep 

beneath the surface, fiber optic cables spanning the distances between continents provide 

virtually all of the world’s reliable means of telecommunications, such as the Internet. This 

Internet service in turn goes on to help supervise, control and automate many of the supply chains 

that make up our utilities infrastructures, such as natural gas or oil pipelines and power grids. 

Together, these systems have been optimally designed and operate in tandem in order to provide 

the fundamental resources that keep our economies moving and societies functioning.  

While the efficiency of these economic arrangements is among the primary focus areas of 

economic research, it is reasonable to ask whether improvements in productivity, delivery or 

overall efficiency have been accompanied by changes in vulnerability of output to catastrophic 

events. These crucial structural elements underlying economic activity may be affected by 

destructive events such as extreme weather, accidents or terrorist activity. In fact, there have been 

a number of documented examples in which economic activity at the level of a city has been 

severely disrupted by such events. While we cannot measure all the elements relevant to the 

robustness of economic activity, it is reasonable to assume that we can characterize the 

robustness of systems whose failure has been responsible for major economic disruptions in the 

past. Put simply, if we can measure the robustness of these crucial infrastructure elements, we 

will have some insight about the robustness of the broader economy that depends on them.  

1.1 Critical infrastructure systems 

Critical infrastructures (CI) are the physical assets that supply modern societies with the goods 

and resources required to perform everyday economic and social activities. This definition can be 

understood to include individual sectors of basic economic activity, such as power, energy, water 

distribution, telecommunications and others, as well as the individual components that make up 

these complex systems, such as dams, pipelines, utilities grids, radio towers, etc.  In this 

contemporary globalized and interconnected environment, we can safely assume that our 
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increased reliance on critical infrastructure systems, coupled with their sprawling growth and 

continued degradation, gives rise to a potentially unprecedented level of vulnerability.  

The importance of these infrastructures has long been understood. In Presidential Executive 

Order 13010, issued in July 1996, President Bill Clinton stated that “Certain national 

infrastructures are so vital that their incapacity or destruction would have a debilitating impact on 

the defense or economic security of the United States. These critical infrastructures include 

telecommunications, electrical power systems, gas and oil storage and transportation, banking 

and finance, transportation, water supply systems, emergency services (including medical, police, 

fire and rescue), and continuity of government” (Executive Office of the President, 1996).  

Naturally, other nation states in the developed world grapple with similar technological risks.  

More detailed lists of these essential assets have since been proposed, grouping together 

individual CI sectors into prioritized tiers which attempt to reflect the logical and functional 

dependencies between sectors, in that the outputs of certain processes provide the inputs to others 

(Lewis, 2006).  

 

Figure 1.1: Prioritized list of critical infrastructure sectors 

Additionally, it has become common practice in modern policy and academic research to include 

lists of Key Assets alongside summaries of CI sectors. As defined in the 2003 National Security 

Strategy for the Physical Protection of Critical Infrastructures and Key Assets, Key Assets are the 

individual physical targets or “high profile events” whose attack could result in large-scale 

causalities and destruction, but also “profound damage to […] national prestige, morale and 

confidence” (Department of Homeland Security, 2003). While, individually, certain physical Key 
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Assets such as dams and nuclear power plants may not be vital to the continuity of critical 

services, a successful attack may incur significant loss of life or other long-term, adverse public 

health and safety concerns. Other Key Assets such as national monuments, historical attractions 

and icons are said to hold “symbolic” value, and their destruction would result in the decline in 

the public’s moral and sense of safety and wellbeing.   

Executive Order 13010 went on to highlight the need for cooperation between the public and 

private sectors in the development of a strategy for the protection of the critical assets, given that 

the bulk of these infrastructures are both owned and operated by private industry. In fact, it is 

estimated that 85% of all CI assets within the United States are held and managed by private 

business (Brown, Carlyle, Salmerón, & Wood, 2005). As it will become clear in subsequent 

sections, the information required for the development and implementation of protection 

methodologies makes the cooperation between government and industry necessary.  

1.2 Threats to critical infrastructure 

Lastly, and perhaps most importantly, President Clinton established a framework describing the 

two categories of threat vectors which present risks to CI systems: physical threats and cyber 

threats. Physical threats are the more conventional vectors that put at risk the integrity of tangible 

property, while cyber threats are the “threats of electronic, radio-frequency, or computer-based 

attacks on the information or communications components that control critical infrastructures.” 

1.2.1 Physical threats 

Physical threats to critical infrastructure are those that cause damage to tangible assets. This 

definition includes both intentional acts—such as vandalism, sabotage and terrorism—as well as 

unintentional damage caused by malfunction, natural hazards and technological or industrial 

accidents. While there may exist certain similarities in the overall outcomes of both hazards and 

directed attacks, the main distinction is the presence of an intelligent and ill-intention actor, 

aiming to achieve maximal loss of life or social disruption. It is therefore straightforward to 

assume that the damage caused by studied and directed attacks will generally cause greater 

disruption than those caused by the randomness of accidental and undirected events. Any 

accurate modeling or simulation technique should reflect this.   
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When considering physical threats to CI systems, non-state actors who view attacks on critical 

infrastructure as a means of achieving various political or ideological objectives are generally the 

object of greatest concern. In fact, well known terrorist organizations have advocated such attacks 

for years. An al-Qa’ida training manual, seized by the Manchester Metropolitan Police during a 

2003 raid, notes as its primary mission the “overthrow of godless regimes [by] gathering 

information about the enemy, the land, the installations, and neighbours [and] blasting and 

destroying places of amusement, embassies, vital economic centers [and] bridges leading into and 

out of cities” (United States Air University, 2003). 

Energy infrastructure in particular has a long history of being viewed as high-value targets for 

violent non-state actors. Information compiled by the Energy Infrastructure Attack Database 

(EIAD) has shown that there were, on average, 400 annual attacks carried out on energy 

infrastructures over the 2003-2013 timeframe (Giroux, 2013). Given their vital economic 

importance, striking these assets makes for an effective means of airing grievances and adversely 

impacting economy and security while garnering international media coverage. The vastness of 

the infrastructures, which can span long distances, provides a sizeable attack surface, contributing 

to their attractiveness. The raiding and ensuing hostage crisis at the Tigantourine natural gas 

facility in Amenas, Algeria in January 2013 was among the most high-profile of such events.  

A more recent example of politically-motivated attacks directed at energy infrastructure is the 

November 2015 sabotage of major electrical transmission towers by anti-Russian activists, which 

caused blackouts affecting 2 million people over several days in Crimea. Here, the objective was 

not loss of life, but rather a protest of the region’s annexation weeks earlier.  

Assuring the physical security of CI systems is a challenging endeavour given the expansiveness 

of these infrastructures, and the cost associated with methods limiting access to them, such as 

underground installations, fencing, barricading, other hardening and physical surveillance.  

1.2.2 Cyber threats 

The rise of cyber security concerns, in the realm of CI protection as in all others, is characteristic 

of the 21
st
 century international security landscape. And while the term “cyber threats” is 

typically used to include criminal activities such as fraud, espionage and theft broadly, it is used 
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here in reference to all electronic, radio-frequency or computer threats directed at control and 

communication CI networks and subsystems.  

As with physical threats, defending against cyber attacks is made difficult by the enormity of the 

attack surface at which opponents may take aim. This phenomenon was in part enabled by the 

modernization of industrial processes and the growing trend towards the adoption of digital 

technologies.  

A notable cyber-attack target in the case of CI systems is the industrial control and automation 

technologies employed throughout many different sectors. These electrical subsystems are used 

in the automated operation of industrial process equipment, such as machinery (boilers, pumps, 

valves, etc.) and electrical components (switches, interrupters, variable frequency drives, etc.). 

The use of industrial control systems obviously provides massive gains in efficiency, speeding up 

reaction time, automating changes in processes and limiting human intervention and error. 

Unfortunately however, it also provides hackers with well-known points of access.  

The Stuxnet computer virus, now the world’s most infamous cyber weapon, was built with the 

purpose of targeting and subverting industrial control equipment. Believed to have been jointly 

developed by American and Israeli intelligence and defence agencies, the computer worm 

infiltrated the programmable logic controllers (PLCs) used as part of the Iranian nuclear program. 

Once embedded in the Iranian network, the weapon gathered data on the industrial processes 

taking place before commanding fast-spinning centrifuges to overrun and self-destruct over time. 

Perhaps most impressively, the bug did so while displaying normal conditions to the system 

operators. Studies into the implications of the Stuxnet virus on the security of industrial controls 

systems have indicated that the worm may be used as a template for future intrusions in various 

sectors (Karnouskos, 2011). In the case of the Iranian nuclear program, it is believed that Stuxnet 

was introduced into the target environment via an infected external multimedia device, such as a 

USB flash drive. However, there exist alternative points of entry which may be exploited in order 

to gain access to closed networks.  

One such alternative is the direct tampering of industrial control components. In his book At the 

Abyss, Thomas C. Reed, former Secretary of the U.S. Air Force and advisor to President Ronald 

Reagan, claimed that in 1982, the United States successfully inserted malicious software into 

control equipment purchased by the Soviet Union through Canadian suppliers. When deployed, 
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the software commanded the pumps and valves installed on a section of a Trans-Siberian gas 

pipeline to produce pressures exceeding design specifications, resulting in what Reed called “the 

most monumental non-nuclear explosion and fire ever seen from space.” 

Connections to external networks such as the Internet—commonly used as a method of 

information and data communication—provide yet another point of access for hackers.  

The level of sophistication required in the execution of such cyber-attacks leads experts to 

believe that the implication of state sponsors is required. As more sophisticated and subversive 

offensive capabilities are developed, the use of cyber-attacks is likely to become an interesting 

instrument of war for nation states, given the difficulty with attributing blame. While other overt 

means of coercion such as blockades and sanctions have long existed, cyber-attacks directed at 

economic interests provide a politically convenient form of economic warfare. 

1.3 Critical infrastructure protection 

In seeking to defend against physical and cyber threats to critical infrastructure, the cost—

financial and social—associated with absolute protection is neither feasible nor desirable. The 

physical hardening of every last electrical distribution pylon or inch of pipeline does not 

represent a realistic engineering challenge, and the transformation of modern societies into police 

states, where barricades and armed guards are posted at every asset of value, is an equally 

unattractive outcome. Effective attempts at protecting critical infrastructure therefore rest on the 

careful prioritization and targeted defense of the most crucial assets of a given system. There 

exist various diverging approaches to assessing the importance of assets included throughout the 

associated literature. Broadly speaking, diverging asset prioritization schemes are divided along 

the two ends of the risk assessment spectrum.  

Traditional probabilistic risk assessments seek answers to three fundamental questions: What can 

go wrong? How likely is it to go wrong? How bad would it be if it did? Mathematically,  

𝑅𝑖𝑠𝑘 = 𝑃 ∗ 𝐶  

where 𝑃 is the probability of an unwanted or adverse event occurring and 𝐶, the associated 

negative impact. Risk, as defined above, is distinct from its usual meaning in economic or 

financial contexts, where it values likelihood of deviation from an expected return or 

macroeconomic condition. Within engineering frameworks, risk estimates expected loss. As 
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such, efforts at measuring the level of risk—or vulnerability—of a given system must therefore 

make assessments with respect to the variables above, either attempting to predict the likelihood 

of failure or quantifying the negative consequences of a given event taking place. Again, the 

associated literature provides diverging opinions on the two distinct approaches. 

1.3.1 Reliability theory 

A more traditional approach at addressing the problem of CI protection is contained in the 

engineering literature in the form of reliability engineering. Reliability engineering is concerned 

with the probabilistic estimation of component functionality or, inversely, its likelihood of 

failure, in an effort to characterize the reliability of systems as a whole. Reliability engineers, for 

instance, study the dependability or availability of physical assets, which is to say their 

functionality over a given period of time or at a specific point in time, respectively. 

A system is said to have failed once it no longer provides a specified level of performance. 

Overall system performance is necessarily conditional on component functionality, and different 

measures of reliability can be considered for serial components and parallel components.  

A serial system is one in which an input passes through each of a number of components in 

sequence, such that each one must be functioning for the system to function. Conversely, a 

parallel system is one in which an input may pass through any one of a number of components, 

such that only one of the components needs to be functioning for the system to function. Here, 

we use 𝑃 to denote the reliability of a system and let 𝑝𝑖, 𝑖 = 1,2, …𝑁 denote the reliability of each 

of the 𝑁 components of the system. For a serial system with independent probabilities of 

component reliability,  

𝑃 =∏𝑝𝑖

𝑁

𝑖

          (1) 

whereas for a parallel system with independent probabilities of component reliability, reliability 

is equal to 1 minus the probability of all parallel elements failing, such that 

𝑃 = 1 −∏(1 − 𝑝𝑖)

𝑁

𝑖

          (2)  
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As most real world systems are often composed of both serial and parallel elements, overall 

reliability can be computed from the individual reliabilities of the serial or parallel components.  

While estimating reliability is valuable in the context of a physical structure such as the 

electricity grid—for example, in the scheduling of preventative maintenance efforts—there are 

several reasons why this approach may be insufficient in characterizing the vulnerability of large 

complex systems. First, actual failure probabilities may be difficult to characterize. The 

probability of an earthquake or other natural disaster, for example, is very difficult to estimate 

accurately. Second, some destructive events of the type that interest us may not be well 

characterized by probability distributions, as they result from deliberate acts of sabotage or 

terrorism. Lastly, the probability of failure of a system is only one quantity that we want to 

discover. We are also interested in the level of functionality that remains following some 

destructive event and component failure.  

1.3.2 Resilience 

As the problem of critical infrastructure vulnerability has gained interest in recent years, the 

concept of resilience has become a prominent approach to assessing the risk of both assets and 

supply chains, but also broader communities and economic sectors.  

As a recent field of study, the idea of resilience has continued to evade a single canonical 

definition, with researchers prioritizing different aspects of the risk spectrum, and choosing to 

measure resilience according to diverging approaches. A recent publication from the Argonne 

National Laboratory entitled Resilience: Theory and Applications provides comprehensive 

overview of the varied literature on the topic, including both definitions and metrics (Carlson et 

al., 2012).  

As the authors demonstrated, many studies have defined resilience as the ability of a system to 

recover from the adverse consequences of a disruptive event. However, such definitions fail to 

acknowledge the effects of preventative actions taken in order to reduce the likelihood or impact 

of a possible catastrophic event. Taking anticipative actions into account, resilience can be 

defined as: “the ability of an entity—e.g. an asset, organization, community, region, etc.—to 

anticipate, resist, absorb, respond to, adapt to and recover from a disturbance.” 
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Figure 1.2: Aspects of Resilience and the Timing of an Adverse Event 

The text goes on to highlight the importance of having a sound methodology for the measurement 

of asset/facility resilience, given its implications on the resilience of the broader system. Table 2 

below provides Argonne’s framework for understanding how the four fundamental resilience-

enhancing measures—preparedness, mitigation, response and recovery—contribute to a given 

asset’s overall resilience.  

Table 1.1: Relationship between Aspects of Resilience and Resilience-Enhancing Measures 

Anticipate Resist Absorb Respond Adapt Recover 

Preparedness Mitigation Response Recovery 

Activities taken by 

an entity to define 

the hazard 

environment to 

which it is subject.  

Activities taken 

prior to an event to 

reduce the severity 

or consequences of 

a hazard. 

Immediate and ongoing activities, 

tasks, programs, and systems that 

have been undertaken or 

developed to manage the adverse 

effects of an event.  

Activities and 

programs designed 

to effectively and 

efficiently return 

conditions to a level 

that is acceptable to 

the entity.  

The most frequently cited metric of both component and system resilience is time. More 

specifically, resilience engineers and analysts are concerned with the delay between the initial 

disruptive ent and the return to normal operations, or Time to Recovery. For example, a recent 

literature review published by the United States Environmental Protection Agency presented 

generic time-based resilience assessments applicable to water distribution networks. These 

metrics, presented in (Attoh-Okine, Cooper, & Mensah, 2009), (Ayyub, 2014) and others, 

compute resilience as a function of time (𝑄(𝑡)). Resilience (𝑆) can be tracked and measured as: 
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𝑆 =
∫ 𝑄(𝑡)𝑑𝑡
𝑡1

𝑡0

100(𝑡0 − 𝑡1)
          (3) 

where 𝑡0 is a time before the hazardous event, and 𝑡1 is a time after the event. The above equation 

allows for a variety of metrics to be used for 𝑄(𝑡), so long as the variable used is affected by both 

the initial disruptive event and the restorative measures undertaken.  

As with reliability, measures focused on resilience provide worthwhile insights as to the 

vulnerability of systems. Perhaps most importantly, time-based resilience measures allow system 

operators to gauge the impact of failures on end-users, and on how to best allocate capital in 

order to reduce delays until return to normal operations. In fact, for certain CI sectors, such as 

financial services and emergency response, it is clear that time-based measures provide the most 

worthwhile consequence assessments.  

1.3.3 Robustness  

Lastly, a final CI risk assessment approach is one that emphasizes the consequential aspect of the 

risk equation. As mentioned, while estimations of failure probabilities and recovery times are 

useful in the context of CI operations and emergency preparedness, we are also interested in the 

performance of CI systems conditional on a serious destructive event having taken place. 

Reliability and resilience engineering approaches prevent analysts and researchers from 

providing consequence-based vulnerability metrics that reflect the negative impacts of destructive 

events on end-users directly in terms of loss of supply.   

There are a number of features that can limit the impact of a destructive event occurring within a 

given system. For instance, the adverse effect will tend to be less important if another part of the 

system can directly replace the output of the affected components. Similarly, the impact will be 

lower if the destructive event can be localized to the portion of the system in which it arose, such 

that the error propagation is limited. The same can be said for systems where damaged 

components can easily be replaced, or where neighbouring components can be adapted quickly. 

Any adequate measure of system robustness should capture these elements.  

Broadly speaking, robust networks or systems are described as those that tolerate faults 

(Schuster, 2008) and provide low performance variation when conditions are perturbed (Gaury & 

Kleijnen, 1998). The notion of engineering design geared towards the reduction of performance 
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sensitivity to variation in conditions, as opposed to the pursuit of eliminating variation altogether, 

is attributed to Taguchi, for example in (Taguchi & Clausing, 1990). These definitions and 

features of robust system design have become commonly accepted throughout substantial 

engineering literatures (Sussman, 2008).  

In the following work, we adopt robustness as a measure of remaining capacity and output 

following destructive events, arguing that variability of supply provides the most insightful and 

generalizable measure of CI vulnerability. Naturally, a complete understanding of a network’s 

tolerance to component breakdown requires insights into its physical configuration, including 

vulnerable points such as bottlenecks, production sites and redundant features, as well as its 

inherent supply and demand dynamics.  

1.4 Research objectives  

The following research aims to contribute—however modestly—to the ongoing scientific efforts 

dedicated to the protection of critical infrastructure networks, using robustness as the measure of 

overall system vulnerability. Given the vastness and complexity of these systems, we recognize 

that theoretical and practical advances in both critical asset prioritization and overall system risk 

assessment methodologies are required to maximize society’s efforts and return on investments. 

Understanding how to best prioritize and defend these infrastructural elements is the aim of this 

research paper, and our objectives towards achieving this goal can be described thusly:  

a. to compare—at a theoretical level—network-based measures (a prominent approach 

to CI protection) with measures based directly on loss of output, such as entropy-

based measures; 

b. to determine whether these measures tend towards similar conclusions, despite 

valuing different aspects of overall CI system functionality, and;  

c. to determine empirically whether any substantial differences can be seen when 

applying these two different approaches to the same real-world systems, and if so to 

try to interpret these differences.   

As such, the subsequent paper is organized in order to convey an understanding of recent 

scientific advances in the field of CI protection and an exploration of its potential for future 

improvement.  
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Chapter 2 presents a critical overview of the current CI modeling and analysis methodologies, as 

they appear throughout the current cadre of academic and professional research, including 

economic, agent and system dynamics-based approaches. This literature review is continued in 

Chapter 3, which focuses solely on network theory-based methods of critical asset prioritization 

and system vulnerability assessment. Chapter 4 presents a novel approach to the challenge of CI 

protection, drawing from the field of information theory. Lastly, Chapter 5 is the paper’s chief 

original contribution, and presents an empirical application of the network and information-

theory based methodologies by evaluating the vulnerability of the electrical transmission 

networks in Canada’s four largest provinces—British Columbia, Ontario, Alberta and Quebec—

before concluding with a comparative analysis of the benefits and drawbacks of these two main 

approaches.  
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CHAPTER 2 LITERATURE REVIEW 

Given their scope and complexity, the development of modeling and simulation methods is often 

seen as a prerequisite to the real-world design, maintenance, operation, improvement or 

protection of CI systems. The following section reviews the existing models proposed throughout 

the CI literature and broadly groups the current schools of thought into three categories: 

economic theory-based approaches, agent-based approaches and system dynamics-based 

approaches. Rather than providing a complete and in-depth overview of existing methods, this 

section is intended to serve as an introduction by highlighting the fundamentals, applications, 

strengths and weaknesses of available and ongoing research. It should also be noted that the 

literature review is continued in the subsequent chapter, which is dedicated to network science 

and provides a more substantive summary of the field’s relevant applications. As the reader will 

come to understand, empirical applications analyzed later in this work rely on the fundamentals 

of graph theory and may benefit from a more in-depth introduction to its main tenants and recent 

advances.  

2.1 Economic theory-based approaches 

Economic models generally seek simulate the behaviours of principal economic actors including 

households, producers, government regulators and other decision makers as they exchange goods, 

services and other resources. Such models can be useful in the modeling of critical infrastructure 

systems, in that the actions of such stakeholders—producers, consumers and operators—are 

critical in the proper functioning of balanced and optimal infrastructures. Below, we present the 

fundamentals and recent advances for two distinct economic modeling approaches: Input-Output 

models and Computable General Equilibrium models.  

2.1.1 Input-Output models 

The Input-Output economic model was first submitted by Nobel laureate Wassily Leontief in 

1951 (Leontief, 1986). The quantitative framework he proposed depicted inter-relations among 

different industry sectors for a given region, showing how output from one industrial sector may 

become an input to another. The model comes together in the form of matrix, where 𝑛 sectors of 

an economic model are considered as variables of a set of linear equations, with each sector 𝑖 

producing a single good 𝑥𝑖. It is assumed that producing a single unit from sector 𝑖 requires 𝑎𝑖𝑗 
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units delivered from sector 𝑗 and that interdependency between sectors forces them to produce 

and consume outputs mutually, while also satisfying a demand 𝑑𝑖. The output of sector 𝑖 

becomes:  

𝑥𝑖 = 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 +⋯+ 𝑎𝑖𝑛𝑥𝑥 + 𝑑𝑖           (4) 

By defining 𝐴 as the matrix of coefficients 𝑎𝑖𝑗, 𝑥 as the vector of total output and 𝑑 as the vector 

of aggregate demand, the expression for a complete economy becomes: 

𝑥 = 𝐴𝑥 + 𝑑          (5) 

Following basic re-formulation, it becomes clear that, given a reversible (𝐼 − 𝐴) matrix, the 

model is a linear system of equations with a unique solution. With a known final demand 𝑑, the 

required output can be found.  

While the application of the Input-Output (IO) model is widespread, its use in the field of critical 

infrastructure protection is relatively recent. Its first adaptation for the study of failures or 

inoperabilities was originally proposed by Haimes and Jiang (Haimes & Jiang, 2001). Where the 

traditional IO model was concerned with 𝑛 sectors and 𝑖 resources, their infrastructure model 

considered a system of 𝑛 critical complex intraconnected and interconnected infrastructures, with 

the output being their risk of inoperability that can be triggered by one or multiple failures due to 

complexity, accidents, or acts of terrorism. Inoperability is defined as the inability of a system to 

complete its intended function, measured in this instance as a continuous variable between 0 and 

1, with 0 representing complete functionality and 1, complete failure. In keeping with the 

established Leontief model, the Inoperability Input-Output model (IIM) can be formulated as:  

𝑥 = 𝐴𝑥 + 𝑐𝑘 = (𝐼 − 𝐴)
−1𝑐𝑘          (6) 

where 𝑥𝑗, 𝑗 = 1,2, … , 𝑛, is the overall risk of inoperability of the complex intraconnected and 

interconnected 𝑗th infrastructure; 𝑎𝑘𝑗 is the probability of inoperability that the 𝑗th infrastructure 

contributes to the 𝑘th infrastructure due to the complexity of their interconnectedness and 𝑐𝑘  the 

additional risk of inoperability that is inherent in the complexity (i.e., intraconnectedness) of the 

𝑘th critical infrastructure. As highlighted above, and assuming (𝐼 − 𝐴)  is non-singular, the 

system of equations can be solved for the overall risk of inoperability of the infrastructures 𝑥.  
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As with the fundamental Leontief model on which it is based, a series of refined IIM models have 

subsequently been proposed. The demand-reduction IIM defines perturbations as the reduction of 

aggregate demand for a set of economic sectors in response to an event, and afterwards deduces 

the output reduction or inoperability of each involved interdependent economic sector (Santos & 

Haimes, 2004). Dynamic IIM refines the traditional model by integrating resilience coefficients 

for individual economic sectors (Lian & Haimes, 2006). Multiregional IIM expands the scope of 

the original model by including multiregional interdependencies based on the use of geospatial 

datasets (Crowther & Haimes, 2010). 

Advocates of IIM-based modeling often highlight the intuitive interpretations of 

interdependencies offered by its different variations. Other major strengths of interoperability 

models are their accuracy in forecasting high-level error propagation among interconnected 

infrastructures and their insight as to effective mitigation efforts. These models also benefit from 

widely available existing datasets at both national and regional scales, such as the Bureau of 

Economic Analysis’s Benchmark Input-Output Data database, thereby facilitating their 

application. Often-cited applications of IIM-based models include studies of the financial effects 

of the US Northeast blackout of 2003 (Anderson, Santos, & Haimes, 2007), the catastrophic 

impact of US Gulf hurricanes in 2005 (Crowther, Haimes, & Taub, 2007), the resilience of 

telecommunications systems and power distribution infrastructure in the aftermath of Hurricane 

Katrina (Reed, Kapur, & Christie, 2009) and the effects of September 11
th

 on the global airline 

industry (Santos, 2006).  

The IIM models are, however, not without their weaknesses. While necessary input data is 

readily available, these datasets reflect the interdependency of sectors during normal economic 

operations, ignoring real-time infrastructure or industry outputs. IIM-based approaches fail to 

analyze the interdependencies that exist at the component level, providing instead a snapshot of 

aggregate for a given economic sector. 

2.1.2 Computable General Equilibrium models 

Computable General Equilibrium (CGE) models are often viewed as an improvement of the I-O 

models proposed by Leontief, as they possess the same fundamental features—such as the 

interdependency of economic sectors—but overcome several of its limitations, such as including 

the linearity of these interdependencies, and address the lack of behavioral responses to 
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fluctuations in market resources and prices (Rose, 1995). Within CGE models, producers’ 

production functions are modified to incorporate economic resilience, allowing for substitution 

analysis in cases of disruptions to normal market conditions due to external perturbations.  

Several recent studies focused on CIS have used CGE as a means to estimate economics losses 

following disturbances, and to measure the effectiveness of proposed or implemented mitigation 

efforts.  

Notably, work by Rose et al. analyzed the economic impacts of a hypothetical terrorist attack on 

the power distribution system of the city of Los Angeles. Economic losses were initially 

estimated at $20.5 billion, but reduced to $2.8 billion following the proposed (theoretical) 

implementation of various mitigation strategies, such as energy conservation, de-centralized 

onsite electricity generation and rescheduling of production (Rose, Oladosu, & Liao, 2007).  

As with traditional (𝐼 − 𝑂) models, the limitations of CGE models are that they provided a high-

level, macroeconomic snapshot of the economy, at a discrete point in time and do not offer any 

insight as to component-level interdependencies or consequences of failure. 

2.2 Agent-based approaches 

Complex Adaptive Systems (CAS) are also considered among the most promising areas of 

research pertaining to the modeling of critical infrastructure systems. Within the theoretical CAS 

frameworks, different components—or agents—which have been programmed into a model 

according to a prescribed set of rules, interact together in ways that continuously remodel future 

outcomes. Each agent is said to be an entity with distinct location, capability and memory (Gell-

Mann, 1994). The agent-based approach in the study of CAS adopts a bottom-up method and 

posits that complex behavior or phenomenon arises from many simple and individual interactions 

(Kaegi, Mock, & Kröger, 2009). This emergent behavior is characteristic of CAS models. 

Typically, CAS applications in the study of CIS use idealized networks (e.g. small-world 

networks) to represent infrastructure systems and components whose interdependencies are 

governed by empirical rules (Dueñas-Osorio, 2005). Perhaps most notably, CAS agent-based 

models have emerged as the preferred method of CIS modeling for several national laboratories 

and research centers within the United States.  
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In the late 1990s, the Sandia National Laboratories, whose chief mandate under the United States 

Department of Energy is the engineering and testing of non-nuclear components of the country`s 

nuclear weapons arsenal,  developed their first full-scale CAS model. Dubbed Aspen, the model 

aimed to simulate the behaviors of a large number of individual economic decision-makers at a 

high level of detail. While imperfect, the model’s outputs in reaction to federal monetary policies 

provided a detailed analysis of the financial sector, including the banking sector and bond market 

(Basu, Pryor, & Quint, 1998). In December 2000, an improvement of the original model, titled 

Aspen-EE (Electricity Enhancement), was Sandia’s first attempt at modeling infrastructure 

interdependencies, with a focus on the electric power system, and included agents representing 

power markets and their reaction to power outages (Barton, Eidson, Schoenwald, Stamber, & 

Reinert, 2000). For both Aspen and Aspen-EE, the models proposed represented interactions 

between sectors, players and assets as so-called message-passing mechanisms, rather than 

modeling physical infrastructures themselves. A later model, CommAspen, was released in 2004, 

extended and modified the previous models by accounting for the telecommunications systems 

and its effect on the previously studied banking, finance and power networks (Cox, Barton, 

Reinert, Eidson, & Schoenwald, 2004). That same year, the N-ABLE model was published, this 

time integrating households and economic firms into the model as an added layer of detail 

(Eidson & Ehlen, n.d.) and in 2008, Sandia went on to study the specific threat of cyber-attacks 

on basic physical assets (Kelic, Warren, & Phillips, n.d.).  

A second federal research center run by the United States Department of Energy, the Argonne 

National Laboratory, developed its first agent-based CIS model, the Spot Market Agent Research 

Tool Version 2.0, in 2000. Unlike models previously developed by Sandia at that time, SMART II 

took into consideration the physical layout—or topology—of power grids. Working closely with 

the Western Area Power Administration, one of the four power marketing administrations of the 

U.S. Department of Energy, Argonne’s model was capable of detecting the transmissions line 

configurations which would most likely lead to spikes in prices and therefore contribute to 

greater market price stability (M. J. North, 2001). An extension to the original model, called 

SMART II++, was later developed, adding natural gas marketing and distribution agents to the 

simulations. These individual infrastructures were then coupled together, in the form of gas-fired 

electricity generators, in order to allow for interdependency analysis (M. J. N. North, 2000). 

Completed simulations demonstrated the need to intelligently monitor the purchase of natural gas 
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destined for energy production, so as to avoid power network failures from cascading into the 

natural gas infrastructures.  

Lastly, the Idaho National Laboratory proposed their first CIS modeling approach, called the 

Critical Infrastructure Modeling System, in 2006 (Dudenhoeffer, Permann, & Manic, 2006). The 

CIMS tool used 3D graphical representations of CIS components and their interdependencies in 

order to anfalyze potential cascades and consequences of their potential failures. In contrast to the 

models developed by their peers, CIMS modeled infrastructure topologies in great detail and 

provided decision makers with the ability to easily visualize these interdependencies and their 

consequences. It became clear to the developers however, that once CIS sizes and 

interdependencies became increasingly complex, visualization methods were no longer suitable 

for rigorous analysis.  

Complex adaptive systems are ideal as a means to simulate critical infrastructure systems in that 

they allow for the modeling of various decision makers’ behaviours, system interdependencies 

and the effectiveness of proposed control strategies. Perhaps most importantly, CAS can be used 

in tandem with other modeling techniques to provide a more complete understanding of systems 

and the consequences associated with their failures.  

2.3 System dynamics-based approaches 

Systems theory is the science of understanding systems—i.e. sets of individual components which 

interact to form complex processes and complete a specific function—at a conceptual level, and 

across a broad spectrum of social and technological fields. Systems dynamics is the subfield of 

systems theory concerned with understanding the behaviour of complex systems over time, using 

stocks, flows, feedback loops and time delays to model different nonlinearities (MIT, 2016). 

Stocks are variables which can be quantified at a specific point in time, while flows are variables 

measured per unit of time. Feedback loops are the name of component outputs which are routed 

back as inputs, forming a circular process. This so-called feedback is characteristic of the system 

dynamics approach, and is particularly relevant in the study of self-regulating or self-correcting 

systems.  
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Put simply, while the agent-based approaches described above attempt to model the decision-

making mechanisms of system subcomponents, systems dynamics models are interested in the 

processes occurring between them.  

Originally developed by Jay Forrester in the 1950s to describe the dynamics of organizations, 

system dynamics modeling today provides a relevant, “blank canvas” approach to the modeling 

of CI interdependencies (Forrester, 1971) The most notable and frequently-cited application of 

systems dynamics modeling to CI protection is the Critical Infrastructure Protection/Decision 

Support System (CIP/DSS), developed by (Bush et al., 2005). As described by the authors, the 

tool models the interactions and dynamics of both the individual components and whole systems, 

according to their interdependencies. For example, “repairing damage to the electric power grid 

in a city requires transportation to failure sites and delivery of parts, fuel for repair vehicles, 

telecommunications for problem diagnosis and coordination of repairs, and the availability of 

labor. The repair itself involves diagnosis, ordering parts, dispatching crews, and performing 

work.” 

The dynamics processes involved are modeled according to governing rules—e.g. differential 

equations—and the output metrics are often estimates of disruption to, say, health, economic or 

environmental effects.  

A relevant application of the model is the analysis of Hurricane Katrina on critical infrastructures 

of Baton Rouge (Santella, Zoli, & Steinberg, 2011). In the study, authors provided a framework 

establishing the infrastructure systems which proved most resilient, offering policy and 

engineering avenues for improvement.  

While the systems dynamics approach provides a flexible approach to CI modeling, an over-

reliance on expert judgment and a failure to provide insights as to component-level performance 

render the model incomplete. As with CAS approaches however, systems dynamics models can 

easily be integrated into other modeling methodologies.  
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CHAPTER 3 NETWORK SCIENCE 

Networks are intuitive structures with which to model the form and function of real-world 

systems and processes. From supply chains to financial institutions and disease transmission 

pathways, the number of systems involving the distribution of goods and services between 

individual components is seemingly endless.  And while its list of applications is difficult to 

summarize, the study of network science as a scientific discipline is today defined along three 

main pillars of research.  

First, considerable efforts are dedicated to the characterization of network structures. This subset 

of academic research relies heavily on the mathematics branch of graph theory and involves 

mapping out the physical configurations of complex networks with the specified aim of 

understanding how they emerge and develop over time. Advances in this field have led to 

network generation algorithms, which allow researchers to build and experiment with ideal 

synthetic networks governed by the same laws as their real-world social, technological or 

biological counterparts.  

Second, considerable resources are dedicated to the analysis of networks and the processes 

occurring within them, using mathematical tools and statistical mechanics. Together with the first 

pillar of research, the tools developed arm the designers and operators working on these various 

complex systems with the analytic and predictive tools necessary to manage these networks, and 

provide insight as to their improvement and future development.  

Lastly, once empirical information pertaining to such networks has been aggregated and 

characterized, it is reasonable to question the feasibility of the tools at hand, given the scale of 

data being treated and computing times of algorithms involved. The third school of research in 

network science devotes itself to the computational implementation of theoretical advances made 

in the field, addressing limitations in data mining, computing efficiency and data visualization 

techniques. This line of research is left to a different author, and will go unmentioned throughout 

this work.  

The following section provides an overview of the school of thought called network science, 

including its history and fundamental theory, which is required in order to conduct a critical 

review of current network-based models in the field of CI protection.  
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3.1  Historical review 

Any historical review of the discipline of network science begins with famed mathematician 

Leonard Euler’s resolution of the classic Konigsberg Seven Bridges problem in 1736. The 

problem challenged thinkers to find routes around Konigsberg requiring travelers to cross each of 

the city’s seven bridges only once.  Euler’s analysis of the problem was the first to reformulate 

the challenge so as to summarize it to include only the individual lands masses, represented as 

points, and the links (bridges) connecting them, as illustrated in the figure below taken from 

(Wikipedia, 2016).  

 

Figure 3.1: Euler's simplification of the Konigsberg bridge problem 

In his paper on the topic, Euler laid down the fundamentals of graph theory and definitively 

demonstrated that the stated problem could not be solved (Sachs, Stiebitz, & Wilson, 1988). 

Subsequent improvements in the field attempted to emulate Euler’s approach, aiming to 

accurately model and understand the structure and dynamics of real-world networks.  

Subsequent advances were not made until much later, as research into networks became common 

in the health, social and pure & applied sciences. As it will become clear throughout the 

following section, research into these real-world networks resulted in them now being considered 

as part of three separate camps—random networks, scale-free networks and small-world 

networks—each with unique characteristics.  

Random networks, as their name suggests, are networks for which connectivity between a given 

set of nodes occurs according to a random process, or other fixed probability distribution. A first 

random network model was proposed by Edgar Gilbert and described a wiring process by which 

each possible edge for a given set of nodes occurs independently with a probability between 0 

and 1 (Gilbert, 1959). A second model for random networks was published contemporaneously by 

mathematicians Paul Erdos and Alfred Rényi, and described a connectivity model for which all 
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graphs possible given a fixed set of vertices and edges were considered equally probable (Erdös & 

Rényi, 1959). A main limitation of the ER model however, given its Poisson degree distribution, is 

that it fails to reflect the characteristics of certain real-world networks of interest.  

One such characteristic is the presence of certain highly-connected “hubs” within networks. This 

phenomenon results in a Power Law degree distribution, as opposed to a Poisson distribution, and 

has clear repercussions on the function and robustness on the concerned systems. Recent study 

into these so-called scale-free networks began with the mapping of the World Wide Web led by 

researcher Albert Barabasi (Barabási & Albert, 1999). The Internet’s configuration, Barabasi 

noticed, indicated that certain key nodes within the system—presumably those performing 

essential functions—were disproportionality well connected when compared to others. 

Subsequent work demonstrated that this was true for a variety of complex biological, social and 

technological systems (Barabási, 2003). While previous models were composed of a fixed set of 

nodes and edges, Barabasi and Albert argued that these complex systems continue to grow over 

time and that new nodes would attach preferentially to pre-existing nodes of greater importance. 

To capture this selective growth pattern, the authors proposed a generative graph model, now 

known as the Barabasi-Albert model, where the probability (𝜋) of a new node connecting to an 

existing node 𝑖 depends on the degree 𝑘𝑖  of that node, such that: 

𝜋(𝑘𝑖) =
𝑘𝑖
∑ 𝑘𝑗𝑗

          (7) 

where 𝑗 represents all other pre-existing nodes (R. Albert & Barabási, 2002). 

Finally, the Watts-Strogatz model, proposed in 1998, offered an algorithmic approach to building 

a final sub-category of graphs: small-world networks. As will be discussed below in greater 

technical detail, the small-world phenomenon was brought to prominence by social scientist 

Stanley Milgram in the now-infamous “six degrees of separation” experiment, and demonstrated 

that within certain networks, any two given nodes are connected by a characteristically sort path 

(Milgram, 1967). Watts and Strogatz produced a model that addressed certain limitations of 

previous random graph models, and consisted of a wiring process that interpolated between an 

ER attachment scheme and a regular ring lattice (a graph which is obtained by beginning with a 

circular graph consisting of a single cycle and connecting each vertex to its neighbors two steps 

away (Singer, 2016)) (Watts & Strogatz, 1998).  
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3.2 Fundamentals of network theory 

A given network– or graph, as it is commonly referred to in mathematical literature– is a 

collection of dots, called nodes or edges, and lines, called vertices, interconnecting them. Let us 

consider 𝐺 = (𝑉, 𝐸), any graph made up of vertices 𝑉(𝐺) = {𝑣1, 𝑣2, … , 𝑣𝑛} and edges 𝐸(𝐺) =

{𝑒1, 𝑒2, … , 𝑒𝑛}. The number of vertices for each graph is its order, noted 𝑛, and the number of 

edges its size, 𝑚. Each graph can be mathematically summarized by its adjacency matrix A, for 

which:  

𝑎𝑖𝑗 ∶= {
1      𝑖𝑓 𝑣𝑖𝑣𝑗 ∈ 𝐸

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (8) 

Obviously, 𝐴 is symmetric, as any edge between 𝑣𝑖 and 𝑣𝑗  is also an edge between 𝑣𝑗  and 𝑣𝑖. 

Hence, 𝑎𝑖𝑗 = 𝑎𝑗𝑖. Alternatively, graphs are often summarized by their incidence matrix 𝐵, for 

which: 

𝑏𝑖𝑗 = {
1      𝑖𝑓 𝑣𝑖 ∈ 𝑒𝑖
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (9) 

A path is a sequence of vertices traversed by following edges from one to another across a 

network. Mathematically, it is a non-empty sub-graph 𝑃 = (𝑉, 𝐸) of the form 𝑉 = {𝑣0, 𝑣1, … , 𝑣𝑘} 

and 𝐸 = {𝑣0𝑣1, 𝑣1𝑣2, … , 𝑣𝑘−1𝑣𝑘} where all 𝑣𝑖 are distinct (Dueñas-Osorio, 2005). The length of a 

path is the number of edges it traverses. The distance 𝑑𝑖𝑗—or geodesic path— is the shortest path 

that exists between nodes 𝑖 and 𝑗. If no such path is present, which is to say if 𝑖 and 𝑗 exist on 

different sub-graphs for which no physical link exists, 𝑑𝑖𝑗 ∶= ∞. It is also important to note that 

distances need not be unique between nodes 𝑖 and 𝑗, as two distinct paths may be of the same 

length.  

Let us consider, for example, the graph 𝐺 illustrated in Figure 1 below: 
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Figure 3.2: Graph G - an unweighted and undirected graph 

It is made up of 6 vertices (or nodes) and 9 unweighted, undirected edges (or lines). 

Mathematically, 𝐺 = (𝑉, 𝐸), where: 

𝑣1 = 1 

𝑣2 = 2 

𝑣3 = 3 

𝑣4 = 4 

𝑣5 = 5 

𝑣6 = 6  

 And  

𝑒1 = (𝑣1, 𝑣2) 

𝑒2 = (𝑣1, 𝑣3) 

𝑒3 = (𝑣1, 𝑣5) 

𝑒4 = (𝑣2, 𝑣4) 

𝑒5 = (𝑣2, 𝑣5) 

𝑒6 = (𝑣3, 𝑣4) 

𝑒7 = (𝑣3, 𝑣5) 

𝑒8 = (𝑣4, 𝑣6) 

𝑒9 = (𝑣5, 𝑣6) 
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Graph 𝐺 can also be represented by its adjacency matrix 𝐴𝐺   

𝐴𝐺 =

(

  
 

0 1 1 0 1 0
1 0 0 1 1 0
1 0 0 1 1 0
0 1 1 0 0 1
1 1 1 0 0 1
0 0 0 1 1 0)

  
 

 

as well as its incidence matrix 𝐵𝐺 

𝐵𝐺 =

(

  
 

1 1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0
0 1 0 0 0 1 1 0 0
0 0 0 1 0 1 0 1 0
0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 1 1)

  
 

 

In more detailed graphs, edges can be attributed values—or weighted—to characterize the 

processes taking place across the various arcs in question. In such cases, non-zero elements of the 

adjacency matrix can contain values other than 1, indicating stronger or weaker connections. A 

typical example of such weighted graphs is the flow or value of commodities being transited 

along elements of a supply chain.  Similarly, directed graphs, are those which specify the 

direction of edges between vertices. Directed graphs can be represented by asymmetric adjacency 

matrixes for which 𝑎𝑖𝑗 = 1 or 𝑎𝑖𝑗 = −1 indicate an edge pointing in a direction specified by 

convention.  

3.2.1 Network characterization 

Characterizing networks allows us to gain an understanding of the physical configurations—or 

topologies—of different graphs. Using simple metrics as a means of describing graphs facilitates 

the comparison of different types of networks. The following section provides a brief overview of 

traditional parameters used in network characterization, as well as some of the most useful 

contemporary ones.  

3.2.1.1 Average Path Length (𝑳) 

For undirected graphs, the average path length—sometimes referred to as mean distance—is 

defined as:  
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𝐿 =
1

1
2 𝑛(𝑛 + 1)

∑𝑑𝑖𝑗
𝑖≥𝑗

          (10) 

where 𝑑𝑖𝑗 is the shortest path—or geodesic—between vertices 𝑖 and 𝑗. Average path length has 

been demonstrated to be particularly useful in its ability to indicate whether or not a given 

network exhibits so-called small-world effect. As first definitively observed throughout the 

course of several experiments during the 1960s by social psychologist Stanley Milgram, most 

pairs of vertices in most networks seem to be connected by a short path through the network. In 

the now-famous case of Milgram’s research, letters passed from person to person were able to 

reach a designated target individual in only a small number of steps (six in the published case 

studies) (Milgram, 1967). Empirically, networks are said to exhibit this effect if the value of 𝐿 

scales logarithmically (or less) with 𝑛 for a fixed average number of edges per vertex.  

𝐿 ∝ log 𝑛 

The emergence of so-called small-world effect within networks is therefore of considerable 

importance, as it pertains to the rapid delivery of goods—commodities, information, cash, etc.—

from a source node to a delivery node.  

In practice, computing average path length first requires solving the shortest path problem for a 

given network 𝐺(𝑉, 𝐸), from every node included in subset 𝑉 to every other node. 

Computationally, this problem can be solved using Dijkstra’s algorithm. Named after its creator, 

Edsger Dijkstra, the algorithm was first published in 1959, and proposed as an efficient method 

for the computation of the minimal total length between two nodes of a given graph (Dijkstra, 

1959). It is the approach chosen for the calculation of 𝑑𝑖𝑗  in following subsections. 

Lastly, we note that inverse average path length (
1

𝐿
) is an often-cited and intuitive measure of the 

efficiency with which a resource can be delivered.  

3.2.1.2 Harmonic mean (𝑳−𝟏) 

In larger complex networks, which may contain disconnected sub-graphs, it is possible that any 

two vertices have no connecting path, and thus the calculation of mean distance becomes 

problematic. In such instances, the distance value would be defined conventionally as 𝑑𝑖𝑗 ∶= ∞, 
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driving the 𝐿 value to a meaningless infinity. A commonly used alternative is the harmonic mean, 

defined as (Newman, 2003): 

𝐿−1 =
1

1
2𝑛(𝑛 + 1)

∑
1

𝑑𝑖𝑗
𝑖≥𝑗

          (11) 

3.2.1.3 Diameter (𝑫) 

The diameter of a given network is the largest distance, measured in edges, between any two 

nodes in the network.  

𝐷 = max
𝑖,𝑗
𝑑𝑖𝑗           (12) 

In the language of network theory, the diameter is the maximum shortest path between each pair 

of vertices. More practically, it represents the furthest possible distance that a given resource 

would need to travel in order to be delivered.   

3.2.1.4 Degree (𝒅𝑮) 

Vertex degree is considered one of the most fundamental parameters in network theory. 

Mathematically, the degree of vertex 𝑣𝑖, denoted as 𝑑𝑖, is equal to the number of edges at 𝑣𝑖. The 

average degree 𝑑𝐺  of a network is given by:  

𝑑𝐺 =
1

𝑛
∑𝑑𝑖
𝑛∈𝐺

          (13) 

Or equivalently,  

𝑑𝐺 =
2𝑚

𝑛
          (14) 

Average node degree serves as a basic measure for overall network sparseness. A sparse network 

is one for which the number of links 𝑚 is less than the theoretical maximum number of links for 

that same network i.e. 𝑚𝑚𝑎𝑥 = 𝑛(𝑛 − 1)/2.  

Moreover, it is intuitive to assume that a given node’s level of connectivity provides a good 

measure of its importance within a network. Research in this area, for both ideal and real-world 

networks, has demonstrated that vertex degree is crucial in predicting a network’s resilience to 

random and targeted attacks (Albert, Jeong, & Barabasi, 2000). A network’s statistical 
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distribution of vertex degrees is in fact widely cited as a measure of network characterization. If a 

network’s vertex degrees obey a Poisson distribution, displaying short thin tails, it has been 

demonstrated that it will be equally vulnerable to random or targeted attack, given that all nodes 

are of a typical degree i.e. level of connectivity. Alternatively, if a network’s degree distribution 

follows a Power Law with long thick tails, indicating that a select number of nodes have 

disproportionately high degrees, it will show a considerable level of resilience to random 

disruptions and an increased level of vulnerability to targeted attacks.  

3.2.1.5 Clustering coefficient (𝑪) 

The characterization of complex networks must necessarily seek to quantify the level of 

redundancy built into a given system, either by design or happenstance. As defined by Goulter, 

redundancy indicates the presence of “independent alternative paths between source and demand 

nodes which can be used to satisfy supply requirements during disruption or failure of the main 

paths” (Goulter, 1987).  

Of these redundancy metrics, one of the most frequently used is the clustering coefficient, 𝐶, as 

first proposed by Barrat and Weigt (Barrat & Weigt, 1999). The clustering coefficient of a 

network indicates the average probability that two neighbors of a node are themselves adjacent 

by measuring the density of triangles—sets of three vertices for which each is connected to each 

of the others—within a given graph. As often paraphrased in the social sciences, 𝐶 is the 

probability that “the friend of your friend is also your friend”. 

The clustering coefficient can be calculated by (Newman, 2003): 

𝐶 =
3 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
          (15) 

Here, a connected triple of vertices indicates a single vertex with edges connected to a pair of 

other vertices. In effect, 𝐶 measures the ratio of “completed” triples, and the factor of 3 in the 

expression’s numerator ensures that 𝐶 lies in the range of 0 ≤ 𝐶 ≤ 1. 𝐶 can also be expressed as: 

𝐶 =
6 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑤𝑜
          (16) 
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In the above expression, a path of length two refers to a directed path starting from a specified 

node. Alternatively, local measures of clustering have been proposed and can be measured as 

follows (Watts & Strogatz, 1998): 

𝐶𝑖 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 
          (17) 

The clustering coefficient for an entire network, 𝐶, is then given as the mean of the network’s 

local clustering coefficients (Newman, 2010): 

𝐶 =
1

𝑛
∑𝐶𝑖

𝑛

𝑖=1

          (18) 

A graph with 𝐶 = 1 is said to have maximal clustering, while one with 𝐶 = 0 has no clustering. 

A common observation made of real-world networks is that they exhibit non-trivial clustering 

coefficients (Iyer et al., 2013).   

We take for example, the graphs 𝐴1 and 𝐴2, illustrated in Figure 2 below, for which the 

clustering coefficients are 0 and 0.2, respectively.  

 

Figure 3.3: Graphs A1 and A2 

 

While both graphs have similar topologies, we note the existence of edges (𝑣2, 𝑣3), (𝑣4, 𝑣5), 

(𝑣5, 𝑣6) and (𝑣6, 𝑣7) in graph A2. Let us consider a given scenario in which 𝑣1 is a production 

node, nodes 𝑣2 and 𝑣3are transportation nodes and nodes 𝑣4, 𝑣5, 𝑣6 and 𝑣7 are delivery nodes. In 

such an example, these additional edges represent alternative transmission routes with which to 

deliver goods and services in the event of a hazard eliminating a single path. The operational 
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flexibility provided by the additional edges in graph 𝐴2 is reflected in the respective cluster 

scores.  

This being said however, a noticeable limitation of the clustering coefficient is that it is a purely 

topological measure and ignores any edge capacity requirements. Additionally, it only provides 

information on triangular redundant loops.  

3.2.1.6 Meshedness coefficient (𝑴) 

Given that the clustering coefficient presented above focuses on the identification of transitive 

triangles, an obvious extension of this metric would speculate as to level of redundancy present 

for loops of length four and above.  

One such measure is the meshedness coefficient, 𝑀, originally proposed by Buhl (Buhl et al., 

2006). When studying the spatial arrangement of urban settlements, the authors noted the 

typically low levels of clustering resulting from the typical parallel layout of roads in urban 

environments. In response, a novel coefficient for the measuring of “meshed” networks was 

proposed:  

𝑀 =
𝑚− 𝑛 + 1

2𝑛 − 5
          (19) 

Similar to the clustering ratios, the meshedness coefficient measures network redundancy as a 

quotient of the number of actually present independent loops (𝑚 − 𝑛 + 1) and the number of 

maximum possible loops (2𝑛 − 5). Here, 𝑀 can vary from 0, for tree-structure networks, to 1, for 

complete planar graphs. It is interesting to note that 𝑀 appears to be independent of network size, 

showing only very limited correlation to 𝑛. 

Referring once again to graphs 𝐴1  and 𝐴2 illustrated in Figure 2 above, we note that their 

respective meshedness coefficients are 0 and 0.444. As with clustering, the alternative routes of 

delivery made possible by additional edges is reflected in the meshedness scores.  

3.2.1.7 Network efficiency (𝑬) 

Network efficiency, as originally proposed by Latora and Marchiori, represents the ease with 

which any two vertices 𝑖 and 𝑗 can communicate and exchange information (Latora & Marchiori, 

2001). It is defined as:  
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𝐸𝑔𝑙𝑜𝑏 =
1

𝑛(𝑛 − 1)
∑

1

𝑑𝑖𝑗
𝑖≠𝑗∈𝐺

          (20) 

where 0 ≤ 𝐸𝑔𝑙𝑜𝑏 ≤ 1.  

In the referenced paper, the authors proposed efficiency as an alternative to 𝐿 in defining small-

world behaviour is systems while dropping restrictions on unweightedness, connectedness and 

undirectedness. Networks with high efficiency are said to exhibit small-world behaviour. 

Additionally, they viewed 𝐸𝑔𝑙𝑜𝑏 as a measure of parallel system efficiency, while the inverse of 

average path length (
1

𝐿
) described the efficiency of sequential systems i.e. resources carried along 

a chain of components. Lastly, they described 𝐸𝑔𝑙𝑜𝑏 as a measure of system redundancy 

equivalent to the clustering coefficient, but with a very precise physical meaning: the efficiency 

in transporting information.  

3.2.1.8 Assortativity coefficient (r) 

A final often-cited characteristic of real-world networks is that they manifest some degree of 

assortativity or, conversely, disassortativity (Newman, 2002). In assortative networks, high 

degree nodes tend to be connected to other highly connected nodes and low degree nodes to other 

low degree ones. The opposite is true for networks which are said to be disassortative,  where 

high degree nodes display a tendency to be connected to low degree nodes, and vice versa. The 

assortativity (or disassortativity) of a network with 𝑛 nodes and 𝑚 edges is measured by its 

assortativity coefficient, defined by:  

𝑟 =
∑ (𝑎𝑖𝑗 − 𝑑𝑖𝑑𝑗/2𝑚)𝑑𝑖𝑑𝑗
𝑛
𝑖,𝑗=1

∑ (𝑑𝑖𝛿𝑖𝑗 − 𝑑𝑖𝑑𝑗/2𝑚)𝑑𝑖𝑑𝑗
𝑛
𝑖,𝑗=1

          (21) 

where 𝛿𝑖𝑗  is the Kronecker delta, such that 

𝛿𝑖𝑗 = {
0 if 𝑖 ≠ 𝑗
1 if 𝑖 ≠ 𝑗

          (22) 

Networks with 𝑟 > 0 are assortative while networks with 𝑟 < 0 are disassortative and those with 

𝑟 = 0 are neither.  

As first demonstrated by Newman in the above-mentioned study, social networks are typically 

assortative, while biological and technological networks are usually disassortative.  
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3.2.2 Network Analysis 

Understanding how networks continue to function once one or more of their component parts has 

been degraded is the chief objective in the study of network robustness. The process that results 

from the sequential removal of some fraction of a networks nodes and the study of its subsequent 

impact on the system’s form and function is referred to as percolation theory, and is said to 

provide a natural model for studying the robustness of networked systems (Watts, Newman, 

Callaway, 2000). First proposed as a method for the study of the transmission of epidemics 

across social networks, percolation is commonly used today to study cascading failures across 

technological networks.  

This approach implies the need for a preferential scheme with which to go about targeting nodes 

for removal. Moreover, given that a technological network’s performance is intrinsically linked 

to its engineering design and boundary conditions, performance indicators are required in order to 

measure a system’s functionally (or inversely, its level of degradation) as part of the continuous 

node-removal process. The following section provides an overview of the literature’s most 

widely used centrality measures, as well as a set of proposed network performance indicators. 

3.2.2.1 Centrality measures 

Centrality measures attempt to identify the most central vertices within a network (Carrington, 

Scott, & Wasserman, 2005). While several of these measures have been proposed throughout the 

literature, here we focus on the four most common: degree centrality, betweeness centrality, 

closeness centrality and eigenvector centrality.  

3.2.2.1.1 Degree centrality (𝑑𝑖) 

As highlighted in the previous chapter, a vertex’s level of connectivity with its surrounding nodes 

provides a simple, yet effective measure of its importance within networks. This measure is a 

purely topological one and can be calculated using information contained in a graph’s adjacency 

matrix 𝐴. A node’s degree centrality is given by:  

𝑑𝑖 =∑𝐴𝑖𝑗

𝑁

𝑗=1

          (23) 



33 

 

The study of networks on this topic has demonstrated that degree centrality plays a large role in a 

network’s survivability to random or targeted attacks (Albert et al., 2000). In the aforementioned 

research, authors studied the effect of node removal for two distinct networks: the infrastructure 

of the Internet and a 326,000-page subset of the World Wide Web. When targeting nodes at 

random, both networks displayed a high level of resilience when using remaining network 

connectivity as the chosen metric for robustness, which we address below. Removing nodes in 

order of the highest degrees was shown to have a devastating effect. If a network’s vertex degree 

distribution is Poisson, with short thin tails, it will be equally vulnerable to random or targeted 

disruptions as each node will have a degree typical for the network. However, if the vertex 

degrees exhibit a Power Law distribution, with long thick tails, it will display significant 

resilience to random disruptions but a strong vulnerability to targeted attacks, as a select few 

nodes will have a disproportionately high level of connectivity. For any saboteur, terrorist or 

intelligent actor with ill intent, targeting nodes in decreasing order of degree would therefore 

seem like the most efficient method with which to cause maximum disruption 

3.2.2.1.2  Betweeness centrality (𝑏𝑖) 

Betweeness centrality is a crude measure of the control a given node 𝑖 exerts over the flow of 

commodities between others (Newman, 2003). It is calculated as the total number of shortest 

paths that traverse a given vertex 𝑖 when the shortest paths are calculated between every pair of 

nodes (𝑖, 𝑗) that exist in 𝐺, and for which 𝑖 is not considered an end to any of the shortest paths 

(Borgatti, 2005). If we assume that goods are routed through the most direct path in a given 

infrastructure network, consistent with optimal engineering design practices, betweeness 

represents the total flow transiting through a given node 𝑖, and can be calculated as follows:  

𝑏𝑖 = ∑ 𝑣𝑖(𝑠, 𝑡)

𝑠,𝑡 ∈𝑛

          (24) 

where 

𝑣𝑖(𝑠, 𝑡) = {
1, 𝑖𝑓 𝑖 𝑙𝑖𝑒𝑠 𝑜𝑛 𝑎 𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠 𝑎𝑛𝑑 𝑡

0 , 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (25) 

It is interesting to note that a vertex may display a high level of betweeness while being 

connected to only a small number of other vertices. Such measures will allow us to correctly 

value the centrality of vertices that “bridge” together distant clusters of nodes. Here, we may 
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think of transmission lines of utilities infrastructures which often transport commodities across 

the long distances that bridge points of resource extraction or generation hubs and local 

distribution networks.  

Let us consider, for example, network 𝐵2, illustrated in Figure 3 below. In this instance, we 

consider that vertices 𝑣1, 𝑣2, 𝑣3 and 𝑣4 are production nodes, 𝑣5, 𝑣6 and 𝑣7 are distribution nodes 

and 𝑣8, 𝑣9, 𝑣10 and 𝑣11 are delivery nodes.  

 

Figure 3.4: Graph B1and B2 

We notice that when ordered according to their degree and betweeness centralities, the nodes of 

graph 𝐵1 are ranked identically.  

Table 3.1: Degree and betweeness centrality rankings of graph B1 

Degree 5 7 6 1 2 3 4 

Betweeness 5 7 6 1 2 3 4 

However, the same graph, modified to contain an additional edge joining nodes 𝑣5 and 𝑣7, as 

illustrated in graph 𝐵2, produces different rankings.  

Table 3.2: Degree and betweeness centrality rankings of graph B2 

Degree 5 7 6 1 2 3 4 

Betweeness 5 7 1 2 3 4 6 

While the rankings in terms of degree centralities remain unchanged, the addition of a new 

shortest path, providing a more optimal pathway for the delivery of resources from the 
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production hub at 𝑣5 to the delivery terminal at 𝑣7, is reflected in the ordering of nodes in 

accordance with betweeness centralities.  

Perhaps most interestingly, is that while its input requirements demand no more than the 

topological information contained within a graph’s adjacency matrix, betweeness centrality 

attempts to provide analysts with insight as to a network’s flow transmission pathways, in 

accordance with common optimal engineering constraints. For those analysts concerned with the 

study of critical infrastructures, betweeness centrality would seem to provide an important tool 

with which to highlight chokepoints such as bottlenecks and crucial hubs. 

3.2.2.1.3 . Closeness centrality 

Closeness centrality provides a measure of importance based on the mean distance between any 

node and all other nodes in the network. The average distance of vertex 𝑖 can be calculated as 

follows: 

𝑔𝑖 =
1

𝑛
∑𝑑𝑖𝑗
𝑗∈𝑛

          (26) 

where 𝑑𝑖𝑗 is the shortest distance (geodesic path) between nodes 𝑖 and 𝑗. The closeness centrality 

of a given node is then calculated by:  

𝑐𝑖 =
1

𝑔𝑖
=

𝑛

∑ 𝑑𝑖𝑗𝑗∈𝑛
          (27) 

Here, by calculating closeness centrality as the reciprocal of average distance, we ensure that 

high values are attributed to vertices that are a short geodesic distance from many other vertices 

in the network.  

3.2.2.1.4 Eigenvector centrality 

Eigenvector centrality can be viewed as a more refined version of degree centrality, as it based on 

the concept that a given node should be viewed as important if it is linked to nodes that are 

themselves important. First used by Philip Bonacich in 1972, the eigenvector centrality 𝑒𝑖 of node 

𝑖 is defined as: 



36 

 

𝑒𝑖 =
1

𝜆
∑𝑎𝑖𝑗𝑒𝑗

𝑛

𝑗=1

          (28) 

where λ is a constant (Bonacich, 1972). The above function can be rewritten in linear algebra 

notation as the eigenvector equation: 

𝐴𝑒 = 𝜆𝑒          (29) 

While there may exist several different λ eigenvalues, the Perron-Frobenius theorem 

demonstrates that for a real square matrix with positive entries there exists a unique largest real 

eigenvalue for which the corresponding eigenvector, 𝑒, can be chosen to have strictly positive 

entries.   

As with degree, betweeness and closeness, eigenvector centrality continues to be one of the most 

widely cited measures in a variety of social, biological and technological networks. In fact, 

Google’s PageRank algorithm, used to gauge the importance of a given website, is a variant of 

eigenvector centrality.  

3.2.2.1.5 Random node selection 

Finally, in an effort to adopt an “all-hazards” approach to the problem of network (or critical 

infrastructure) vulnerability, the selection of nodes at random mimics the failure of components 

caused by natural hazards, aging and malfunction. It also provides a simplistic benchmark with 

which to gauge the effectiveness of previously mentioned intelligent node removal schemes. 

3.2.2.2 Performance measures 

The second requirement for the evaluation of system’s robustness is the comparison of overall 

network functionality before and after a disruption (or an intelligent removal of nodes) has taken 

place. These performance indicators may capture network information on network topology 

alone, or can be refined to give an indication of flow pattern changes within the system being 

studied. The following section provides an overview of the measures typically used in percolation 

theory approaches.  

3.2.2.2.1 Connectivity loss (𝜎(𝜌)) 
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Connectivity loss is a purely topological measure of system performance. It studies how the size 

of the largest system component (i.e. sub-graph) will change as a fraction 𝜌 of its vertices are 

removed. If, after the removal of a number of nodes, a network’s remaining sub-graphs are 

sufficiently small, it is reasonable to assume that it will cease to meet its basic function 

requirements in any meaningful sense. For an initial network order 𝑛, we define 𝑛𝜌 as the 

network resulting from the removal of 𝜌 nodes according to a specified preferential scheme. The 

largest component of 𝑛𝜌 will be 𝑛𝜌
𝑐 . Connectivity loss can then be calculated as:  

𝜎(𝜌) =
|𝑛𝜌
𝑐|

𝑛
          (30) 

where |𝑛𝜌
𝑐| is the number of vertices in 𝑛𝜌

𝑐  (Iyer, Killingback, Sundaram, & Wang, 2013). 

Measuring connectivity loss as a function of the fraction of nodes removed will allow for the 

plotting and comparison of different node-targeting approaches described in the previous 

subsection.  

3.2.2.2.2 Network robustness (𝑅) 

While connectivity loss allows for the visualization of system functionality scaled by number of 

nodes removed, network robustness measures allow for the single-value quantification of a given 

network. The robustness of a network subjected to different types of vertex removal schemes can 

be valued according to (Schneider, Moreira, Andrade, Havlin, & Herrmann, 2011):  

𝑅 =
1

𝑛
∑(

𝑖

𝑛
)

𝑛

𝑖=1

          (31) 

The normalization factor of 
1

𝑛
 is used in order to compare the robustness of networks of different 

sizes. Also, it can be demonstrated that for any preferential vertex removal scheme, 𝑅 attains a 

minimum value of 
1

𝑛
 and a maximum value of  

1

2
(1 −

1

𝑛
) (Iyer et al., 2013). As such, 𝑅 ∈ [0,

1

2
].  

3.2.2.2.3 Network vulnerability (V) 

The above-mentioned property of 𝑅 has led to the use of its alternative value, network 

vulnerability, which can be valued as such (Iyer et al., 2013): 
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𝑉 =
1

2
− 𝑅          (32) 

3.2.3 Applications to critical infrastructure vulnerability 

Graph theory provides a natural tool with which to represent the structure and dynamics of CI 

systems. In these models, nodes represent the individual components and links, the physical, 

logical and cyber dependencies between them. Additionally, weighted and directed edges can 

model flow capacities and delivery patterns, respectively.  

Scholars attempting to estimate the vulnerability of networked systems using graph theory do so 

by studying a network’s topology or flow, or both. Additionally, while some choose to focus on a 

given network class—for instance, power grids or oil pipelines—others are committed to the 

advancement of graph theory more broadly, and apply generic analytical methods to a variety of 

different technological networks.  

Given their importance in the maintenance of economic and social functions, electricity grids 

have remained the focus of many studies aimed at assessing the vulnerability of largescale, 

complex networks.  

Among such studies, the most widely-cited is the analysis of the North American power grid 

produced by (R. Albert, Albert, & Nakarado, 2004). The authors proposed a study of the 

structural vulnerability of the North American power grid, based on recent advances in the field 

of network theory. As highlighted in the text, “performing an analytic description of the 

electromagnetic processes integrated over the whole grid is a daunting, if not impossible, task” 

and as such, the authors recommended that power operators and security analysts rely instead on 

simplified models, which can be used to simulate deviations caused by external perturbations. 

Their model summarized the North American power grid as a network of 14,099 nodes 

(substations) and 19,657 edges (transmission lines). The authors attempted to demonstrate the 

degradation of network functionality based on the sequential targeting of different nodes, using a 

measure of connectivity loss to quantify the average decrease in the number of generators 

connected to a distributing substation, such that: 

𝐶𝐿 = 1 − (
𝑁𝑔
𝑖

𝑁𝑔
)          (33) 
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where 𝑁𝑔 is the number of generation stations (1,633 in total) and 𝑁𝑔
𝑖 , the number of generators 

connected to a given distribution node 𝑖 following a disruption. In this form, connectivity loss 

measured the decrease of the ability of distribution substations to receive power from the 

generators. The study concluded that while the North American power grid displayed robustness 

to most perturbations, the targeting of key transmission substations in particular is what greatly 

reduced its ability to function and provide power to end users.  

Another seminal work associated with the study of electrical transmission systems is the analysis 

of the Northwestern power grid produced by Duncan Watts and Steven Strogatz in 1998 (Watts 

& Strogatz, 1998). The authors demonstrated that, similar to other biological and social networks, 

the utilities grid under study exhibited small-world behaviour, with characteristic mean distances 

and non-trivial clustering ratios, and indicated a heightened risk of disease—or error, in the case 

of technological networks—propagation.   

Network theory-based approaches have also been applied in measuring the robustness of the 

Internet to both random breakdown and targeted attacks. In (Cohen, Erez, ben-Avraham, & 

Havlin, 2000), the authors studied the resilience of the Internet to random breakdowns, noting 

that it, like many other large networks, followed a scale-free Power Law connectivity 

distribution. When removing, or “collapsing” nodes at random, it was demonstrated that the 

network exhibited a high degree of resilience to random breakdown, with “a cluster of 

interconnected sites spanning the whole Internet becoming more dilute with increasing 

breakdowns, but remaining essentially connected even for nearly 100% breakdown.” In a 

subsequent work, the authors demonstrated that the same network was highly sensitive to 

intentional attack, when targeting nodes with high connectivity (R. Cohen, Erez, ben-Avraham, 

& Havlin, 2001).  
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CHAPTER 4 ENTROPY-BASED APPROACH TO ROBUSTNESS 

The following section describes a model of system robustness based on the fundamentals of 

information theory, first presented in (Galbraith, 2009). As such, we begin by presenting the 

history and basic concepts of the information theory principles which we draw upon. Next, we 

present a novel approach to the measurement of system robustness. An empirical application of 

this model is then presented in Chapter 5.   

4.1 Entropy-based model of robustness 

Information theory is the branch of mathematics concerned with the study of how information 

can be quantified, transmitted and processed, and was first developed by famed mathematician 

Claude Shannon. While working as an engineer at Bell Laboratories in 1948, Shannon became 

interested with the problem of communicating information over a noisy channel, and sought out 

to develop a first empirical approach towards a scientific understanding of information. Shannon 

presented his findings in the seminal paper A Mathematical Theory of Communication (Shannon, 

1948). In it, he describes the concept of “information” as a discrete set of possible messages, with 

the objective of communicating these messages to a receiver and having the receiver reconstruct 

the initial content with a low probability of error, despite noise present in the signal’s channel.  

Hence, the key measure of information described by Shannon is that of entropy, borrowed from 

the field of thermodynamics, where it was first developed by physicist Ludwig Boltzmann to 

characterize disorder within a given system, according to:  

𝑆 = −𝑘𝐵∑𝑝𝑖
𝑖

𝑙𝑛 𝑝𝑖          (34) 

where 𝑝𝑖 is the probability of a given microstate i.e. a specific microscopic configuration of a 

thermodynamic system and 𝑘𝐵 is the Boltzmann constant. In information theory however, 

entropy measures the amount of uncertainty of an unknown or random value, such that the 

entropy 𝐻 of a random value is defined as:  

𝐻 = −∑𝑝𝑖𝑙𝑜𝑔2𝑝𝑖
𝑖

          (35) 
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Where 𝐻 is measured in bits (as the base of the logarithm used here is 2), and 𝑝𝑖 represents the 

probability of a given value occurring. To illustrate, we borrow the following practical example 

taken from (Ghahramani, 2006).  

Let us suppose that we have been invited to a dinner hosted at a given apartment. We arrive at the 

designated building, comprised of 4 floors, each with 8 individual apartments, only to find that 

we have misplaced the host’s apartment number. However, a neighbour exiting the building 

reminds us that the host lives on the fourth floor. By doing so, the neighbour has conveyed 

information, which is to say that he has reduced our uncertainty from 32 possibilities down to 8. 

If 𝐻 is the variable describing in which apartment the event will be held, with equal probability 

for each apartment, it is initially calculated as 𝑙𝑜𝑔2(
1
32⁄ ) = −5, where the entropy 𝐻 is 5 bits. 

Once the neighbour informs us, the probability drops to 0 for the first 24 apartments, and to 1/8 

for the remaining top-floor residencies. The entropy 𝐻 then becomes 3 bits, and it can be said that 

the neighbour has conveyed 2 bits of information.  

4.1.1 Properties of measures  

As with the indicators proposed by graph theorists, an ideal measure of robustness (or 

vulnerability) would seek to consider both the structure of and dynamics occurring within a given 

system. Such a measure would reflect, for example, a network’s output and production capacity, 

its bottlenecks and other single points of failure, as well as its required supply.  

The following subsection will present examples of system structures as a preamble to subsequent 

discussion of numerical measures of robustness. In each case, the objective is to illustrate features 

needing to be captured by proposed metrics. We begin by presenting systems 𝐴 and 𝐴′ in the 

figure below.  

 

Figure 4.1: Example System Structures A and A' 
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In these examples, the required output (e.g. electricity, potable water, oil & gas products, food 

supply, etc.) is produced in the boxes and is transited along the channels to consumers at the 

bottom of the diagram. Here, we consider the production sites to be equivalent. These examples 

contain both serial and parallel elements, and given information regarding the failure probabilities 

of the various components, we could compute reliability measures for these systems. However, as 

discussed, our interest is not the dependability of a network during normal operating conditions, 

but rather its performance conditional on some destructive event having taken place.  

While systems 𝐴 and 𝐴′ presented above differ in terms of the number of production sites, both 

have the property that all output passes through a single transmission channel. We might 

therefore wish to treat them as equivalent in terms of robustness, given that a single destructive 

event can eliminate all supply.  

Case system 𝐵 below is more robust in that the most damage a single destructive event can cause 

is the elimination of one of four sources of supply.  

 

Figure 4.2: Example System Structure B 

A valid numerical measure should therefore assign 𝐵 a higher robustness value than 𝐴. We note, 

however, that 𝐵’s sources cannot substitute for one another, as channels connecting the 

subsystems are nonexistent.  

Case system 𝐶 below has two sources of supply, and the end users supplied by each are again 

separated. This structure appears less robust than 𝐵 but more robust than 𝐴.  

 

Figure 4.3: Example System Structure C 
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In both 𝐵 and 𝐶, there are four production sites, but 𝐶′s production sites are paired in passing 

through a single bottleneck, making the structure less robust. Two destructive events can end all 

output in 𝐶.  

Case 𝐶′ is similar in structure, but with two unequal sources. The network on the left groups 

together two production sites and the one on the right, three.  

 

Figure 4.4: Example System Structure C' 

The worst-case destructive event in case 𝐶′  will then eliminate a greater quantity of supply to the 

end users than will the worst-case destructive event for case 𝐶. We might then assign 𝐶′ a lower 

measure of robustness.  

Finally, case 𝐷 resembles case 𝐶 in that it has two sources of supply, each of which consolidates 

two production sites. 

 

Figure 4.5: Example Structure System D 

However, in case 𝐷, each source can supply any end user. If the supply is merely sufficient to 

meet baseline requirements, then we might deem 𝐷 and 𝐶 as equally robust, in that the worst 

destructive event in each case will eliminate half of the supply, and another could eliminate all. 

However, if the individual sources could each produce more than 50% of the requirement, 

𝐷 might be said to be more robust, given that the worst destructive event could eliminate either 

source, but the remaining one could supply more than 50% of end users with the required output. 



44 

 

Moreover, provided each source has enough excess capacity to meet all required output, then one 

source can be destroyed with no loss in output to end users.  

Sensible measures of robustness should address each of these aspects: the number of sources, the 

total production capacity relative to requirement, and the bottlenecks defined as the minimal set 

of conduits through which all production passes.  

Any ideal measure of system robustness should fulfill a few simple conditions. Let 𝑀 be any 

measure of system robustness which is consistent with the following properties: 

i. Monotonicity of supply:  If an additional source of supply 𝑥𝑁+1 is added to the system, 

𝑀 does not decrease.  

ii. Monotonicity of bottlenecks: If the supply passing through any bottleneck is split between 

two or more bottlenecks, 𝑀 does not decrease.  

iii. Minimal robustness: If there is only one bottleneck i.e. if all output can be lost through 

destruction at one point, 𝑀 ≡ 0. 

iv. Dominance: If two systems 𝐴 and 𝐵 have the same structure and requirement 𝑅,  but each 

source of supply in 𝐴 is at least as great as the corresponding source of supply if 𝐵, and 

one source of supply in 𝐴 is strictly greater than the corresponding source in 𝐵,𝑀𝐴 ≥

𝑀𝐵.  

v. Scale invariance: If the outputs of all sources, and the total requirement 𝑅 are changed in 

the same proportions within the same structure, 𝑀 is unchanged.  

4.1.2 Measures of robustness 

Let us consider 𝑥𝑖  number of index sources as defined previously, where 𝑖 = 1, 2, … ,𝑁 and 

𝑥𝑖 > 0∀𝑖. As such, 𝑋 = ∑ 𝑥𝑖 
𝑁
𝑖=1 will be the total supply available and 𝑅 the total required supply.  

4.1.2.1 Entropy of sources 

A first measure to consider, given that it is a commonly used measure of dispersion in analogous 

contexts, is entropy. In this case, we consider the simple entropy of sources of supply, such that: 

𝑚0 = −∑ (
𝑥𝑖
𝑋
) ln (

𝑥𝑖
𝑋
)

𝑁

𝑖=1
          (36) 

We note that measure 𝑚0 above requires no knowledge of total required supply, and uses only the 

total supply available. Similarly, although it measures dispersion, and is therefore related to the 

limitation of error propagation, it takes no account of any excess capacity or redundancy present 

in a given system. As such, entropy of sources will fail the monotonicity (i, ii), minimal 
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robustness (iii) and dominance (iv) properties described above, and fails to reflect the absolute 

level of output. For example, for a system with a given structure and required supply, outputs 

from three sources of 50, 50 and 50 will result in a higher entropy measure that outputs from 

three sources of 60, 70 and 80.  

4.1.2.2 Re-scaled entropy of sources 

A potential solution would to be adapt the simple entropy measure via non-negative re-scaling 

that takes levels of redundancy into consideration (implying that 𝑋 > 𝑅), such that: 

𝑚1 = 𝑚0(
𝑋

𝑅
)          (37) 

Measure 𝑚1, unlike 𝑚0, can be shown to fulfill conditions i, ii and iv, as well as v. It does not, 

however, fulfill condition iii and also fails to capture the distinction between cases 𝐶 and 𝐷 given 

above. The fact that the supply system for some end users is cut off from that of others, limiting 

adaptability of the systems, is not captured by 𝑚1.  

In instances such as 𝐷, where this does not arise, as in typical city-level electrical grids or water 

distribution networks for example, 𝑚1 may be sufficient. For other situations, we can define a 

third measure which would reflect this effect, but which also imposes higher informational 

requirements.  

4.1.2.3 Proportionate required capacity 

Such a measure would be based on the sum of the proportions of required capacity that remain 

after a sequence of destructive events, in line with the robustness definition discussed in Chapter 

1. We begin by first defining measurements of a given network`s properties, which are necessary 

to calculate desired values.  

Let the site of bottleneck 1 be the site that, if destroyed would lead to the single largest loss of 

output to end users. Let 𝐿1 be the loss of supply that arises if this site 1 is destroyed and 𝑙1 =

𝐿1
𝑅⁄ . Finally, we define 𝑟1 ∈ [0,1] as the proportion of required supply 𝑅 that remains available 

to end users following such a destructive event. We note that in a system with excess capacity, 

we may have 𝑟1 = 1 although 𝑙1 > 0, which is to say that the loss incurred by destructive event 1 
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may be within the margin between requirement 𝑅 and full capacity 𝑋. For a simple system such 

as 𝐷, for which production output can be delivered to any end user, we have: 

𝑟𝑖 = 1 − [
𝐿1 − (𝑋 − 𝑅)

𝑅
]          (38) 

In systems where 𝑋 = 𝑅, then:  

𝑟𝑖 = 1 −
𝐿𝑖
𝑅
= 1 − 𝑙𝑖          (39) 

In complex systems, establishing 𝑟𝑖 will typically require careful study of the network structure.  

Next, let bottleneck 2 be site which, if destroyed, would result in the largest loss of output to end 

users given that site 1 has also been destroyed. Let 𝐿2 be the cumulative loss of output when both 

sites 1 and 2 are destroyed and let 𝑟2 ∈ [0,1]be the proportion of requirement 𝑅 that remains 

available following the described sequence of destructive events.  

Continuing in this fashion, site 𝑘 and 𝐿𝑘 are respectively the 𝑘th most important site and the 

associated cumulative loss of output from the destruction of all bottleneck sites leading up to 

𝑘 inclusively. We define 𝑙𝑘 =
𝐿𝑘
𝑅⁄  and 𝑟𝑘 as the proportion of the total requirement 𝑅 remaining 

after the 𝑘 sequence of destructive events. We note that unless 𝑋 = 𝑅,  𝑟𝑘 ≠ 1 − 𝑙𝑘. If 𝑋 >

𝑅, then 𝑟𝑘 > 1 − 𝑙𝑘 because some of the loss incurred is within the margin afforded by excess 

capacity. 

We now propose a third measure which sums the remaining supplies after a sequence of 

destructive events up to 𝑁. As such, higher values indicate that more capacity remains, implying 

greater robustness. 

𝑚2 = (
𝑋

𝑅
)∑ 𝑟𝑖

𝑁

𝑖=1
          (40) 

We will have 𝑟𝑖 ∈ [0,1]∀𝑖 and 𝑟𝑁 = 0 where there are 𝑁 bottlenecks. Measure 𝑚2 requires 

greater input information that 𝑚1, since we need the values of cumulative output losses, entailing 

information about the distribution network downstream of the sources of supply. Given this 

information, 𝑚2 will allow for a more refined measure in cases where the distribution network is 

incompletely connected. As with 𝑚1, scaling by 𝑋 𝑅⁄  allows us to capture the effect of a large 
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output from source 1, which would otherwise have no effect given that source 1 is eliminated in 

computing each term in the summation.  

This third measure can also be shown to respect the previously listed conditions. Properties i and 

iv are respected, in that any additional source of supply cannot decrease 𝑟𝑖. Property ii is 

respected from the fact that the loss from the destruction of a bottleneck can be no less than the 

loss from the destruction of the two from which it could be split. If all output can be lost by 

destroying a single bottleneck, then 𝑟𝑖 = 0 → 𝑚2 = 0.  Finally, for property v, we note that 

𝑋
𝑅⁄  is unchanged since 𝑋 and 𝑅 change in the same proportions. All 𝑟𝑖 are also proportionate 

amounts and are therefore also unchanged.  

Consider as an example a system in which there are three bottlenecks, through which 60%, 30% 

and 10% of the required supply passes. There is no redundant capacity present, and as such 

𝑋 = 𝑅 and 𝑟𝑖 = 1 − 𝑙𝑖 with 𝑙1 = 0.6, 𝑙2 = 0.9 and 𝑙3 = 1. The corresponding cumulative effects 

of the losses of sources 1, 2 and 3 in that order are such that the remaining supply after each loss 

is 40%, 10% and 0. The measure of proportionate required capacity is then 𝑚2 = 0.4 + 0.1 =

0.5.  

Next, we consider a second system, again with three bottlenecks, but this time with excess 

capacity, such that the sources produce, 70%, 45% and 20% of the total requirement. We now 

have 𝑋 = 1.35𝑅 where 𝑟1 = 1 −
[0.7−0.35]

1
= 0.65, given that with a production capacity of 1.35 

times the requirement, a loss of 0.70 times the requirement leaves 0.65. Following the destruction 

of the next source, 𝑟2 = 0.65 − 0.45 or 1 − [0.7 + 0.45 − 0.35] = 0.2. In this case, the first 

worst-case destructive event leaves 65% or required supply, and the loss of a second leaves 20%. 

The measure of proportionate required capacity is then 𝑚2 = 0.65 + 0.20 = 0.85. The increase 

in system robustness afforded by surplus capacity in the second case system is reflect in the 

increased value of 𝑚2.  

We now consider the robustness of the example system structures 𝐴, 𝐴′, 𝐵, 𝐶, 𝐶′ and 𝐷. As 

demonstrated, the values of measures 𝑚1 and 𝑚2 will depend upon whether there is supply 

available beyond the requirement such that 𝑋 > 𝑅 or not. The table below contains the values of 

robustness measures as defined above for cases in which 𝑋 = 𝑅 and 𝑋 = 1.5𝑅.  
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Table 4.1: Values of measures m0, m1 and m2 for sample system structures 

  𝑋 = 𝑅 𝑋 = 1.5𝑅 

  m0 m1  m2 m0 m1  m2 

A 1.39 1.39 0 1.39 2.08 0 

A' 1.61 1.61 0 1.61 2.41 0 

B 1.39 1.39 1.5 1.39 2.08 2.25 

C 1.39 1.39 0.5 1.39 2.08 0.75 

C' 1.61 1.61 0.412 1.61 2.41 0.618 

D 1.39 1.39 0.5 1.39 2.08 1.125 

 

The measure of source entropy 𝑚0  does not reflect distinctions between cases 𝑋 = 𝑅 and 

𝑋 = 1.5𝑅 , as values of this measure are unchanged.  

The values of re-scaled entropy 𝑚1 are higher, indicating that the extra capacity is reflected in 

higher robustness scores. In the cases above, the ranking of the different structures remains 

unchanged, since only the ratio of 𝑋 and 𝑅 is used, and the ability in case 𝐷 to transfer output 

from either source to any end user is not reflected in measures 0 and 1.  

The measure of proportionate required capacity does use the information, and promotes case 𝐷 to 

a higher robustness ranking than cases 𝐶 and 𝐶′. Case 𝐵 remains the most highly ranked.  
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CHAPTER 5 APPLICATION TO ELECTRICAL INFRASTRUCTURE 

We now consider an empirical application to an important element of economic infrastructure. 

Electricity underlies a large, if not total, portion of economic activity, and its loss can cause 

severe disruption and jeopardize the well-being and safety of people and industry. Alongside 

energy supply and water, it is among the most fundamental infrastructural element of a typical 

developed economy.  

In an effort to compare, contrast and evaluate the two main approaches highlighted in Sections 4 

and 5 above, we treat the electrical power generation and distribution networks of the four largest 

Canadian provinces: British Columbia (BC), Ontario (ON), Quebec (QC) and Alberta (AB). In 

each instance, system maps, locations and capacities of generating stations and substations are in 

the public domain. The most relevant portions pertaining to the evaluation of robustness can be 

consulted in Appendix A and associated references.  

In the following chapter, we begin by studying the vulnerability of these electrical transmission 

networks using a network-theory based approach. We then conduct a second analysis from an 

entropy-based perspective, before discussing similarities, differences, strengths and limitations of 

the different approaches.  

5.1  Network theory-based approach 

The following subsection aims to present and describe the empirical networks examined in the 

current study, as well as the resulting graphs produced by their translation from representations in 

system diagrams to mathematical abstractions.  

This transfer of information was completed by interpreting the various network maps and 

summarizing only the most relevant components into a representative adjacency matrix. In doing 

so, co-generation hubs, for example, which can group together many different power-generating 

assets, may have been grouped into a single graph component. Similarly, two separate lines 

spanning a same distance along the same path may have been described as one distinct edge.  

Given our current research objectives, these simplifications should in no sense constrain our 

analysis, as our focus is on those major elements—production centers, transfer bottlenecks and 

delivery hubs—which most consequentially impact network dynamics.  
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5.1.1 British Columbia 

Information pertaining to hydroelectric power generation and transmission in British Columbia 

was available in the public domain, via the province’s independent system operator (ISO) BC 

Hydro, and can be consulted in Appendix A (BC Hydro, 2016). 

Over 90% of energy produced in the province is by hydroelectric generation, with 80% of the 

effective generating capacity concentrated at hydroelectric installations in the Peace and 

Columbia river basins (BC Hydro, 2016). The province’s transmission infrastructure is made up 

of 18,286 kilometers of high-voltage lines, 22,000 steel towers and 292 substations connecting 

the major generation hubs in the northern and southern interior regions with the major load 

centres in heavily populated areas of southwest B.C., where approximately 70% to 80% of the 

province’s electrical power is consumed (BC Hydro, 2016). 

Drawn as a 30-node mathematical graph, B.C’s electrical transmission grid resembles the 

network illustrated in Figure 4 below.  

 

Figure 5.1: B.C. Bulk Transmission System 
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The nodes contained in the electrical transmission network take on different values when ranked 

in terms of degree, betweeness, closeness and eigenvector centrality.  

  

  

Figure 5.2: Centrality scores - B.C.'s Bulk Transmission Grid 

While the figure above provides a useful overview of the variation in terms of node ranking, a 

detailed list of individual node centrality scores can be consulted in Appendix B.  

5.1.2 Ontario 

As with British Columbia, information on Ontario’s electricity generation and transmission was 

available via the province’s chief operator, IESO, and while production capacity and output 
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information pertaining to the province’s main power generating installations is available online 

and updated regularly, the same cannot be said regarding the provinces electrical transmission 

maps, which were last updated in 2009. As such, power output values used in the subsequent 

study date back to 2009 (IESO, 2016a).  

The province’s installed generation capacity totals approximately 35,951 MW. Of this supply, 

36%, 28% and 23% is generated by nuclear, gas and hydroelectric sites, respectively, which 

make up the province’s baseline production. The remaining fraction of power is provided by 

intermittent renewable sources, such as wind, solar and biofuel, which supplement the production 

of electricity during peak periods of demand (IESO, 2016b). A system map and can be consulted 

in Appendix A (IESO, 2016b).  

Ontario’s power generation and transmission system produces the 65-node network illustrated in 

the figure below. 
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Figure 5.3: Ontario Bulk Transmission System 

In ranking the nodes of the graph above according to the various centrality measures, we obtain 

diverging results, as highlighted by the figure below.  
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Figure 5.4: Centrality Scores - Ontario's Bulk Transmission System 

The specific scores of individual nodes can be consulted in Appendix B.  

5.1.3 Quebec 

System maps and generation capacities for the province of Quebec were obtained via the region’s 

operator, Hydro-Quebec. System maps have been attached in Appendix A.  

As with British Columbia, Quebec’s main source of power generation stems from 

hydroelectricity. The province’s sources of production include 61 hydroelectric generating 

stations and one thermal generating station which represent Quebec’s total installed capacity of 

36,500 MW (Hydro Qc, 2016a).  
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The Hydro-Quebec TransEnergie transmission system is the most extensive in North America, 

and includes 533 substations and over 32,272 kilometers of high-voltage lines (Hydro Qc, 

2016b).  

Represented as a mathematical graph, Quebec’s transmission network resembles the 61-node 

network illustrated below.  

  

Figure 5.5: Quebec's Bulk Transmission System 

As with other networks, we provide an overview of the variability of results obtained when 

ranking nodes in accordance with different centrality measures in the figure below. The exact 

values obtained can be consulted in Appendix B. 
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Figure 5.6: Centrality Scores – Quebec’s Bulk Transmission System 

5.1.4 Alberta 

Lastly, information gathered on Alberta’s electrical generation network was originally compiled 

by Alberta Energy, the province’s chief energy development agency, and by AESO, the Alberta 

Energy System Operator. 

The province’s current installed generating capacity stands at 16,261 MW, the bulk of which is 

produced by thermal plants fueled by either coal or natural gas (Alberta, 2007). As of December 

2015, 10% of the province’s generation is by hydro, wind and biomass assets. 
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For the purpose of our research, information pertaining to Alberta’s transmission grid was 

obtained via a study on the efficiency of Alberta’s electrical supply system, prepared by Jem 

Energy. Relevant excerpts can be consulted in Appendix A (Jem Energy, 2004). 

Modeled as a 49-node graph, Alberta’s bulk transmission system resembles the network 

displayed in the figure below.  

 

Figure 5.7: Alberta's Bulk Transmission System 

Ranking the nodes above in terms of different centrality measures provides diverging results, 

which can be overviewed in the figure below, or consulted in Appendix B.  
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Figure 5.8: Centrality Scores - Alberta's Bulk Transmission System 
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5.1.5 Network Characteristics 

Using the topological information contained within the adjacency matrixes of the graphs 

displayed above, we can calculate the basic characteristics of individual networks presented in 

Section 3.2. They are aggregated in the table below.  

Table 5.1: Basic properties of empirical networks 

  n m L D dG C M r Eglob 

BC 30 35 4.5609 10 2.3333 0.0455 0.1091 -0.1850 0.3128 

ON 65 85 7.0611 17 2.6154 0.0419 0.1680 -0.0239 0.2190 

QC 61 77 5.9077 14 2.5246 0.0286 0.1453 -0.3036 0.2441 

AB 49 65 4.6565 12 2.6531 0.0467 0.1828 -0.1381 0.2890 

We first note that while each of the studied real-world networks is unique, they are of similar 

rough orders of magnitude, ranging from 30 to 65 nodes at most. It is also clear that the order, 

average path length (𝐿) and diameter (𝐷) of the studied networks are proportionate. 

The average vertex degrees range from 2.3333 to 2.6531 for British Columbia and Alberta, 

respectively. These results are in line with an extremely detailed study of the 4,941-node power 

grid of the Western United States, completed by Watts, which found an average degree of 2.6691 

edges per vertex (Watts, 2016). The distribution of degrees across the multiple nodes in the 

networks is summarized in the figure below  

 

Figure 5.9: Node degree distributions 
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These distributions, although imperfect, resemble a Power Law trend, whereby a small fraction of 

a given network’s nodes are highly connected, with the remaining nodes having medium to low 

levels of connectivity. These results are unsurprising, as past studies into the prevalence of Power 

Laws within economic systems have shown that the size of urban areas within the United States 

are consistently well described by Power Laws (Krugman, 1996). It would therefore be only 

natural that the infrastructures developed to support these cities demonstrate similar distributions 

themselves. Power Law degree distributions are a commonly observed feature of many other 

real-world scale-free networks (Newman, 2003) and are said to predict heightened susceptibility 

to targeted attacks (Albert et al., 2000).  

Levels of redundancy were computed for all provinces. Each network studied displayed minimal 

levels of redundancy, with Quebec’s clustering coefficient trailing far below those of the other 

provinces, at 𝐶𝑄𝐶 = 0.0286.  In terms of meshedness, calculated values ranged from 𝑀𝐵𝐶 =

0.1091 to 𝑀𝐴𝐵 = 0.1828, which are typical values for hierarchal, tree-like networks such as 

utilities infrastructures.  

All networks ranked as disassortative, with ratios 𝑟 < 0. This once again reflects results 

published throughout the literature, which commonly display biological and technological 

networks as being disassortative (Newman, 2002).  

Lastly, British Columbia outranked other provinces in terms of global network efficiency, with a 

coefficient of 𝐸𝐵𝐶 = 0.3128. 

5.1.6 Network Analysis 

In an effort to study the robustness (or vulnerability) of Canadian provinces’ electrical 

infrastructures, connectivity loss was used as the primary measure of network functionality. In 

each instance, the following sequence of calculations was performed in order to obtain required 

values:  

1. Compute degree, betweeness, closeness and eigenvector centrality scores for every node 

in the BC, ON, QC and AB networks; 

2. For each centrality measure, rank the nodes from highest to lowest value; 
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3. For each province network, remove nodes (as well as their associated edges) as ordered 

according to the centrality measure of choice, computing the size of the largest remaining 

subgraph after each subsequent node is eliminated; 

4. Compute connectivity loss for each node removal;  

5. Plot connectivity loss as a function of the fraction of nodes removed. 

Following the sequence of steps above, connectivity loss, calculated for every province, 

according to each centrality score, produced the results display in the figure below.  
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The results displayed above provide an overview of how global connectivity (and consequently, 

functionality) of the different networks devolves as a function of the fraction of nodes removed in 

the percolation processes. 

Using these results, we can compute single-value measures of graph vulnerability and robustness, 

as defined in Section 3.2. For each province and centrality-based preferential ranking, we obtain 

the following vulnerability measures.  

Figure 5.10: Connectivty Loss (y-axis) according to Fraction of nodes removed (x-axis) 
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Table 5.2: Vulnerability Scores 

  VBC VON VQC VAB 

Degree 0.3689 0.3703 0.3551 0.3605 

Betweenness 0.3622 0.3211 0.3019 0.3517 

Closeness 0.3322 0.2796 0.2705 0.2747 

Eigenvector 0.2522 0.1608 0.1686 0.2518 

Random 0.1922 0.1684 0.2267 0.1822 

 

Conditional formatting of the different cells above allows us to efficiently identify which of the 

provinces were most vulnerable, and under what type of ordered attack.  

For each network, node removal in terms of degree centrality proved to be the most effective 

means of degrading network functionality, with only minimal variation in vulnerability scores 

across all four provinces. Ranking vertices in terms of highest degree in this instance seemingly 

followed a Pareto rule, whereby the removal of only 15% to 20% of nodes achieved an 80% 

reduction in global network connectivity.   

Betweeness centrality and closeness centrality were the second and third most effective node 

removal schemes, respectively, when examining both V-scores and graphical results. Removing 

nodes in terms of eigenvector centrality proved to be much less effective at degrading network 

performance, rivaling and at times underperforming the effectiveness of random node selection.  

Perhaps most interestingly, however, is that for each province, with exception to Ontario, the first 

10% of nodes removed resulted in similar initial drops in global connectivity regardless of the 

chosen centrality measure. 

Initial interpretation of the results above would suggest that despite being a rather simple measure 

of node importance, degree centrality—and hence, node connectivity—provides a sufficient level 

of information when aiming to degrade network functionality. This is unsurprising, though, given 

that the underlying assumption of the current study is that connectivity loss is the most insightful 

measure of a network’s performance or survivability.  
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5.2 Entropy-based approach 

The following section presents the results of the entropy-based infrastructure robustness 

methodologies when applied to the major Canadian electrical grids presented above.  

Again, we note that we distinguish the robustness calculation from that of the reliability 

calculation—more common in engineering applications—which estimates the probability of 

continued adequate functioning of a system for a specified period of time. Here, the proposed 

measures do not estimate likelihood of proper functioning, but rather the consequences associated 

with a sequence of catastrophic events. 

Information on the capacities and outputs of electrical production sites in the cases of British 

Columbia, Ontario, Quebec and Alberta were available in the public domain, and can be 

consulted in Appendix A. Given this information, we are able to calculate measures 𝑚0, 𝑚1 and 

𝑚2.  Of course, complex engineering systems on the whole, and electrical power infrastructures 

in specific, are in a constant state of flux as changes in supply come into effect in order to 

perfectly match varying demand profiles. Similarly, system configurations are also subject to 

change as new capacity is added and older stations are removed from service or decommissioned 

entirely. The results presented herein are therefore a snapshot of a particular point in time.  

The figure below provides a graphical representation of some of the raw data obtained via the 

different independent system operators in the form of a cumulative distribution function (CDF) of 

the sources of supply (electrical generation sites) of the four grids under study. The outputs of 

sources are divided by total supply to produce proportionate sources.  
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Figure 5.11: CDFs of proportionate sources of supply (xi/X) of Canadian power grids 

Proportionately large sources produce the right-hand elements of the CDFs, and as such, we 

expect systems with relatively long right-hand parts to have relatively low robustness.  

Information in the plot above does not, however, produce results providing insight on a given 

system’s most vulnerable points, such as bottlenecks. This information is captured by measure 

𝑚2.  

The figure below illustrates proportions of remaining requirement 𝑟𝑖  for a sequence of 𝑖 

maximally destructive events where 𝑖 = 1, 2, … , 12. The resulting graph is a form of survivor 

function, where higher lines are indicative of relative robustness. It also ranks the different 

provinces in order of robustness, which we would expect to see reflected in 𝑚2.  
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Figure 5.12: ri  vs. i (Survivor functions) of Canadian power grids 

We now consider numerical values for the infrastructures of the four Canadian provinces. Given 

the necessary input requirements, computing values for 𝑚0 and 𝑚1 is straightforward, whereas 

𝑚2 requires careful examination of system structure in order to understand losses incurred 

conditional on 𝑛 destructive events occurring.  

To produce values of proportionate required supply 𝑟𝑖 remaining following such events, we begin 

by identifying the single largest bottleneck 𝐴 which, if destroyed, would result in the single 

largest loss of electricity to consumers. We then identify the two bottlenecks which, if destroyed, 

would result in the greatest joint loss of supply, and so on. We note that this does not necessarily 

imply selected the second largest bottleneck and using it in combination with the first. In 

practice, it may be that two bottlenecks 𝐵 and 𝐶 together may produce a greater loss than 𝐴 with 

any one other.  

For example, we consider a case in which the loss of the single largest source results in a loss of 

𝑧. It may be possible that two other sources, each connected to consumers by two distinct routes, 

exist such that neither can be removed from the supply system via a single destructive event. 



67 

 

However, we can imagine that if both routes are removed by the elimination of two separate 

bottlenecks, the resulting loss is e.g. 2.5𝑧.  

The following table contains measures 𝑚0, 𝑚1 and 𝑚2 for the selected Canadian provinces.   

Table 5.3: Measures m0, m1 and m2 for Canadian power grids 

  m0 m1 m2 

BC 2.39 2.51 2.88 

ON 4.15 4.78 8.72 

QC 3.35 3.86 4.28 

AB  3.90 4.56 16.08 

The results show clear distinctions between the robustness values of different systems. When 

grading systems according to entropy measures 𝑚0 and 𝑚1, Ontario ranks as the most robust 

province, and Alberta as the runner-up. When grading in terms of 𝑚2,  however, Alberta far 

outperforms the other Canadian provinces, with Ontario’s electrical system ranking second. As 

with the generic example discussed in subsection 4.1.2.3 above, the excess capacity taken into 

account in measure 𝑚1 is reflected in the higher robustness score.  

By ordering systems according to 𝑚2, we obtain the same ranking as displayed in the graph  

above, as expected.  

5.3 Discussion 

Prior to attempting a comparative analysis between the two CI vulnerability approaches presented 

above, it is important to highlight the unique characteristics and inherent differences between 

models.  

Network-based approaches study the robustness of systems to a variety of different sequential 

attack schemes, based on topological measures. In the case study presented above, for which only 

high-level open-source information was available, the vulnerability analysis focused solely on 

topological aspects of the different power grids, and while certain centrality measures can be used 

to provide insights on flow patterns, it remained a study on the connectivity of networks. 

The entropy-based analysis also focused on topological features, but sought to highlight the 

supply and demand requirements of the grids under study. Nodes for percolation were selected in 
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accordance with maximal loss of supply for a number of destructive events, resulting in a model 

which captures the flow-based intricacies of a given network.  

Unsurprisingly, the different approaches produced diverging results, as displayed in the table 

below. 

Table 5.4: Canadian provinces, from most to least vulnerable 

  Degree Betweenness Closeness Eigenvector 𝒎𝟎 𝒎𝟏 𝒎𝟐 

1 ON BC BC BC BC BC BC 

2 BC AB ON AB QC QC QC 

3 AB ON AB  QC ON AB AB  

4 QC QC QC ON AB ON ON 

 

In the case of the network theory-based model—using degree centrality as a measure of node 

ordering—the Canadian provinces were ranked, from most to least vulnerable, as follows: ON, 

BC, AB and QC. For the entropy-based approach, the provinces were ranked as BC, QC, ON and 

AB from most to least vulnerable using 𝑚2, and BC, QC, AB and ON for both 𝑚0 and 𝑚1.  

In comparing the two methodologies, the only apparent consistency is in the ranking of British 

Columbia as the most vulnerable province. Empirically, BC ranked lower than other provinces in 

terms of meshedness, implying that lower levels of redundancy may account for the network’s 

rapid deterioration. Similarly, the western province outpaced the other systems in terms of global 

efficiency—a measure of parallel system efficiency—which may in fact provide insights as to the 

propagation of errors. This finding echoes the hypothesis presented as part of this paper’s 

introduction, suggesting that a trade-off exists between CI system efficiency and vulnerability.  

The economic significance of the disparities between provinces, however, is difficult to ascertain. 

Certain measures fail to reflect loss of output, making direct vulnerability comparisons and cost 

estimates associated to infrastructure improvements challenging.  

Fundamentally, the two distinct approaches to the assessment of network vulnerability prioritized 

different elements of robustness, either topology or flow, and as such, failed to provide similar 

insights into overall CI system vulnerability. 
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CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 

Critical infrastructure systems are the physical assets that provide modern societies with the 

fundamental resources required to conduct essential economic and social operations, from power 

and electricity to drinking water and telecommunications. The crucial importance of these vast, 

complex and ubiquitous infrastructures is widely acknowledged and as such, the necessity to 

protect these networks from destructive events—both intentional and accidental—has garnered 

the attention of researchers and security experts alike. Similarly, it is also well recognized that the 

cost and effort associated with total protection presents an enormous challenge. Society will 

achieve its greatest return on investment by correctly identifying, prioritizing and protecting the 

most vulnerable assets in its infrastructure portfolio. This implies the need for a screening 

methodology by which we can target the most crucial assets, and effective metrics with which to 

gauge the vulnerability of a given network as a whole, allowing us to assess risk levels and 

evaluate proposed or completed engineering changes.  

There is considerable divergence, however, on the different approaches by which we go about 

doing so. Reliability engineers, for example, adopt a probabilistic approach and attempt to 

identify the components which are most likely to fail, assessing vulnerability as an aggregate of 

these probabilistic measures. Resilience-based approaches focus instead on measuring a system’s 

vulnerability according to the time delay from the disruption event to the return to normal 

operations.  

Robustness-based approaches measure a system’s vulnerability based on its ability to maintain 

adequate levels of service once one or more of its components has been degraded. In the case of 

CI systems, that which we are most interested in is an infrastructure’s ability to meet its demand 

requirements conditional on some disruptive event having taken place. Factors which will 

determine a network’s robustness are certain topological features, such as the presence of 

bottlenecks, redundant features and the location of production sites, as well as its supply and 

demand dynamics, including excess production capacity. 

The present study compared the relative value of diverging approaches to CI network 

vulnerability assessment: network theory-based and entropy-based models. Our interest in 

studying the individual models was to assess if they tended towards similar conclusions, despite 

valuing different aspects of system robustness. In order to do so, an empirical application of both 
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models was carried out on the electrical transmission networks of the four largest Canadian 

provinces, using information available in the public domain.  

Network-based models valued the connectivity of systems above all, while the entropy-based 

approach considered the total remaining supply following some destructive event, with each 

model requiring different input data and calculations. 

Network characterization and analysis subsections provided results consistent with values 

contained in the associated literature, validating the modeling of transmission grids from system 

diagrams to mathematical graphs.  

Our attempt to investigate the similarities between the separate methodologies failed to provide 

any meaningful consistencies when comparing provinces’ robustness according to the different 

grading schemes. Network measures produced rankings of provinces which differed greatly from 

what is observed in the loss of capacity diagrams. To the extent that one is interested in the 

potential for targeted attacks to remove capacity, these measures may provide unreliable 

indicators. Policymakers interested in robustness to targeted attacks may wish to work with a 

variety of the measures. For instance, network performance measures and remaining 

proportionate supply metrics provide policy experts and security analysts with global 

vulnerability measures, enabling them to assess the need for additional protection, while 

centrality measures and greatest loss sites allow them to prioritize efforts and evaluate potential 

engineering changes.   

As a final note, it is important to highlight that while the research and findings above offer some 

valuable insights and promising methodologies, they are presented here in their first iteration and 

as such, reflect only modest levels of maturity. As discussed below, future refinement and 

calibration efforts—enabled by access to more detailed operational data and expert opinion—will 

allow for higher fidelity modeling and more reliable and conclusive insights.  

6.1 Future research 

Lastly, no work of scientific research is complete without a discussion on potential improvements 

and opportunities for future research. Below, we highlight possibilities for the improvement of 

the entropy-based model, presented here in its first iteration, and present options for its future 

development. Unsurprisingly, many of these improvements are interrelated. 
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6.1.1 Improvement 

6.1.1.1 Data 

With all economic, engineering and scientific modeling, the ability to accurately and precisely 

simulate the outcome of a phenomenon rests on two variables: the validity of the model at hand 

and the quality of the input data.  

As was underscored in previous sections, the majority of critical infrastructure assets are owned 

and operated by private interests and as such, access to detailed operational data is limited. While 

information available and collected via the public domain may have been sufficient in 

establishing a first proof of concept, as presented in Chapters 4 and 5, access to detailed 

operational data would prove useful in future refinement and calibration efforts.  

As such, a first recommendation is to encourage the establishment of research partnerships with 

relevant CI system owners and operators. Furthermore, despite our current interest in electrical 

transmission networks, we recognize the need to extend this research beyond the power and 

utilities sector, and validate the proposed model’s ability to capture the robustness of other 

critical networks. Potential candidates for future empirical analysis include oil and gas pipelines, 

global shipping routes, telecommunications networks, international and regional flight paths and 

other industrial supply chains.  

6.1.2 Future development  

Following a valid first proof of concept, there exist several avenues for the future development of 

the entropy-based model. Among the most promising and useful developments under 

consideration are the addition of directed and weighted elements, the automation of supply 

calculations, the consideration of storage capabilities and the representation of interdependent 

heterogeneous networks. 

6.1.2.1 Directed and weighted graphs 

As mentioned in Chapter 2, directed and weighted graphs allow for more detailed modeling of 

networked processes. In the case of CI systems, directed and weighted edges can model the 

direction in which flow travels and the quantities of resources being transited, respectively. 

Provided that more detailed operational data can be obtained, updating the adjacency matrices of 
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the graphs above and others like it would prove useful in that it would provide a more complete 

understanding of a given system, and facilitate the calculation of the entropy-based measures. 

6.1.2.2 Automated calculus 

A considerable limitation of the current model is its inability to be automated simply, given that 

the proportionate remaining supply calculations can vary between systems. The addition of 

directed and weighted edges proposed above would result in a blended network-and-entropy 

model, and provide the capability of using common mathematical programming tools, such as 

MATLAB, in order to automate the calculation of relevant values, i.e. node in-degree and out-

degree and node in-flow and out-flow. Achieving this would constitute a major improvement, 

facilitating the analysis of larger, more detailed networks.  

6.1.2.3 Storage capabilities  

While the proposed model was designed in order to account for the robustness gains achieved by 

excess production capacity, it fails to capture the reduction in vulnerability that can be attained 

thanks to storage capacities present within a given system. In the case of electrical transmission 

networks, for which only modest amounts of storage can be achieved, the ability to reflect 

reserves would display minimal changes to overall robustness. In other networks, such as oil and 

gas supply chains, excess storage and strategic reserves—distinct from excess production and 

supply—are key elements of thoughtful engineering design, and should be incorporated into the 

entropy-based model’s key properties and measures.  

6.1.2.4 Interdependencies   

Lastly, a growing body of CI protection work is concerned with the study of interdependent 

systems. Rarely do real-world systems operate in isolation. More often than not, critical 

infrastructures are intertwined, with output from one sector becoming the input to another, giving 

rise to the possibility of cascading failures in the event of a component failure. In fact, research 

into mixed and interdependent networks has shown that coupled networks behave differently than 

their individual counterparts (Buldyrev, Parshani, Paul, Stanley, & Havlin, 2010). One example 

of this phenomenon is the natural gas-fueled production of electricity in the United States, where 

gas networks rely on electricity and electrical networks rely on energy supply. Future 

developments of the proposed model should attempt to capture these interdependency risks.  
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APPENDIX A – SYSTEM DIAGRAMS 

1. British Columbia – System Diagram 
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2. Ontario – System Diagram 
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3. Quebec – System Diagram 
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4. Alberta – System Diagram 
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APPENDIX B – CENTRALITY SCORES 

1. British Columbia – Centrality Scores  

nodeID degree betw closeness eigenvector random 

1 2 13.50 0.0062 0.0019 9 

2 2 0.50 0.0053 0.0012 26 

3 2 13.50 0.0062 0.0019 23 

4 3 78.50 0.0074 0.0049 6 

5 3 166.00 0.0088 0.0119 15 

6 2 54.00 0.0072 0.0042 21 

7 2 28.00 0.0061 0.0014 29 

8 1 0.00 0.0052 0.0005 14 

9 2 168.00 0.01 0.0289 24 

10 4 216.50 0.0114 0.0805 16 

11 3 44.50 0.009 0.0376 27 

12 1 0.00 0.0072 0.0117 19 

13 4 77.50 0.0104 0.0885 28 

14 5 216.00 0.0114 0.1025 13 

15 1 0.00 0.0086 0.032 8 

16 2 4.00 0.0076 0.0279 17 

17 3 11.50 0.0085 0.0516 2 

18 3 28.00 0.0083 0.0486 22 

19 2 76.00 0.01 0.0601 20 

20 3 104.00 0.0102 0.0666 1 

21 1 0.00 0.0079 0.0208 11 

22 6 166.00 0.0091 0.0898 12 

23 1 0.00 0.0072 0.0281 10 

24 1 0.00 0.0072 0.0281 7 

25 3 28.00 0.0075 0.0499 30 

26 4 55.00 0.0076 0.0543 4 

27 1 0.00 0.0062 0.0156 5 

28 1 0.00 0.0063 0.017 18 

29 1 0.00 0.0063 0.017 3 

30 1 0.00 0.0068 0.0152 25 
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2. Ontario – Centrality Scores 

nodeID degree betw closeness eigenvector random 

1 1 0.00 0.0013 0 14 

2 1 0.00 0.0013 0 32 

3 3 125.00 0.0014 0 8 

4 4 245.00 0.0016 0 29 

5 1 0.00 0.0014 0 28 

6 3 343.00 0.0017 0 47 

7 1 0.00 0.0015 0 61 

8 2 5.00 0.0016 0 17 

9 2 56.00 0.0017 0 44 

10 3 497.00 0.0019 0 18 

11 2 540.00 0.002 0.0001 2 

12 3 583.00 0.0022 0.0002 49 

13 3 63.00 0.0022 0.0002 12 

14 1 0.00 0.0019 0.0001 52 

15 3 700.00 0.0024 0.0005 55 

16 4 830.00 0.0027 0.0013 53 

17 1 0.00 0.0023 0.0004 65 

18 1 0.00 0.0023 0.0004 38 

19 4 874.00 0.0029 0.0033 33 

20 1 0.00 0.0025 0.0009 50 

21 2 820.00 0.0031 0.0056 59 

22 2 40.00 0.0028 0.0037 4 

23 3 882.00 0.0033 0.0164 46 

24 3 63.00 0.0029 0.0099 35 

25 5 1339.60 0.0035 0.0423 7 

26 2 40.00 0.0031 0.0148 5 

27 4 604.10 0.0031 0.0242 19 

28 2 64.30 0.0023 0.0055 42 

29 3 64.00 0.0021 0.0032 48 

30 1 0.00 0.0018 0.0009 51 

31 2 57.7 0.0023 0.0049 3 

32 4 233.7 0.0027 0.014 9 

33 2 63 0.0023 0.0043 26 

34 1 0 0.002 0.0012 54 

35 4 132.3 0.0027 0.0161 10 

36 3 175.4 0.0027 0.013 60 

37 4 137.7 0.0024 0.0055 25 

38 1 0 0.002 0.0015 27 
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2. Ontario – Centrality Scores 

nodeID degree betw closeness eigenvector random 

    39 1 0 0.002 0.0015 39 

40 2 17.9 0.0023 0.0032 36 

41 2 62.3 0.0026 0.0058 22 

42 3 173.6 0.003 0.0172 16 

43 2 38.8 0.0026 0.0125 58 

44 3 31.8 0.0025 0.0268 20 

45 5 911.4 0.0033 0.0766 6 

46 3 104.7 0.0028 0.0491 1 

47 4 34.3 0.0025 0.0505 56 

48 2 0 0.0022 0.0295 11 

49 3 1.7 0.0024 0.046 15 

50 5 233.7 0.0025 0.0534 45 

51 3 125 0.0022 0.0181 34 

52 1 0 0.0019 0.0051 37 

53 1 0 0.0019 0.0051 64 

54 4 318.3 0.0028 0.0626 30 

55 2 15.5 0.0023 0.0279 13 

56 3 72.5 0.0025 0.0448 63 

57 5 417.8 0.0029 0.0677 62 

58 3 37.8 0.0028 0.0485 23 

59 3 65.7 0.0025 0.0336 21 

60 4 234.7 0.0025 0.0351 41 

61 3 50.2 0.0022 0.024 40 

62 2 28 0.0022 0.0138 57 

63 3 45.8 0.0022 0.0183 31 

64 3 1.5 0.0019 0.0136 24 

65 3 6.3 0.002 0.0158 43 
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3. Quebec – Centrality Scores 

nodeID degree betw closeness eigenvector random 

1 1 0.00 0.0024 0.0006 59 

2 1 0.00 0.0021 0.0002 16 

3 1 0.00 0.0021 0.0002 30 

4 3 117.00 0.0024 0.0007 47 

5 4 239.77 0.0028 0.002 32 

6 4 165.83 0.0028 0.0025 17 

7 1 0.00 0.0024 0.0007 5 

8 3 476.53 0.0032 0.0029 2 

9 3 377.00 0.0028 0.001 31 

10 1 0.00 0.0024 0.0003 33 

11 3 279.00 0.0025 0.0004 49 

12 1 0.00 0.0022 0.0001 6 

13 3 173.00 0.0022 0.0001 48 

14 1 0.00 0.0019 0 12 

15 2 59.00 0.0019 0 34 

16 1 0.00 0.0017 0 22 

17 3 196.85 0.003 0.0032 36 

18 2 1.00 0.0028 0.0018 52 

19 3 94.62 0.0031 0.0031 35 

20 3 318.88 0.0034 0.0073 38 

21 4 595.32 0.0036 0.0067 13 

22 3 401.92 0.0037 0.0158 28 

23 3 549.78 0.0038 0.0102 57 

24 2 459.58 0.0038 0.0132 19 

25 4 384.97 0.0038 0.0379 20 

26 4 503.58 0.0039 0.0362 61 

27 1 0.00 0.0032 0.0103 11 

28 4 532.67 0.0038 0.0474 60 

29 1 0.00 0.0031 0.0135 24 

30 2 0.00 0.0032 0.0229 43 

31 5 350.7722 0.004 0.056 45 

32 4 363.0583 0.0039 0.0517 46 

33 5 181.45 0.0036 0.0425 37 

34 1 0 0.0029 0.0121 56 

35 3 96.5667 0.0032 0.0243 3 

36 1 0 0.0027 0.0069 27 

37 4 82.0667 0.0031 0.036 54 

38 4 168.7444 0.0034 0.0449 14 

39 2 3.8611 0.0026 0.0161 18 

40 3 21.3611 0.0027 0.0204 41 
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3. Quebec – Centrality Scores 

nodeID degree betw closeness eigenvector random 

    41 5 180.2 0.0032 0.0409 1 

42 2 21.2083 0.0034 0.0288 53 

43 1 0 0.0027 0.0117 26 

44 2 15.25 0.0027 0.0145 51 

45 4 179.9722 0.0032 0.0306 25 

46 3 125.8139 0.0035 0.0322 4 

47 2 27.125 0.0032 0.0265 8 

48 8 554.9167 0.0035 0.0607 44 

49 1 0 0.0029 0.0173 42 

50 1 0 0.0029 0.0173 9 

51 1 0 0.0029 0.0173 29 

52 1 0 0.0029 0.0173 21 

53 2 88.7917 0.0029 0.0196 10 

54 5 195.5417 0.0031 0.0381 58 

55 1 0 0.0026 0.0109 15 

56 1 0 0.0026 0.0109 50 

57 3 224 0.003 0.0315 23 

58 4 174 0.0026 0.0119 39 

59 1 0 0.0023 0.0034 55 

60 1 0 0.0023 0.0034 7 

61 1 0 0.0023 0.0034 40 
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4. Alberta – Centrality Scores 

nodeID degree betw closeness eigenvector random 

1 1 0.00 0.0033 0.0009 5 

2 2 47.00 0.0039 0.0034 44 

3 3 95.80 0.0047 0.0122 31 

4 3 247.48 0.0058 0.0223 16 

5 2 161.06 0.0049 0.0066 29 

6 2 54.75 0.0053 0.0206 28 

7 7 542.02 0.0068 0.066 41 

8 1 0.00 0.0052 0.0174 14 

9 3 125.01 0.0056 0.0251 22 

10 2 64.92 0.0048 0.0074 21 

11 2 42.17 0.0043 0.0029 2 

12 3 53.92 0.0049 0.0221 46 

13 1 0.00 0.004 0.0058 9 

14 4 120.83 0.006 0.0532 40 

15 3 47.00 0.005 0.0369 36 

16 1 0.00 0.004 0.0097 24 

17 3 99.69 0.0041 0.0035 35 

18 4 88.75 0.0037 0.0017 49 

19 1 0.00 0.0031 0.0005 18 

20 2 20.66 0.0038 0.0012 25 

21 4 133.39 0.0043 0.0027 47 

22 3 29.57 0.0038 0.0015 20 

23 2 0.00 0.0037 0.0011 17 

24 2 80.93 0.0044 0.0088 8 

25 8 237.10 0.0058 0.0773 42 

26 2 0.00 0.0048 0.0283 6 

27 3 107.93 0.005 0.0301 27 

28 2 27.42 0.0057 0.0377 10 

29 3 97.44 0.0058 0.0487 38 

30 2 0.00 0.005 0.0331 34 

31 2 50.5778 0.0053 0.0259 1 

32 2 50.2444 0.0052 0.0212 4 

33 5 350.0556 0.0059 0.0548 23 

34 6 498.0889 0.0067 0.0747 48 

35 1 0 0.0051 0.0196 32 

36 4 81.4444 0.0057 0.0551 15 

37 3 32.5 0.0053 0.0397 26 

38 2 2.75 0.0046 0.021 7 
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4. Alberta – Centrality Scores 

nodeID degree betw closeness eigenvector random 

    39 5 173.5 0.0049 0.0403 30 

40 1 0 0.004 0.0106 11 

41 2 84 0.0041 0.0117 12 

42 3 55 0.0036 0.004 37 

43 1 0 0.0031 0.0011 3 

44 2 13 0.0036 0.0025 19 

45 3 134 0.0042 0.0056 13 

46 2 47 0.0035 0.0016 43 

47 1 0 0.003 0.0004 39 

48 3 203 0.0049 0.0171 45 

49 1 0 0.004 0.0045 33 

 


