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Abstract

This is the peer reviewed version of the following article: Majeau-Bettez, G., S. Pauliuk,

R. Wood, E.A. Bouman, and A.H. Strgmman. 2016. Balance issues in input—output analysis: A

comment on physical inhomogeneity, aggregation bias, and coproduction. Ecological Economics

126: 188-197., which has been published in final form at:
dx.doi.org/10.1016/j.ecolecon.2016.02.017.

(©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Recently, Merciai and Heijungs (2014) demonstrated that monetary input-output (I0) anal-
ysis can lead to system descriptions that do not conserve mass when the assumption of
homogeneous prices is violated. They warn that this violation of basic balance laws can lead
to biased estimates of environmental impacts, and they therefore recommend performing 10
analysis in a physically accounted framework.

We take a broader scope on this issue and present price inhomogeneity as a special case
of product mix inhomogeneity. We demonstrate that even a fully physically accounted 10
analysis or lifecycle assessment will violate balance laws if it suffers from inhomogeneous
aggregation. The core issue is not whether a system is described using monetary or physical
units, but rather whether product groups are too aggregated to allow for the concurrent
respect of energy, mass, financial and elemental balances.

We further analyze the link between the violation of physical balances and the introduc-
tion of biases. We find that imbalances are neither a necessary nor a sufficient condition for
the presence of systematic errors in environmental pressure estimates.

We suggest two ways to leverage the additional explanatory power of multi-unit inventory
tables to reduce instances of imbalances and aggregation biases.

Keywords: aggregation error, price inhomogeneity, life cycle assessment, physical
input-output, environmental footprinting, industrial ecology
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1. Introduction

Both lifecycle assessment (LCA) and environmentally extended input—output analysis
(EEIO) relate environmental impacts to the production and consumption of products (Leon-
tief, 1970; Guinée, 2002; Heijungs and Suh, 2002; Suh et al., 2004). These methods routinely
rely on both physical and economic data to describe exchanges of products and services, and
interactions with the environment (Leontief, 1970; Nakamura and Kondo, 2002; Guinée et al.,
2004; Suh et al., 2004; Hawkins et al., 2007; Ardente and Cellura, 2012; Wood et al., 2014).
Monetary records of stocks and flows are common in these models, notably because of their
greater data availability from statistical offices (e.g., United Nations et al., 2009). The use
of monetary units is known to require special care, however: Practitioners must use a con-
sistent valuation scheme, such as purchaser’s price, producer’s price, or basic price (United
Nations, 1999; European Commission, 2008); they must work at constant prices over time,
correcting for (general and sector-specific) inflations or deflations (Miller and Blair, 1984);
and they must use product prices that are homogeneous throughout the system description
(Suh, 2004; Weisz and Duchin, 2006).

Further analyzing this last challenge, Merciai and Heijungs (2014) (henceforth MH)
investigate in a recent article in FEcological Economics whether the product and emission
flows calculated by a monetary EEIO can satisfy the law of conservation of mass' when
prices of products differ between purchasers. They present an example in which such a
violation of the price-homogeneitiy assumption in the EEIO analysis of an arbitrary? final
demand leads to a system description that is not mass balanced.

MH then draw two main conclusions. First, because of the imbalances that they iden-
tify, they find that an EEIO “is always preferable to be performed in a complete physically
accounted framework”. Second, they warn against potentially biased environmental pres-
sure estimates because monetary EEIO “can fail in respecting basic balance laws”. In this
comment, we strive to contextualize these two claims.

We first present price inhomogeneity as a special case of product-miz inhomogeneity,
which results from the aggregation of products that are dissimilar and are used in different
ratios in separate industries (section 2). Inhomogeneous prices are the only form of inhomo-
geneity in the example by MH, but we extend their example with additional physical layers
to demonstrate how inhomogeneous aggregations can introduce imbalances even in physi-
cally accounted EEIO or LCA system descriptions. We demonstrate that it is not the choice
of physical or monetary unit but rather the level of homogeneity of product groups that
determines the concurrent conservation of mass, energy, and the various chemical elements
in calculated lifecycle flows.?

*Corresponding author
Email address: guillaume.majeau-bettez@polymtl.ca (Guillaume Majeau-Bettez)

L As pointed out by MH, their analysis of the effect of price inhomogeneity could equally well have been
performed with another physical balance, such as energy balance.

2 This distinction is important: Retrospective analyses applied to the historically observed final demand
for the year of inventory will always lead to a globally balanced system descriptions, even in the presence of
inhomogeneously aggregated product groups (Olsen, 1993).

3 Throughout this article, for the sake of simplicity, nuclear reaction processes are excluded from the
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We then analyze how physical and economic imbalances in LCA and EEIO relate to sys-
tematic deviations, or biases, in environmental pressure estimates (section 3). We demon-
strate that aggregation can sometimes cause biases without causing imbalances. Conversely,
we find that coproduction models (allocation in LCA and constructs in EEIO) can intro-
duce imbalances without being associated with biased environmental pressure estimates.
We therefore find that physical imbalances in calculated system descriptions are not reliable
indicators for the presence of systematic overestimations or underestimations of lifecycle
impacts.

Based on this analysis, we then suggest two practical strategies to reduce the imbalances
and biases resulting from different levels of data aggregation (section 4).

2. Physical or price inhomogeneities and imbalances

2.1. Single-, mized-, and multi-unit product descriptions

Many of the major tools used in industrial ecology were developed so as to require only
minimal data on product characteristics. A monetary input—output analysis (I0) records fi-
nancial flows that either follow a product-based or an industry-based classification; products
are then little more than a classification scheme for value flows (Lenzen, 2001; European
Commission, 2008), and none of their intrinsic characteristics are formally needed to conduct
the analysis. Similarly, material flow analyses (MFAs) typically track flows of mass between
processes, and product categories are often little more than classification schemes for these
mass flows (Baccini and Bader, 1996). In LCA, each product is typically assimilated to a
single function within the system, the functional unit (Guinée, 2002), and knowledge of its
other characteristics are not formally required.

In such inventories, each product is thus recorded in terms of only one of its physical or
economic dimensions. If all flows of a system description are recorded with the same unit
(single-unit description), the conservation of this unit can be assessed, as is the case for
mass balance in MFA (Fischer-Kowalski et al., 2011) or financial balance in monetary 10
(United Nations, 1999). Conversely, if each flow is described with a different unit (mixed-
unit inventory), the system is not fully described in terms of any of its dimensions and
typically cannot be assessed for balance without the acquisition of additional data.* For
example, an exchange of fuel solely recorded in megajoules (MJ) cannot be directly included
in a mass balance assessment, whereas a flow of fuel solely recorded in kilograms (kg) cannot
be directly included in an energy balance.

To allow for the assessment of multiple balances concurrently and to answer a broader
range of questions, multilayered, multi-unit system descriptions are becoming increasingly

system boundaries, and the different chemical elements are thus conserved. Similarly, banks are also excluded
from the LCA or EEIO descriptions; creation and destruction of money by the different processes within
the system boundary is therefore also forbidden.

4 The mixed-unit, physical layer of MH constitutes an exception. It is possible to calculate a mass balance
from this layer because the only flows not recorded in kilograms (kg) have no mass, and therefore the mass
flows in the system are fully captured.



popular (Schmidt et al., 2010; Merciai et al., 2013; Ecoinvent Centre, 2013; Pauliuk, 2013;
Pauliuk et al., 2015a). Such descriptions encompass more information and describe each flow
or stock concurrently in terms of its multiple physical and monetary extensive properties.
The same flow of fuel would thus be recorded in terms of kg in the mass layer, in terms of
MJ in the energy layer, in terms of € in the value layer, etc.

The ratio between any two such layers gives rise to an intensive property that explicitly
describes the products. For example, a system with flows recorded in mass, energy and car-
bon layers would automatically give rise to product descriptions in terms of energy densities
and carbon concentrations. In the EEIO system presented by MH, the ratio between the
value layer (€) and the physical layer (kg and MJ) necessarily gives rise to one intensive
product description: prices (expressed either as €-kg™! or as €MJ™1).

Throughout this article, when an intensive property is defined by the ratio between two
properties for which a conservation law exists (e.g., energy density, defined by the ratio of
mass and energy), we refer to it as a conservative, intensive property.

2.2. Price inhomogeneity as special case of product group inhomogeneity

Multi-unit product descriptions then bring to light a fundamental assumption of system
descriptions in industrial ecology: product groups are always assumed to be homogeneous
across the whole system and in terms of all properties investigated. Whether in MFA (e.g.,
Modaresi et al., 2014), in LCA (Clift et al., 2000; European Commission, 2010)°, or in EEIO
(Leontief, 1936; Viet, 1994; Weisz and Duchin, 2006), any intensive property of a product
group is always assumed to be independent of where in the system this product group is
observed. A product group (e.g., batteries) would prove inhomogeneous in terms of lead-
content if this “same” product had a high lead concentration in one part of the system (e.g.
car manufacturing) and a low lead concentration in another (e.g. laptop manufacturing).
Clearly, such an inhomogeneous product group would result from the aggregation of multiple
subgroups (e.g. lead-acid batteries and Li-ion batteries); it would crudely designate under
the same name two different mixes of these subgroups in these two industries.

It is important to note that a product group can be considered homogeneous even if the
products that it aggregates are not identical to one another. In LCA and EEIO, complete
uniformity within a mix is not required for homogeneity, as long as the mix is invariant across
all processes or economic sectors that use the mix. For example, the product group “pas-
senger vehicles” may aggregate cars with differing aluminum concentrations, and therefore
a certain distribution will exist around the average aluminum concentration for this group.
The product group will nonetheless be considered homogeneous in terms of aluminum con-
centration if this concentration is invariant across industries, that is, if the different sectors
(transport industry, tourism industry, final consumers) purchase car mixes that have an
equal average aluminum concentration.®

®“as delivered by homogeneous markets”

61n cases where an aggregation does not introduce inhomogeneities, we would rather speak of aggregation
uncertainty. Such aggregations do not cause biases (see section 3.1), but they reduce the specificity of
the system description and typically increase the dispersion of the distribution around average technical
coefficients (Lenzen, 2000, 2001).

4



Any average intensive property arising from the ratio between two unit layers, whether
economic or physical, is always assumed homogeneous across the whole system: prices,
carbon concentrations, gravimetric energy density, etc.. Product prices, arising from the
ratio between a physical and a monetary unit layer, are thus one among many intensive
properties that are assumed homogeneous (Viet, 1994; Suh, 2004; Weisz and Duchin, 2006).
We extend the example by MH to show how product group inhomogeneities in terms of any
conservative, intensive property can lead to physical or economic imbalances.

2.3. Inhomogeneous product groups cause imbalances even in physically accounted 10

Let us mirror the example of MH such that a practitioner directly records all flows in
a physical, mixed-units inventory (fig. 1, top, gray and black), in which all flows with a
material dimension are recorded in terms of their mass (fig. 1, top, black) and their carbon
contents (fig. 1, bottom). These descriptions give rise to a new intensive property, instead
of prices, to describe products: their carbon concentrations (fig. 1, middle).

Figure 1 thus presents a purely physical, mass-balanced, carbon-balanced system descrip-
tion. As made explicit by the carbon concentration table, however, the agricultural product
group displays carbon concentrations that differ between consumers, which identifies it as
an inhomogeneous product group. The carbon density of agricultural products in the energy
sector is more than twice that of agricultural products consumed by final demand. Such
a situation could arise, for example, if an inventory’s resolution proved too coarse to dis-
tinguish between the sales of food to final consumers and of biofuel to the energy sector;
“agricultural products” does not have the same meaning across the system description.

If this system description is used to evaluate an arbitrary final demand (e.g., 5 kg of
agricultural product, 3 kg of manufactured products, and 1 MJ of energy), the calculated
product flows and emissions will seemingly lead to the creation and destruction of carbon
(fig. 2). Following the analysis of MH, using average carbon-density to derive the carbon
layer from the mixed-unit layer will lead to imbalances within the processes purchasing
agricultural products (fig. 2, middle), and using per-transaction concentrations will lead to
imbalances in the process producing agricultural products (fig. 2, bottom).

Since it does not contain any monetary information, the example in fig. 2 is general
enough to illustrate the consequences of inhomogeneous product groups not only in EEIO
but also in LCA. For instance, the ecoinvent (2010) product steel, electric, un- and low-
alloyed, at plant may be expected to aggregate many specific steel alloys in a certain ratio.
Imbalances in some of the alloying elements are to be expected if this aggregate product
group is used as an input to a process that requires a different ratio of these various alloys.
Inhomogeneity would also be expected within the ecoinvent (2013) product group iron-
nickel-chromium alloy, allowing for different ratios between the three alloyed metals, whereas
other product groups explicitly define a tolerable range of inhomogeneity, such as cement,
blast furnace slag 70-100%.

Contrary to MH, we therefore find that a complete, balanced, and physically accounted
framework will in general not lead to balanced EEIO or LCA representations in the face of
aggregated product groups; the basic physical laws will likely not be respected across the



Mixed-unit (gray and black) and mass (black) 10 Flows
Agriculture Manufacture Energy Demand Total mass

Agriculture kg 0.0 1.0 2.0 4.0 7.0
Manufacture kg 2.0 0.0 3.0 3.0 8.0
Energy MJ 2.0 2.0 0.0 1.0 -
Resource 1 kg 8.0

Resource 2 kg 9.0

Emission 1 kg -3.0 -2.0

Emission2 kg -5.0

Total mass kg 7.0 8.0 0.0 v

Carbon Concentration

Agriculture Manufacture Energy Demand Mean
Agriculture kg Cperkg n/a 0.75 0.75 0.26 0.47
Manufacture kg C perkg 0.20 n/a 0.20 0.20 0.20
Energy kg C per MJ 0.00 0.00 n/a 0.00 0.0
Resource 1 kg Cperkg 0.36 0.36
Resource 2 kg C per kg 0.095 0.095
Emission1 kg Cperkg 0.0 0.0 0.0
Emission 2 kg C per kg 0.42 0.42

Carbon 10 flows

(kg ©) Agriculture Manufacture Energy Demand Total
Agriculture 0.0 0.75 1.5 1.0 3.3
Manufacture 0.40 0.0 0.60 0.60 1.6
Energy 0.0 0.0 0.0 0.0 0.0
Resource 1 2.9
Resource 2 0.85
Emission 1 0.0 0.0
Emission 2 -2.1
Total 3.3 16 0.0 v

Figure 1: Input-output system recorded in physical mixed-units (top, black and gray for kg and MJ, re-
spectively), with a balanced mass layer (top, black) and a balanced carbon layer (bottom), but presenting
inhomogeneous carbon concentrations in agricultural product descriptions (red, center). Symbol: v indi-
cates a balanced layer; n/a = not applicable (zero carbon divided by zero mass).



Mixed-unit (black and gray) and mass (black) 10 Flows

Agriculture Manufacture Energy Demand Total mass

Agriculture kg 0.0 1.1 2.2 5.0 8.3
Manufacture kg 2.4 0.0 33 3.0 8.7
Energy M]J 24 2.2 0.0 1.0 0.0
Resource I kg 9.5

Resource 2 kg 9.8

Emission 1 kg -3.6 -2.2

Emission2 kg -5.5

Total mass kg 8.3 8.7 0.0 v

Carbon 10 Flows, calculated with average carbon contents

(kg ©) Agriculture Manufacture Energy Demand Total
Agriculture 0.0 0.51 1.0 2.3 3.9
Manufacture 0.47 0.0 0.67 0.60 1.7
Energy 0.0 0.0 0.0 0.0 0.0
Resource 1 34

Resource 2 0.93

Emission 1 0.0 0.0

Emission 2 -2.3

Total 3.9 1.4 -0.6 X
Case 1 Imbalance: 0.0 -0.3 -0.6 -0.9

Carbon 10 Flows, calculated with per-transaction carbon contents

(kg ©) Agriculture Manufacture Energy Demand Total
Agriculture 0.0 0.81 1.7 1.3 3.8
Manufacture 0.47 0.0 0.67 0.60 1.7
Energy 0.0 0.0 0.0 0.0 0.0
Resource 1 34

Resource 2 0.93

Emission 1 0.0 0.0

Emission 2 -2.3

Total 3.9 1.7 0.0 X
Case 2 Imbalance: 0.1 0.0 0.0 0.1

Figure 2: New input-output flows calculated for an arbitrary, mixed-unit final demand (top, Demand column,
black and gray), showing how mass-balance is respected (top, black) but carbon balance is not, both when
using average carbon densities (middle) and per-transaction carbon densities (bottom). Symbol: v and
X respectively indicate balanced and imbalanced descriptions.



different layers. Inhomogeneous product groups are thus a problem regardless of the unit of
analysis, and inhomogeneous prices are but the monetary aspect of this problem.

Of course, if a study is only interested in one type of physical balance (e.g. only conser-
vation of mass), it is certainly beneficial to directly record the survey in terms of the unit
of interest. If multiple extensive properties are to be concurrently balanced, however, this
can only be achieved with product groups that are sufficiently disaggregated such that they
are homogeneous across all sectors of the system description, in terms of all properties of
interest, regardless of the unit of measurement.

2.4. Comparison of physical and financial balances

In the above section, we treated carbon flows and carbon-concentration inhomogeneities
in the same way that MH treated monetary flows and price inhomogeneities; imbalances
arose in the same manner.” This similarity between physical and monetary layers in LCA
and EEIO has two reasons.

First, inhomogeneities in carbon concentrations and prices can be traced to the same
source: the classification of products in aggregate groups. Regrouping two products with
different carbon concentrations in the same product group can lead to carbon concentra-
tion inhomogeneities. Treating two products with different prices as belonging to the same
product group can lead to price inhomogeneities. In other words, just as product groups are
artifacts of our classification and boundary choices (United Nations, 2008), so are inhomoge-
neous product groups. In the example of electricity sold at different prices to households and
to aluminum refineries, there is no fundamental reason why these two electricity packages
necessarily need to be considered as “the same” product. They could just as well be classi-
fied as two different products sold at different prices.® Considering them as belonging to the
same (inhomogeneous) product group constitutes a classification and aggregation choice.

Second, carbon and value are both subject to balances in LCA and EEIO. If no nuclear
reaction is present in the system, carbon is always preserved. It is thus expected that the
carbon content of a product equals the net inputs of carbon to its production through product
flows and exchanges with nature (Weidema and Schmidt, 2010); any other description would
contradict basic physical laws. Similarly, the value of a product must equal the net value

7 Furthermore, some symmetry is apparent in how physical and financial imbalances arise. Just as
deriving a physical layer from the calculated monetary flows lead to mass imbalances in the EEIO system
of MH, deriving a monetary layer from calculated physical flows would have lead to financial imbalances, in
both cases because of price inhomogeneities (see supporting information (SI), section 1).

8In fact, electricity contracts with the aluminum industry often differ in significant ways. Contrary
to contracts with other consumers, for example, electricity supply to the aluminum industry is often not
guaranteed during periods of peak consumption. Reducing an electricity product to its mere energy content
—a single physical property among many— can thus make abstraction of real, functional differences (voltage,
reliability, location, etc.) that explain differences in prices. Such real-world differences can then only be
preserved by creating separate product groups (e.g., electricity, high voltage, no peak load and electricity,
low-voltage, residential area, uninterrupted) that are more homogeneous across physical and economic layers.
Furthermore, because EEIO analyses are normally performed using ‘basic prices’ (correcting for subsidies,
taxes, differences in transport and trade margins, etc.), many factors that can cause prices to differ for
households and industries are already taken into account (Miller and Blair, 1984).
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of all product requirements (costs) plus all value added (European Commission, 2010); that
is, the net profits plus the value of factors of production such as inputs from nature, labor,
and capital (Duchin, 2009). Any other description would violate accounting rules. Carbon
and financial balances are thus two similar quality checks, in different layers, that ensure a
valid process description.

These balances then force a correspondence between product characteristics and the
description of their production processes in LCA and EEIO. If carbon flows are balanced, a
given set of inputs and outputs will always yield a product with the same carbon content. In
other words, two products with different carbon contents cannot be produced with exactly
the same input and waste structure; some variation in their production functions must
account for the difference. Similarly, if value is preserved through a production process,
a technical recipe that includes all payments for products and factors of production can
only yield a product with a given value. If two products differ in prices, something in their
production function must explain this difference; perhaps their production processes had
different product requirements, or a different profit margin was taken, etc.

To summarize, in a complete, balanced LCA or EEIO inventory, the characteristics of a
product cannot vary independently from this product’s production function. This serves as
the foundation for the second part of our analysis: the connection between imbalances and
biased lifecycle results.

3. Imbalances and biases

MH postulate a direct link between the violation of physical balances in LCA or EEIO
analyses and environmental pressure estimates that are biased. A systematic error or a
systematic deviation, often termed bias, constitutes a systematic deviation from the “true
value of the measurand”. Although this true value can never be fully known, a bias can be
estimated by a) comparing a set of measurements with a reference value that is believed to
be closer to the true value (e.g., a standard) or b) the analysis of the “systematic effect” of
specific parameters, such as friction or temperature changes, on the accuracy of measurement
values. (JCGM 2008). For example, the miscalibration in a measurement instrument may
cause a systematic overestimation in experimental results, which are then biased and require
a correction. This definition of systematic deviation is applicable not only to measurements
but also to estimations with models (Drosg, 2007). A prominent example for a systematic
error in environmental systems analysis is the truncation error in LCA. Because LCA system
descriptions typically omit parts of the value chains in the product system, this systematic
“truncation effect” makes it more likely that emissions to nature are underestimated rather
than overestimated. This leads to a systematic underestimation bias that can be estimated
and corrected through hybridization with EEIO (Lenzen, 2002; Suh and Huppes, 2002;
Norris, 2002; Majeau-Bettez et al., 2011).

The idea that a bias involves a systematic direction of the deviations and requires a
correction is central to its definition. Moreover, the identification of a bias necessarily and
crucially implies an identification of its sign: a positive bias for a systematic overestimation,
or else a negative bias for a systematic underestimation. This contrasts with the concept
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of uncertainty, which, by definition, is unsigned (Drosg, 2007) and cannot be “corrected”
by simply adjusting the value of the best estimate. Thus, once a bias has been identified,
“results should be corrected until it cannot be said whether the measured value is too large
or too small”, i.e., until the suspected bias is removed and only uncertainty remains (Drosg,
2007). In other words, one cannot identify a bias without identifying the direction in which
results systematically deviate.

In this section, we examine whether the presence of an imbalance in an inventory can
directly point to the direction of a systematic deviation in calculated estimation of environ-
mental impacts. We do not find a simple, direct link. An apparent ‘destruction of mass’
in an imbalanced process description may equally well denote an underestimation of direct
emissions and other outputs, which are associated with environmental impacts, or an over-
estimation of inputs, which are also associated with impacts through their production chain.
A mismatch between inputs and outputs does not a priori point to a systematic direction
of deviations in environmental impact estimates. Furthermore, environmental impacts are
rarely mediated directly by ‘mass’ or individual elements (C, H, O), but rather by chemical
species that stoichiometrically combine multiple elements (e.g., methane, carbon monoxide,
carbon dioxide, etc.). No single balance could therefore be used in isolation to identify a bias
in lifecycle environmental impacts; multiple imbalances would need to point in a consistent
direction to show a systematic deviation.

The link between imbalances in system descriptions and the identification of system-
atic deviations in LCA and EEIO results may prove more complex than anticipated. As
illustrated in fig. 3, and as further detailed in the following subsections, imbalances and sys-
tematic deviations sometimes have a common cause, but aggregation biases may also arise
in fully balanced systems, and imbalances may be present without indicating clear biases in
environmental pressure estimates.

(;a\)ses Imbalances  Causes BiaSes

Inhomogeneity
in terms of
other
properties

Inhomogeneity
in terms of
conservative,
intensive

properties

Coproduction
modeling
(allocations,
constructs)

Figure 3: Partial link between imbalances in system description and systematic deviations (biases) in envi-
ronmental pressure estimates
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3.1. Inhomogeneous product groups can cause both imbalances and aggregation bias

The rich literature on aggregation bias has explored how inhomogeneous aggregations
have a systematic effect on EEIO analysis and can cause systematic errors in analysis results
(Morimoto, 1970; Olsen, 1993, 2000; Lahr and Stevens, 2002).

Given that physically or economically different products must have different production
recipes (section 2.4), the production function for a product group that aggregates different
commodities can always be represented as the aggregation of multiple distinct production
recipes in a given ratio. For example, the input structure associated with the manufacture
of the product group “batteries” is the weighted sum of many technical recipes: a recipe for
Li-ion batteries, a recipe for lead-acid batteries, etc.

This aggregation of different production functions is not problematic as long as their
products are always consumed together in the ratio that defined the aggregation. If every
industry consumed the same ratio of lead-acid and Li-ion batteries, their aggregation would
not influence the results (see Fisher (1958) and Olsen (1993) on perfect aggregation). How-
ever, if an aggregated product group is inhomogeneous (i.e., its constituents differ and are
consumed in different ratios by different industries), then its aggregated production recipe is
also inhomogeneous. The battery manufacture upstream of laptop production differs from
the battery manufacture upstream of car production, as laptops typically require Li-ion bat-
teries whereas cars predominantly rely on lead-acid batteries. Using a single, aggregated
battery production process would therefore lead to systematic deviations in these lifecycles:
emissions from lead mining in the lifecycle of laptops and emissions from lithium mining
in the lifecycle of passenger cars would both be systematically overestimated. This phe-
nomenon has been thoroughly documented and is known as aggregation bias (Morimoto,
1970; Olsen, 1993, 2000; Lahr and Stevens, 2002).

The systematic effect of heterogeneous aggregation in introducing errors in final results
has traditionally been studied by comparing the results obtained from a full-resolution EEIO
table with those obtained from aggregated versions of this same table (e.g., Lenzen et al.,
2004). Alternatively, the biases associated with a given study can be estimated retrospec-
tively by comparing its results with that of a more disaggregated, improved system descrip-
tion.

In the case of inhomogeneous aggregation, it is therefore possible to formulate the notion
of an aggregation bias because higher resolution and granularity are strongly expected to
lead to a more accurate representation of the real system; this more detailed representation
leads to ‘truer’ lifecycle results against which the errors of a more aggregated description
could be assessed (Olsen, 1993). The comparison directly gives the likely sign (direction) of
the bias, along with an estimate of its magnitude.

Product groups that prove inhomogeneous in terms of conservative, intensive properties
thus cause not only imbalances between property layers (section 2.3) but also necessarily
imply inhomogeneous input structures, which are known to cause the misrepresentation of
specific value chains and biases in lifecycle results (fig. 3, center).
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3.2. Aggregation bias can occur even in fully balanced descriptions

Not all inhomogeneities are defined in terms of conservative, intensive properties, how-
ever. A product group inhomogeneity in terms of any other property will also lead to
aggregation biases but will not cause imbalances (fig. 3, right). In other words, a product
group could be perfectly uniform in terms of prices, energy density, and elemental concentra-
tions, ensuring respect of all balances, and yet aggregate products that differ with respect to
some other property, are manufactured differently, and are sold in different ratios to different
industries (see Viet 1994 and Konijn and Steenge 1995 on homogeneity of productions and
input structures). An inhomogeneous product group might aggregate products that are sold
in distinct markets or with different traceabilities.

For example, it is well known that the mix of power plants (e.g. coal fired, nuclear,
natural gas, etc.) delivering electricity at night is different from that providing electricity
during the day. Aggregating daytime and nighttime electricity as a single product aggregates
these productions and their input structures in a fixed ratio. If every industry and consumer
purchased daytime and nighttime electricity in this same ratio, this aggregation would not
lead to inhomogeneities, but otherwise it would: an aggregated electricity mix would mis-
represent the value chain of industries that purchase daytime and nighttime electricity in
different ratios, causing aggregation biases. And yet, because the products (daytime and
nighttime electricity) are identical in terms of their physical characteristics, this aggrega-
tion bias would not be accompanied by imbalances of the type produced in fig. 2 or in the
example by MH.

Similarly, steam does not ship well over long distances and is typically produced and
purchased locally. Representing the production of such a product in an aggregate, national
average would likely cause aggregation bias but not necessarily imbalances. Assuming that
steam is recorded with a certain temperature/pressure equivalent across the entire system,
this aggregation would not lead to physical imbalances. If it so happens that steam is sold
at the same price in the different markets, financial balance would also be respected in
the national aggregation. However, this balanced aggregation would nonetheless introduce
systematic deviations if production methods differed between markets. For example, it would
systematically over-estimate the carbon footprint of industries that use steam in areas where
it is produced with natural gas, and conversely systematically underestimate the impacts of
lifecycles that rely on steam in coal-based markets.

Aggregating away product traceability labels (such as “certified organic,” “fair trade,”
or “made in Canada”) may also lead to inhomogeneities. Let us assume that conventional
corn and organic corn present identical energy densities and elemental concentrations. Ag-
gregating these two products as “corn” and their production as “corn production” would
cause no mass, energy, or elemental imbalances in the system description. And yet, since
these productions differ in terms of land use and pesticide use, this aggregation will cause
inhomogeneities and systematic deviations if different consumers in the system description
require organic and conventional corn in differing ratios.

The presence of imbalances in a system description is therefore not a necessary condition
for the presence of aggregation bias in LCA or EEIO pressure estimates.
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3.3. Modeling choices can cause imbalances without causing biased results

Inhomogeneous product groups are not the only likely source of imbalances in LCA or
EEIO. On the contrary, physical imbalances may also arise because of deliberate modeling
assumptions to resolve situations of coproduction: allocation models in LCA and constructs
in EEIO.

Very few coproduction situations can be resolved without introducing modeling assump-
tions. The subdivision of a multifunctional activity into multiple monofunctional activities
based on additional data collection (Guinée, 2002) is not possible when its coproduction
presents a strong technological link, such as the joint production of chlorine gas and sodium
hydroxide (Jung et al., 2012; Azapagic and Clift, 1999). Pseudo-inversion is only mathe-
matically possible when the different coproducts are jointly used in the same ratio as their
production ratio (Heijungs and Frischknecht, 1998). As for classical system expansion, it
may be incompatible with the objective of the study (Jung et al., 2012). Furthermore, for
coproductions that occur more than a few steps upstream of the final demand, it typically
requires such a broadening of the functional unit that it reduces the problem to a trivial solu-
tion: the total production impacts of all industries are caused by the total final consumption
of all products (see examples in SI, section 2).

For most analyses, there is thus no assumption-free method to deal with coproduction,
and LCA or EEIO practitioners have no choice but to resort to modeling in order to gen-
erate independent recipes for products that are not truly produced independently (Kop
Jansen and ten Raa, 1990; Guinée, 2002; Heijungs and Suh, 2002). Several coproduction
modeling families span across LCA and EEIO practice (Suh et al., 2010; Majeau-Bettez
et al., 2014). With partition-based models —partition allocation (PA), partition construct
(PC), European-system construct (ESC), industry-technology construct (ITC)— the joint
requirements of a coproduction are split proportionately to a joint property of its coprod-
ucts. With substitution-based models —product-substitution allocation (PSA), product-
substitution construct (PSC), byproduct-technology construct (BTC)— the secondary co-
productions are modeled as having avoided some other primary production. With alternate-
activity models —alternate-activity allocation (AAA), alternate-activity construct (AAC),
commodity-technology construct (CTC)— the requirements of each secondary production
are exogenously fixed based on the requirements of some other independent production,
which serves as a technological proxy; and the primary production is then ascribed the
remainder of the joint requirements (Majeau-Bettez et al., 2014).

Every single of these three modeling families can lead to physical imbalances, even when
applied to balanced physical inventories, depending on the characteristics of its coproduc-
tions (Majeau-Bettez et al., 2016). Partition-based allocations and constructs almost always
cause imbalances across multiple conservative properties; for instance, mass-based partitions
typically lead to imbalances in the energy layer, and vice versa for energy-based partitions
(Weidema and Schmidt, 2010). Both substitution and alternate-activity models necessarily
lead to imbalances in the presence of exclusive secondary products, that is, products that
are the primary objective of no industry and are always produced as secondary products.
For example, because there is no such thing as a primary production of oil press cake, the
coproduction of this product cannot be modeled as having substituted an identical product
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from primary production, and it is therefore rather modeled as equivalent to a different
product, with a potentially different energy density or elemental composition, leading to
imbalances.

Consequently, any LCA or EEIO based on a system description that relies on partition
allocation or that represents exclusive secondary products would be expected to display
some physical imbalances due to coproduction modeling. Does it follow, then, that all
such analyses —indeed, almost all LCAs ever performed %— calculate “biased pressure es-
timates” because their treatment of coproduction violates basic physical laws? To answer
that question, one would need to determine the reference relative to which the biases could
be determined. One also would have to identify the sign of the bias and develop correction
methods to rectify these systematic deviations in environmental pressure estimates. This
identification, however, is impossible in general. There is no consensual, ‘more exact’ co-
production model that would better reflect an observable reality (Williams et al., 2009):we
cannot observe partitioned productions, or productions that would have occurred had they
not been substituted (Heijungs and Guinée, 2007), or technological proxies, which are all
artifacts of deliberate modeling choices. The different coproduction models are promoted or
criticized not based on their ‘trueness’ (Williams et al., 2009), but rather based on their con-
cordance with different research perspectives (e.g., Ekvall et al., 2005; Weidema et al., 2009;
Brander and Wylie, 2011; Wardenaar et al., 2012; Zamagni et al., 2012; Pelletier et al., 2015;
Jung et al., 2012), data requirements, practical considerations, and desirable properties for
different types of analysis (e.g., Viet, 1994; Kop Jansen and ten Raa, 1990; Almon, 2000;
ten Raa and Rueda-Cantuche, 2003; Heijungs and Guinée, 2007; European Commission,
2008). The leading recommendation is to perform sensitivity analyses (Jung et al., 2013) to
account, for the existence of differing research perspectives and their influence on lifecycle
environmental pressure estimates. We would therefore argue that allocations and constructs
—and the physical imbalances that they introduce— are not associated with biased results
(fig. 3, left), but rather with a special type of uncertainty. This uncertainty has been cat-
egorized as “uncertainty due to choices” (Huijbregts, 1998; Bjorklund, 2002), “uncertainty
due to fixing multi-functionality problems” (Jung et al., 2013), or as “scenario uncertainty”
(Lloyd and Ries, 2007). Through a pseudo-statistical approach, this “choice uncertainty”
can be propagated along with data uncertainty to lifecycle results (Mendoza Beltran et al.,
2015).

In other words, if the goal and scope and the perspective of an LCA call for the choice of
a certain method to allocate emissions and requirements (e.g., energy-based partitioning),
leading to the respect of certain balances (e.g., conservation of energy) and not others (e.g.,
mass), we cannot treat this deliberate choice as a ‘mistake’ that should be ‘corrected’, nor can
we identify a ‘more true’ estimate against which the direction and magnitude of our deviation
could be assessed. We cannot identify a systematic overestimation or underestimation in
the environmental pressure estimates that result from this modeling. A clear bias therefore

9 Through the complex networks of our technosphere, almost every process is directly or indirectly
involved in the lifecycle of every other, which makes it extremely likely that any given lifecycle will include
allocated coproductions.
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cannot be identified, despite the physical imbalances that this allocation choice implies.

Though mass, energy, elemental, and price imbalances are key to identifying flaws in
data compilation, especially in multilayered supply and use tables (SUTs), we find that
such imbalances in calculated LCA and EEIO flows may result from deliberate and neces-
sary coproduction modeling choices. Imbalances are thus sometimes associated with biased
results (aggregation bias) and sometimes not (allocation, constructs), and they are therefore
not a sufficient condition for the presence of systematic deviations in lifecycle results.

Since imbalances are neither necessary (section 3.2) nor sufficient (section 3.3) conditions
for the presence of systematic deviations in environmental pressure estimates, we find that
they are neither a clear cause nor a reliable indicator of bias.

4. Partial practical solutions

A greater granularity and homogeneity in the definition of product groups and activities,
and the respect of physical and financial balances, are all desirable properties to be searched
for in our models of the socioeconomic metabolism. Given enough time and resources, the
ideal solution to the the problems posed by inhomogeneous product groups and inhomoge-
neous productions would obviously be to disaggregate them with additional data (Guinée,
2002; Nakamura et al., 2011). In fig. 1, for example, dividing both the agricultural product
and the agricultural sector with additional data on animal husbandry and grain farming
would yield more homogeneous product and industry descriptions.

There is always a practical limit to data acquisition and disaggregation efforts, however.
For a given level of data richness, we propose two strategies to reduce both imbalances and
systematic deviations caused by inhomogeneous product mixes.

4.1. Disaggregation of product groups based on their inhomogeneities

Descriptions of product group inhomogeneities may be sufficient information in and of
themselves to disaggregate product groups, and thus resolve these inhomogeneities without
additional data collection. This is notably the case with the example put forth by MH.

As discussed in section 2.2, inhomogeneous product mixes are problematic because they
lead to situations where one industry is described as producing one product with properties
that differ for each purchaser. If properties differ, these purchasers are really buying dif-
ferent products, and the aggregate industry can be seen not as producing one product but
rather as coproducing many products. This points to a potential solution to the problem
of inhomogeneous product mixes: record the aggregate industry as coproducing multiple
products instead of a single, inhomogeneous one. This transforms a product inhomogeneity
problem into a coproduction problem, as recommended by Suh (2004).

In the example of MH, the price matrix indicates that manufactured products are sold
at three different prices. We would then need to subdivide this inhomogeneous product
group into three subgroups to achieve price homogeneity (subgroups A, B, and C, sold
respectively at 0.8, 1.0, and 1.2 € per kg; see prices in fig. 4). This disaggregation recasts the
manufacturing sector as a multi-output sector, coproducing three distinct product mixes (see
Supply table in fig. 4). From the original price matrix, we also know that the agriculture and
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manufacture industries purchase manufactured products at 0.8 €-kg~! (therefore product
mix A); the energy industry purchases manufactured product mix B; and final consumers
purchase manufactured product mix C (see Use table in fig. 4).

Mixed-units (black and gray) and Value (black) Flows

Mass Supply flows Use flows
Prices Agriculture Manufacture Energy Total Agriculture Manufacture Energy Final Total
(€ kg™ Industry Industry Industry value Industry Industry Industry Demand value
1.0 Agricultural prod. € 7.0 7.0 1.0 2.0 4.0 7.0
0.80 Manufactured prod. A € 1.6 1.6 1.6 1.6
1.0 Manufactured prod. B € 3.0 3.0 3.0 3.0
1.2 Manufactured prod. C € 3.6 3.6 3.6 3.6
- Energy prod € 7.5 7.5 3.0 3.0 1.5 7.5

Value added € 2.4 4.2 2.5

Resources kg 8.0 9.0 0.0

Emissions kg -3.0 -2.0 -5.0

Total value € 7.0 8.2 7.5 v 7.0 8.2 7.5 v

Mass Flows
Supply flows Use flows
Agriculture Manufacture Ener: Agriculture Manufacture Ener: Final

(kg) In%iustry Industry Indusgti/y Total In%iustry Industry Indusgti’/y Demand Total

Agricultural prod. 7.0 7.0 1.0 2.0 4.0 7.0

Manufactured prod. A 2.0 2.0 2.0 2.0

Manufactured prod. B 3.0 3.0 3.0 3.0

Manufactured prod. C 3.0 3.0 3.0 3.0

Energy prod 0.0 0.0 0.0 0.0 0.0 0.0

Value Added 0.0 0.0 0.0

Resources 8.0 9.0 0.0

Emissions -3.0 -2.0 -5.0

Total 7.0 8.0 0.0 4 7.0 8.0 0.0 v

Figure 4: Supply and Use flows with extensions (value added and free* emissions and resources), recorded
in mixed-units (top, gray and black), balanced in terms of monetary flows (top, black) and mass flows
(bottom), assembled from the numerical example of MH, with manufactured products disaggregated into
three subgroups (A, B, and C) based on per-transaction prices so as to obtain homogeneous prices (top left).
Symbol: v indicates a balanced layer. *Note: For the sake of simplicity and to stay close to the original
example by MH, we assume, without loss of generality, that emissions and resources that are described in
physical units come at no cost for the industry; i.e, value added aggregates all factor costs.

As prices are now homogeneous, they can be used to convert the monetary flows into
physical flows without introducing imbalances. Figure 4 presents a valid, homogeneous,
disaggregated SUT.

This approach only constitutes a partial solution, since it gives rise to multifunctional
industries. It has nonetheless the advantage of transforming an explicitly inappropriate
EEIO system description (Weisz and Duchin, 2006) into a valid, balanced SUT, without
requiring additional data. This then provides a ‘clean’ starting point, to which practitioners
may apply a wide range of allocation and construct models to generate symmetric EEIO or
LCA representations, thereby introducing different assumptions depending on their research
questions (Suh et al., 2010; Ecoinvent Centre, 2013; Majeau-Bettez et al., 2014). Some
coproduction models may be able to respect most financial and physical balances, depending
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on the characteristics of the data (Kop Jansen and ten Raa, 1990; Weidema and Schmidt,
2010; Majeau-Bettez et al., 2016).

4.2. Choice of base unit to reduce aggregation

Although individual property layers make it possible to assess different physical and
economic balances, LCA and EEIO calculations are almost always performed in a mixed-
unit layer, as none of the physical or economic dimensions can typically represent all the
flows of a system with a non-null value. In a pure mass layer, electricity flows cannot be
represented (fig. 4, bottom); in a purely economic layer, non-taxed emissions would not
appear (fig. 4, top, black); in a carbon layer, carbon-free emissions would necessarily be
null and therefore lead to no environmental impact (fig. 1, bottom, Emission 1). Only a
mixed-unit layer can represent all flows of a system in a lifecycle calculation, and a choice
must therefore be made as to which unit should be used to represent each product or factor
of production in this mixed-unit layer. This choice of a ‘base unit’ offers an opportunity to
minimize aggregation biases.

To minimize aggregation biases in lifecycle results, the differences between the production
functions that are aggregated must be minimized (Fisher, 1958). If two recipes are most
similar when expressed relative to a certain unit, then this unit minimizes the lifecycle
biases resulting from their aggregation. For example, if it is known that requirements of
agricultural processes typically differ more per kg of product than per MJ of product (because
of, e.g., high variability in the water content of these products), then describing agricultural
products with an energy unit rather than a mass unit in the lifecycle calculation would
reduce aggregation biases in the environmental impact estimates.

Although services (e.g., banking, entertainment, health care) deliver functions that could
theoretically be quantified in physical units (removal of grams of tumor, display of m?-hours
of cinema screen), these physical descriptions are so heterogenous that the service sectors
are more appropriately (i.e., more homogeneously) accounted with monetary units (Duchin,
2009).

A potential way of reducing aggregation bias would therefore be to calculate lifecycle
impacts with a mixed-unit framework (Weisz and Duchin, 2006) in which each technical
recipe would be defined in terms of the unit most likely to minimize disparities within
its sector. Further research is needed to generate heuristics to guide such choices of base
units. The comparison of LCA and EEIO databases at different aggregation levels, extending
Majeau-Bettez et al. (2011) across multiple reference units, seems like a promising approach.
One can expect that some sectors will be best represented relative to a given physical unit
of output —e.g., most homogeneous per kg, per MJ, or per kg-C of product— whereas other
sectors will exhibit input structures that are most homogeneous when inventoried relative
to a monetary unit of output.

5. Summary and outlook

If an analysis requires solely the respect of a single physical balance, as is the case for
the analysis by MH or for material flow accounting (Fischer-Kowalski et al., 2011), it is
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evidently beneficial to perform this analysis in the physical unit of interest. However, if we
strive for the concurrent respect of multiple balances (conservation of mass, energy, carbon,
etc.), banning monetary units from LCA and EEIO analyses will be of no avail (section 2.3).
The absence of physical imbalances in Leontief models depends not on the exclusive use of
physical measurements but on the level of resolution and homogeneity of product groups.
In this respect, excluding high-resolution monetary statistical data from our analyses would
be counterproductive.

Though physical and financial balances are essential quality checks in the compilation of
inventories, we found that the presence of imbalances in calculated flows is not a necessary
nor a sufficient condition for the the presence of biases in lifecycle pressure estimates. Using
imbalances to identify biases misses aggregation biases caused by product groups that are
inhomogeneous in terms of non-conservative properties (section 3.2); and it conflicts with
modeling choices that resolve situations of coproduction (section 3.3). Rather, it would be
preferable to focus directly on the causes of systematic deviations in EEIO and LCA, notably
the inhomogeneous aggregation of product groups and production functions (section 3),
along with the incompleteness of inventories (truncation errors, see Lenzen 2002; Suh and
Huppes 2002; Norris 2002; Majeau-Bettez et al. 2011).

Inconsistent use of monetary data constitutes another potential source of systematic
deviation. It is crucial that practitioners express all prices in a single valuation scheme.
Working at ‘basic prices’, as is typically done in EEIO (e.g., Lenzen et al., 2013), notably
corrects for the influence of taxes, subsidies, and trade margins (United Nations, 1999). This
more directly relates the value of products to their production costs, and it reduces price
inhomogeneities between small and large consumers.

Some level of data aggregation and inhomogeneity is practically unavoidable, but the
ongoing development of multi-unit, multilayered inventories offers new opportunities to refine
LCA and EEIO analyses.

When the inhomogeneities in the inventory can be quantified, as in the example by MH,
then this information is sufficient to disaggregate the inhomogeneous product groups into
homogeneous sub-groups (section 4.1). This step, which recasts a situation of inhomogeneity
into a situation of coproduction, could be automated; with the right software, it could
become a reproducible and transparent part of the calculation routine (Pauliuk et al., 2015b).

For situations where inhomogeneities are suspected but not quantified, we suggest to rely
on heuristics to guide the choice of the ‘base unit’ used in the LCA or EEIO calculation, so
as to minimize systematic deviations in environmental pressure estimates (section 4.2). The
specific production functions within each aggregated sector of the economy may present a
greater similarity when expressed relative to a certain unit (kg, or €, or MJ of products,
etc.) By relying on such heuristics, the careful selection of the right unit to express the
output of each sector therefore has the potential to reduce aggregation biases at a given
level of data resolution.

These research avenues should be part of a concerted effort to consolidate data collec-
tion and modeling across the LCA, EEIO and MFA research communities, so as to build a
cumulative knowledge base, avoid systematic deviations, and bolster the physical and eco-
nomic credibility of research on our socioeconomic metabolism and its interaction with the
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environment.
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1. Inhomogeneous prices can cause financial imbalances when they
are used to calculate a monetary layer from a physical layer

There is a symmetry to the problem of inhomogeneous prices in lifecy-
cle assessment (LCA) and environmentally extended input—output analysis
(EEIO). Merciai and Heijungs (2014) (thereafter MH) demonstrate that inho-
mogenous prices can cause physical imbalances when they are used to convert
a monetary analysis into physical units, but the reverse is also true: Inho-
mogeneous prices can cause financial imbalances when converting a physical
analysis into monetary units. We briefly present this latter problem.

Figure 1 extends the example by MH with a value-added row, so as to
explicitly represent both mass and financial balances. The initial EEIO tables
respect both balances (fig. 1, top and bottom).

The inhomogeneity of prices for manufactured products (fig. 1, middle)
puts these balances at risk if this EEIO is used to assess an altered final
demand. In fig. 2, the physical layer is used to calculate the flows asso-
ciated with a final demand for 5.0 kg of agricultural products, 3.0 kg of
manufactured products, and 1.0 MJ of energy. The calculated physical flows
are mass balanced (fig. 2, top). If average prices are used to derive value
flows for this representation, however, financial imbalances will arise in the
industries consuming manufactured products (fig. 2, middle). Conversely, if
transaction-specific prices are used, the manufacturing industry will now be
financially balanced (fig. 2, bottom).

Since prices result from a ratio between physical and economic extensive
properties, inhomogenous prices are neither a purely economic nor a purely
physical problem. They can lead either to physical imbalances (as demon-
strated by MH) or to financial imbalances (as demonstrated here) depending
on which unit is used as the ‘base unit’ in the demand-driven Leontief model
to calculate lifecycle flows.

2. An example of a coproduction situation that necessitates the
introduction of assumptions in LCA or EEIO

Whenever possible, it is preferable to resolve a situation of coproduction
by disaggregation (also known as ‘sub-division’), pseudo-inversion, or clas-
sical system expansion. Many coproduction situations are not amenable to
these preferred solutions, however. In this section, we present such a situa-
tion.



Mixed-unit (gray and black) and mass (black) 10 Flows
Agriculture Manufacture Energy Demand Toral mass

Agriculture kg 0.0 1.0 2.0 4.0 7.0
Manufacture kg 2.0 0.0 3.0 3.0 8.0
Energy MJ 2.0 2.0 0.0 1.0 --
Value added € 2.4 4.2 2.5 0.0
Resources kg 8.0 9.0 0.0 0.0
Emissions kg -3.0 -2.0 -5.0 0.0
Total 7.0 8.0 0.0 v
Prices
Agriculture Manufacture Energy Demand all  mean
Agriculture € per kg 1.0 1.0
Manufacture € per kg 0.80 0.80 1.0 1.2 1.0
Energy € per MJ 1.5 15
Resources € per kg 0.0 0.0
Emissions € per kg 0.0 0.0
Monetary 10 flows
(€) Agriculture Manufacture Energy Demand Total
Agriculture 0.0 1.0 2.0 4.0 7.0
Manufacture 1.6 0.0 3.0 3.6 8.2
Energy 3.0 3.0 0.0 1.5 7.5
Value Added 24 4.2 25 0.0
Resources 0.0 0.0 0.0 0.0
Emissions 0.0 0.0 0.0 0.0
Total 7.0 8.2 7.5 v

Figure 1: Initially balanced EEIO tables recorded in a mixed-unit physical layer, a bal-
anced mass layer, and a balanced monetary layer, but presenting inhomogeneous prices
for manufactured products.



Calculated Mixed-unit (black and gray) and mass (black) 10 Flows

Agriculture Manufacture Energy Demand T7otal mass

Agriculture kg 0.0 1.1 2.2 5.0 8.3
Manufacture kg 2.4 0.0 33 3.0 8.7
Energy MJ 2.4 2.2 0.0 1.0 0.0
Value added € 2.8 4.6 2.8 0.0
Resources kg 9.5 9.8 0.0 0.0
Emissions kg -3.6 -2.2 -5.5 0.0
Total mass ke 8.3 8.7 0.0 v

Calculated Value 10 Flows, calculated with average prices

(€) Agriculture Manufacture Energy Demand Total
Agriculture 0.0 1.09 2.2 5.0 8.3
Manufacture 2.4 0.0 34 3.1 8.9
Energy 3.6 33 0.0 1.5 8.3
Value added 2.8 4.6 2.8 0.0

Resources 0.0 0.0 0.0 0.0

Emissions 0.0 0.0 0.0 0.0

Total 8.8 8.9 8.4 X
Case 1 Imbalance: 0.5 0.0 0.1 0.6

Calculated Value 10 Flows, calculated with per-transaction prices

(€©) Agriculture Manufacture Energy Demand Total
Agriculture 0.0 1.1 2.2 5.0 8.3
Manufacture 1.9 0.0 33 3.6 8.8
Energy 3.6 3.3 0.0 1.5 8.3
Value added 2.8 4.6 2.8 0.0

Resources 0.0 0.0 0.0 0.0

Emissions 0.0 0.0 0.0 0.0

Total 8.3 8.9 8.3 X
Case 2 Imbalance: 0.0 0.1 0.0 0.1

Figure 2: New EEIO flows calculated based on the mixed-unit physical layer for an altered
final demand, showing how financial balance is violated when inhomogenous prices are used
to derive the monetary layer from the physical layer.



Let a study assess the direct and indirect emissions resulting from the
annual bread consumption by a typical household (fig. 3, fictional). Central
to this lifecycle calculation is the coproduction of wheat, sold to bakeries, and
straw, sold as biomass for the production of electricity (fig. 3, blue). This
electricity is then used by the household and various industrial activities.
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Figure 3: Simple and fictional example of a system in which a coproduction of grain and
straw cannot be resolved by either disaggregation, pseudo-inversion, or classical system
expansion without leading to a trivial solution. To keep the system description simple,
only a few activities and their output flows are described explicitly; the symbols e, *, and
* show that there are other product flows, source activities and emissions, respectively, to
balance each activity.

Grain and straw productions are closely linked technologically; the two
productions always occur together and they share important joint require-
ments. We therefore cannot disaggregate grain farming simply by working at
a higher resolution or acquiring additional data. The two productions cannot
be sub-divided without introducing assumptions.

Pseudo-inversion may sometimes resolve a lifecycle calculation even in
the presence of coproduction, but it requires that coproducts be consumed



together by the same industries and in the original production ratio, which
is not the case in example in fig. 3.

We may wish to resolve this analysis by system expansion, that is, by
assessing not only the “consumption of 50 kg of bread by a household” but
rather the “consumption of 50 kg of bread and 11 GJ of straw by a house-
hold”. However, in this example, the household does not consume straw in
any significant amount; it is exclusively used to produce electricity.

We could then try to further expand the functional unit to include all
bread and electricity consumed by the household, but such an electricity
consumption only requires 5.5 GJ of straw; half of the straw still goes to
produce electricity that is not sold to households. This system expansion
is therefore insufficient to include all coproduction of straw resulting from
bread consumption (fig. 4).
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Figure 4: A partial system expansion that leads to the inclusion of household electricity
consumption in the functional unit. This system expansion is insufficient to resolve the
upstream coproduction of grain and straw, since only half of the straw burned in the Utility
Industry produces electricity for households, with the other half going for electricity use
by other industries. Note: 1 = “Utility activity to fulfill direct household consumption”



To fully resolve the farming coproduction, we must expand the scope of
the study even further so as to assess the final consumption of “50 kg of
bread, 30 kg of office products, 40 GJ of electricity, 500 € of online services,
1000 kg of manufactured products” by the household (fig. 5). The functional
unit is thus broadened such that it includes all final consumption in the
system, leading to a trivial solution: We know with certainty that the sum
total of all emissions by industries in the system is caused by the sum total of
all consumptions by household. The life cycle impact of “all consumptions”
is, necessarily, the impact of “all productions”, which is trivial and does not
require a LCA or EEIO study.
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Figure 5: A full system expansion, integrating all household consumption in the scope of
the analysis, does resolve the coproduction of grain and straw, but at the cost of any insight
specific to individual consumption flows: the lifecycle impact of the total consumption is
the total impact.

The characteristics of a production-consumption system can thus render
system expansion trivially inapplicable. In this case, a single coproduction,
only two tiers upstream of the final consumption of interest, forced the inclu-
sion of all final consumptions (in a fixed ratio) in the scope of the analysis,
which lead to a trivial collapse of the analysis. Such a situation is even more
likely to occur if multiple coproductions are present many steps upstream of
the functional unit of interest.

This is then more than a mere practical problem, or a question of con-
venience and expediency: Some coproduction situations are incompatible



with disaggregation or pseudo-inversion and lead to trivial, collapsed sys-
tem representations when resolved by system expansion. Such situations,
which frequently occur in lifecycle systems of typical complexity, can only
be resolved with modeling, notably partition-based, substitution-based, and
alternate-activity-based allocation and construct models.

References

Merciai, S., Heijungs, R., 2014. Balance issues in monetary input—output
tables. Ecological Economics 102, 69-74.
URL http://linkinghub.elsevier.com/retrieve/pii/
S50921800914000962


http://linkinghub.elsevier.com/retrieve/pii/ S0921800914000962
http://linkinghub.elsevier.com/retrieve/pii/ S0921800914000962

	Majeau-Bettez_2016_Balance_issues_input-output_analysis_comment
	Introduction
	Physical or price inhomogeneities and imbalances
	Single-, mixed-, and multi-unit product descriptions
	Price inhomogeneity as special case of product group inhomogeneity
	Inhomogeneous product groups cause imbalances even in physically accounted IO
	Comparison of physical and financial balances

	Imbalances and biases
	Inhomogeneous product groups can cause both imbalances and aggregation bias
	Aggregation bias can occur even in fully balanced descriptions
	Modeling choices can cause imbalances without causing biased results

	Partial practical solutions
	Disaggregation of product groups based on their inhomogeneities
	Choice of base unit to reduce aggregation

	Summary and outlook
	Inhomogeneous prices can cause financial imbalances when they are used to calculate a monetary layer from a physical layer
	An example of a coproduction situation that necessitates the introduction of assumptions in lca or eeio


