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RÉSUMÉ 

La découverte de la conduction électronique dans les matériaux organiques, dans les années 70, 

est à l’origine du développement des technologies optoélectroniques organiques. La remarquable 

propriété que présentent les semiconducteurs organiques de conduire les ions, en plus des 

porteurs de charge électroniques, a permis l’émergence d’un nouveau domaine de 

l’optoélectronique organique, c’est à dire la bioélectronique. La bioélectronique organique ouvre 

de nouvelles opportunités d’interface entre l’électronique organique et la biologie, avec la 

promesse d’applications dans des domaines aussi variés que les biocapteurs, la livraison de 

médicament, l’enregistrement et la stimulation neural. Combiner un transport ionique et 

électronique dans les semiconducteurs organiques utilisés pour les transistors représente une 

tentative intéressante pour parvenir à des dispositifs bioélectroniques efficaces. Ces dispositifs 

opèrent à faible polarisation de l’électrode de grille, grâce à la formation d’une double couche 

électrique au niveau de l’interface électrode/électrolyte. Les capacitances de double couches 

résultantes ont des valeurs qui dépassent de plusieurs ordres de grandeurs celles typiques des 

interfaces métal/diélectrique, en raison de la faible épaisseur (ca. 3nm) des doubles couches 

électriques. Par conséquent, les capacitances de double couche peuvent mener à de plus fortes 

modulations en courant pour des différences de potentiel de grille plus faibles (~1 V), 

compatibles avec les milieux aqueux. 

Le cœur de cette thèse de doctorat est dévoué à une meilleure compréhension des mécanismes 

d’opération d’une classe importante de dispositifs bioélectroniques organiques, c’est-à-dire les 

transistors électrochimiques organiques (OECTs), dans le but d’optimiser leurs performances et 

de concevoir de nouveaux dispositifs bioélectroniques. Les OECTs sont formés d’un canal en 

polymère conducteur ainsi que d’une électrode de grille mis en contact avec le canal au travers 

d’un électrolyte. L’application d’une différence de potentiel électrique au niveau de la grille 

entraîne l’inclusion d’ions de l’électrolyte à l’intérieur de la couche mince en polymère en qui 

changent sa conducitvité initiale. Dans cette thèse, nous nous sommes concentrés sur le poly(3,4-

éthylènedioxythiophène) dopé avec du poly(styrène sulfonate) (PEDOT:PSS) en tant que 

matériau actif dans le canal de OECTs. 

Nous avons utilisé différentes épaisseurs de canal ainsi que deux électrolytes différents : le 

bromure de cétyltriméthyl-ammonium (CTAB), un surfactant apte à former des micelles, et du 
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NaCl. Les rapports ON/OFF les plus élevés ont été obtenus pour de transistors utilisant de faibles 

épaisseurs (~ 50 nm) de la couche mince et le CTAB comme électrolyte. La voltammétrie 

cyclique suggère qu’une réaction rédox entre les molécules d’oxygène dissoutes dans 

l’électrolyte et le PEDOT:PSS mène à de faibles ratios ON/OFF quand le NaCl est utilisé comme 

électrolyte. La voltammétrie cyclique et la spectroscopie d’impédance électrochimique révèlent 

que le dopage/dédopage du canal devient plus lent à des épaisseurs relativement élevés de la 

couche mince et en présence d’ions de plus grande taille. 

Les caractéristiques de l’électrode de grille ont des effets significatifs sur le comportement des 

OECTs. Dans cette thèse, du carbone activé (AC) avec une importante surface spécifique a été 

utilisé comme matériau pour l’électrode de grille dans les OECTs basés sur le PEDOT:PSS. 

L’utilisation d’électrodes de grille en AC de grande surface, a mené à une importante modulation 

en courant drain-source dans les OECTs et à la limitation des réactions électrochimiques 

indésirables. 

 

La biocompatibilité et la biodégradabilité des matériaux utilisés en bioélectronique organique 

sont essentiels. Ces propriétés sont importantes même pour des dispositifs alimentant les 

dispositifs bioélectroniques. La mélanine est un biopigment abondant en nature et doté d’activité 

redox. Ce biopigment peut être mis en forme à température ambiante et est donc un matériau 

extrêmement intéressant pour le développement de dispositifs de stockage de l’énergie 

biocompatibles et « verts ». L’eumélanine est une des formes de la mélanine qui est 

particulièrement étudiée par les chercheurs en science de matériaux. Celle-ci se retrouve dans de 

nombreuses parties du corps humain, dont la peau, les cheveux, l’oreille interne et le cerveau. 

L’eumélanine réalise de nombreuses fonctions dans le corps humain comme l’absorption dans 

une large bande du spectre UV-visible ou encore la chélation métallique. Dans cette thèse, nous 

rapportons les propriétés de stockage d’énergie électrochimique de la part d’électrodes basées sur 

l’eumélanine, en configuration supercondensateur. L’eumélanine est formée de monomères faits 

de 5,6-dihydroxyindole (DHI) et d’acide 5,6-dihydroxyindole carboxylique (DHICA), présents 

sous différentes formes redox (hydroxyquinone, semiquinone et quinone). La synergie entre 

l’activité redox des monomères et la capacité de plusieurs de leurs fonctionnalités à lier des 

cations de façon réversible permet l’utilisation de l’eumélanine dans des dispositifs de stockage 
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d’énergie fonctionnant en mode pseudocapacitif. En partant de la démonstration des 

supercondensateurs basés sur l’eumélanine, nous avons utilisé une approche non-conventionnelle 

pour fabriquer des micro-condensateurs flexibles sur substrats plastiques. 
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ABSTRACT 

The discovery of electronic conduction in carbon-based materials, in the 1970s, is the basis of the 

development of organic optoelectronics technologies. The remarkable property of organic 

semiconductors to conduct ions, in addition to electronic charge carriers, has recently offered a 

new emerging direction in organic optoelectronics, called organic bioelectronics. Organic 

bioelectronics opens the opportunity to interface organic electronics with biology with promising 

applications such as biosensing, drug delivery, neural recording and stimulation. Combining ionic 

and electronic transport in organic semiconductors into transistor architectures represents an 

interesting attempt to achieve efficient bioelectronics devices. These devices operate at low gate 

biases, due to the formation of electrical double layers at electrode/electrolyte interfaces. The 

resultant double layer capacitances are a few orders of magnitude higher compared to 

capacitances typical of metal/dielectric interfaces, due to the low thickness (ca. 3 nm) of the 

electrical double layers, which consequently leads to higher current modulations at lower gate 

voltage (~1 V). 

The core of this Ph.D. thesis is devoted to a better understanding of the operational mechanism of 

an important class of organic bioelectronics devices, i.e. organic electrochemical transistors 

(OECTs), to optimize their performance and to design novel bioelectronics devices. OECTs 

consist of a conducting polymer channel and a gate electrode in contact with an electrolyte. The 

application of a gate electrical bias triggers the inclusion of electrolyte ions into the polymer film 

thus changing its initial conductivity. In this thesis we focus on poly(3,4-ethylenedioxythiophene) 

doped with polystyrenesulfonate (PEDOT:PSS) as the active material in OECTs. 

We employed various channel thicknesses and two different electrolytes: the micelle-forming 

surfactant cetyltrimethyl ammonium bromide (CTAB) and NaCl. The highest transistor ON/OFF 

ratios were achieved at low film thicknesses (~ 50 nm), using CTAB as the electrolyte. Cyclic 

voltammetry suggested that a redox reaction between molecular oxygen dissolved in the 

electrolytes and PEDOT:PSS leads to low ON/OFF ratios when NaCl was used as the electrolyte. 

Cyclic voltammetry and electrochemical impedance spectroscopy revealed that doping/dedoping 

of the channel becomes slower at relatively high film thickness and in the presence of bulky ions. 

The characteristics of the gate electrode have significant effects on the behavior of OECTs. In 

this thesis, high specific surface area activated carbon (AC) was used as gate electrode material in 
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OECTs based PEDOT:PSS. The use of high surface area carbon gate electrodes led to the high 

drain-source current modulation in OECT and limited undesirable electrochemical processes. 

 

The biocompatibility and biodegradability property of the materials used in organic 

bioelectronics is of course of primary importance. These features are important even for devices 

powering the bioelectronics devices. Melanin is a redox active biopigment abundant in nature. 

The biopigment can be processed at room temperature and, as such, it is an extremely attractive 

material for environmentally and human friendly energy storage solutions. A form of melanin 

highly investigated by materials scientists is eumelanin, found in many parts of the human body 

including skin, hair, inner ear and brain. Eumelanin has many functions in the human body, such 

as strong broad-band UV-visible absorption and metal chelation. In this thesis, we report the ion 

storage property of eumelanin-based electrodes assembled in supercapacitors. Eumelanin is based 

on 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole carboxylic acid (DHICA) building 

blocks, present in different redox forms (hydroxyquinone, semiquinone and quinone). The 

synergy between the redox activity of the building blocks and the capability of several of their 

functionalities to reversibly bind cations constitutes the foundation for the use of melanin in 

pseudocapacitive energy storage systems. Capitalizing on the demonstration of eumelanin-based 

supercapacitors, we used an unconventional patterning approach to fabricate binder-free flexible 

micro-supercapacitors on plastic substrates.  
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CHAPTER 1 INTRODUCTION 

 

This chapter constitutes an overview of organic electronics (OE) materials and devices, with 

particular attention given to organic bioelectronics and supercapacitors based on organic 

polymers. The chapter includes the identification of the scientific problems studied in the thesis 

as well as its general and specific objectives and motivation. 

 

1.1 Overview 

The history of organic electronics begins with the discovery of conducting polymers in 1976, by 

Heeger, MacDiarmid, and Shirakawa, who were awarded the Nobel Prize in Chemistry in 

2000.[1] The discovery that π-conjugated organic molecules and polymers can be electrically 

conductive generate a great deal of enthusiasm in the scientific community and led to the rise of 

organic electronics.[2,3] 

Organic semiconductors have captured the interest of the research community because of their 

unique properties, such as electro- and photoluminescence, ease of processing by several 

techniques (e.g. evaporation, spin coating, printing) and compatibility with a variety of 

substrates, including mechanically flexible ones. In 1987, Tang et al. demonstrated Tris-(8-

hydroxyquinoline) aluminum (Alq3) based organic electroluminescent diodes.[4] In 1989, R. 

Friend’s group demonstrated the successful use of poly(p-phenylene vinylene) (PPV) for efficient 

electroluminescent devices.[5] The first organic transistor was fabricated with polythiophene 

semiconducting thin films.[6] Since then, tremendous developments have taken place in organic 

electronics for a variety of applications, such as organic light-emitting diodes (OLED), organic 

field-effect transistors (OFET), and organic photovoltaics (OPV).[4,5,7-13] Some organic 

electronics products have been on the market for more than a decade. In 1997, Pioneer 

Corporation released the first commercial OLED product, a passive matrix OLED (PMOLED) 

display for car audio displays. A decade later, in 2007, Samsung Mobile Display released the first 

commercial active matrix OLED (AMOLED) display. Although various prototypes of white 

OLEDs for lighting have been demonstrated over the years, it was not until 2010 that OSRAM 

Opto Semiconductor released the first commercial white OLED lighting panel. Heliatek has been 
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commercializing OPV since 2006. Organic transistors find application in backplanes for flexible 

displays currently developed by Plastic Logic.[14] 

 

1.2 π - conjugated systems 

The polymer polyethylene, where each carbon is bonded to two carbons and to two hydrogen 

atoms through four sigma (σ) bonds, is an insulator (Figure 1.1). On the other hand, 

polyacetylene, which contains alternating single (σ) and double (σ and π) carbon-carbon bonds, 

shows a certain electrical conductivity. This sequence of alternating σ and π bonds is called 

conjugation. Each carbon atom in the backbone of a conjugated polymer is sp2 hybridized. When 

polymerization of acetylene occurs, the singly occupied 2s orbital and two of the three singly 

occupied 2p orbitals (2px and 2py) of the carbon atom combine and form three sp2 hybrid orbitals 

with equal energy. (Figure 1.2) These three hybridized orbitals are capable to form σ bonds to 

three neighboring atoms. The electrons involved in these bonds are strongly localized. The 

remaining 2pz orbital is located perpendicularly to the plan of the three sp2 hybrid orbitals. When 

the 2pz orbitals of two adjacent carbon atoms overlap sideways, they combine leading to two 

molecular orbitals: one π (bonding) and one π* (anti-bonding) orbital. The π bonding molecular 

orbital is lower energy than the atomic orbitals and anti-bonding π* molecular orbital is higher 

energy than the atomic orbitals. The energy difference between the highest occupied molecular 

orbital (HOMO) of π-orbital and the lowest unoccupied molecular orbital (LUMO) of π* orbital 

is known as energy gap or band gap. In a conjugated polymer containing n sp2 hybridized carbon 

atoms, there are a total of n 2pz atomic orbitals that combine to create n molecular orbitals. The π 

electrons are delocalized along the entire backbone and the polymer can be seen as a one-

dimensional metal. This means that the electrons in the π-bonds can be found between any of the 

carbon atoms and can thus move along the polymer chain. The delocalization of the π-electrons 

along the carbon backbone is the key to enable facile charge carrier transport within the polymer 

chain, thus making the polymer conductive. 
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Figure 1.1 Chemical structure of a) polyethylene and b) polyacetylene. 

 

Figure 1.2 Schematic representation of sp2 hybridized orbitals of ethylene molecule. The sp2 

hybrid orbitals are shown in light gray color, and the non hybridized pz orbitals in light violet. 

The pz orbitals extend in and out of the plane of the molecule. 

 

A low concentration of mobile charge carriers characterizes conjugated organic polymers in their 

intrinsic state. However, the electrical behavior of these materials can go from insulating to 

semiconducting and conducting. Highly-conducting polymers can be achieved by chemical 

doping, e.g. by chemical oxidation or reduction. For example, when polyacetylene is oxidized by 

AsF5, the conductivity increases from 10-5 S/cm to 200 S cm-1.[1,5,16] 

 

1.3 Organic electronic materials 

Organic semiconductors can be of two types: conjugated polymers and conjugated small-

molecules. On the other hand, conjugated polymers showing metallic conductivity are known as 

conducting polymers. Several semiconducting and conducting polymers, such as polythiophenes 

(Figure 1.3a), have excellent solubility in a variety of organic solvents, therefore thin films can be 

readily prepared by spin coating, dip-coating, drop-casting, screen printing, or inkjet printing. 

Small-molecule organic semiconductors can be soluble or insoluble in common organic solvents. 

a) 
 

b) 
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Insoluble small-molecule organic semiconductors are often deposited by thermal evaporation. 

The most common examples of organic small-molecule semiconductors deposited by thermal 

evaporation are pentacene, sexithiophene and phthalocyanines (Figure 1.4). In most cases, thin 

films of small-molecule organic semiconductors have a polycrystalline structure and are 

characterized by polymorphism. 

 

 

Figure 1.3 Molecular structure of two relevant conjugated polymers in organic electronics.[9] 

Reprinted with permission. Copyright © 2010, Royal Society of Chemistry. 

 

Figure 1.4 Molecular structure of relevant conjugated small-molecule organic semiconductors. 

(a) Pentacene. (b) Sexithiophene (6T). (c) Dihexylsexithiophene (DH6T, Hex-6T-Hex). (d) 

Copper phthalocyanine.[9] Reprinted with permission. Copyright © 2010, Royal Society of 

Chemistry. 
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The bandgap of organic semiconductors can be tailored by controlling the conjugation length. 

The longer the extension of the conjugation in the molecule, the smaller is the energy gap 

between the levels associated to the HOMO and LUMO of the molecule. The strength of the 

intermolecular π-π stacking interactions establishes the width of the bands (such that from 

molecular energy levels, energy bands will form for the material), in turn strongly affecting the 

efficiency of charge carrier transport. The most commonly used conjugated polymers are 

polyaniline, polypyrrole, polycarbazole, polythiophene, and their derivatives, with applications 

covering a broad spectrum of optoelectronics solutions as well as chemical and biological sensing 

(Figure 1.5).  
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Figure 1.5 The molecular structure of a few technologically relevant conjugated polymers and 

their electronic band gap.[17] 
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1.4 Organic electronics devices 

1.4.1 Organic light-emitting diodes (OLEDs) 

OLED constitute an exciting solution for emissive display technologies and solid state 

lighting.[18,19] The main advantages of these electroluminescent devices are: low power 

consumption, fast switching speed and color tunability. 

The phenomenon of light generation by electrical excitation was first discovered in anthracene 

single crystals in the 1960s.[20] In 1987, C.W. Tang and S.V. Slyke developed the first OLED at 

Eastman Kodak.[21] In 1990 R. Friend’s group at Cambridge developed a poly(p-

phenlenevinylene) (PPV) based OLED.[5] The light emission was in the green-yellow part of the 

spectrum and the efficiency of about 0.05%. After this early work, there has been increasing 

research activity in the field of OLED. Enormous progress has been made in the improvement of 

color gamut, luminescence efficiency and device reliability, mainly motivated by the use of this 

technology in displays. 

 

Figure 1.6 Structure of one of the first reported single-layer organic light-emitting diode.[5] 

Reprinted with permission. Copyright © 1999, Rights Managed by Nature Publishing Group. 

 

An OLED consists of one or more semiconducting organic thin films sandwiched between two 

electrodes, one of which must be transparent to extract the light. (Figure 1.6) Indium tin oxide 

(ITO) is commonly utilized as the transparent anode, and a low work function metal (for example 

Al, Mg) is utilized as the cathode (to inject the electrons). OLEDs are typically fabricated by 

sequentially depositing organic thin films onto the transparent substrate and the metal cathode, 

the latter by evaporation through a shadow-mask. The organic films can have several functions in 
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addition to emission, such as facilitating hole and electron injection (injection layers) and 

transport (transport layers). As an example, in the case of a three-layer OLED structure, hole and 

electron transport layers are used to facilitate charge transport from the electrodes to the emissive 

layer. By applying a positive potential to the anode (forward bias), the injection of holes occurs 

from the anode into the HOMO of hole transport layer, while electrons are injected from the 

cathode into the LUMO. The holes or electrons can cross the heterojunction interface to form 

electron-hole pairs (excitons) in the emissive layer. These excitons can decay radiatively or non-

radiatively. The radiative decay leads to electroluminescence. 

1.4.2 Organic photovoltaics 

Photovoltaic devices convert sunlight into electricity. The photovoltaic effect was discovered in 

1839 by Becquerel.[22] In 1883, Fritts developed the first solar cell, based on selenium.[23] In 

1954, Chaplin et al. from Bell Laboratories found that silicon doped with certain impurities was 

sensitive to light.[24] Since then, there have been rapid advances in the power conversion 

efficiency and reliability of solar cells, including those based on organic semiconductors. 

The structure of organic solar cells comprises the active layer, which consists of an electron 

donor and an electron acceptor, typically a polymer blend, sandwiched between two electrodes 

(Figure 1.7a).[25] The working mechanism of an organic solar cell involves the following steps: 

i) capture of photons, which leads to the formation of electron-hole pairs (excitons) of donor and 

acceptor films, ii) the excitons diffuse to the donor/ acceptor (D/A) interface, 3) carriers 

(electrons and holes) are generated by the exciton dissociation at the D/A interface, and 4) 

electrons and holes are moved to and collected at the cathode and anode which generates a 

current flowing to an external circuit (Figure 1.7c).  
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Figure 1.7 Schematic illustration of an OPV cell (a) I–V characteristics of a PV cell under dark 

(blue) and illumination (red) conditions (b) Schematic illustration of photocurrent generation 

processes for the OPV cells (c) [25] Reprinted with permission. Copyright © 2013 by Sou 

Ryuzaki and Jun Onoe. 

 

The power conversion efficiency of a photovoltaic device (η) is defined as the ratio of the 

maximum electrical power (Pm) to the incident optical power (P0), and η can be calculated from 

the following equations:  

𝜂 =
𝑃!
𝑃!

=
𝐼!"  𝑉!"  𝐹𝐹

𝑃!
×100 

where, ISC, VOC, and are, respectively, the short-circuit current, the open-circuit voltage 

(Figure1.7 b). FF is the fill factor is defined as 

𝐹𝐹 =
𝑃!

𝐼!"  𝑉!"
 

1.4.3 Organic thin film transistors 

Since the invention of the transistor by J. Bardeen, W. Brattain and W. Shockley at Bell 

Laboratories in Murray Hill in 1947, integrated circuits based on silicon transistors have 
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dramatically impacted our society. Many efforts have been made to improve the scaling by 

shrinking the transistors size. In 1965 G. Moore, (co-founder of Intel) predicted the number of 

transistors on a single chip to double every year (Moore’s law).[26] He redefined his view in 

1975, predicting that doubling would occur approximately every two years. Nowadays it is 

believed that, almost after 50 years, the Moore’s law is reaching its saturation limit. However, 

Intel's quad-core chips, the third-generation Core i7 found in Mac and Windows PCs, has 1.4 

billion transistors on a surface area of 160 square millimeter. Even if the silicon technology 

continues to revolutionize our world, other materials and technologies (for instance super-thin 

sheets of carbon graphene, organic electronics) are being developed to introduce new 

functionalities such as compatibility with flexible substrates and low temperature processing, that 

silicon chips cannot offer.  

Organic transistors have been intensively investigated during the past three decades.[27] [9] Thin 

films of conjugated organic polymers or small-molecules are used as channel materials. The gate 

dielectric separates the semiconductor channel from the gate electrode (Figure 1.8), which is used 

to switch the transistor ‘‘on’’ and ‘‘off’’. A modulation of the charge carrier density in the 

transistor channel takes place upon the application of an electrical bias at the gate. An electrical 

bias applied between the metal source and drain contacts controls the electric current in the 

transistor channel. 

 

Figure 1.8 Schematic representation of an organic transistor. 

 

Depending on the organic semiconducting material used as the channel material, the majority 

charge carriers can either be electrons (n-type material) or holes (p-type material). The charge 

Organic	
semiconductor	 D	S	

Gate	
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carrier mobility is one of the parameters used to benchmark the performance of transistors. In the 

last three decades, the mobility of both p and n-type transistors, based both on small-molecule 

and polymeric semiconductors, has improved by several orders of magnitude (1-10 cm2/Vs) 

(Figure 1.9).[9]  

 

Figure 1.9 Charge carrier mobility of p-channel and n-channel transistors based on small-

molecule and polymeric semiconductors. [9] Reprinted with permission. Copyright © 2010, 

Royal Society of Chemistry. 

 

Organic transistors can be used as sensors. Transistor-based sensors have many attractive features 

such as high sensitivity and the possibility to be miniaturized by lithographic techniques. The 

lower temperature of processing (sometimes as low as room temperature) as compared to silicon-

based transistors permits to fabricate transistors on flexible polymeric substrates and even on 

paper. These advantages present the opportunity of low cost fabrication for large area devices 

such as foldable high-resolution color displays and electronic functionalities on surfaces of 

arbitrary shape.[9,28] 

In an alternative device structure, an electronically insulating but ionically conducting electrolyte 

replaces the gate dielectric. The resulting device is known as electrolyte-gated transistor (Figure 

1.9).[29,30] Electrolyte-gated (EG) transistors were first proposed in the 1950s.[31] In EG 

transistors, the application of a gate bias leads to the formation of an electrical double layer at the 

electrolyte/organic semiconductor interface.[32] The thin electrical double layer (few 
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nanometers) leads to a high capacitance (~10-20 µF/cm2) according the equation, C = ! !
!

 where ε 

is the permittivity, A is area of the electrode and D is the thickness of the double layer. Therefore, 

these transistors can be operated at low voltage (<2 V). EG transistors based on metal oxides, 

conducting polymers, organic semiconductors and carbon nanomaterials have been reported. EG 

transistors are studied for many different applications, especially in bioelectronics, drug delivery 

and diagnostics.[33-40] 

Since conducting polymers and polycrystalline organic semiconductors cannot be considered 

completely impermeable to ions, current modulation in EG transistors can actually result from 

two gating (doping) mechanisms: electrostatic and electrochemical. To understand these 

mechanisms, we can adopt, initially, a simplified picture of an electrolyte included between two 

electrodes. When an electrical bias is applied between two electrodes immersed into an 

electrolyte, electrolyte ions move toward electrodes of opposite charge, driven by the electric 

field. For a transistor working under an electrostatic regime, with an applied gate bias, an electric 

double layer forms at the interface between the electrolyte and the channel. The corresponding 

devices are known as EG organic field-effect transistor (EG-OFET). By application of a gate 

voltage (Vgs), EDL form at the interfaces between the gate and the electrolyte and also between 

the electrolyte and the channel (Figure 1.10b). This is the electrostatic mechanism. On the other 

hand, if the ions permeate the channel, an electrochemical dedoping/doping process takes place. 

This is the electrochemical mechanism of doping. The corresponding devices are known as 

organic electrochemical transistors (OECT) (Figure 1.10c). 
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Figure 1.10 Schematic representation of EG transistors and their subcategories, depending on the 

working mechanism (on the left the mechanism of doping is electrostatic, on the right it is 

electrochemical). 

 

EG transistors (as all transistor types) can work in accumulation (or enhancement) or depletion 

mode. Transistors working in accumulation mode are in their OFF state (no or low current 

flowing between source and drain) when a gate bias (Vgs) is not applied and are turned ON upon 

application of a gate voltage. Transistors working in depletion mode are in the ON state in 

absence of a gate bias applied and are turned OFF upon application of a gate bias. For a p-type 

channel working in accumulation mode, upon application of a negative Vgs, holes are 

accumulated in the channel, due to the approach of anions at the interface between the electrolyte 

and the channel or the intercalation of anions into the channel. For p-type EG transistors working 

in depletion mode, by application of a positive Vgs, cations dedope the channel, decreasing the 

hole density in the polymer. An analogous behavior (with opposite polarities of the electrical 

biases applied to the electrodes) is expected for n-type channels. 
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1.5 Organic bioelectronic devices 

Bioelectronics is defined as the study and application of electronics in medicine and biology.[41] 

Bioelectronics involves interaction between electronic components (for example transistors and 

electrodes) and biological components such as enzymes, antibodies etc. as well as monitoring of 

bio-electric signals (e.g. heartbeat, brain or muscular activity). Bioelectronics devices such as 

biosensors and bioelectrodes have several applications in biological, chemical, health care, and 

environmental monitoring.[39,42-46] 

 

 

Figure 1.11 Organic bioelectronics: biological moieties, including cells, micro-organisms, 

proteins, oligonucleotides, and small molecules, can be interfaced with organic electronics 

devices to yield biosensors, medical diagnostics, tools for biomedical research, and bioelectronic 

implants that will have a major impact in health care [41]. Reprinted with permission. Copyright 

© Materials Research Society 2010. 

 

The scope of organic bioelectronics is shown in the schematics (Figure 1.11). Typical recognition 

elements (analytes) studied in biosensors are: enzymes, nucleic acids, antibodies, whole cells, and 

receptors collected from blood, urine, saliva, cell culture, food samples, and environmental 

samples. Transducers and bioreceptors are the main components of the biosensors. Bioreceptors 

are specific molecules/chemicals, to which the analyte specifically binds. Transducers are devices 

that translate the specific bioevents into measurable signals.  
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1.6 Supercapacitors 

Supercapacitors (SCs) are promising energy storage devices, since they feature long cycling life, 

high power density, long shelf life.[47] SCs, also known as electrical double layer capacitors 

(EDLCs) or ultracapacitors, are intermediate to batteries and pure capacitors. SCs store more 

energy than capacitors, less energy than batteries, but deliver energy more rapidly than batteries 

and in a slower manner than capacitors. SCs were discovered in the early 1950s, during 

experiments on fuel cells and secondary batteries using porous carbon as the electrodes, and were 

patented in 1957.[48] Initially, SCs employed electrodes in sandwich configuration. Activated 

carbon coated on aluminum foil was the electrode material (the same for both electrodes), a 

porous separator was present between them and the electrolyte was liquid or solid. The Japanese 

company NEC Corporation first commercialized supercapacitors in 1971. At that time, SCs only 

had limited applications and were mainly used as back-up power supplies for volatile clock chips 

or computer memories.[49] The capacitance of first-generation SCs was mainly hampered by 

large internal equivalent series resistance (ESR), owing to the low conductivity of the electrodes 

and electrolytes. These problems were basically solved with improved electrode materials and the 

electrolytes by the 1980s. SCs were first used for military applications requiring high power 

density.[50] During the period from 1975 to 1981, B. E. Conway developed SCs using ruthenium 

oxide (RuOx) as electrode material.[51,52] This material can store electrostatic charges by the 

formation of electrical double layers and also generates a kind of “pseudocapacitance”. This 

means that reversible redox reactions involving electrosorption or intercalation take place at the 

electrode/electrolyte interface. Sulfuric acid was used as the electrolyte to ensure high specific 

capacitance (> 700 F/g) and low internal resistance.  

The downsizing of SCs into micron scale can enable novel applications in autonomous, wireless 

microsensors and microelectronics. Photolithography can be used effectively to fabricate micro-

supercapacitors (µSCs) in a planar, on-chip geometry. The energy storage and the devices to be 

powered can be integrated on a single chip, improving scalability and reducing cost. 

Based on the working mechanism, supercapacitors are classified into: (i) electrical double layer 

capacitors (EDLC), in which the electrostatic charge accumulates between the electrode surface 

and the electrolyte interface, (ii) pseudocapacitors, where fast and reversible redox reactions 

(Faradaic processes) occur at the electrodes, and (iii) hybrid capacitors in which both processes 
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take place in a single device. 

For EDLC, the capacitance is defined as: 

 C=
ε0εrA
D  

where ε0 is the permittivity of free space, εr is the dielectric constant of the electrolyte, A is the 

specific surface area of the electrode and D is the distance between the two electrodes. During 

charging/discharging of supercapacitors, a double layer forms at each of the two 

electrodes/electrolyte interfaces, so that the system can be treated as two capacitors connected in 

a series. (Figure 1.12) The cell capacitance (Ccell) of a capacitor can be calculated according to: 

1
𝐶!"##

=
1

𝐶!"#$%
+

1
𝐶!"#!!"#

 

where Canode and Ccathode represent the capacitance of the positive and negative electrode, 

respectively. 

 

Figure 1.12 (a) Equivalent circuit model for an electrochemical capacitor; b) Schematic 

representation of a two-electrode supercapacitor; (c) Schematic illustrations of the typical 

structure of a conventional supercapacitor (d) and its flexible counterpart.[53] Reprinted with 

permission. Copyright © 2014, Royal Society of Chemistry. 
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In the case of a symmetric device (with similar anode and cathode electrodes), the capacitance of 

the complete cell is half of the capacitance of each individual electrode. The specific capacitance 

of a supercapacitor cell can be calculated by cyclic voltammetry (CV), from the charge integrated 

from a cyclic voltammogram according to equation: 

𝐶!"## =
𝑄

2𝑚𝑉 =
1

2𝑚𝑉𝜈 𝐼 𝑉 𝑑𝑉
!!

!!

 

where Ccell is the specific capacitance of the cell (F/g), Q is the total charge (C), m (g) is the mass 

of the active materials in each electrode, ν is the scan rate (V/s), and V+ and V- are the 

electrochemical potentials of the positive and negative electrodes. For the galvanostatic charge 

discharge (GCD) method, the cell capacitance of a supercapacitor can be calculated from the 

charge–discharge curves from the following equation: 

𝐶!"## =
𝐼

𝑚𝑑𝑉
𝑑𝑡

 

where I is the discharge current, m is the total mass of the active materials in the two electrodes 

and dV/dt is the slope of the discharge curve. The specific energy density (E, in Wh/kg) can be 

calculated according to:  

𝐸 =
𝐼

3600𝑚 𝑉.𝑑𝑡 

The average specific power density (P, expressed in W/ kg) during discharge can be deduced 

from the specific energy density: 

𝑃 =
𝐸
∆𝑡 

The maximum energy (Emax, in Wh/ kg) can be calculated according to:  

𝐸!"# =
1
2𝐶!"##𝑉

! 

where V is the cell voltage or the cut-off voltage. The maximum power (Pmax, in W/kg) of a 

supercapacitor is: 

𝑃!"# =
𝑉!

4×𝐸𝑆𝑅 
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where the equivalent series resistance (ESR) is 𝐸𝑆𝑅 = ∆!
!!

 , with ∆V the initial drop in voltage 

upon switching from charging to discharging. 

 

1.7 Problem identification 

OECT have attracted much interest for sensing and bioelectronics. However, the operating 

mechanism of an OECT, depending on doping/dedoping of the conducting polymer channel, is 

still under investigation. Hence, one of the key points in OECT research is to gain insight on the 

key parameters affecting the mechanism behind their operation.  

Electroactive materials easily available from natural sources and biocompatible are particularly 

attractive for applications in bioelectronics. Melanin-based biopigments are a broad class of 

redox-active biopolymers found in living organisms. They are composed of macromolecular 

aggregates, mostly resembling polymer networks. Melanin-based biopigments exhibit unique 

optoelectronic properties including efficient photon–phonon conversion, mixed ionic-electronic 

conduction, redox activity, free radical scavenging, and cation chelation.[54-56] However, the 

structure-electroactivity relationships of melanin are still largely undiscovered. 

 

1.8 General Objectives 

The general objective of this Ph.D. thesis is the design, fabrication, and characterization of 

PEDOT:PSS organic electrochemical transistors and melanin supercapacitors. 

For OECT, a better understanding of the doping/dedoping mechanism will pave the way to novel 

bioelectronics devices. Important issues that I addressed on OECTs are: i) the effect of the 

thickness of the channel on OECT modulation, ii) the influence of electrolyte ions on OECT 

modulation, iii) the influence of atmospheric oxygen on the performance of OECT and iv) 

influence of the gate material on the OECT performance. 

To demonstrate proof of principles of melanin-based devices, I fabricated and characterized 

flexible melanin-based energy storage devices exploiting the redox activity and the proton 

transport properties of melanin. Besides the possible technological applications, this investigation 
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is expected to shed light on structure-electroactivity properties in biocompatible natural materials, 

well beyond the specific case of melanin. 

1.8.1 Motivation 

OECTs based on PEDOT:PSS show excellent electrochemical stability and reversibility and are 

therefore good candidates for applications at the interface with biology. Studying OECT requires 

a multidisciplinary approach, which includes knowledge in disciplines such as chemistry, device 

physics and biology. 

Shedding light on their fundamental properties, in particular structural and electrochemical, is the 

premise to use natural materials, featuring desirable properties such as biocompatibility and 

biodegradability, for OECT or energy storage technological applications.  

1.8.2 Specific objectives 

To achieve the main objective, the following specific objectives need to be achieved: 

I. Exploring the effect of the thickness of the channel of OECT on the device response. 

Current modulation in OECT, unlike in field-effect transistors (where the doping is electrostatic 

and not electrochemical), involves the bulk of the polymer film, rather than the film/dielectric 

interfaces. Therefore it is important to understand how the thickness of the PEDOT:PSS channel 

affects the device characteristics. The goal of this study has been to find out how the current 

modulation varies for thin and thick films. This will shed light into the relationship between 

thickness of the active material and ON/OFF current ratio. To achieve this objective, we 

investigated the effect of the PEDOT:PSS channel thickness on OECT modulation using two 

different electrolytes: the cationic surfactant hexadecyltrimethylammonium bromide, also known 

as cetyltrimethylammonium bromide (CTAB), and NaCl. We employed cyclic voltammetry (CV) 

and electrochemical impedance spectroscopy (EIS) to gain insight into the impact of channel 

thickness, nature of the electrolyte and atmospheric oxygen on device performance. 

II. Electrochemical study of the biomacromolecule melanin for application in supercapacitors 

The synergy between the redox activity of the building blocks of melanin and the capability of 

several of their functionalities to reversibly bind electrolyte ions, constitutes the foundation for 

the use of melanin in pseudocapacitive energy storage systems. The goal of this work, has been to 
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exploit the energy storage properties of melanin in supercapacitor configuration. Our 

supercapacitors used melanin on carbon paper electrodes and aqueous electrolytes. Once the 

supercapacitors behavior was demonstrated, capitalizing on these results, we used an 

unconventional patterning approach to fabricate binder-free flexible micro-supercapacitors on 

plastic substrates. This study revealed that melanin can be an extremely attractive material for 

environmentally and human friendly energy storage solutions, because of its biocompatibility and 

biodegradability, combined with large availability and room temperature processing. 

III. Conducting Polymer Transistors Making Use of Activated Carbon Gate Electrodes 

The specific surface area of gate electrodes has an important effect on the performance of OECT, 

both on the transistor modulation and the gate electrical bias. We introduced the high surface 

activated carbon (AC) as the gate electrode for OECT. We investigated the performance of 

OECT based on PEDOT:PSS using AC gate electrodes. 

 

1.9 Organization of the work 

This thesis is organized into eight Chapters. Chapter 1 includes an overview of the topics related 

to the subjects (organic electronics, organic transistors, conducting polymers, organic 

bioelectronics, supercapacitors), problem identification and objectives of the thesis. Chapter 2 

introduces conducting polymers (in particular PEDOT:PSS), the general working mechanism of 

OECT, a literature survey of OECT, energy storage property of melanin-based supercapacitors. 

Chapters 3 and 4 correspond to two articles (articles 1 and 2) of which I was the first author. 

Chapter 5 contains excerpts of an article where two of my colleagues and I contributed equally as 

first authors (article 3). Chapter 6 is about the “electrochemistry of melanin”. 

Article 1: Effect of channel thickness, electrolyte ions, and dissolved oxygen on the performance 

of organic electrochemical transistors (Published in Applied Physics Letters). 

Article 2: Melanin-based flexible supercapacitors (Published in the Journal of Materials 

Chemistry C).  

Excerpts from Article 3: Conducting Polymer Transistors Making Use of Activated Carbon Gate 

Electrodes (Shared first author article) (Published in ACS Applied Materials and Interfaces). 
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The following paragraphs describe how these articles contribute to the objectives of the thesis. 

In article 1, we investigated the device characteristics of OECT based on thin films of 

PEDOT:PSS. We employed various channel thicknesses and two different electrolytes: the 

micelle forming surfactant cetyltrimethyl ammonium bromide (CTAB) and NaCl. The highest 

ON/OFF ratios were achieved at low film thicknesses using CTAB as the electrolyte. Cyclic 

voltammetry suggests that a redox reaction between oxygen dissolved in the electrolytes and 

PEDOT:PSS leads to low ON/OFF ratios, mostly when NaCl is used as the electrolyte. From 

cyclic voltammetry and electrochemical impedance spectroscopy reveals that doping/ dedoping 

of the channel becomes slower at high film thickness and in the presence of bulky ions. Article 1 

has been published in Applied Physics Letters (2015, 107, 053303(1)- 053303(5)). 

In article 2, we used the pseudocapacitive properties of melanin for energy storage systems. We 

demonstrated supercapacitors and flexible micro-supercapacitors making use of electrodes based 

on the biocompatible and biodegradable pigment melanin, working in aqueous electrolytes. 

Melanin-based supercapacitor electrodes are fabricated at room temperature, by easy solution 

processing, without the need of a high-temperature treatment, unlike the large majority of 

supercapacitors based on biopolymer-derived electrodes reported to date. In slightly acidic media, 

a gravimetric specific capacitance as high as 167 F/g was observed for melanin-based electrodes 

on carbon paper. Further, we demonstrated a binder-free micro-supercapacitor fabricated on 

flexible polyethylene terephthalate (PET). The microfabrication was performed by 

unconventional lithography based on ParyleneC patterning. Our flexible micro-supercapacitors 

showed a power density of 5.24 mW/cm2 and a specific capacitance of 10.8 F/g.  

Article 3 is a shared first author article. My contribution to this article has been included in the 

thesis. The characteristics of the gate electrode have significant effects on the behavior of OECT, 

which are intensively investigated for the applications in the booming field of organic 

bioelectronics. In this work, high specific surface area activated carbon (AC) was used as gate 

electrode material in OECT based on the conducting polymer PEDOT:PSS. We found that the 

high specific capacitance of the AC gate electrodes leads to high drain-source current modulation 

in OECT at low voltage, compared to PEDOT:PSS gate electrodes of comparable geometric area. 

Article 2 has been published in ACS Applied Materials and Interfaces (2015, 7, 969−973). 
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Chapter 6 reveals about electrochemistry of eumelanin. In this chapter my research contribution 

to the electrochemistry of eumelanin are discussed by considering the coauthored articles and 

supplementary information of Chapter 4. 

Chapter 7 is about “General Discussion”. In this chapter some of the similarities and disparities 

between PEDOT:PSS and melanin molecules were discussed. Also, my research contribution to 

further understanding of these two molecules was emphasized.  

Finally, conclusions are drawn and perspectives on future work are given (Chapter 8). 
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CHAPTER 2 BIOELECTRONIC MATERIALS, DEVICES AND LITERATURE 

REVIEW 

 

2.1 PEDOT 

Poly(3,4-ethylenedioxythiophene) (PEDOT) was synthesized by Bayer AG in 1988 and today is 

one of the mostly used conducting polymers (Figure 2.1).[57-59] The reasons behind the 

widespread use of PEDOT are commercial availability, ease of process, high conductivity, good 

physical and chemical stability in air, thermal stability, excellent electrochemical stability in the 

oxidized state and optical transparency in visible region.[58-61] 

 

Figure 2.1 Molecular structure of poly(3,4-ethylenedioxythiophene) (PEDOT). 

 

PEDOT and various of its derivatives are used in organic electronics as hole transport layers in 

OPV, electrodes in LED, transistors and light-emitting electrochemical cells and as channel 

material in electrochemical transistors. In energy-related applications, PEDOT is used as 

electrode material for supercapacitors and electrochromic component in “smart” windows and 

battery (modification of sulphur cathodes in lithium –sulphur batteries).[62-65] Other uses 

include coatings with anti-static and corrosion protection functions (Figure 2.2).[59,66]  

n 
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Figure 2.2 Schematic representation of various applications of PEDOT.[67] 

 

PEDOT can be chemically synthesized by the oxidation of the ethylenedioxythiophene monomer 

(EDOT) in the presence of iron (III) salts as oxidizing agent. The dark blue precipitate of PEDOT 

in its native state is insoluble in many common solvents and unstable, due to rapid aerial 

oxidation. The most versatile form of PEDOT for film processing is a polyelectrolyte complex 

consisting of polymeric cationic PEDOT and a polymeric counter anion. 

2.1.1 PEDOT:PSS 

The most frequently used counter-ion for PEDOT is polystyrenesulfonic acid (PSS) because 

PEDOT:PSS forms a stable suspensions in water (Figure 2.3). In an aqueous PEDOT:PSS 

dispersion, the number of holes on the PEDOT+ chains are compensated by polystyrenesulfonate 

(PSS-) anions on the PSS chains. 
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Figure 2.3 Molecular structure of PEDOT:PSS. A hole is indicated on the PEDOT chain in red, 

in the form of a positive polaron. The acceptor on the PSS chain is indicated in blue.[68] 

Reprinted with permission. Copyright © 2013, Rights Managed by Nature Publishing group. 

 

PEDOT:PSS dispersions are stable under ambient conditions and can be processed with a wide 

range of techniques, such as spin casting, doctor blade, spray deposition, inkjet printing and  

screen printing. PEDOT:PSS has a low band gap of 1.6-1.7 eV; it absorbs strongly in the red part 

of the visible spectrum, resulting in a deep blue color, which can be gradually modulated by 

switching from the reduced state (deep blue color) to oxidized state (light blue). 

Figure 2.4 shows the chemical synthesis of PEDOT:PSS. The polymerization of EDOT in the 

presence of the oxidizing agent Fe2(SO4)3 and sodium persulfate and polystyrenesulfonic acid 

results in an aqueous PEDOT:PSS suspension. In PEDOT:PSS, every third or fourth thiophene of 

PEDOT unit carries a positive charge. The Coulomb interactions between the positively charged 

PEDOT+ and the negatively charged PSS- hold the PEDOT and PSS polymer chains together and 

also result into a high viscosity of the PEDOT:PSS dispersion (up to 80 mPa s at 1.3 wt % solid 

content in water). 
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Figure 2.4 Chemical polymerization of ethylenedioxythiophene in the presence of 

polystyrenesulfonic acid.[61] 

2.1.2 Conductivity Enhancement of PEDOT :PSS 

The increase of PSS ratio in PEDOT, while making the polymer more stable in ambient 

conditions and facilitating its processing, reduces its conductivity. The conductivity of 

PEDOT:PSS depends on film morphology, PEDOT/PSS ratio and conformation of PEDOT 

chains.[69-72] In order to reach a balance between high conductivity and ease of process, an 

optimum PEDOT/PSS needs to be maintained. In commercially available Clevios PEDOT:PSS  

suspensions, the PEDOT/PSS ratio is 1:2.5 (w/w%). However, films processed from pristine 

suspensions exhibit conductivities as low as 1 Scm-1. The conductivity of PEDOT:PSS films can 

be increased by 2-3 orders of magnitude by adding small amounts of various compounds to the 

commercial suspension, like sorbitol, ethylene glycol, glycerol, and dimethyl sulfoxide 

(DMSO).[73,74] The effect of these compounds, known as secondary dopants or conductivity 

enhancers, is still under debate. It is known that these compound do not alter the doping level of 

PEDOT. The increase of the conductivity upon addition of conductivity enhancers is believed to 

be due to the fact that they alter the film morphology during drying, leading to lower energy 

barrier for charge carrier transport between individual PEDOT:PSS clusters. Ouyang et al. 

suggested that addition of solvents to PEDOT:PSS before spin-coating, leads to conformational 

changes of PEDOT chains from benzoidal to quinoidal structures, i.e. chains of coiled 

conformation to chains of linear conformation.[75] Kim et al. proposed that conductivity 

enhancers could induce screening effects, thus reducing the coulombic interactions between 

PEDOT+ and PSS− and therefore enhancing the charge carrier hopping rate and conductivity in 



27 

 

PEDOT:PSS films.[73] Pettersson et al. considered that the interaction of dipoles of additives 

with PEDOT:PSS leads to the reorientation of the PEDOT:PSS.[76] Jonsson et al. proposed that 

the addition of these agents will lead to the removal of excess insulating PSS− ultimately 

improving the conductivity.[77] Similarly, Leo et al. suggested that the depletion of insulating 

PSS during solvent post treatment leads to efficient contact areas between better oriented PEDOT 

rich grains and, as a consequence, to the enhancement of pathways for carrier transport.[70] 

Recently, Ouyang et al. proposed that the polar poly-alcoholic additives weaken the electrostatic 

interactions between PEDOT and PSS thus leading to phase separation between polymers.[78] 

H.C. Stark Inc. commercializes PEDOT:PSS with brand name Clevios™. In this work, Clevios™ 

PH1000 grade was used for OECTs. The Clevios PH1000 PEDOT:PSS aqueous suspension has 

a PEDOT:PSS content of 1.1 w/w %, with a PEDOT to PSS ratio of 1:2.5 (i.e.,~ 0.3 w/w % 

PEDOT and ~ 0.8 w/w % PSS). According to Clevios technical reports, 1:2.5 (w/w) ratio of 

PEDOT to PSS is the best compromise between high film conductivity and sufficient stability of 

the dispersion. 

 

2.2 Organic Electrochemical Transistors (OECTs) 

As explained in Chapter 1, when electrochemical doping/dedoping takes place upon electrolyte 

gating, the devices act as OECT. First reported by Wrighton and coworkers in the 1980s, OECT 

are nowadays used for biological applications because they can be operated in aqueous 

environment at low voltage, are compatible with flexible substrates and various fabrication 

techniques and show mixed ionic/electronic conduction that facilitate the interface with 

biological systems.[39,41,79] 

OECT have been investigated for a broad variety of applications including sensors for glucose, 

dopamine, ions, cells, pH and DNA, in active-matrix physical sensor circuits.[80-82] 

In order to achieve the highest performance of OECTs, the device components, i.e., channel, gate 

and electrolytes are intensively investigated.[83-90] 
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2.2.1 Working Principle of PEDOT:PSS based OECT 

An OECT consists of a conducting polymer channel in contact with an electrolyte where a gate 

electrode is immersed. Figure 2.5a illustrates the working principle of PEDOT:PSS OECT, which 

work in depletion mode. In absence of an applied gate bias, upon application of a drain-source 

voltage, Vds, (Figure 2.5b) holes drift within the transistor channel from drain to source 

generating a drain-source current, Ids. This corresponds to the transistor ON state. By applying a 

positive gate-source voltage, Vgs, (Figure 2.5c) electrolyte cations, M+, are incorporated into the 

channel and dedope it, according to the equation below, thereby decreasing Ids (OFF state).  

 

 

Figure 2.5 (a) Device structure and electrical circuit of a PEDOT:PSS OECT; (b and c) OECT 

working principle; circles filled with - indicate PSS− ions and + indicate mobile holes.[91] 

Reprinted with permission. Rights managed by AIP Publishing LLC. 

 

PEDOT+:PSS- + M+ + e- PEDOT + M+:PSS-
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OECT can work in Faradaic and non-Faradaic regimes, depending on the type of gate material 

and electrolyte. Under a Faradaic regime, the OECT response is governed by a Nernst-like 

equation and a non-negligible steady state gate current is measured at the gate electrode. The 

non-Faradaic regime refers to a capacitive mode of operation. Since the OECT response depends 

directly on the potential drops occurring at the gate/electrolyte and electrolyte/channel interfaces, 

the electrolyte solution potential (Vsol) determines finally the OECT current modulation. 

Based on experimental results, several models have been proposed.[83-85,92] Cicoira et al. 

investigated the effects of the gate area (Ag) and channel area (Ach) on the performance of 

PEDOT:PSS OECT, exposed to different concentrations of the analyte hydrogen peroxide. 

Devices with small gate areas showed lower background signal and higher sensitivity; the 

minimum and maximum detectable analyte concentrations appeared to be independent on 

Ach/Ag.[84] 

Yaghmazadeh et al. proposed a model to distinguish the operation of OECT as ion-to-electron 

converter and as an electrochemical sensor (ECS).[85] The transistor can work as an 

electrochemical sensor when a redox reaction occurs at the gate electrode, which results in a 

charge transfer between the analyte in the electrolyte and the gate electrode. For an OECT 

working as ion-to-electron converter, a gate electrode much larger than the channel gives a 

higher modulation of Ids and hence an optimized value of the transconductance, (∂Ids)⁄(∂Vgs). 

Likewise, when OECT work as electrochemical sensors, a gate with a smaller area respect to the 

channel yields higher OECT modulation of Ids and hence a better sensitivity. The explanation 

relies on the distribution of the potential drop at the gate/electrolyte and electrolyte/channel 

interfaces (Figure 2.6). 
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Figure 2.6 Potential distribution between the gate electrode and the channel for two device 

geometries (a) The transistor with the small gate (Ach/Ag = 100) (b) The transistor with the bigger 

gate (Ach/Ag = 0.01).[85] Reprinted with permission. Copyright © 2010 Wiley Periodicals, Inc. 

Potential distribution between the gate electrode and the channel for two device geometries (a) 

The transistor with the small gate (Ach/Ag = 100) (b) The transistor with the bigger gate (Ach/Ag = 

0.01).[85] Reprinted with permission. Copyright © 2010 Wiley Periodicals, Inc. 

 

Successively, the role of the gate material on the OECT response has been analyzed [84,91,93]. 

Devices operating in a halide ion based electrolyte, as sodium chloride (NaCl), have been used 

making use of Ag and Pt gate electrodes. Ag and Pt gate electrodes show different responses: 

using a nonpolarizable Ag electrode, larger current modulations are observed, compared to Pt 

gate electrodes. (Figure 2.7)  

 

Figure 2.7 Potential distribution between the gate electrode and the channel for Ag and Pt gate 

electrodes.[91] Reprinted with permission. Rights managed by AIP Publishing LLC. 
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The electrolyte also has a strong influence on the response of an OECT device.[94] Cicoira et al. 

reported that using as the electrolyte an aqueous solution of a cationic surfactant hexadecyl 

trimethyl ammonium bromide or cetyl ammonium bromide (CTAB) above a critical micellar 

concentration (CMC, about 9×10-4 M at room temperature) leads to higher current modulation 

compared to a conventional NaCl electrolyte. This indicates that positively charged CTAB 

micelles de-dope PEDOT:PSS more efficiently than dissociated ions. The use of surfactants as 

electrolytes offers unprecedented opportunities to study the working mechanism of OECTs 

because they give access to two distinct types of electrolytes, i.e. dissociated CTAB ions below 

the CMC and CTAB micelles above the CMC. There have been few more approaches to replace 

the conventional electrolytes of OECT by ionic liquids, solid or gel electrolytes, with the aim to 

widen their areas of application.[86,94,95] 

Current modulation in PEDOT:PSS OECTs relies on bulk doping of the channel, therefore it 

strongly depends on channel thickness. This is a major difference with respect to OFETs, where 

current modulation relies on electrostatic doping taking place at the channel/dielectric interface. 

Hence, the time constant of OECT depends on the ion mobility, rather than charge carrier 

mobility as in the case of OFETs. For instance, increasing channel thickness will induce higher 

transconductance, while decreasing the switching speed of the device.[96] Rivnay et. al. 

investigated the performance of OECTs by tuning the channel thickness from 20 nm to 1 µm. 

They found a volumetric capacitance of 39 F/cm3 during the uptake of electrolyte ions by 

PEDOT:PSS. The obtained value is 100 times more than that of double layer capacitance, which 

indicates the ion penetration into the channel during the OECTs operation.  

There are several reports about OECT biomedical applications including medical diagnostics and 

bioelectronics implants, for instance electrocardiographic recordings, in vivo electrocortico-

graphic (ECoG) arrays to detect epileptic activity, in vitro detect in cardiac cell activity 

etc.[46,97-102] 

 

2.3 Melanin 

Many organic electronics polymers are mixed ionic/electronic conductors. As ionic fluxes are the 

main vehicle to transport the information in biological systems, devices made of mixed 
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conductors enable new means of communication between electronics and biology.[103] Melanin 

is one such kind of polymer. Melanin (from the Greek word melanos, meaning black color) is an 

abundant biopigment component present in flora and fauna.[104,105] Melanin gained initial 

attention due to its broad UV-Vis absorption, which is responsible for protection of living 

organisms from intense UV radiation from sunlight. This function is believed to be related to 

biological evolution.[106] Melanin-based pigments are present in the skin, hair, middle ear, 

retina, brain and heart of the human body.[107-109] Melanin has attracted interest due to its 

functional properties such as thermoregulation, hydration-dependent electrical conduction, anti-

oxidant behavior and metal chelation.[54-56,110-115] Different forms of melanin include 

eumelanin, pheomelanin, and neuromelanin, depending on the biosynthetic path. In humans, the 

color of the skin, hair and eyes are decisively determined by the amount of brown-black 

eumelanin and yellow-reddish pheomelanin. Eumelanin is the subclass of melanin most 

investigated by materials scientists. The heterogeneous macromolecule-structured eumelanin 

arises in part from the polymerization of L-dopa via 5,6-dihydroxyindole (DHI) and its 2-

carboxylated form 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Pheomelanin is derived 

from the Sulphur-containing cysteinyldopa. Natural melanin is generally derived from the ink sac 

of cuttlefish. Neuromelanin, found in the substantia nigra of the brain, has been proposed to be a 

copolymer of eumelanin and pheomelanin. Eumelanin can be produced from the enzymatic 

oxidation of tyrosine or oxidation of dopa. During the process various precursors of melanin i.e., 

3,4-dihydroxy-L-phenylalanine (DOPA), DHI, DHICA can be realized (Figure 2.8) 

 

Figure 2.8 Molecular structures of eumelanin precursors: a) dopamine, b) 3,4-dihydroxy-L-

phenylalanine (DOPA), c) 5,6-dihydroxyindole (DHI) and d) 5,6-dihydroxyindole carboxylic 

acid (DHICA). 

 

The macromolecule eumelanin is composed of oligomeric and/or polymeric species of DHI and 

DHICA, and their various redox forms, namely the ortho-hydroquinone (H2Q), semiquinone 

a) d) c) b) 
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(SQ), (indole)quinone (Q) and quinone imine (QI) (as the canonical form of Q) (Figure 2.9). 

 

Figure 2.9 Various redox forms of eumelanin building blocks DHI and DHICA. 

 

2.3.1 Melanin Electrochemistry 

Horak et al., reported for the first time of electrochemical polymerization of DHI on glassy 

carbon electrode.[116] Gidanian et al. reported an electrochemical polymerization of DHI in 

phosphate buffer of pH 7.0.[117] Kim et al., used melanin for sodium-ion battery 

electrodes.[118] The authors investigated natural melanin (derived from Sepia officinalis), 

synthetic melanin (derived by auto-oxidation of tyrosine) and electrodeposited melanin (oxidative 

polymerization of 5,6-dimethoxyindole-2-carboxylic acid). Specific capacities of Na+ ions loaded 

melanins measured at constant discharge rate of 10 mA g−1 for natural melanin, synthetic 

melanin, and electrodeposited melanin were 30.4 ± 1.6, 31.1 ± 2.0, and 24.1 ± 2.0 mAh g-1, 

respectively. Raman Spectroscopy and XPS were used to determine the location of Na+ ion 

binding sites of melanin, revealing that catechols, aromatic amines and carboxylate groups are 

effective binding sites for Na+. 
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Figure 2.10 Raman spectra of eumelanins. (A) natural melanin and Na-loaded natural melanin; 

(B) synthetic melanin and Na-loaded synthetic melanin; (C) electrodeposited melanin and Na-

loaded electrodeposited melanin. Raw spectra (black lines) are deconvoluted into five bands 

using a Voigt function.[118] Copyright © (2013) National Academy of Sciences. 

 

Successively, Kim et al., demonstrated melanin as a cathode material for rechargeable 

electrochemical storage devices.[119] They exploited the reversible redox property of the 

catechol-quinone system of the melanin (natural melanin) building blocks and their strong 

affinity towards multivalent ions. The studies were carried out, among others, in presence of the 

divalent ion Mg2+: a specific capacity of 61.6 ± 0.3 mAh g −1 from current density measurements 

was reported with natural melanin. 

 

Figure 2.11 The mechanism of Mg2+ binding melanin catechols.[119] Reprinted with permission. 

R1=H or COOH 
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Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 

 

In recent studies, Kim et al. proposed that in natural melanin monovalent ions bind to COOH and 

NH2 groups whereas multivalent cations bind to catechols.[120] The authors also proposed 

porphyrin-like structures forming from natural melanin through electrochemical Na+ insertion. 
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CHAPTER 3 ARTICLE 1: EFFECT OF CHANNEL THICKNESS, ELECTROLYTE 

IONS AND DISSOLVED OXYGEN ON THE PERFORMANCE OF ORGANIC 

ELECTROCHEMICAL TRANSISTORS 

This article has been published in the journal “Applied Physics Letters” in 2015. This article 

reports a comparison of organic electrochemical Transistors (OECTs) performance with channel 

thickness and electrolytes.  

 

3.1 Authors 
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2Department of Chemistry “Giacomo Ciamician" Università di Bologna, Via Selmi, 2, Bologna, 
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3.2 Abstract 

We investigated the device characteristics of organic electrochemical transistors based on thin 

films of poly(3,4-ethylenedioxythiophene) doped with poly(styrene-sulfonate). We employed 

various channel thicknesses and two different electrolytes: the micelle forming surfactant 

cetyltrimethyl ammonium bromide (CTAB) and NaCl. The highest ON/OFF ratios were achieved 

at low film thicknesses using CTAB as the electrolyte. Cyclic voltammetry suggests that a redox 

reaction between oxygen dissolved in the electrolytes and PEDOT:PSS leads to low ON/OFF 

ratios when NaCl is used as the electrolyte. Electrochemical impedance spectroscopy reveals that 

doping/dedoping of the channel becomes slower at high film thickness and in presence of bulky 

ions. 
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3.3 Introduction 

Organic conducting polymers lay the foundation for organic 

bioelectronics.[30,39,45,92,121-123] Poly(3,4-ethylenedioxythiophene) doped with 

poly(styrene-sulfonate) (PEDOT:PSS) is a well known highly conducting and optically 

transparent polymer.[70,124] Organic electrochemical transistors (OECTs) based on 

PEDOT:PSS are exploited in bioelectronics and sensing.[30,99,125,126] OECTs consist 

of a conducting polymer channel, connected to source and drain electrodes that are in 

ionic contact with a gate electrode via an electrolyte solution. OECTs based on 

PEDOT:PSS work in depletion mode: a hole source-drain current (Ids) flows upon 

application of a drain-source voltage (Vds). When a positive Vgs is applied, electrolyte 

cations enter the channel and dedope it, thus leading to a decrease of Ids. An important 

figure of merit OECTs is the current modulation, typically expressed in terms of ON/OFF 

ratio, which depends on processing and composition of the conducting polymer 

channel,[127] device geometry,[84,85,68,128] gate material[93,129] and nature of the 

electrolyte.[86,89,130] OECT performance is also affected by the thickness of the 

conducting polymer channel. As current modulation relies on redox processes, which 

involve exchange of ions between the electrolyte and the polymer film, the entire film 

volume is relevant for charge transport. This working mechanism differs from that of 

organic field effect transistors, where only the very first few monolayers at the gate 

dielectric/channel interface are relevant for charge carrier transport.[131] Malliaras et al. 

have recently demonstrated that the transconductance (dIds/dVgs) and the capacitance of 

PEDOT:PSS OECTs depends on channel thickness and aspect ratio.[90,96] 

Here we investigate the effect of the PEDOT:PSS channel thickness on OECT modulation 

using two different electrolytes: the cationic surfactant hexadecyltrimethylammonium 

bromide, also known as cetyltrimethyl ammonium bromide (CTAB) and NaCl. CTAB, 

beyond its critical micelle concentration (CMC), is known to lead to high current 

modulation in OECTs and it is therefore a model system to study the doping/dedoping 

process in OECTs.[89] We employed cyclic voltammetry (CV) and electrochemical 

impedance spectroscopy (EIS) to gain insight into the impact of channel thickness and 

nature of the electrolyte on device performance.  
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3.4 Experimental 

The OECT’s PEDOT:PSS channels were patterned on a glass substrates using a procedure 

previously published.[84] The effective channel dimensions (geometric area of about 12 

mm2, channel width 2 mm and channel length 8 mm) were defined by the contact region 

between the film and the electrolyte, confined into a cloning cylinder.[91] Films were 

deposited by spin coating a mixture containing a PEDOT:PSS suspension (CleviosTM PH 

1000, Haraeus GmbH, Germany), the conductivity enhancer ethylene glycol (19.7 v/v %) 

and dodecylbenzenesulfonic acid (DBSA) (0.3 v/v %).[132] Different speeds (500, 1000, 

2000 and 4000 rpm, for 20 seconds) were employed to achieve film thicknesses of about 

500, 180, 110, and 50 nm, as measured by a Dektak 150 optical profilometer. The 

electrical conductivity of PEDOT:PSS films was extracted from the sheet resistance, 

measured by a four-point probe system.[133] Activated carbon (AC) gate electrodes 

(geometric area about 25 mm2) were prepared by drop casting a suspension of AC 

(Picachem BP9, 28 mg/mL) and Nafion (2.4 mg/mL) in isopropanol, on carbon fiber 

paper (Spectracarb 2050, 10 mils).[93] Aqueous solutions of 0.01M NaCl and 0.001M 

CTAB (i.e. above the CMC) were used as the electrolytes. The ionic conductivity of the 

electrolytes was measured by a Traceable® expanded range conductivity meter. OECT 

characterization was carried in ambient conditions with an Agilent 2902A source/measure 

unit controlled via Labview software. Transfer curves were extracted from OECT 

transient characteristics (Ids versus time) measured at different Vgs. CV and EIS were 

carried out in a three-electrode cell, where a PEDOT:PSS film acted as the working 

electrode (WE), a Pt foil as the counter electrode (CE) an aqueous Ag/AgCl as the 

reference electrode (RE). The electrolyte solutions were purged with N2 or air for one 

hour prior to measurements and during the CV (at reduced flow to prevent the formation 

of foam in CTAB). A hollow cylindrical well confined the electrolyte on the WE (over an 

area of 0.64 cm2). 

 

3.5 Results and Discussions 

As channel resistance plays a major role in modulation of OECTs based on PEDOT:PSS, we first 

measured the electrical conductivity, extracted from the sheet resistance, of PEDOT:PSS at four 
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different thicknesses (Figure 3.1). The conductivity increases from ~300 S/cm to ~450 S/cm as 

thickness increases from ~50 nm to ~110 nm.  Further increase in thickness to ~180 nm and ~500 

nm results in a modest conductivity increase up to ~500 S/cm. Although more investigations are 

needed to understand this behavior, a possible explanation would be a transition from percolation 

to bulk-like charge transport occurring in PEDOT:PSS films upon a thickness increase. This 

would be an analogy to conduction in two-dimensional materials such as graphene.[134] A 

percolative behavior is characteristic of sparse networks with limited connectivity and few 

continuous conductive paths. Thus, we hypothesize that, in case of 50 nm thick PEDOT:PSS 

films, the conductivity is dominated by quasi-two dimensional connection paths between adjacent 

PEDOT grains, while in thicker films charge carriers are transported in three dimensional 

PEDOT-PEDOT networks.  

 

Figure 3.1 Sheet resistance (red circles, left y axis) and electrical conductivity (blue stars, right y 

axis) of PEDOT:PSS films (geometric area 15x15 mm2) of different thicknesses (~500, 180, 110, 

and 50 nm). The error bars correspond the standard deviation of four samples. 

 

The transfer characteristics (-0.4 V ≤Vgs ≤ 0.6 V and Vds = -0.2 V) of PEDOT:PSS OECTs with 

different channel thicknesses (Figure 3.2a for NaCl electrolyte and 3.2b for CTAB electrolyte) 
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show the typical Ids vs. Vgs behavior of PEDOT:PSS OECTs and reveal that, at a given Vgs, |Ids| 

increases with increasing channel thickness. This trend confirms that the transport of electronic 

charge carriers takes place in the entire channel volume.  

 

 

Figure 3.2 Transfer characteristics (-0.4 V ≤ Vgs ≤ 0.6 V and Vds = -0.2 V) of PEDOT:PSS 

OECTs with four different channel thicknesses (~500, 180, 110,  50 nm) using 0.01 M NaCl (a) 

and 0.001 M CTAB (b)  as the electrolyte. OECT based on a 110 nm thick PEDOT:PSS film 

using 0.001 M CTAB as the electrolyte, showing a high ON/OFF ratio of ~1700  (-0.8 V≤Vgs≤0.5 

V and Vds=-0.5 V). The blue star represents the ON and OFF currents at Vgs=-0.8 and Vgs=0.6 V 

(c). Hysteresis behavior of an OECT based on a 50 nm thick PEDOT:PSS film(d). The black 

curve corresponds to the forward bias (from Vgs=-0.4 to Vgs=0.6 with Vds=-0.2 V) and the red 

curve to the reverse bias. During all OECTs characteristics, gate scan rate of 0.003 V/s was 

maintained. 
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The ON/OFF ratios (Table 1) are significantly higher for devices using CTAB as the electrolyte, 

in agreement with previously published results.[89] Moreover, decreasing the film thickness from 

~500 to ~50 nm leads to an increase of the ON/OFF ratio from ~50 to ~220. The same thickness 

variation only leads to minor changes in devices using NaCl as the electrolyte. ON/OFF ratios as 

high as ~1700 (at Vds=-0.5 V and -0.8 V ≤Vgs ≤0.6 V) were achieved with OECTs using a 110 

nm thick PEDOT:PSS channel and 0.001 M CTAB as the electrolyte (Figure 3.2c). The devices 

show negligible hysteresis under our measurements conditions (Figure 3.2d). 

 

Table 3.1 ON/OFF ratios extracted from transfer characteristics (-0.4 V ≤ Vgs ≤ 0.6 V and Vds=-

0.2 V) of PEDOT:PSS OECTs with four different channel thickness (~500, 180, 110, 50 nm) 

using 0.01 M NaCl and 0.001 M CTAB as the electrolytes.  

 

Thickness  

(nm) 

ON/OFF ratio 

 

NaCl electrolyte CTAB electrolyte 

470±90 ~7.0 ~50 

180±10 ~5.5 ~180 

110±10 ~7 ~130 

55±5 ~7 ~220 

 

To further investigate the effects of channel thickness and electrolyte composition on current 

modulation, we performed CV. Figure 3.3(a) shows CVs of PEDOT:PSS films in CTAB and 

NaCl. The potential of the WE was swept from 0 V vs. Ag/AgCl towards negative potentials 

(−1 V vs. Ag/AgCl) and then towards positive potentials (+0.8 V vs. Ag/AgCl) with a scan rate of 

5 mV/s. Under N2 purging, the position of the redox peaks in the two electrolytes does not differ 

significantly: the typical oxidation wave is observed between −0.4 V and 0.5 V vs. Ag/AgCl and 
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the reduction takes place between −0.4 V and −0.8 V vs. Ag/AgCl. The voltammograms are more 

distorted in CTAB, which suggests a slowed down doping/dedoping process with respect to 

NaCl, likely related to lower ionic conductivity (∼0.1 mS/cm for 0.001M CTAB with respect to 

∼2.0 mS/cm for 0.01M NaCl), slower migration, and higher steric hindrance. Indeed, the 

diameter of the positively charged CTA+ micelle is ∼1−4 nm [89,135] and that of Na+ is 

∼0.2 nm. 

 

 

Figure 3.3 Cyclic voltammetry of PEDOT:PSS films (∼250 nm thickness) using 0.01M NaCl and 

0.001M CTAB as the electrolytes, carried out under N2 purging (a). Cyclic voltammetry of 

PEDOT:PSS films (50 nm and ∼500 nm thicknesses) using 0.01M NaCl as the electrolyte, 

carried out under N2 purging (b). Cyclic voltammetry of PEDOT:PSS films (∼50 nm thickness) 

carried out under N2 or air purging using 0.01M NaCl (c) and 0.001M CTAB (d) as the 

electrolyte. 

 

The intensity of the CV current increases with increasing film thickness from ∼50 nm to 

∼500 nm (Figure 3.3(b)). The amount of charge needed to dedope/dope the films (Q) was 

calculated by integration of the anodic current over time and the film capacitance was calculated 

from the slope of Q (during doping) versus electrode potential (Table II). An increase of the film 



43 

 

capacitance of about a factor of 6 was found upon a thickness increase from 50 nm to 500 nm. 

These results, in agreement with recent findings by Malliaras et al.,[90] are consistent with the 

dedoping/doping mechanism of PEDOT:PSS films, which involves incorporation/release of 

electrolyte cations: the CV current depends on the dedoping/doping charge, in turn related to the 

amount (thickness) of PEDOT:PSS to be dedoped/doped. The values of the volumetric 

capacitance are higher in thinner films, which points to a more effective dedoping/doping process 

at lower thicknesses. Although higher values are found for CTAB, the effect of the electrolyte is 

rather modest. 

Table 3.2. Capacitance and amount of dedoping/doping charge (absolute and volumetric values) 

of PEDOT:PSS films extracted from the anodic voltammetric currents at 5 mV/s in NaCl and 

CTAB electrolytes. The film volumes are 3.0×10-5 cm3 for the thick film and 3.4×10-6 cm3 for the 

thin film. 

 

 

Electrolyte 

PEDOT :PSS 

film thickness 

(nm) 

Charge 

(C) 

(×10-3) 

Normalized 

charge  

(C/cm3) 

Capacitance 

(F) 

(×10-3) 

Normalized 

Capacitance 

(F/cm3) 

 

 

0.01 M 

NaCl 

 

 

474±90 1.52 50 1.15 38 

54±10 0.25 74 0.2 54 

0.001 M 

CTAB 

474±90 1.44 47 1.2 41 

54±10 0.23 66 0.2 55 
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As OECTs are mostly operated in ambient conditions, we explored the effect of dissolved oxygen 

on the redox behavior of PEDOT:PSS films (∼50 nm thickness) by carrying out CV under air 

purging (Figures 3.3(c) and 3.3(d), red dotted curves). Voltammograms obtained under air 

purging indicate an increase of the cathodic current between −0.5 V and −0.8 V vs. Ag/AgCl for 

both electrolytes. This suggests that PEDOT:PSS, once it is electrochemically reduced to the 

dedoped state, it is readily reoxidized chemically to the doped state by dissolved O2,[136] with a 

process similar to that exploited for electrocatalytic oxygen reduction at PEDOT electrodes.[137-

141] In OECTs, this effect may hinder the dedoping of PEDOT:PSS that is expected at positive 

Vgs, thus leading to lower ON/OFF ratios. The cathodic current is higher in NaCl than CTAB. 

This can tentatively be attributed to a lower O2 solubility, which would result in a more effective 

dedoping of PEDOT:PSS. We are currently investigating the use of oxygen radical scavenging 

additives (e.g., tannic acids), in the electrolyte or in the PEDOT:PSS film, to prevent 

PEDOT:PSS oxidation by environmental O2.[142] 

The doping/dedoping processes in PEDOT:PSS films in NaCl and CTAB were further 

investigated by EIS (Figure 3.4). The Nyquist plots obtained in NaCl consist of lines almost 

parallel to the imaginary impedance axis. Those obtained in CTAB are not parallel to the 

imaginary impedance axis, in particular at high film thickness, thus suggesting a hindered ionic 

charge transport through the film. For both electrolytes, the uncompensated resistance (which 

includes ionic contribution from the electrolyte and electronic contribution from PEDOT:PSS) is 

lower for thicker films. The real component of the impedance of 500 nm-thick films at 10 kHz is 

∼1.9 kΩ in NaCl and ∼4.9 kΩ in CTAB, while that of 50 nm-thick films is ∼4.0 kΩ in NaCl and 

∼9.9 kΩ in CTAB. As the distance between working and reference electrodes was kept constant 

during all the experiments (i.e., the ionic contribution to the high-frequency real impedance for a 

given electrolyte remained unchanged), our results indicate that thicker films have lower 

electronic resistance than thin films. As expected for pseudocapacitve electrodes, the imaginary 

part of the impedance shows that the capacitive component of the impedance. (i.e., the 

capacitance at the lowest frequency 𝐶 = !
!"!!"

) increases with film thickness. In case of the NaCl 

electrolyte, the capacitance increases from ~0.12 mF (~35 F/cm3) to ~0.69 mF (~23 F/cm3) as the 

thickness varies from 50 nm to 500 nm. In case of CTAB, for the same thickness variation, the 
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capacitance increases from ~0.11 mF (~32 F/cm3) to ~0.42 mF (~35 F/cm3). The volumetric 

capacitance is higher for thin films, which supports the trend observed in the CV. Using the 

capacitance values extracted from CV (Table 3.2) and the high frequency resistance extracted 

from EIS, we estimated the following time constants (𝜏 = 𝑅𝐶) for the doping/dedoping process 

of PEDOT:PSS films: 𝜏~0.8 𝑠 in NaCl and 𝜏~1.7 𝑠 in CTAB for a 50 nm thickness, 𝜏~2.4 𝑠 in 

NaCl and 𝜏~5.0 𝑠 in CTAB for a 500 nm thickness. A similar trend was found for the time 

constant extracted from transient (Ids verus time) OECT measurements. These results confirm that 

the doping/dedoping process becomes slower at higher film thicknesses and in the presence of 

bulky ions. 



46 

 

 

Figure 3.4 Electrochemical impedance spectroscopic analysis (Nyquist plots) of PEDOT:PSS 

films (thicknesses ~500 nm and ~50 nm) in 0.01 M NaCl (a) and 0.001 M CTAB (b) electrolytes. 

PEDOT:PSS is used as working electrodes, a Pt foil as counter electrode, and Ag/AgCl as 

reference. The frequency range is 0.5 kHz to 10-4 kHz with an AC amplitude of 5 mV. The 

PEDOT:PSS films were doped at 0.6 V vs Ag/AgCl for 30 s prior to EIS by chronoamperometry. 
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3.6 Conclusion 

We investigated the effect of channel thickness, electrolyte ions (NaCl and CTAB), and dissolved 

oxygen on the performance of OECTs based on PEDOT:PSS. We found that (i) higher ON/OFF 

ratios are achieved when CTAB is used as the electrolyte; (ii) thin PEDOT:PSS films have 

superior performance as OECT channels, in terms of current modulation, compared to their 

thicker counterpart, despite their lower electrical conductivity; (iii) the effect of thickness on 

current modulation is more pronounced when CTAB is used as the electrolyte. Using cyclic 

voltammetry, we detected a significant effect of dissolved O2 on the CV current of PEDOT:PSS, 

particularly in the presence of a NaCl electrolyte. The dissolved oxygen might oxidize 

PEDOT:PSS during the electrochemical dedoping process, thus leading to a lower ON/OFF ratio. 

EIS revealed that the doping/dedoping process in PEDOT:PSS becomes slower at higher film 

thicknesses and in the presence of bulky ions. 
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CHAPTER 4 ARTICLE 2: MELANIN-BASED FLEXIBLE SUPERCAPACITORS 

 

This article has been published in “Journal of materials chemistry C” in 2016. This article reveals 

the exploitation of natural pigment melanin as an electrode for energy storage devices. 
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4.2 Abstract  

Biocompatible and biodegradable materials that store electrochemical energy are attractive 

candidates for applications in bioelectronics and electronics for everywhere. Eumelanin is a 

ubiquitous biopigment in flora and fauna. It exhibits strong broad-band UV-visible absorption, 

metal chelation as well as good thermal and photo-stability. Eumelanin is based on 5,6-

dihydroxyindole (DHI) and 5,6-dihydroxyindole carboxylic acid (DHICA) building blocks, 

present in different redox forms (hydroxyquinone, semiquinone and quinone). The synergy 

between the redox activity of the building blocks and the capability of several of their 

functionalities to reversibly bind cations constitutes the foundation for the use of melanin in 

pseudocapacitive energy storage systems. 

In this work, we report on the energy storage properties of eumelanin in supercapacitor 

configuration. Initially, a gravimetric specific capacitance as high as 167 F/g (specific capacity of 

24 mAh/g) was observed for eumelanin electrodes on carbon paper, in aqueous electrolytes. A 

maximum power density of up to 20 mW/cm2 was deduced for the corresponding melanin 

supercapacitors. Capitalizing on these results, we used an unconventional patterning approach to 

fabricate binder-free flexible micro-supercapacitors on plastic substrates. 

Our results demonstrate that melanin is a valid candidate for future supercapacitor electrodes. 

The biocompatibility and biodegradability featured by eumelanin, combined with its easy 

availability and room temperature processing, make it an extremely attractive material for 

environmentally and human friendly energy storage solutions. 

 

4.3 Introduction 

Environmentally and human friendly electronic devices based on natural biocompatible and 

biodegradable materials are expected to benefit our everyday life, by improving our current 

capability to handle waste electrical and electronic equipment (WEEE) and boosting the 

development of smart environments for “ubiquitous sensor networks” and biomedical 

implants.[143,144] 

Micro-supercapacitors are of the utmost importance to address the need for on-board energy 

supply/storage, e.g. in wearable electronic devices and embedded wireless sensor networks.[145-

152] Supercapacitors, with respect to batteries, exhibit higher power density and longer cycle 
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life.[153] Micro-supercapacitors are mostly fabricated from three classes of materials, i.e. carbon 

(activated carbon and nanostructured carbon), conducting polymers and metal oxides.[154] 

Micro-supercapacitors based on natural electrode materials and aqueous electrolytes, exhibiting 

mechanical flexibility, are of primary interest for environmentally and human friendly 

microelectronics for everywhere.[118,119,155-157]  

Melanin is a ubiquitous biopigment in flora and fauna. It exhibits strong broad-band UV-visible 

absorption, metal chelation as well as good thermal and photo-stability. Different forms of 

melanin perform various functions in the human body, such as photoprotection (eumelanin) and 

hair and eye color (eumelanin and pheomelanin). Moreover, melanin pigments are also present in 

unexposed regions such as the inner ear and the substantia nigra of the brain as 

neuromelanin.[110,115,158] The form of melanin most investigated by physicists and materials 

chemists is eumelanin (indicated henceforth as melanin for simplicity). Melanin is based on 5,6-

dihydroxyindole (DHI) and 5,6-dihydroxyindole carboxylic acid (DHICA) building blocks 

(Scheme 4.1). The different redox forms of the building blocks, hydroxyquinone, semiquinone 

and quinone moieties, coexist in the macromolecular structure that results from the non-covalent 

interactions of nanoaggregates, which in turn ensue from the p-p stacking of planar sheets of the 

building blocks, of variable extent.[159-160] The macromolecular structure of melanin stabilizes 

the semiquinone and quinone (oxidized) redox forms of the building blocks. The quinone 

functionality of the molecule has the ability to store 2e−/2H+ per quinone unit (Scheme 

4.1).[153,161-163] 

The synergy between the redox activity of the building blocks and the capability of several of 

their functionalities to reversibly bind cations constitutes the foundation for the use of melanin in 

pseudocapacitive energy storage systems. Unlike supercapacitors making use of carbon 

electrodes, which store energy by a purely electrostatic process, redox-active materials 

(pseudocapacitive materials) permit to exploit Faradaic processes to achieve higher specific 

capacitance. The redox processes are accompanied by ion motion from/to the electrolyte 

into/from the redox active material. In melanin, carboxyl, amine, hydroxyl (phenolic), quinone 

and semiquinone moieties can serve as potential sites for metal cation accommodation.[56] Kim 

et al. reported catechol-mediated reversible binding of multivalent cations in melanin half-cells 

and, based on different affinities for multivalent cations of catechols and quinones, proposed that 

these cations bind to melanin via catechols and are extracted from melanin as catechol oxidizes 
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into quinone. Functionalities other than catechols would likely have a minor effect on charge 

storage.[119,164,165] A complete picture of the potential of melanin as active material in energy 

storage needs also to take into account the electronic and ionic transport properties. Studies of the 

generation and transport of charge carriers established that the electrical response of melanin 

strongly depends on its hydration state through a comproportionation equilibrium. In presence of 

water, hydroquinone and quinone moieties form free carriers, protons and electrons (semiquinone 

extrinsic free radicals).[103,104] Recent studies by our groups contributed to the understanding 

of the proton conduction properties of melanin, under controlled humidity conditions.[113,166]  

Important findings on the ion transport properties of melanin have been reported in relation to its 

biological role in the human body, where melanin is believed to act as an ion storage and release 

medium.[110,56] For applications in electrochemical energy storage, the relatively low electrical 

conductivity of melanin (10-4 - 10-3 S/cm) points to the need for efficient current collectors, such 

as electrically conductive carbon-based materials.[167,168] 

 
Scheme 4.1 Melanin building blocks DHI (R=H) and DHICA (R=COOH) and their redox forms 

hydroquinone (H2Q), semiquinone (SQ) and quinone (Q); the quinone iminium (QI) form is the 

canonical form of quinone. 

 

Here we report on the use of melanin as electrode material for supercapacitors and micro-

supercapacitors. The pseudocapacitive properties of melanin were initially studied using 

conductive carbon paper as current collector and then exploited to demonstrate, through the use 

of unconventional patterning, melanin-based flexible micro-supercapacitors. The main novelty of 

our work is the discovery of a new natural material for supercapacitor electrodes, besides well-

established materials, such as activated carbons, carbon nanotubes, graphene, metal oxides and 

conducting polymers. Natural materials have already been used for the fabrication of 
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supercapacitor electrodes. Nevertheless, in most cases, these materials have to be pyrolysed and 

activated to yield activated carbon electrodes, or they are mixed with conducting polymers to 

yield pseudocapacitive electrodes (APPENDIX A, Table S1).[169-187] Unlike these natural 

materials, our melanin can be simply deposited by solution processing at room temperature and 

does not require any thermal treatment or further mixing. The biocompatibility and 

biodegradability featured by melanin, together with its easy availability, make it an extremely 

attractive material for environmentally and human friendly energy storage solutions.[188] 

 

4.4 Results and Discussions 

4.4.1 Cyclic Voltammetry Studies on Melanin 

The capability of melanin to store charge was initially assessed by cyclic voltammetry using 

electrodes consisting of melanin drop cast on conductive carbon paper (indicated henceforth with 

Mel/CP, see Experimental), exploiting the high mechanical stability of melanin on CP (Figure 

4.1). As a matter of fact, we were able to run only 1-3 voltammetric cycles using melanin 

deposited on other types of electrodes, such as indium tin oxide (ITO). We investigated different 

electrolytes, in a typical three-electrode configuration, to assess the effect of the composition and 

pH of the electrolyte on the Mel/CP behavior. In NH4CH3COO(aq) at pH 5.5, the voltammetric 

response of Mel/CP electrodes with increasing melanin loadings (33.75 and 67.5 µg/cm2, 

normalized with respect to the electrode footprint) shows that the current density increases with 

increasing loading (Figure 4.1a). Our measurements also show that bare CP does not contribute 

significantly to the overall capacitance. The Mel/CP voltammograms are quasi box-shaped 

(rectangular). The absence of easily distinguishable voltammetric peaks is likely due to the 

convolution of several redox processes taking place at sites characterized by different molecular 

environments and different affinity to the electrolyte.[189] Indeed, melanin is a mixture of 

chemically similar biopolymers, rather than a well-defined chemical entity.[115] This chemical 

heterogeneity, coupled with limited solubility, made the characterization of melanin notoriously 

challenging over the years[190]. 

The presence of melanin on CP was confirmed by Scanning Electron Microscopy (SEM) images 

obtained in back-scattered electron (BSE) mode (Figure 4.1b). The intensity of the BSE signal is 

related to the atomic number. Melanin and CP are not distinguishable in BSE SEM images since 
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they are constituted of carbon and other low-atomic number species. Therefore, to distinguish 

melanin from CP, we used staining with the salt uranyl acetate, exploiting the well-established 

property of melanin to chelate cationic species containing heavy metals, such as 

uranium.[56,191] 

The voltammetric current of Mel/CP electrodes has a linear dependence on the scan rate 

(i = C !"
!"

 , Figure 4.1c, where C is the capacitance) thus suggesting that the Mel/CP 

electrochemical behavior is pseudocapacitive. Notably, the electrically conducting network of CP 

permits values of the specific current (current normalized by melanin weight), as high as 5 A/g. 

The specific capacitance of the Mel/CP electrodes was obtained by normalizing, over the melanin 

loading, the slope of the plot of the integral of the cathodic current over time vs. electrode 

potential. The gravimetric specific capacity (storable charge per unit weight) was deduced from 

the cathodic current integrated over time and normalized by the melanin loading (Figure 4.1d). At 

5 mV/s, we obtained a specific capacitance of 167 F/g (i.e. 5.6 mF/cm2), which well compares 

with values found on high surface area carbons, carbon nanotubes and graphene,[192] and a 

specific capacity of 24 mAh/g. The specific capacitance and capacity decrease with increasing 

scan rate, as expected for pseudocapacitive processes, which are affected by the rate of charge 

transfer/transport and mass transport (diffusion) of counter ions to/from the redox sites. However, 

faradaic side reactions, potentially contributing to the pseudocapacitive response, cannot be 

excluded at relatively low scan rates. From the comparison of the electrochemical behavior in 

different electrolytes, within a pH range compatible with the chemical stability of melanin 

(APPENDIX A, Figure S1),[193-195] we deduced that the best response is achieved for 

NH4CH3COO(aq) pH 5.5, in agreement with the well-established proton conduction properties of 

melanin.[113] At pH 5.5, the currents in NH4CH3COO(aq) are higher than in Na2SO4(aq) (this holds 

true for different NH4CH3COO(aq) concentrations). This result suggests possible specific effects 

of the ions constituting the electrolyte on the electrochemical behavior.[196] NH4CH3COO has 

acido-base properties possibly assisting proton transfer associated to electron transfer. 

Furthermore, aqueous solutions of the organic salt NH4CH3COO are expected to wet the melanin 

surface better than Na2SO4(aq), thus promoting the access of the electrolyte to the melanin redox 

sites. Given that the highest specific capacitance was obtained with NH4CH3COO(aq), this 

electrolyte was selected for further studies of supercapacitors.  
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Figure 4.1 (a) Cyclic voltammetry of 33.8 µg/cm2 and 67.5 µg/cm2 Mel/CP electrodes and bare 

carbon paper (CP, control sample) in NH4CH3COO(aq) pH 5.5; scan rate 50 mV/s. (b) SEM 

image, acquired in BSE mode, of a sample made of melanin on carbon paper (CP, loading of ca 

0.9 mg/cm2) stained with uranyl acetate. The bright areas correspond to melanin chelating the 

uranyl oxycation. Acceleration voltage 10 kV. (c) Cyclic voltammetry of 33.8 µg/cm2 Mel/CP in 

NH4CH3COO(aq) pH 5.5 at different scan rates. (d) Specific capacitance and capacity vs. scan rate 

of Mel/CP electrodes (33.8 µg/cm2), in NH4CH3COO(aq) at pH 5.5. Geometric size of the samples 

0.4 cm2. 

 

4.4.2 Melanin-based Supercapacitor 

The pseudocapacitive properties of Mel/CP electrodes were exploited to demonstrate 

supercapacitors based on identical positive and negative Mel/CP electrodes, immersed in the 

electrolyte NH4CH3COO(aq) at pH 5.5. Supercapacitors with different melanin loadings were 

characterized by galvanostatic charge/discharge cycles (Figure 4.2). The profiles of the cell 

voltage and potentials of the individual electrodes during a galvanostatic charge/discharge cycle 

at 12.5 mA/cm2 (i.e. 92.6 A/g, considering the melanin loading of both electrodes) have a 

b



55 

 

triangular shape. The coulombic efficiency (charge liberated during the discharge divided by 

charge accumulated during the charge) is 99.7% (Figure 4.2a). These results demonstrate the 

good reversibility of the charge/discharge process. The capacitance of the supercapacitor, 

evaluated from the reciprocal of the slope of the cell voltage over the charge liberated during the 

discharge, is of 0.48 mF/cm2 (i.e. 3.6 F/g considering the total melanin loading on the two 

electrodes). The corresponding maximum energy density, Emax, is 0.135 mJ/cm2 and the 

maximum power density, Pmax, is 20 mW/cm2, deduced from the relationships 𝐸!"# =
!
!
𝐶𝑉! and 

𝑃!"# =
!!

!×!"#
, where C is the cell areal capacitance, V is the cut off voltage (0.75 V) and ESR 

is the equivalent series resistance (6.8 Ω cm2).[197] 

The charge/discharge rate capability of supercapacitors with Mel/CP electrodes featuring 

different melanin loadings was investigated by galvanostatic charge/discharge cycles, run at 

different values of the current density (Figure 4.2b). The capacitance density increased with the 

increase of the melanin loading from 33.8 to 67.5 µg/cm2, whereas at 150 µg/cm2 the 

performance did not significantly improve, likely due to the relatively low melanin conductivity 

and to a more difficult access of the electrolyte to the electrode. The supercapacitor with the 

lowest melanin loading featured the highest retention of the capacitance density that decreased by 

only 57% by increasing the current density by more than two orders of magnitude, i.e. from 0.125 

up to 50 mA/cm2.  

The analysis of the galvanostatic discharge profiles for increasing values of the current density 

permitted to deduce the energy density (E = I ∫ V⋅dt, in mJ/cm2, where I is the current density) 

and the average power density (P = E/Δt in mW/cm2, where Δt is the discharge time) delivered 

during a complete discharge. The E and P values were in turn used to build Ragone plots, where 

the energy density is plotted versus the power density (Figure 4.2c).[52,198,199] For a melanin 

loading of 33.8 µg/cm2 we obtained a relatively high value of the power density, i.e. up to 13.2 

mW/cm2, and a relatively low value of the energy density (highest value 0.08 mJ/cm2). 

Supercapacitors with 67.5 µg/cm2 and 150 µg/cm2 loadings showed similar power density 

(highest value ca. 9.3 mW/cm2) and energy density (highest value ca. 0.23-0.25 mJ/cm2). These 

results point to the need of efficient and stable electrical contact between the melanin and the 

carbon current collector, further confirmed by the cycling performance of the supercapacitor 

(APPENDIX A, Figure S2). 
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Figure 4.2 Mel/CP supercapacitors with two identical Mel/CP electrodes of equal loadings and 

with NH4CH3COO(aq) pH 5.5 electrolyte. (a) Cell voltage and electrode potential profiles during a 

charge–discharge galvanostatic cycle (20th cycle) obtained at 12.5 mA/cm2 with 67.5 µg/cm2 

Mel/CP (each electrode). (b) Capacitance density vs. current density, for three different melanin 

loadings. (c) Ragone plots extracted from galvanostatic discharge cycles for different melanin 

loadings with current density of 0.125, 0.25, 1.25, 2.5, 5, 12.5, 17.5, 25, 37.5 mA/cm2. 
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We propose the following working principle for our melanin supercapacitors (Figure 4.3). At the 

positive electrode, during charging (Figure 4.3b), the redox active groups that are in the (semi) 

reduced form (semiquinone, SQ, and hydroquinone, H2Q) are oxidized, thus leading to the 

increase of the concentration of quinone (Q) groups. At the same time, protons and ammonium 

cations are released in solution and anions (acetate) are incorporated in the electrode material. At 

the negative electrode, Q and SQ groups are reduced with an increase of the concentration of H2Q 

groups. At the same time, anions are released in solution and protons and ammonium cations are 

incorporated in the electrode material. These processes are reversed during discharging (Figure 

4.3c).  

With the aim to shed light on the evolution of the chemical features of our melanin-based 

electrodes after charging and discharging processes, we performed an X-ray photoelectron 

spectroscopy (XPS) study on the positive electrode of our supercapacitor. Although the results of 

the high resolution spectra did not permit us to draw an exhaustive and detailed picture, 

nonetheless they permitted to deduce an increase of the C1s peak associated with the aromatic 

C=O bonding (binding energy of 287.4 eV), in agreement with the hypothesis of an increased 

concentration of quinone groups during the charging step (APPENDIX A, Table S2, Figure S3, 

Figure S4, Figure S5). No significant shift of the position of the N1s and O1s peaks was detected. 

Such a shift might have been attributed to the formation of new bonds involving O and N atoms, 

during the charging and discharging steps. The slight, but still significant, increase of the overall 

N1s concentration after charging with respect to discharging, can tentatively be attributed to the 

chemical affinity between melanin and NH3.[196,200] Indeed, NH4
+

(aq) is expected to be present 

as NH3 in proximity of the positive electrode during the charging step. 
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Figure 4.3 Working principle of melanin-based supercapacitors constituted by two identical 

negative and positive electrodes, immersed in NH4CH3COO-
(aq) pH 5.5. a) Situation before a 

potential is applied between the electrodes, b) situation produced during charging and c) situation 

produced during the discharging of the electrodes. See Scheme 1 for the chemical structure of 

H2Q, SQ and Q groups. 
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4.4.3 Melanin-based Micro-supercapacitors 

The progress in electronics for everywhere calls for flexible and conformable 

microelectromechanical systems (MEMS) with integrated power sources. Flexible 

supercapacitors have generated enormous interest in recent years. A wide range of devices, based 

on several electrode/electrolyte combinations, fabricated with lithography or direct write 

techniques have been reported.[201-207] 

We fabricated planar and binder-free micro-supercapacitors on flexible polyethylene 

terephthalate (PET) substrates (Appendix A, Scheme S1) employing an unconventional and 

environmentally friendly microfabrication process based on parylene patterning (Figure 

4.4).[157,84, 208,209] Pre-cleaned PET sheets (thickness of about 180 µm) were placed on a 

glass wafer pre-coated with a thin polydimethylsiloxane (PDMS) layer, to ensure flatness and 

rigidity during the following lithography steps. To facilitate parylene peel-off at the end of the 

patterning process, a cetyl trimethylammonium bromide (CTAB) solution was spin coated on 

PET prior to parylene coating. Successively, a 2 µm-thick ParyleneC film was deposited. A 

positive-tone photoresist was then spun onto parylene and a mask aligner was used to expose it 

through a photomask featuring the shape of the supercapacitor electrodes. After photoresist 

development, the unprotected parylene was etched by oxygen plasma and the unexposed 

photoresist was removed (see Experimental), to leave a patterned parylene layer, which acted as a 

mask for the patterning of the micro-supercapacitors. The electrode material of the micro-

supercapacitors consisted of a slurry of melanin and carbon black (Timcal Super C65, surface 

area 60 m2/g) drop-cast on evaporated Ti/Au current collectors (2 mm × 4 mm), with an electrode 

gap of 200 µm (see Experimental and Appendix A, Scheme S1). After a thermal treatment, the 

parylene film was peeled off, leaving the patterned micro-supercapacitor (Figure 4.5). A PDMS 

or glass well was used to confine the electrolyte (NH4CH3COO(aq) pH 5.5).  
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Figure 4.4 Process flow for fabrication of micro-supercapacitors on flexible PET substrates: (a) a 

glass slide is covered with PDMS; (b) PET is laminated on the glass slide; (c) Parylene C is 

deposited by chemical vapor deposition; (d) Parylene C is patterned by photolithography and 

oxygen RIE to generate Parylene C-free regions on PET; (e) Ti (4 nm) and Au (40 nm) are 

deposited by e-beam evaporation; (f); melanin/carbon black slurry is drop cast; (g) Parylene C is 

peeled-off; (h) and (i) PET is removed from the glass slide to achieve the final flexible device. 

 

From the voltammograms of micro-supercapacitors on PET (APPENDIX A, Figure S6a and 

S6b), we deduced the areal, volumetric and gravimetric specific capacitances (APPENDIX A, 

Figure 4.5b and Figure S6c), at scan rates ranging from 0.01 V/s to 10 V/s. At a scan rate of 0.01 

V/s, we deduced a gravimetric specific capacitance of 10.8 F/g, considering the total melanin 

loading on the two electrodes, and a specific capacity of 1.8 mAh/g (APPENDIX A, Figure S6c), 

whereas at 10 V/s corresponding values of 2.5 F/g, and 0.4 mAh/g were obtained. Areal and 

volumetric capacitances of 4.2 mF/cm2 and 1.7 F/cm3 were deduced at 0.01 V/s (Figure 4.5b). 
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The rate response of micro-supercapacitor was investigated by Electrochemical Impedance 

Spectroscopy (EIS). The Nyquist plot (APPENDIX A, Figure S7a) consists of a high frequency 

semicircle overlapped to a low frequency tail. The ESR estimated by the Zr axis intercept of the 

plot at 100 kHz is 4.5 Ω cm2. The high frequency semicircle is related to electron transfer 

processes that give rise to the capacitive response of the electrodes and to the contact resistance 

between melanin and carbon particles and between melanin and current collector. The areal 

impedance related to the high frequency semicircle is smaller than 4.5 Ω cm2, which indicates the 

good electronic properties of the electrodes. The low frequency tail is almost parallel to the Zi 

axis and is representative of the pseudocapacitive behavior of melanin. The Bode plot 

(APPENDIX A, Figure S7b), given in terms of capacitance normalized to the capacitance 

exhibited at 10 mHz, where capacitance is obtained at each frequency by the equation C = 

1/(Zi2πf), reveals a good frequency response of the micro-supercapacitor. Indeed, the micro-

supercapacitor features a pseudocapacitive behavior starting from frequencies as high as 5 kHz.  

The galvanostatic charge/discharge characterization of micro-supercapacitors yielded a maximum 

capacitance of 2.1 mF/cm2 (i.e. 5.25 F/g) at 0.625 mA/cm2 (Appendix A, Figure S8 and Figure 

4.5c) and an equivalent series resistance (ESR) of 6 Ω cm2 that well compares with the value 

estimated by EIS. We obtained Emax and Pmax of 0.6 mJ/cm2 and 23 mW/cm2, calculated as 

previously discussed. The practical energy and power values were evaluated from the 

galvanostatic discharges at different current densities and reported in a Ragone plot (Fig. 5d): 

0.44 mJ/cm2 and 5.24 mW/cm2 were the highest values deduced. Ragone plots where the 

performance of the micro-supercapacitor is normalized with respect to the volume or the area of 

the micro-supercapacitor are shown in Figure S8b (APPENDIX A). Considering the typical 

thickness of about 12.5 µm for each of our electrodes, the volume of each electrode in the micro-

supercapacitor is ca 1×10-4 cm3. Hence, Emax and Pmax of the flexible melanin-based micro-

supercapacitors, normalized to the volume of the two electrodes, are about 0.24 J/cm3 (68 

µWh/cm3) and 9.4 W/cm3. In principle, our patterning process permit to microfabricate a 

“battery” of micro-supercapacitors on the same flexible substrate, thus enabling series/parallel 

connections for powering small electronics devices. As an example, the three series connected 

micro-supercapacitors of Figure 4.5a could deliver a maximum power of 5.5 mW at 2.25 V. Our 

micro-supercapacitor showed 61% retention of the capacitance between the 500th and 20,000th 

cycle (APPENDIX A, Figure S9). Within the same range, the supercapacitor showed capacitance 



62 

 

retention of about 40% (APPENDIX A, Figure S2). Despite the fact that a melanin-based 

supercapacitor is a totally new concept, and as such there is plenty of room to improve its 

performance, the values of the energy and power density, as well as device stability, compare 

reasonably well with the those of micro-supercapacitors based on more established 

materials.[145,210] 

 

 
Figure 4.5 Melanin-based flexible micro-supercapacitors with ~200 µg/cm2 melanin loading on 

each electrode using NH4CH3COO(aq) pH 5.5 as the electrolyte. (a) Optical image of the micro-

supercapacitor (total three micro-supercapacitors) on a flexible PET substrate. (b) Areal 

capacitance and volumetric capacitance vs. scan rate of the cyclic voltammetry (obtained from 

Figures S10a and S10b) taking into account that the total area of the two electrodes is 0.16 cm2 

and that the corresponding volume is about 2×10-4 cm3 (see Experimental) (c) Galvanostatic 

charge/discharge cycles with three different values of the current density (0.625, 1.25, and 12.5 

mA/cm2). (d) Ragone plot extracted from the galvanostatic discharge cycles at different values of 

the current density (0.625, 1.25, 6.25, 12.5 and 25 mA/cm2). The area of each electrode is 0.08 

cm2. 

 

a
b
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Preliminary tests performed on the melanin micro-supercapacitors show that no significant 

change of the voltammetric current occurs upon bending the micro-supercapacitors up to about 

50% (APPENDIX A, Figure S110, Scheme S2). The capacitance contribution of carbon Super C-

65 in micro-supercapacitors was evaluated by cyclic voltammetry analysis (APPENDIX A, 

Figure S11). The voltammograms show the higher capacitance of melanin/carbon C-65 compared 

to carbon Super C-65.  

 

4.5 Conclusions 

In summary, we demonstrated supercapacitors and flexible micro-supercapacitors making use of 

electrodes based on the biocompatible and biodegradable pigment melanin, working in aqueous 

electrolytes. Melanin-based supercapacitor electrodes are fabricated at room temperature, by easy 

solution processing, without the need of a high-temperature treatment, unlike the large majority 

of supercapacitors based on biopolymer-derived electrodes reported to date. In slightly acidic 

media, a gravimetric specific capacitance as high as 167 F/g (specific capacity of 24 mAh/g) was 

observed for melanin-based electrodes on carbon paper. A maximum power density of up to 20 

mW/cm2 was deduced for the corresponding melanin supercapacitor. Capitalizing on these 

results, we demonstrated a binder-free micro-supercapacitor fabricated on flexible polyethylene 

terephthalate (PET). The microfabrication was performed by unconventional lithography based 

on ParyleneC patterning. Our flexible micro-supercapacitors showed a power density of 5.24 

mW/cm2 at an energy density of 0.44 mJ/cm2 and a specific capacitance of 10.8 F/g (about 4.3 

mF/cm2, i.e. 1.7 F/cm3). Micro-supercapacitors were operated at fast electrode potential scan 

rates (up to 10 V/s).  

The performance of melanin micro-supercapacitors can be further improved by i) using 

interdigitated finger structures with tuned electrode width, length, interelectrode distance and 

number of fingers and ii) improving the formulation of the melanin slurry to optimize melanin 

loading. To achieve a better understanding about the redox sites active during the operation of the 

(micro-)supercapacitors, we are presently characterizing the electrochemical properties of 

chemically controlled melanins, e.g. obtained by the solid state polymerization of the DHI 

building blocks.[210] Our work paves the way to the fabrication of biodegradable/bioresorbable 

micro-supercapacitors using substrates such as poly(lactic-co-glycolic acid) (PLGA) or shellac 
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and current collectors based on magnesium or iron alloys. Melanin based micro-supercapacitors 

may serve in biocompatible and biodegradable power sources for applications such as 

implantable medical devices, wearable electronics and ubiquitous sensor networks.  

 

4.6 Experimental Section 

4.6.1 Materials 

For the microfabrication process, we used glass slides (Corning), Polydimethylsiloxane (PDMS) 

Sylgard 184 from Dow Corning, PET sheets from Policrom Inc. (Bensalem, PA), CTAB from 

Sigma Aldrich and Parylene C from SCS Coatings. Photoresist SPR 220 3.0 and stripper PG 

1165 were purchased from MicroChem. Developer AZ 726 was purchased from 

MicroChemicals. Eumelanin, phosphate buffered saline (PBS) tablets, ammonia buffer pH 10, 

sodium sulfate decahydrate (Na2SO4·10H2O) were purchased from Sigma-Aldrich. Ammonium 

acetate and dimethyl sulfoxide (DMSO) were purchased from Caledon Labs. All the materials 

were used as received. To prepare the solution of ammonium acetate NH4CH3COO(aq) pH 5.5, the 

salt was dissolved in water by sonication to obtain a concentration of 7.5 M and acetic acid was 

added to adjust the pH to 5.5 (other concentrations of ammonium acetate solutions, at pH 5.5, 

were also studied following an analogous procedure). The ionic conductivity of NH4CH3COO(aq) 

pH 5.5 was 60.5 mS/cm whereas that one of 0.5 M Na2SO4(aq) pH 5.5 was 61.3 mS/cm. To 

prepare the PBS solution, one tablet was dissolved in 200 mL of deionized water. This yields 0.01 

M phosphate, 0.0027 M potassium chloride and 0.137 M sodium chloride, pH 7.4, at 25 °C. 

4.6.2 Fabrication of Melanin Electrodes on Carbon Paper (Mel/CP Electrodes) 

A melanin suspension in DMSO at 3 mg/mL was prepared by mixing in a planetary mixer 

(Thinky ARM-310) at 2000 rpm for 30 min. Three different loadings of the aforementioned 

suspension (33.8 µg/cm2, 67.5 µg/cm2 and 150 µg/cm2, normalized with respect to the electrode 

footprint) were applied by drop-casting melanin on carbon paper (CP, Spectracarb™ 2050A, 10 

mils). After drop casting, the samples were dried at 50 °C under vacuum (ca. 40 mbar) for 2 hrs, 

to facilitate DMSO removal. Mel/CP electrode area is 0.4 cm2. 
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4.6.3 Structures of the Supercapacitors and Micro-supercapacitors 

For the supercapacitors, two identical electrodes of melanin on carbon paper (Mel/CP) were used 

as positive and negative electrodes and Ag wire was used as quasi reference electrode. For the 

micro-supercapacitors, the positive and negative electrodes were made of melanin/carbon black 

slurry (weight ratio 4/1, i.e. 16 mg of melanin and 4 mg of conductive carbon Super C-65 in 1 ml 

DMSO) deposited on Au electrodes (see below). The capacitive performance of carbon Super C-

65 was evaluated by cyclic voltammetry in a three-electrode cell. Melanin/carbon Super C-65 

(weight ratio 4/1 - 96 µg of melanin and 24 µg of carbon Super C-65) and pure carbon Super C-

65 (24 µg) in DMSO were deposited on Au and used as working electrodes in the electrochemical 

cell. The electrode area was 0.36 cm2. 

4.6.4 Unconventional Lithography Steps for Micro-supercapacitors on Plastics 

To fabricate flexible micro-supercapacitors on plastic, polyethylene terephthalate (PET) 

substrates were cleaned by sequential sonication in acetone, isopropanol, and de-ionized (DI) 

water, dried using a nitrogen flow and laminated on a cleaned glass wafer pre-covered with a 

polydimethylsiloxane (PDMS) adhesive layer, which was used to ensure the PET flatness and 

rigidity during the successive patterning steps. An aqueous solution of CTAB (10-3 M) was spun 

on PET to enable parylene delamination at the end of the process. The PET substrates were then 

transferred to a system for parylene-C deposition (SCS coating). After ParyleneC deposition, a 

positive tone photoresist (MEGAPOSIT SPR 220.3) was spin-coated on Parylene C, then 

exposed to the UV light of the Karl Suss MA-6/BA-6 mask aligner (wavelength 365 nm) through 

a photomask and developed by immersion in AZ-726 to open windows on Parylene C. The 

unprotected Parylene C was then etched by oxygen reactive ion etching (RIE) and the photoresist 

remaining on Parylene C film was removed by immersing the samples in PG 1165 remover. 

Subsequently, 4 nm Ti and 40 nm Au were deposited on the patterned samples by E-beam 

evaporation, followed by a drop casting of melanin/carbon black slurry for micro-supercapacitors 

(see above). After a soft baking at 40ºC under vacuum (30 mmHg for 20 minutes), the Parylene C 

layer on PET was slowly peeled off, leaving patterned melanin micro-supercapacitors on PET. 

The fabrication process was completed by peeling-off PET from the PDMS/glass substrate. The 

area of each electrode is 0.08 cm2, the thickness of the coating about 12.5 µm and the inter 

electrode distance is 200 µm (Scheme S1).  
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4.6.5 Electrochemical Set-up 

Cyclic voltammetry (CV) was performed using a Versa STAT 3 potentiostat (Princeton Applied 

Research) in a three-electrode cell, where Mel/CP was the working electrode, Pt foil the counter 

electrode and Ag/AgCl(aq) the reference electrode. Galvanostatic charge/discharge cycles in the 

supercapacitor and micro-supercapacitor structures were performed using a Biologic VSP 300 

multichannel potentiostat.  

4.6.6 X-ray Photoelectron Spectroscopy (XPS) 

High-resolution XPS analysis was carried out with a VG ESCALAB 3 MKII instrument under 

Mg Kα radiation by applying 300W (15 kV, 20 mA) power. The pressure in the chamber during 

the analyses was 5.0 x 10-9 Torr. The high resolution spectra were acquired with a pass energy of 

20 eV and electrons were collected at a 90 deg takeoff angle. Peak fitting was performed with 

symmetrical Gaussian-Laurentzian product functions after Shirley background subtraction. 

Wagner sensitivity factors were used to normalize the peak intensities for quantification. 

4.6.7 Scanning Electron Microscopy (SEM) 

SEM was performed at an acceleration voltage of 10 kV in backscattered electron (BSE) imaging 

mode using a FEI Quanta 450 Environmental Scanning Electron Microscope (FE-ESEM). 

Staining was achieved by exposing the samples (30 µL of a suspension of 12 mg/ml of melanin 

in DMSO poured on an area of 1 cm×0.4 cm leading to a final loading of ca 0.9 mg/cm2) to an 

aqueous solution of uranyl acetate (2%) for 3 minutes followed by rinsing with deionized water 

for 5 minutes.  
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CHAPTER 5 ACTIVATED CARBON GATE ELECTRODES FOR ORGANIC 

ELECTROCHEMICAL TRANSISTOR (OECT) 

 

The chapter deals with the investigation of high specific surface area activated carbon as the gate 

electrode material for organic electrochemical transistors (OECTs). In order to understand the 

role of gate electrodes in OECT performances, we have considered one of my shared first author 

articles “Conducting Polymer Transistors Making Use of Activated Carbon Gate Electrodes”, by 

Hao Tang, Prajwal Kumar, Shiming Zhang, Zhihui Yi, Gregory De Crescenzo, Clara Santato, 

Francesca Soavi, and Fabio Cicoira, which published in “ ACS Applied Materials and Interfaces” 

in 2014 as a reference.  

Several types of gate electrodes such as Pt, Au, Ag, Ag/AgCl and patterned PEDOT:PSS films 

for OECT have been reported.[84,87,91] We studied activated carbon (AC) as a gate electrode. 

Activated carbons are charcoal based materials with high degree of porosity and with high 

surface area that found many applications in wastewater treatment, solvent recovery, air 

purification and in different industrial processes as porous electrode material.  

OECTs consist of source and drain electrodes and a channel containing the conducting polymer 

PEDOT:PSS in ionic contact with a gate electrode via an electrolyte solution (Figure 5.1). 

PEDOT:PSS, because of its high conductivity, leads to OECT working in depletion mode. The 

conductivity of PEDOT:PSS films ranges from a few hundreds to few thousands S cm−1.[82] 

 

Figure 5.1 Scheme of the architecture of OECT using a conducting polymer channel made of 

b) 

a) 
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PEDOT:PSS with a) AC gate electrode and b) PEDOT:PSS gate.[93] Reprinted with permission. 

Copyright © 2014 American Chemical Society. 

 

5.1 Fabrication of Organic Electrochemical Transistors 

The devices were fabricated on cleaned glass wafers as described in the literature [84,96]. “Metal 

contacts (4 nm of Ti and 40 nm Au) were patterned with standard photolithography (using a 

photoresist AZ 5214), followed by metal evaporation by e-beam and lift-off using PG remover 

1163.”[211] PEDOT:PSS channels were patterned using Parylene C. Parylene C was deposited 

by chemical vapor deposition to form a 1.2 µm thick film. To define the channel, a second layer 

of photolithography step was carried out on Parylene by using photoresist SPR 220 3.0. After 

photoresist development, parylene was etched by an oxygen reactive ion etching plasma. The 

PEDOT:PSS processing mixture was spin coated onto the substrate in order to achieve 100 nm 

PEDOT:PSS film. The electrolyte confined by using a glass ring.  

In OECT, the current flowing in the channel between the drain and source electrodes (Ids) is 

modulated by the gate-source voltage (Vgs). A high current modulation is essential for 

bioelectronic applications, which require low-voltage operation and high sensitivity.[68] In order 

to achieve higher current modulation, it is essential to explore the influence of gate electrode on 

channel current modulation. We have discussed two types of gate electrodes: i) PEDOT:PSS 

films ii) high surface area activated carbon electrode.  

 

5.2 Preparation of PEDOT:PSS processing mixture 

“For the preparation of the PEDOT:PSS films, 20 mL of aqueous dispersion (Clevios PH-1000 

from Heraeus GmbH) were mixed with ethylene glycol (1 mL) and dodecyl benzene sulfonic 

acid (DBSA, 50 µL), to enhance conductivity and film forming properties, and with 1 wt% of (3-

glycidyloxypropyl) trimethoxysilane (GOPS), to crosslink the films for stable operation in 

aqueous conditions”.[211] 
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5.3 Preparation of the activated carbon electrodes 

“The AC gate electrodes were prepared using carbon paper (Spectracarb 2050, 10 mils) coated 

with an ink of activated carbon (PICACHEM BP9, 28 mg/mL) and Nafion binder (2.4 mg/mL ) 

dissolved in isopropanol (the amount of solution was about 80 µL). The coating was followed by 

thermal treatment at 60 °C for 1 hour to remove the solvent. For OECT gate electrodes we used 

carbon paper stripes having a geometric area of about 12 mm2 when immersed into the electrolyte 

(similar to that of the PEDOT:PSS gate and channel)”.[211] 

 

5.4 Organic Electrochemical Transistor characterization 

The performance of OECTs based on PEDOT:PSS using PEDOT:PSS and AC gate electrodes 

are shown in Figure 5.2. The typical output characteristics of PEDOT:PSS OECT using AC gate 

electrodes are shown in Figure 5.2 A and compared to those of OECTs with planar PEDOT:PSS 

gate electrodes in Figure 5.2 B. 

 

 

Figure 5.2 Characteristics of PEDOT:PSS based OECT using AC and PEDOT:PSS gate 

electrodes, employing an aqueous solution of NaCl (0.01M) as the electrolyte. Typical output 

characteristics obtained with an AC (A) or a PEDOT:PSS gate electrode (B). The Vds scan rate is 

5 mV/s and Vgs is varied from −0.4 to +0.6 V in steps of 0.2 V. Transfer characteristics (C) of 
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PEDOT:PSS OECTs using an AC (black line) and a PEDOT:PSS gate electrode (red line) at Vds= 

−0.5 V and −0.6 V ≤ Vgs ≤ 0.8 V. Transient (Ids vs time) responses (D) normalized with respect to 

the current at Vgs= 0 V of OECTs using AC (black solid line) and PEDOT:PSS (red dashed line) 

gate electrodes at Vds= −0.5 V. From left to right, Vgs is pulsed from 0 to −0.6, −0.4, −0.2, +0.2, 

+0.4, +0.6 and +0.8 V with pulse duration of 100 s.[93] Reprinted with permission. Copyright © 

2014 American Chemical Society. 

 

OECTs with AC gate electrodes show larger Ids modulation with respect to those using 

PEDOT:PSS. For instance, for the output characteristics of OECTs at Vds = − 0.4 V, upon 

variation of Vgs from − 0.4 to +0.6 V with a step of 0.2 V, the Ids of OECT using AC varies by 

about a factor of 10, while that of the devices using PEDOT:PSS gate electrodes varies by about 

a factor of 3. Also, devices using AC gates saturate at Vds ≈ − 0.2 V, whereas devices using 

PEDOT:PSS gates do not show saturation even at higher |Vds|. The further confirmation of higher 

Ids modulation with AC gate electrodes was achieved through the transfer (Figure 5.2 C) and 

transient (Ids versus time, Figure 5.2 D) characteristics. For AC gate electrodes the shown higher 

ON/OFF ratio is about 500, whereas OECT PEDOT:PSS based gate show an ON/OFF ratio of 

about 15. The transient characteristics reveal that, the Ids during de-doping of PEDOT:PSS 

channel (off current) at given Vgs, is significantly higher for OECT with an AC gate (Figure 5.2 

D, black solid line) than that of OECT with a PEDOT:PSS gate (Figure 4.2 D, red dashed line). 

The use of high specific surface area AC gate electrodes in OECTs is expected to enable to 

counterbalance the charge required to dedope/dope the channel within a relatively narrow 

electrode potential excursion, by a fast and highly reversible electrostatic process.  

The current modulation exclusively depends on the electrolyte potential (Vsol), which is the 

potential acting on the OECT channel upon the application of Vgs, defined by 𝑉!"# =
!!"

!!
!!! !!!
!! !!

 

Where Cch and Cg are the channel and gate capacitance, Ach and Ag are the channel and gate areas 

respectively.[83] In these conditions, when the area and capacitance of channel is comparative 

with the capacitance of gate (case of PEDOT:PSS gate), the potential drop takes place between 

the gate electrode and the electrolyte, which results in a weak modulation of the channel current. 

In the case of high area gate electrode with high capacitance (as it is the case for AC gate), the 
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electrolyte potential is almost equal to the bias at the gate. This implies that the drop of potential 

takes place close to channel, which results in a greater modulation of channel current. AC gates 

that feature higher specific areas than PEDOT:PSS, result in relatively high gate currents (Figure 

5.3 A). 

 

 

Figure 5.3 (A) Steady state gate-source current (Igs) of OECTs with PEDOT:PSS (black line) and 

AC of different geometric areas as gate electrodes. (B) Comparison of transfer current 

modulations for devices using AC gate electrodes of different geometric areas and a PEDOT:PSS 

gate electrode. An aqueous solution of NaCl (0.01 M) is used as the electrolyte.[211] Reprinted 

with permission. Copyright © 2014 American Chemical Society. 

 

Interestingly, the decrease of Igs of OECT is observed with the decrease of geometric surface area 

of the AC gate (Figure 5.3 A). However, the current modulation is independent of geometric area 

of the AC electrode (Figure 5.3 B).Therefore, the AC gate area and mass loading need to be 

properly optimized to reduce gate currents”.[211] 

In summary, we investigated PEDOT:PSS OECT using high specific surface area AC gate 

electrodes. The use of AC gate electrodes leads to higher current modulations, at low voltage, 

compared to PEDOT:PSS gate electrodes. AC gate current Igs of OECT increase with increasing 

the geometric surface area of AC but the current modulation remains same and higher for AC 

electrode. In order to reduce the to reduce gate currents, AC gate area and mass loading need to 

be optimized. 

A B 
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CHAPTER 6 EUMELANIN ELECTROCHEMISTRY: COMPLEMENTARY RESULTS 

Chapter 6 is focuses on my research contribution to the study of electrochemical properties of 

melanin (from coauthored articles). In particular, this chapter is includes some parts of the 

recently published article (shared first author) in Polymer International (2016) “Novel insights on 

the physicochemical properties of eumelanins and their DMSO derivatives” by L .GS Albano, E. 

Di Mauro, P. Kumar, F. Cicoira, C. FO Graeffa, and C. Santato, some of the supplementary 

results of the article were published in Journal of Materials Chemistry C (2016) “Melanin-based 

flexible supercapacitors” by P. Kumar, E. Di Mauro, S. Zhang, A. Pezzella, F. Soavi, C. Santato 

and F. Cicoira, electrochemistry part of coauthored article was published in Chemistry of 

Materials (2015) “Protonic and electronic transport in hydrated thin films of the pigment 

eumelanin” J. Wünsche, Y. Deng, P. Kumar, E. Di Mauro, E. Josberger, J. Sayago, A. Pezzella, 

F. Soavi, F. Cicoira, M. Rolandi and C. Santato. 

  

As we discussed in the chapter 4, biopigment eumelanin is composed of chemically 

heterogeneous macromolecules based on the 5,6-dihydroxyindole (DHI) and 5,6-

dihydroxyindole-2-carboxylic acid (DHICA) building blocks and their various redox forms. The 

building blocks are randomly cross-linked to form planar sheets, stacked through aromatic π-

interactions.[104,159] The molecular randomness in the arrangement of eumelanin challenges the 

scientific community to reveal the structure-electroactivity properties. Further, the gaining insight 

into the electrochemical properties of melanin-based electrodes can be beneficial to design 

eumelanin-based technologies for bioelectronics and sustainable electronics. In this chapter, 

eumelanins with three different synthetic routes were investigated. Namely, eumelanin obtained 

from Sigma Aldrich (which is synthesized through oxidation of tyrosine) is known as Sigma 

melanin, chemically controlled eumelanins,[210] obtained by the in situ polymerization of the 

DHI building blocks and DHICA building blocks are known as DHI melanin and DHICA 

melanin respectively. In addition, dimethyl sulfoxide (DMSO) functionalized DHI monomer is 

polymerized known as DMSO melanin has investigated. To shed light on possible redox 

processes at the eumelanin electrodes, cyclic voltammetry (CV) measurements were conducted 

on films of Sigma melanin, 5,6-dihydroxyindole (DHI) melanin and 5,6-dihydroxyindole-2-

carboxylic acid (DHICA) melanin and DMSO melanin in a conventional electrochemical cell. 
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There are three important aspects taken into consideration while investigating melanin for 

electrochemistry. 

i) Irreversible oxidation peaks during the first CV cycle  

ii) The electrochemical study of more controlled counter part of Sigma melanin i.e., DHI and 

DHICA melanin 

ii) The influence of reversible cationic binding property of two –OH groups of catechol (in Sigma 

melanin) through comparative electrochemical study of sigma melanin and DMSO melanin  

 

6.1 Electrochemical set-up 

Cyclic voltammetry (CV) was performed using a Versa STAT 3 potentiostat (Princeton Applied 

Research) in a three-electrode cell, where Mel/CP was the working electrode, Pt foil the counter 

electrode and Ag/AgCl(aq) the reference electrode. Galvanostatic charge/discharge cycles in the 

supercapacitor and micro-supercapacitor structures were performed using a Biologic VSP 300 

multichannel potentiostat. 

 

6.2 Irreversible oxidation peak 

Eumelanin thin films were deposited from a suspension of synthetic eumelanin (Sigma-Aldrich) 

in dimethyl sulfoxide (sonicated and filtered) by spin coating (1 min at 1000 rpm for 30 s at 4000 

rpm, 30 mg/mL suspension). Solutions of DHI and DHICA in methanol (30 mg/mL) were spin-

coated on ITO substrates using a rotation speed 2000 rpm for 1 minute and exposed under aerial 

polymerization using ammonia as a catalyst.  

Sigma melanin (eumelanin), and melanin with controlled chemical composition on ITO were 

explored as working electrodes for CV measurements in PBS buffer (0.01 M) of pH 7.4. An 

intense oxidation peak was observed for all the samples at about 0.5 V versus SCE (Figure 6.1). 

This peak has an irreversible character. The irreversibility of the oxidation peak likely originates 

from the covalent coupling (intramolecular reticulation) of the intermediate species formed at the 
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positive electrode. Indeed, radicals and quinone species of building blocks formed by the 

oxidation of DHI moieties are reactive and may undergo coupling processes with other radicals 

and nucleophilic counterparts.[113] 

 

 

Figure 6.1 Cyclic voltammetry of (a) Sigma melanin, (b) DHI melanin, (c) DHICA melanin on 

ITO substrates as working electrode, platinum foil and saturated calomel electrode as the counter 

and the reference electrodes, respectively. Nitrogen purged PBS buffer (0.01 M) of pH 7.4 is 

used as the electrolyte and a 50 mV s-1 scan rate is maintained. The cyclic voltammogram of ITO 

without melanin in PBS is represented in gray. Black arrows indicate the decrease in current 

density as a function of the number of cycles.[113] 

 

6.3 Melanin on carbon paper electrodes 

The capability of melanin to store charge was initially assessed by cyclic voltammetry, using 

electrodes consisting of melanin drop cast on conductive carbon paper (indicated henceforth with 

Mel/CP). 
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6.3.1 Fabrication of melanin electrodes on carbon paper (Mel/CP electrodes) 

A melanin suspension in DMSO at 3 mg/mL was prepared by mixing in a planetary mixer 

(Thinky ARM-310) at 2000 rpm for 30 min. Melanin with loading of 33.8 µg/cm2, (normalized 

with respect to the electrode footprint) were applied by drop-casting on carbon paper (CP, 

Spectracarb™ 2050A, 10 mils). After drop casting, the samples were dried at 50 °C under 

vacuum (ca. 40 mbar) for 2 hrs, to facilitate DMSO removal. The area of electrodes Mel/CP is 

0.4 cm2. 

 

Figure 6.2 Cyclic voltammograms (first three cycles) of a Mel/CP electrode (33.8 µg/cm2 

melanin loading, normalized over the electrode footprint) in NH4CH3COO(aq) at pH 5.5, at 50 

mV/s. A broad anodic peak, with irreversible characteristics, is observed during the first cycle of 

the cyclic voltammetry of Mel/CP. Pt foil used as counter electrode. 

 

Similar to melanin on ITO electrode, the irreversible oxidation peak is observed during the first 

cycle. However unlike ITO electrode, CP electrodes showed significant capacitive current. This 

is due to the porous nature and high surface area of CP electrodes. 
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The voltammetric current of Mel/CP electrodes has a linear dependence on the scan rate 

(i = C !"
!"

 , Fig. 1c and Fig. S2, where C is the capacitance) thus suggesting that the Mel/CP 

electrochemical behavior is pseudocapacitive as shown in the Figure 6.3. 

 

Figure 6.3 Anodic current at 0 V (versus Ag/AgCl) versus scan rate, obtained from the cyclic 

voltammograms of Mel/CP with 33.8 µg/cm2 melanin loading in NH4CH3COO(aq) pH 5.5. 

 

 
Figure 6.4 Cycling stability of 33.8 µg/cm2 Mel/CP in NH4CH3COO(aq) pH 5.5 at 50 mV/s. (a) 

1,000 voltammetric cycles and (b) cyclic voltammograms extracted from (a) every 100 cycles.  
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The cycling stability of Mel/CP (with 33.8 µg/cm2 loading) in NH4CH3COO(aq) at pH 5.5 was 

investigated (Figure 6.4). The values of the capacitance calculated for the 2nd cycle and 1,000th 

cycle are 1.98 mF/cm2 (58.7 F/g) and 1.46 mF/cm2 (43.3 F/g), i.e. a 26 % loss in the capacitance 

is observed over cycling. 

6.3.2 The influence of aqueous electrolytes on the performance of Mel/CP electrodes 

In addition to the NH4CH3COO(aq) at pH 5.5 electrolyte, aqueous sodium sulfate at pH 5.5, 

phosphate buffer saline at pH 7.4 and ammonia buffer at pH 10 were investigated (Figure 6.5). 

From the comparison of the electrochemical behavior in different electrolytes, within a pH range 

compatible with the chemical stability of melanin (Figure 6.5d) we deduced that the highest 

response is achieved for NH4CH3COO(aq) pH 5.5, in agreement with the well-established proton 

conduction properties of melanin. 

The cathodic wave observed below -0.2 V vs. Ag/AgCl in ammonia buffer pH 10 (Fig. 6.5c) can 

be partly attributed to the reduction of O2 possibly present in limited amount in our N2 degassed 

cell.[193, 194] The electrocatalytic effect of hydroquinone species on O2 reduction in alkaline 

solutions has already been reported.[195]Therefore the measurements performed at pH 10 might 

lead to an overestimation of the capacitance. 
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Figure 6.5 Cyclic voltammograms at different scan rates of Mel/CP electrodes (33.8 µg/cm2 

loading of melanin) in (a) sodium sulfate at pH 5.5, (b) phosphate buffered saline at pH 7.4 and 

(c) ammonia buffer at pH 10 (see Experimental in main text). Geometric size of samples 0.4 cm2. 

(d) Cyclic voltammograms of Mel/CP electrodes (33.8 µg/cm2 loading of melanin) at 100 mV/s. 

 

6.4 Sigma melanin comparison with DMSO melanins 

A comparative study was performed to gain insight on the electrochemical activity of DMSO 

melanin with respect to the commercially available, non-derivatized, Sigma melanin, prepared by 

oxidation of tyrosine with hydrogen peroxide. Similarly, The oxidation of L-DOPA with benzoyl 

peroxide in DMSO leads to the synthesis of DMSO melanin, with good solubility in DMSO, 

functional for the production of high quality films. Increasing the temperature during the 

synthesis of the DMSO melanin significantly increases the reaction rate and induces the 

decarboxylation of DHICA, thus increasing the number of positions available in the molecule for 

polymerization.  
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Figure 6.6 Building blocks of DMSO melanins.[212] 

 

To gain insight into the electron transfer properties of Sigma melanin, DMSO melanin RT and 

DMSO melanin 100 °C, their electrochemical behavior was investigated by cyclic voltammetry. 

Cyclic voltammetry measurements were performed using Mel/CP working electrodes fabricated 

using Sigma melanin, DMSO melanin synthesized in room temperature (DMSO melanin RT) 

melanin synthesized at 100 °C (DMSO melanin 100 °C). Aqueous Ag/AgCl as a RE, Pt foil as 

CE and electrolyte NH4CH3COO(aq) pH 5.5 were considered for the investigation.  
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Figure 6.7 Cyclic voltammograms (total 10 cycles) of (a) Sigma melanin (b) DMSO melanin RT 

and (c) DMSO melanin 100 °C and (d) capacitance values evaluated from the CV. 120 µg/ cm2 of 

melanin on carbon paper is the loading in the working electrode. NH4CH3COO(aq) 7.5 M (pH 5.5) 

was used an electrolyte, carbon paper strips were used also as counter electrode; scan rate 50 

mV/s; the geometric area of the working electrode was 0.25 cm2. 

 

During the first two to three voltammetric cycles, a broad, irreversible anodic response has 

observed between 0.25 and 0.9 V vs. Ag/AgCl, irrespective of thee type of melanin and 

electrolyte (Figure 6.7). The cyclic voltammograms of DMSO melanin RT and DMSO melanin 

100 °C show a shoulder (for the first three to four cycles) located at about 0.4 V vs. Ag/AgCl 

(Figure 6.7b & 6.7c). The difference in the cyclic voltammograms of DMSO melanins with 

respect to Sigma is probably due to the sulfonate termination. The contribution due to the 

possible oxidation of species susceptible to polymerization at the positive electrode, already 

discussed for Sigma melanin, has to be contemplated even for the DMSO melanins. 

(a) (b) 

(c) (d) 
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The quinone moieties present in the DHI and DHICA building blocks are known for their 

reversible cation binding from the electrolyte and has the ability to store 2e−/2H+ per quinone, are 

responsible for pseudocapacitive behavior eumelanin. In DMSO melanin, the redox activity is 

expected to deteriorate due to functionalization of building blocks by DMSO. Interestingly, the 

measured capacitances of first 10 CV cycles are higher for DMSO melanins than Sigma melanin 

(Figure 6.7d). This may be due to fact that, sulfonate and sulfonamide groups of DMSO melanin 

also contributed for monovalent cation binding from the electrolyte. Further investigation will be 

needed to understand this phenomenon. 
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CHAPTER 7 GENERAL DISCUSSION 

During my Ph.D., I explored the polymers PEDOT:PSS and eumelanin as materials featuring 

biocompatibility, for electronics and energy storage. This chapter is a general discussion of the 

results achieved in during the PhD.  

From the point of view of their molecular structures, there are both differences and analogies 

between PEDOT:PSS and melanin. PEDOT:PSS is a thiophene-based conducting polymer, 

whereas eumelanin is made up of indole-based building blocks. PEDOT:PSS is a well-known p-

type conducting polymer with electrical conductivity typically ranging from  100-1000 S/cm. On 

the other hand, eumelanin is believed to be a mixed electronic-ionic conductor rather than an 

amorphous semiconductor, and its electrical conductivity is pretty low (in the order of 10-11-10-5 

S/cm). For PEDOT:PSS, co-solvents, such as ethylene glycol, glycerol, DMSO need to be added 

to achieve high conductivity. The conductivity of melanin increases upon hydration of the 

biopolymer. The details of the molecular structure of PEDOT:PSS are well known while those of 

eumelanin are still under debate. PEDOT:PSS is essentially an ionomer where electrostatic 

interactions between PEDOT and PSS, hold PEDOT:PSS together. The intrinsic conductivity of 

PEDOT:PSS depends, among others, on the number of PSS polyanions electrostatically 

interacting with the PEDOT chain. The diethoxy substituents makes PEDOT chemically stable, 

due to the fact that the diethoxy substituents replace extra hydrogen atoms, likely responsible for 

synthetic defects. The electron donating nature of the pendant oxygen atoms of diethoxy 

substituents facilitate the delocalization of π conjugated system of doped state of PEDOT, which 

not only improves the stability of PEDOT:PSS against the atmospheric oxygen and humidity but 

also improves the conductivity of the polymer. 

Martin et al., observed that there are certain structural similarities between PEDOT and 

eumelanin. The diethoxy groups present on PEDOT chains resembles the catechol groups of 

eumelanin building blocks. Furthermore, the delocalization of π electrons in the carbon backbone 

of eumelanin is similar to that featured by PEDOT. (Figure 7.1).[44, 213] 
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Figure 7.1 (a) The repeating unit of eumelanin, a natural conjugated polymer pigment. (b) 

Synthetic PEDOT polymer. Similarities between melanin and PEDOT highlighted in red and 

green colors.[213] 

 

PEDOT:PSS can be doped/dedoped electrochemically, by electrolyte ions. For instance, cations 

will dedope PEDOT:PSS whereas anions will dope it. During my PhD, I showed  that thin (50 

nm) films of PEDOT:PSS can be doped more easily than thicker (500 nm) ones. This effect is 

more pronounced in case of unconventional micellar electrolytes, for instance 

cetyltrimethylammonium bromide (CTAB). Furthermore, the rate of ion diffusion into the 

PEDOT:PSS film depends on the film thickness and size of the electrolyte ions. I observed a 

slower diffusion rate for bulky ions in thick PEDOT:PSS films. Furthermore, I observed the 

electrocatalytical activity of PEDOT:PSS for the oxygen reduction reaction, more pronounced in 

the case of electrolytes containing higher concentrations of dissolved oxygen. The investigations 

of high surface area carbon as the gate electrode leads better OECT performance with respect to 

PEDOT:PSS- and metal-based gate electrodes. 

 

The building blocks 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid 

(DHICA) of eumelanin are known for their various reversible redox forms (hydroquinone, 

semiquinone, quinone). Besides ionic binding sites specific to the redox forms of eumelanin, 

amine and carboxylic groups (in DHICA) are also sites with pronounced ionic binding affinity. 

During our fundamental studies about the charge transfer (redox) properties of eumelanin, I 

discovered the charge storage property of eumelanin, exploited to demonstrate supercapacitors 

based on eumelanin electrodes. 
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CHAPTER 8 CONCLUSION AND PERSPECTIVES 

This Ph.D. thesis in the field of organic electronic polymers with mixed electronic/ionic 

conduction led to a number of successful advancements on: i) the influence of the thickness of 

PEDOT:PSS channel films and electrolyte ions on the performance of organic electrochemical 

transistors (OECTs); ii) the influence of high specific surface area activated carbon (AC) as a 

gate material on OECT performance; iii) the discovery of the ion storage properties of the 

biopolymer melanin (that permitted the fabrication of supercapacitors (SCs) and micro-

supercapacitors (µSCs) based on melanin electrodes). The work presented in this Ph.D. thesis 

contributes to demonstrate the high performance OECT and to identify the suitable biopolymers 

for electrochemical energy storage.  

 

Going through the key results collected during this Ph.D. work on the effect of influence of the 

thickness of the PEDOT:PSS channel, electrolyte ions (NaCl and CTAB) and dissolved O2 on the 

performance of OECTs, we could organize the finding as follows:  

(i) higher ON/OFF ratios are achieved when CTAB is used as the electrolyte;  

(ii) thin PEDOT:PSS films have superior performance as OECT channels, in terms of current 

modulation, compared to their thicker counterpart, despite their lower electrical conductivity;  

(iii) the effect of the thickness on the modulation of the current is more pronounced when CTAB 

is used as an electrolyte.  

Using the cyclic voltammetry (CV) electrochemical technique, we detected a significant effect of 

dissolved O2 on the voltammetric current of PEDOT:PSS, particularly in the presence of a NaCl 

electrolyte. The dissolved oxygen might oxidize PEDOT:PSS during the electrochemical 

dedoping process, thus leading to lower ON/OFF ratios. On the other hand, using electrochemical 

impedance spectroscopy, we found that the doping/dedoping process in PEDOT:PSS becomes 

slower at higher film thicknesses and in the presence of bulky ions. 

Furthermore, the investigation of PEDOT:PSS OECT using high specific surface area of 1000-

2000 m2/g AC gate electrodes  revealed that higher current modulations can be achieved at 

relatively low electrical biases (0.6 V), compared to PEDOT:PSS gate electrodes of comparable 

geometric area. The gate current observed using AC in OECT increases with increasing the 
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geometric surface area of the AC gate, but the current modulation stays the same.  

 

In melanin supercapacitors, we demonstrated supercapacitors and flexible micro-supercapacitors 

working in aqueous electrolytes. The melanin electrodes were fabricated at room temperature, by 

facile solution processing, without the need for high-temperature treatment, unlike the large 

majority of supercapacitors based on biopolymer-derived electrodes reported to date. In slightly 

acidic media, a gravimetric specific capacitance as high as 167 F/g (specific capacity of 24 

mAh/g) was observed for melanin-based electrodes on carbon paper. A maximum power density 

of up to 20 mW/cm2 was deduced for the corresponding melanin supercapacitors. Capitalizing on 

these results, we demonstrated binder-free micro-supercapacitors fabricated on flexible 

polyethylene terephthalate (PET). The microfabrication was performed by unconventional 

lithography based on Parylene C patterning. Our flexible micro-supercapacitors showed a power 

density of 5.24 mW/cm2 at an energy density of 0.44 mJ/cm2 and a specific capacitance of 10.8 

F/g (about 4.3 mF/cm2, i.e. 1.7 F/cm3). Micro-supercapacitors were operated at fast electrode 

potential scan rates (up to 10 V/s). Melanin-based micro-supercapacitors may serve in 

biocompatible and biodegradable power sources for applications such as implantable medical 

devices, wearable electronics and ubiquitous sensor networks.  

 

The results generated by this PhD thesis permits to conceive a number of potential developments. 

To further understand the doping/dedoping mechanism of OECT, we could explore PEDOT 

making use of the non-polymeric dopant tosylate, through the in-situ Vapor Phase 

Polymerization (VPP) technique. Furthermore, by the combination of VPP and the versatile 

electrosopinning technique we could fabricate OECT based on PEDOT:Tosylate nanofibers. 

High surface area nanofiber channels are expected to lead to better OECT modulation and 

mechanical stability on various substrates, with respect to spin-coated film channels. 

Several possibilities are foreseen to further improve the capacitance and cyclic stability of the 

melanin supercapacitors. In future work, the performance of melanin micro-supercapacitors could 

be improved by: i) using interdigitated finger structures with tuned electrode width, length, 

interelectrode distance and number of fingers and, ii) improving the formulation of the melanin 

slurry, to optimize eumelanin loading. To achieve a better understanding about the redox sites 
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active during the operation of the micro- supercapacitors, characterizing the electrochemical 

properties of chemically controlled melanins, e.g. obtained by the solid state polymerization of 

the DHI building blocks is a future perspective. Our work in supercapacitors paves the way to the 

fabrication of biodegradable/bioresorbable micro-supercapacitors using substrates such as 

poly(lactic-co-glycolic acid) (PLGA) or shellac and current collectors based on magnesium or 

iron alloys.  
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APPENDIX A –SUPPORTING INFORMATION FOR ARTICLE MELANIN-BASED 

FLEXIBLE SUPERCAPACITORS 

Prajwal Kumar, Eduardo Di Mauro, Shiming Zhang, Alessandro Pezzella, Francesca Soavi, 

Clara Santato* and Fabio Cicoira* 

 

 

 

 

Figure S1 Specific capacitance and specific capacity vs. scan rate extracted from the cyclic 

voltammograms for Mel/CP electrodes (33.8 µg/cm2 melanin loading) in (a) sodium sulfate pH 

5.5, (b) phosphate buffer saline at pH 7.4 and (c) ammonia buffer at pH 10.
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Figure S2 Trend of the capacitance density of the Mel/CP supercapacitor (67.5 µg/cm2 Mel/CP) 

at 2.5 mA/cm2 (a) during 100,000 cycles (b) during the first 1000 cycles, (c) during the first 200 

cycles. Cut off voltages: 0 V to 0.75 V. 

 

The cycling stability of a supercapacitor using electrodes with 67.5 µg/cm2 loading was tested at 

2.5 mA/cm2. A capacitance retention of 75% was observed during the first 1,000 cycles; 

afterwards, the capacitance did not dramatically change over the following 105 cycles. The results 

point to the need of a stable and efficient electrical contact between the melanin and the current 

collector. These results are partly attributable to an aging process in the melanin.5,6 
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Figure S3 Overlay XPS spectra after charging and discharging steps carried out at the melanin-

based positive electrode in micro-supercapacitor configuration, for C1s, O1s and N1s. For 

experimental details on sample preparation and charging and discharging steps please refer to 

Table S1 and Experimental section in the Chapter 4. 

 
 

Figure S4. XPS spectra of the melanin-based positive electrode in micro-supercapacitor 

configuration, for C1s, O1s, N1s and Au4f after the charging step. For experimental details on 

sample preparation and the charging step please refer to Table S1 and Experimental section in the 

Chapter 4. The assignment of the individual components used for peak fitting can be found in 

Table S1. 
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Figure S5 XPS spectra of the melanin-based positive electrode in micro-supercapacitor 

configuration, for C1s, O1s, N1s and Au4f after the discharging step. For experimental details on 

sample preparation and the charging step please refer to Table S1 and Experimental section of 

chapter 4. The assignment of the individual components used for peak fitting can be found in 

Table S1. 
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Figure S6 Cyclic voltammograms of melanin micro-supercapacitors (200 µg/cm2 melanin loading 

on each electrode) in NH4CH3COO(aq) at pH 5.5: (a) at relatively slow and (b) fast scan rates. (c) 

Areal capacitance and volumetric capacitance vs. scan rate obtained from Figures S10a and S10b 

taking into account that the total area of the two electrodes is 0.16 cm2 and the corresponding 

volume is about 2×10-4 cm3 (see Experimental). 



113 

 

 
Figure S7 Electrochemical Impedance Spectroscopy (EIS) of melanin micro-supercapacitors: (a) 

Nyquist plots and (b) Bode plots in terms of capacitance normalized to the value obtained at 10 

mHz (C/C10mHz) from EIS measurements in the frequency range 100 kHz - 10−4 kHz with an AC 

amplitude of 10 mV, at open circuit potential. The loading at each electrode of area 0.08 cm2 is 

~200 µg/cm2. The supercapacitor ESR evaluated by the Zr intercept of the Nyquist plot at 100 

kHz is 4.5 Ω cm2. 
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Figure S8 (a) Capacitance of melanin micro-supercapacitors (200 µg/cm2 loading at each 

electrode, NH4CH3COO(aq) pH 5.5) from galvanostatic discharges at 0.625, 1.25, 6.25, 12.50 and 

25 mA/cm2. Cut off voltages of 0 V to 0.75 V. (b) Ragone plot extracted from the galvanostatic 

discharge cycles at the above mentioned current densities taking into account that the total area of 

the two electrodes is 0.16 cm2 and the corresponding total volume is about 2×10-4 cm3. 
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Figure S9 Trend of the capacitance density of the melanin micro-supercapacitors (200 µg/cm2 

loading at each electrode, NH4CH3COO(aq) pH 5.5 electrolyte) during the first 20,000 

galvanostatic charge–discharge cycles at 1.25 mA/cm2. Cut off voltages: 0 V to 0.75 V; area of 

each electrode: 0.08 cm2. We observed 61% retention in the capacitance from the 500th cycle to 

the 20,000th cycle. 
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Figure S10 Cyclic voltammograms of flexible melanin micro-supercapacitors in NH4CH3COO(aq) 

pH 5.5, at a scan rate of 50 mV/s, without bending (black curve) and with 50% bending (red 

curve). The voltammograms indicate that the micro-supercapacitor is significantly stable at least 

up to 50% bending (as defined in the figure caption of Scheme S2).  
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Figure S11 Cyclic voltammograms of carbon Super C-65 and melanin/ Super C-65 (4/1 weight 

ratio) electrodes in NH4CH3COO(aq) pH 5.5, at a scan rate of 50 mV/s. Pt foil and Ag/AgCl(aq) 

were used as counter and reference electrodes. The voltammograms show the higher capacitance 

of melanin/ Super C-65 compared to carbon Super C-65. 
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Table S1 Electrode materials derived from natural sources for supercapacitors (please refer to 

references cited right below this Table). 

 

Electrode 

material 

Surfa

ce 

area 

(m2/g

) 

Highest 

Processing 

Temperatur

e 

 (˙C) 

Electrolyte 

Electrode 

capacitance 

(F/g) 

 

Stability 

(Capacitance 

retention 

over cycling) 

 

Ref  

PEDOT/Li

gnin 

 

NA RT 0.1 0.1 M HClO4/ 
0.2 acetonitrile 

170 (GCD) 

a 

83% after 

1000 cycles 
7 

Ppy/Lignin

-sulfonate 
NA RT 0.1 HClO4 

1000 

(GCD) 
NA 8 

Ppy/Lignos

ulfo-nate, 

anthra-

quinone 

sulfonate 

NA  

RT 

(electro-

polymerizat

ion) 

0.1 M HClO4 

 

250-500 

(GCD) 

 

88-98% after  

200 cycles 

9 

Carbon 

derived 

from 

cellulose, 

potato 

starch, 

eucalyptus 

wood saw 

starch 

2100

-

2900 

 

Hydrother

mal 

carbonizati

on at 250-

300 and 

activation 

700-800 

1 M TEABF4 

in acetonitrile 
236 (CV) b NA 10 

Lignin 

confined 
NA RT 0.1 M HClO4  

432 (CV) 

203 (GCD) 

96% after 

3000 cycles 
11 
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on reduced 

graphene 

oxide  

 

 

Carbon-

derived 

from 

cellulose  

346 1000 5 M KCl 
89 (CV) 

107 (GCD) 

90% after 

2000 cycles 
12 

Porous 

carbon 

foams 

(from 

banana 

peel) 

1650 1000 6 M KOH 206 (GCD) 
98% after 

1000 cycles 
13 

Biochar 

derived 

from corn 

cob 

(wrapped 

in a Au 

wire) 

543.7 900 0.5M H2SO4 221 (GCD) 
97% after 

5000 cycles 
14 

CNTs/DN

A 

hydrogel/ 

PANI 

NA RT 
1M Na2SO4, 

1M H2SO4 
146c (CGD) 

90% after 

1000 cycles 
15 

Carbon 

derived 

from 

chicken 

feathers 

1839 800 1M H2SO4 302 (GCD) 
84% after 

5000 cycles 
16 
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Carbon 

derived 

from dead 

neem and 

Ashoka 

leaves 

1230 1000  1 M H2SO4 400 (GCD) NA 17 

Carbon 

derived 

from 

chitosan 

2200 800 
0.5 M K2SO4 

 
231 (GCD) 

99% after 

3000 cycles 
18 

Carbon 

derived 

from 

bacterial 

cellulose 

(BC) 

491 900 

BC–H3PO4, 

PVA–H3PO4 

gel  

241 (GCD) 
93% after 

10000 cycles 
19 

Carbon 

from 

spruce and 

corn cob 

hydrolyzed

, PTFE and 

acetylene 

black 

2300 

 

Hydrother

mal 

carbonizati

on at 250-

300 

activation 

at 700 

0.5 M H2SO4 291 (CV) NA 20 

Carbon 

from 

sodium 

alginate, 

PVDF 

273 600 1 M H2SO4  

 

198 (CV) 

 

85% after 

10000 cycles 
21 
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Carbon 

from 

Lessonia 

Nigrescens 

seaweed 

800 

 

600 -900 

 

 

1 M H2SO4  

 

264  (GCD) 

capacitance 

loss 11% 

after 10000 

cycles 

22 

 

Carbon 

from 

horseweed 

1500 1050 6 M KOH 184 (GCD) 
97.6 % after 

1000 cycles 
23 

Carbon 

from 

gelatin 

440 700 
6 M KOH  

 
220 (GCD) NA 

24 

 

Carbon 

microtubes 

from 

willow 

catkins 

1000 700 
6 M KOH 

 
306 (GCD) NA 25 

Carbon 

from rice 

husks 

1886 850 3 M KCl 
210 (GCD) 

 
NA 26 

Carbon 

from 

firewood 

1100 900 

 

0.5 M H2SO4  

 

140 (CV) NA 27 

Carbon 

from 

pistachio 

shells 

1100 780 

 

0.5 M H2SO4  

 

120 (CV) NA 28 

Carbon 

from 

firewood 

1064 780 
0.5 M H2SO4  

 
180 (CV) NA 28 

Carbon 

from 
1100 800 

 

1 M Na2SO4  
75 (GCD) 

95% after 

500 cycles 
29 
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banana 

fibers 

 

Carbon 

from waste 

coffee 

beans 

1000 900 
1 M H2SO4  

 
368 (GCD) 

95% after 

10000 cycles 
30 

Carbon 

from sugar 

cane 

bagasse 

1800 900 
1 M H2SO4  

 
300 (GCD) 

77-83% after 

5000 cycles 
31 

Carbon 

from 

cassava 

peel waste 

1350 800 
0.5 M H2SO4  

 
264 (GCD) NA 32 

Carbon 

from 

sunflower 

seed shell 

2500 900 

 

30 wt% KOH  

 

311 (GCD) NA 33 

Carbon 

from argan 

seed shell 

2100 800 
0.5 M H2SO4  

 
358 (CV) NA 34 

Carbon 

from 

sucrose 

2340 1200 1 M H2SO4 280 (GCD) 
100% after 

10000 cycles 
35 

Melanin  NA RT 

7.5 M 

NH4CH3COO 

pH 5.5 

 

167 (CV) 

 

 

 

75% after 

1000 cycles 

(GCD) 

Thi

s 

stud

y 

 

a GCD, Galvanostatic charge discharge. b CV, Cyclic Voltammetry. The two acronyms indicate 
the techniques used to deduce the electrode capacitance. c The capacitance value is for the 
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supercapacitor and not the electrode. 

Table S1 includes a number of reports on supercapacitors making use of electrodes obtained from 

natural materials. It is clear from Table S1 that, quite often, the natural materials are pyrolyzed or 

are mixed to conducting polymers to obtain the “real” electrode material. The natural materials, 

the surface area of the electrode material (when available), the highest processing temperature, 

the electrolyte where the supercapacitor behavior was characterized and the value of the electrode 

capacitance (obtained by cyclic voltammetry, CV, or galvanostatic charge discharge, GCD) are 

reported. 

 

Table S1 shows that natural materials have already been used for the fabrication of 

supercapacitor electrodes. Nevertheless, unlike these natural materials, our melanin can be 

simply deposited by solution processing at room temperature and does not require any thermal 

treatment or further mixing. Consequently, our melanin exhibits a great advantage over natural 

materials investigated to date. All in all, the biocompatibility and biodegradability featured by 

melanin, together with its easy availability, make it an extremely attractive material for 

environmentally and human friendly energy storage solutions. The main novelty of our work is 

the discovery of a new natural material for supercapacitor electrodes, besides well-established 

materials, such as activated carbons, carbon nanotubes, graphene, metal oxides and conducting 

polymers.  
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Table S2 Identification of chemical bonding from high resolution XPS scans in melanin-

based electrodes after charging and discharging steps, in micro-supercapacitor configuration. 

 

 

BE 

(eV) 
Identification 

Atomic % 
Charging 

 

28.4 

8.0 

12.2 

6.4 

4.8 

0.9 

0.6 

3.1 

 

11.0 

15.7 

4.7 

2.4 

0.2 

34.5 

5.5 

11.0 

5.3 

Discharging 
Total 

over 

100% 

Each 

element 

normalized 

to 100% 

Total 

over 

100% 

Each 

element 

normalized 

to 100% 
Au(4f7/2) 

 

84.1 Au0 0.2 100.0   
84.2   0.2 100.0 

       

C(1s) 

 

284.6 C=C and C-C 34.4 54.8 42.2 66.5 
285.4 C-N 6.0 9.6 4.5 7.1 
286.2 C-O 10.8 17.2 8.3 13.1 
287.4 C=O 5.2 8.3 3.2 5.1 
288.9 O-C=O 5.4 8.7 4.9 7.6 
291.3 π→π* of C=C 0.8 1.3 0.4 0.6 

       N(1s) 

 

399.5 Amine N-H 1.1 27.7 0.9 32.1 
400.4 Aromatic C-N 2.1 54.8 1.6 53.6 
402.0 C-N+ and/or N+ 0.7 17.5 0.4 14.4 

       

O(1s) 

 

531.7 C=O (aromatic) 10.6 32.0 8.5 25.4 

532.5 
C-O (aliphatic), 

C=O (aliphatic), 

Si-O 

16.4 49.3 19.3 57.7 

533.5 

O**-C=O 

(aliphatic and 

aromatic), C-O 

aromatic 

6.2 18.7 5.6 16.9 

 

**indicates that the identification pertains to this atom 

 

Samples were prepared by initially drop casting a mixture of conductive carbon Super C-65 with 

a melanin suspension in DMSO, with a weight ratio 1/4. The electrode area was 0.08 cm2. We 

prepared two types of samples, i.e. after charging and discharging steps carried out 

galvanostatically in the electrolyte NH4CH3COO(aq) pH 5.5. To prepare the samples after 

charging, a micro-supercapacitor pre-oxidized by cyclic voltammetry was galvanostatically 

charged at 0.25 mA/cm2 for 15 minutes. To prepare the samples after discharging, a micro-
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supercapacitor pre-oxidized by cyclic voltammetry was galvanostatically charged at 0.25 mA/cm2 

for 15 minutes, followed by galvanostatic discharge at -0.25 mA/cm2 for 15 minutes. Samples 

were rinsed gently in water and placed under vacuum (at 30 mbar) for 1 hr prior to the XPS 

analysis. 
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Scheme S1 Micro-supercapacitor geometry. 
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Scheme S2 Micro-supercapacitor bending. The bending percentage is defined as [(L-

L’)/L]×100%. 

L and L’ are the initial length and the length under bending, respectively. 
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