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Summary: 

The environmental impacts of data centers that provide Information and Communication 

Technologies (ICT) services are strongly related to electricity generation. With the increasing 

use of ICT, many data centers are expected to be built causing more absolute impacts on the 

environment. As electricity distribution networks are very complex and dynamic systems, an 

environmental evaluation of future data centers is uncertain. This study proposes a new approach 

to investigate the consequences of future data center deployment in Canada and optimize this 

deployment based on the Energy 2020 techno-economic model in combination with life cycle 

assessment methodology (LCA). The method determines specific electricity sources that will 

power the future Canadian data centers and computes related environmental impacts based on 

several indicators. In case study scenarios, the largest deployment of data centers leads to the 

smallest impact per MW of data centers for all of the environmental indicators. It is found that an 



increase in power demand by data centers would lead to a reduction in electricity exports to the 

US, driving the US to generate more electricity to meet its energy demand. Since electricity 

generation in the US is more polluting than in Canada, the deployment of data centers in Canada 

is indirectly linked to an increase in overall environmental impacts. However, while an optimal 

solution should be found to mitigate global GHG emissions, it is not clear whether the 

environmental burden related to US electricity generation should be attributed to the Canadian 

data centers. 

 Introduction 

Information and communication technologies (ICT) are increasingly used and becoming 

ubiquitous in social infrastructures (DNV 2014). While providing useful services, ICT are also 

responsible for a growing share of global electricity consumption (over 4% of the world’s 

electricity consumption in 2012 (Van Heddeghem et al. 2014) and the subsequent impacts on the 

environment, including climate change. ICT was estimated to contribute around 2% of 

anthropogenic greenhouse gas (GHG) emissions in 2011 (Global e-Sustainability Initiative and 

The Boston Consuting Group 2012). Among the ICT infrastructures and equipment, data centers 

represent roughly one-third of the total ICT electricity consumption (Van Heddeghem et al. 

2014). Unlike end-user devices and transmission networks, which are spatially widely spread, 

data centers have a very localized power demand and are very energy-intensive. The 

environmental impacts of electricity generation depend on the type of power generation 

technology and each region uses a different combination of technologies to generate electricity. 

Thus, the environmental impacts per kilowatt-hour (kWh) differ from one region to the next 

(Laurent and Espinosa 2015). Since electricity consumption is an important source of 

environmental impacts in the life cycle of a data center (Arushanyan et al. 2014), its 



environmental footprint is highly correlated to its geographic location. Therefore, to properly 

evaluate the environmental footprint of data centers, it is critically important to identify the 

sources of electricity that power them. While it may be simple (when data are available) to 

model the technology mix generating electricity in a specific region at the present time (Maurice 

2015; Dandres et al. 2014b), it is more challenging to predict the real future electricity 

production. Indeed, electric networks are in constant evolution to face future power demands. 

New power plants are regularly added to the electric grid while old ones are decommissioned. 

Moreover, electric networks are interconnected, and interconnection capacities may also change 

over time depending on import and export needs. Also, with the threat of climate change, 

renewable energy sources are increasingly being integrated into electric grids. Consequently, 

environmental impacts per kWh of electricity consumed in a region are expected to change 

significantly in the future. Finally, since data centers are very energy intensive and their global 

power demand keeps growing, they may have an impact on the future evolution of electric grids. 

This article therefore presents a methodology to evaluate environmental impacts related to long-

term changes in regional power demand. This innovative methodology is based on the sequential 

use of a techno-economic model of the North American energy sector with life cycle assessment 

(LCA) methodology. This methodology is illustrated in a case study that addresses the 

environmental impacts of future data centers deployed in Canada and supplied by the electric 

grid. In this case study, the methodology is used to investigate and optimize the future 

deployment of data centers in Canada by minimizing environmental impacts related to electricity 

generation in Canada and the United States of America (US). 

 Presentation of the case study 



Canada is an attractive region for data centers: the price of electricity is lower than in 

many other countries (Shrinkthatfootprint 2014), around two third of electricity is generated 

from renewable energy (International Energy Agency 2015) and available cold air may be used 

for free cooling (The Green Grid 2012). The last two arguments have become more important in 

the recent year due to the increasing environmental pressure on data centers. Therefore, it can be 

anticipated an acceleration of data center installation in Canada in the coming years. The change 

is already perceptible, as Ericsson (McNevin 2013), OVH (Miller 2014), Microsoft (Sverdlik 

2015) and Amazon (Barr 2016) all recently announced their plans to implement large data 

centers in Canada. However, this new trend is not necessarily represented in business as usual 

scenarios of energy demand. Thus, this case study assess the environmental impacts of electricity 

generation in the context of an accelerating power demand by Canadian data centers in the 2015–

2030 period. In Canada, the electricity consumed by data centers represents approximately 1% of 

the national electricity consumption (Natural Resources Canada 2016; DCD intelligence 2013). 

This case study explores situations in which the Canadian data centers’ demand would reach up 

to 2% of the national electricity demand by 2030 instead of remaining around 1%. It is 

anticipated that the consequences on the electric grid of deploying additional data centers are not 

linear. Therefore, several prospective data center deployment scenarios were studied. These five 

scenarios assume different future power demands of additional data centers: from 30 to 750 MW 

in 2030, as presented in figure 1.  

<Figure 1> 

Figure 1: Scenarios of future power demands of additional data centers 

These scenarios were developed in the context of a business as usual (BAU) scenario 

representing the global evolution of the Canadian energy demand by 2030. The BAU scenario 



was initially developed by the Canadian government (Environment Canada 2013) and considers 

an increase in the power demand of the "Information and cultural industries" (that includes 

Canadian data centers (Statistics Canada 2007)) of 19% (from 8.0 TWh to 9.5 TWh) over 2015–

2030 with an increase in national demand of  29% in the same period. The five scenarios assume 

more significant data center power demand growths resulting in a greater increase in the 

"Information and cultural industries" demand: 22%, 24%, 30%, 40% and 75% over 2015–2030. 

Other aspects of the BAU scenario are presented in the Energy 2020 section. The resulting 

electric grid mix of each scenario was modeled using a techno-economic model, as presented in 

the methodology. 

It is assumed that the data centers are built in the Canadian provinces with the greatest 

gross domestic product, population and electric power generation: Ontario, Québec and Alberta 

(Statistics Canada 2013). Considering that Ontario’s gross domestic product is roughly twice as 

high as those for Quebec and Alberta (which are quite similar), it was assumed that 50% of the 

data centers are built in Ontario, 25% in Québec and 25% in Alberta. These provinces have very 

different electric grid mixes: Ontario uses mainly nuclear power, hydroelectricity and natural 

gas; Québec uses almost exclusively hydroelectricity and Alberta mostly generates electricity 

from coal and natural gas (Statistics Canada 2014). In terms of the overall electricity consumed 

per data center, it was considered that the data centers operate constantly at 66% of their 

capacity, like the high-end servers in Koomey (2007). 

 Method 

This study combines LCA methodology with the use of the Energy 2020 techno-

economic model. 

 LCA 



LCA is a method designed to study the environmental impacts of products and services 

based on their life cycles. The methodology is defined in ISO standards (ISO 14040-14044) and 

remains under development since new products and new situations create new methodological 

needs. It is possible to distinguish between attributional and consequential LCA approaches, 

which have different objectives. The attributional LCA objective is to evaluate the environmental 

impacts of a product or service over its entire life cycle at a given time (Rebitzer et al. 2004). 

The consequential LCA (C-LCA) objective is to analyze the environmental impacts resulting 

from a change in the life cycle of a product or service (Ekvall and Weidema 2004; Weidema 

2003; Weidema et al. 1999). In this study, the C-LCA approach was followed. 

 Goal and scope 

The objective of this C-LCA is to model the environmental impacts of the use phase of 

new Canadian data centers built in the future. It was therefore necessary to identify the marginal 

sources of electricity, which may be defined as the sources of electricity that are exclusively 

affected by the additional Canadian data centers. Concretely, the marginal electricity is identified 

by the techno-economic model (see Energy 2020 section). 

The studied system is the entire North American energy sector because Canada is a net 

exporter of electricity to the US and it is anticipated these exports could be affected by power 

demands of future Canadian data centers. The functional unit is to provide electricity each year 

from 2015 to 2030 to the additional data centers, as defined in each prospective scenario (Fig. 1). 

 Inventory of elementary flows 

To compute the inventory of elementary flows corresponding to the functional unit, it is 

necessary to identify the electric sources that are expected to power the extra data centers in each 

scenario. As previously stated, electric networks are complex systems in constant evolution and 



their modeling in LCA is problematic (Astudillo et al. 2015; Lund et al. 2010; Messagie et al. 

2014; Roux et al. 2016; Soimakallio et al. 2011; Weber et al. 2009, 2010). Determining the 

electricity sources affected by changes in electricity demand remains challenging in C-LCA due 

to the uncertainty of the C-LCA approach (Mathiesen et al. 2009). Indeed, the identification of 

the affected technologies in C-LCA is usually based on current supply and demand elasticities 

and market trends. However, the identification process is uncertain because it can hardly capture 

the complexity of the real markets or the sudden changes they may face in the future. Moreover, 

the uncertainty of the identification process is greater when the temporal horizon of the study 

increases. An alternative approach to C-LCA is to model market effects with equilibrium 

economic models (Ekvall 2002). This approach has been adopted to study several topics: 

agriculture affected by biofuel demand (Kloverpris 2008; Kloverpris et al. 2010; Rajagopal 

2014), forestry affected by bioenergy demand (Earles et al. 2013) or energy generation under 

different scenarios (Igos et al. 2015; Pietrapertosa et al. 2009; Eriksson et al. 2007). While it is 

possible to make raw assumptions about the future of Canadian electricity generation over 2015–

2030, these assumptions would lead to uncertain results and hardly allow for the identification of 

specific power sources in each Canadian data center deployment scenario. An economic model 

was therefore preferred, the details of which are presented here.  

 Energy 2020 

Energy 2020 energy model (Systematic Solutions 2014) was chosen because it appears 

especially promising for a Canadian study. Details about the model are provided in 

supplementary material. 

The evolution of the global economy and demographics in 2015–2030 as well as the 2013 

energy policies and climate change mitigation plan are considered in Energy 2020 simulations 



through the use of a prospective scenario (the BAU scenario mentioned in the previous section) 

that includes assumptions on future economy. These assumptions are presented in table S1 in 

supplementary material. This BAU scenario already considers the evolution of the Canadian ICT 

sector. Therefore, the five data center deployment scenarios described in the previous section 

represent power demands that are independent and additional to the BAU scenario. The data 

centers are assumed to be entirely powered by the electric grid. 

To implement the additional power demand associated with the new data centers in each 

scenario, the capital energy requirement variable of the data processing, hosting and related 

services economic sector was adjusted exogenously in Energy 2020. The exogenous power 

demands of the data centers in each scenario are provided in table S2 in supplementary material. 

Six simulations were conducted: one for the BAU scenario and five for the case study scenarios.  

The outputs of each simulation are the quantities of energy generated each year in each 

region by each energy source (aggregated by technology). These outputs are reproduced in table 

S3 in supplementary material. The electric sources affected by data center deployment in each 

scenario were then evaluated by comparing the simulation results of each scenario with the 

simulation results of the BAU scenario. Given that economic and demographic growths are 

already accounted for in all scenarios, this approach makes it possible to isolate the impacts of 

the data centers on the electric sources. The amounts of electricity generated by each technology 

affected by data center deployment (i.e. the marginal electricity) in each scenario are presented in 

table S4 in supplementary material. 

 Mapping ecoinvent with Energy 2020 

The affected technologies identified by Energy 2020 were modeled with the ecoinvent 

database (version 3.2, (Weidema et al. 2013)) and Simapro (version 8.2.0.0, 



https://simapro.com). The list of ecoinvent processes used to model electricity generation is 

presented in table S5 in supplementary material. The model version of Energy2020 used in this 

study has seven technologies (biomass, coal, heavy fuel oil, diesel & gasoline, hydro, natural gas 

and other). When several ecoinvent processes corresponded to a single technology of 

Energy2020, a weighted average process was developed (based on ecoinvent data) on the basis 

of the regional electricity generated by each ecoinvent process (see fraction column in table S5). 

Energy2020 and ecoinvent model Canadian electric technologies at the provincial level. 

Thus, the ecoinvent processes were used directly for Canada. For the US, ecoinvent provides 

datasets of networks regulated by the North American Electric Reliability Corporation (NERC). 

These networks are however aggregated in Energy2020 (in the model version used in this study). 

Consequently, seven weighted average US processes corresponding to the Energy2020 

technologies were developed from the ecoinvent datasets. The weighting was made on the basis 

of the amount of electricity generated (based on ecoinvent data) by each technology in each 

NERC region (excluding Hawaii and Alaska networks). 

 Technology innovation 

Modeling of technology innovation is described in supplementary material. 

 Environmental impact assessment 

The environmental impacts were computed using Simapro and the IMPACT2002+ 

method (Jolliet et al. 2003) based on the amounts of electricity generated by each affected 

technology identified by Energy 2020 in the five scenarios (see table S4 in supplementary 

material). In this article, only the endpoint indicators are presented in the results section: human 

health expressed in disability-adjusted life years (DALY), ecosystems expressed in potentially 

disappeared fraction species.square meter.year (PDF.m2.yr), resources in mega joules of primary 



energy needed to extract future resources (MJ primary) and climate change in kilograms of CO2 

equivalent (kg CO2-eq). 

 Results 

Figure 2 shows the annual GHG emissions related to marginal electricity consumed by 

additional Canadian data centers. As expected, the larger the number of new data centers, the 

higher the GHG emissions since more electricity is consumed. The trend is also observed for the 

other impact categories: human health, ecosystems and natural resource depletion.  

<Figure 2> 

Figure 2: Greenhouse gas emissions per year and per scenario as compared to the BAU scenario 

A comparison of the scenarios based on the average impacts per marginal kWh of 

electricity consumed by data centers in 2015–2030 is illustrated in figure 3. Since the impact 

categories use different units, the results are expressed as percentages in order to be included in 

the same figure. In an impact category, one hundred percent is attributed to the scenario with the 

greatest impact for the category. Thus, the comparison of the impacts between scenarios is 

relative. Absolute numbers for each impact category are provided in table 1. 

<Figure 3> 

Figure 3: Relative impacts per marginal kWh, per scenario and per impact category 

Table 1: Environmental impacts per marginal kWh, per scenario and per impact category 

 Climate change Human health Ecosystem Natural resource 

 kg CO2-eq/kWh 10-6 DALY/kWh  PDF.m2.yr/kWh MJ 
primary/kWh 

Sc1 - BAU 0.93 2.09 0.120 12.1 
Sc2 - BAU 0.90 1.92 0.105 12.1 
Sc3 - BAU 0.91 1.87 0.094 12.3 
Sc4 - BAU 0.90 1.83 0.095 12.2 
Sc5 - BAU 0.85 1.69 0.105 11.6 

 

 



Figure 3 shows that the impacts on climate change and human health per marginal kWh 

decrease when data center deployment increases. This trend is also observed for the ecosystem 

and resource indicators when scenario 1 is compared to scenario 5 but: 

• Scenarios 4 and 5 have more impacts per marginal kWh on the ecosystem 

indicator than scenario 3; 

• Scenarios 2, 3 and 4 have a little more impacts per marginal kWh on the resource 

indicator than scenario 1. 

In other words, the impacts per MW of data center installed tend to decrease when data 

center deployment rises. This result is explained by the changes in the relative contribution of the 

marginal technologies used to generate electricity for the additional data centers (see Figure 4).  

<Figure 4> 

Figure 4: Relative contribution of marginal sources of electricity by scenario (2015–2030) 

In Figure 4, it appears that natural gas and coal are the main marginal sources of 

electricity. The data centers deployed in the scenarios are therefore expected to be powered by 

these two sources in particular, whereas wind or biomass contribute very little to the data centers 

needs. It should be noted that marginal sources of electricity differ significantly from current 

sources of electricity in Canada: hydro (60%), nuclear (15%), natural gas (11%) and coal (10%) 

(International Energy Agency 2012). Consequently, the marginal GHG emissions intensities in 

table 1 are high (0.89-1.01 kg CO2-eq/kWh) as compared to the Canadian emissions intensity for 

electricity (0.16 kg CO2-eq/kWh in 2013 according to Environment Canada (2015)). The 

marginal electricity mix is the result of different trends : 

1. Hydro dams and nuclear power plants have high building costs, which are hardly justified 

by the small power demand of the additional data centers (considering total Canadian 



power demand). Moreover, these power plants take time to build. Therefore, in Energy 

2020, natural gas thermal power plants are mostly built to provide extra electricity to 

Canadian data centers (Canadian policies discourage building coal power plants); 

2. A large part of the electricity (60 to 70% depending on the scenario; percentages decrease 

with data center deployment) used to power the additional data centers is not produced in 

new power plants in Canada but rather sourced from existing power plants by reducing 

electricity exports to the US. Therefore, the US must compensate for this reduction in its 

supply sources. Energy 2020 models the compensation as mainly the construction of new 

natural gas and coal thermal power plants in the US (see marginal electricity by source 

aggregated over 2015–2030 in Figure 5). 

<Figure 5> 

Figure 5: Marginal sources of electricity by region (2015–2030) 

Results also demonstrate that contribution of natural gas to marginal electricity sources 

increases (from 0.47% in scenario 1 to 0.53% in scenario 5) while the relative contribution of 

coal decreases (from 0.48% in scenario 1 to 0.38% in scenario 5) when data center power 

demand rises. The reduction in the natural gas contribution in scenario 5 (0.53%), as compared to 

scenario 3 (0.54%) and 4 (0.55%) is due to the increase in hydropower in Quebec (after 2020). 

This result typically reflects the non-linearity of the energy system’s response to an increase in 

the power demand of Canadian data centers. 

In terms of the environmental impacts, replacing coal with natural gas in marginal 

electricity generation to meet an increase in data center power demand results in a decrease in 

human health, climate change and ecosystems impacts per kWh since coal power plants have a 

worse score than natural gas power plants for these environmental indicators. Effect on resource 



is less noticeable since coal and natural gas power plants have similar scores for this indicator. 

The increase in bioenergy use explains the impact rise on ecosystem in figure 3 (see scenario 4 

and 5). In ecoinvent, bioenergy implies the release in the environment of ashes containing metals 

which leads to significant impacts on ecosystem. Still, the greater contribution of hydro power 

when data centers are more broadly deployed in scenario 5 curbs the impacts per kWh for three 

of the four indicators. 

 Discussion 

 Evaluation of data center deployment scenarios  

Scenario 5 generates greater direct environmental impacts than the other scenarios (cf. 

figure 2) but at the same time, it causes less impacts on all environmental indicators when it is 

compared to other scenarios on the basis of 1 MW of data center installed (cf. figure 3). It should 

be noted however that “climate change” and “resources” indicators are interlinked since fossil 

fuels contribute greatly to both of these indicators. Therefore, the environmental efficiency of 

scenario 5 is higher (when it is compared to other scenarios). Nevertheless, the complete 

evaluation of each scenario should involve the services provided by the data centers: 

improvement, substitution and rebound effects among human activities should be taken into 

account. While these effects are out of the scope of this study they may be important. Indeed, the 

deployment of new data centers can be expected to improve the penetration of ICT in society, 

thus allowing avoidance of more GHG emissions in the future (Global e-Sustainability Initiative 

and The Boston Consuting Group 2012; International Energy Agency 2014). In this situation, the 

GHG emissions of each scenario would be reduced, possibly leading to negative scores if 

emissions reductions in other sectors surpass the data center emissions. Moreover, the heat 

released into the atmosphere by the data centers may be significant but was not considered in this 



study due to the limited scope. Nevertheless, heat recovery for other activities, such as 

cultivation in greenhouses, could avoid the combustion of fossil fuels to generate heat. 

Considering such effects would result in more environmental benefits. 

Still, several authors have pointed out that the ICT technologies might not reduce 

environmental impacts as compared to regular technologies. Ong et al. (2014) and Borggren et 

al. (2013) compared face-to-face meetings with videoconference meetings and concluded that the 

latter are not always better than the former. Additionally, several authors investigated the 

unwanted effects of ICT usage that can equal or even offset the positive effects expected by 

improving human activities with ICT (Takahashi et al. 2006; Ahmadi Achachlouei and Hilty 

2016; Börjesson Rivera et al. 2014). If such unwanted effects were to occur, the impacts of each 

scenario would be more significant. Finally, the method presented in this study addresses the use 

phase of future data centers, but the other life cycle phases, such as the manufacture and end of 

life, should also be considered in the evaluation of data center deployment.  

 Impact of electricity generation 

Electricity is often an important parameter in LCA (Lund et al. 2010). It is especially the 

case for data centers and ICT (Arushanyan et al. 2014). In this study it is observed that the 

impacts per kWh of data center usage over 2015-2030 highly depend on the modeling of the 

electricity mix. Indeed, while we conducted a consequential prospective LCA on the North 

American electric mix, other approaches would lead to different results and conclusions. These 

approaches, based on the Energy 2020 results, are described hereafter and their results are 

presented in table 2: 

• In the 2015 (Canada) approach the impacts are computed using the 2015 Canadian 

electric grid mix, assuming the grid mix will remain unchanged up to 2030; 



• The 2015 (US+Canada) approach is identical excepted that the US and Canadian electric 

mixes are both considered; 

• In the BAU 2015-2030 (Canada) approach the impacts are computed using the business 

as usual evolution of the Canadian grid mix up to 2030; 

• The BAU 2015-2030 (US+Canada) approach is identical except that the US and 

Canadian electric mixes are both considered; 

• In the Marginal 2015-2030 (Canada) approach, the impacts are computed using the 

marginal Canadian grid mix for the scenario 5. 

• Marginal 2015-2030 (US+Canada) approach, the impacts are computed using the 

marginal US and Canadian grid mix for the scenario 5. 

Table 2: Environmental impact per kWh  

Model for 1 kWh kg CO2-
eq/kWh 

10-7 
DALY/kWh 

10-2 
PDF.m2.yr/kWh 

MJ 
primary/kWh 

2015 (Canada) 0.16 0.7 2.6 4.9 
2015 (US+Canada) 0.60 15.5 7.8 10.1 
BAU 2015–2030 (Canada) 0.16 0.7 2.7 4.7 
BAU 2015–2030 (US+Canada) 0.63 16.0 8.1 10.3 
Marginal 2015–2030 (Canada) 0.57 2.1 10.3 8.8 
Marginal 2015–2030 (US+Canada) 0.85 16.9 10.5 10.4 

 

Table 2 indicates that the environmental impacts per kWh largely differ depending on the 

approach followed to compute the electric grid. In this study, the parameter affecting the most 

the impact per kWh is the spatial border of the system (inclusion or not of USA).Then comes the 

choice of the attributional or consequential approach (BAU or marginal), which has a lower but 

still significant influence on the impact per kWh. Finally, the temporal horizon has less influence 

in the case of the attributional LCA approach (not computed in the case of the consequential 

LCA approach). 



Choosing the right approach to compute the electric grid mix for a study depends on the 

objective of the study. In our study, the objective is to evaluate the consequences of building 

more data centers in Canada as compared to a BAU scenario. Since the Canadian electricity 

exports to US are found to be affected by the data center deployment, the US grid mix should 

also be included in the computing of the electric grid mix. Therefore, the "Marginal 2015–2030 

(US+Canada)" approach of table 2 should be used.  

If the objective was to evaluate the carbon footprint of additional data centers, then the 

2015–2030  emissions computed in a relevant data center deployment scenario for US and 

Canada should be used. The use of the BAU 2015-2030 (US+Canada) approach would also be 

suitable if the data center power demand would remain low in comparison to the total power 

generation of US and Canada. In this case, the use of the marginal factors would not be fair since 

certain low-emissions technologies such as nuclear would be excluded from the marginal 

electricity. Anyway, current legislation and guidelines for carbon footprint assessment do not 

consider marginal electricity and the debate on marginal electricity allocation is unresolved. 

The 2015–2030 (BAU, Canada) approach should not be used since it would not capture 

the US side-effect. Such factors would largely underestimate the impacts of the Canadian data 

centers. However, in the context of a tax on environmental externalities, the attribution of the US 

environmental burden to the Canadian users is debatable and could justify the use of the 2015–

2030 (BAU, Canada) approach. Nevertheless, the question of the attribution of the indirect 

effects of decision-making has not yet been answered in the context of ecological footprints. 

2015 impacts factors (Canada or US + Canada) should not be used to study future 

emissions of data centers since they do not reflect the future evolution of electricity generation. 

To summarize, the choice of the approach should be in agreement with the geographical and 



temporal scopes of the study and cover anticipated indirect effects. Marginal approaches are 

especially relevant in the context of optimization because they reflect the non-linearity of 

impacts. However, the use of marginal approaches results in attribution of different impacts 

between marginal and non-marginal users. Nevertheless, such equity problem can be overcome 

by combining attributional and marginal approach to share the marginal impacts among all users. 

 Contributions to Energy 2020 and LCA 

Combining Energy 2020 and LCA enhances both tools. On one hand, the approach adds 

environmental indicators based on the power plants’ life cycles to the Energy 2020 results, 

providing more valuable information on the potential environmental impacts of future energy 

policies since more environmental indicators are considered. On the other hand, Energy 2020 

makes it possible to conduct an LCA using prospective (Pesonen et al. 2000)  and consequential 

(Ekvall and Weidema 2004) methodologies in the context of the North American energy sector. 

Instead of using expert judgments, extrapolating time series, making uncertain assumptions and 

using simplified economic models as in standard prospective and consequential LCA, an 

acknowledged advanced model is used. Therefore, it is expected that the proposed method will 

provide more robust results for LCA involving the future evolution of the North American 

energy sector. But the use of economic models in LCA is quite new (Kloverpris 2008; Earles 

2011; Dandres et al. 2011) and further studies are required to illustrate the advantages and flaws 

of the combination.  

 Limitations, uncertainty and recommendations 

Energy 2020 is expected to be one of the best energy models to investigate changes in the 

North American energy sector. However, it relies on assumptions about the future evolution of 

macroeconomic variables and economic modeling, which cannot predict non-economic events 



such as war, natural disasters, economic crisis or a political decision. For instance, this project 

was achieved in 2014 at a time the US clean power plan was not announced. Thus, our 

simulations do not take into account the future reduction of carbon intensity in US electricity 

generation as targeted by the US clean power plan and our results probably overestimate the 

marginal emissions from US power plants. Additionally, there is some uncertainty on the electric 

mixes due to imperfect convergence of solutions computed by the Energy2020 (see Tables S2 

and S4 in supplementary material). Therefore, the results of the model should not be taken as-is 

but rather used to identify key trends and unwanted effects. In this case study, the main result 

may be the unexpected reduction in Canadian electricity exports to the US and the related 

negative environmental effect. By being aware of the unwanted effect before it occurs, it is 

possible to anticipate and take appropriate measures (e.g. subsidize the generation of renewable 

energy to power data centers in Canada) to counter it. An iterative approach would support the 

design of an optimal strategy. 

Regarding LCA, the limitations pertain to the quality of data used to model electricity 

generation and evaluate the environmental impacts. Indeed, generic processes were used to 

model power plants regardless of the power plants specificities. Thus, there is uncertainty with 

regards to the computed emissions. Moreover, technological changes are imperfectly modeled in 

this LCA. While future technologies are expected to be more efficient than current ones, data 

collected on power plants efficiency suggests thermal technologies are not improved. Therefore, 

the results may overestimate the future impacts on the environment since natural gas and coal 

technologies are found to play a major role in the future. Prospective data cannot be obtained by 

measurement and must be forecasted. However, forecasting requires significant resources (e.g. a 

panel of experts (Godet et al. 2004)) that were not available at the time of the study. Also, 



environmental impacts were computed regardless of the geographic location of the emissions 

even though the site of an emission may affect its fate in the environment and result in different 

environmental impacts depending on the location (Manneh et al. 2010). While, ideally, the 

location of the emissions should be taken into account, the regional impact assessment models in 

LCA are still under development. Also, it was assumed the cause and effects chains that link the 

substances emissions to the environmental impacts would remain stable in the future. However, 

this assumption may overestimate the capacity of ecosystems to resist to damages and fail to 

represent the cases were this capacity is exceeded. Such situation could occur, for instance, in the 

case of acidification (Roy et al. 2012). Finally, due to technical issues and lack of resources, it 

was not possible to investigate a large number of scenarios, conduct sensitivity analyses or run 

Monte Carlo simulations to evaluate the uncertainty of the final results. Indeed, such analyses are 

time- and resource-consuming when an equilibrium model such as Energy 2020 in used 

sequentially with LCA (Dandres et al. 2014a). Moreover, the evaluation of impact assessment 

uncertainty is not currently possible in Simapro due to lack of data.  

 Conclusion 

The environmental assessments of data centers and ICT are closely linked to electricity 

generation modeling. The accuracy of electricity impact data is a crucial parameter in 

environmental ICT studies. Therefore, it is relevant to study the future electric grid mixes that 

will supply future ICT systems in order to evaluate their environmental performances. Since 

electric grid mixes evolve in time, adequate tools must be used to model them properly rather 

than applying ceteris paribus or business as usual assumptions. In this study, a regional 

economic model (Energy 2020) was used to represent the changes in energy generation in 

Canada and the US in 2015–2030. Combined with the LCA methodology, the model made it 



possible to evaluate the environmental impacts of several data center deployment scenarios in 

Canada and determine those that generate the least impacts per MW of data center built. In this 

case study, the largest deployment of data centers (+ 750 MW) is the most efficient scenario for 

three of the four environmental indicators. A smaller deployment of data centers (+150 MW) 

would minimize the impact per MW of data center built on ecosystem but would not minimize 

impacts on the human health and climate change indicators. Moreover it would maximize the 

impact on the resource indicator. 

The combination of a techno-economic model and LCA methodology capitalizes on the 

use of both tools: the model provides prospective scenarios and LCA computes several 

environmental impacts based on the technologies’ life cycles. While the proposed methodology 

has been applied to elucidate the consequences of data centers deployment, it could also be use 

to evaluate changes in other industrial activities. A significant result is that the increase in the 

power demand of the Canadian data centers causes a reduction in electricity exports to the US. 

Consequently, US electricity generation must increase to compensate for the lack of electricity in 

the US. Since this compensation is achieved with coal and natural gas, major environmental 

impacts are indirectly generated by the deployment of Canadian data centers. However, the 

Clean Power Plan announced in August 2015 (after the study achievement) is expected to reduce 

the contribution from fossil fuels in US electricity generation. Therefore, marginal impacts from 

US might be smaller than those anticipated in this study. Moreover, whether these indirect 

impacts should be attributed to the Canadian data centers is debatable. Indeed, while there is a 

causal link between the increase in Canadian data center deployment and the decrease in 

electricity exports to US, Canadian electricity providers have no control over the choice of the 

fuel for the US electricity generation. This issue is of major concern in terms of GHG emissions 



since the climate change issue is a global one. Therefore, guidelines must be established in order 

to contend with indirect effects in carbon footprint methodologies. 
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