
UNIVERSITÉ DE MONTRÉAL

SEMIDEFINITE PROGRAMMING APPROACHES AND SOFTWARE TOOLS FOR
QUADRATIC PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS

PATRICIA LYNN GILLETT
DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(MATHÉMATIQUES DE L’INGÉNIEUR)
JUILLET 2016

c© Patricia Lynn Gillett, 2016.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PolyPublie

https://core.ac.uk/display/213620392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

SEMIDEFINITE PROGRAMMING APPROACHES AND SOFTWARE TOOLS FOR
QUADRATIC PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS

présentée par : GILLETT Patricia Lynn
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

M. AUDET Charles, Ph. D., président
M. ANJOS Miguel F., Ph. D., membre et directeur de recherche
M. GUÉRIN Jean, Ph. D., membre
Mme BEHJAT Laleh, Ph. D., membre externe

iii

DEDICATION

To Junpei. I can’t wait to see what happens next.

iv

ACKNOWLEDGEMENTS

To Miguel Anjos, thank you for supporting me as I explored the relationship between theory and
software. I finish my PhD well prepared for a future in industry because I was allowed the freedom
to shape my research experience.

To Joaquim Judice, thank you for taking an interest and loaning us the benefit of your vast experi-
ence with complementarity problems.

To my friends at GERAD, thank you for the tea breaks, the long talks, and the whiteboard drawing
sessions.

To my friends across the ocean in Yoshikawa Lab, thank you for showing me that research could
be about making things.

To my friends in Montreal’s tech community, thank you for opening up a world of possibilities to
me.

To Junpei and my parents, thank you for always knowing how to make a few thousand kilometers
feel like nothing.

I owe a great debt to the many open source developers whose work I have used, learned from, or
expanded upon, including but not limited to:

• CVXOPT: Martin Andersen, Joachim Dahl, and Lieven Vandenberghe

• CVXPY: Steve Diamond and the CVXPY Github community

• QPECgen: Houyuan Jiang and Danny Ralph

• PyNEOS: Dominique Orban

I am also grateful to have had access to the NEOS server, a fantastic resource. The NEOS server
is currently administered at the University of Wisconsin by Michael Ferris and Jeff Linderoth with
the help of many other contributors. I give special thanks to Hans Mittleman and Rosemary Berger
for their assistance.

v

RÉSUMÉ

Dans le domaine de la théorie des jeux, il est intéressant de créer un équilibre dynamique entre les
agents afin qu’ils s’influencent de façon asymétrique. Le meneur affecte les règles du jeu, mais les
choix subséquents du suiveur affectent la valeur de l’objectif du meneur. La dynamique meneur-
suiveur est un outil puissant permettant de décrire un grand nombre de scénarios de jeux dans
un contexte réel. Toutefois, les problèmes d’équilibre demeurent difficiles en pratique sauf pour
quelques types de problèmes largement étudiés en théorie tel le problème linéaire bi-niveau.

Cette thèse tente de déterminer si les relaxations sous la forme de problèmes semi-définis, prob-
lèmes quadratiques avec contraintes de complémentarité linéaires sont efficaces. Cette classe de
problème est équivalente aux problèmes d’équilibre. Une fonction objectif quadratique est par-
ticulièrement intéressante car la littérature dans ce domaine n’est pas complète et les relaxations
semi-définies sont souvent efficaces pour les problèmes avec des fonctions objectif et/ou des con-
traintes quadratiques non-convexes.

Nous présentons une relaxation de base qui n’est pas coûteuse en temps de calcul puis nous dis-
cutons d’un grand nombre de contraintes qui permettent de resserrer la relaxation de façon signi-
ficative. L’évaluation de l’efficacité de la relaxation, lorsque toutes ces contraintes sont utilisées,
montre que cela mène à des difficultés d’implémentation numériques pour le solveur de points in-
térieurs qui résout le problème semi-défini. Nous discutons des raisons expliquant cela puis nous
utilisons une autre approche afin d’éliminer cette difficulté. Cet algorithme démarre avec la relax-
ation de base renforcée avec une seule contrainte d’égalité agrégée puis ajoute de façon itérative
des coupes resserrant la relaxation. Éventuellement, la relaxation est renforcée à son maximum
alors que seule une fraction des coupes a été ajoutée. Les résultats numériques montrent que cette
approche ne permet pas d’améliorer les bornes du problème semi-défini lorsque des coupes sont
ajoutées. Ce n’est pas une faiblesse de la méthode mais cela démontre que le modèle de base est
déjà une relaxation forte. Ainsi, l’aggrégation des contraintes en une seule contrainte d’égalité
est très efficace pour renforcer la relaxation et ajoute peu de difficulté à son implémentation en
pratique. Des recommandations sont émises concernant le choix des paramètres pour la méthode
d’ajout de coupes de façon itérative.

Les relaxations semi-définies sont surtout utilisées pour borner les problèmes quadratiques diffi-
ciles. Les relaxations SDP des problèmes QPLCC peuvent être utilisées de cette façon, pour borner
les noeuds des arbres branch and bound, mais nous sommes intéressés à utiliser toute l’information
contenue dans la matrice de solution X∗ du problème SDP. Lorsque cette matrice est de rang 1,
elle peut être utilisée pour retrouver la solution globale dans l’espace d’état du problème original

vi

non-relaxé. Nous définissons un point candidat comme étant un point estimant la solution globale
d’un problème et nous présentons 4 façons de retrouver une solution dans l’espace d’état original
pour une matrice X∗ de rang arbitraire, X∗ étant la solution de la relaxation SDP. Ce point candidat
n’est pas spécifique aux problèmes QPLCC et pourrait être appliqué à d’autres problèmes. Des ré-
sultats numériques sont effectués afin de montrer que les points candidats sont des estimateurs de la
solution globale. Nous présentons aussi des procédures afin d’utiliser les capacités de "warmstart"
des solveurs en utilisant ce point candidat et démontrons leur impact.

En plus de contribuer à l’avancement des connaissances des problèmes QPLCC, nous avons aussi
contribué à la communauté de recherche des logiciels traitant ces problèmes. Nous avons choisi
Python comme langage de programmation puisque plusieurs librairies sont disponibles pour
l’optimisation convexe, mais aussi pour sa capacité à interagir avec des solveurs externes codés
dans d’autres langages de programmation. Nous avons créé des outils pour les problèmes QPLCC,
par exemple en les formulant en langage AMPL et GAMS, nous avons résolu les QPLCC et/ou les
problèmes SDP en utilisant des solveurs Pytyon, des solveurs installés localement ou la librairie
NEOS. Tous les résultats numériques présentés dans cette thèse ont été effectués avec les librairies
présentées dans cette thèse. Nous espérons que d’autres chercheurs dans le domaine QLPCC utilis-
erons nos librairies pour construire leurs propres méthodes de résolution et pour simplifier les
comparaisons avec d’autres solveurs.

vii

ABSTRACT

The leader follower dynamic seen in bilevel programming and equilibrium problems has the poten-
tial to unlock new doors in economic modeling and enable the realistic modeling of many problems
of keen interest. The leader’s choices affect the rules of the game which is played by the follower,
but the follower’s subsequent choices also impact the objective value achieved by the leader. Con-
ceptually, the leader-follower dynamic is a valuable tool for describing any number of competitive
real-world scenarios. However, to date equilibrium problems remain difficult in practice except for
a handful of well studied problem classes such as the linear linear bilevel program.

This thesis is concerned with how effective semidefinite programming (SDP) relaxations can be
constructed for quadratic programs with linear complementarity constraints (QPLCCs), a problem
class which can equivalently model a class of equilibrium problems. The case of a general quadratic
objective function is of particular interest since the literature in this area has not yet reached full
maturity, and since semidefinite programming relaxations have often been effective for problems
with nonconvex quadratic objective functions and constraints.

We present a base relaxation which is relatively computationally inexpensive, and then we present
and discuss a number of tightening constraints which can have a dramatic tightening effect. How-
ever, in evaluating the effectiveness of the relaxation when all such constraints are used, we observe
that blindly imposing all tightening constraints of the proposed types often leads to numerical dif-
ficulties for the interior point solver solving the semidefinite program. We discuss a possible rea-
son for this, and finally we counteract it by developing an algorithm which begins with a middle
ground model (the base relaxation strengthened with a single aggregated equality constraint) and
iteratively adds tightening constraints to eventually obtain the tightness of the full relaxation while
using a small fraction of the constraint pool in practice. In testing the iterative method with the
middle ground model, we find that the SDP bound often doesn’t improve over the course of the
iterative method. This is not a flaw of the cut finding procedure, but instead demonstrates that the
middle ground model is already as tight as the fully constrained model for these problems, estab-
lishing the aggregated equality constraint as an extremely effective strengthening measure which
adds very little additional computational difficulty to the problem. Recommendations are made
regarding parameter choice for the iterative method.

Semidefinite relaxations are most commonly used to bound difficult quadratic problems. SDP
relaxations of QPLCCs can certainly be used this way, to bound nodes of a branch and bound tree,
but we are also interested in using the information contained in the SDP solution matrix X∗ to full
advantage. SDP relaxations are commonly designed so that an SDP solution X∗ which is rank one

viii

can be mapped back to the space of the unrelaxed problem to give a global solution. We define the
notion of a candidate point as a point which is intended to estimate a problem’s global solution, and
we present four ways a candidate point for an SDP relaxation solution X∗ of arbitrary rank can be
mapped back to the space of the original problem. The candidate point concept and definitions are
not specific to the QPLCC and could be applied to other problems. We perform computational tests
to support discussion of the different candidate points’ suitability as an estimate of the problem’s
global solution. We also present procedures for assisting local or global solvers by warmstarting
with the candidate point, and demonstrate the impact in both cases.

In addition to contributing to the state of knowledge for QPLCCs, it has also been our goal to con-
tribute software to the research community working on these problems. We have chosen Python
as our development language based on the existence of a number of good packages for numeri-
cal work generally and convex optimization specifically, and also based on its abilities to act as
glue between other services such as external solvers in other languages. We have made tools for
modeling QPLCCs, exporting them for other languages (AMPL, GAMS), formulating SDP relax-
ations, and solving QPLCCs and/or SDP problems using native Python solvers, locally installed
languages/solvers, or the NEOS public server. All the computational work presented in this thesis
has been executed using the packages presented in this paper. It is our hope that other researchers
in the field of QPLCCs will use our packages to build their own solution methods and to simplify
the process of testing against various solvers.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xii

LIST OF FIGURES . xiv

LIST OF SYMBOLS AND ABBREVIATIONS . xv

LIST OF APPENDICES . xvi

CHAPTER 1 INTRODUCTION . 1
1.1 Basic definitions and concepts . 2

1.1.1 Bilevel programming . 2
1.1.2 Complementarity problems . 3
1.1.3 Convexity, Cones, and Semidefinite Relaxations 5
1.1.4 Semidefinite programming relaxation technique 7

1.2 Description of the problem . 9
1.3 Research objectives . 11
1.4 Structure of the thesis . 11

CHAPTER 2 CRITICAL LITERATURE REVIEW . 12
2.1 Game theory, bilevel programs, equilibrium problems, and complementarity problems 12

2.1.1 The challenge of globally solving BPs and MPCCs 14
2.2 Non-exhaustive review of solution methods for BPs and MPCCs 15
2.3 Literature applying SDP to MPCCs and related problems 17

CHAPTER 3 SEMIDEFINITE RELAXATIONS OF QUADRATIC PROGRAMS WITH LIN-
EAR COMPLEMENTARITY CONSTRAINTS . 20

x

3.1 The base relaxation . 20
3.1.1 Construction . 20
3.1.2 Theory and Observations . 21
3.1.3 Test problems: MacMPEC . 28
3.1.4 Test problems: QPECgen . 29
3.1.5 Evaluation of (S base) . 31

3.2 Tightening constraints and modeling alternatives 32
3.2.1 Sherali-Adams constraints . 33
3.2.2 Enhanced equality constraints . 35
3.2.3 Aggregated equality constraints . 36

3.3 A ‘full’ model . 37
3.4 A middle ground model and iterative framework 38
3.5 An iterative approach . 40

CHAPTER 4 CANDIDATE POINT BASED HEURISTIC METHODS FOR QPLCCS . . 47
4.1 Rank one X∗ . 47
4.2 Higher rank X∗ . 48
4.3 Candidate point terminology and motivation . 49
4.4 Comparing candidate points . 53

4.4.1 Introducing metrics . 53
4.4.2 Evaluating candidate points . 54

4.5 Methodology for the warmstarting of local and global NLP solvers 58
4.5.1 Local NLP solvers . 58
4.5.2 Global NLP solvers . 59

CHAPTER 5 PYTHON IMPLEMENTED SOFTWARE TOOLS FOR QPCCS 65
5.1 PyQPCC . 66

5.1.1 QPLCC modeling . 67
5.1.2 Constructing and solving SDP relaxations 67
5.1.3 Results, result collections and problem series management 69
5.1.4 Language printing . 70
5.1.5 Solve batch manager and PyNEOS . 71

5.2 PyQPECgen . 73
5.2.1 Introduction . 73
5.2.2 Generation options . 76
5.2.3 Python implementation and modular code design 76
5.2.4 New problem type: FULL-BOX-QPEC (’Type 201’) 78

xi

5.2.5 New feature: exporting problem types in the standard QPCC format 79
5.2.6 Project status and future direction . 79

5.3 PySDPT3glue . 80
5.3.1 Overview of notable functionality . 80
5.3.2 Problem translation and simplification . 81
5.3.3 Project status and future direction . 84

CHAPTER 6 CONCLUSION . 85
6.1 Advancement of knowledge . 85
6.2 Limits and constraints . 85
6.3 Future work . 86

REFERENCES . 87

APPENDICES . 93

xii

LIST OF TABLES

Table 3.1 Parameters altered from default to generate problems of each type, where
N ∈ {20, 50, 100} is the desired problem size category 29

Table 3.2 Global optimal results found using BARON for problems with about 20
variables. 30

Table 3.3 Global optimal results found using BARON for problems with about 50
variables. 30

Table 3.4 Global optimal results found using BARON for problems with about 100
variables. 30

Table 3.5 Optimality gaps and times for the S base SDP relaxation formulation. 32
Table 3.6 Optimality gaps and times for the (S heur) SDP relaxation formulation. . . . 39
Table 3.7 Average relative gap improvement by using relaxation (S heur) instead of

relaxation (S base). 39
Table 3.8 Parameters used to test the iterative semidefinite relaxation method 43
Table 4.1 Evaluating candidate points derived from the solution to (S heur). 55
Table 4.2 Evaluating candidate points derived from the solution to (S base). 57
Table 5.1 PyQPECgen parameters . 76
Table 5.2 QPECgen classes and their model components 78
Table A.1 Evaluating candidate points derived from the solution to (S heur). (B20 series) 93
Table A.2 Evaluating candidate points derived from the solution to (S heur). (F20 series) 94
Table A.3 Evaluating candidate points derived from the solution to (S heur). (B50 series) 95
Table A.4 Evaluating candidate points derived from the solution to (S heur). (F50 series) 96
Table A.5 Evaluating candidate points derived from the solution to (S heur). (B100 series) 97
Table A.6 Evaluating candidate points derived from the solution to (S heur). (F100 series) 98
Table B.1 Evaluating candidate points derived from the last iteration of the S DPheurlim

iterative solves. (B20 series) . 100
Table B.2 Evaluating candidate points derived from the last iteration of the S DPheurlim

iterative solves. (F20 series) . 101
Table B.3 Evaluating candidate points derived from the last iteration of the S DPheurlim

iterative solves. (B50 series) . 102
Table B.4 Evaluating candidate points derived from the last iteration of the S DPheurlim

iterative solves. (F50 series) . 103
Table B.5 Evaluating candidate points derived from the last iteration of the S DPheurlim

iterative solves. (B100 series) . 104

xiii

Table B.6 Evaluating candidate points derived from the last iteration of the S DPheurlim

iterative solves. (F100 series) . 105

xiv

LIST OF FIGURES

Figure 3.1 f eas(P0) is a segment of parabola y = x2. 34
Figure 3.2 Naive relaxation (S 0) is unbounded. 34
Figure 3.3 f eas(S 0+) is the convex hull of f eas(P0). 34
Figure 3.4 Progress in gap for the iterative method with three sets of parameters. . . . 45
Figure 3.5 For problem B50n4, we see S DPheurlim, and eventually even S DPbaselim,

undercut S DPheur by a small amount. 46
Figure 4.1 Distribution of R(X∗) for solutions of the iterative method. 49
Figure 4.2 For these problems, warmstarting KNITRO at the linear proxy candidate

point consistently brings the relative gap very near 0. 59
Figure 4.3 Progress made by BARON ordinarily vs. in the warmstarted case 62
Figure 4.4 The root node SDP bound and warmstarted NLP solution overlaid over

BARON’s progress . 64
Figure 5.1 A concept map giving an overview of the functionality of PyQPCC 66
Figure 5.2 Hierarchy of PyQPECgen problem object classes 77

xv

LIST OF SYMBOLS AND ABBREVIATIONS

BP Bilevel Program
DSL Domain Specific Language
EPEC Equilibrium Problem with Equilibrium Constraints
FLOSS Free, Libre, and Open Source Software
KKT Karoush-Kuhn-Tucker
LCP Linear Complementarity Problem
LLBP Linear Linear Bilevel Program
LPCC Linear Program with Complementarity Constraints
MPEC Mathematical Program with Equilibrium Constraints
MPCC Mathematical Program with Complementarity Constraints
OSS Open Source Software
PSD Positive Semidefinite
QBP Quadratic Quadratic Bilevel Problem
QP Quadratic Program
QPCC Quadratic Program with Complementarity Constraints
QPEC Quadratic Problem with Equilibrium Constraints
QPLCC Quadratic Program with Linear Complementarity Constraints
SOC Second Order Cone
SOC-RLT Second Order Cone Relaxation Linearization Technique
SDP Semidefinite Program, Semidefinite Programming
SQLP Semidefinite, Quadratic, and Linear Programming

xvi

LIST OF APPENDICES

APPENDIX A DERIVING CANDIDATE POINTS FROM THE SOLUTION TO A HEURIS-
TIC SDP MODEL . 93

APPENDIX B DERIVING CANDIDATE POINTS AFTER AN ITERATIVE SDP PRO-
CESS . 99

1

CHAPTER 1 INTRODUCTION

In modeling economic games, it is valuable to be able to model a leader-follower dynamic in
which two parties influence one another in an asymmetric fashion. The leader’s choices influence
the rules of the game which is played by the follower, but the follower’s subsequent choices also
impact the objective value achieved by the leader. Consider for example the problem of an airline
setting ticket prices. The airline is the leader player which aims to maximize its profit, while
the customers are follower players who aim to meet their travel needs as cheaply as possible. To
realize maximum profit, the airline must understand its customers’ ticket buying strategies and seek
a profitable equilibrium between itself and its customers.

In economics such leader-follower games are known as Stackelberg games (Stackelberg, 1952),
and this two player dynamic is modeled in optimization using such problem classes as bilevel
problems (BPs) and mathematical programs with equilibrium constraints (MPECs), which can un-
der certain conditions be equivalently rewritten as mathematical programs with complementarity
constraints (MPCCs). This thesis is concerned with developing solution methods for a subclass of
MPCC known as the quadratic problem with linear complementarity constraints (QPLCC), which
can model bilevel programs for which the upper and lower level objective functions are general
quadratic and convex quadratic functions, respectively, and constraints are otherwise linear.

Bilevel and equilibrium dynamics intuitively describe many systems involving human behaviour
and business strategy: businesses competing for market share, businesses choosing pricing strate-
gies, governments setting policy, electricity providers bidding to provide energy to a power grid,
etc. In each of these examples, a practical method to find improved solutions can easily lead to
large scale profits. However, these problems are difficult to solve in practice and there is a tradeoff

between models which are sophisticated enough to reflect a complex reality and models which are
simple enough to be solved in practice. For the example of the power grid problem, the first hints of
satisfactory tractability have begun to emerge in the last decade, see Bautista et al. (2007); Hu and
Ralph (2007); Hu and Fukushima (2011); Dempe et al. (2015) for four takes on electricity networks
from equilibrium perspectives. Alternatively, see Gabriel and Smeers (2006); Siddiqui and Gabriel
(2013) for examples of natural gas market models. As research boundaries are pushed so that more
complex classes of equilibrium problems can be practically solved, equilibrium problems stand to
be a growing piece of the optimization landscape.

2

1.1 Basic definitions and concepts

1.1.1 Bilevel programming

What makes bilevel programming a powerful modeling tool is the ability to model situations
(games) in which two parties have conflicting interests and there is an asymmetry in decision-
making power. Opposing interests and leader-follower decision processes are both seen frequently
in real-world games, so bilevel programming provides a much-needed extension to game modeling
techniques which have important real-world applications in a number of fields. For example, the
government takes the leader’s role in the regulation of hazardous goods transportation by deciding
which roads can or can’t be used, keeping in mind that drivers will always choose to use the shortest
path which is available to them. This behaviour can be seen again in oligopolistic utility markets
such as electricity where typically a few firms lead and the rest of the market follows. For market
pricing applications in particular, the difference between a global solution and a (non-global) local
solution can represent a substantial difference in profits, making global solution methods highly
desirable.

The general bilevel program takes the form

min
x∈Rnx , y∈Rny

f (x, y)

s.t. (x, y) ∈ X

y ∈ arg min
y′

F(x, y′)

s.t. y′ ∈ Ωy(x) .

(BP)

The variables of (BP) are partitioned into upper level variables x and lower level variables y.The
constraint (x, y) ∈ X is called an upper level constraint, and the problem min

y′∈Ωy(x)
F(x, y′) is called

the lower level problem of (BP).

In the context of a Stackelberg game, the upper level variables are controlled directly by the leader
while the lower level variables represent the follower’s response. Note that the lower level problem
is an optimization problem only in the variables y; upper level variables x are treated as fixed and
known within the scope of the lower level problem. Furthermore, the lower level problem’s objec-
tive function and feasible region depend on x.

Bilevel programs are classified according to the nature of each level’s objective function and con-
straints. For example, a linear linear bilevel problem (LLBP) is a bilevel problem in which f and F

are linear functions and X and Ωy(x) are finite convex polytopes as in linear programming. In this

3

thesis we focus on QPLCCs of the type obtained by transforming linearly constrained QQBPs, i.e.
the case where f and F are quadratic functions and X and Ωy(x) are finite convex polytopes. We
will further restrict ourselves to the case of convex quadratic F so that Karush-Kuhn-Tucker (KKT)
conditions may be applied to the lower level problem to transform the QQBP to a QPLCC. How-
ever, we will allow f to be nonconvex as we are particularly interested in contributing to the state
of knowledge for nonconvex QPLCCs.

We define a number of domains of interest in terms of (BP). The relaxed feasible region Ω is the
set of (x, y) which satisfy the upper level constraints and lower level constraints, i.e.

Ω = {(x, y) | (x, y) ∈ X, y ∈ Ωy(x)} . (1.1)

Unlike the admissible set explained below, points in the feasible set are not necessarily optimal for
the lower level problem. For a given x, the set Ωy(x) is the feasible set of the lower level problem.

The trace of the lower level problem with respect to the upper level variables is the set of x such
that the lower level problem is feasible, i.e.

Ω2
x = {x | Ωy(x) , ∅} . (1.2)

The rational reaction set S (x) is defined as the set of y which optimally solve the lower level
problem for a given x:

S (x) = arg min
y′

F(x, y′)

s.t. y′ ∈ Ωy(x) .
(1.3)

The set of admissible (x, y), also known as the induced region or inducible region, is the set of
solutions which are feasible and lie in S (x), i.e.

Υ = {(x, y) ∈ X | y ∈ S (x)} . (1.4)

Υ could be considered the feasible region of the bilevel problem, but that terminology is some-
times avoided to prevent confusion with the relaxed feasible region.

1.1.2 Complementarity problems

We define a general MPCC as having the form

4

min
x∈Rn

z(x)

s.t. ai(x) = 0 ∀ i ∈ E

gi(x) ≤ 0 ∀ i ∈ I

gi(x)g j(x) = 0 ∀ (i, j) ∈ C .

(MPCC)

For the purpose of this thesis, E and I are finite index sets corresponding to the sets of equality and
inequality constraints, respectively.

The MPCC has decision variable vector x with dimension n, objective function z : Rn → R,
equality constraints given by ai : Rn → R for i ∈ E, inequality constraints given by gi : Rn → R for
i ∈ I, and complementarity constraints gi(x)g j(x) = 0 which exist between inequality constraints
i and j. The pairs of inequalities between which complementarity exists are given by C, with
C ⊆ {(i, j) | i ∈ I, j ∈ I, i < j}.

This thesis is concerned with QPLCCs, which are MPCCs for which the objective function z(x)
is quadratic and ai(x), gi(x) are linear affine functions. Quadratic problems with complementarity
constraints (QPCCs), and MPCCs in general, are a difficult class of problems. The Mangasarian-
Fromovitz constraint qualification fails, the complementarity constraints are not differentiable, and
the feasible region of the MPCC is not necessarily closed, convex, or connected (Mangasarian and
Fromovitz, 1967; Luo et al., 1996).

We will now tie bilevel problems to mathematical problems with complementarity constraints. The
general bilevel problem can be described more concretely as follows:

max
x,y

f (x, y) (1)

s.t. ai(x, y) = 0 i = 1...mU
E (2)

gi(x, y) ≤ 0 i = 1..mU
I (3)

y ∈ arg min
y′

F(x, y′) (4)

s.t. Ai(x, y′) = 0 i = 1...mL
E (5)

Gi(x, y′) ≤ 0 i = 1...mL
I . (6)

(BP′)

Consider the lower level problem given by constraints (4)-(6) of (BP′). In the case where F, Gi,
and Ai are all differentiable and some suitable constraint qualification is satisfied such as regularity,
Slater’s condition, or Mangasarian-Fromowitz, and the lower level objective function F is convex,
the lower level problem may be equivalently replaced by its KKT conditions. That is to say, y is in
the rational reaction set for the lower level problem if and only if there exist µ ∈ RmL

I and λ ∈ RmL
E

such that

5

∇yF(x, y) +
p∑

i=1
µi∇yGi(x, y) +

q∑
i=1
λi∇yHi(x, y) = 0 ,

Ai(x, y) = 0 ∀ i = 1...mL
E ,

0 ≤ µ ⊥ G(x, y) ≥ 0 ,

(1.5)

where G(x, y) =

G1(x, y)

...

GmL
I
(x, y)

.
The lower level problem of (BP′) can then be replaced by these equivalent conditions to yield
an MPCC or alternatively an MPEC. MPECs are a class of problems which use a variational
inequality to model the equilibrium state of some system. In the next subsection we will show
the QPLCC which is obtained by performing this transformation on the QQBP discussed in the
previous subsection.

1.1.3 Convexity, Cones, and Semidefinite Relaxations

“In fact the great watershed in optimization isn’t between linearity and nonlinearity,
but convexity and nonconvexity.”

(Rockafellar, 1993)

A convex function f (x) is one for which a line segment drawn between any two vectors (x1, f (x1))
and (x2, f (x2)) will not fall below the graph y = f (x). Put in mathematical terms,

f (x) ≤ θ f (x1) + (1 − θ) f (x2) ∀ x1, x2, θ ∈ [0, 1] , (1.6)

or alternatively, a function f which is twice continuous and differentiable is convex if and only if
its Hessian ∇H(f) is positive semidefinite, which will be explained in more detail shortly.

A convex set C is one for which any convex combination of points in the set will also be in the set,
i.e.

x1 ∈ C, x2 ∈ C ⇒ θx1 + (1 − θ)x2 ∈ C ∀ θ ∈ [0, 1] . (1.7)

We will adopt the same definition of a convex optimization problem used by Boyd and Vanden-

6

berghe (2004). In standard form, a convex problem takes the form

min
x

f (x)

s.t. gi(x) ≤ 0 i = 1, . . . ,m
aT

i x = bi i = 1, . . . , p ,

(1.8)

where f (x) and gi(x) ≤ 0, i = 1, . . . ,m are convex functions. It is easy to show that the feasible
region of (1.8) will be a convex set.

A convex programming class which is relied upon heavily in this work is conic programming.
Conic programs take the form

min
x

cT x

s.t. Ax = b

h −Gx ∈ K ,

(1.9)

where K is a closed convex cone. There are three cones of particular interest to us:

1. The non-negative orthant Rn
+ ,

2. The second order cone SOCn+1:
[t

x
]

such that ||x||2 ≤ t2 ,

3. The positive semidefinite cone Sn
+: x such that vec(x) is a positive semidefinite matrix, where

vec : Rn2
→ Rn×n is a function which reshapes a vector x into a square matrix following

column major order.

A positive semidefinite (PSD) matrix is a Hermitian matrix X whose eigenvalues are all nonnega-
tive. We denote the set of real n × n PSD matrices as Sn

+, and we also interchangeably write X � 0
to denote that X is PSD. Sn

+ can equivalently be defined as the set of symmetric matrices X ∈ Rn×n

such that zT Xz ≥ 0 ∀ z ∈ Rn.

It is worth noting that the former two cones can be expressed using semidefinite cone constraints,
and also that multiple positive semidefinite constraints can be equivalently rewritten using a single
larger semidefinite constraint, so without loss of generality a problem can be considered to be a
semidefinite programming problem in the vein of (1.9) (with K replaced by Sm

+ for some m) even
if it contains a mixture of linear inequality constraints, second order cone (SOC) constraints, and
positive semidefinite (PSD) constraints. Such problems can be solved using interior point methods
in polynomial time (Nesterov et al., 1994).

7

1.1.4 Semidefinite programming relaxation technique

Throughout this thesis we discuss a number of semidefinite programming relaxations. All are con-
structed using the same basic technique, which we will introduce in this section. This technique
can be applied to continuous optimization problems whose objective function and constraints can
be expressed using quadratic functions. It has three main steps, Lifting, Relaxation, and Reinforce-
ment, but first we introduce some notation.

Definition 1.1.1. The dot operator ‘·’ denotes the inner product between two matrices having the

same shape. For A ∈ Rm×n, B ∈ Rm×n,

A · B = trace(ABT) =

m∑
i=1

n∑
j=1

Ai jBi j . (1.10)

For future convenience, we also build on this definition with the following lemma.

Lemma 1.1.2. Given a matrix M ∈ Rn×n and vector y ∈ Rn×1, the scalar term yT My is equivalent

to M · (yyT).

Proof. By expanding and refactoring yT My we find that

yT My =

n∑
i=1

n∑
j=1

Mi jyiy j =

n∑
i=1

n∑
j=1

Mi j(yyT)i j , (1.11)

which by Definition 1.1.1 is equivalent to the dot product between M and the square matrix yyT . �

We now proceed to explain the relaxation technique.

Lifting

Given a mathematical program (P) with continuous decision variables x, and assuming its objective
function and constraints can be expressed using quadratic functions, we begin by defining a matrix
X to be:

X =

1x
 [1 xT

]
=

1 xT

x xxT

 =

1 x1 x2 · · · xn

x1 x2
1 x1x2 · · · x1xn

x2 x1x2 x2
2 · · · x2xn

...
...

...
. . .

...

xn x1xn x2xn · · · x2
n

. (1.12)

Next, we create a new problem with constraint (1.12) and with the objective function and constraints
of (P) rewritten as as a constraint and rewrite the objective and constraints in terms of the elements

8

of X, calling the new formulation (R). Quadratic terms in the elements of x can be written linearly
in the elements of the matrix X.

For example, consider the problem given by (P1
Ex), a very simple problem in two variables with a

convex quadratic objective and a single nonconvex quadratic equality constraint:

min
x∈R2

x2
2

s.t. ax2
1 + bx1x2 + cx2 = 3 .

(P1
Ex)

The equivalent lifted problem with rank one constraint as in (1.12) is given by

min
X

X22

s.t. aX11 + bX12 + cX02 = 3

rank

1 X01 X02

X01 X11 X12

X02 X12 X22

 = 1 .

(R1
Ex)

Problem (R1
Ex) is equivalent to (P1

Ex) and no more tractable. In (R1
Ex), the difficulty of the problem

has been captured by the last constraint which effectively enforces that X11 is equal to the square of
X01, X12 is equal to the product X01X02, and so on.

Relaxation

Since we cannot practicably enforce the rank one constraint, we will create the new problem (S)
from (R) by replacing the rank one constraint on X with a semidefinite constraint X � 0, which
for such relaxations means X is in the positive semidefinite cone Sn+1

+ , where n is the number of
variables in problem (P). Problem (S) is a relaxation of (R), and therefore a relaxation of (P), since

{X | rank(X) = 1} ⊂ {X | X � 0} . (1.13)

Reinforcement

In this step, we can optionally derive additional constraints to impose on (S). Reinforcement is
done by deriving valid quadratic constraints for (P), expressing them in terms of X, and adding
them to (S). The goal is to tighten the feasible region of (S) to reflect that of (R) as closely as
possible, so constraints added should be redundant in (R) but not (S). In particular, when dealing
with nonconvex quadratic objective functions and a potentially unbounded relaxation, it is often
important to impose constraints which directly or indirectly bound the diagonal elements of X.

9

1.2 Description of the problem

As previously mentioned, our motivation is to contribute to the state of knowledge for quadratic
quadratic bilevel problems (QBPs) and QPLCCs, particularly those with nonconvex objective func-
tions. In the QBP case, we restrict ourselves to problems with convex quadratic lower level objec-
tive functions. This restriction allows QBPs to be equivalently modeled as QPLCCs, as we will
soon show. The QBP is defined as:

max
x,y

[x
y
]T Qu

[x
y
]
+ pT

u
[x

y
]
+ r

s.t. Au
[x

y
]

= bu

Gu
[x

y
]
≤ hu

y ∈ arg min
y′

[x
y′
]T Q`

[x
y′
]
+ pT

`

[x
y′
]

s.t. A`

[x
y′
]

= b`
G`

[x
y′
]
≤ h` .

(QQBP)

Since x is considered a constant within the lower level problem, without loss of generality the lower
level objective function can be replaced by y′T Qyy

` y′ + xT Qxy
` y′ + py

`

T y′. We are assuming convexity
of the lower level problem, i.e. Qyy

` � 0, since the KKT conditions are both necessary and sufficient
for linearly constrained problems with convex objective functions (Freund, 2004).

The KKT form of (QQBP) is the QPLCC:

max
x,y

[x
y
]T Qu

[x
y
]
+ pT

u
[x

y
]
+ r

s.t. Au
[x

y
]

= bu

Gu
[x

y
]
≤ hu

A`

[x
y
]

= b`
G`

[x
y
]
≤ h`

µ ≥ 0
µi(h` −G`

[x
y
]
)i = 0 ∀ i = 1 . . . p

Qxy
`

T x + 2Qyy
` y +

p∑
i=1
µi[G`]T

i,nx+1: +
q∑

i=1
λi[H`]T

i,nx+1: = −py
` .

(QPLCCKKT)

More generally, the problem we will develop models for is

10

min
x

z(x) = xT Qx + pT x + r

s.t. aT
i x = bi ∀ i ∈ E

gT
i x ≤ hi ∀ i ∈ I

(hi − gT
i x)(h j − gT

j x) = 0 ∀ (i, j) ∈ C .

(P)

where x ∈ Rn. z(x) is a quadratic function. Let I = {1, . . . ,mI} be the index set for inequality
constraints and let E = {1, . . . ,mE} be the index set for equality constraints. Let C ⊆ {(i, j) | i ∈

I, j ∈ I, i < j} be the set of pairs of indices (i, j) such that we have complementarity between the
ith and jth inequality constraints.

It is important to note that QPLCCs are nonconvex optimization problems regardless of their objec-
tive functions, due to the disjunctive nature of complementarity constraints. For the complemen-
tarity constraint (hi − gT

i x)(h j − gT
j x) = 0, all solutions must satisfy at least one of gT

i x = hi or
gT

j x = h j. Each complementarity constraint presents a choice which may be branched upon, and it
is possible (if impractical) to express the feasible region of the QPLCC as the union of the feasible
regions of 2|C| subproblems, where |C| is the number of complementarity constraints in the QPLCC
and where each subproblem corresponds to a different way that the complementarity constraints
may be fixed.

However, in this thesis the term ‘convex QPLCC’ will be specially defined to indicate a QPLCC
whose quadratic objective function is convex. Specifically, the objective function f (x) = xT Qx +

pT x + r is convex if and only if Q is positive semidefinite. Otherwise f (x) is a nonconvex function
and we say that it is a nonconvex QPCC. The techniques we propose are valid for QPCCs of both
types.

As we will see later in the literature review, there exists equivalence between MIP, LLBP, and
bilinear disjoint programs (BDPs), and one can be reformulated to another in polynomial time.
This has implications for the complexity theory regarding these problem classes. For example,
if there existed a polynomial time algorithm which could check the global optimality of a MIP
solution, it would also be possible to check global optimality of LLBP solutions in polynomial
time: the LLBP and its solution could be transformed to a MIP context and then the algorithm for
MIPs could be applied, both polynomial time tasks. In point of fact, MIP, LLBP, and BDP are all
NP-Hard because it is known that mixed integer programming is NP-Hard.

Nonconvex QPLCCs are NP-Hard in two regards: the problem of a linearly constrained nonconvex
quadratic program is NP-Hard, and the objectiveless linear complementarity problem (LCP) is
known to be NP-Hard as well. An important implication of nonconvex QPs being NP-Hard is
that even if all complementarity constraints are branched on or relaxed, the remaining linearly

11

constrained nonconvex QP remains NP-Hard.

1.3 Research objectives

The first objective of this thesis is to investigate how effective SDP relaxations of QPCCs can
be constructed. A number of tightening cuts are investigated and recommendations are made for
two cases: the case where a single relaxation is heuristically constructed and solved, and the case
where a cutting plane method is used to iteratively tighten the relaxation until the ideal relaxation
is constructed.

The second objective of this thesis is to explore how a strong SDP relaxation can be used other than
for its bounds. For a certain semidefinite relaxation technique, an SDP relaxation solution which
has rank one can be mapped back to the space of the original problem to obtain a global solution.
Motivated by the observation that this rank one condition rarely happens in practice even if the
SDP relaxation is exact, we aim to develop an analogous derivation procedure which can be used
to produce a candidate point from SDP relaxation solutions not having rank one. Such a candidate
point can not be expected to be optimal or even necessarily feasible for the original problem, but
provides a heuristic ’guess’ which in practice is often very close to a globally optimal solution.

The final mission of this thesis is to produce open source software to help researchers working
in similar areas. Computational research in the field of complementarity problems is historically
fractured across many programming languages. This is natural since researchers approach MPCCs
with techniques from a wide variety of fields, and each typically chooses the programming language
best suited to their methods. However, this can make comparison with other solvers or methods
excessively difficult. The software produced during this research program aims to provide a Python
framework from which various tools from other languages can be accessed.

1.4 Structure of the thesis

This thesis is structured as follows. Chapter 2 presents a review of literature relevant to the work
presented in this thesis. Chapter 3 presents a semidefinite relaxation formulation for QPLCCs and
investigates the effectiveness of a number of tightening measures. A few relaxation formulations
are evaluated and finally an iterative technique is presented. Chapter 4 considers how SDP relax-
ations can be used not just for their bounds but also to obtain a heuristic estimate of the global
optimal solution which can be used to warmstart local and global NLP solvers. Chapter 5 intro-
duces three software products developed during the research program: PyQPCC, PyQPECgen, and
PySDPT3glue. Chapter 6 provides conclusions and summarizing discussion. Appendices A and B
include full tables for an analysis performed in chapter 4.

12

CHAPTER 2 CRITICAL LITERATURE REVIEW

2.1 Game theory, bilevel programs, equilibrium problems, and complementarity problems

Nash equilibrium

The notion of equilibria in game theory originated with Nash’s non-cooperative principle (Nash,
1951). The principle states that in a game with no collusion between players, an equilibrium state
consists of a strategy for each player such that no player has an incentive to change their strategy
unilaterally. That is to say, each player i’s strategy minimizes their individual cost function under
the assumption that the strategies of all other players j , i are known and will not change.

Mathematically, let Yi ⊆ R
mi be the set of valid strategies for player i, for players 1 . . . M. When

other players’ strategies are given by ygiven
,i , the cost function for player i is denoted θi(yi, y

given
,i). In

terms of this notation, Nash equilibrium is defined as a vector y∗ ∈
∏M

i=1 Yi which gives a strategy
for each player such that

y∗i ∈ arg min
yi
{θi(yi, y∗,i) : yi ∈ Yi} ∀i = 1...M . (2.1)

Nash equilibrium does not imply solution quality, only its stability under non-cooperation. Even a
Pareto inferior point can be a Nash equilibrium if no player can improve their objective unilaterally.

Stackelberg games

By contrast, the Stackelberg game presents a model for asymmetric games with a leader and one
or more followers (Stackelberg, 1952). The leader’s strategy x may be freely chosen from the set
X, while follower i’s feasible strategy set Yi depends on x. In the multi-follower case, the set of
feasible strategies for follower i is not affected by the choices other followers make, but the follower
i’s objective function may be. Then for a fixed leader strategy xgiven ∈ X, the followers responses
y∗i , i = 1...M must be in equilibrium with one another in the following sense:

y∗i ∈ arg min
yi
{θi(xgiven, yi, y∗,) : yi ∈ Yi(xgiven)} ∀i = 1...M . (2.2)

Nash games and Stackelberg games can also be generalized yet a step further with equilibrium
problems with equilibrium constraints (EPECs) and multi-leader-follower games, as in Hu and
Ralph (2007) and Siddiqui and Gabriel (2013).

13

Origin of bilevel programming

Beginning in 1973, Bracken and McGill proposed the use of bilevel programs (then called mathe-

matical programs with optimization problems in the constraints) as a modeling tool (Bracken and
McGill, 1973) and published papers giving bilevel programming models for applications in a num-
ber of fields. The most well known of these applications is a problem of choosing production and
marketing levels to secure the desired market share in a market with competition (Bracken and
McGill, 1978).

Optimistic vs. pessimistic formulations

As discussed in section 1.1, bilevel programming is founded on the premise that the leader can
correctly predict how the follower will react. However, the follower’s problem may have multiple
optimal solutions which are equally attractive to the follower but not necessarily so for the leader.
The bilevel programming models seen throughout this thesis are formulated according to the op-
timistic assumption that the follower will ‘break ties’ among solutions in the rational reaction set
S (x) (as defined in equation 1.3) by choosing the solution which benefits the leader the most.

By contrast, the pessimistic formulation is posed as

max
x,y

f (x, y)

s.t. (x, y) ∈ X

y ∈ arg min
y

f (x, y)

s.t. y ∈ S (x) .

(BPPES S)

Under the pessimistic assumption, the leader assumes that the follower will ‘break ties’ by choosing
the strategy which least benefits the leader. Although the pessimistic model is sometimes presented
as a maxmin problem, the (BPPES S) formulation is more correct because the leader is forced to
choose a value for x which makes the lower level problem feasible (Audet et al., 1999). The
leader therefore chooses its strategy in order to protect against the worst case. Although there
is literature on both models, the optimistic model is by far the more frequently studied as the
pessimistic formulation involves an additional layer of complexity.

Complementarity problems as MIP0−1

In addition to complementarity problems, bilevel problems are also closely related to mixed 0-1
integer programs (MIP0−1).

14

Consider a constraint of the form 0 ≤ h0 − gT
0 x ⊥ h1 − gT

1 x ≥ 0.
If constants M0,M1 are known such that for all feasible x,

0 ≤ h0 − gT
0 x ≤ M0 and 0 ≤ h1 − gT

1 x ≤ M1 , (2.3)

then the original complementarity constraint can be rewritten linearly with the use of a binary
variable z as follows:

0 ≤ h0 − gT
0 x ≤ M0z

0 ≤ h1 − gT
1 x ≤ M1(1 − z)

z ∈ {0, 1} .

(2.4)

Constraints which use a large constant and a binary variable to control whether or not an expression
is forced to zero are known as big-M constraints. When used to model a complementarity, the
binary variable z directly corresponds to choosing which expression to force to zero. If appropriate
constants M exist we can reformulate all complementarities this way, resulting in a MIP0−1 with |C|
binary variables, where C is the set of complementarity constraints.

In practice, constants M are not in fact required since the complementarities can be branched on
implicitly: for example, the constraint h0 − gT

0 x ⊥ h1 − gT
1 x can be branched on by creating two

subproblems, one where the complementarity is replaced by the equality constraint h0 − gT
0 x = 0,

and the other where it’s replaced by h1 − gT
1 x = 0.

Audet et al. (1997) showed how a MIP0−1 may be formulated as an LLBP, and also showed equiv-
alences between algorithms for MIP0−1 and LLBP. The significance of this result is that any al-
gorithmic improvements for one can be extended to the other as well. This is further explored by
Audet et al. (2007a) through the development of an algorithm for LLBP which is analogous to a
branch and cut algorithm for MIP0−1, and by Audet et al. (2007b) through the application of dis-
junctive programming results to derive valid cuts which tighten the linear relaxation of the bilevel
problem.

2.1.1 The challenge of globally solving BPs and MPCCs

Bilevel programs are difficult to solve globally; globally solving even the relatively simple LLBP
was shown by Hansen et al. (1992) to be strongly NP-Hard, and Vicente et al. (1994) showed that
checking local optimality is also strongly NP-Hard. Furthermore, in general the complementarity
structure hidden within bilevel programs renders the admissible region nonconvex and not neces-
sarily closed or connected (Luo et al., 1996).

In the case where a bilevel problem’s lower level problem has a convex objective function, both
objective and constraints are differentiable, and an appropriate constraint qualification is satisfied,

15

the lower level problem can be replaced by its KKT conditions to yield an equivalent single level
program.

When the KKT form of an LLBP is found, the resulting problem is a linear program with com-
plementarity constraints (LPCC). The literature for the LPCC and its objectiveless cousin the LCP
is by far the most mature among MPCC problem classes. For these problem classes, approaches
range from active set methods to penalty methods and beyond. Extensive research has been done
on global solution methods for LPCCs, such as Hansen et al. (1992); Hu et al. (2008); Bai et al.
(2013).

In addition to LPCCs, the case of convex QPLCCs has also been well studied, often with the use of
semidefinite programming techniques such as in Bai et al. (2013); Braun and Mitchell (2005). The
convex QPCC shares an important property with the LPCC, which is that it can be globally solved
by enumerating and solving the 2|C| convex subproblems which correspond to all possible ways
that the complementarity constraints could be satisfied. Each subproblem is a linearly constrained
convex QP and can be solved with relative ease. QPLCCs with non-convex objectives, however,
remain challenging in practice, especially when a global solution is desired.

2.2 Non-exhaustive review of solution methods for BPs and MPCCs

Active set methods

Active set methods are a broad class of methods for solving complementarity problems. For a
problem with m complementarity constraints, a binary vector α ∈ Bm is used as a tool to represent
a particular complementarity assignment. Each complementarity assignment is associated with a
subproblem in which each complementarity constraint f (x)g(x) = 0 has been replaced with either
f (x) = 0 or g(x) = 0. The solution to the original complementarity problem can be thought of as
the best solution found among all 2m such subproblems, and techniques such as branch-and-bound
can be applied.

The umbrella of active set methods includes not just versions of integer programming standards
such as branch-and-bound and branch-and-cut (ex. Hansen et al. (1992) for LLBP), but also any
other methods that focus on identifying the binary ‘complementarity alignment’ associated with an
optimal solution. For example, there is a method by Hu et al. (2012) which formulates an LPCC
as a minimax integer program using the active set formulation, then solves the problem using a
Logical Bender’s approach. More recently, Bai et al. (2013) extended this work to the case with a
convex quadratic objective function.

16

Branch and bound methods (MPCCs)

Branch and bound approaches branch on the choice inherent in each complementarity. This can
be done explicitly by rewriting each complementarity using two big-M constraints and a binary
variable to be branched on, but if M is not known the constraint can still be branched on implicitly
by forming two subproblems: to branch on the complementarity constraint x1x2 = 0, replace it in
one subproblem by the linear constraint x1 = 0, and in the other subproblem by x2 = 0.

Interior point methods (MPCCs)

KNITRO, a nonlinear program (NLP) solver which can handle complementarity constraints, does
so by applying an interior point method with an l1 penalty term to the objective. However, it may
be difficult to infer which constraints are active in the optimal solution, so the solution is also
post-processed by applying a user-determined number of iterations of an active set method to try
and determine a more exact solution. This method is shown by Leyffer et al. (2006) to converge
globally to a strongly stationary point.

In recent years Coulibaly and Orban (2012) also developed an l1 elastic interior point method, with
the advantage that the modified problem is known to have an interior and satisfy the Mangasarian-
Fromowitz constraint qualification. This method is particularly well suited to degenerate problems.

Convexification (MPCCs)

MPCCs can be viewed as general NLPs where the complementarity constraints become nonconvex
quadratic equality constraints. Some additional handling is needed in order to solve MPCCs as
NLPs, such as that seen in Bautista et al. (2007); Nguyen et al. (2011). Bautista et al showed
how, for a particular MPEC, the complementarity constraints of the corresponding NLP can be
convexified by the use of a smoothing term and then solved using commercial NLP software.

Parametric complementary pivot (MPCCs)

This method operates by progressively lowering a parameter z until no feasible solution can be
found with objective value lower than it. Initially z is set to +∞. A feasible point (x, y) is found
such that F(x, y) ≤ z. z is updated by setting z = F(x, y) and the constraint ∇yL = 0 is perturbed
in order to insure that the same (x, y) isn’t returned again but the optimal solution is not changed.
This procedure is repeated until it is no longer possible to find (x, y) such that F(x, y) ≤ z. It has
been shown by Colson et al. (2005) that this method does not necessarily converge to the optimal
solution.

17

Extreme point methods (LLBPs)

These methods are based on the idea of enumerating vertices by exploring bases for the lower level
problem. Extreme point methods are made possible by the fact that if an LLBP has a solution, the
solution set is guaranteed to contain at least one extreme point of the relaxed feasible region Ω.

Descent methods (LLBPs)

Descent methods require that the solution to the lower level problem is unique for every x, and
we can we can write y as y(x). We then consider the problem of looking for a ’rational descent
direction’, i.e. a direction d and step size α s.t. x +αd (α > 0) stays rational for the bilevel problem
while giving a sufficient decrease in F(x, y(x)).

Methods vary widely depending on the nature of the objective functions and constraints used, rang-
ing from problems with no upper level constraints to problems where both objectives are convex
quadratic and all other constraints are linear (Colson et al., 2005; Vicente et al., 1994).

Penalty function methods (LLBPs)

These methods suggest replacing the lower level problem miny f (x, y) s.t. g(x, y) ≤ 0 with the
unconstrained problem miny f (x, y) + rφ(g(x, y)), where r is a positive scalar and φ(·) is a barrier-
type function which is always positive and approaches +∞ as y approaches the boundary of {y :
g(x, y) ≥ 0} (Colson et al., 2005).

2.3 Literature applying SDP to MPCCs and related problems

SDP relaxations in branch and bound

There is precedent for the use of SDP rather than LP relaxations in a branching scheme, meaning
that SDP relaxations are solved at nodes of a branching tree. For example, Armbruster et al. (2008)
implemented a branch and cut method for the minimum graph bisection problem, solving SDP
relaxations at each node. In general, an SDP relaxation is expected to take longer to solve than
an LP relaxation at a given node, but if the SDP relaxation gives bounds that are significantly
tighter then more pruning can occur in the tree so that only a small number of nodes are evaluated.
Potentially, the reduction in the size of the tree can compensate for the increased computational
complexity, resulting in a more efficient method overall.

18

An exact SDP relaxation for a special nonconvex QPLCC

We will discuss the work of Ye and Zhang (2003) in some detail as it directly influences our work.
Consider the following problem, a ball-constrained QPLCC:

max
x

xT Qx + pT x + r

s.t. ||x||2 ≤ 1
gT

i x ≤ hi ∀ i ∈ I

(hi − gT
i x)(h j − gT

j x) = 0 ∀ i ∈ I, j ∈ I, i < j .

(PYZ)

The complementarity constraints of this model have a very specific structure, implying that for each
pair of linear inequalities, at least one must hold with equality. This effectively means that at most
one of the inequalities of I may be non-active. This is an example of an SOS1 constrained problem
in disjunctive constraint modeling (Vielma and Nemhauser, 2011). SOS1 constraints are disjunctive
constraints over continuous nonnegative variables in which at most one variable is allowed to be
non-zero.

Ye and Zhang construct a relaxation of the type introduced in section 1.1.4:

max
X

r pT

2
p
2 Q

 · X
s.t.

n∑
i=1

Xii ≤ 1

Xḡi ∈ SOC ∀ i ∈ I

ḡT
i Xḡ j = 0 ∀ i ∈ I, j ∈ I, i , j

X � 0, X00 = 1 ,

(SYZ)

where ḡi =
[hi
−gi

]
.

The reinforcing constraint Xḡi ∈ SOC is derived from the observation that
[1

x
]

is in the second order
cone, which is closed under multiplication by nonnegative scalars such as hi−gT

i x. This construction
of a new constraint from a second order cone constraint and a linear inequality constraint has been
termed an SOC-RLT constraint by Burer and Anstreicher (2013), due to its being in the spirit of
the reformulation-linearization technique introduced by Sherali and Adams (1999).

Two things are remarkable about relaxation (SYZ). First, it is exact, meaning that it has the same
optimal value as (PYZ), even when Q is not positive semidefinite. Second, Ye and Zhang also present
a polynomial time algorithm which, given an optimal solution X for (SYZ) which is not necessarily
rank one, computes a vector x which is optimal for (PYZ). The algorithm relies on both the special
complementarity structure and the unit ball constraint.

19

An SDP driven heuristic

For a convex QPLCC, Braun and Mitchell (2005) present a method which uses an SDP relaxation
as a key component in a heuristic. A convex QPLCC with |C| complementarity constraints can be
solved by enumerating over a tree of 2|C| linearly constrained convex quadratic subproblems. The
proposed method solves an SDP relaxation of the QPLCC, then applies spectral decomposition to
the optimal solution X∗ to find its closest rank-one approximation λ1ξ1ξ

T
1 . Information about ξ is

then used in an attempt to deduce which way some complementarity contraints should be fixed.
Those complementarity constraints which can be deduced with least confidence are retained while
the rest are fixed, and the smaller enumeration tree for this greatly simplified convex QPLCC is
explored one leaf node at a time. The heuristic presented is specific to QPLCCs with convex
objective functions, but this paper spurs our interest in using the values of the SDP solution matrix
heuristically rather than using SDP relaxations solely for their bounds.

20

CHAPTER 3 SEMIDEFINITE RELAXATIONS OF QUADRATIC PROGRAMS WITH
LINEAR COMPLEMENTARITY CONSTRAINTS

The focus of this chapter is the construction of SDP relaxations for QPLCCs of the form

min
x∈Rn

xT Qx + pT x + r

s.t. aT
i x = bi ∀ i ∈ E (1)

gT
i x ≤ hi ∀ i ∈ I (2)

(hi − gT
i x)(h j − gT

j x) = 0 ∀ (i, j) ∈ C , (3)

(P)

where x ∈ Rn. The index set for inequality constraints is given by I = {1, . . . ,mI}, and the index
set for equality constraints is given by E = {1, . . . ,mE}. For convenience, we will sometimes
equivalently write constraints (P.1) and (P.2) as Ax = b and Gx ≤ h, where ai and g j correspond to
row i of A and row j of G, respectively, reshaped as column vectors. Let C ⊆ {(i, j) ∈ I×I | i < j} be
the set of pairs of indices (i, j) such that we have complementarity between the ith and jth inequality
constraints.

This chapter proceeds as follows. We first construct and assess a basic relaxation of (P), then
present and evaluate a number of potential improvements. After discussing the computational
implications of the different relaxation models, we recommend the use of an iterative method and
discuss issues related to implementation and use in practice.

3.1 The base relaxation

3.1.1 Construction

We construct an SDP relaxation of (P) according to the procedure described in section 1.1.4, be-
ginning with lifting the problem to the variable space of X =

[1
x
][1

x
]T

=
[1 xT

x xxT

]
. Lemma 1.1.2 is

employed to express constraints using the dot notation introduced in section 1.1.4.

By lemma 1.1.2, the quadratic expression xT Qx + pT x + r can be lifted to the space of X as follows:

xT Qx + pT x + r =
[
1 xT

] r pT

2
p
2 Q

 1x
 =

r pT

2
p
2 Q

 · X . (3.1)

Similarly, the constraints can be rewritten as follows:

21

aT
i x = bi ⇒

 bi −aT
i

0n×1 0n×n

 · X = 0 , (3.2)

gT
i x ≤ hi ⇒

 hi −gT
i

0n×1 0n×n

 · X ≥ 0 , (3.3)

(hi − gT
i x)(h j − gT

j x) = 0 ⇒
[
1 x

] hi

−gi

 [h j −gT
j

] 1x
 = 0

⇒

 hi

−gT
i

 [h j −gT
j

] · X = 0 .

(3.4)

We can now assemble a preliminary SDP relaxation for (P) by relaxing the rank one assumption
and instead imposing the constraint X =

[1 xT

x X̄

]
∈ Sn+1

+ :

min
X

r pT

2
p
2 Q

 · X
s.t.

 bi −aT
i

0n×1 0n×n

 · X = 0 ∀ i ∈ E (1) hi −gT
i

0n×1 0n×n

 · X ≥ 0 ∀ i ∈ I (2) hih j −higT
j

−h jgT
i gigT

j

 · X = 0 ∀ (i, j) ∈ C (3)

X � 0, X00 = 1 . (4)

(S base)

In implementation, it is convention to symmetrize the coefficient matrices of symmetric variable
matrix X, i.e. a nonsymmetric coefficient matrix M is replaced by 1

2 (M + MT). We will present
models with asymmetric coefficient matrices where this serves clarity and understanding, but it
should be assumed that all coefficient matrices are symmetrized before the model is passed to a
solver.

3.1.2 Theory and Observations

To discuss the relation between (P) and (S base), we will introduce an additional mathematical pro-
gram, (R), which we will define to be the same problem as (S base) but with the rank one assumption
retained. That is, (R) has the form

22

min
X

r pT

2
p
2 Q

 · X
s.t.

 bi −aT
i

0n×1 0n×n

 · X = 0 ∀ i ∈ E (1) hi −gT
i

0n×1 0n×n

 · X ≥ 0 ∀ i ∈ I (2) hih j −higT
j

−h jgT
i gigT

j

 · X = 0 ∀ (i, j) ∈ C (3)

rank(X) = 1, X00 = 1 . (4)

(R)

Lemma 3.1.1. The dot product of two real positive semidefinite matrices is nonnegative.

Proof. Let A and B be two positive semidefinite matrices in Rn×n. For this proof we will use
two well known properties of positive semidefinite matrices. First, for a real positive semidefinite
matrix B, there exist vectors b1, . . . , brank(B) ∈ R

n such that B has the rank decomposition

B =

rank(B)∑
i=1

bibT
i . (3.5)

Secondly, for positive semidefinite matrix A, xT Ax ≥ 0 ∀ x ∈ Rn by definition. Using these
properties, the lemma is proven as follows:

A · B = tr(BT A) = tr

rank(B)∑
i=1

bibT
i A

 =

rank(B)∑
i=1

bT
i Abi ≥ 0 . (3.6)

�

Theorem 3.1.2. Problems (P) and (R) are equivalent. There exists a one-to-one mapping between

their feasible regions, and corresponding solutions achieve equivalent objective values.

A solution x ∈ f eas(P) can be mapped to a solution X ∈ f eas(R) by the lifting X =
[1 xT

x xxT

]
. A

solution X̂ ∈ f eas(R) can be mapped to a solution x ∈ f eas(P) by the extraction x = [X]2..n+1,1, is

feasible for (P). Equations (3.7) visualize this extraction:

X̂∗ =

X00 X01 · · · X0n

X10
. . .

...
...

. . .
...

Xn0 · · · · · · Xnn

, x̂∗ =

X10
...

Xn0

. (3.7)

23

Proof. Given x which is feasible for (P), we must show that X =

1 xT

x xxT

 will be feasible for (R).

Note that by construction X will satisfy the constraints rank(X) = 1, X00 = 1 of (R). Consider the
complementarity constraint between (i, j) ∈ C for problem (P):

(hi − gT
i x)(h j − gT

j x) = 0 , (3.8)

and its lifted counterpart: hih j −higT
j

−h jgT
i gigT

j

 · X = 0 . (3.9)

We see that for any x such that (3.8) holds, X =

1 xT

x xxT

 will satisfy (3.9):

 hih j −higT
j

−h jgT
i gigT

j

 · X =

 hi

−gi

 [h j −gT
j

] · 1x
 [1 xT

]
=

[
1 xT

] hi

−gi

 [h j −gT
j

] 1x

= (hi − gT
i x)(h j − gT

j x)
= 0 .

(3.10)

On the other hand, given X which is feasible for (R), we must show that extracted vector x =

[X]2..n+1,1 will be feasible for (P).

Since X is a feasible solution for (R), it is known that X =

1 xT

x xxT

 =

1x
 [1 xT

]
.

(hi − gT
i x)(h j − gT

j x) =
[
1 xT

] hi

−gi

 [h j −gT
j

] 1x

=

 hih j −higT
j

−h jgT
i gigT

j

 · X
= 0 .

(3.11)

Once again, the same can be shown for the other pairs of corresponding constraints, effectively
proving that there is a one-to-one mapping between the feasible region of (P) and the feasible
region of the constraints which are liftings of the constraints of (R), ie.

24

x ∈
{

x
∣∣∣∣ aT

i x = bi ∀ i ∈ E ,

gT
i x ≤ hi ∀ i ∈ I ,

(hi − gT
i x)(h j − gT

j x) = 0 ∀ (i, j) ∈ C
}

~www�1 xT

x xxT

 ∈ {
X

∣∣∣∣ bi −aT
i

0n×1 0n×n

 · X = 0 ∀ i ∈ E , hi −gT
i

0n×1 0n×n

 · X ≥ 0 ∀ i ∈ I , hih j −higT
j

−h jgT
i gigT

j

 · X = 0 ∀ (i, j) ∈ C
}
.

(3.12)

Finally, all that remains to be shown is that the objective value obtained by x in (P) is the same as
that obtained by lifted matrix X in (R). This is easily shown to be

zP(x) = xT Qx + pT x + r

= Q · (xxT) + pT x + r

=

 r 1
2 pT

1
2 p Q

 · 1 xT

x xxT

= zR(X) ,

(3.13)

and so a one-to-one mapping exists with corresponding solutions achieving the same values.

�

Corollary 3.1.3. Given X which is feasible for (S base) and is rank one, there exists a mapping to a

feasible solution of (P) with equivalent value.

Proof. Letting f eas(P) denote the set of feasible solutions to a problem (P), we observe that
f eas(R) = f eas(S) ∩ {X̂ s.t. rank(X̂) = 1}. Then we have X ∈ f eas(R), and as per Theorem
3.1.2 we can map it to x which is feasible for (P) and achieves the same objective value. �

Corollary 3.1.4. If (P) is feasible, (S base) will be feasible.

Proof. Let x f eas be a feasible solution to (P). Then we can map it to a solution (S base) as shown in
Theorem (3.1.2). �

Example 3.1.5. While (S base) is a valid SDP relaxation for any (P), we do not necessarily expect
any particular degree of tightness. In particular, for the case of a nonconvex quadratic objective

25

function, the model (S base) can easily be unbounded. This is due to the fact that the block of matrix
X which serves as a proxy for the quadratic terms xxT is relatively unconstrained.

For example, let us consider the following problem:

max
x,y,z

yz

s.t. 0 ≤ x, y, z ≤ 1 (1)

xy = 0 (2)

xz = 0 . (3)

(P2
Ex)

We can solve this problem analytically by first observing that y and z can only be nonzero if we fix
x = 0. Then the problem reduces to

max
y,z

yz

s.t. 0 ≤ y, z ≤ 1 , (1)
(P2

Ex
′)

with optimal value 1 achieved by solution (x, y, z) = (0, 1, 1).

However, let us consider the SDP relaxation given by relaxing this problem as in (P)→ (S base):

max
X

X23

s.t. 0 ≤ X01, X02, X03 ≤ 1 (1)

X12 = 0 (2)

X13 = 0 (3)

X =

1 X01 X02 X03

X01 X11 X12 X13

X02 X12 X22 X23

X03 X13 X23 X33

 � 0 . (4)

(S ex1)

For any v ≥ 1, the matrix

X =

1 0 1 1
0 0 0 0
1 0 v v

1 0 v v

 (3.14)

is a feasible solution achieving objective value v. Since v can be increased arbitrarily, the relaxation
is unbounded.

26

This example illustrates an important point. In the problem (P2
Ex), the objective function yz is

bounded implicitly by the constraints 0 ≤ y ≤ 1, 0 ≤ z ≤ 1. On the other hand, in the SDP
relaxation (S ex1) the corresponding variable X23 is constrained only as part of the structural con-
straint X � 0, and there is enough flexibility overall that a feasible X matrix can be constructed to
accommodate any desired value of X23.

Theorem 3.1.6. For any real positive semidefinite matrix

r pT

2
p
2 Q

, the problem

min
X

r pT

2
p
2 Q

 · 1 xT

x X̄

s.t.

1 xT

x X̄

 � 0

(3.15)

is feasible and bounded.

Proof. Any x ∈ Rn and X̄ = xxT will yield a feasible solution. Since

1 xT

x X̄

 ∈ Sn+1
+ for any

feasible solution, Lemma 3.1.1 gives a lower bound of 0 on the value of the objective function on
the feasible set. �

The condition stated for Theorem 3.1.6 is more restrictive than we would like. For example, it is
possible for

[r pT
2

p
2 Q

]
to be indefinite even if xT Qx+ pT x+r is a strictly convex expression. We would

prefer to draw a connection between the eigenvalues of Q and the boundedness of the semidefinite
relaxation. The following lemma does this, albeit while requiring a stricter condition on Q, positive
definiteness.

Lemma 3.1.7. Given a positive definite matrix Q ∈ Sn
++, p ∈ Rn, r ∈ R, there exists a finite c ∈ R

such that

M(c) =

r + c pT

2
p
2 Q

 � 0 . (3.16)

Proof. Given M(c) ∈ Rn+1×n+1 and index sets I, J ⊆ {1, . . . , n + 1}, detI,J(M(c)) denotes the deter-
minant of the submatrix given by selecting rows I and columns J of M(c). The principal minors of
M(c) are given by detI,I(M(c)) for some I ⊆ {1, . . . , n}, and the leading principal minors are those
principal minors for which I = {1, . . . , k} for some k ≤ n + 1. To make M(c) positive definite, it is
sufficient to identify a c ∈ R such that all the leading principal minors of M(c) are positive, i.e.

det
I,I

(M(c)) > 0 ∀ I = {1, . . . , k}, k ≤ n + 1 . (3.17)

27

Every leading principal minor will have 1 ∈ I. First, consider the special case where I = {1}.

det
{1},{1}

(M(c)) = r + c > 0 ⇔ c > −r . (3.18)

In the remaining cases, where 1 ∈ I and |I| ≥ 2, we can write

det
I,I

(M(c)) =
|I|∑

k=1
(−1)k+1X1,Ik det

I\{1},I\{Ik}
(M(c))

= (r + c) det
I\{1},I\{1}

(M(c)) +
|I|∑

k=2
(−1)k+1X1,Ik det

I\{1},I\{Ik}
(M(c)) .

(3.19)

The principal minor det
I\{1},I\{1}

(M(c)) is equivalent to one of the principal minors of Q and is therefore

positive, so the necessary condition detI,I(M(c)) > 0 can be expressed as

c >

|I|∑
k=2

(−1)kX1,Ik det
I\{1},I\{Ik}

(M(c))

det
I\{1},I\{1}

(M(c))
− r . (3.20)

Furthermore, the right hand side of this inequality does not in fact depend on c since all the deter-
minants involved omit the first row of M(c).

Therefore, M(c) will be positive definite for any c such that

c > −r , c > −r + max
I⊆{1...n+1}
1∈I, |I|≥2

|I|∑
k=2

(−1)kX1,Ik det
I\{1},I\{Ik}

(M(c))

det
I\{1},I\{1}

(M(c))
. (3.21)

Since the maximum is being taken over a finite number of sets |I|, and the bound on c will be finite
in each case, there exists a finite and calculable c such that M(c) � 0.

�

Theorem 3.1.8. For any real positive definite matrix Q, the problem

min
X

r pT

2
p
2 Q

 · 1 xT

x X̄

s.t.

1 xT

x X̄

 � 0

(3.22)

is feasible and bounded.

28

Proof. Feasibility is as in Theorem 3.1.6. To show boundedness, we use the fact that by Lemma

3.1.7, there exists a finite real c such that

r + c pT

2
p
2 Q

 � 0. Then, for such a c, we can rewrite the

objective as follows and apply Lemma 3.1.1 to obtainr pT

2
p
2 Q

 · 1 xT

x X̄

 =

r + c pT

2
p
2 Q

 · 1 xT

x X̄

 − c ≥ −c . (3.23)

�

Theorem 3.1.9. Consider the following problem:

min
X

r pT

2
p
2 Q

 · 1 xT

x X̄

s.t. Ai · X = bi i ∈ E

Gi · X ≤ hi i ∈ I

X =

1 xT

x X̄

 � 0 .

(3.24)

Assuming the problem is feasible, and without making any assumptions about the positive semidef-

initeness of Q, if the constraints of the feasible region ensure that diagonal elements of X̄ are

bounded above by some finite U, i.e. X̄ii ≤ U for every feasible solution x, X̄, then the problem will

be bounded.

Proof. It is known that real diagonally dominant matrices with non-negative diagonal entries will

be positive semidefinite. For arbitrary M =

r pT

2
p
2 Q

, there exists a nonnegative scalar ε such that

M + εI is diagonally dominant with positive diagonal entries, and therefore positive semidefinite.

Then we can rewrite the objective as follows and apply Lemma 3.1.1 to obtain a lower bound over
the feasible region of the problem:

r pT

2
p
2 Q

 · 1 xT

x X̄

 =

r + ε pT

2
p
2 Q + εI

 · 1 xT

x X̄

 − ε(1 +
n∑

i=1
Xii)

≥ −ε(1 +
n∑

i=1
Xii)

≥ −ε(1 + nU) .

(3.25)

�

3.1.3 Test problems: MacMPEC

29

(TODO: Explain/show why no MacMPEC - limitations, motivate creation/use of PyQPECgen)

3.1.4 Test problems: QPECgen

Before presenting our first results, we must introduce the set of problems which we will use
throughout this thesis to evaluate the effectiveness of SDP relaxations and related methods. The
problems used are generated using PyQPECgen, our Python implementation of test problem gen-
erator QPECgen, which will be introduced in more detail in section 5.2. We generate problems
of the BOX-QPEC type with convex quadratic objective functions, and problems of type FULL-
BOX-QPEC with nonconvex quadratic objective functions. As discussed in section 5.2, FULL-
BOX-QPEC is the only problem type generated by PyQPECgen which guarantees boundedness of
the problem for nonconvex quadratic objective functions.

Each problem is generated as a QPLCC having approximately 20, 50, or 100 variables. We generate
12 problems in each size category N ∈ {20, 50, 100} 6 from BOX-QPEC, and 6 from FULL-BOX-
QPEC. Problems are generated according to the parameters of Table 3.1, along with the default
parameters shown in 5.1. Names are assigned to problems according to the formula {B/F}{N}n{i},
identifying the type (B for BOX-QPEC, F for FULL-BOX-QPEC), size category N, and generation
number i.

Table 3.1 Parameters altered from default to generate problems of each type, where
N ∈ {20, 50, 100} is the desired problem size category

Case

Parameter BOX-QPEC FULL-BOX-QPEC

qpec_type 200 201

n 0.5N 0.4N

m 0.25N 0.2N

l 0.25N 0.2N

convex_f True False

second_deg An integer randomly selected from [0, m]

problems generated per N 6 6

The global MINLP solver BARON is used in advance to determine each problem’s global optimal
value so that metrics such as optimality gaps can be computed for our methods. Tables 3.2-3.4
show the results of solving all test problems to global optimality using BARON. Both MIP and
NLP formulations were tested and the faster solve time (generally for the MIP formulation) was

30

recorded as tB. Times will be used to give perspective to the time taken by our own methods.

The symbol † marks those problems for which BARON could not prove global optimality within
6 hours. In these cases it is quite possible that BARON has found the global optimum but simply
can’t prove it, but even if this is not the case, SDP gaps calculated against the best feasible solution
will serve as upper bounds against the gap to the true global optimal solution.

Table 3.2 Global optimal results found using BARON for problems with about 20 variables.

Problem (n, |C|) z∗ tB (s) Problem (n, |C|) z∗ tB (s)

co
nv

ex
ob

je
ct

iv
es

B20n0 (24, 9) -167.46 0.08

no
nc

on
ve

x
ob

je
ct

iv
es F20n0 (20, 8) -487.56 0.07

B20n1 (21, 6) -156.11 0.05 F20n1 (20, 8) -132.34 0.21
B20n2 (24, 9) -1202.5 0.19 F20n2 (20, 8) -233.10 0.1
B20n3 (21, 6) -229.23 0.07 F20n3 (20, 8) -96.345 0.12
B20n4 (21, 6) -614.43 0.09 F20n4 (20, 8) -38.382 0.3
B20n5 (22, 7) -265.04 0.08 F20n5 (20, 8) -235.07 0.23

Table 3.3 Global optimal results found using BARON for problems with about 50 variables.

Problem (n, |C|) z∗ tB (s) Problem (n, |C|) z∗ tB (s)

co
nv

ex
ob

je
ct

iv
es

B50n0 (56, 19) -2568.1 1.9

no
nc

on
ve

x
ob

je
ct

iv
es F50n0 (50, 20) -414.23 33.28

B50n1 (59, 22) -1651.6 7.61 F50n1 (50, 20) -624.92 66.30
B50n2 (59, 22) -1769.7 8.09 F50n2 (50, 20) -467.70 42.64
B50n3 (56, 19) -3158.4 2.48 F50n3 (50, 20) -2649.6 14.38
B50n4 (56, 19) -730.80 3.79 F50n4 (50, 20) -552.23 2.99
B50n5 (54, 17) -662.69 2.27 F50n5 (50, 20) -580.06 36.14

Table 3.4 Global optimal results found using BARON for problems with about 100 variables.

Problem (n, |C|) z∗ tB (s) Problem (n, |C|) z∗ tB (s)

co
nv

ex
ob

je
ct

iv
es

B100n0 (104, 29) -2531.8 6618.1

no
nc

on
ve

x
ob

je
ct

iv
es F100n0 (100, 40) -4921.8 21600. †

B100n1 (108, 33) -2701.3 6460.5 F100n1 (100, 40) -2617.2 21600. †

B100n2 (107, 32) -2233.8 1828.5 F100n2 (100, 40) -894.66 6411.
B100n3 (117, 42) -2978.1 2043.6 F100n3 (100, 40) -4237.7 21600. †

B100n4 (115, 40) -5361.1 1235.7 F100n4 (100, 40) -3118.3 10384.
B100n5 (117, 42) -2008.0 1475.1 F100n5 (100, 40) -1098.7 21600. †

31

We observe that many problems in the 20 variable category are solved in fractions of a second, while
only 5 of 12 problems in the 100 variable category could be solved to global optimality by BARON
in less than 6 hours, demonstrating the escalation in difficulty as QPLCC problems become large.
We also note that problems with nonconvex objective functions in general take longer to solve to
global optimality, which is as expected.

3.1.5 Evaluation of (S base)

Throughout this chapter and the next, we will discuss optimality gaps for SDP relaxations of
QPLCCs.

We will define the following function for measuring relative gap:

gapS (z) =
z∗ − z
|z∗|

, (3.26)

where z∗ is the QPLCC’s optimal value as found by BARON. The metric gapS is appropriate to
evaluate the quality of an SDP bound since an SDP bound zS will be an underestimator of z∗.

Table 3.5 shows the effectiveness of (S base) for the test problem set. The SDP relaxations are
solved on a dual processor Intel(R) Xeon(R) X5675 @ 3.07GHz with 96 Gb of RAM using Mat-
lab solver SDPT3 (Tütüncü et al. (2001); Toh et al. (2006)) using our Python-to-SDPT3 interface
PySDPT3glue which is detailed in section 5.3.

Only the time used by the solver is recorded in column tS because some software components
such as the relaxation step and the PySDPT3glue interface are designed to maximize flexibility,
clarity, and ease of experimental design rather than efficiency. The single largest use of time is that
required to export the problem from Python as a Matlab .mat file, an unavoidable step when passing
a problem between the two languages, but an interested party willing to cement in a particular
method could write a pure Matlab implementation with very efficient solve preparation.

As in Tables 3.3-3.4, † denotes those problems for which the true global optimum was not proven by
BARON and the best known solution is used instead. For the problems considered, each problem’s
best known solution ẑB is negative and thus bounded by z∗ < ẑB ≤ 0. We can then treat these cases
by calculating gapS against ẑB rather than z∗, because this will give an upper bound on the gap
(i.e. a worst case gap) to the unknown true optimum.

32

Table 3.5 Optimality gaps and times for the S base SDP relaxation formulation.

S base S base S base

Problem gapS % tS (s) Problem gapS % tS (s) Problem gapS % tS (s)

co
nv

ex
ob

je
ct

iv
es

B20n0 2.66% 1.33 B50n0 0.08% 1.73 B100n0 0.52% 3.24
B20n1 0.01% 1.26 B50n1 2.75% 1.93 B100n1 0.39% 3.42
B20n2 0.40% 1.35 B50n2 4.78% 1.89 B100n2 0.07% 3.98
B20n3 2.83% 1.74 B50n3 0.15% 2.48 B100n3 0.24% 4.62
B20n4 0.09% 1.26 B50n4 1.22% 3.79 B100n4 0.13% 4.31
B20n5 38.24% 1.11 B50n5 2.04% 2.27 B100n5 0.67% 4.13

no
nc

on
ve

x
ob

je
ct

iv
es F20n0 0.00% 1.34 F50n0 44.70% 1.59 F100n0 0.36 % 2.15 †

F20n1 0.42% 1.32 F50n1 6.72% 1.54 F100n1 1.09% 2.24 †

F20n2 0.00% 1.21 F50n2 4.51% 1.31 F100n2 2.11% 2.12
F20n3 0.22% 1.24 F50n3 0.02% 1.51 F100n3 0.20% 2.3 †

F20n4 1.07% 1.18 F50n4 0.00% 1.22 F100n4 0.09% 2.5
F20n5 0.40% 1.33 F50n5 0.39% 1.33 F100n5 1.55% 2.18 †

3.2 Tightening constraints and modeling alternatives

While (S base) performed well for many problems, there is room for improvement in many cases.
In this section we consider what additional constraints might be used to improve the tightness of
the SDP relaxation. As we observed in Theorem 3.1.9, bounding the diagonal of the X matrix is
one way to ensure boundedness of the relaxation, and tighter bounds on the diagonal elements may
lead to tighter relaxations. More generally, we hope to devise valid constraints which are quadratic
in the variables of the original problem, so that the feasible region of the used SDP relaxation will
be a more effective proxy for that of (P).

For example, in the case of Example 3.1.5, the ideal feasible region for a semidefinite relaxation of
(P2

Ex) would be

FS DP =

1 x 0 0
x x2 0 0
0 0 0 0
0 0 0 0

 ,∀ x ∈ [0, 1]

∪

1 0 y z

0 0 0 0
y 0 y2 yz

z 0 yz z2

 ,∀ y, z ∈ [0, 1]

, (3.27)

To improve relaxation (S ex1), we need to identify valid cuts which will bring the feasible region
of (S ex1) closer to the convex hull of F , denoted conv(F). Note that the feasible region cannot be

33

made any tighter than conv(F) because the feasible region of a semidefinite program is convex by
construction, having a semidefinite cone constraint and otherwise linear constraints.

In this case, (S ex1) can be made an exact SDP relaxation by the addition of the constraint

(1 − y)z ≥ 0 ⇒

0 0 0 1
0 0 0 0
0 0 0 −1
0 0 0 0

 · X ≥ 0 , (3.28)

which is a valid cut derived from constraints y ≤ 1 and z ≥ 0 of (P2
Ex). This is an example of a

Sherali-Adams constraint, the first type of tightening constraint we will explain.

3.2.1 Sherali-Adams constraints

Sherali-Adams constraints are rooted in the notion that the product of two non-negative quantities
will be non-negative. For any i ∈ I, j ∈ I, the (i, j) Sherali-Adams constraint is given by

(hi − gT
i x)(h j − gT

j x) ≥ 0 . (3.29)

Similarly to (3.4), this constraint can be modeled as hi

−gi

 [h j −gT
j

] · X ≥ 0 . (3.30)

We impose this constraint for only those i, j ∈ I which satisfy i < j and (i, j) < C. The constraint
for (i, j) is equivalent to that for (j, i), the (i, i) case is trivially satisfied (see lemma 3.2.1), and when
(i, j) ∈ C the (i, j) Sherali-Adams constraint is redundant in the corresponding complementarity
constraint (3.4).

Lemma 3.2.1. The Sherali-Adams constraint between an inequality constraint and itself will be

trivially satisfied by any positive semidefinite X.

Proof. By the definition of X � 0, hi

−gi

 [hi −gT
i

] · X =
[
hi −gT

i

]
X

 hi

−gi

 ≥ 0 . (3.31)

�

Example 3.2.2 demonstrates the use of a Sherali-Adams constraint in a simple example.

34

Example 3.2.2. Consider the nonconvex QP problem and potential semidefinite programming re-
laxation:

max y = x2 max y

s.t. − 1 ≤ x ≤ 2 , (P3
Ex) s.t. − 1 ≤ x ≤ 2 (S 3

Ex)

X =

1 x

x y

 � 0 .

Figures 3.1 and 3.2 visualize the solution space of (P0) and (S 0), and we observe that (S 0) is
unbounded. However, reinforcing (S 0) by adding the Sherali-Adams constraint

(2 − x)(x + 1) ≥ 0 ⇒ y ≤ x + 2 ⇒

 2 0.5
0.5 −1

 · X ≥ 0 (3.32)

bounds the relaxation by enforcing y ≤ x + 2 ≤ 4. Calling this reinforced relaxation (S 0+), the new
solution space is shown by Figure 3.3 and (S 0+) is an exact relaxation of (P0) since they have the
same optimal value. The feasible regions of example problem P0 and two valid SDP relaxations,
demonstrating the impact of Sherali-Adams constraints.

Figure 3.1 f eas(P0) is a
segment of parabola y = x2.

Figure 3.2 Naive relaxation
(S 0) is unbounded.

Figure 3.3 f eas(S 0+) is the
convex hull of f eas(P0).

There exists a connection between Sherali-Adams constraints and McCormick inequalities. Given
explicit variable bound constraints

x1 ≥ l1 , (a) x2 ≥ l2 , (c)
x1 ≤ u1 , (b) x2 ≤ u2 , (d)

(3.33)

35

the McCormick envelope for variables x1, x2 and quadratic proxy term X̄12 is given by the con-
straints

X̄12 ≥ `2x1 + `1x2 − `1`2 , (a)
X̄12 ≤ u2x1 + `1x2 − `1u2 , (b)
X̄12 ≤ `2x1 + u1x2 − u1`2 , (c)
X̄12 ≥ u2x1 + u1x2 − u1u2 . (d)

(3.34)

These constraints are equivalent to the Sherali-Adams constraints generated by inequality pairs
(3.33a) and (3.33c), (3.33a) and (3.33d), (3.33b) and (3.33c), and (3.33b) and (3.33d), respectively.
Therefore, if explicit variable bound constraints are present in the inequalities of (P), the constraints
of the McCormick envelope will be included among the Sherali-Adams constraints generated for I.

The McCormick envelope is often applied to mixed integer nonlinear programs (MINLPs), and
is a crucial element of global MINLP solvers such as BARON which use the spatial branch and
bound method. An overview of convex envelopes can be found in Costa and Liberti (2012), and an
in-depth discussion of convex envelopes and spatial branch and bound can be found in the book of
Tawarmalani and Sahinidis (2002).

3.2.2 Enhanced equality constraints

This second constraint type is rooted in the fundamental notion that an equality remains valid when
multiplied on both sides by any quantity. The name takes a cue from Ševčovič and Trnovská (2014),
who proposed an ‘enhanced semidefinite relaxation method’ by which all constraints of this type
are imposed. This constraint type also features in the SDP model used in Braun and Mitchell
(2005).

For any variable xi and equality constraint aT
j x = b j, the quadratic equality constraint

xi(b j − aT
j x) = 0 ⇒

[
b j −aT

j

]
Xei+1 = 0 (3.35)

is valid where e j ∈ R
n+1, [e j]k =

1 if k = j + 1,

0 otherwise.

It is trivial to see that constraint (3.35) is valid, but the impact it may have as a cut in an SDP
relaxation is not immediately obvious. The motivation for its use comes from noting that X � 0 has
rank one if and only if columns 2, . . . , n + 1 of X are scalar multiples of its first column, specifically
Xi,: = Xi,0 ∗ X0,:. In general, this relationship can’t be enforced directly using tractable constraints,
but tightening towards this end may be possible indirectly by thinking about how properties of
column 0 should be reflected in column i. In this case, we observe that if column 0 of X is con-

36

strained to lie on some hyperplane defined by
{
z ∈ Rn+1 s.t.

[
h j −gT

j

]
z = 0

}
, then we can impose

that column i must as well.

In practice, diminishing returns are common when imposing this constraint type for a given j and
many i. Furthermore, the constraints are not necessarily independent of one another and numerical
difficulties often arise in practice when solving the SDP relaxation with many of these constraints
imposed redundantly.

3.2.3 Aggregated equality constraints

Either as an alternative to or in combination with constraints of the type (3.35), we can also consider
the valid constraint

xT AT (b − Ax) = 0 , (3.36)

written in terms of X as 0 0
AT b −AT A

 · X = 0 . (3.37)

This can be seen as the weighted aggregation of enhanced equality constraints:

xT AT (Ax − b) = 0 ⇒

n∑
i=1

|I|∑
j=1

A jixi(b j − aT
j x) = 0 ⇒

n∑
i=1

|E|∑
j=1

A ji

[
b j −aT

j

]
Xei+1 = 0 .

(3.38)

Having made this observation, another alternative may be to consider the case where all enhanced
equality constraints are aggregated with equal weight:

n∑
i=1

|E|∑
j=1

[
b j −aT

j

]
Xei+1 = 0 . (3.39)

Constraints (3.38) and (3.39) will both be redundant if all n|E| enhanced equality constraints are
individually imposed, but when we are unwilling to impose that many constraints then these aggre-
gated constraints may give some benefit for a very cheap cost.

37

3.3 A ‘full’ model

We will now say that for (P), a ‘full’ SDP relaxation (with regards to the tightening measures
discussed in this thesis) would be given by:

min
X

r pT

2
p
2 Q

 · X
s.t.

[
bi −aT

i

]
Xe j = 0 ∀ i ∈ E, j = 0, . . . , n (1)[

hi −gT
i

]
Xe0 ≥ 0 ∀ i ∈ I (2)

[
hi −gT

i

]
X

 h j

−gT
j

 = 0 ∀ (i, j) ∈ C (3)

[
hi −gT

i

]
X

 h j

−gT
j

 ≥ 0 ∀ 0 ≤ i < j ≤ ni, (i, j) < C (4)

X � 0, X00 = 1 . (5)

(S f ull)

Aggregated constraints 3.38 and 3.39 are redundant in (S f ull.1) and are omitted.

We can extend some of our earlier theoretical results. Let the supplementary mathematical program
(R f ull) be defined to be the same problem as (S f ull) but with the rank one assumption retained. In
other words, with constraint (S f ull.5) replaced by the rank one structure constraint X =

[1 xT

x xxT

]
.

Then theoretical results 3.1.2-3.1.4 can be similarly proven if (R) and (S base) are replaced by (R f ull)
and (S f ull), because we have only added valid constraints which are redundant in the original prob-
lem and in (R f ull). This further extends to any model which uses all the constraints of (S base)
supplemented with some or all of the constraints of (S f ull).

The trouble with (S f ull)

Although (S f ull) is theoretically valid, upon testing this model it quickly becomes apparent that
(S f ull) is an impractical relaxation for problems of even modest size. SDP relaxations of problems
with as few as 20 variables return a host of non-convergence errors: maximum number of iterations
reached, progress in relative gap or infeasibility is bad, primal infeasibility has deteriorated too
much, etc.

We hypothesize that this is because (S f ull.1) imposes O(n|E|) equality constraints, many of which
are redundant in the rest of the problem. These redundant constraints are harmless theoretically,
but in our experience impose constraints which have a very small amount of numerical error built
into them. The effect is that they slice away at the interior of the SDP model and create difficulty

38

for an interior point solver.

3.4 A middle ground model and iterative framework

To construct a model which is computationally manageable, if not as theoretically strong as (S f ull),
we will consider a model (S heur) and define it as

min
X

r pT

2
p
2 Q

 · X
s.t.

[
bi −aT

i

]
Xe0 = 0 ∀ i ∈ E (1)[

hi −gT
i

]
Xe0 ≥ 0 ∀ i ∈ I (2)

[
hi −gT

i

]
X

 h j

−gT
j

 = 0 ∀ (i, j) ∈ C (3)

 0 0
AT b −AT A

 · X = 0 (4)

X � 0 . (5)

(S heur)

This model is relaxed from (S f ull) in two ways. First, the single aggregated equality constraint
(S heur.1) is used in place of the O(n|E|) enhanced equality constraints imposed in (S f ull.1), and
second, the Sherali-Adams constraints seen in constraint (4) of (S f ull) have been removed for the
moment. Large numbers of inequality constraints are generally less problematic than large numbers
of equality constraints, but since there are O(|I|2) such constraints we will leave them out initially
to prevent the constraints from falsely slicing through parts of the ideal feasible region, (R), due to
numerical error. The model (S heur) contains only O(n + |I| + |E|) linear constraints.

Beginning with Table 3.6, we will use CVXOPT to compute solutions to SDP problems. CVXOPT
is an SQLP solver package developed for Python by Vandenberghe (2010) and Andersen et al.
(2013), with much of the underlying computation performed using C. In general we find that CVX-
OPT has less overhead for very small problems such as the N = 20 group, but suffers from much
worse computational complexity as the number of variables increases. Although we again use a
dual processor Intel(R) Xeon(R) X5675 @ 3.07GHz with 96 Gb of RAM, it is not taken advantage
of this time and our solves commonly take 100+ times longer than with SDPT3 for N = 100 prob-
lems. Nonetheless, we will begin using CVXOPT at this point for the sake of integrity, as we have
observed that in practice it is the more stable algorithm for the (S heur) model and the iterative mod-
els to come. The column tC will denote the solve time taken by CVXOPT. Remarkably, in chapter 4
we will observe that a global solution method assisted by this SDP solve can be competitive despite

39

the slow solution times for these problems.

Table 3.6 Optimality gaps and times for the (S heur) SDP relaxation formulation.

S 0
iter S 0

iter S 0
iter

Problem gapS % tC (s) Problem gapS % tC (s) Problem gapS % tC (s)

co
nv

ex
ob

je
ct

iv
es

B20n0 2.46% 0.69 B50n0 0.05% 39.23 B100n0 0.48% 860.75
B20n1 0.00% 0.44 B50n1 2.72% 57.95 B100n1 0.28% 1075.23
B20n2 0.20% 1.41 B50n2 4.76% 71.44 B100n2 0.00% 984.49
B20n3 2.61% 0.45 B50n3 0.14% 44.19 B100n3 0.09% 2113.35
B20n4 0.09% 0.42 B50n4 0.88% 73.62 B100n4 0.10% 1613.11
B20n5 38.23% 0.64 B50n5 1.98% 39.57 B100n5 0.59% 2279.48

no
nc

on
ve

x
ob

je
ct

iv
es F20n0 0.00% 0.48 F50n0 44.47% 34.23 F100n0 0.13% 745.77

F20n1 0.37% 0.39 F50n1 6.58% 19.97 F100n1 0.84% 997.29
F20n2 0.00% 0.46 F50n2 4.12% 33.70 F100n2 0.31% 828.74
F20n3 0.00% 0.42 F50n3 0.00% 20.18 F100n3 0.11% 861.88
F20n4 0.00% 0.35 F50n4 0.00% 19.43 F100n4 0.06% 763.88
F20n5 0.35% 0.46 F50n5 0.09% 20.29 F100n5 0.41% 1308.33

Table 3.7 shows the average improvement of the (S heur) relaxation over (S base) in each problem
type/size category, as well as the number of problems in each category for which the (S heur) re-
laxation is nearly exact, quantified as having a relative optimality gap of less than 0.005%. The
numbers in parentheses indicate the number of problems in a given category for which (S base) was
already nearly exact. We observe that the aggregated constraint has a greater impact on the non-
convex Type F problems. Eight problems have exact relaxations using the (S heur) formulation, as
opposed to three using the (S base) formulation.

Table 3.7 Average relative gap improvement by using relaxation (S heur) instead of relaxation (S base).

Average gapS % improvement Nearly exact relaxations
Type ’B’ Type ’F’ Type ’B’ Type ’F’

N = 20 0.12% 0.23% 1 (0) 4 (2)
N = 50 0.08% 0.18% 0 (0) 2 (1)

N = 100 0.08% 0.57% 1 (0) 0 (0)

40

3.5 An iterative approach

Although (S heur) gives a significant improvement over (S base) with minimal impact on problem
size, we may suspect that there is still room for improvement. In this section we will outline an
iterative approach which begins with a relatively low cost model and then strengthens the model by
iteratively identifying violated constraints and adding them to the model. The goal of this approach
is to capture that the tightness of (S f ull) with relatively few constraints.

Algorithm overview

The outline of the iterative procedure we will follow is as follows:

1. Initialize: Let k = 0. Formulate an initial relaxation (S 0
iter) and solve it to obtain solution X∗0.

2. Score cuts: At X∗k , compute violation scores VS A
k and Venh

k for potential Sherali-Adams cuts
and enhanced equality cuts, respectively.

3. Normalize scores: Normalize cut scores in an appropriate manner.

4. Rank cuts: Within each cut type, rank potential cuts by normalized violation score.

5. Filter cuts: Using desired criteria, choose the sets of cuts CS A and Cenh to be added to the
model this iteration.

6. Stop or update: STOP if |CS A| + |Cenh| = 0 or if another desired stopping criteria is reached.
Otherwise let k = k + 1, add the cuts of CS A and Cenh to (S k−1

iter) to make (S k
iter), solve to obtain

the new solution X∗0, and return to step 2.

We will now discuss each step in greater detail.

Initialize:
Let k = 0. Formulate and solve (S heur) or another known practicably solvable relaxation following
the general paradigm discussed in section 3.1.1. Call this relaxation (S 0

iter), and denote its SDP
solution matrix X∗0.

Score cuts:

Form the matrices Vk
S A = −

[
h −G

]
X∗k

 hT

−GT

 and Vk
enh =

∣∣∣∣∣ [b −A
]

(X∗k)
∣∣∣∣∣ .

41

Element [VS A
k]i j corresponds, if positive, to the violation of the valid Sherali-Adams constraint con-

structed using inequality constraints i ∈ I and j ∈ I, while [Venh
k]i j, corresponds to the violation of

the valid enhanced equality constraint constructed by multiplying equality constraint i ∈ E by vari-
able x j, j ∈ {1, . . . n}.

For convenience, we will mask these matrices to ensure that certain cuts are disregarded:

1) [VS A
k]i j ←

[VS A
k]i j, if [VS A

k]i j ≥ tol

0, otherwise
for all i, j ∈ I.

2) [Venh
k]i j ←

[Venh
k]i j, if [Venh

k]i j ≥ tol

0, otherwise
for all i ∈ E, j ∈ {1, . . . , n}.

3) [VS A
k]i j ← 0 if an (i, j) complementarity constraint is imposed.

4) [VS A
k]i j ← 0 if an (i, j) Sherali-Adams constraint is imposed.

5) [Venh
k]i j ← 0 if an enhanced equality constraint exists between equality i and x j.

The first two adjustments serve to ignore any violations less than some tolerance tol. The latter
three make sure that a constraint will be given a score of zero if it (or something stronger than it, in
the case of (3)) is already part of the model, which ensures that we won’t re-add a constraint which
is already part of the model but happened to be violated at X∗k for any reason.

Normalize scores:
We now normalize the scores to account for scaling differences between constraints.

1) Let [VS A
k]i j ←

[VS A
k]i j∥∥∥∥ hi

gi

∥∥∥∥
2

∥∥∥∥∥ h j
g j

∥∥∥∥∥
2

for all i, j ∈ I.

2) Let [Venh
k]i j ←

[Venh
k]i j∥∥∥∥ bi
ai

∥∥∥∥
2

for all i ∈ E, j ∈ {1, . . . , n}.

Rank cuts:
Create a list LS A populated with tuples ([VS A

k]i j, i, j) in descending order by the values of their
first elements, violation scores [VS A

k]i j. Each tuple contains the information for a Sherali-Adams
constraint: the size of its violation score at X∗k , and the inequality indices i and j which correspond
to it. Note that LS A need only contain those elements with i < j due to the symmetric nature of
Sherali-Adams constraints, and both lists should omit those items with 0 violation.

42

Similarly, create a list Lenh of tuples ([Venh
k]i j, i, j) in descending order by violation score [Venh

k]i j.
Again, each tuple contains the relevant information about an enhanced equality constraint: its
violation score and the corresponding equality constraint index i and variable index j.

Filter cuts:
In this step, we choose which constraints will be added to the SDP relaxation for the next iteration.
This is done by filtering the list according to any number of rules. We have in fact already pre-
emptively applied a few common sense filters to the list by fixing scores for existing constraints
and constraints violated within tolerance to zero during the scoring step, ensuring that they will not
be chosen. Some other rules one might imagine are:

1) At most KS A Sherali-Adams cuts in total may be added per iteration.

2) At most Kenh enhanced equality cuts may be added per iteration.

3) Each inequality i ∈ I may be involved in at most KS A
ineq Sherali-Adams cuts per iteration.

4) Each equality i ∈ E may be involved in at most Kenh
eq enhanced equality cuts per iteration.

5) At most Kenh
x enhanced equality cuts based on a particular variable x j may be added per

iteration.

6) Consecutive dropoff: In either LS A or Lenh, for any two consecutive tuples (vc, ic, jc) and
(vd, id, jd) such that αvc > vd (for some chosen α ∈ [0, 1]), the latter cut and all lesser violated
cuts are ineligible to be chosen in that iteration.

7) Global dropoff: Letting v0 be the largest violation score in a given list LS A or Lenh at a par-
ticular iteration, no cuts with violation scores less than threshold βv0 may be chosen in that
iteration, for some chosen β ∈ [0, 1].

Let CS A and Cenh, initialized as empty sets, denote the sets of cuts which are to be added in the next
SDP iteration. We can first truncate the tails of LS A and Lenh if cutoff rules such as (6) or (7) are
being used. The remaining potential cuts are then considered in most violated order and are chosen
to be implemented if they can be added to CS A and Cenh without breaking any of the remaining
rules.

Stop or update:
If CS A = Cenh = ∅, no cuts have been added and the algorithm terminates. Otherwise, increment
k, add the selected cuts to the SDP model to produce (S iter

k), solve it, and return to the Score cuts
step.

43

Notes about filtering rules

Theoretically, if tol is set to 0, the optimal value of (S k
iter) will converge to that of S f ull after a finite

number of iterations. In practice, however, it is advisable to use a small a nonzero tolerance tol

to avoid adding those cuts which may have received a barely-positive score due to numerical error
in the interior point solver which produces X∗ matrices which are not perfectly feasible for the
problems they claim to solve.

The parameters KS A,Kenh,KS A
ineq,K

enh
eq ,K

enh
x play an important role in the tuning of the iterative

method. Each of these parameters limits the number of constraints chosen from a particular group
of constraints in the same iteration. The reason for this is that many Sherali-Adams constraints
are associated with the same inequality constraint of the original problem (P), or many enhanced
equality constraints are associated with the same equality constraint or variable x j. If (S k

iter) has
some exploitable looseness such that several of the highest scoring cuts share a common index, it
is likely that adding a small number of cuts from that group will be enough to remove the potential
for exploitation. It is also important that we be judicious with the addition of cuts since we are not
removing cuts in this method, to avoid cycling.

Evaluating the iterative method

We will test the iterative method for the same problem set introduced in section 3.1.4, and with the
parameters listed in Table 3.8.

Table 3.8 Parameters used to test the iterative semidefinite relaxation method

Test method name
S DPheur S DPheurlim S DPbaselim

Initial SDP formulation (S heur) (S base)

KS A
ineq – 3

Kenh
eq – 3

Kenh
x – 3

KS A 50

Kenh 40

tol 10−3

α 0.2

β –

The first two iterative methods begin with the relaxation formulation (S heur), with the first method

44

not placing limits on the number of index sharing constraints which can be chosen (filtering rules
(3)-(5)) while the second method does. For comparison, the third iterative method tested begins
with (S base), and also enacts filtering rules (3)-(5).

Figure 3.4 shows how the SDP bounds progress over the course of four iterations for the type B, size
100 problems. Remarkably, we find that the S DPheur and S DPheurlim test methods were almost
never able to find cuts which further improved the bound. That does not mean that the iterative
method is failing, however. In fact, it is evidence that the initial relaxation (S heur) is already as
tight (in terms of objective value) as (S f ull), despite only having the base model strengthened with
the single aggregated equality constraint. Equally remarkably, no equality constraints were added
at any iteration for S DPheur and S DPheurlim, the methods which used the aggregated equality
constraint. Then for these problems, only valid Sherali-Adams cuts were identified and added.
Although the bound did not change, it is possible that X∗ at one iteration could be better suited
to a particular purpose than X∗ at another iteration. For example, we might hypothesize that X∗

becomes closer to rank one in later iterations, a notion we will talk more about in the next chapter.

45

0 1 2 3 4

iteration

0.47

0.48

0.49

0.50

0.51

0.52

g
a
p
 %

B100n0
SDPbaselim
SDPheurlim
SDPheur

0 1 2 3 4

iteration

0.25

0.30

0.35

0.40

g
a
p
 %

B100n1
SDPbaselim
SDPheurlim
SDPheur

0 1 2 3 4

iteration

0.00

0.02

0.04

0.06

0.08

g
a
p
 %

B100n2
SDPbaselim
SDPheurlim
SDPheur

0 1 2 3 4

iteration

0.05

0.10

0.15

0.20

0.25

g
a
p
 %

B100n3
SDPbaselim
SDPheurlim
SDPheur

0 1 2 3 4

iteration

0.10

0.11

0.12

0.13

g
a
p
 %

B100n4
SDPbaselim
SDPheurlim
SDPheur

0 1 2 3 4

iteration

0.58

0.60

0.62

0.64

0.66

0.68

g
a
p
 %

B100n5
SDPbaselim
SDPheurlim
SDPheur

Figure 3.4 Progress in gap for the iterative method with three sets of parameters.

Figure 3.5 shows something not seen in Figure 3.4, which is an example where S DPheur and
S DPheurlim are distinguishable. For this problem we find that S DPheurlim and even eventually
S DPbaselim drop slightly below the line set by S DPheur. This speaks to the notion that it may be
possible to achieve more tightness with fewer constraints when filtering rules (3)-(5) are used to
ensure that a diverse range of cuts are added at each iteration.

46

0 1 2 3 4

iteration

0.8

0.9

1.0

1.1

1.2

1.3

g
a
p
 %

B50n4
SDPbaselim
SDPheurlim
SDPheur

Figure 3.5 For problem B50n4, we see S DPheurlim, and eventually even S DPbaselim, undercut
S DPheur by a small amount.

47

CHAPTER 4 CANDIDATE POINT BASED HEURISTIC METHODS FOR QPLCCS

It is common knowledge among practitioners of semidefinite programming that a rank one optimal
solution X∗ to a relaxation (S) of the form introduced in 1.1.4 can be mapped back to the space
of the original problem (P) to yield an optimal solution x∗. We formalized this for our SDP relax-
ations of the QPLCC with Theorem 3.1.2, Corollary 3.1.3, and Corollary 3.1.4, with extensions to
relaxations with other valid tightening constraints as discussed in section 3.3.

However, in practice it is unlikely that solving an SDP relaxation of a continuous problem such
as a QPLCC will yield a perfectly rank one solution X∗, if for no other reason than the numerical
error and acceptable feasibility tolerances inherent in interior point solution algorithms. In this
chapter, we extend the notion of mapping solutions to (S) back to the space of (P), proposing a
number of procedures to map an SDP relaxation solution X∗ of arbitrary rank to a point in the space
of the original problem, which we call a candidate point. We will define a candidate point as a
point which is found heuristically and proposed as an estimator of a global solution to (P), without
necessarily any guarantees of feasibility, optimal value, or proximity to a true optimal solution.
The procedure is not specific to relaxations of QPLCCs and can be applied to any relaxations of the
nature described in 1.1.4.

For the same QPLCC problems used experimentally in chapter 3, we perform computational tests
to support discussion of the candidate point’s suitability as an estimator of a global solution. We
also discuss questions relating to the potential use of the candidate point in procedures for assisting
local or global solvers by warmstarting.

4.1 Rank one X∗

Before we define possible candidate points, we will briefly recall how an SDP relaxation’s rank
one solution X∗ can be mapped back to the space of the original problem (P). Let X∗ be an optimal
solution to an SDP relaxation constructed using the procedure given in section 1.1.4, such as any
of the relaxations detailed in chapter 3. Recall that a vector x∗ can be extracted from the matrix X∗

as visualized in (4.1):

X∗ =

X00 X01 · · · X0n

X10
. . .

...
...

. . .
...

Xn0 · · · · · · Xnn

, x∗ =

X10
...

Xn0

. (4.1)

48

4.2 Higher rank X∗

Recall that a symmetric matrix X has the singular value decomposition

X =

r∑
i=1

λiqiqT
i (4.2)

for nonnegative scalars λ1, . . . λr and orthonormal vectors q1, . . . qr, where r is the rank of X. With-
out loss of generality, we will assume that the components are ordered such that λi ≥ λ j ∀ i =

1, . . . , r, j = 1, . . . , r, i < j.

It is known that the rank-k approximation Xk of X∗ which minimizes approximation error as mea-
sured by either ‖X∗ − Xk‖2 or ‖X∗ − Xk‖F is given by truncating the sum in (4.2) to keep only the
components with the k largest λi values, i.e.

Xk =

k∑
i=1

λiqiqT
i (4.3)

(Stewart, 1993).

Furthermore, since qi are unit vectors, the magnitude of each component is tied directly to the
eigenvalues λi which serve as weights, with

‖λiqiqT
i ‖2 = sup

‖y‖2=1
‖λiqiqT

i y‖2 ≤ |λi| ‖qi‖2 sup
‖y‖2=1

qT
i y ≤ λi max

j=1,...,n
|qi| j ≤ λi . (4.4)

Then, in approximating X∗ by the rank-one matrix X1 = λ1q1qT
1 , the 2-norm of the error can be

bounded as follows:

‖X∗ − X1‖2 = ‖

r∑
i=2

λiqiqT
i ‖2 ≤

r∑
i=2

λi . (4.5)

With this in mind, we will define a metric R(X) to gauge how ‘close’ a matrix X is to being rank
one. We will define R(X) to be

R(X) =

∑r
i=2 λi(X)∑r
i=1 λi(X)

, (4.6)

where λi(X∗) is the ith largest eigenvalue of the relaxation’s optimal solution X. The R score in-
dicates the proportion of the variation in X which is not captured by its rank one approximation
λ1q1qT

1 . The R score will always lie in [0, 1), with a score of 0 meaning that X is rank one.

We will say that X is close to rank one if R(X) is near zero since this means that, for rank one

49

approximation X1 = λ1q1qT
1 , the 2-norm of the error matrix ‖X − X1‖2 is bounded to be small

relative to the sum of all eigenvalues of X, also known as the trace norm.

Having observed in chapter 3 that (S heur) yields good bounds for many test problems, let us consider
the SDP solutions X given by this relaxation with respect to the R metric. Figure 4.1 demonstrates
the distribution of R(X∗) versus relative gap when using two iterative methods detailed in Table 3.8,
both after the initial solve and after four iterations of adding tightening cuts and resolving.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R(X*)

0%

5%

10%

15%

re
la

ti
v
e
 g

a
p

Distribution of R score after solve 0
SDPbase

SDPheur

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R(X*)

0%

5%

10%

15%

re
la

ti
v
e
 g

a
p

Distribution of R score after 4 iterations
SDPbaselim

SDPheurlim

Figure 4.1 Distribution of R(X∗) for solutions of the iterative method.

What can be observed from Figure 4.1 is that initial solves for (S heur) tend to give solutions X∗

which are closer to rank 1 than the solutions for (S f ull), and that, contrary to our expectation,
neither iterative method S DPbaselim or S DPheurlim can positively be said to be producing solutions
which are closer to rank one as the iterative method progresses.

4.3 Candidate point terminology and motivation

In this chapter we are interested in using the solution to an SDP relaxation to compute a candidate
point. We have chosen the term candidate point deliberately in order to express two things:

1. The point is a candidate to be a global optimal solution, in the sense that is the result of a
heuristic attempt to approximate such.

2. A candidate point is not necessarily feasible, and so to prevent confusion we must not term
it a ’solution’ of any kind.

In other words, the term ’candidate point’ does not in and of itself imply that that the point will
meet any particular criteria, but rather serves as a label indicating the role in which a user intends

50

to use the point in a larger method, namely as an approximation of or proxy for the global optimal
solution.

By this definition, we consider that there are three arenas in which a candidate point might be
evaluated:

1. Evaluating the candidate point in the objective function of the original problem, how close is
the result to the original problem’s global optimal value?

2. Evaluating the candidate point in the constraints of the original problem, how big are the
constraint violations?

3. Calculating the relative distance between the candidate point and the closest global optimal
solution, how close are they in space?

The question of what makes one candidate point better than another depends on how one prioritizes
these arenas, as well as on the context of the larger method in which the candidate point will be
used. For example, for some purposes an infeasible candidate which hints at the neighbourhood of
a global optimum may be preferable to a candidate point which is feasible but far from the global
optimum, and vice versa.

We will now introduce four possible recipes for deriving candidate points from X∗ with arbitrary
rank.

Linear proxy candidate point

The linear proxy candidate point is named as such because it is obtained by constructing a vector
which takes its values from the terms of X∗ which served as proxies for the linear terms x in the
(P) → (S) lifting. In other words, candidate point x̂ is extracted from X∗ in the same way that a
global optimal solution would be extracted if X∗ were rank one:

X∗ =

X00 X01 · · · X0n

X10 X11
...

...
. . .

...

Xn0 · · · · · · Xnn

, x̂ =

X10
...

Xn0

. (4.7)

One advantage of this candidate point is that the linear equality and inequality constraints of the
original QPLCC are enforced directly on these linear proxy variables of X∗, so the linear constraints
will be satisfied by this candidate point. On the other hand, the complementarity constraints may be

51

violated and the objective value at the candidate point may be very different from the SDP bound
given by X∗.

Square proxy candidate point

The square proxy candidate point is similar to the linear proxy candidate point in that it is also based
on the assumption that particular elements of the matrix X∗ are accurate proxies for the quantities
they were intended to serve as proxies for. In this square case, the assumption which is relied upon
is that Xii is an accurate proxy for the term x2

i , and so element i of the candidate point x̂ takes its
magnitude from the square root of the diagonal element and its sign from the value of Xi0, ie.

X∗ =

X00 X01 · · · X0n

X10 X11
...

...
. . .

...

Xn0 · · · · · · Xnn

, x̂ =

s1
√

X11

...

sn
√

Xnn

 , (4.8)

where

si =

Xi0
|Xi0 |

Xi0 , 0

0 Xi0 = 0 .
(4.9)

Rank one approximation candidate point

While the linear proxy candidate point can be summarized as treating X∗ the same way we would
if it were rank one, the rank one approximation candidate point is computed by first approximating
X∗ with a rank one matrix X1 and then extracting x̂ from X1 in the usual manner:

X =

r∑
i=1

λiqiqT
i , (4.10)

X1 = λ1q1qT
1 =

X1

00 X1
01 · · · X1

0n

X1
10 X1

11
...

...
. . .

...

X1
n0 · · · · · · X1

nn

, x̂ =

X10
...

Xn0

=

λ1(q1)0

λ1(q1)1
...

λ1(q1)n

. (4.11)

For this candidate point, we can make the claim that when R(X∗) is very small, the candidate point
will be ‘almost feasible’ in the sense that each constraint will be violated by at most a small amount.

52

For example, the violation of an equality constraint aT
i x̂ = bi can be shown to be bounded above by

|b − aT x̂| ≤
1

s1
√
λ1

∥∥∥∥∥∥∥ bi

−ai

∥∥∥∥∥∥∥
2

r∑
k=2

λk . (4.12)

Adjusted rank one approximation candidate point

This variation is motivated by an example which highlights a potential flaw of the rank one approx-
imation approach.

Example 4.3.1. Consider the simple problem (P0) and associated SDP relaxation (S 0):

min y = x2 min y

s.t. x2 = 1 (P4
Ex) , s.t. y = 1 (S 4

Ex)

X =

1 x

x y

 � 0 .

(4.13)

(P0) has exactly two feasible solutions, x = −1 and x = 1, and both are optimal. (S 0) is an exact
SDP relaxation of (P0), but its set of optimal solutions can be expressed parametrically as

S ol(S 0) =

1 θ

θ 1

 , θ ∈ [−1, 1]

 , (4.14)

which is the convex hull of the two rank one solutions
[1 −1
−1 1

]
and

[1 1
1 1

]
, corresponding to x = −1

and x = 1, respectively. Supposing we solve the model with an interior point solver, we may obtain
a solution which is a convex combination of two rank one optimal solutions. For example, the
solution and its singular value decomposition may be as follows:

X∗ =

1 0
0 1

= λ1q1qT

1 + λ2q2qT
2 ,

where λ1 = 0.5
√

2, q1 =

 1
√

2
−1
√

2

 , λ2 = 0.5
√

2, q2 =

 1
√

2
1
√

2

 ,

(4.15)

leading to the choice of either x ≈ 0.707 or x ≈ −0.707, neither of which is feasible for (P).

We can propose an adjustment step which ensures that the candidate point computed from a given
rank one matrix λiqiqT

i is the same regardless of the weight which is placed on it, allowing a true

53

global solution to be extracted from X∗. Partitioning the vector q1 into

s1

q̄1

, where s1 is the first

element and q̄1 is a vector with the remaining elements, X1 can be rewritten as

X1 = λ1q1qT
1 = λ1

s1

q̄1

 s1

q̄1

T

= λ1

 s2
1 s1q̄T

1

s1q̄1 q̄1q̄T
1

 . (4.16)

Since each qi is a vector of unit length, λi and si play a weighting role in the decomposition of X∗

as a sum of rank one matrices. To compute the adjusted rank one approximation candidate point
we will select the component which has the largest λ value, scale the corresponding matrix X1 so
the first element is equal to 1, and then proceed to extract a candidate point as in the rank one
approximation case:

X̂ =

 1 1
s1

q̄T
1

1
s1

q̄1
1
s2

1
q̄1q̄T

1

 , x̂ =
1
s1

q̄1 . (4.17)

By this method, the candidate point extracted from X∗ for (S) will be one of the optimal solutions
x = −1 or x = 1, as desired.

4.4 Comparing candidate points

In this subsection we will examine the candidate points which can be computed from each test
problem’s SDP relaxation solution X∗. For these results we will focus on the case of the iterative
SDP relaxation method, initialized from (S heur). X∗ is taken either at termination or after 5 outer
iterations.

4.4.1 Introducing metrics

We will define three types of metrics which we will use to evaluate and compare the four different
candidate point definitions. The metrics correspond to the three qualities discussed in section 4.3:
objective value, feasibility, and proximity to a global optimal solution.

Gap

To measure how well x̂ reflects an optimal solution x with regards to objective value, we will let
gapc be the absolute value of the relative gap between the optimal value z∗ and the value of the

54

objective function evaluated at x̂.

gap∗c = |
z(x̂) − z∗

z∗
| , (4.18)

Alternatively, we may want a metric to evaluate the objective value achieved by x̂ which does not
use the global optimal value, so we may want to use these metrics to assess a problem which has
not been globally solved. In this case, we can define the alternative metric,

gapS
c = |

z(x̂) − zS (X∗)
zS (X∗)

| . (4.19)

The interpretation of gapS
c is that it measures how close x̂ comes to matching its associated bound

value zS (X∗).

Feasibility

The second metric of interest is a measure of the infeasibility of x̂ for the QPLCC, calculated as

violc =
1
|E|

∑
i∈E

| f̃ T
i x̂ − h̃i| +

1
|I|

∑
i∈I

max(0, ãT
i x̂ − b̃i) +

1
|C|

∑
(i, j)∈C

|(b̃i − ãT
i x̂)(b̃ j − ãT

j x̂)| , (4.20)

where f̃i = αi fi, h̃i = αihi, α =
∣∣∣∣∣∣ hi

fi

∣∣∣∣∣∣−1

2
, and ãi = βiai, b̃i = βibi, β =

∣∣∣∣∣∣ bi
ai

∣∣∣∣∣∣−1

2
.

This corresponds to the sum of the average normalized equality constraint violation, average nor-
malized inequality constraint violation, and average normalized complementarity constraint viola-
tion, providing a metric of overall feasibility.

Proximity to a global solution

The third and final metric which we will introduce for examining a candidate point is its ’relative
distance’. Since we know the global solution x∗ to each problem in the test set, we can compute the
distance from the candidate point to the global solution relative to the 2-norm of x∗:

distc =
||x̂ − x∗||2
||x∗||2

. (4.21)

4.4.2 Evaluating candidate points

For each of the problems introduced in section 3.1.4, we now use the metrics defined in the last
section to score various candidate points derived from various semidefinite relaxations. Excerpts
are presented in this section, and full tables for two relaxations and all four candidate points can be

55

seen in Appendix A and B. Each candidate point is evaluated using the metrics defined in section
4.4.1: gapc(x̂), violc(x̂), and distc(x̂), with the SDP solution’s optimality gap and R(X∗) measure
provided for reference. In the tables to come, LP, SP, R1, and AR1 stand for the linear proxy, square
proxy, rank one, and adjusted rank one candidate points, respectively.

Table 4.1 Evaluating candidate points derived from the solution to (S heur).

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

B100n0 0.48% 0.05

LP 0.48% 0.00 20.51%
SP 0.48% 0.38 28.85%
R1 0.48% 0.00 20.51%

AR1 0.48% 0.00 20.51%

B100n1 0.28% 0.14

LP 0.28% 0.00 24.29%
SP 0.28% 4.10 40.80%
R1 0.28% 0.01 24.28%

AR1 0.28% 0.01 24.28%

B100n2 0.00% 0.09

LP 0.00% 0.00 8.14%
SP 0.00% 0.10 31.79%
R1 0.00% 0.00 8.14%

AR1 0.00% 0.00 8.14%

B100n3 0.09% 0.27

LP 0.09% 0.00 5.83%
SP 0.09% 8.20 58.83%
R1 0.09% 0.01 5.84%

AR1 0.09% 0.01 5.84%

B100n4 0.10% 0.19

LP 0.10% 0.00 10.39%
SP 0.10% 4.77 45.08%
R1 0.10% 0.00 10.37%

AR1 0.10% 0.00 10.37%

B100n5 0.59% 0.24

LP 0.59% 0.00 29.96%
SP 0.59% 3.75 56.55%
R1 0.59% 0.00 29.96%

AR1 0.59% 0.00 29.96%

56

Similarity between candidate points

When examining Table 4.1, the first thing we notice is that for almost every problem in the test set,
the gap, violation, and distance ’scores’ for the linear proxy candidate point are nearly identical
to those for the rank one approximation candidate point and the adjusted rank one approximation
candidate point, to such an extent that it is reasonable to assume that the three candidate point
derivations are nominating almost the same points for these relaxations. However, this is not the
case in general, as evidenced by Table 4.2, which shows the same kind of evaluation performed on
candidate points derived from the solution to the looser relaxation (S base).

57

Table 4.2 Evaluating candidate points derived from the solution to (S base).

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

B100n0 0.51% 0.67

LP 0.52% 0.10 21.83%
SP 0.49% 5.91 237.20%
R1 99.70% 0.94 100.04%

AR1 0.01% 54.19 3826.40%

B100n1 0.39% 0.49

LP 0.39% 0.91 30.53%
SP 0.38% 77.83 765.02%
R1 99.86% 0.93 100.78%

AR1 0.93% 402.39 21038.32%

B100n2 0.07% 0.33

LP 0.07% 0.05 13.15%
SP 0.05% 10.44 1393.76%
R1 100.00% 0.82 100.09%

AR1 46.90% 377.84 306163.31%

B100n3 0.24% 0.56

LP 0.24% 0.45 20.57%
SP 0.23% 55.01 581.52%
R1 99.65% 0.94 101.11%

AR1 0.08% 161.19 9322.37%

B100n4 0.13% 0.63

LP 0.13% 0.11 13.35%
SP 0.13% 15.34 211.25%
R1 97.38% 0.88 99.96%

AR1 0.12% 1.00 1239.47%

B100n5 0.67% 0.38

LP 0.67% 0.50 29.45%
SP 0.66% 76.28 780.45%
R1 99.99% 0.87 100.09%

AR1 8.92% 1717.48 75720.92%

We observe that in many cases the rank one approximation candidate point has relatively small
violations but a large gap and distance, while the adjusted rank one approximation candidate point
often has a reasonable gap score but unreasonable violation and distance scores. On the other hand,
the linear proxy candidate point, despite its simplicity, proves to be the most robust candidate point
for the relatively loose SDP relaxation (S base).

58

Feasibility of the linear proxy candidate point

We observed in section 4.3 that the linear proxy candidate point will satisfy the linear constraints
of the original problem by design. In practice, we find that for the (S heur) relaxation formulation
the linear proxy candidate point also satisfies the complementarity constraints (within a moderate
numerical tolerance) for virtually all problems. This is by no means assured to be the case in
general; for the looser relaxation (S base) applied to the test problem set, the linear proxy candidate
point has nonzero violation score for 35 of 36 problems.

4.5 Methodology for the warmstarting of local and global NLP solvers

We will now turn our attention to a key application of the candidate point, the warmstarting of a
local or global solver. We recall that global solver BARON had difficulty solving our test problems
with size N = 100, particularly the type F problems which have nonconvex quadratic objective
functions. Only two of six problems were solved to global optimality within 6 hours, with the
fastest taking 6411 seconds. We will consider these problems our target for improvement.

4.5.1 Local NLP solvers

In this section, we discuss how a candidate point computed from an SDP relaxation’s solution
X∗ can be parlayed into a locally optimal solution for the original problem (P). In the best case,
X∗ is a rank one matrix and therefore the candidate point x̂ is in sol(P), the set of globally optimal
solutions. In the worst case, there is no guarantee that the candidate point will be within a particular
distance of any point in sol(P) or even any feasible solution for (P). It is important to note that the
techniques discussed in this section are heuristic and can possibly result in a worse solution than
that found by the solver ordinarily.

Local nonlinear programming solvers are a class of NLP solvers which do not pursue global opti-
mality but instead terminate once local optimality is established. These solvers are generally very
fast, and can often be easily swayed by the choice of initial solution, meaning that a solver which
is initialized very near to a local or global optimum has a good chance to converge to that point.
This makes local NLP solvers very compatible with the concept of the candidate point. The solver
is initialized at the candidate point, which aims to be an estimator of an global optimal solution.
The process of initializing a solver at a point which is believed to be near a good solution is known
as warmstarting. If indeed the candidate point is in a small neighbourhood of a very good solution,
it is likely that the local solver will find it. On the other hand, a local solver does not require any
special conditions and will still be able to function robustly and find some local optimum even if
the candidate point is a bad estimator of the global solution(s). We will propose that for purposes

59

of local warmstarting, the linear proxy candidate point is a good candidate point to use since it is
guaranteed to satisfy at least the linear constraints of the problem.

To demonstrate local warmstarting, we will use the local NLP solver KNITRO via the AMPL mod-
eling language. A particular note of interest about the AMPL language is that it has a designated
syntax for modeling complementarity constraints. This allows solvers such as KNITRO to im-
plement sophisticated ways of treating complementarity constraints, as opposed to handling them
simply as big-M constraints or quadratic equality constraints. Figure 4.2 highlights the effective-
ness of warmstarting the KNITRO solver. A scatter plot plots the gaps for KNITRO without a given
initial solution against the gaps for KNITRO initialized at the linear proxy candidate point for the
(S heur) relaxation formulation. In all but a few cases, the solution by warmstarting is inferior to
the solution by default settings. One outlier has been cropped from the graph, at (16.68%, 0%).
Furthermore, all warmstarted problems have less than 0.05% gap.

0% 0.2% 0.4% 0.6% 0.8% 1%

relative gap, KNITRO

0%

0.2%

re
la

ti
v
e
 g

a
p
,

w
a
rm

st
a
rt

e
d

K
N

IT
R

O

KNITRO optimality gaps, normal vs. warmstarted

Figure 4.2 For these problems, warmstarting KNITRO at the linear proxy candidate point consis-
tently brings the relative gap very near 0.

4.5.2 Global NLP solvers

We now consider how the methods discussed thus far can be used to assist in the global solu-
tion of QPCCs. We will restrict the scope of this investigation, focusing on using the informa-
tion obtained from an SDP relaxation to assist the well-known global MINLP solver BARON.
BARON, an acronym for ’Branch-And-Reduce Optimization Navigator’, operates in a branch-and-
cut framework, using sophisticated techniques to construct polyhedral cuts for tighter relaxations of
nonconvex problems (Tawarmalani and Sahinidis, 2002). Because BARON supports mixed integer
problems, there are two options for modeling complementarity constraints. For (i, j) ∈ C, one can
write (hi − gT

i x)(h j − gT
j x) = 0. Alternatively, a binary variable zi j can be employed with constraints

hi − gT
i x ≤ Mzi j and h j − gT

j x ≤ M(1 − zi j) for sufficiently large M.

So far, we have shown three SDP-derived ’products’ which give insight into the original problem
(P): a lower bound on the optimal value, a candidate point which aims to estimate a global optimal

60

solution, and a heuristically found locally optimal solution, assuming the local solver does not stall
at a locally infeasible point. It is the result of the local NLP solve which has the greatest potential
impact on BARON’s solution time.

As in any branching framework, finding a good solution early in the branching tree is highly de-
sirable because it can allow BARON to fathom some later nodes without fully evaluating them.
By default, BARON repeatedly applies a multistart approach with a local NLP solver at the root
node, which means that it performs local optimization solves beginning from different initial points
with the goal of finding a good first incumbent solution before beginning the branch-and-bound
procedure. However, a feasible solution which is known to the user can also be provided as an
initial solution. We will use this feature to initialize BARON at the known local optima obtained as
discussed in the previous section. Results later in this section will compare the time taken to solve
with BARON ordinarily to the time taken to solve an SDP relaxation, compute the candidate point,
perform a warmstarted local solve, and then perform a warmstarted BARON solve.

SDP bounds and BARON

Studying the log messages of BARON solves, we notice that for several of our larger problems, par-
ticularly those with nonconvex objective functions, a better bound is being found by the semidef-
inite programming relaxation in less time than it takes BARON’s process to arrive at a similar
bound. For example, for the problem B100n5, the (S heur) relaxation provides a bound of -1104.2
after 1308 seconds, whereas BARON has a bound of -1118.31 after roughly the same amount of
time and its lower bound reaches only -1108.47 within 6 hours. It is tempting to think that an SDP
relaxation’s lower bound can be passed to a global solver directly, but this is naive. Unfortunately,
at least in the case of BARON, this is more difficult than it appears. Providing a lower bound as
either a constraint or a lower bound on the objective value variable is generally counterproductive:
in most cases, BARON takes orders of magnitude longer when it has been ’helped’ by the addition
of an explicit bound. It seems that the organic discovery process by which BARON iteratively
tightens its relaxations is necessary for successful branching and navigation of the problem, and
the addition of a good bound initially can cripple BARON’s ability to branch effectively and build
strong relaxations

Candidate points and BARON

BARON allows an initial solution to be provided by the user, but there is a caveat: it must be
feasible to a rather high degree of accuracy. It is generally accepted that most interior point solvers
for semidefinite programming are typically only accurate to 4 or 5 significant figures, whereas NLP
solvers, both local and global, might be accurate to twice that many. As such, even in the case

61

where an SDP relaxation’s solution should be rank one, the candidate point which is derived will
almost certainly not be feasible, at least not within the tolerances that BARON requires in order to
acknowledge a feasible solution.

Warmstarting BARON

Since we cannot warmstart BARON directly from our candidate point, we will instead warmstart
BARON by using KNITRO as a processing step between the SDP solve and the BARON solve.
KNITRO is warmstarted from a (probably infeasible) candidate point, returning a local solution.
This local solution, which is feasible to a degree of numerical accuracy which satisfies BARON, is
then given to BARON as an initial solution, i.e. a first incumbent solution and initial upper bound.
In each of the graphs of Figures 4.3, the progress of BARON’s upper and lower bounds over time
is depicted by a grey shaded region. In each case, the red shaded region outlined with a dashed line
depicts the progress made by BARON when the warmstarting procedure described in this section is
used. The profile for the warmstarted case has been shifted forward an amount of time equivalent
to that taken by the SDP and KNITRO solves which the warmstarting technique requires, and a star
marks the termination of the warmstarted algorithm, for ease of identification.

62

0 2500 5000 7500 10000 12500 15000 17500 20000
time (s)

35

30

25

20

15
ob

je
ct

iv
e

va
lu

e

4.9e3F100n0: BARON progress with and without warmstarting
BARON bounds
warmstarted BARON bounds

0 2500 5000 7500 10000 12500 15000 17500 20000
time (s)

2600

2500

2400

2300

2200

ob
je

ct
iv

e
va

lu
e

F100n1: BARON progress with and without warmstarting
BARON bounds
warmstarted BARON bounds

0 1000 2000 3000 4000 5000 6000 7000 8000

time (s)

960

950

940

930

920

910

900

890

o
b
je

ct
iv

e
 v

a
lu

e

F100n2: BARON progress with and without warmstarting

BARON bounds

warmstarted BARON bounds

0 5000 10000 15000 20000 25000

time (s)

4250

4245

4240

4235

4230

4225

o
b
je

ct
iv

e
 v

a
lu

e

F100n3: BARON progress with and without warmstarting
BARON bounds

warmstarted BARON bounds

0 2000 4000 6000 8000 10000 12000

time (s)

3200

3000

2800

2600

2400

2200

2000

o
b
je

ct
iv

e
 v

a
lu

e

F100n4: BARON progress with and without warmstarting
BARON bounds

warmstarted BARON bounds

0 2500 5000 7500 10000 12500 15000 17500 20000
time (s)

1150

1100

1050

1000

950

ob
je

ct
iv

e
va

lu
e

F100n5: BARON progress with and without warmstarting
BARON bounds
warmstarted BARON bounds

Figure 4.3 Progress made by BARON ordinarily vs. in the warmstarted case

The results of this experiment are mixed. It is known from the gap analysis performed in section
4.5.1 that the warmstart solution provided by KNITRO is globally optimal for two of the problems
pictured, F100n2 and F100n4, and so for these problems termination is a matter of BARON’s ability

63

to tighten its relaxations and improve the lower bound so that global optimality can be proven. The
warmstarted BARON solve terminates faster for F100n4, but ordinary BARON terminates faster
for F100n2. For problems F100n0, F00n1, and F100n5, neither solve terminates within 6 hours,
with the warmstarted BARON solve having an inferior profile for problem F100n0 and, in the long
run, a slightly better profile for problems F100n1 and F100n5. F100n3 exhibits the behaviour we
had hoped to see, with warmstarted BARON having a relatively small initial footprint and a faster
termination time.

What is clear from this study is that although SDP provides a stronger initial solution for all six
problems, warmstarting BARON at a better initial solution does not guarantee that BARON’s over-
all performance will improve. We attribute this to the nature of BARON, which is that information
is accumulated with each iteration and leveraged for better decision making at later iterations. By
providing a better initial solution, we deprive BARON of the discovery process that would have
been taken to arrive at the same point, and the information produced by that discovery process
could be crucial to making good decisions at later iterations.

Evidence for an SDP-based branch and bound

Having observed from the graphs of Figure 4.3 that much of the time required by BARON is to
improve the bounds, let us consider how an SDP based branch and bound scheme might compare
with BARON’s progress. Implementing a full SDP-based branch and bound algorithm is outside the
scope of this thesis, but we can think of our SDP bound and KNITRO-provided local optimum as
the bounds at the root node and evaluate them as such. In Figures 4.4, SDP-based bounds appear on
the graph at the time corresponding to the duration of the SDP solve, and lines are drawn extending
the bounds forward in time so that we can visually identify at what time BARON ’catches up’ with
a given bound. For example, in the case of F100n5, BARON achieves the SDP initial upper bound
about 3000 seconds after the SDP achieves it, meanwhile BARON’s lower bound has not caught
up to the SDP initial lower bound by the 6 hour time limit. Based on this evidence, we believe an
SDP-based branch and bound scheme holds promise for the future.

64

0 2500 5000 7500 10000 12500 15000 17500 20000
time (s)

35

30

25

20

15
ob

je
ct

iv
e

va
lu

e
4.9e3F100n0: SDP bound and local NLP vs. BARON progress

BARON bounds
bounds from SDP and warmstart NLP

0 2500 5000 7500 10000 12500 15000 17500 20000
time (s)

2600

2500

2400

2300

2200

2100

ob
je

ct
iv

e
va

lu
e

F100n1: SDP bound and local NLP vs. BARON progress
BARON bounds
bounds from SDP and warmstart NLP

0 1000 2000 3000 4000 5000 6000
time (s)

960

950

940

930

920

910

900

890

ob
je

ct
iv

e
va

lu
e

F100n2: SDP bound and local NLP vs. BARON progress

BARON bounds
bounds from SDP and warmstart NLP

0 2500 5000 7500 10000 12500 15000 17500 20000
time (s)

50

45

40

35

30

ob
je

ct
iv

e
va

lu
e

4.2e3F100n3: SDP bound and local NLP vs. BARON progress
BARON bounds
bounds from SDP and warmstart NLP

0 2000 4000 6000 8000 10000
time (s)

3200

3000

2800

2600

2400

2200

2000

ob
je

ct
iv

e
va

lu
e

F100n4: SDP bound and local NLP vs. BARON progress
BARON bounds
bounds from SDP and warmstart NLP

0 2500 5000 7500 10000 12500 15000 17500 20000
time (s)

1150

1100

1050

1000

950

900

ob
je

ct
iv

e
va

lu
e

F100n5: SDP bound and local NLP vs. BARON progress
BARON bounds
bounds from SDP and warmstart NLP

Figure 4.4 The root node SDP bound and warmstarted NLP solution overlaid over BARON’s
progress

65

CHAPTER 5 PYTHON IMPLEMENTED SOFTWARE TOOLS FOR QPCCS

Because academics working with QPLCCs employ a wide variety of techniques influenced by a
wider variety of disciplines and related problems, there is not (and perhaps cannot be) a consensus
about the languages, packages, and other computational tools which are used to support research
and development for QPLCCs. This can be detrimental to the field at times, because it creates
’language barriers’ between researchers who would like to test each others’ methods

In recent years, Python has gained popularity as a language for computational mathematics (Rashed
and Ahsan, 2012; Ivezić et al., 2014). As a language, Python strikes an attractive balance between
programming generalism, ease of prototyping, and the availability of quality domain-specific scien-
tific computing tools for many fields. Well implemented core numerical packages such as SciPy and
NumPy have been embraced wholeheartedly by the scientific community, and individuals working
in specific scientific domains have contributed innumerable packages. For example, two Python
packages developed for convex optimization and used throughout this thesis are CVXPY (Dia-
mond and Boyd, 2015) and CVXOPT (Vandenberghe, 2010; Andersen et al., 2013).

In this chapter we present three tools based in the Python language which support modeling, solv-
ing, and studying quadratic problems with complementarity constraints. Our QPLCC software
mission is to create useful tools which reduce these barriers, as well as to integrate a number of
tools from various languages into a cohesive platform for research.

PyQPCC, the largest of the three packages we introduce, provides a general framework for mod-
eling QPCCs, managing and analyzing them, translating them to other modeling languages, and
building and testing solution methods.

The PyQPECgen package generates test problems according to a number of QPEC types. It is a
Python implementation of the Matlab script QPECgen, which is particularly notable for allowing
the user control over aspects of interest such as degeneracy in the upper and lower levels (Jiang and
Ralph, 1999). Our translation differs from the original in a few ways which are discussed in that
section.

Finally, PySDPT3Glue provides an interface for solving Semidefinite, Quadratic, and Linear Pro-
gramming (SQLP) programs modeled in the Python-based domain-specific language CVXPY us-
ing the well known Matlab-based solver SDPT3.

A note of acknowledgement: The three packages discussed in this chapter were originally devel-
oped by me alone, but all three have recently gained a second contributor, Junpei Kawamoto of
Kyushu University, whose collaboration is much appreciated.

66

5.1 PyQPCC

Introduction

In addition to being able to meet many scientific needs, one strength of Python is that it is not solely

a mathematical language. As a generalist language, Python can meet a number of typical program-
ming needs like input/output, regular expressions, subprocess calls, queueing, and multithreading.

As we have mentioned, Python’s appeal is as a free open-source language which can meet many
scientific needs while also having the high level power to reach outside of itself, using default
Python packages to interface with servers or drive other tools via the command line. We use these
two methods to build a testing framework which allows complicated experiments using multiple
solvers to be quickly prototyped and executed.

PyQPCC provides tools for the modeling and solving QPLCCs as well as the analysis of their
results. The package is organized into modules as shown in Figure 5.1. We will discuss the main
modules in turn.

QPCC core
functionality

Problem
generation
(QPECgen)

Language
exporting
(GAMS,
AMPL)

PyNEOS
interface,

batch
manager

SDP relax.
construction
(CVXPY)

Solve
(CVXOPT)

Export for
SDPT3

SDPT3
solve on

Matlab/Octave
or NEOS

Result
analysis,

visualization

Figure 5.1 A concept map giving an overview of the functionality of PyQPCC

67

5.1.1 QPLCC modeling

At the core of the PyQPCC package is a module which allows the user to build and manipulate a
QPCC model, display it in a user-readable manner, investigate the feasibility of a given point, etc.

A QPCCProblem object contains the data for a problem of the form:

min
x

z(x) = xT Qx + pT x + r

s.t. aT
i x = bi ∀ i ∈ E

gT
i x ≤ hi ∀ i ∈ I

(hi − gT
i x)(h j − gT

j x) = 0 ∀ (i, j) ∈ C .

(P)

The QPLCC object mirrors this directly. A script to create a toy QPLCC problem might look like
the following:

from cvxopt import matrix

from pyqpcc.core.qpcc import BasicQPCC

Initialize the QPCC with a problem name and variable names

Problem = BasicQPCC(’qpcc0d’, names=[’x’, ’y’])

Add equality constraint x+y=0.5 to the model

A = matrix([[1.], [1.]])

b = matrix([0.5])

Problem.add_eqs(A, b)

make inequality constraints x >= 0, y >= 0, x+y <= 1

G = matrix([[-1., 0., 1.], [0., -1., 1.]])

h = matrix([0., 0., 1.])

Problem.add_ineqs(G, h)

Require complementarity between the first two equality constraints,

x >= 0 and y >= 0

comps = [[0, 1]]

Problem.add_comps(comps)

The objective will be to minize squared distance from (1, 1)

Q = matrix([[1, 0], [0, 1]])

p = matrix([-2, -2], (2, 1))

r = 2.

Problem.set_obj(Q=Q, p=p, r=r, mode=’min’)

5.1.2 Constructing and solving SDP relaxations

In addition to modeling QPLCCs, PyQPCC has a similar object class for modeling semidefinite
programs. The SDPProblem class constructs and stores an SDP problem in much the same format
as the input format used by solver CVXOPT, so we refer the interested reader to Vandenberghe

68

(2010) and Andersen et al. (2013). A user can write their own code to construct an SDP relaxation
from scratch:

suppose variable P is a QPCCProblem

from pyqpcc.core import sdp

S = sdp.SDPProblem(’some_name’, size=P.n+1, tolerances=solver_opts[’SDP_tols’])

let’s add the aggregated equality for system Ax=b

S.addctr_eqs_squared(self.A, self.b)

let’s impose the equality constraints on the first row of X

for i in range(len(P.b)):

P.addctr_eq_on_row(P.A, Pb, rowA=i, rowX=0)

(...)

or alternatively, some methods exist in the QPCCProblem class which can construct and solve an
SDP model according to some preset options:

NAIVE_SDP_OPTS = {’SDP_eqs_squared’: False, # aggregated equality constraint

’SDP_SA_matrix’: None, # Sherali-Adams cuts

’SDP_eq_matrix’: None} # Enhanced equality constraints

S = Problem.buildSDP(custom_solver_opts = NAIVE_SDP_OPTS)

result = S.solve(solver=’SDPT3’)

let’s say we want to know how long the solve took

print result.solve_time

Methods also exist for iterative solves following the procedure in section 3.5:

ITER_OPTS = {’bundle_SA_per_ineq’: None,

’bundle_eq_per_eq’: None,

’bundle_eq_per_row’: None,

’bundle_K_SA’: 50,

’bundle_K_eq’: 40,

’bundle_drop_cutoff’: 0.2,

’bundle_abs_tol’: 10**(-3),

’bundle_rel_tol’: 0,

’bundle_num_iters’: npinf,

’bundle_global_time_limit’: npinf,

’bundle_solver_time_limit’: 21600}

result = Problem.iter_sdp_solve(solver=’cvxopt’, initial_solver_opts=NAIVE_SDP_OPTS)

let’s say we want the X matrix from the first solve in the sequence:

X = result.sequence[0].X

but again, a user can code their own custom version.

69

5.1.3 Results, result collections and problem series management

Many methods in PyQPCC treat problem series, which are simply lists of QPCCProblem objects.
Problem series are convenient for applying the same treatment to a large number of test problems.
Additionally, we also provide methods for saving or loading a ’pickled’ set of QPCC problems,
making it easy to save a set of problems (and results) to disk or load them back into memory.

Each QPCC is initialized with an empty result collection, which is a data structure for storing the
results of various solution approaches for that problem. Each time a QPCC problem is solved, a
result object is created which holds vital information about the solution method, its parameters,
and its outcome. Results store information such as solve time, solver name, status returned by the
solver, initial solution (for warmstarted NLP results), and results also have methods such as gap
calculators or functions that print summaries of their information. Every result also has two unique
identifiers, an ID and a timestamp, which are helpful for extracting particular results as needed.

Results and result collections provide functions that make it easy to analyze results, from basic
functions that seek out and retrieve a particular result, to more advanced ones that produce tables
and graphs.

For example, with the use of a few helper functions, the following script outputs the bulk of the
LaTeX code for Table 3.6:

load a previously stored problem series into memory

PS = load_PS(picklefilename)

for problem in PS:

global_result = get_global_result(problem)

SDP_result = get_SDP_result(problem)

iter0_result = SDP_result.sequence[0]

print ’ & ’.join([’’,

pname_transform(problem.pname),

format_perc(iter0_result.get_gap_to(global_result)),

format_dec2(iter0_result.solve_time),

’’])

and the following script generates and saves the graphs used in Figures 3.4 and 3.5:

def SDP_gap_iters(problem, SDP_result):

global_result = get_global_result(problem)

gap_list = []

for SDP_result_minor in SDP_result.sequence:

gap_list.append(SDP_result_minor.get_gap_to(global_result, typ=’rel’))

return gap_list

for i, problem in enumerate(PS1):

gap_list1 = SDP_gap_iters(problem, get_SDP_result(problem))

gap_list2 = SDP_gap_iters(problem, get_SDP_result(PS2[i]))

70

gap_list3 = SDP_gap_iters(problem, get_SDP_result(PS3[i]))

x1 = range(len(gap_list1))

x2 = range(len(gap_list2))

x3 = range(len(gap_list3))

some calculations to get an appropriate range

ymin = min(gap_list1 + gap_list2 + gap_list3)

ymax = max(gap_list1 + gap_list2 + gap_list3)

delta = abs(ymax - ymin)

ymin = max(0, ymin-0.3*delta)

plotting data

fig, ax = make_axes_iter(5, ylim=[ymin, ymax + 0.4*delta], figsize=(8, 6))

ax.plot(x3, gap_list3, ’b-d’, lw=1, label=’SDPbaselim’)

ax.plot(x2, gap_list2, ’r-o’, lw=1, label=’SDPheurlim’)

ax.plot(x1, gap_list1, ’g-*’, lw=1, label=’SDPheur’)

graph formatting and saving

ax.set_xticks(range(5))

plt.legend(loc=2)

label_ax(ax, ’iteration’, ’gap %’, title=pname_transform[problem.pname])

fig.tight_layout()

savefig2(’comparing-methods-{0}’.format(problem.pname))

5.1.4 Language printing

We provide functions that can export a given QPCC as either an AMPL or GAMS model, as well as
in a ’human readable’ format. For example, for the toy problem in the chapter’s first code snippet,
the constraints can be printed in AMPL-readable format using:

from languages import model_printing as mp

ampl_writer = mp.ExpressionWriter([’x’, ’y’], typ=’AMPL’)

ampl_writer.write_eqs(P.A, P.b)

ampl_writer.write_ineqs(P.G, P.h)

ampl_writer.write_comps(P.G, P.h, P.comp)

which produces the AMPL code:

eq0: x + y = 0.5;

ineq0: -x <= 0;

ineq1: -y <= 0;

ineq2: x + y <= 1;

comp0and1: -x <= 0 complements -y <= 0;

Complementary constraints can be written in up to three formulations, depending on the language
in use. The first formulation is that seen above, which is only supported for AMPL and human

71

readable format. The second formulation uses a method write_comps_as_product which ex-
presses the complementarity constraint as a quadratic equality constraint. Using GAMS format for
example, in GAMS format the complementarity constraint is written as

comp0and1 .. (x)*(y) =e= 0;

The third formulation writes the complementarities as big M constraints using an auxillary variable
z01

comp0and1a .. x =l= 10000*z01;

comp0and1b .. y =l= 10000*(1-z01);

where M can be provided manually or will be set to 10000 by default.

The languages module includes wrapper functions which print full models with all necessary dec-
larations, constraints, and run commands, and with support for basic settings such as time limits,
initial solutions, etc.

5.1.5 Solve batch manager and PyNEOS

The NEOS server is a fantastic resource which provides free access to all sorts of solvers, including
many which would otherwise require paid licenses. We provide an interface to the NEOS server
which is based on the one by Dominique Orban (https://www.gerad.ca/ orban/pyneos/). We have
extended PyNEOS to handle GAMS and SDPT3 problems as well as AMPL problems, and we
provide an interface for solving QPCCs on NEOS using solvers which are compatible with AMPL
or GAMS, or for solving SDP problems on NEOS using SDPT3.

To manage series of tests systematically, we provide a problem batch manager, PyNEOS_batch
which acts as a collector for batches of NLP solve requests, then uses multithreading to handle
sending up to k problems to the NEOS server at a time, retrieving the results, and incorporating
them back into their associated problems.

PS = load_PS(picklein)

build basic timestamped options with a few customizations

wsopts = op.get_opts(’NLP’, {’force_timestamp’: cs.get_timestamp(),

’NLP_start’: ’warmstart’,

’NLP_reslim’: 1800})

globalopts = op.get_opts(’NLP’, {’force_timestamp’: cs.get_timestamp(),

’NLP_start’: ’warmstart’,

’NLP_reslim’: 21600})

create an empty pyneos batch to manage the solves we will do

72

pybatch = PyNEOS_batch(batchfolder)

print the basic NLP models for the solvers we will use

modfile_guide = prep_modfiles(PS, solvers, pybatch.basefolder)

load the pybatch problem queue with requests to do local NLP solves

warmstarted from the candidate point computed with function cand

for i, problem in enumerate(PS):

SDP_result = get_SDP_result(problem).sequence[0]

for solver in solvers:

Warmstarted local NLP solves

PS[i] = queue_up_NLP(pybatch, problem, solver, wsopts,

modfile_paths=modfile_guide[i],

suggested_sol = cand(X))

solve the problems in the queue and return their results to the problem series

pybatch, PS = solve_and_resolve(pybatch, PS, pickleout)

now load the queue with requests to do BARON MIP solves warmstarted from

the KNITRO solves we just did

for i, problem in enumerate(PS):

NLP_result = get_last_result(problem, solver=’KNITRO’)

PS[i] = queue_up_NLP(pybatch, problem, ’BARONMIP’, globalopts,

modfile_paths=modfile_guide[i],

warmstart_res=NLP_result)

solve the problems in the queue and return their results to the problem series

pybatch, PS = solve_and_resolve(pybatch, PS, pickleout)

print out a summary of the results the problem series now has

print_summary(PS)

73

5.2 PyQPECgen

We provide a Python implementation of the test problem generator QPECgen, which produces
QPEC problems which can be exported as QPCCs. The Python implementation has been devel-
oped with the blessing of Houyuan Jian and Danny Ralph, who originally developed QPECgen for
Matlab (Jiang and Ralph, 1999).

In PyQPECgen, we organize the different problem types using a hierarchy of object classes. We
also extend the generator in two ways:

1. We implement a new problem type which is feasible and bounded even for nonconvex objec-
tive functions.

2. For each problem type, we implement a method which exports the problem as a QPCC object
as used by PyQPCC.

5.2.1 Introduction

QPECgen is designed to randomly generate feasible QPEC problems according to a problem type
and parameters provided by the user. It is notable for giving the user control over many aspects of
the problem such as degeneracy, and for the byproducts it produces: a solution which is optimal
in the case of a convex objective and feasible otherwise, as well as the values of relevant dual and
supplementary variables at this solution. The most general QPEC type generated by QPECgen is
the affine variational inequality QPEC (AVI-QPEC), which can be written as

min
x∈Rn,y∈Rm,λ∈Rp

1
2

[
xT yT

]
P

x

y

 + cT x + dT y

s.t. A

x

y

 + a ≤ 0

Dx + Ey + b ≤ 0
λ ≥ 0
(Dx + Ey + b)Tλ = 0
Nx + My + q = −ETλ

(AVI-QPEC)

effectively modeling the bilevel problem

74

min
x∈Rn,y∈Rm

1
2

[
xT yT

]
P

x

y

 + cT x + dT y

s.t. A

x

y

 + a ≤ 0

y ∈ argmin
y∈Rm

yT
[
N M

] x

y

s.t. Dx + Ey + b ≤ 0 ,

(AVI-BP)

The other two main problem types are special cases of (AVI-QPEC). The (BOX-QPEC) has the
form

min
x∈Rn,y∈Rm,λ∈Rp

1
2

[
xT yT

]
P

x

y

 + cT x + dT y

s.t. A

x

y

 + a ≤ 0

0 ≤ y1 ≤ u

0 ≤ y2

N1x + M1y + q1 = λl1 − λu1

λl1 , λu1 ≥ 0
yT

1λl1 = 0
(y1 − u)Tλu1 = 0
N2x + M2y + q2 ≥ 0
yT

2 (N2x + M2y + q2) = 0

(BOX-QPEC)

and models a special case of the (AVI-QPEC) in which the lower level problem of the QPEC has
the form

min
y1∈R

m1 ,y2∈R
m2

1
2

[
yT

1 yT
2

] N1 M1

N2 M2

 x

y

 + qT
1 y1 + qT

2 y2

s.t. 0 ≤ y1 ≤ u

0 ≤ y2 .

(BOX-QPEC-lower)

75

Alternatively, the constraints

0 ≤ y1 ≤ u

N1x + M1y + q1 = λl1 − λu1

λl1 , λu1 ≥ 0
yT

1λl1 = 0
(y1 − u)Tλu1 = 0

(5.1)

can be seen as a ’double complementarity’ constraint, which can be programmed in AMPL as

0 ≤ y1 ≤ u complements N1x + M1y + q1 (5.2)

or expressed using nonconvex quadratic inequalities without the need for variables λl1 , λu1:

yi(N1x + M1y + q1)i ≤ 0
(ui − yi)(N1x + M1y + q1)i ≥ 0 .

(5.3)

We refer to (5.1) and (5.3) as the standard complementarity form and quadratic inequality form of
the double complementarity constraint, respectively.

The next QPEC type, the (LCP-QPEC), has the form

min
x∈Rn,y∈Rm

1
2

[
xT yT

]
P

x

y

 + cT x + dT y

s.t. A

x

y

 + a ≤ 0

y ≥ 0
Nx + My + q ≥ 0
yT (Nx + My + q) = 0 .

(LCP-QPEC)

The final two types are very specific special cases of the (LCP-MPEC) which contain no random
components and are completely determined by the given size parameters m and n:

min
x∈Rn,y∈Rm

xT x + yT y − 2
∑

x + 4
∑

y

s.t. y ≥ x

y ≥ 0
(y − x)T y = 0 ,

(GOOD-LCP-QPEC)

min
x∈Rn,y∈Rm

xT x + yT y + 2
∑

x − 4
∑

y

s.t. y ≥ x

y ≥ 0
(y − x)T y = 0 .

(BAD-LCP-QPEC)

76

5.2.2 Generation options

The problem data, for example P ∈ R(n+m)×(n+m), c ∈ Rn, d ∈ Rm, A ∈ Rl×(n+m), a ∈ Rl,D ∈ Rp×n, E ∈

Rp×m, b ∈ Rp, N ∈ Rm×n,M ∈ Rm×m, q ∈ Rm in the case of (AVI-QPEC), are generated according to
user given parameters. The PyQPECgen implementation supports the same options as QPECgen,
with parameters named as in Table 5.1.

Table 5.1 PyQPECgen parameters

Parameter Type Default Description

qpec_type int – numeric code for problem type, see Fig. 5.2.

n int – number of upper level variables

m int – number of lower level variables

l int – number of upper level constraints

p int = m number of lower level constraints, number of λ variables

cond_P float 20 condition number of P

scale_P float = cond_P scaling constant of P

convex_f boolean True whether P is generated to be positive semidefinite.

symm_M boolean True whether or not M is symmetric

mono_M boolean True whether or not M is monotone

cond_M float 10 condition number of the matrix M

scale_M float = cond_M scaling constant of the matrix M

first_deg int – number of degenerate first level constraints

second_deg int – number of degenerate second level constraints

mix_deg int 0 number of additional degenerate constraints to be allocated
among both levels

tol_deg float 10−6 tolerance in judging degeneracy

rand_seed – – seed value for reproducibility (not yet implemented)

y_upper boolean True whether or not the lower level variables y appear in the up-
per level constraints

Note: PyQPECgen’s ‘y_upper’ parameter replaces QPECgen’s ‘constraints’ parameter.
Additionally, the functionality of rand_seed is not yet implemented.

5.2.3 Python implementation and modular code design

We have chosen to define each problem type as an object class and to organize the object classes
in a hierarchy. Compared with generating all problem types with a single script, a class hierarchy
has the advantage that code which is unique to one problem type can be isolated to a single class,

77

making it easier to ensure that it will only be executed in the intended case. Compared with using
a separate generation script for each problem type, a class hierarchy has the advantage that code
which is common to several problem types can be implemented in the appropriate class(es) in the
hierarchy for minimal repetition.

QpecgenProblem
Parent class for all

QPECgen types
(not constructed
from directly)

Qpecgen200
BOX-QPEC

Qpecgen100
AVI-QPEC

Qpecgen300
LCP-MPEC

Qpecgen201
FULL-BOX-QPEC

Qpecgen800
‘Good’ LCP example

Qpecgen900
‘Bad’ LCP example

Figure 5.2 Hierarchy of PyQPECgen problem object classes

The class hierarchy we use for PyQPECgen is seen in 5.2. While technically all the QPECgen
problem types can be expressed as special cases of the AVI-QPEC, we choose to view the AVI,
BOX, and LCP problem types as siblings in the hierarchy because organizing the classes that way
makes it easiest to ensure the correct implementation of the BOX and LCP types.

QpecgenProblem is not a problem type which is intended to be constructed directly. Rather, it exists
as the superclass of all Qpecgen problem classes in order to manage the properties and methods
which are common to all problem types. Specifically, that includes the checking and setting of
parameters, as well as the generation of those model components whose generation does not vary
with problem type: P, M, N, and A.

Each subclass of QpecgenProblem has additional commands in its initialization method to generate
those model components which vary by problem type. Table 5.2 shows which model components
are defined for each problem class.

78

Table 5.2 QPECgen classes and their model components

Problem class Common components Class dependent components

Qpecgen100

P,N,M, A

c, d, a, q,D, E, b

Qpecgen200 c, d, a, q, u

Qpecgen201 c, d, a, q, xl, xu, u

Qpecgen300 c, d, a, q

Qpecgen800 c, d, a, q

Qpecgen900 c, d, a, q

5.2.4 New problem type: FULL-BOX-QPEC (’Type 201’)

Qpecgen has a parameter ‘convex’ which controls whether QPECs are generated with convex or
general (not necessarily convex) quadratic objective functions. However, for the (AVI-QPEC),
(BOX-QPEC), and (LCP-QPEC) problem types, the randomly generated constraints do not neces-
sarily bound the feasible region, and it is commonly the case in practice that problems generated
with the option ‘convex = False’ will be unbounded. To generate test problems with nonconvex
objective functions but bounded solutions, we create a bounded variation of the (BOX-QPEC) and
call it (FULL-BOX-QPEC):

min 1
2

[
xT yT

]
P

x

y

 + cT x + dT y

s.t. A

x

y

 ≤ −a

0 ≤ x ≤ ux

0 ≤ y ≤ u

λl, λu ≥ 0
yTλl = 0
(y − u)Tλu = 0
Nx + My + q = λl − λu .

(FULL-BOX-QPEC)

Note that it is not necessary to construct constraints explicitly bounding the λ variables. They do
not appear in the objective function, so bounding all the other variables is sufficient to ensure that
the problem has bounded optimal value. Furthermore, the constraints

79

0 ≤ y ≤ u yTλl = 0
λl, λu ≥ 0 (y − u)Tλu = 0

Nx + My + q = λl − λu

(5.4)

are the optimality conditions of the QPEC’s implicit lower level problem

min
y

yT Nx + 1
2yT My + qT y

s.t. 0 ≤ y ≤ u ,
(FULL-BOX-LOWER)

where λl, λu are the dual variables of the constraints of (FULL-BOX-LOWER). The KKT condi-
tions for (FULL-BOX-LOWER) state that y is optimal for that problem if and only if there exists a
finite λ such that the constraints of (5.4) are satisfied. Therefore for the complementarity problem
(FULL-BOX-QPEC) there exists a bounded optimal solution which attains the optimal value.

5.2.5 New feature: exporting problem types in the standard QPCC format

For each problem class, we also define a method return_problem which constructs a dictionary
containing Q, p, r, A, b,G, h which formulate the QPEC as a QPCC in the standard form of (P).

5.2.6 Project status and future direction

This software has been released open source under the MIT License and is publicly available at
http://www.github.com/TrishGillett/pyqpecgen. While the chief goal of this package is
to re-implement the QPECgen generator in Python, and this work is largely complete, members of
the public are welcome to give feedback or suggest improvements. Unless otherwise stated, all the
features which have been described are presently implemented and stable.

http://www.github.com/TrishGillett/pyqpecgen

80

5.3 PySDPT3glue

PySDPT3glue is a software enabling SQLP problems modeled using CVXPY to be solved using the
Matlab-specific solver SDPT3, either by accessing a locally installed copy of Matlab with SDPT3
or by submitting the problem to the NEOS server (Czyzyk et al., 1998; Dolan, 2001; Gropp and
Moré, 1997). This functionality is primarily of interest to researchers who would like to integrate
Matlab’s SDPT3 solver into otherwise Python-based methodologies.

CVXPY is a Domain Specific Language (DSL) for modeling convex optimization problems in
Python (Diamond and Boyd, 2015). It provides a syntax for building models in an intuitive way
and also serves as an interface to a number of Python-accessible solvers, among which MOSEK,
CVXOPT, and SCS are capable of handling SQLP problems. PySDPT3glue serves as companion
software to CVXPY, allowing SQLP solves to be performed with SDPT3 on Matlab and the results
returned to the Python instance which ordered the solve.

5.3.1 Overview of notable functionality

This section describes some of key functions provided by PySDPT3glue.

• write_cvxpy_to_mat(problem_data, matfile_target)

Given CVXOPT problem data such as that exported from a CVXPY problem, build the
equivalent problem in Sedumi format (with or without simplification) and save it as a Matlab
workspace .mat binary file.

• msg = matlab_solve(matfile_path, output_target)

Given the path to a .mat file containing a Sedumi format problem, solve it with a local Matlab
and SDPT3 installation and return the text contents of the output log.

• msg = neos_solve(matfile_path, output_target)

Alternatively, given the path to a .mat file containing a Sedumi format problem, submit the
problem to be solved on the NEOS server and retrieve the text contents of the output log.

• res_dict = make_result_dict(msg)

Given the output log of an SDPT3 solve, construct a result dictionary.

These are further wrapped into a single convenience function:

• res_dict = sdpt3_solve_problem(problem, mode, matfile_target,

81

output_target)

Given a CVXPY problem, a choice of mode as either ’matlab’ or ’neos’, and paths where the
.mat binary file and solver output log should be saved to, the problem is written to a .mat file,
solved in the desired way, and a result dictionary is returned.

5.3.2 Problem translation and simplification

A CVXPY problem can be exported in the format used by CVXOPT format provides c, A, b,Gl, hl,

Gq, hq, Gs, hs for an SQLP problem having the following form:

min c̄T x

s.t. Āx = b̄

h̄l − Ḡlx ≥ 0
h̄qi − Ḡqi x ∈ SOC i = 1, . . . ,Kq

Vec(h̄si) − Vec(Ḡsi x) ∈ Ski
+ i = 1, . . . ,Ks .

(5.5)

On the other hand, the SDPT3 solver accepts problems in either Sedumi or SDPA format. We will
translate a CVXOPT problem to Sedumi format by first naively rewriting the problem using a large
number of supplementary variables and then simplifying the problem by identifying variables and
constraints which can be eliminated using simple substitution.

Let ne and ni denote the number of linear equality and linear inequality constraints, respectively.
Let si denote the number of columns of the ith semidefinite programming (SDP) constraint. Let
nx denote the number of variables in the CVXOPT problem. Let st denote the total number of

elements in all SDP matrix constraints, i.e. st =
Ks∑
i=1

s2
i .

Step 1: Naively rewrite the problem.

Rewrite the problem in the following form:

min cT x

s.t. Ax = b

x =

x f

xl

xq1

...

xs1

...

x f ∈ R
n f

xl ∈ R
nl
+

xqi ∈ SOCnqi ∀ i = 1, . . . ,Kq

xsi ∈ S
nsi
+ ∀ i = 1, . . . ,Ks .

(5.6)

82

This is accomplished naively at first by defining c, A, b as follows:

c =

c̄

0ni

0qt

0st

 , A =

Ā 0ne×ni 0ne×qt 0ne×st

Ḡl Ini 0ni×qt 0ni×st

Ḡq 0qt×ni Iqt 0qt×st

Ḡs 0st×ni 0st×qt Ist

 , b =

b̄

h̄l

h̄q

h̄s

 , (5.7)

where x f be the variables of the original problem, xl are slack variables created for the linear in-
equality constraints, xqi are vectors of slack variables created for the SOC constraints, and xsi are
vectors of slack variables created for the positive semidefinite constraints.

Step 2: Substitute to eliminate use of certain variables.

Eliminate the use of variables by substitution where it can be easily done, and where it is feasible
to eliminate the variable completely from the problem. At this time, two types of eliminations are
handled:

1. Row k of Ax = b is a constraint of the form akixi + ak jx j = bk for nonzero coefficients aki, ak j,
and variable xi is a part of x f . Then we can eliminate the use of variable xi by the following
elementary operations:

A:, j ← A:, j −
Ak j

Aki
A:,i

b ← b − bk
Aki

A:,i

c j ← c j −
Ak j

Aki
ci

d ← d + bk
Aki

ci

A:,i, ci ← 0 .

(5.8)

2. Row k of Ax = b is a constraint of the form akixi = bk for nonzero coefficient aki, and variable
xi is a part of either x f or xl. In the latter case we also require that bk

aki
≥ 0, because bk

aki
< 0

would indicate the infeasibility of the problem since variables xl must be in the nonnegative
cone. In such a case we leave this infeasible constraint in the problem so that an infeasible
result will be passed back from the solver to the user.

b ← b − bk
Aki

A:,i

d ← d + bk
Aki

ci

A:,i, ci ← 0 .

(5.9)

83

Step 3: Reduce the variable space.

Reduce the variable space by removing trivial x f , xl, xq variable columns from the problem.

The conditions for removing a variable of each type are as follows:

x f : A free variable xi may be removed from the problem if A:,i has no nonzero elements and the
objective coefficient ci is zero.

xl: A nonnegatively constraint variable xl may be removed from the problem if A:,i has no
nonzero elements and coefficient ci is nonnegative.

xq: A variable xi which is an element in a second order cone constraint may be removed from the
problem if it is not the first element of the second order cone, A:,i has no nonzero elements,
and the objective function coefficient ci is nonnegative.

Step 4: Symmetrize the use of PSD matrix variables.

SDPT3 requires that PSD matrix variables be used in a symmetric way, meaning that the variables
which correspond to elements (i, j) and (j, i) of the same PSD matrix Xk must have equal coefficients
in A and c. This is assured by the following procedure:

c◦ = n f + nl +
Kq∑
i=1

sqi

for k in 1 . . .Ks do
for i in 1 . . . sk do

for j in i + 1 . . . sk do
cU = c◦ + isk + j

cL = c◦ + jsk + i

A:,cU , A:,cL ← 0.5(A:,cU + A:,cL)
end for

end for
c◦ ← c◦ + s2

k

end for

Step 5: Remove trivial rows of A∗x = b∗.

Remove any constraints of Ax = b which have become trivial during the simplification. This is
done simply by removing row k of A, b if Ak,: has no nonzero elements and bk = 0.

84

5.3.3 Project status and future direction

This software has been released open source under the MIT License and is publicly available at
http://www.github.com/TrishGillett/pysdpt3glue. Going forward, members of the pub-
lic are welcome to give feedback or contribute improvements to the software.

All the features which have been described are presently implemented and stable. A future feature
of particular interest is to provide a method for projecting the solution to a simplified problem back
to the space of the original problem. Currently, simplification must be disabled if a solution to the
original problem is required.

http://www.github.com/TrishGillett/pysdpt3glue

85

CHAPTER 6 CONCLUSION

6.1 Advancement of knowledge

The research contained in this thesis advances the state of knowledge for semidefinite program-
ming relaxations of QPCCs. We have investigated numerous tightening constraints and made rec-
ommendations about which constraint types are likely to be most effective and most practical com-
putationally, particularly the extremely low cost, high benefit aggregated equality constraint. We
have proposed an iterative cutting plane method which allows the benefit of the theoretically tight
but computationally impractical relaxation (S f ull) at the cost of adding only a moderate number of
constraints. The model we arrive at performs well consistently for the problems examined in this
thesis.

We have introduced and explored the notion of a candidate point, examined a number of potential
candidate point derivations, and discussed their strengths and weaknesses. The candidate point
concept is applicable to SDP relaxations of other problems, and opens the door for semidefinite
relaxations to be used other than just for their bounds. We use the candidate point to warmstart local
solvers with much success, and show proof of concept for both the warmstarting of the global solver
BARON as well as the potential for a primarily SDP-based global branch and bound algorithm.

We have developed a flexible and robust platform for modeling QPCCs and performing analyses
and computational experiments. We hope that the PyQPCC, PyQPECgen, and PySDPT3glue pack-
ages can help the MPEC research community experiment more freely while being less restricted
by borders of languages and solvers.

6.2 Limits and constraints

Each of the test problems considered in this thesis follows one of two particular structures. Unfor-
tunately, there is not a wealth of nonconvex QPLCC test problems in the target problem size range
and so we have depended on those problems which can be generated by QPECgen/PyQPECgen.

It is unclear how much instability is a factor in SQLP solvers as a whole as opposed to just an issue
with one solver or another. What is clear is that care must be taken with regards to stability when
making SDP relaxations of continuous problems whose variables are not necessarily constrained
to be small. It is possible that another SQLP solver now or in the future could provide sufficient
stability while also having superior times.

Of course, a weakness of the semidefinite relaxation is that for small, simple problems it is exces-

86

sively computationally expensive compared to other methods. The SDP relaxation also becomes
significantly more expensive with each variable that is added to the problem, since the SDP matrix
X has size n + 1 × n + 1. On the other hand, a strength of the SDP relaxation is that it is largely
unaffected by an increase in the number of complementarity constraints a problem has, where the
complexity of some other tools grows exponentially as complementarity constraints are increased.

6.3 Future work

There are a number of simple extensions to (P) which can be modeled well in an SDP context, for
example QPLCCs which also have ball constraints or general quadratic constraints. There are also
reformulations and preprocessing which were not attempted in this thesis, but which can be done
to reduce the complexity of the problem before solving an SDP relaxation. An SDP driven branch
and bound implementation for QPLCCs also remains to be attempted.

Regarding the software, there are plans for several improvements. A high priority is the implemen-
tation of an interface to MOSEK, a competitive SQLP solver which is compatible with Python.
Another desirable feature is to be able to simplify (preprocess) a problem and solve it, and then
project the solution back to the space of the original problem; currently the former can be done
but not the latter. More generally, there are also plans for a number of changes in order to further
reshape PyQPCC into a more general framework that can easily be adapted to the workflow and
experiments of other researchers.

87

REFERENCES

M. S. Andersen, J. Dahl, et L. Vandenberghe, CVXOPT: A Python package for convex optimiza-

tion, Version 1.1.6, 2013.

M. Armbruster, M. Fügenschuh, C. Helmberg, et A. Martin, “A comparative study of
linear and semidefinite branch-and-cut methods for solving the minimum graph bisection
problem”, dans Integer Programming and Combinatorial Optimization, série Lecture Notes
in Computer Science, A. Lodi, A. Panconesi, et G. Rinaldi, éds. Springer Berlin
Heidelberg, 2008, vol. 5035, pp. 112–124. DOI: 10.1007/978-3-540-68891-4. En ligne:
http://dx.doi.org/10.1007/978-3-540-68891-4

C. Audet, P. Hansen, B. Jaumard, et G. Savard, “Links between linear bilevel and
mixed 0-1 programming problems”, Journal of Optimization Theory and Applications,
vol. 93, no. 2, pp. 273–300, 1997. DOI: 10.1023/A:1022645805569. En ligne: http:
//dx.doi.org/10.1023/A%3A1022645805569

C. Audet, G. Savard, et W. Zghal, “New branch-and-cut algorithm for bilevel linear
programming”, Journal of Optimization Theory and Applications, vol. 134, no. 2, pp.
353–370, 2007. DOI: 10.1007/s10957-007-9263-4. En ligne: http://dx.doi.org/10.
1007/s10957-007-9263-4

C. Audet, P. Hansen, B. Jaumard, et G. Savard, “A symmetrical linear maxmin approach to disjoint
bilinear programming”, Mathematical Programming, vol. 85, no. 3, pp. 573–592, 1999.

C. Audet, J. Haddad, et G. Savard, “Disjunctive cuts for continuous linear bilevel programming”,
Optimization Letters, vol. 1, no. 3, pp. 259–267, 2007.

L. Bai, J. Mitchell, et J.-S. Pang, “On convex quadratic programs with linear complementarity
constraints”, Computational Optimization and Applications, vol. 54, no. 3, pp. 517–554,
2013. DOI: 10.1007/s10589-012-9497-4. En ligne: http://dx.doi.org/10.1007/

s10589-012-9497-4

G. Bautista, M. Anjos, et A. Vannelli, “Formulation of oligopolistic competition in ac power
networks: An nlp approach”, Power Systems, IEEE Transactions on, vol. 22, no. 1, pp. 105–115,
Feb 2007. DOI: 10.1109/TPWRS.2006.888986

http://dx.doi.org/10.1007/978-3-540-68891-4
http://dx.doi.org/10.1007/978-3-540-68891-4
http://dx.doi.org/10.1023/A:1022645805569
http://dx.doi.org/10.1023/A%3A1022645805569
http://dx.doi.org/10.1023/A%3A1022645805569
http://dx.doi.org/10.1007/s10957-007-9263-4
http://dx.doi.org/10.1007/s10957-007-9263-4
http://dx.doi.org/10.1007/s10957-007-9263-4
http://dx.doi.org/10.1007/s10589-012-9497-4
http://dx.doi.org/10.1007/s10589-012-9497-4
http://dx.doi.org/10.1007/s10589-012-9497-4
http://dx.doi.org/10.1109/TPWRS.2006.888986

88

S. Boyd et L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

J. Bracken et J. McGill, “Mathematical programs with optimization problems in the constraints”,
Operations Research, vol. 21, no. 1, pp. 37–44, 1973. DOI: 10.1287/opre.21.1.37. En ligne:
http://dx.doi.org/10.1287/opre.21.1.37

——, “Production and marketing decisions with multiple objectives in a competitive
environment”, Journal of Optimization Theory and Applications, vol. 24, no. 3, pp. 449–458,
1978. DOI: 10.1007/BF00932888. En ligne: http://dx.doi.org/10.1007/BF00932888

S. Braun et J. Mitchell, “A semidefinite programming heuristic for quadratic programming
problems with complementarity constraints”, Computational Optimization and Applications,
vol. 31, no. 1, pp. 5–29, 2005. DOI: 10.1007/s10589-005-1014-6. En ligne: http:
//dx.doi.org/10.1007/s10589-005-1014-6

S. Burer et K. Anstreicher, “Second-order-cone constraints for extended trust-region
subproblems”, SIAM Journal on Optimization, vol. 23, no. 1, pp. 432–451, 2013. DOI:
10.1137/110826862. En ligne: http://dx.doi.org/10.1137/110826862

B. Colson, P. Marcotte, et G. Savard, “Bilevel programming: A survey”, 4OR,
vol. 3, no. 2, pp. 87–107, 2005. DOI: 10.1007/s10288-005-0071-0. En ligne: http:
//dx.doi.org/10.1007/s10288-005-0071-0

A. Costa et L. Liberti, “Relaxations of multilinear convex envelopes: dual is better than primal”,
dans International Symposium on Experimental Algorithms. Springer, 2012, pp. 87–98.

Z. Coulibaly et D. Orban, “An l1 elastic interior-point method for mathematical programs with
complementarity constraints”, SIAM J. on Optimization, vol. 22, no. 1, pp. 187–211, Mars 2012.
DOI: 10.1137/090777232. En ligne: http://dx.doi.org/10.1137/090777232

J. Czyzyk, M. Mesnier, et J. Moré, “The neos server”, IEEE Journal on Computational Science

and Engineering, vol. 5, no. 3, pp. 68–75, 1998.

S. Dempe, V. Kalashnikov, G. A. Pérez-Valdés, et N. Kalashnykova, Bilevel Programming

Problems: Theory, Algorithms and Applications to Energy Networks. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, ch. Reduction of Bilevel Programming to a Single
Level Problem, pp. 41–115. DOI: 10.1007/978-3-662-45827-3_3. En ligne: http:

//dx.doi.org/10.1007/978-3-662-45827-3_3

http://dx.doi.org/10.1287/opre.21.1.37
http://dx.doi.org/10.1287/opre.21.1.37
http://dx.doi.org/10.1007/BF00932888
http://dx.doi.org/10.1007/BF00932888
http://dx.doi.org/10.1007/s10589-005-1014-6
http://dx.doi.org/10.1007/s10589-005-1014-6
http://dx.doi.org/10.1007/s10589-005-1014-6
http://dx.doi.org/10.1137/110826862
http://dx.doi.org/10.1137/110826862
http://dx.doi.org/10.1007/s10288-005-0071-0
http://dx.doi.org/10.1007/s10288-005-0071-0
http://dx.doi.org/10.1007/s10288-005-0071-0
http://dx.doi.org/10.1137/090777232
http://dx.doi.org/10.1137/090777232
http://dx.doi.org/10.1007/978-3-662-45827-3_3
http://dx.doi.org/10.1007/978-3-662-45827-3_3
http://dx.doi.org/10.1007/978-3-662-45827-3_3

89

S. Diamond et S. Boyd, “Cvxpy: A python-embedded modeling language for convex optimiza-
tion”, J Mach Learn Res Mach Learn Open Sour Softw, 2015.

E. Dolan, “The neos server 4.0 administrative guide”, Mathematics and Computer Science Divi-
sion, Argonne National Laboratory, Technical Memorandum ANL/MCS-TM-250, 2001.

R. Freund, “15.084j nonlinear programming, spring 2004.” Massachusetts Institute of
Technology: MIT OpenCourseWare, 2004. En ligne: http://ocw.mit.edu/courses/

sloan-school-of-management/15-084j-nonlinear-programming-spring-2004

S. Gabriel et Y. Smeers, “Complementarity problems in restructured natural gas markets”,
dans Recent Advances in Optimization, série Lecture Notes in Economics and Mathematical
Systems, A. Seeger, éd. Springer Berlin Heidelberg, 2006, vol. 563, pp. 343–373. DOI:
10.1007/3-540-28258-0_21. En ligne: http://dx.doi.org/10.1007/3-540-28258-0_
21

W. Gropp et J. Moré, “Optimization environments and the neos server”, dans Approximation

Theory and Optimization, M. Buhmann et A. Iserles, éds. Cambridge University Press, 1997,
pp. 167–182.

P. Hansen, B. Jaumard, et G. Savard, “New branch-and-bound rules for linear bilevel
programming”, SIAM Journal on Scientific and Statistical Computing, vol. 13, no. 5, pp. 1194–
1217, 1992. DOI: 10.1137/0913069. En ligne: http://dx.doi.org/10.1137/0913069

J. Hu, J. Mitchell, J. Pang, K. Bennett, et G. Kunapuli, “On the global solution of linear programs
with linear complementarity constraints”, SIAM Journal on Optimization, vol. 19, no. 1, pp. 445–
471, 2008. DOI: 10.1137/07068463x. En ligne: http://dx.doi.org/10.1137/07068463x

J. Hu, J. Mitchell, J.-S. Pang, et B. Yu, “On linear programs with linear com-
plementarity constraints”, Journal of Global Optimization, vol. 53, no. 1, pp. 29–51,
2012. DOI: 10.1007/s10898-010-9644-3. En ligne: http://dx.doi.org/10.1007/

s10898-010-9644-3

M. Hu et M. Fukushima, “Variational inequality formulation of a class of multi-
leader-follower games”, Journal of Optimization Theory and Applications, vol. 151,
no. 3, pp. 455–473, 2011. DOI: 10.1007/s10957-011-9901-8. En ligne: http:

//dx.doi.org/10.1007/s10957-011-9901-8

http://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004
http://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004
http://dx.doi.org/10.1007/3-540-28258-0_21
http://dx.doi.org/10.1007/3-540-28258-0_21
http://dx.doi.org/10.1007/3-540-28258-0_21
http://dx.doi.org/10.1137/0913069
http://dx.doi.org/10.1137/0913069
http://dx.doi.org/10.1137/07068463x
http://dx.doi.org/10.1137/07068463x
http://dx.doi.org/10.1007/s10898-010-9644-3
http://dx.doi.org/10.1007/s10898-010-9644-3
http://dx.doi.org/10.1007/s10898-010-9644-3
http://dx.doi.org/10.1007/s10957-011-9901-8
http://dx.doi.org/10.1007/s10957-011-9901-8
http://dx.doi.org/10.1007/s10957-011-9901-8

90

X. Hu et D. Ralph, “Using epecs to model bilevel games in restructured electricity markets
with locational prices”, Operations Research, vol. 55, no. 5, pp. 809–827, 2007. DOI:
10.1287/opre.1070.0431. En ligne: http://dx.doi.org/10.1287/opre.1070.0431

Ž. Ivezić, A. J. Connolly, J. T. VanderPlas, et A. Gray, Statistics, Data Mining, and Machine

Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. Princeton
University Press, 2014.

H. Jiang et D. Ralph, “Qpecgen, a matlab generator for mathematical programs with quadratic
objectives and affine variational inequality constraints”, Computational Optimization and

Applications, vol. 13, no. 1-3, pp. 25–59, 1999. DOI: 10.1023/A:1008696504163. En ligne:
http://dx.doi.org/10.1023/A%3A1008696504163

S. Leyffer, G. López-Calva, et J. Nocedal, “Interior methods for mathematical programs with
complementarity constraints”, SIAM Journal on Optimization, vol. 17, no. 1, pp. 52–77, 2006.
DOI: 10.1137/040621065. En ligne: http://dx.doi.org/10.1137/040621065

Z. Luo, J. Pang, et D. Ralph, Mathematical Programs with Equilibrium Constraints. Cambridge
University Press, 1996.

O. Mangasarian et S. Fromovitz, “The fritz john necessary optimality conditions in the presence of
equality and inequality constraints”, Journal of Mathematical Analysis and Applications, vol. 17,
no. 1, pp. 37 – 47, 1967. DOI: http://dx.doi.org/10.1016/0022-247X(67)90163-1.
En ligne: http://www.sciencedirect.com/science/article/pii/0022247X67901631

J. Nash, “Non-cooperative games”, Annals of Mathematics, vol. 54, pp. 286–295, 1951.

Y. Nesterov, A. Nemirovskii, et Y. Ye, Interior-point polynomial algorithms in convex program-

ming. SIAM, 1994, vol. 13.

T. Nguyen, M. Tawarmalani, et J.-P. Richard, “Convexification techniques for linear
complementarity constraints”, dans Integer Programming and Combinatoral Optimization, série
Lecture Notes in Computer Science, O. Günlük et G. Woeginger, éds. Springer Berlin
Heidelberg, 2011, vol. 6655, pp. 336–348. DOI: 10.1007/978-3-642-20807-2. En ligne:
http://dx.doi.org/10.1007/978-3-642-20807-2

G. Rashed et R. Ahsan, “Python in computational science: applications and possibilities”, Inter-

national Journal of Computer Applications, vol. 46, no. 20, pp. 26–30, 2012.

http://dx.doi.org/10.1287/opre.1070.0431
http://dx.doi.org/10.1287/opre.1070.0431
http://dx.doi.org/10.1023/A:1008696504163
http://dx.doi.org/10.1023/A%3A1008696504163
http://dx.doi.org/10.1137/040621065
http://dx.doi.org/10.1137/040621065
http://dx.doi.org/http://dx.doi.org/10.1016/0022-247X(67)90163-1
http://www.sciencedirect.com/science/article/pii/0022247X67901631
http://dx.doi.org/10.1007/978-3-642-20807-2
http://dx.doi.org/10.1007/978-3-642-20807-2

91

R. T. Rockafellar, “Lagrange multipliers and optimality”, SIAM Review, vol. 35, no. 2, pp.
183–238, 1993. DOI: 10.1137/1035044. En ligne: http://dx.doi.org/10.1137/1035044

D. Ševčovič et M. Trnovská, “Solution to the inverse wulff problem by means of the enhanced
semidefinite relaxation method”, Journal of Inverse and Ill-Posed Problems, 2014.

H. D. Sherali et W. P. Adams, Reformulation-Linearization Techniques for Dis-

crete Optimization Problems. Boston, MA: Springer US, 1999, pp. 479–532.
DOI: 10.1007/978-1-4613-0303-9_7. En ligne: http://dx.doi.org/10.1007/

978-1-4613-0303-9_7

S. Siddiqui et S. Gabriel, “An sos1-based approach for solving mpecs with a natural
gas market application”, Networks and Spatial Economics, vol. 13, no. 2, pp. 205–227,
2013. DOI: 10.1007/s11067-012-9178-y. En ligne: http://dx.doi.org/10.1007/

s11067-012-9178-y

H. Stackelberg, The Theory of Market Economy. Oxford University Press, Oxford, UK., 1952.

G. Stewart, “On the early history of the singular value decomposition”, SIAM Review, vol. 35,
no. 4, pp. 551–566, 1993. DOI: 10.1137/1035134. En ligne: http://dx.doi.org/10.1137/
1035134

M. Tawarmalani et N. V. Sahinidis, Convexification and global optimization in continuous and

mixed-integer nonlinear programming: theory, algorithms, software, and applications. Springer,
2002, vol. 65.

K. C. Toh, R. H. Tütüncü, et M. J. Todd, On the implementation and usage of SDPT3 – a Matlab

software package for semidefinite-quadratic-linear programming, version 4.0, 2006.

R. H. Tütüncü, K. C. Toh, et M. J. Todd, SDPT3 – a Matlab software package for semidefinite-

quadratic-linear programming, version 3.0, 2001.

L. Vandenberghe, The CVXOPT linear and Quadratic cone program solvers, 2010. En ligne:
http://cvxopt.org/documentation/coneprog.pdf

L. Vicente, G. Savard, et J. JÃodice, “Descent approaches for quadratic bilevel programming”,
Journal of Optimization Theory and Applications, vol. 81, no. 2, pp. 379–399, 1994. DOI:
10.1007/BF02191670. En ligne: http://dx.doi.org/10.1007/BF02191670

http://dx.doi.org/10.1137/1035044
http://dx.doi.org/10.1137/1035044
http://dx.doi.org/10.1007/978-1-4613-0303-9_7
http://dx.doi.org/10.1007/978-1-4613-0303-9_7
http://dx.doi.org/10.1007/978-1-4613-0303-9_7
http://dx.doi.org/10.1007/s11067-012-9178-y
http://dx.doi.org/10.1007/s11067-012-9178-y
http://dx.doi.org/10.1007/s11067-012-9178-y
http://dx.doi.org/10.1137/1035134
http://dx.doi.org/10.1137/1035134
http://dx.doi.org/10.1137/1035134
http://cvxopt. org/documentation/coneprog. pdf
http://dx.doi.org/10.1007/BF02191670
http://dx.doi.org/10.1007/BF02191670

92

J. Vielma et G. Nemhauser, “Modeling disjunctive constraints with a logarithmic number
of binary variables and constraints”, Mathematical Programming, vol. 128, no. 1-2, pp.
49–72, 2011. DOI: 10.1007/s10107-009-0295-4. En ligne: http://dx.doi.org/10.
1007/s10107-009-0295-4

Y. Ye et S. Zhang, “New results on quadratic minimization”, SIAM Journal on Optimization,
vol. 14, no. 1, pp. 245–267, 2003. DOI: 10.1137/S105262340139001X. En ligne:
http://dx.doi.org/10.1137/S105262340139001X

http://dx.doi.org/10.1007/s10107-009-0295-4
http://dx.doi.org/10.1007/s10107-009-0295-4
http://dx.doi.org/10.1007/s10107-009-0295-4
http://dx.doi.org/10.1137/S105262340139001X
http://dx.doi.org/10.1137/S105262340139001X

93

APPENDIX A DERIVING CANDIDATE POINTS FROM THE SOLUTION TO A
HEURISTIC SDP MODEL

Tables A.1 - A.6 show the full results of the candidate point evaluation seen in section 4.4.2.

Table A.1 Evaluating candidate points derived from the solution to (S heur). (B20 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

B20n0 2.46% 0.19

LP 2.46% 0.00 16.40%
SP 2.46% 5.39 46.66%
R1 2.46% 0.02 16.39%

AR1 2.46% 0.02 16.39%

B20n1 0.00% 0.04

LP 0.10% 0.00 1.95%
SP 0.11% 0.03 20.41%
R1 0.10% 0.00 1.95%

AR1 0.10% 0.00 1.95%

B20n2 0.20% 0.58

LP 0.21% 0.00 11.49%
SP 0.19% 8.10 112.25%
R1 0.21% 0.02 11.40%

AR1 0.21% 0.02 11.40%

B20n3 2.61% 0.04

LP 2.61% 0.00 15.19%
SP 2.60% 0.67 24.47%
R1 2.61% 0.00 15.19%

AR1 2.61% 0.00 15.19%

B20n4 0.09% 0.05

LP 0.09% 0.00 6.71%
SP 0.09% 2.13 22.82%
R1 0.09% 0.01 6.72%

AR1 0.09% 0.01 6.72%

B20n5 38.23% 0.09

LP 38.23% 0.00 62.57%
SP 38.23% 3.60 64.04%
R1 38.23% 0.03 62.57%

AR1 38.23% 0.03 62.56%

94

Table A.2 Evaluating candidate points derived from the solution to (S heur). (F20 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

F20n0 0.00% 0.19

LP 0.00% 0.00 3.35%
SP 0.00% 3.53 45.87%
R1 0.00% 0.02 3.30%

AR1 0.00% 0.02 3.30%

F20n1 0.37% 0.28

LP 0.37% 0.00 9.41%
SP 0.37% 0.90 56.15%
R1 0.38% 0.00 9.52%

AR1 0.37% 0.00 9.52%

F20n2 0.00% 0.17

LP 0.00% 0.00 5.96%
SP 0.00% 6.10 39.11%
R1 0.00% 0.03 5.81%

AR1 0.00% 0.03 5.81%

F20n3 0.00% 0.16

LP 0.00% 0.00 15.49%
SP 0.01% 2.29 45.98%
R1 0.01% 0.01 16.42%

AR1 0.00% 0.01 16.46%

F20n4 0.00% 0.16

LP 0.00% 0.00 14.74%
SP 0.00% 1.03 46.45%
R1 0.01% 0.01 15.85%

AR1 0.00% 0.00 15.90%

F20n5 0.35% 0.21

LP 0.35% 0.00 5.68%
SP 0.35% 1.84 50.70%
R1 0.35% 0.00 5.62%

AR1 0.35% 0.00 5.62%

95

Table A.3 Evaluating candidate points derived from the solution to (S heur). (B50 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

B50n0 0.05% 0.14

LP 0.05% 0.00 9.28%
SP 0.05% 1.26 38.48%
R1 0.05% 0.00 9.28%

AR1 0.05% 0.00 9.28%

B50n1 2.72% 0.23

LP 2.72% 0.00 24.17%
SP 2.71% 7.00 56.25%
R1 2.72% 0.00 24.17%

AR1 2.72% 0.00 24.17%

B50n2 4.76% 0.25

LP 4.76% 0.00 35.41%
SP 4.76% 6.76 51.29%
R1 4.76% 0.02 35.41%

AR1 4.76% 0.02 35.41%

B50n3 0.14% 0.21

LP 0.14% 0.00 13.53%
SP 0.14% 6.41 45.95%
R1 0.14% 0.02 13.48%

AR1 0.14% 0.02 13.48%

B50n4 0.88% 0.87

LP 0.96% 0.02 37.67%
SP 0.90% 48.31 272.53%
R1 94.48% 1.09 95.30%

AR1 0.97% 87.35 609.70%

B50n5 1.98% 0.16

LP 1.98% 0.00 16.71%
SP 1.98% 3.17 43.35%
R1 1.98% 0.01 16.74%

AR1 1.98% 0.01 16.74%

96

Table A.4 Evaluating candidate points derived from the solution to (S heur). (F50 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

F50n0 44.47% 0.32

LP 44.48% 0.00 64.78%
SP 44.45% 13.14 77.55%
R1 44.48% 0.02 64.77%

AR1 44.48% 0.02 64.77%

F50n1 6.58% 0.29

LP 6.58% 0.00 33.58%
SP 6.58% 2.12 68.20%
R1 6.58% 0.01 33.59%

AR1 6.58% 0.01 33.60%

F50n2 4.12% 0.55

LP 4.12% 0.00 43.04%
SP 4.11% 8.72 118.10%
R1 4.01% 0.06 46.11%

AR1 4.12% 0.05 46.71%

F50n3 0.00% 0.16

LP 0.00% 0.00 2.28%
SP 0.00% 9.25 41.91%
R1 0.00% 0.01 2.28%

AR1 0.00% 0.01 2.28%

F50n4 0.00% 0.24

LP 0.00% 0.00 24.45%
SP 0.00% 4.23 58.65%
R1 0.01% 0.02 25.32%

AR1 0.00% 0.02 25.40%

F50n5 0.09% 0.25

LP 0.09% 0.00 34.29%
SP 0.08% 1.71 58.28%
R1 0.08% 0.00 34.59%

AR1 0.09% 0.00 34.61%

97

Table A.5 Evaluating candidate points derived from the solution to (S heur). (B100 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

B100n0 0.48% 0.05

LP 0.48% 0.00 20.51%
SP 0.48% 0.38 28.85%
R1 0.48% 0.00 20.51%

AR1 0.48% 0.00 20.51%

B100n1 0.28% 0.14

LP 0.28% 0.00 24.29%
SP 0.28% 4.10 40.80%
R1 0.28% 0.01 24.28%

AR1 0.28% 0.01 24.28%

B100n2 0.00% 0.09

LP 0.00% 0.00 8.14%
SP 0.00% 0.10 31.79%
R1 0.00% 0.00 8.14%

AR1 0.00% 0.00 8.14%

B100n3 0.09% 0.27

LP 0.09% 0.00 5.83%
SP 0.09% 8.20 58.83%
R1 0.09% 0.01 5.84%

AR1 0.09% 0.01 5.84%

B100n4 0.10% 0.19

LP 0.10% 0.00 10.39%
SP 0.10% 4.77 45.08%
R1 0.10% 0.00 10.37%

AR1 0.10% 0.00 10.37%

B100n5 0.59% 0.24

LP 0.59% 0.00 29.96%
SP 0.59% 3.75 56.55%
R1 0.59% 0.00 29.96%

AR1 0.59% 0.00 29.96%

98

Table A.6 Evaluating candidate points derived from the solution to (S heur). (F100 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

F100n0 0.13% 0.22

LP 0.13% 0.00 14.71%
SP 0.13% 5.64 53.51%
R1 0.12% 0.00 14.89%

AR1 0.13% 0.00 14.89%

F100n1 0.84% 0.30

LP 0.84% 0.00 17.01%
SP 0.84% 6.96 62.38%
R1 0.84% 0.01 17.11%

AR1 0.84% 0.01 17.11%

F100n2 0.31% 0.28

LP 0.31% 0.00 26.25%
SP 0.31% 4.29 63.93%
R1 0.31% 0.00 26.45%

AR1 0.31% 0.00 26.46%

F100n3 0.11% 0.20

LP 0.11% 0.00 15.28%
SP 0.11% 4.72 47.13%
R1 0.11% 0.01 15.39%

AR1 0.11% 0.01 15.39%

F100n4 0.06% 0.21

LP 0.06% 0.00 10.52%
SP 0.05% 5.39 50.60%
R1 0.06% 0.01 10.64%

AR1 0.06% 0.01 10.64%

F100n5 0.41% 0.54

LP 0.42% 0.00 31.07%
SP 0.41% 7.73 112.61%
R1 0.38% 0.01 32.57%

AR1 0.42% 0.00 32.76%

99

APPENDIX B DERIVING CANDIDATE POINTS AFTER AN ITERATIVE SDP
PROCESS

Tables B.1 through B.6 parallel the candidate point evaluation seen in section 4.4.2 and Appendix
A, but where X∗ is the SDP solution from the iterative method after 5 outer iterations or at termi-
nation, whichever occurs first.

100

Table B.1 Evaluating candidate points derived from the last iteration of the S DPheurlim iterative
solves. (B20 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

B20n0 2.46% 0.32

LP 2.46% 0.00 16.40%
SP 2.46% 7.37 67.49%
R1 2.46% 0.17 16.36%

AR1 2.46% 0.17 16.37%

B20n1 0.00% 0.04

LP 0.10% 0.00 1.95%
SP 0.11% 0.03 20.41%
R1 0.10% 0.00 1.95%

AR1 0.10% 0.00 1.95%

B20n2 0.20% 0.45

LP 0.20% 0.00 11.84%
SP 0.19% 5.43 87.30%
R1 0.20% 0.00 11.84%

AR1 0.20% 0.00 11.84%

B20n3 2.61% 0.04

LP 2.61% 0.00 15.19%
SP 2.60% 0.67 24.47%
R1 2.61% 0.00 15.19%

AR1 2.61% 0.00 15.19%

B20n4 0.09% 0.05

LP 0.09% 0.00 6.71%
SP 0.09% 2.13 22.82%
R1 0.09% 0.01 6.72%

AR1 0.09% 0.01 6.72%

B20n5 38.23% 0.37

LP 38.23% 0.00 62.57%
SP 38.23% 8.43 73.11%
R1 38.23% 0.31 62.54%

AR1 38.23% 0.31 62.51%

101

Table B.2 Evaluating candidate points derived from the last iteration of the S DPheurlim iterative
solves. (F20 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

F20n0 0.00% 0.33

LP 0.00% 0.00 3.37%
SP 0.00% 5.26 66.55%
R1 0.00% 0.09 3.11%

AR1 0.00% 0.09 3.11%

F20n1 0.37% 0.42

LP 0.37% 0.00 9.42%
SP 0.37% 1.16 79.09%
R1 0.40% 0.02 10.30%

AR1 0.37% 0.02 10.34%

F20n2 0.00% 0.42

LP 0.00% 0.00 5.98%
SP 0.00% 11.37 77.62%
R1 0.01% 0.53 5.41%

AR1 0.00% 0.53 5.39%

F20n3 0.00% 0.39

LP 0.00% 0.00 13.95%
SP 0.01% 4.49 80.47%
R1 0.03% 0.23 16.23%

AR1 0.00% 0.23 16.34%

F20n4 0.00% 0.27

LP 0.00% 0.00 15.78%
SP 0.00% 1.68 63.95%
R1 0.03% 0.07 17.99%

AR1 0.00% 0.07 18.11%

F20n5 0.35% 0.58

LP 0.35% 0.00 5.68%
SP 0.35% 3.88 116.50%
R1 0.28% 0.25 8.17%

AR1 0.35% 0.25 8.31%

102

Table B.3 Evaluating candidate points derived from the last iteration of the S DPheurlim iterative
solves. (B50 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

B50n0 0.05% 0.23

LP 0.05% 0.00 9.28%
SP 0.05% 1.95 53.13%
R1 0.05% 0.00 9.28%

AR1 0.05% 0.00 9.28%

B50n1 2.72% 0.36

LP 2.72% 0.00 24.17%
SP 2.71% 9.54 74.21%
R1 2.72% 0.01 24.16%

AR1 2.72% 0.01 24.16%

B50n2 4.76% 0.52

LP 4.76% 0.00 35.43%
SP 4.76% 11.51 90.37%
R1 4.75% 0.33 34.62%

AR1 4.76% 0.33 34.63%

B50n3 0.14% 0.48

LP 0.14% 0.00 13.54%
SP 0.14% 11.83 88.55%
R1 0.14% 0.41 12.89%

AR1 0.14% 0.41 12.89%

B50n4 0.84% 0.49

LP 0.89% 0.01 37.63%
SP 0.96% 79.56 442.17%
R1 99.97% 0.99 99.55%

AR1 1.02% 4642.21 26470.03%

B50n5 1.98% 0.45

LP 1.98% 0.00 16.71%
SP 1.98% 6.63 87.74%
R1 1.98% 0.10 16.73%

AR1 1.98% 0.10 16.73%

103

Table B.4 Evaluating candidate points derived from the last iteration of the S DPheurlim iterative
solves. (F50 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

F50n0 44.47% 0.58

LP 44.48% 0.00 64.82%
SP 44.45% 22.03 109.74%
R1 44.47% 0.39 64.32%

AR1 44.48% 0.39 64.33%

F50n1 6.58% 0.58

LP 6.58% 0.00 33.59%
SP 6.58% 4.29 119.86%
R1 6.58% 0.11 33.41%

AR1 6.58% 0.11 33.45%

F50n2 4.12% 0.46

LP 4.12% 0.00 33.49%
SP 4.12% 6.53 90.90%
R1 4.11% 0.10 33.63%

AR1 4.12% 0.10 33.68%

F50n3 0.00% 0.40

LP 0.00% 0.00 2.29%
SP 0.00% 16.84 78.64%
R1 0.00% 0.18 2.21%

AR1 0.00% 0.18 2.21%

F50n4 0.00% 0.45

LP 0.00% 0.00 22.71%
SP 0.00% 7.24 90.89%
R1 0.01% 0.21 24.47%

AR1 0.00% 0.20 24.68%

F50n5 0.09% 0.40

LP 0.09% 0.00 34.46%
SP 0.08% 2.67 77.26%
R1 0.07% 0.11 34.51%

AR1 0.09% 0.11 34.55%

104

Table B.5 Evaluating candidate points derived from the last iteration of the S DPheurlim iterative
solves. (B100 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

B100n0 0.48% 0.23

LP 0.48% 0.00 20.52%
SP 0.48% 0.87 55.07%
R1 0.48% 0.00 20.52%

AR1 0.48% 0.00 20.52%

B100n1 0.28% 0.37

LP 0.28% 0.00 24.29%
SP 0.28% 8.12 73.48%
R1 0.28% 0.13 24.23%

AR1 0.28% 0.13 24.22%

B100n2 0.00% 0.27

LP 0.00% 0.00 8.14%
SP 0.00% 0.20 61.31%
R1 0.00% 0.00 8.14%

AR1 0.00% 0.00 8.14%

B100n3 0.09% 0.51

LP 0.09% 0.00 5.85%
SP 0.09% 12.87 100.52%
R1 0.09% 0.23 6.14%

AR1 0.09% 0.23 6.15%

B100n4 0.10% 0.46

LP 0.10% 0.00 10.39%
SP 0.10% 8.35 86.60%
R1 0.10% 0.12 10.05%

AR1 0.10% 0.12 10.05%

B100n5 0.59% 0.49

LP 0.59% 0.00 29.97%
SP 0.59% 6.81 93.40%
R1 0.59% 0.01 29.93%

AR1 0.59% 0.01 29.93%

105

Table B.6 Evaluating candidate points derived from the last iteration of the S DPheurlim iterative
solves. (F100 series)

SDP sol. X∗ candidate point x̂

Name gapS (X∗) % R(X∗) type gapc(x̂) violc(x̂) distc(x̂)

F100n0 0.13% 0.36

LP 0.13% 0.00 14.60%
SP 0.13% 7.75 73.95%
R1 0.12% 0.04 14.85%

AR1 0.13% 0.04 14.86%

F100n1 0.84% 0.53

LP 0.84% 0.00 16.78%
SP 0.83% 11.11 101.92%
R1 0.84% 0.14 16.89%

AR1 0.84% 0.14 16.89%

F100n2 0.31% 0.51

LP 0.31% 0.00 25.65%
SP 0.31% 6.96 100.41%
R1 0.31% 0.16 26.14%

AR1 0.31% 0.16 26.19%

F100n3 0.11% 0.44

LP 0.11% 0.00 14.91%
SP 0.11% 8.06 84.40%
R1 0.11% 0.19 15.09%

AR1 0.11% 0.19 15.10%

F100n4 0.06% 0.44

LP 0.06% 0.00 10.97%
SP 0.05% 9.04 87.00%
R1 0.06% 0.11 11.77%

AR1 0.06% 0.11 11.79%

F100n5 0.41% 0.60

LP 0.41% 0.00 21.10%
SP 0.41% 9.11 122.33%
R1 0.34% 0.44 22.81%

AR1 0.41% 0.44 22.94%

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Basic definitions and concepts
	1.1.1 Bilevel programming
	1.1.2 Complementarity problems
	1.1.3 Convexity, Cones, and Semidefinite Relaxations
	1.1.4 Semidefinite programming relaxation technique

	1.2 Description of the problem
	1.3 Research objectives
	1.4 Structure of the thesis

	2 CRITICAL LITERATURE REVIEW
	2.1 Game theory, bilevel programs, equilibrium problems, and complementarity problems
	2.1.1 The challenge of globally solving BPs and MPCCs

	2.2 Non-exhaustive review of solution methods for BPs and MPCCs
	2.3 Literature applying SDP to MPCCs and related problems

	3 SEMIDEFINITE RELAXATIONS OF QUADRATIC PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS
	3.1 The base relaxation
	3.1.1 Construction
	3.1.2 Theory and Observations
	3.1.3 Test problems: MacMPEC
	3.1.4 Test problems: QPECgen
	3.1.5 Evaluation of (Sbase)

	3.2 Tightening constraints and modeling alternatives
	3.2.1 Sherali-Adams constraints
	3.2.2 Enhanced equality constraints
	3.2.3 Aggregated equality constraints

	3.3 A `full' model
	3.4 A middle ground model and iterative framework
	3.5 An iterative approach

	4 CANDIDATE POINT BASED HEURISTIC METHODS FOR QPLCCS
	4.1 Rank one X*
	4.2 Higher rank X*
	4.3 Candidate point terminology and motivation
	4.4 Comparing candidate points
	4.4.1 Introducing metrics
	4.4.2 Evaluating candidate points

	4.5 Methodology for the warmstarting of local and global NLP solvers
	4.5.1 Local NLP solvers
	4.5.2 Global NLP solvers

	5 PYTHON IMPLEMENTED SOFTWARE TOOLS FOR QPCCS
	5.1 PyQPCC
	5.1.1 QPLCC modeling
	5.1.2 Constructing and solving SDP relaxations
	5.1.3 Results, result collections and problem series management
	5.1.4 Language printing
	5.1.5 Solve batch manager and PyNEOS

	5.2 PyQPECgen
	5.2.1 Introduction
	5.2.2 Generation options
	5.2.3 Python implementation and modular code design
	5.2.4 New problem type: FULL-BOX-QPEC ('Type 201')
	5.2.5 New feature: exporting problem types in the standard QPCC format
	5.2.6 Project status and future direction

	5.3 PySDPT3glue
	5.3.1 Overview of notable functionality
	5.3.2 Problem translation and simplification
	5.3.3 Project status and future direction

	6 CONCLUSION
	6.1 Advancement of knowledge
	6.2 Limits and constraints
	6.3 Future work

	REFERENCES
	APPENDICES

