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RÉSUMÉ

Release engineering (Releng) est le processus de la mise en production logicielle des contribu-
tions des développeurs en un produit intégré livré aux utilisateurs. Ce processus consiste des
phases d’intégration, de construction et des tests, de déploiement et de livraison, pour finale-
ment entrer au marché. Alors que, traditionnellement, la mise en production prend plusieurs
mois pour livrer un produit logiciel complet aux clients, la mise en production moderne vise
à apporter de la valeur au client plus rapidement, dans l’ordre des jours ou des semaines,
pour recevoir de rétroaction utile plus rapidement et pour minimiser le temps perdu sur des
fonctionnalités échouées.

De nos jours, une panoplie d’outils et de techniques a émergé pour soutenir la mise en
production. Ils visent essentiellement à automatiser les phases dans le pipeline de la mise en
production, ce qui réduit le travail manuel et rend le processus reproductible et rapide. Par
exemple, Puppet est l’un des outils les plus populaires pour Infrastructure-as-Code (IaC),
ce qui automatise le processus de mettre en place une nouvelle infrastructure (par exemple,
une machine virtuelle ou un conteneur dans lequel une application peut être compilée, testée
et déployée) selon des spécifications textuelles. IaC a évolué rapidement en raison de la
croissance de l’infonuagique.

Cependant, de nombreux problèmes existent encore pour la mise en production. Par exemple,
alors que de nombreux outils de la mise en production gagnent en popularité, le choix de
la technique la plus appropriée exige des praticiens d’évaluer empiriquement la performance
des techniques dans un contexte réaliste, avec des données représentatives. Pire encore, à
un niveau plus haut, les ingénieurs de la mise en production doivent analyser le progrès de
l’organisation dans chaque phase de la mise en production, afin de savoir si la prochaine date
de sortie peut être respectée ou si des obstacles se produisent. De nouveau, il n’y a pas de
méthode cohérente et établie pour ce faire.

Pour aider les praticiens à mieux analyser leur processus de la mise en production, nous ex-
plorons la façon selon laquelle la fouille de référentiels logiciels (Mining Software Repositories;
MSR) est capable d’analyser le progrès d’une phase de la mise en production ou d’évaluer la
performance d’un outil de mise en production. MSR agit sur les données stockées dans des
référentiels de logiciels tels que les systèmes de gestion de versions, les référentiels de bogues
ou des environnements de révision technique. Au lieu que les développeurs, les testeurs et
les examinateurs utilisent ces référentiels juste pour enregistrer des données de développe-
ment (telles que les changements de code, rapports de bogues ou des révisions techniques),
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MSR rend ces données actionnables en les analysant. Par exemple, en faisant l’extraction
de l’information des changements de code source et de rapports de bogues, on peut recréer
l’ensemble du processus de développement d’un projet ou de la mise en production. De nos
jours, de nombreux référentiels logiciels à source libre sont disponibles au public, offrant des
possibilités pour l’analyse empirique de la mise en production en utilisant des technologies
MSR.

Dans cette thèse, on a fait des analyses MSR pour deux phases critiques de la mise en
production, c.-à-d. l’intégration et le provisionnement de l’environnement d’un logiciel (avec
IaC), sur plusieurs projets larges à source libre. Cette série d’études empiriques ciblait de
comprendre le progrès du processus de la mise en production et d’évaluer la performance
des outils de point. Nous nous sommes concentrés principalement sur ces deux phases parce
qu’elles sont essentielles dans la mise en production, et un grand nombre de données est
disponible pour elles.

D’abord, nous avons constaté que la révision technique et l’intégration de changements de
code sont impactées par de différents facteurs. Nos résultats suggèrent que les développeurs
réussissent à faire passer leurs contributions à travers la révision technique plus rapidement en
changeant moins de sous-systèmes à la fois et de diviser une grande contribution en plusieurs
contributions plus petites. En outre, les développeurs peuvent faire accepter leurs contribu-
tions plus facilement et plus rapidement en participant davantage dans la communauté de
développeurs à source libre et d’acquérir plus d’expérience dans des sous-systèmes similaires.

Dans cette étude sur le noyau Linux, nous avons trouvé que l’un des défis majeurs de MSR
dans le contexte de la mise en production logicielle est de relier les différents référentiels
nécessaires. Par exemple, le noyau Linux ou le projet Apache HTTPD utilisent tous les
deux des listes de diffusion pour effectuer le processus de révision technique. Les experts
examinent des contributions par courriel, et un fil de courriels est utilisé pour ramasser toutes
les différentes versions d’une contribution. Cependant, souvent un nouveau fil de discussion,
avec sujet différent, est utilisé pour soumettre une nouvelle révision, ce qui signifie qu’aucun
lien physique étroit n’existe entre toutes les révisions d’une contribution. En plus, les versions
révisées d’une contribution non plus n’ont de lien physique avec la version acceptée dans le
référentiel de gestion de versions, à moins qu’un identifiant de validation soit affiché dans un
courriel. Surtout quand une contribution a été révisée plusieurs fois et a beaucoup évolué en
comparaison avec la version initiale, le suivi à partir de sa toute première version est difficile
à faire.

Nous avons proposé trois approches de différente granularité et de rigueur différente, dans
le but de récupérer les liens physiques entre les révisions de contributions dans le même fil
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de courriels. Dans notre étude, nous avons constaté que la technique au niveau des lignes
individuelles fonctionne le mieux pour lier des contributions entre différents fils de courriels,
tandis qu’une combinaison de cette approche avec celle à base de sommes de contrôle réalise
la meilleure performance pour relier les contributions dans un fil de courriels avec la version
finale dans le référentiel de gestion de versions. Être capable de reconstituer l’historique
complet de contributions nous a permis d’analyser le progrès de la phase de révision du
noyau Linux. Nous avons constaté que 25% des contributions acceptées prennent plus de
quatre semaines pour leur révision technique.

Deuxièmement, pour évaluer la capacité de MSR pour analyser la performance des outils de
mise en production, nous avons évalué dans un projet commercial une approche d’intégration
hybride qui combine les techniques de branchement et de “feature toggles”. Des branches per-
mettent aux développeurs de travailler sur différentes fonctionnalités d’un système en par-
allèle, en isolation (sans impacter d’autres équipes), tandis qu’un feature toggle permet aux
développeurs de travailler dans une branche sur différentes tâches en cachant des fonctionnal-
ités sous développement avec des conditions “if” dans le code source. Au lieu de réviser leur
processus d’intégration entièrement pour abandonner les branches et de passer aux feature
toggles, l’approche hybride est un compromis qui tente de minimiser les risques des branches
tout en profitant des avantages des feature toggles. Nous avons comparé la performance avant
et après l’adoption de l’approche hybride, et avons constaté que cette structure hybride peut
réduire l’effort d’intégration et améliorer la productivité. Par conséquent, l’approche hybride
semble une pratique valable.

Dans la phase de provisionnement, nous nous sommes concentrés sur l’évaluation de
l’utilisation et de l’effort requis pour des outils populaires de “Infrastructure-as-Code” (IaC),
qui permettent de spécifier les requis d’environnement dans un format textuel. Nous avons
étudié empiriquement les outils IaC dans OpenStack et MediaWiki, deux projets énormé-
ment larges qui ont adopté deux des langues IaC actuellement les plus populaires: Puppet
et Chef. Tout d’abord, nous avons comparé l’effort de maintenance lié à IaC avec celui du
codage et des tests. Nous avons constaté que le code IaC prend une partie importante du
système dans les deux projets et change fréquemment, avec de grands changements de code.
Les changements de code IaC sont étroitement couplés avec les changements de code source,
ce qui implique que les changements de code source ou des tests nécessitent des changements
complémentaires au code source IaC, et pourrait causer un effort plus large de maintenance
et de gestion de complexité. Cependant, nous avons également observé un couplage léger avec
des cas de test IaC et les données de provisionnement, qui sont de nouveaux types d’artéfacts
dans le domaine de IaC. Par conséquent, IaC peut nécessiter plus d’effort que les ingénieurs
expectent. D’autres études empiriques devraient être envisagées.
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L’ingénierie de la mise en production moderne a développé rapidement, tandis que de nom-
breux nouvelles techniques et outils ont émergé pour le soutenir de différentes perspectives.
Cependant, le manque de techniques pour comprendre le progrès des phases de la mise en
production ou d’évaluer la performance d’outils de la mise en production rend le travail
difficile pour les praticiens qui ont à maintenir la qualité de leur processus de mise en pro-
duction. Dans cette thèse, nous avons mené une série d’études empiriques en utilisant des
techniques de fouille des référentiels logiciels sur des données de larges projets à source libre,
qui montrent que, malgré des défis, la technologie MSR peut aider les ingénieurs de la mise
en production à mieux comprendre leur progrès et à évaluer le coût des outils et des activités
de la mise en production. Nous sommes heureux de voir que notre travail a inspiré d’autres
chercheurs pour analyser davantage le processus d’intégration, ainsi que la qualité du code
IaC.
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ABSTRACT

Release engineering (Releng) is the process of delivering integrated work from developers as
a complete product to end users. This process comprises the phases of Integration, Building
and Testing, Deployment and Release to finally reach the market. While traditional software
engineering takes several months to deliver a complete software product to customers, modern
Release engineering aims to bring value to customer more quickly, receive useful feedback
faster, and reduce time wasted on unsuccessful features in development process.

A wealth of tools/techniques emerged to support Release engineering. They basically aim to
automate phases in the Release engineering pipeline, reducing the manual labor, and mak-
ing the procedure repeatable and fast. For example, Puppet is one of the most popular
Infrastructure-as-Code (IaC) tools, which automates the process of setting up a new infras-
tructure (e.g., a virtual machine or a container in which an application can be compiled,
tested and deployed) according to specifications. Infrastructure-as-Code has evolved rapidly
due to the growth of cloud computing.

However, many problems also come along. For example, while many Release engineering tools
gain popularity, choosing the most suitable technique requires practitioners to empirically
evaluate the performance of the technique in a realistic setting, with data mimicking their
own setup. Even worse, at a higher level, release engineers need to understand the progress
of each release engineering phase, in order to know whether the next release deadline can be
met or where bottlenecks occur. Again, they have no clear methodology to do this.

To help practitioners analyze their Release engineering process better, we explore the way
of mining software repositories (MSR) on two critical phases of Releng of large open-source
projects. Software repositories like version control systems, bug repositories or code review-
ing environments, are used on a daily basis by developers, testers and reviewers to record
information about the development process, such as code changes, bug reports or code re-
views. By analyzing the data, one can recreate the process of how software is built and
analyze how each phase of Releng applies in this project. Many repositories of open-source
software projects are available publicly, which offers opportunities for empirical research of
Release engineering.

Therefore, we conduct a series of empirical studies of mining software repositories of popular
open-source software projects, to understand the progress of Release engineering and evaluate
the performance of state-of-the-art tools. We mainly focus on two phases: Integration and
Provisioning (Infrastructure-as-Code), because these two phases are most critical in Release
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engineering and ample quantity data is available.

In our empirical study of the Integration process, we evaluate how well MSR techniques based
on version control and review data explain the major factors impacting the probability and
time taken for a patch to be successfully integrated into an upcoming release. We selected
the Linux kernel, one of the most popular OSS projects having a long history and a strict
integration hierarchy, as our case study. We collected data from reviewing and integration
tools of the Linux kernel (mailing lists and Git respectively), and extracted characteristics
covering six dimensions. Then, we built models with acceptance/time as output and analyzed
which characteristics have impact on the reviewing and integration processes.

We found that reviewing and integration are impacted by different factors. Our findings
suggest that developers manage to get their patch go through review phase faster by changing
less subsystems at a time and splitting a large patch into multiple smaller patches. Also,
developers can make patches accepted more easily and sooner by participating more in the
community and gaining more experience in similar patches.

In this study on the Linux kernel, we found that one major challenge of MSR is to link
different repositories. For example, the Linux kernel and Apache project both use mailing
lists to perform the reviewing process. Contributors submit and maintainers review patches
all by emails, where usually an email thread is used to collect all different versions of a patch.
However, often a new email thread, with different subject, is being used to submit a new
patch revision, which means that no strong physical links between all patch revisions exist.
On top of that, the accepted patch also does not have a physical link to the resulting commit
in the version control system, unless a commit identifier is posted in an email. Especially
when a patch has been revised multiple times and evolved a lot from the original version,
tracking its very first version is difficult.

We proposed three approaches of different granularity and strictness, aiming to recover the
physical links between emails in the same thread. In the study, we found that a line-based
technique works best to link emails between threads while the combination of line-based and
checksum-based technique achieves the best performance for linking emails in a thread with
the final, accepted commit.

Being able to reconstruct the full history of a patch allowed us to analyze the performance
of the reviewing phase. We found that 25% of commits have a reviewing history longer than
four weeks.

To evaluate the ability of MSR to analyze the performance of Releng tools, we evaluated a
hybrid integration approach, which combines branching and toggling techniques together, in
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a commercial project. Branching allows developers to work on different branches in parallel,
while toggling enables developers on the same branch on different tasks. Instead of revising
their whole integration process to drop branching and move to toggling, hybrid toggling is a
compromise that tries to minimize the risks of branching while enjoy the benefits of toggling.
We compared the performance before and after adopting hybrid toggling, and found that
this hybrid structure can reduce integration effort and improve productivity. Hence, hybrid
toggling seems a worthwhile practice.

In the Provisioning phase, we focus on evaluating the usage and effort of the popular tools
used in modern Release engineering: Infrastructure-as-Code (IaC). We empirically studied
IaC tools in OpenStack and MediaWiki, which have a huge code base and adopt two currently
most popular IaC languages: Puppet and Chef. First, we study maintenance effort related
to the regular development and testing process of OpenStack, then compare this to IaC-
related effort in both case studies. We found that IaC code takes a large proportion in
both projects and it changes frequently, with large churn size. Meanwhile, IaC code changes
are tightly coupled with source code changes, which implies that changes to source or test
code require accompanying changes to IaC, which might lead to increased complexity and
maintenance effort. Furthermore, the most common reason for such coupling is “Integration
of new modules or service”. However, we also observed IaC code has light coupling with IaC
test cases and test data, which are new kinds of artifacts in IaC domain. Hence, IaC may
take more effort than engineers expect and further empirical studies should be considered.

Modern Release engineering has developed rapidly, while many new techniques/tools emerge
to support it from different perspectives. However, lack of knowledge of the current Release
engineering progress and performance of these techniques makes it difficult for practitioners
to sustain high quality Releng approach in practice. In this thesis, we conducted a series
of empirical studies of mining software repositories of large open-source projects, that show
that, despite some challenges, MSR technology can help release engineers understand better
the progress of and evaluate the cost of Release engineering tools and activities. We are glad
to see our work has inspired other researchers to further analyze the integration process as
well as the quality of IaC code.
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CHAPTER 1 INTRODUCTION

Release engineering (Releng) is the process of delivering integrated work from developers as
a complete functional product to the end users as soon as possible [97]. It consists of a series
of coordinated phases such as peer review, integration, building and testing, deployment,
provisioning of infrastructure and finally release to market. Release engineering aims to
automate the whole production pipeline across all phases to help release software products
rapidly and consistently.

Modern software companies re-engineered their Releng process to reduce the time-to-market,
and get feedback from end users faster. For example, Facebook and NetFlix can release a
new version of the web service to end users twice per day, while Google Chrome and Mozilla
Firefox browser push a new release every six weeks [32]. By leveraging new technologies and
dedicated tools, faster Release engineering becomes possible and achieves great performance
in practices. For example, a wealth of new environments have emerged that enable full
integration of review , build and test process, and Infrastructure-as-Code (IaC) tools enable
to instantiate the virtual machine or server environment of an application automatically.

However, while new Release engineering technology develops so fast, challenges come along.
In industry, as more than 100 techniques/tools are available [17], it is difficult for practitioners
to choose the best one to fit in their context. For example, to set up an application server, one
can use Infrastructure tools like Puppet, but also existing declarative languages like Ruby.
To deploy the server, one can choose a virtual machine with heavy-weight structure, or a
Docker container, which is more flexible but has less stable tool chain. Especially for smaller
companies and start-ups, it is important to help release engineers evaluate these tools, as
migrating to new techniques costs more than what they can afford [139]. Furthermore, how
can these new tools improve Release engineering process and do they really work as expected?

Apart from evaluating state-of-the-art tools, another important motivation on research is
helping release engineers gain more sense about the progress of the Releng pipeline, or at
least individual phases of it. For example, integration conflicts (i.e., the conflicts caused by
different developers changing the same code block while working in parallel) are a serious
problem that costs developers effort and time to fix. To reduce the number of conflicts,
release engineers need help identifying bottlenecks in the integration process, after which they
could think of solutions such as adopting a more efficient reviewing system or establishing
concrete best practices for developers/maintainers. Since in school, release engineering is
hardly taught [30]. Most software engineers lack a clear sense of Releng, and hence automated
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techniques to understand the progress and problems in Releng phases is essential.

However, as release engineering is gaining more and more momentum, little research has been
done to help release engineers evaluate the state-of-art tools as well as gain more insight
into Releng progress. To explore these problems, we study the usage of mining software
repositories of large open-source projects. These repositories, such as version control systems
(Git, Subversion), bug repositories (Bugzilla, Jira) or revieiwing environments (Gerrit), are
used on a daily basis to store all information of the development process during regular
software and release engineering. In the last decade, the MSR research field has exploded with
extraction and analysis of the data stored in these repositories to help address a wide variety
of software engineering problems, from bug prediction to strategy-making. Our work explores
the ability of MSR technology to address problems in the Releng domain, in particular to
reconstruct the Releng process with these data and analyze how it progressed and what
impact Releng tools could have on it. Our study focuses on two phases of Releng: Integration
and Provisioning (Infrastructure-as-Code), as integration is the most complex phase of Releng
and IaC is one of the most recent techniques. In this chapter, we will first introduce Release
engineering in general and each individual phase, followed by our research hypothesis and
that technologies we used. Finally, we discuss how our studies address the hypothesis.

1.1 Release Engineering (Releng) Pipeline

As shown in Figure 1.1, a typical Releng pipeline consists of a series of phases: Integration,
Building, Testing, Provisioning (Infrastructure-as-Code), Deployment, and Release. We go
through each phase of Release engineering in order, and talk about the current status and
problems of each one.

Integration, one of the most complex phases of Releng pipeline, ensembles code from all
developers in a coordinated way to form a complete and functional product. Modern version
control systems enables different teams to work in parallel on separate tasks (features) by
branching. Branching is a universal technique in software engineering that allows developers
to work on a copy of the code base under version control. This allows different work to
happen in parallel to improve productivity. Branches are isolated from each other, in order
to prevent disturbing each other and improve development efficiency.

As an example, Figure 1.2 shows a company with a trunk (central) branch while team A
and team B can work in their own copy of the trunk branch on different features respectively.
After each feature is completed, developers will try to merge their branch back to the trunk,
integrating new features into the code repository. Branches allow Team A and Team B to
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Integration Building & Testing

Provisioning

(Infrastructure-as-Code)

Deployment

Release to 
users

Figure 1.1 Overview of the whole process of Release engineering.

Feature 1

Feature 2

branch A

branch B

Trunk branch
Feature 2 [v2]

(conflict)

Merge

Figure 1.2 Example of branching structure.
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work in parallel without disturbing each other.

In particular, branches try to minimize “Integration Conflicts”, which are caused by devel-
opers in different branches changing the same code block. In the prior example (Figure 1.2),
team A and team B start working on the same copy. However, when team A merged its
feature 2 to trunk branch they found that some lines of code that they depended on had
been changed by Team B in feature 1 (Integration conflict), so they were not able to merge
their feature 2 back to trunk as they first need to synchronize from the trunk branch to get
the latest version of the code (with feature 1’s changes included), then fix the conflict and
merge a new version of feature 2 back to trunk branch.

Many studies have been performed to analyze the integration process, such as to understand
how branching techniques perform in practice [44] [59] [60] [146], prediction of integration
conflicts and peer review process [48] [63] [134] [135] [136].

As software becomes larger and more complicated, code complexity increases and more people
get involved. Hence, the Integration activity becomes more difficult and requires more effort.
However, recent practices like Rapid Release require integration to be done even faster. It is
critical to know how to make integration a more efficient and low-cost process.

The Building phase uses a build system to compile the source code and generate executables
of the software product, taking as input specification files that record dependencies across
files. Developers wrote their own ad hoc scripts to do this job, until 1977 Feldman published
the first formal build tool “make” [76], which then became the primary build system of all
Unix-like systems. Up until today, different types of Build systems have emerged. While
“Make” is still the most traditional file-based build system, other technologies like task-
based (e.g., Ant [2]) and lifecycle-based (e.g., Maven [13]) have become more popular in the
meantime [113].

A lot of research has been done on Build systems [31] [114] [34] [85]. However, the build
phase still has challenges during rapid release. As the release cycles has been shortened, a
large number of code changes need to be built per day. This causes a lot of pressure on the
build server and energy consumption.

Testing is a critical phase in Releng to guard software quality. Testing is divided in different
stages starting with Continuous Integration (CI), which basically checks whether new code
changes under review or committed to the version control system are compatible with the
existing code base. Any new commit checked into the Version Control System (VCS) will
trigger the CI tool (e.g., Jenkins), which compiles and tests this project partially or com-
pletely. CI mainly focuses on textual conflicts [63]. Other test types cover different level
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(e.g., unit test and component test) and different functionalities such as regression testing
that aims to make sure the whole product works [73], and performance testing to validate
product meets required performance requirement [83].

Automation of Continuous Integration can help increase the speed of project development
and expose potential conflicts as soon as possible. This approach has been widely adopted
by IT companies like Google and Facebook.

Provisioning (Infrastructure-as-Code) is a new technology emerging with the devel-
opment of cloud computing, aiming to fully automate the process of setting up a new en-
vironment (infrastructure), such as a virtual machine where applications can be compiled,
tested and deployed, with required dependencies installed. For example, provisioning could
generate a new image of virtual machine, install the required operating system, and deploy
the product to the server.

This process can be repeated easily every time a new copy of this virtual machine is needed
by re-executing the IaC tools. Developers can write infrastructure scripts with existing script
languages such as Ruby, or with new declarative languages like Puppet and Chef. Hence, the
ability to textually specify the infrastructure needs of a project led to the term Infrastructure-
as-Code (IaC). As cloud computing rapidly develops, and techniques like virtual machine,
and containers (e.g., Docker [6]) are becoming more and more popular, IaC becomes widely
used in industry. IaC is not an independent phase in Release engineering but provides support
to other phases.

IaC helps reduce manual and duplicate work, allowing the production process to progress
without being disturbed by any side activities, so that the whole release engineering is accel-
erated.

Theoretically, IaC should be considered as normal source code, as all IaC files can be main-
tained, tested, and version controlled. However, as source code has many problems such as
code clones, and increase of code complexity, IaC code could also face the same situation.
Hence, although IaC aims to reduce manual effort and production cost, if it takes even more
effort to maintain IaC code, it does not help practitioners as expected. Hence, we study the
maintenance effort of IaC code in this thesis.

Deployment installs a version of the product in a staged directory, where it will be waiting
to be delivered to end users. In this phase, the product is still under control of engineers,
where the last phase of quality control will be performed. One typical practice is “canarying”,
where the new product version will be pushed to a small group of data centers. If it works
steadily in this “buffer period”, it will be pushed to all data centers [30].
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Release is the phase where a product is made visible to end users. After the product
is released to the market, engineers can collect the data about user feedback and product
performance from the specific tracking tools and crash logs, to measure the satisfaction of
users and quality of product. If any risk shows up, developers need to roll back to an older but
stable version, or deliver an urgent new version with the bug fixed. Either way is complicated
and costs effort.

However, new techniques rise to fix these problems. For example, “toggling” is a technique
that uses “if” statements to control which features can be publicly seen or enable customers
access to a specific service. Toggling allows long-term and consistent development process of
a feature in rapid release circumstance, but at the same time it increases code complexity
and introduces technical debt.

1.2 Mining Software Repositories (MSR)

Mining Software Repositories (MSR) is the technology that collects data from different data
repositories, which track information of a software project’s progress from different perspec-
tives such as version control systems storing source code changes, reviewing systems storing
code reviews and bug tracking systems storing bug reports. Researchers [165] [123] [48] have
realized that by mining these data repositories, in particular by combining multiple reposito-
ries to each other, one can not only know the whole history of the development process, but
also predict phenomena that might happen in the future. For example, bug prediction model
is based on MSR technology. Simply speaking, researchers can analyze the bug tracking
system to check which files were reported to have most bugs, then developers must pay more
attention to these files when they make any changes.

Based on a specific research question, MSR techniques first need to identify the required
data sources, extract the needed information, filter and link it (e.g., linking bug reports to
the fixed files), then perform a specific analysis technique, like data mining or qualitative
analysis. Finally, the results need to be interpreted to obtain actionable findings that help
address the original research question.

As release engineering develops, phases generate substantial data, stored in repositories like
version control systems, artifact servers or deployment logs, MSR techniques could be appli-
cable as well to analyze context of release engineering. The main risk is that it is hard to
link data between different repositories or to obtain access to repositories like deployment
logs. Manually mapping between repositories takes time and may not be completely precise.
In this thesis, we will study the progress of Releng and evaluate techniques/tool with MSR
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technology.

1.3 Hypothesis of Thesis

Release engineering needs to deliver software products to the market faster. However, ma-
jor challenges exist in each phase of Releng pipeline (as described in Section 1.1), such as
integration conflicts. These challenges require better understanding of the whole Release
engineering and correct evaluation of technologies. Hence, we aim to check how Mining Soft-
ware Repositories can help address these challenges, leading to the following hypothesis of
this thesis: �

�

�

�

Mining the software repositories created
during regular software and release engi-
neering enables release engineers to under-
stand the progress of a release engineering
phase or evaluate the cost of release engi-
neering tools and activities.

To explore this hypothesis, this thesis follows a two-pronged approach. To study the usage
of MSR to understand the progress of release engineering, we analyzed the factors impacting
the probability and time needed for acceptance of a patch in a large, long-lived open-source
project (Linux). To study how MSR can be used to evaluate Releng tools, we evaluate
the usage of feature toggles as alternative for integration of new patches in an industrial
system. We also evaluate the maintenance effort required for IaC in the large OpenStack
and MediaWiki open-source systems. The following section details these contributions and
their links with the research hypothesis.

1.4 Thesis contributions

1.4.1 Using MSR to Understand the Software Integration Process

We aim to understand the structure and performance of integration process by mining the
integration and reviewing repositories of a large open-source software project. More specifi-
cally, we aim to analyze the probability of acceptance of patches submitted by contributors,
and time it takes to review and integrate a patch.

We chose the Linux kernel as our case study as it is one of the most popular and influential
open-source (OSS) projects. As the root of many operating system distributions, the Linux



8

kernel has a history of 25 years (first launched in 1991 as a personal project of Linus Torvalds),
leading to a huge code base (over 19 million lines of code). It accepts contributions from more
than 14,000 volunteers all over the world, and involves many commercial companies (e.g.,
Google, Apple) as well as freelancers. As a successful OSS project that integrates work from
developers all over the world, the Linux kernel is a representative case study of an integration
process.

The Linux kernel uses Git, a Distributed Version Control System, to manage integration based
on branching. Linux has a rich integration hierarchy, where maintainers are responsible for
subsystem repositories and Linux Torvalds is in charge of the central repository. Basically,
each subsystem or module is maintained by separate maintainers. When a code patch passes
the reviewing process, it will be integrated into the corresponding subsystem repository by
its maintainer. If this patch works well and gets approved by this maintainer, it will likely
have the chance to be integrated into the trunk branch and get into the core code base.

We collected 348,184 commits from the Linux integration system (Git) and emails from
reviewing system (mailing lists) across eight years. In order to understand how a code patch
is integrated into the Linux code base, namely from first being submitted by contributor and
finally integrated into Linus Torvalds’ code repository after being fully reviewed, we need
to link the reviewing repositories and integration repositories together. This is a typical
challenge with MSR technology.

With the complete integration process recovered, we were able to build statistical models to
perform qualitative and quantitative analysis on the whole integration process. We found
that reviewing and integration are impacted by different factors. For example, the number
of affected subsystems, the number of contacted reviewers and submission time correlate the
most with reviewing time, while patch maturity and prior subsystem churn play a major role
in patch acceptance and integration time. In addition, developer experience is important in
both the reviewing and integration process.

Our findings suggest that developers can get their patches go through reviewing faster by
reducing the number of affected subsystems and reduce patch size. Furthermore, gaining
more experience of development and more active participation in the community can help
patches accepted sooner and more easily.

Our paper of the empirical study of the integration process has been cited 37 times by July
2016. This indicates that the integration process is an important topic for research and our

0including journal papers (one TSE, one TOCS, four EMSE and one IEEE Software), and conference pa-
pers (four ICSE, four MSR, four ICSME, four SANER, two SCAM, two ESEM), as well as other international
symposiums, workshops and PhD theses.



9

findings provide a strong basis for further work.

1.4.2 Proposing Novel Linking Approaches to Link Repository Data

The Linux kernel has a rich hierarchy of repositories, yet reviews were email-based. In this
low-tech reviewing system (mailing lists), developers submit code patches and maintainers
review these patches all by emails. A physical link between emails across threads for the
same patch or to an accepted commit is missing, especially when a patch needs to go through
multiple revisions. So far no tools can recover such links in a low-tech reviewing environment.
This makes it harder to (1) track the complete history of a code patch, (2) migrate the whole
reviewing system to a modern structure, or (3) study the evolution history of code commits
by researchers.

In order to study the progress of the integration process, we need to link emails about
the same patch to each other, then to the commit accepted in the version control system.
We proposed three different techniques with different granularity and strictness, to build a
physical link for patches in emails and git commits. With quantitative analysis we found
that the line-based technique is the best to link emails and finally accepted commit, while
the combination of the line-based technique and the checksum-based technique has the best
performance for linking patch versions between different email threads.

Our paper about linking approaches has been published in the conference Empirical Software
Engineering and Measurement in 2014.

1.4.3 Using MSR to Evaluate Toggling Technique in Practice

Different to branching technique, toggling is a technique that enables developers to work on
different features of the trunk branch. Toggling allows code to be compiled and tested in
the most up-to-date project without the extra effort of keeping a branch synchronized with
trunk or having to wait until a feature is completed. Indeed, each feature is guarded by
a toggle (also called “switch”), which is actually an “if” statement. If the toggle is set to
“false” (turned off), this feature will not be visible to the end-users. When a feature is ready
to release, its toggle will be “turned on”. After the feature works steadily for a while, its
toggle will be removed and the feature code will become permanent.

Many IT companies like Google and NetFlix adopt toggling in their development process.
Toggling helps deliver new versions of a product rapidly. However, toggling gets rid of all
feature branches in traditional way, and keeps only one trunk branch, which may be too risky
for those companies wanting to adopt this new technique but lacking experience.
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As a compromise, companies started to adopt a hybrid integration structure that combines
toggling into a traditional branching structure, where branches are enhanced with toggling to
help faster integration. Developers still work on branches but they can merge code changes
back to trunk branch at any time, and do not necessarily wait until a feature is completed.
We will evaluate whether this approach works in practice by comparing the performance of
the integration process before and after adopting this technique, in order to help practitioners
evaluate if this practice is worth trying.

Our case study is a real commercial software project in industry. This project started with
a pure branching structure in May 2014, and gradually added toggles as of May 2015. We
collected the data from their Git (development) and Gerrit (reviewing) repositories. To
compare these two approaches, we used the KPIs (key performance indicators) proposed by
managers of this company covering two dimensions “Integration effort” and “Productivity”.

We found that this hybrid integration structure can take less integration effort to contribute
a complete feature compared to pure branching, and abandon less commits. Toggling enables
more smaller commits to be integrated into the product. This makes developers feel secure
to submit their code changes soon and reduce the integration conflicts caused by working in
isolation for long time.

According to our study, we found that a hybrid structure combining both branching and
toggling achieves good performance compared to pure branching structure. Hence, we suggest
those companies that hesitate to migrate branching to completely toggling to start with this
hybrid structure and gradually migrate to pure toggling if everything keeps going well.

This paper will be submitted to IEEE software journal.

1.4.4 Using MSR to Understand the Infrastructure-as-Code Evolution Process

We conducted an empirical study of maintenance effort of IaC in the large open-source
ecosystem OpenStack. Similar to the study of the Integration process, this empirical study is
conducted on a major open-source project with substantial infrastructure needs/dependen-
cies. To support this, OpenStack adopts two popular IaC languages, Puppet and Chef. In
this thesis, we analyzed IaC code from two perspectives:

• Do IaC code changes co-evolve with source code changes?

As the source code of a project keeps evolving and effort is needed to maintain it [69],
we are interested in analyzing whether IaC is coupled with source code in terms of code
changes, since this would also mean an increase of IaC code complexity and maintenance
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effort. Hence, understanding whether IaC code changes are coupled with other code
helps practitioners avoid possible trouble.

In our study, we collect all revisions of project files that ever existed in the version con-
trol system, and classify them into four different categories: Infrastructure, Production
(source code), Build, and Test Code. We do a quantitative analysis of IaC code and
use association rules to measure the coupling relationship between Infrastructure code
with each of the other categories, trying to understand if any of them co-evolved.

We found that IaC code takes up a rather large proportion among all files, with 28%
of IaC code files change monthly and with a large churn size. This indicates that it
indeed takes effort to maintain IaC code. Furthermore, IaC code is tightly coupled with
test and source code in terms of both code changes and ownership. Additionally, the
most popular reasons for co-evolution are “integration of new modules” and “update
configurations”. All these findings reveal that IaC code deserves more attention and
support, in order to reduce the impact of IaC code on other code files or vice versa.

Our paper that was published in the conference of Mining Software Repositories 2015,
was the first to empirically study IaC code. We are honored to see there is already
research built on it, like Sharma et al. [144], who studied the quality of IaC code.

• Does IaC-related Code Evolve Similarly As Production-related Code?

In our prior study that analyzed how IaC code is co-changed with other files, we found
that IaC code requires effort to maintain and IaC code changes are coupled tightly
with source code changes. However, IaC code comes with related artifacts such as
data files that are required for generating a new environment or tests that evaluate the
correctness of the resulting infrastructure. Here, we conduct a more detailed empirical
study to understand how IaC-related code evolves and whether this evolution is similar
to the evolution of regular production source code files?

Besides OpenStack, we selected another large open-source software as an additional
case study. MediaWiki is a wiki application that also uses IaC techniques to manage
its continuous integration and testing processes.

We collect data from top repositories that contain the most IaC code in OpenStack and
MediaWiki, and we classify all file revisions into two high-level dimensions: IaC-related
files (including Infrastructure Code, Infrastructure Test, and Infrastructure Data files)
and Production-related files (including Production Code, Build, and Test files). In this
study, IaC data files involve database, configuration and multimedia resource files.

The findings are consistent with prior work, e.g., IaC code changes frequently with large
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churn size. Meanwhile, we also observed that IaC code files are lightly coupled with IaC
data and test files. This might be risky for practitioners since the coupling relationship
is not obvious. Similar to the prior study, we found that most of the co-evolution again
was due to “integration of new component/service”. We suggest that supporting tools
are needed to manage IaC code and its related files.

This paper was invited to a special issue of journal Empirical Software Engineering,
and got a major revision.

1.5 Plan of the Thesis

This thesis is structured as follows: Chapter 2 discusses prior research that is related to our
work, as well as how they inspire our work. Chapter 3 introduces the overall structure of
our empirical studies. Chapter 4, 5, 6, 7 and 8 present details of our empirical studies,
followed by a general discussion (Chapter 9). Finally, we conclude our work and introduce
future work possibilities in Chapter 10.
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CHAPTER 2 LITERATURE REVIEW

Release engineering aims to deliver a high quality software product, which is an integration
of the contributions from developers, to end users as soon as possible. Release engineering
consists of the phases of “Software Integration”, “Building”, “Testing”, “Provisioning”, “De-
ployment”, and “Release”. In this section, we first talk about the related work on Release
engineering in general, then go through the Release engineering process phase by phase. Es-
pecially in the sections of “Software Integration Process” and “Provisioning”, we discuss how
these works are different from our work.

2.1 Overview of Release Engineering (Releng)

Humble et al. [97] introduced the notion of continuous delivery and offer detailed guidelines
for practitioners of how to build an automated and continuous pipeline, to deliver high
quality products to customers as frequently as possible. They are also the first to introduce
the definition of Infrastructure-as-Code (IaC). Ruhe et al. [141] introduced a systematic
methodology of planning the release process of a product, as well as support tools required.
The authors aim to recommend possible solutions and directions for practitioners.

Bass et al. [46] provide the first detailed guide to apply DevOps architecture in practice.
DevOps is a practice that requires coordination of the development team (Dev) and IT
operations team (Ops), instead of in traditional software engineering where development and
operations are separated by a mental wall that slows down feedback from production flowing
back to the developers. The authors talked about the impact of DevOps on each phase, and
explained in details how DevOps is impacted by the architecture of the whole system. Releng
forms the bridge between both camps, hence this book introduces the different practices in
Releng.

Adams et al. [32] offer an overview of the whole process of release engineering: “Integra-
tion”, “Continuous Integration (Building and Testing)”, “Build System”, “Provisioning”,
“Deployment”, and “Release”, and discuss the challenges that industry engineers are subject
to (e.g., the release process of mobile platform and web service face different challenges),
and the possibilities open to researchers (e.g., research is needed to predict build results, or
analyze the differences between popular Infrastructure languages). More importantly, the
researchers explain how modern release engineering influences mining software repository
research methodology, and accordingly propose a list of advice for researchers who are inter-
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ested in mining related data repositories, such as paying attention to complicated branching
structures and build strategies. One of the main concerns expressed by this paper is the lack
of empirical studies to help industry evaluate if their tools and techniques really work as well
as they expect, and help smaller enterprises or start-ups to choose the best solution and tools
to avoid wasting time and money. This thesis aims to conduct empirical studies of Release
engineering by mining software repositories to address these concerns.

Three release engineers from representative industrial IT companies (Google, Facebook, and
Mozilla) shared their experience about release engineering from an industry perspective [30].
To some extent they agree that deployment strategies like “Canarying (a staged release
strategy)” being an important and universal techniques for projects to deliver a new release
to end users incrementally, while release pipeline scalability is an important issue and mobile
platforms are facing totally different challenges. Again, a lack of empirical validation of
these claims is mentioned, i.e., is there really hard evidence that these techniques really
work? Finally, the engineers are also concerned about the lack of professional education of
release engineering in the academic field. Unfortunately, teaching requires a solid body of
best practices and knowledge, which requires empirical validation.

Rahman et al. [130] performed a systematic analysis of 11 popular practices of continuous
deployment that are commonly used in industry, to help practitioners understand better the
continuous integration process. They found that it is necessary to automate the whole soft-
ware deployment process with sound practices consistently, but companies tend to copy other
companies’ practices and lack of sense of Release engineering. For example, many companies
adopting modern code review tool without knowing the motivation. This confirms our con-
cern that current industry does not understand well the progress of Release engineering. In
addition, in their study they did not mention Provisioning, which we analyzed in our work.

These papers and books confirm the importance of support for practitioners to understand the
progress of Release engineering and evaluate state-of-the-art tools. Our research hypothesis
addresses these two problems.

2.2 Software Integration Process

A lot of related research has been done about understanding, measuring, and improving the
integration process in software engineering. Hence, we will introduce how the integration
process works in practice and how researchers conducted experiments to understand the
integration process from different perspectives.

Integration is based on branching, which allows developers to work in parallel on a copy of the
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Distributed branching (Git) Centralized branching (Subversion)

Figure 2.1 Example of Distributed branching (Git) and Centralized branching (Subversion).

central code base. Currently, the most popular branching structures are Distributed-based,
which allows developers to communicate between each other and integrate each other’s code
changes, and Centralized branching, which only allows developers to submit code changes
to the central code repository (see Figure 2.1). Often (e.g., in the Linux kernel project), a
hybrid hierarchical structure is used, where different Git repositories are organized in layers,
and each repository can only communicate with its direct, higher-level neighbour. Popular
Distributed Version Control System (DVCS) are Git [9] and Mercurial [14], while the most
popular Centralized Version Control System (CVCS) is Subversion [27].

Although branching enables developers to work in parallel, improving the speed of commit-
ting new code changes, being unaware of each other’s work leads developers to change the
same code block in a different way. Such conflicting changes only become apparent when in-
tegrating (merging) these changes back into a higher-level branch, at which time they require
developers’ effort to be fixed. Hence, predicting and avoiding integration conflicts is impor-
tant to increase work efficiency and reduce waste of time and resources. Various researchers
have studied the relationship between branching structure and software quality.

Brun et al. [63] studied collaborative development conflicts. They classified integration con-
flicts into “Textual conflicts” and “Higher order conflicts” (“Build conflict” or “Test con-
flicts”). They claimed that integration conflicts are frequent, persistent, and appear in dif-
ferent stages as well as forms. They also found textual conflicts to last as long as 9.8 days
and involve 23.2 changesets to get fixed. This confirms the severity of integration conflicts.
The authors claimed that 93% of integration conflicts are caused by unawareness of paral-
lel changes and should have been avoided. Thus, they present an approach and develop a
tool (“Crystal”) for speculative analysis that can detect what is happening in other teams
(potential conflict) before a developer pushes his change to a target repository, then offers
corresponding guidelines about his available alternatives to resolve potential conflicts. This
tool can help developers identify and resolve the integration conflicts at an early stage, before
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actual merging of the conflicting changes.

Bird et al. [60] proposed a what-if analysis that allows to identify harmful, redundant branches
to simplify the branching structure. Such simplification can avoid merge conflicts (incom-
patible changes in the two versions of the code base) that inflate integration time. In their
case study on a large commercial system, such a simplification was able to reduce integration
time by up to 9 days. Shihab et al. [146] did an empirical study on the Linux kernel project,
in which they found how a mismatch between the branching structure and a company’s
organizational structure can increase post-release failure rate.

Perry et al. [128] conducted an observational study on a subsystem of Lucent Technology
spanning 12 years. They found that parallel work cuts across common files and causes
interfering changes. 12.5% of these changes are made by different developers to the same
files. Longer parallel working time leads to interfering changes and frequent updates are
necessary for coordinated changes.

These papers above confirm our concern that the improper branching structure and integra-
tion process may cause problems and affect software development process. Hence, under-
standing the progress of the integration process is critical.

The motivation of the software developers can also impact the project quality [151]. This
motivation is different for different people and there is not a common, most important moti-
vation factor [50]. However, it has been proven that low motivation may make the developers
resist to build project of high quality [45] [160]. Fernandez et al. [77] concluded the key
factors that affect the productivity of a project, including developers’ experience, lack of ex-
perience of managers, the office environment, unpaid extra hours, moral factors, organization,
annual training and schedule pressure.

Estublier et al. [75] conducted a study to explore the relationships between awareness, con-
current development process and software system. They found that the developers spend
more effort on avoiding integration conflicts if they are aware of the influence of their code on
other developers. However, Souza et al. [68] found that sometimes developers also rush their
work into trunk to avoid being the one who would have to resolve the integration conflicts.

Al-Ani et al. [33] introduced three visualization tools implementing the Continuous Coordi-
nation paradigm and observed social behaviors of developers with these tools. They suggest
that any tools supporting human social behaviors in software development processes should
take into consideration cooperation between all stakeholders and project artifacts.

These works analyze the relationship between non-technical factors and integration produc-
tivity. Similar to their findings, we also found that developers’ experience, participation in
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community discussion and interaction with community members can affect the acceptance of
contributions.

Compared to the empirical studies above, on the one hand, our work is consistent with their
findings, such as smaller patches go through the reviewing phase faster and the interaction
between contributors and community can help contributions get accepted faster. On the
other hand, our work reveals new findings such as the characteristics of integration process
in a low-tech reviewing environment. Furthermore, with a large code base and strict integra-
tion hierarchy, our case study of the Linux kernel contributes representative findings to this
research area.

Rigby et al. [134] studied the peer reviewing process of a traditional inspection of a Lucent
project and six open-source projects. They found that smaller changes take less review time
and the time from the start of the review to the end of the review was in the order of weeks.
Rigby et al. [136] also studied the reviewing practices in the Apache open-source system,
and compared these to those of a commercial system. Between January 1997 and October
2005, the Apache mailing list contained 9,216 review email messages for 2,603 patches. They
found that small, independent, complete patches are the most successful and that 44% of the
submitted patches eventually were accepted. The low acceptance rate indicated the challenge
of integration process.

Weissgerber et al. [156] studied contributions in two small open-source systems (196 and 1,628
patches respectively, changing 6% of all files in the systems), and also found that around 40%
of the contributions are accepted. Similar to Rigby et al., they found that smaller patches
have a higher probability of being accepted. Most of the patches are accepted in the repository
within one week (61% even within three days). One quarter of the accepted patches took
less than one day for reviewing and integration, half were accepted within one week, and
one third took longer than two weeks. No relation between patch size and the time towards
acceptance could be found.

Mcintosh et al. [115] recently studied the relationship between software quality and the
quality of reviews in modern reviewing tools (Gerrit) to measure the impact of less thorough
reviews in terms of number of post-release defects. The impact that they measured is due to
a too large amount of freedom that reviewers have for choosing when to conduct the review
via a modern reviewing web app like Gerrit. It is not clear whether low-tech reviewing
environments based on emails are susceptible to the same issues.

Kononenko et al. [108] conducted an empirical study on the quality of the code reviewing
process of Mozilla. They found that reviewers’ prior experience may impact the review
quality. Also, the characteristics of code patches such as patch size, the number of affected
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files and the dependencies on surrounding code are related to bug-proneness of code review.
Later, Kononenko et al. [107] performed a survey with developers of Mozilla, to investigate
qualitatively the code reviewing process from the developers’ point of view, such as the most
influential factors and challenges they are subject to when conducting their code reviews.
Consistent to our findings, they found that the patch size, developer experience and patch
quality are considered by developers as influential factors for code review.

All research above is consistent with our findings, such as smaller code changes get accepted
more easily and faster. In addition, the reviewing process plays an important role as a
gatekeeper of the integration process. However, our analysis is the first to combine reviewing
and integration processes together and address the problem of low-tech reviewing system and
its impact on the software integration process.

2.3 Build Systems

As part of Release engineering and inspiration of our work about Infrastructure-as-Code, we
also review the related work on Build system.

The first dedicated build system technology (“make”) was developed by Feldman in 1977 [76].
Before “make” emerged, developers had to write their own scripts to configure dependencies
and build a whole project. As more and more programming languages gain popularity, more
and more build automation systems came into play. They are classified mainly into two
categories: Make-based and Non-Make-Based tools. Make-based build tools are mainly for
Unix-like systems. For example, GNU make and BSD make for Unix systems. Non-Make-
Based tools cover a great variety of systems like Java-based (Apache Ant and Maven), Ruby-
based (Rake), LISP-based (ASDF), C#-based (Cake), Facebook’s Buck, Google’s Bazel, and
Microsoft’s MSBuild.

Adams et al. [31] studied the evolution of the Linux kernel build system. They measured
the change of size of build systems (SLOC), build artifacts and dependencies across releases.
They found that the build systems evolve as the size, complexity, and maintenance effort
increase.

McIntosh et al. [114] conducted a large empirical study on ten OSS projects of the mainte-
nance effort and coupling of build system changes with source code changes. They found that
build systems tend to evolve substantially and are coupled strongly with source code changes.
This work motivated us to study the same phenomenon for Infrastructure-as-code, and we
believe the methodologies that are used to study the (co-)evolution of the Build system can
also be applied to IaC.
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Al-Kofahi et al. [34] implemented a tool MkDiff to explore semantic changes in build makefiles
recommending correct build process. Hardt et al. [85] provide a tool Formiga to support build
system maintenance during evolution process.

As the Build system is outside scope of this thesis, we will not discuss this further here.
Adams et al. [32] provide a more elaborate overview of related work.

2.4 Testing (Continuous Integration)

A Continuous Integration (CI) server monitors version control system, build, and test sys-
tems. The monitor will supervise the Version Control System (VCS), and arrange a series of
follow-up activities for VCS events. In particular, when new commits are checked into the
VCS, build and test systems will be triggered accordingly to automatically compile and test
these new code changes.

Currently, CI tools are widely used such as Jenkins [11] (written in Java), Buildbot [3]
(written in Python), Travis CI [28] (written in Ruby), Strider [26] (written in Javascript),
and Go (written in Java). These CI tools have different structures and features. For example,
Buildbot is server-slave-based structure, which is flexible to customize according to require-
ments, while many other CI tools have a fixed design that is less easy to extend. Strider
even requires developers to play with the source code directly to configure. Go provides
visualization functionalities that make a continuous delivery workflow visible. Companies
must choose the suitable tools according to their needs. For example, the Eclipse community
adopted Jenkins, while Mozilla and Google Chromium use Buildbot.

Vasilescu et al. [155] conducted an empirical study on the projects hosted by GitHub, analyz-
ing the impact of adopting Continuous Integration servers on (1) Integration productivity (by
the number of integrated pull requests), and (2) Software quality (by the number of defects).
They claimed that CI use can improve productivity without harming software quality.

Continuous Integration requires to speed up the testing process. Research has been done
to analyze how to optimize testing to meet the high speed requirement [163] [89]. More
empirical research is needed to support these challenges.

Stahl et al. [149] conducted a literature review about Continuous Integration research and
practices. They found that CI is implemented differently case by case. This finding con-
firms our motivation that practitioners should understand better the progress of Release
engineering to find out the best solution for their own context.
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2.5 Infrastructure-as-Code (IaC)

Infrastructure-as-code (IaC) is a new technique that automates provisioning of a new envi-
ronment where applications can be deployed [10]. This automation make the whole process
repeatable. Furthermore, IaC code can be considered as source code that can be version
controlled, compiled, and tested. Popular IaC tools are Chef [150], Puppet [154], CFEngine
[4] and Ansible [1].

The term was first introduced in the 2010 book by Humble et al. [97], while the technology
goes back to at least 1993, when cfengine emerged as an alternative for basic bash scripting.
The surging interest in DevOps and release engineering has sparked development of newer
languages like Puppet (2005) and Chef (2009), followed more recently by Salt (2011) and
Ansible (2012).

Morris [122] introduced the Infrastructure-as-Code and the benefits that IaC brings. More
importantly he provided specific guidelines for practitioners about applying IaC in a practical
development process.

Recently, motivated by our research about Infrastructure-as-Code (IaC), Sharma et al. [144]
conducted a study of configuration code quality, trying to figure out whether the code smell
types of IaC code are similar to that of traditional source code. This study is based on
4,621 repositories containing IaC code. The researchers classify configuration code smells
into two main categories (“Implementation” and “Design” Configuration Smells ) covering
24 types totally. They find that configuration code smells tend to co-occur within or across
different types, and there is no negative correlation between configuration smells and size
of a configuration management system. This paper looks into the IaC code quality while
ours focuses on the evolution of IaC code. However, we are very glad to see that our work
on Infrastructure-as-Code has drawn more attention on this research area and could inspire
other researchers.

As one of the new technologies coming along with cloud-computing, little research has been
done about Infrastructure-as-Code (IaC). This confirms that more empirical research must
be done to help practitioners understand this new technique better and help them choose
the right tool and make the right decision.

2.6 (Continuous) Deployment

Dearle et al. [69] introduced the definition of software deployment. He studied six different
deployment technologies and approaches including Java Beans, Linux, Ṅet, OMG, Service-
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oriented Computing Paradigm, and Virtualisation. He discussed the characteristics and
problems of each technology, explaining the variety and complexity of software deployment
process. The author also exposed the issues of developing a software deployment methodology
and potential solutions, such as strengthening security of communication in the distributed
deployment process. In addition, mobile platform and sensor-net deployments also deserve
more attention from the academic side.

Rodriguez et al. [139] conducted a literature review about continuous deployment, mainly
covering ten themes such as Continuous testing and Post-deployment activities. They ad-
dressed the challenges of continuous deployment of transforming cost and increase of quality
assurance. They also claimed that the current status of research about Continuous Delivery
is high-relevant but low-rigor, and more rigorous research must be performed. The exposed
ten themes also reflect the research gaps that call for more empirical studies.

Continuous Deployment is currently a prevalent methodology in industry, which aims to
shorten the time of development and release, reduce conflicts caused by working in isolation
for a long time, deliver to end uses faster and get feedback from the market sooner. Many
commercial and open-source communities have adopted Continuous Deployment/Release in
practice. However, do faster release really bring so many benefits? Is there potential risk
that has not been revealed? Mäntylä et al. [112] conducted an empirical case study on
the Mozilla project to figure out the relationship between rapid release (RR) and software
quality, in terms of the change of software testing and building. It turns out that rapid
release reduces the number of builds and platforms tested per day. Furthermore, the number
of test executions increases but the testing scope decreases, and the software quality is not
proven to be significantly improved nor degraded.

2.7 Release

The final step in Release engineering, Release, makes the product visible to all end users.
Due to a highly-competitive market, the Release process tends to become faster and faster.
Many software communities like Mozilla and Google adopt Rapid Release (RR) practice and
deliver new versions of products much sooner than before.

Baysal et al. [47] conducted an empirical study on two open-source software products: Google
Chrome and Firefox. They mined the release historical information and compared these two
browsers from three dimensions including software quality, user experience and popularity.
They found that the two browsers presented different characteristics. As an established
browser with longer history, Firefox has a longer release lifespan and bugs are fixed sooner
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than Chrome. On the contrary, Chrome has a faster release but longer bug-fix cycle. In addi-
tion, users of Chrome prefer to update to the new version more frequently than Firefox users.
Baysal et al. [48] also analyzed the impact of adopting Rapid Release practice on the code
revieiwng process. They found that Rapid Release helps accelerate the reviewing process,
and the number of both accepted and abandoned patches increases. As more contributions
are accepted, problem like alienating valuable contributors by not responding in time may
happen. Hence, support for positive experience is needed from the review process.

Khomh et al. [103] also empirically studied Mozilla Firefox, but they focused on the impact
of rapid release on software quality before and after adopting rapid release approach. By
analyzing the number of post-release bugs, user experience information, crash logs and bug
tracking system logs, they found that rapid release can help expose/fix failures faster, and
assist users to update applications faster.

Rapid Release accelerates the release cycle while potentially putting more pressure on the
development process. The pressure of completing a feature may result in defects. Hence,
quality assurance bears new challenges in the Rapid Release era. As one of the solutions,
“Toggling” can help guard software quality from imperfect features. “Toggling” uses condi-
tional statements (“toggles” or “switches”) to control whether a feature should be visible to
end users. Invalid code can exist under protection of turned-off toggles. Once such feature
is stable in a couple of releases, the conditional code will be removed and the feature will
become permanent.

Rahman et al. [132] studied the evolution and practical performance of toggles in Google
Chrome. They found that toggling helps keep the development of large features in Rapid
Release context consistent and reduces Release pressure, but at the same time introduces
technical debt and increases code complexity. Toggles can be used in different way. In their
work, toggles are used to test and release, while in our work about toggling, toggles are more
used to improve integration efficiency. We explored the functionality of toggles from different
perspectives.

2.8 Mining Software Repositories (MSR)

With automatic tools used in software engineering, data of development process and other
production behavior is stored in different repositories of these tools, such as version control
systems storing source code changes, reviewing systems storing code reviews and bug track-
ing systems storing bug reports. As Release engineering developed, ample data source are
available for researchers to conduct related analysis.
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Hassan et al. [86] discussed the history of MSR and how it had been adopted in empirical
research such as to help understand software systems, predict and identify bugs, and improve
the user experience. Also, MSR has been facing challenges like exploring non-structured
data and linking data between repositories. Hassan et al. [87] also coined the name Software
Intelligence (SI) as a future vision of MSR that can help practitioners with the decision-
making process. Bird et al. [58] offered guidelines and discussed popular practices of analyzing
data to help practitioners analyze software data from different resources.

As MSR develops, there are already hundreds of papers about MSR, and MSR has its own
conference [15]. Here, we will discuss some of them, for other work, we refer elsewhere [86]
and book [58], [88].

Mining Software Repository (MSR) technology is widely used in software engineering to do
a variety of analysis such as development-related behavior, defect prediction, code change
recommendation, and energy consumption.

Zimmerman et al. [165] empirically analyzed the progress of parallel development by mining
CVS repositories of four large OSS software projects: Gcc, Jboss, Jedit, and Python. They
talked about the limitation of mining CVS data such as invalid data by manual configuration.
Tian et al. [152] propose a classification model that takes advantage of both textual and code
specific features to identify critical bug-fixes out of all submitted commits, instead of manual
diagnose is that may cause many missed data. Moura et al. [123] mined 371 energy-aware
commits from 317 non-trivial applications on GitHub to qualitatively analyze how developers
apply energy-saving solution in practice. They found that different energy-saving solution
may impact on application functionality and it lacks of high-level API of energy solution for
developers.

While MSR technology has been used to address challenges traditional software engineering
was subject to, we use MSR to help practitioners gain a better sense of the progress of Release
engineering phases and to evaluate the state-of-the-art techniques/tools.

One of the major challenges of MSR is to link data between different repositories to observe
the overall process of a project.

Bird et al. [56] investigated the impact of data bias on bug prediction models. They claimed
the concern that data bias may impact research. Data bias is that distribution of data is
not fully balanced and random. For example, it is likely that not every developer submits
bug report to quality assurance system regularly. Only developers in charge of a more fragile
component tend to have problems. One cannot simply conclude that the number of bug
report reflects the quality of the whole software project. In their validation process, they
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found out a major challenge is to link commit with corresponding bug report. People can
only informally identify the counterpart by manually analyzing log message. This results in
partially missing data and causes bias in dataset.

To overcome the problem of missing linkage that caused data bias, tools are implemented to
explore relationship between different data resources. Hipikat [19] finds links between differ-
ent types of software artifacts based on heuristics and offers recommendation for developers.
LINKSTER [42] inspects and integrates data from multiple sources by analyzing annotation
of bug-tracking system and version control system. However, no tool cares about linkage in
low-tech reviewing environment.

Based on our literature review, we discussed the different problems that exist in Release
engineering and that state-of-the-art techniques/tools are not able to help with. Hence, our
research aim to understand Release engineering progress and evaluate popular Releng tools
by mining software repositories to help practitioners improve their development efficiency
and productivity. In this thesis, we mainly focus on two phases of Release engineering,
i.e., “Integration” and “Infrastructure-as-Code”, where ample repository data is available for
empirical research using MSR methodologies.

2.9 Insights of State of the Art

We conducted a thorough literature review on current status of the release engineering re-
search field, and we found that there exists potentially a large number of possibilities for
research, especially for “integration” and “provisioning” phases of release engineering. This
is because “integration” is the most fundamental and complicated phase, while “provision-
ing” is one of the most recent practices. However, little research on them has been done.
Thus, we focused on these two phases and performed a series of empirical analysis, to help
practitioners gain more sense about release engineering. It turns out our findings are con-
sistent with existing research. In addition, we provide novel advice for practitioners in case
they need support when applying new techniques to re-engineer their release engineering.
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CHAPTER 3 RESEARCH PROCESS AND ORGANIZATION OF THE
THESIS

This chapter presents the methodology and the structure of this dissertation. This thesis
focuses on “Integration” and “Provisioning (Infrastructure-as-Code)”, two of the most im-
portant parts of Releng pipeline, and for which extensive data is readily available. Our
work tries to help practitioners understand the progress of Release engineering and evaluate
state-of-the-art tools/techniques by mining software repositories.

Chapter 4 and Chapter 5 analyze the performance of the Review and Integration in the
Linux kernel project, while Chapter 6 studies the performance of a new integration technique
(Toggling). Chapter 7 and Chapter 8 investigate the characteristics of IaC code and the
effort needed to maintain IaC code.

3.1 Understanding the Progress of the Software Integration Process

Integration is a complex phase in the Release engineering pipeline. An efficient integration
process requires understanding what other teams are working on and what are the character-
istics of successful code contributions. To help practitioners understand better the internals
of the integration process, we empirically study the integration process of the Linux kernel,
one of the most popular open source software projects with a strict integration structure and
a rich hierarchy of repositories. We collect data from reviewing system (mailing lists) and
version control system (Git). One of the typical challenges of MSR technology is linking data
from different repositories. In this case study, we need to figure out how to link different
revisions of patches and accepted commits to each other to recover the whole integration
process.

3.1.1 Empirical Study of Large Software Integration Process

In Chapter 4 we conduct an empirical study on the Linux kernel to understand the integration
process in practice. We study the Linux kernel project as its large code base and the strict
integration hierarchy provide a realistic case study: as one of the most successful large open-
source software (OSS) project, the Linux kernel has a long history (as of 1991), which indicates
a large amount of available data to study, and it uses Git, the most popular Distributed
Version Control System (DVCS). Between 8,000 and 12,000 patches going into each recent
kernel release results in more than 15M lines of code (LOC). We studied 348,184 commits
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totally in our work.

In this study, we aim to understand what factors play a major role in the integration process
in large OSS project. This will help developers know better how to contribute their code and
get it accepted more successfully, as well as help maintainers of the Linux kernel to identify
the valuable patches within the overwhelming submissions per day. Improving integration
efficiency will decrease the cost of the integration process.

3.1.2 Tools Needed to Support Integration Process in Low-tech Reviewing En-
vironment

The Linux kernel project uses mailing lists to perform reviewing process. Compared to
modern reviewing systems such as Gerrit, where the whole process of code review can be
tracked and stored, we defined this email-based review system, where physical links are
missing between emails talking about the same patch, as “low-tech” review system. In this
low-tech reviewing environment it is difficult to trace back the original rationale of a code
change especially after it has evolved through multiple revisions.

In our prior study ( 3.1.1), we proposed a checksum-based algorithm to link patches in re-
viewing emails to the final commit in the version control system. However, we wonder if
there are other more efficient approaches to do this job. To select the best linking approach,
we designed and evaluated three different algorithms/tools from different granularity/restric-
tions to compare their performance in terms of linking different revisions of patches to each
other, or patches & accepted commits. The three different approaches are: clone-based with
CCFinder tool (token level, least strict), plus-minus-line-based technique (line level, medium
strict), and checksum-based technique (chunk level, the most strict). More details will be
discussed in Chapter 5.

3.2 Evaluating a Hybrid Integration Process (Branching & Toggling)

Toggling enables developers to work on different tasks (features) on the same branch. How-
ever, it might be too risky for companies to get rid of a traditional branching structure
immediately.

Company S launched product P (anonymous names) in May 2014. It started with a branching
structure for integration. As of May 2015, this company started adopting toggles in project
P. In contrast to pure toggling, this company did not migrate to one single branch. Instead,
it keeps all branches and the central trunk branch, but add toggles in their source code in
order to improve productivity. If this hybrid structure can achieve a better performance than
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branching, other companies can follow the same practice to minimize the potential risk of
migrating to a new integration technique too soon.

We extracted data about product P from Git (integration) and Gerrit (review) repositories,
trying to measure the performance of this hybrid integration structure. In our empirical study
of Chapter 6, we will compare integration with and without adopting toggling in practice
from two perspectives: Integration effort and Productivity.

3.3 Evaluating the Maintenance Effort of Infrastructure-as-Code (IaC)

Infrastructure-as-Code (IaC) is a new technique that aims to save effort compared to manual
provisioning of an infrastructure (e.g., a virtual machine where applications can be compiled
and deployed). IaC code should theoretically be considered as normal source code that can
be tested, built, and version controlled. However, as it takes effort to maintain normal
source code, IaC code may have the same issue. If it takes more effort to maintain IaC code
than that it saves, this technique does not improve Release engineering. Hence, we conduct
empirical studies to evaluate how much effort is required to maintain IaC code and how IaC
code evolves.

3.3.1 Co-evolution of IaC with Production Code

To evaluate IaC in terms of maintenance effort, we first conducted an empirical study of
OpenStack, a cloud-based open source software system, which adopts two popular IaC tools
in its development process: Puppet and Chef. We collect data from 265 Git repositories
that contain IaC code and classified files into five categories: IaC files, Production files
(source code), Build files, and Test files (“Other” files were disserted). We first analyzed the
characteristics of IaC code files in OpenStack, such as the proportion and size of IaC code
files. Then, we measure its maintenance effort by quantitatively computing how frequently
they change and the churn size. Furthermore, we analyze if IaC code changes are coupled
with other production code changes as coupling with other file categories may cause even
more maintenance effort, presented in Chapter 7.

3.3.2 Understanding the Evolution of Infrastructure-as-Code (IaC)

Our prior study about IaC code confirmed our concern that IaC code takes developers effort to
maintain and deserves much more attention from both industry and research sides. Hence, we
performed a deeper empirical study to study IaC code. We select two case studies, OpenStack
and MediaWiki, which adopt IaC in a different way. OpenStack uses its IaC to manage its
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continuous integration and testing processes while MediaWiki uses it in regular development
process and to deploy production servers. We collect data from top repositories that contain
most IaC code and classify all file revisions into more detailed categories: IaC-related files
(IaC code, IaC test and IaC data files) and Production-related files (Source code, Build, and
Test files). We aim to understand if the evolution of IaC-related files has the same trend as
that of Production-related files. This is the subject of Chapter 8.

3.4 Overview of the Thesis Organization

This thesis aims to explore the modern release engineering process from two perspectives
by using MSR (Mining Software Repositories): on the one hand we try to understand char-
acteristics of the current status of release engineering, while on the other hand we try to
evaluate state-of-the-art techniques and practices. As the whole release engineering process
covers multiple phases and it is hard to get data for certain phases, we focus on two phases
of release engineering: “integration” and “provisioning (Infrastructure-as-Code)”. We con-
ducted an empirical study to understand the integration process of the Linux kernel project
in Chapter 4. To support later research about the integration process based on such “low-
tech” environments, we proposed linking techniques to recover the whole integration process
in Chapter 5. We also evaluate the performance of the popular “feature toggle” integration
technique in an industrial environment (Chapter 6). In the context of “provisioning”, we
measure the potential maintenance effort it might bring to industry and explore its evolution
process in Chapter 7 and Chapter 8.
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CHAPTER 4 ARTICLE 1: WILL MY PATCH MAKE IT? AND HOW FAST

Yujuan Jiang, Bram Adams, Daniel German

Abstract

The Linux kernel follows an extremely distributed reviewing and integration
process supported by 130 developer mailing lists and a hierarchy of dozens of
Git repositories for version control. Since not every patch can make it and of
those that do, some patches require a lot more reviewing and integration effort
than others, developers, reviewers and integrators need support for estimating
which patches are worthwhile to spend effort on and which ones do not stand a
chance. This paper cross-links and analyzes eight years of patch reviews from the
kernel mailing lists and committed patches from the Git repository to understand
which patches are accepted and how long it takes those patches to get to the end
user. We found that 33% of the patches makes it into a Linux release, and that
most of them need 3 to 6 months for this. Furthermore, that patches developed
by more experienced developers are more easily accepted and faster reviewed
and integrated. Additionally, reviewing time is impacted by submission time,
the number of affected subsystems by the patch and the number of requested
reviewers.1

4.1 Introduction

Integration of code changes into a project’s main repository is an open source developer’s
ultimate goal, since it marks the first step towards inclusion in an official product release. An
open source project like the Linux kernel, for example, integrates between 8,000 and 12,000
patches in a new release, contributed by more than 1,000 developers [66]. Those patches only
represent the “lucky few”. Studies on Apache and other open source systems have shown how
only 40% of the patches considered for integration eventually succeed [48, 135, 156].

One of the major reasons for the relatively low success rate of integration is the complexity
of this process. The patches first need to pass a gate-keeper who performs a review of the
code [48, 120, 136], before the code is merged by an integrator (e.g., release engineer) into
the corresponding branch of the open source project [60, 63, 146]. Code reviews fail when
a patch does not implement a relevant, working feature or bug fix, or when the project’s

1This paper has been published in the conference of Mining Software Repositories 2015.
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development guidelines are not followed [65]. The actual integration (merging) fails when
the patch interacts incorrectly with other patches or the merging process creates too many
merge conflicts [109]. In case of integration issues, the developer needs to go back to the
drawing board and try to integrate the code again. In the worst case, a patch will be rejected
time and time again until the developer eventually gives up.

As a result, the integration process looks like a black box to most developers, with unpre-
dictable outcome. Everyone knows the stories of disgruntled developers, even experienced
ones, whose changes did not make it after putting months of work into them (e.g., [35, 118]).
Even major projects like the Google Android mobile platform have problems getting their
Linux kernel modifications integrated into the official kernel version [109]. Yet, determining
up front whether a patch will make it, and how long it will take, is a grey area. Research on
code reviews has shown how small patches [136, 156] sent by experienced developers [48] are
more likely to be accepted by the reviewers, but it is not clear if these characteristics play
the same role during the actual integration of the patch with other patches. Similarly, the
impact of these characteristics on the time it takes to get a patch into a release is unclear.

This paper studies the relation of patch characteristics with (1) the probability of acceptance
into an official release and (2) the time between submitting a patch for review and acceptance.
We also analyze if these relations change over time. Our empirical analysis is based on eight
years of patch review data and version control data from the Linux kernel project, which is
a 20 year-old, popular open source system containing more than 15 MLOC of source code.
We address the following research questions:

RQ1) What percentage of submitted patches has been integrated successfully, and how much
time did it take?

Around 33% of patches are accepted. Reviewing time has been dropping down to
1–3 months, while integration time steadily has been increasing towards 1–3 months,
bringing the total time to 3–6 months.

RQ2) What kind of patch is accepted more likely?

Developer experience, patch maturity and prior subsystem churn play a major role in
patch acceptance, while patch characteristics and submission time do not.

RQ3) What kind of patch is accepted faster?
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Reviewing time is impacted by submission time, the number of affected subsystems,
the number of suggested reviewers and developer experience, while integration time is
impacted by the same attributes as patch acceptance.

First, we provide background about the Linux kernel integration process (Section 4.2), fol-
lowed by an explanation of our case study methodology (Section 5.3). Section 4.4 presents
the results of our case study, followed by a discussion of threats to validity (Section 8.5). We
finish the paper with related work (Section 5.6) and the conclusion (Section 5.7).

4.2 Background

The Linux kernel open source project started out as a one-man project by Linus Torvalds
in 1991, but quickly exploded into one of the hallmark projects of open source development.
Since early on, kernel development is managed by a strict hierarchy of experienced kernel
developers under the leadership of Linus Torvalds, who has the final decision about incor-
porating a source code patch into the kernel. Figure 4.1 illustrates the lifecycle of a kernel
patch [65].

A developer first needs to send a request for comments (RFC) to a kernel subsystem’s mailing
list to get input on a new idea for a feature or bug fix. After fleshing out the design, the
developer implements it and sends the resulting patch or patch set (series of collaborating
patches) to the subsystem’s mailing list and/or the global Linux Kernel Mailing List (LKML).
Through email discussion, the subsystem maintainer and other experts review the patch. The
developer then needs to incorporate any feedback and re-submit his patch (set), otherwise
the patch does not get through the reviewing stage.

Once all reviewers are happy, the subsystem maintainer commits the final patch to his Git
repository. Other maintainers, developers and beta-testers tracking the maintainer’s repos-
itory now become aware of the patch and can provide additional reviews. This will also
expose integration conflicts, i.e., other patches that break because of the new patch. Again,
the developer needs to act on these conflicts to avoid not getting through integration. If the
kernel maintainers are sufficiently confident about the patch, Linus Torvalds might consider
incorporating it into the official Linux kernel release. This only happens during a release’s
“merge window”, a period of roughly two weeks following the previous release. Afterwards,
small bug fixes are still possible until the next release occurs (every 2 or 3 months [66]).

This paper uses the terminology of Figure 4.1 to denote the duration of each major phase.
Reviewing time is the time from a developer’s patch submission until the patch’s commit
by a subsystem maintainer. Integration time is the time from a patch’s commit by a
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Figure 4.1 Linux kernel development process. Contributor 1’s patch is rejected during re-
viewing, and contributor 2’s patch is rejected during integration, but contributor 3’s patch
makes it into the next Linux release (version 3.5).

subsystem maintainer until its merge into Linus Torvalds’ repository. Finally, staging time
is the time from a patch’s merge into Linus Torvalds’ repository until the next kernel release.

4.3 Methodology

In order to address our three research questions, we studied the acceptance rate of patches
submitted by email, as well as their reviewing, integration and staging time. We now explain
the different steps used for our study.

4.3.1 Data Extraction

Since the Linux kernel integration activities (Figure 4.1) are spread out across mailing lists
and Git repositories, we need to mine both data sources, then try to match the patches inside
the emails to commits inside the repositories.

There is one global mailing list (LKML), and 130 more specialized kernel-related lists. These
mailing lists are archived online [74] in the form of textual mbox files. We obtained access to
the mbox files of 2005 until 2012, then used the MailMiner tool [54] to process these files into
a relational database, with tables containing the email messages and their metadata. We did
not analyze email attachments, since the Linux kernel developer guidelines dictate that all
patches are inlined into the email body(i.e., attachments are not reviewed). Unfortunately,
we were not able to find reliable heuristics that link threads related to (different versions
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of) the same patch to each other, since no official guidelines exist regarding the title of such
email threads.

The source code repository data is better structured. Since the 2.6.12 kernel (June 26,
2005), the kernel uses the Git distributed source control system where each developer and
maintainer has a copy of the whole project repository. Since we only need to analyze which
patches make it into an official release, we only have to clone and mine Linus Torvalds’
repository [153]. This repository contains all commit information of accepted patches from
June 26, 2005 to December 31, 2012, including information like the original commit date by
a subsystem maintainer and the merge date into Linus Torvalds’ repository. Note that we
do not have information about patches that made it to a maintainer’s repository, but never
to Linus Torvalds’ repository (the second example in Figure 4.1).

4.3.2 Linking the Patches in Emails to Git Commits

To obtain information on which patches are accepted by Linus Torvalds, we had to link the
patches in the mailing list emails to the commits in Linus Torvalds’ Git repository. Similar
to Bird et al. [57], we did not directly link a full patch to a Git commit, because of “cherry-
picking”. This is a common integration activity where an integrator only picks the interesting
parts of a patch and ignores the rest. Large patches risk not being merged completely, or
maybe not in one Git commit. Hence, we split a patch into one or more chunks, with each
chunk containing all changes of the patch to one file. If a patch undergoes multiple versions
in one email thread (we cannot track versions across threads), we tried to link each patch
version to the Git repository.

The actual linking between chunks and commits is based on checksum matching. After
splitting into chunks, we filter out the unchanged code lines of a submitted chunk, remove all
white space and capitalization, then concatenate all lines into one line. After prepending the
relative path name of the file changed by the chunk, we calculate the MD5 checksum. We
perform the white space, capitalization and concatenation to deal with small changes done to
a chunk before merging, and the path name prepending to avoid false positive matches with
similar changes to other files. We perform the same procedure to the commits in the Git
repository (after splitting them into chunks), then match the MD5 checksums of submitted
chunks and Git chunks. We only link to the closest Git chunk in time that follows the
submitted chunk. Overall, 47% of the chunks in the mailing lists could be mapped to Git
commits.

1A cryptographic algorithm used to generate a 128-bit hash value (checksum), which is often used to verify
and validate the data being transformed.
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We found that patch chunks, i.e., all changes in a patch to one particular file, are a good
compromise between granularity and patch identity. We evaluated the recall of the chunk
linking mechanism on a sample of 3,000 email threads from the linux-tips mailing list, which
contains the actual Git commit identifier for an accepted patch. Our linking approach had
a recall of around 75%. We then performed a random sampling of 100 emails (50% linked
and 50% not linked by our linking mechanism) across all mailing lists, to obtain a confidence
interval for the mechanism’s precision, with length 10% and a 95% confidence level. We found
that our technique had a precision of 100%±10%. These numbers provide us confidence that
our linking mechanism is sufficiently accurate.

Finally, to map back from the chunk level to the patch level, we analyzed each patch’s
chunks and considered a patch to be accepted if at least one of its chunks was mapped to a
Git commit. The patch’s reviewing, integration and staging time are the corresponding times
for the first chunk that was accepted by Linus Torvalds. This makes sense, since one accepted
chunk is enough for a developer to know that his work will appear (at least partially) in the
next release. Of the 348,184 Git commits in Linus Torvalds’ repository, 256,284 were actual
patch submissions (i.e., non-merge commits authored by other people than the committer),
and we could map 190,931 of those commits (74.5%) to a patch submission email.

4.3.3 Measuring Patch Characteristics

In order to study the relation between patch characteristics and (time to) acceptance, we
need to define a list of relevant characteristics. Initially, we based ourselves on a list of
guidelines published by the Linux Foundation to support kernel developers in getting their
patches accepted [65]. Some of these guidelines, such as whether or not a developer has used
the “checkpatch.pl” tool before submitting her patch to a mailing list, could not be measured
easily. Others, such as whether the patch is small enough or was sent to the right mailing list,
were straightforward to measure. We extended this set of metrics with additional metrics,
such as whether a patch fixes a bug or proposes a new feature.

Table 4.1 shows all metrics that we used during our study, including the type of metric,
the data source from which we calculated it and a short description. They are grouped
into five dimensions, and an additional group of dependent metrics. Most of the metrics
are straightforward to understand, hence we only discuss some of them in more detail. We
consider a review to be each email in a thread that replies to an email with a patch, but only

1“Recall” indicates that out of all existing correct items, how many are selected in experiment. Recall is
normally used to measure the result integrity.

1“Precision” indicates that out of all selected items, how many of them are correct. Precision is normally
used to measure the result accuracy.
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Table 4.1 Overview of the metrics and dimensions used. The superscript after the name is
the research question in which it was used.

metric name type source explanation

Ex
pe

rie
nc
e msg_exp2,3 numeric mbox Number of patches sent by author in earlier threads.

commit_exp2,3 numeric git Number of accepted Git commits thus far by the author.

Em
ai
l

year/month/week/day1,3 nominal email Year/Month/Week of the year/Day of the week on which patch was sent.
nr_ccs2,3 numeric email Number of people CCed by email.

msg_length2,3 numeric email Number of lines of email text excluding patch lines.
rel_quarter2,3 nominal email Quarter of release window in which patch is submitted.

thr_first2,3 boolean thread Is this email the first one of the current thread?
first_patch2,3 boolean thread Is this first patch in thread?
thr_volume2,3 numeric thread Number of email messages between start of current thread and current patch.

thr_part2,3 numeric thread Number of people participating in current thread until current patch.
thr_time2,3 numeric thread Discussion time (seconds) between start of current thread and patch.

right_venue2,3 boolean patch Is the patch sent to the most specific mailing list for the changed subsystem?
lkml_first2,3 boolean thread Was the first email sent to the general-purpose LKML list?

R
ev
ie
w

nr_reviewers2,3 numeric thread Number of different people sending review messages.
nr_reviews2,3 numeric thread Number of review messages.

response_time2,3 numeric thread Time in seconds from patch to first review message.
first_response_time2,3 thread patch Time in seconds from first patch in thread to first review message.

Pa
tc
h

bug_fix2,3 boolean patch Is patch a bug fix?
chunks_in3 numeric git #chunks in patch accepted by Linus Torvalds.

chunks_out3 numeric git #chunks in patch rejected by Linus Torvalds.
size2,3 numeric patch Patch churn (sum of added and removed lines).

spread2,3 numeric patch Number of files changed by patch.
spread_subsys3 numeric patch Number of subsystems changed by patch.

nth_try2,3 numeric thread What version of this patch are we (relative to this thread)?
commit_sub2,3 numeric git Number of previously accepted patches modifying the changed subsystem (prior churn).
patch_set2,3 boolean email Is this patch part of a larger patch set?

C
om

m
it committer3 numeric git Number of different committers for the chunks of this patch.

cc_is_rev13 boolean git Is name of committer same as name of first CC-ed reviewer?
cc_is_rev3 numeric git Number of chunks where the name of committer is same as name of first CC-ed reviewer.

D
ep

en
de
nt

accepted1,2 boolean git Was this patch accepted by Linus Torvalds?
reviewing_time1,3 numeric email/git Time between patch submission and first commit by a kernel maintainer.

integration_time1,3 numeric git Time between first commit by a kernel maintainer to acceptance by Linus Torvalds.
staging_time1,3 numeric git Time between acceptance by Linus Torvalds and the next release.

total_time1,3 numeric email/git Time between patch submission and the release in which the patch appeared.
missed2 numeric email Number of missed kernel releases since patch submission for an accepted patch.
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until the next patch in that thread or the end of the thread.

Developers sometimes want one or more specific persons to review their patches, often the
maintainer of a subsystem. To (try to) achieve this, they add those persons’ email addresses
as the CC addressees of the email (in order of importance). We measure the number of
CC-ed people, and also check whether the first CC-ed reviewer indeed committed chunks of
the patch.

Since the time in between Linux releases varies between 2 and 3 months, the merge window
can also vary in time. As Linus Torvalds determines by himself when the merge window
ends, we could not identify the exact dates. Instead, we divided the period in between two
subsequent releases into 4 periods (“quarters”), and report for each patch the rel_quarter
in which the patch was submitted to a mailing list for review.

To identify the most specific mailing list for a particular patch, we analyzed all patches
of each mailing list, and counted the number of patches modifying each subsystem. We
assigned the most changed subsystem to each mailing list. A subsystem here corresponds
to a subdirectory in the kernel code base, such as “kernel” and “net/ipv4”. We did not go
deeper than 2 levels of subdirectories, since otherwise the subdirectories became too specific.

To tag a patch as being a bug fix, we used a traditional, simple heuristic: We searched in
the patch’s log message for the words “bug” and/or “fix” (case-insensitive). More advanced
techniques exist [152], and we plan to experiment with these in future work.

Furthermore, to identify if a patch is part of a patch set, we used the naming convention
suggested by the Linux Foundation [65]. Messages that are part of a patch set should contain
the term “PATCH” (case-insensitive) and a marker of the form “5/20”, which means that
this email is patch 5 out of 20. We check all subsequent threads of the same author within
one hour to see if other messages contain “PATCH” and “20”. Using a 1-hour window for
each email suffices since manual browsing of patches showed that patch set emails follow each
other very closely. We cannot check for threads with exactly the same subject, since different
patches in a patch set typically have specific subjects for that patch. If all patches of a patch
set end up in the same thread, we consider the reviews in the thread to be shared by all
patches in the set.

Finally, we only calculate the reviewing, integration and staging time for fully accepted
patches. Patches that failed reviewing or went through reviewing, but not through integra-
tion, do not have any of these three metrics. For the patches that made it to Linus Torvalds,
we measured the shortest time from the initial maintainer commit until a merge commit
performed by Torvalds that brings the patch into his repository.
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4.3.4 Data Analysis

To address the three research questions, we performed empirical analysis on the metrics that
we collected, and also built decision tree models. A decision tree is a tree where every node is
a condition such as “size>50?” and one takes a different path based on the evaluation of the
condition for a particular patch. The leaves of the tree correspond to a classification such as
“accept” or “reject”. We provide more explanation when discussing the individual research
questions.

In order to improve the performance of the models and to make the values easier to interpret,
we discretize the reviewing and integration time variables. For example, it does not really
make a difference whether a patch will take 13 or 14 days to review, but it does make a huge
difference if a patch will take a month instead of a day. After analyzing histograms of the data,
we decided to discretize the time data into the following bins: “instantly”, “within_hour”,
“within_day”, “within_week”, “within_month”, “within_quarter”, “within_half_year”,
“within_year” and “took_ages”.

4.4 Case Study Results

This section presents the results of our three research questions. For each question, we present
its motivation, the analysis approach and a discussion of our findings.

RQ1: What percentage of submitted patches has been integrated successfully,
and how much time did it take?

Motivation: Existing reports about Linux kernel development show that in between 8,000
and 12,000 patches are accepted into each current kernel release, authored by more than
1,000 developers [66]. Although this illustrates the huge scale of development for the Linux
kernel, not much is known about the success rate of patches submitted to the kernel. How
many patches are actually submitted, and how many eventually make it? Of those who
make it, how much time do they need until they are integrated into the next kernel releases?
How much of that time is spent on reviewing compared to integration effort? The answers
to these questions provide insight into the process, output, productivity and effectiveness of
collaborative open source development at massive scale in the Linux project.

Approach: We compute the number of accepted and rejected patches that were sent to a
kernel mailing list between 2005 and 2012 and measure the total time it took for the accepted
patches to end up in a release, as well as the reviewing, integration and staging time.
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Findings: The yearly number of submitted patches to kernel mailing lists keeps
on increasing. Figure 4.2 shows that, starting in 2005, the number of submitted patches
discussed on the mailing list has kept on increasing, with a temporary slowdown from 2008 to
2010. The numbers are staggering: In 2013 alone 136,932 patches were submitted to Linux
mailing lists. Even though the number of submitted patches has increased, the percentage
of accepted patches has remained between 27 and 34% (see Figure 4.2). The rest (more than
66%) have not made it, but it is hard to know why they were refused. This might be due to
some patches being reworked and resubmitted, others still being discussed for consideration,
and some might simply be ignored and never applied. Therefore, it is important to know
what is the expected time it takes to have a patch incorporated into the kernel.

Patches take 3-to-6 months towards inclusion in a kernel release. With respect to
the total time it takes a patch to be released as part of the kernel, Figure 4.3 tells us that in
2005, most of the accepted patches took between 1-to-3 months. Afterwards, the time most
patches took grew to 3-to-6 months, remaining relatively stable from 2007–2012. To better
understand this, we have decomposed the total time into reviewing, integration and staging
time, and analyzed each of them separately.

The distribution of reviewing time has become shorter (Figure 4.4a), with more
patches being reviewed within a day and a shift from 1-to-3 months to within 1-week-to-1-
months. At the same time, less patches take longer than one month to be reviewed. A non-
parametric Kruskal-Wallis test, followed by pairwise Mann-Whitney tests with a confidence
level of 0.05 (using Bonferroni correction) confirmed the changes in reviewing time. This
suggests that Linux has improved its reviewing process over time. Either reviewers became
more efficient, or the patches became easier to review.

On the other hand, the time of integration has slowed down. Figure 4.4b shows that
in 2005 almost 60% of patches were committed directly (“instantly”) to the Linux kernel by
Linus Torvalds and almost 80% made it within a day, while in 2012 only about 10% were
integrated within a day. There is a clear increase of the percentage of patches taking a month
or even a quarter to be integrated. Again, a non-parametric Kruskal-Wallis test, followed by
pairwise Mann-Whitney tests with a confidence level of 0.05 (using Bonferroni correction)
confirmed these changes in integration time.

These observations can only be explained by Linus Torvalds applying less and less patches
over time. We tested this assumption by computing the proportion of commits authored
by other developers but directly committed by Linus Torvalds relative to all non-merge
commits. Starting in 2005, he has committed yearly 39%, 30%, 21%, 11%, 7%, 5%, 4% and
4% of all non-merge commits. In 2005, 4,508 patches were accepted for which Linus made
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Figure 4.2 Number of accepted patches. The numbers in the bars correspond to the percent-
age of accepted or rejected patches.

5,623 commits authored by others, while in 2012, there were 42,088 patches accepted and
Linus committed others’ work only 2,370 times. Similarly, the number of other committers
who commit changes authored by another person has grown from 64 to 261. This suggests
that Linus is integrating patches less (in addition to developing less himself), delegating this
task to others in order to cope with the overall growth in patches. Similar observations were
made elsewhere [66].

To understand whether the speed-up of reviewing time and slow-down of integration time
is due to changes in development style, we analyzed characteristics of the patches that were
reviewed and/or integrated. We found that the size of patches has changed, dropping initially
from a median size of 61 lines of code in 2005 to 29 lines in 2007, then increasing again up
to a median of 77 in 2012 (87 in 2011). These larger patches are affecting more files as well,
since the median number of changed files increased from 3 to 4. Finally, the percentage
of bug fix patches has dropped continuously from 24% to 16%, i.e., more patches contain
feature enhancements instead of bug fixes. This provides an explanation of the growing size
of patches as well as the longer time it takes to integrate these more complex patches. It is
not clear why reviewing is not affected by this.
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Figure 4.3 Total time for a patch to occur in an official release.

Staging time is fixed at 1–3 months. Figure 4.4c shows how most of the patches got
in within one quarter. Indeed, the time in between releases has been set to a fixed number
of weeks by Linus Torvalds, i.e., it is a management decision. In addition, patches are only
merged into Linus Torvalds’ repository roughly the first two weeks after the previous releases.
Commits sent outside this merge window are ignored until the next release’s merge window.
Only in 2007, many patches took more than half a year to be accepted. Since staging time
is dictated, we do not consider it in this paper.

The reviewing time is becoming shorter and shorter, seemingly at the expense of a longer
integration time. However, the total acceptance time does not change too much.

RQ2: What kind of patch is accepted more likely?

Motivation: In RQ1, we found that the accepted patches represent only around 30% of
all submitted patches. Furthermore, it takes several months before knowing that a patch
has passed review, and even more time before knowing that it is accepted by Linus Torvalds.
Hence, in the worst case, developers can lose a lot of time working on and maintaining a patch
that will never make it. Even worse, they could find themselves having to choose between
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Figure 4.4 Distributions of times for patches

different bugs to fix or features to implement. The same problem applies to maintainers and
integrators, who are buried under a large load of incoming patches and need to separate the
wheat from the chaff. Thus, RQ2 examines the characteristics of successful patches.

Approach: As we saw in RQ2 that Linux has a release every 2 or 3 months [66], i.e., roughly
once every quarter, we build decision trees for every 3 months of development. In order to
understand the characteristics of accepted patches, we build decision tree models with the
metrics in Table 4.1 as independent variables and accepted as dependent variable. This
results into 32 decision tree models from 2005 to 2012.

For each model, we use 10-fold cross-validation to obtain more accurate performance mea-
sures. The data basically is split into 10 folds, and we use each fold once as test set with
the other folds as training set. This generates 10 trees for each quarter. We use precision
(how many patches classified as “accepted” really were “accepted”?) and recall (of all “ac-
cepted” patches, how many did we classify as “accepted”?) to measure the performance of
the decision trees. As baseline to compare the performance to, we use a zeroR model, i.e., a
model that always predicts “accepted”. For example, if there are 13% accepted patches, then
a zeroR model would have a prediction and recall of 13%.

Then, we analyze the most influential metrics in the models using top node analysis, i.e.,
we look up the metrics that occur in the conditions of the top 2 levels of each decision tree,
since they contain the most decisive information regarding patch acceptance. To visualize
the results of top node analysis across all quarters, we use heat maps. These are plots with
time as the X axis and the metrics as the Y axis. For a particular quarter and metric a cell
is non-white if that metric was a top node in at least one of the 10 trees of that quarter. The
darker the cell (light grey up to black), the more trees contained the metric in their top 2
levels.

Findings: We are able to build high-performing models with up to 73% precision
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Figure 4.5 Top node analysis results for the patch acceptance models (RQ2).

Table 4.2 Significant attributes for patch acceptance.
Attribute Influence
msg_exp Smaller value leads to acceptance.

commit_exp Larger value leads to acceptance.
thr_part Larger value lead to acceptance.
nth_try Larger value leads to acceptance.

commit_sub Smaller value leads to acceptance.

and recall. The precision values of our models range from 52% to 73% with an average of
66.28%, compared to 40.41% for the zeroR models (between 17% and 48%). Similarly, for
recall we see that the recall values of our models range from 63% to 73% with an average of
68.47%, compared to 40.41% for the zeroR models.

Developer experience, patch maturity and prior subsystem churn are the major
factors impacting acceptance of a patch. Figure 4.5 shows the top node analysis results
of the decision trees for patch acceptance, while Table 4.2 lists the 5 most impacting metrics
overall with their interpretation.

The top two metrics (msg_exp and commit_exp) relate to developer experience. Developers
who have had a commit being merged into Linus Torvalds’ repository before have a higher
chance of getting their patch accepted, presumably since they have more experience with
the creation and development process of kernel patches, and maybe a higher standing in
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the community. Surprisingly, having posted more emails (and hence reviews) to mailing
lists before has a negative impact on acceptance. It is not clear why this is the case. We
hypothesize that those experts might be working on more complex features, which are more
risky and prone to rejection. However, more work is needed to verify this hypothesis.

The third and fourth most important metrics are related to patch maturity, i.e., the amount of
reviewing discussion preceding a patch submission (thr_part) and the number of previous
iterations of the patch in the same thread (nth_try). Unsurprisingly, the more mature a
patch, the higher the probability of acceptance.

The fifth most important metric relates to the number of previous commits to the changed
subsystem, i.e., the subsystem’s prior churn (commit_sub). According to the data, the more
popular a subsystem is in the Git commits, the lower the probability that a new patch will
make it. It is not clear what exactly this implies. It might refer to the fact that subsystems
that see lots of change are harder to keep up with, causing new patches to be outdated by
the time they are proposed. Alternatively, it could mean that there is a lot of duplicate work
going on, with multiple developers trying to compete for the same features. More analysis is
needed to fully understand the impact of this observation.

Among all the above attributes, only the top 2 experience attributes can be controlled by
developers by participating more actively in the kernel community. This helps them learn
more about kernel development, and to earn the trust of other developers and maintainers.
The other 3 attributes are hard to manipulate for a developer.

The major metrics vary over time. We can see how no metric is important in all 8
studied years. Instead, there seem to be roughly three phases in Figure 4.5, i.e., 2005/2006,
2007/2008 and 2009–2012. Phases one and three especially value metrics on patch maturity,
patch characteristics, review activity and experience, whereas phase two especially focuses on
review activity. We suspect the change in phase two at the end of 2008 to coincide with the
introduction in February 2008 of the linux-next integration repository. This repository was
introduced to test how a patch would merge with the current version of the Linux kernel, in
order to avoid that patches only are merged six months later by Linus and fail at that time.
As such, linux-next aimed to increase acceptance rate and reduce integration time through
faster feedback.

Patch characteristics, time of submission and review response time do not play
a major role in patch acceptance. Looking at the white areas in Figure 4.5, we can
see that patch characteristics like size, spread and whether a patch is sent in one piece or
has been split into smaller parts (patch set) only played a role initially. This contradicts
existing work [136, 156], as well as the Linux Foundation’s guidelines [65]. The time in a
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release quarter (rel_quarter) does not play a role either, and neither does the quantity and
responsiveness of reviews.

The most important metrics for patch acceptance are changing all the time. We find that
the patches of experienced developers, mature patches and patches in subsystems with less
prior churn are easier to be accepted.

RQ3: What kind of patch is accepted faster?

Motivation: Similar to the motivation for RQ2, we find that some patches took much longer
than others to arrive to Linus Torvalds’ repository. For developers, maintainers and in-
tegrators, it is important to understand which patch properties determine reviewing and
integration time. Hence, we will analyze only patches that eventually were merged by Linus
Torvalds.

Approach: Similar to RQ2, we build decision tree models for each quarter. This time the
dependent variable is either the discretized reviewing time or integration time. We again use
10-fold cross-validation for the reviewing time and integration time models, followed by top
node analysis. Instead of precision and recall for each of the 9 outcomes, we compute the
global accuracy, i.e., the percentage of correctly classified patches (across the 9 outcomes)
relative to all patches.

Findings: The reviewing and integration time models obtain an accuracy of up to
70% and 76%, resp., and again evolve over time. The accuracy values for the reviewing
time model fluctuate between 53% and 70% (mean of 59%), while for the integration time
they fluctuate between 62% and 76% (mean of 68.4%). Although the models evolve over
time, we observe more noise in the top node heat maps (Figure 4.6 and Figure 4.7) compared
to the acceptance models. It is hard to spot different phases, except for the reviewing time
models, where the experience-based metrics at the top stop being influential. It is unclear
why this is the case (linux-next only applies to integration, not to reviewing).

For reviewing time, a variety of dimensions is influential. Figure 4.6 and Table 4.3
show the following top 6 influential dimensions: Prior subsystem churn, time, patch charac-
teristics, reviewers and experience. Contrary to the model in RQ2, most of these attributes
(except the prior subsystem churn) can be directly influenced by a developer. Prior sub-
system churn plays a rather complicated role, changing its impact across different quarters.
Since bugs need to be fixed irrespective of a subsystem, one cannot really tweak this at-
tribute. On the contrary, the week of the year in which one submits a patch for review plays
a significant role. This is tied to the merge window of a release, i.e., the period in which



45

Figure 4.6 Top node analysis results for reviewing time.

the new submissions are solicited. If timed properly, a submission of a patch will arrive in
time for a merge window, otherwise it might be delayed at least an entire cycle until the next
release merge.

Various patch characteristics, such as the spread of a patch and the number of chunks
in it play an important role. In fact chunks_out represents the number of chunks that
were not committed in the end, i.e., the chunks that were ruled out during reviewing or
integration. Deciding about this indeed takes up quite some reviewing time. This brings us
to the reviewing dimension (committer and nr_ccs). committer corresponds to the number
of different people committing (and hence probably involved in reviewing) chunks of a patch,
whereas nr_ccs refers to the number of people suggested as reviewer by putting them into
the list of cc-ed email addresses. Hence, the choice of reviewers indeed plays an important
role in reviewing time [48]. Finally, experience again plays a major role.

Surprisingly, some metrics that do not play a role are whether a patch fixed a bug (we
expected bugs to be expedited), nor whether the patch had been posted to a specific mailing
list for a subsystem vs. the global LKML. This finding contradicts the Linux Foundation
guidelines [65].

For integration time, the same dimensions are influential as for probability of
acceptance. In Table 4.4, the only difference is that a high msg_exp this time leads to
shorter integration, whereas it decreased the probability of acceptance (RQ2). Furthermore,
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Figure 4.7 Top node analysis results for integration time.

experience plays a much larger role for integration than for reviewing. The fact that the
models for acceptance and integration value the same attributes suggests that integration
plays an essential role in patch acceptance, maybe more than reviewing by itself.

Developers can reduce reviewing time by controlling the submission time, the number
of affected subsystems by the patch, the number of reviewers CCed on the mailing list
submission, and by being more active in the community. Gaining experience through active
participation in the open source community is also linked to shorter integration time.

4.5 Threats to Validity

We now discuss the threats to validity of our study, following common guidelines for empirical
studies [162].

Construct validity threats concern the relation between theory and observation. We use de-
cision trees to find important relations between a rich set of metrics and patch acceptance
(time). Since these models are not perfect (precision, recall and accuracy below 100%) and
are statistical in nature, they might not correspond to actual relations or actions in the devel-
opment process. Although qualitative analyses are needed to validate these models, we built
many models across time and observed various recurring phenomena, giving us confidence
that the models do provide major indications about the relations. Furthermore, our selection
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Table 4.3 Significant attributes for reviewing time.
Attribute Influence

commit_sub Impact varies a lot across time, but in recent
years larger values lead to shorter time.

week Larger value leads to longer reviewing time.
chunks_out Larger value leads to longer reviewing time.

spread_subsys Larger value leads to longer reviewing time.
committer As the reviewing time increases, the number

of committers first increases, then decreases.
nr_ccs Larger value leads to longer reviewing time.

commit_exp Larger value leads to shorter reviewing time.

Table 4.4 Significant attributes for integration time.
Attribute Influence
msg_exp Larger value leads to shorter integration time.

commit_exp Larger value leads to shorter integration time.
thr_first “true” value leads to shorter integration time.
nth_try In early years, having more iterations leads to shorter

integration time, but recently the opposite holds.
commit_sub Larger value leads to shorter integration time.

of metrics is based on guidelines provided by the Linux Foundation [65], enhanced with other
patch-related metrics.

Threats to internal validity concern our selection of subject systems, tools, and analysis
method. The automatic mapping between email patches and Git commits contains many
different steps that might introduce noise. First, the mailing list archives typically contain
incomplete information (such as emails that are not clearly linked to a thread, which even
specialized tools cannot resolve perfectly [54]. Second, the chunk-based linking approach
cannot handle changes to identifier names (contrary to Bird et al. [57]). Also, even though
the chunk-level is sufficiently coarse-grained, it is still possible that similar changes are made
to the same file in a short timespan, for example on different clones in a file. However, our
linking approach obtained a high precision and recall when evaluated on a sample of the
data. Third, Git does not retain information about the name of the repository or branch
where a commit originated, and it even allows developers to change (clean up) the history of
changes in order to make later integration easier [59]. This might affect the heuristics and
other techniques used to calculate the integration time of a commit.

Threats to external validity concern the possibility to generalize our results. Since we have
only studied one large open source system, we cannot generalize our findings to other open
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and closed source projects, even in the same domain. Furthermore, since Git is a flexible
version control system that can be used in various setups, we also need to take care when
extrapolating our findings to other projects using Git. Hence, more case studies on other
projects are needed.

4.6 Related Work

Our work is related to previous studies on reviewing processes in open source projects, on
software integration and on prediction of bug fixing time.

Rigby et al. [136] studied reviewing practices in the Apache open source system, and compared
these to those of a commercial system. Between January 1997 and October 2005, the Apache
mailing list contained 9,216 review email messages for 2,603 patches. They found that small,
independent, complete patches are most successful, whereas we found that size only plays a
role for reviewing time, whereas patch sets do not play a major role. 50% of the patches are
reviewed in less than 19 hours, whereas for Linux this takes 1–3 months. Finally, Rigby et
al. found that 44% of the submitted patches eventually were accepted, compared to 33% in
our study.

Weissgerber et al. [156] studied contributions in two small open source systems (196 and
1,628 patches respectively, changing 6% of all files in the systems), and also found that
around 40% of the contributions are accepted. Similar to Rigby et al., they find that smaller
patches have a higher probability of being accepted. Most of the patches are accepted in
the repository within one week (61% even within three days). Since they looked at CVS
repositories, a commit automatically corresponds to a chunk (one file change). These chunks
were mapped to mailing list patches by looking for the changed lines in the files (irrespective
of their order), whereas we concatenated all changed lines and removed all whitespace and
capitalization to improve performance. One quarter of the accepted patches took less than
one day for reviewing and integration, half were accepted within one week, and one third
took longer than two weeks. No relation between patch size and the time towards acceptance
could be found. Similarly, we only found a link between patch size and reviewing time, but
not with integration time.

Baysal et al. [48] studied reviewing effort in the Mozilla project. Contrary to the previous
two studies and our study, Mozilla uses a modern web-based system (Bugzilla) to manage
review requests, comments and their outcome. On average, 78% of the reviewed patches
made it through reviewing, but only around 60% of those (i.e., 47% in total) eventually
make it into the code repository, which is slightly higher than the other studies. Similar to
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us, ore contributors have a higher probability of getting their patches accepted in the code
repository, although experience does not impact the outcome of the reviewing phase (it does
impact the reviewing time in our case). Similar to Linux, people can suggest reviewers and
this choice plays an important role to avoid having a patch end up to be rejected. Mozilla
patches that make it into the code base took 4.5 days before the switch to rapid release, and
2.7 now for core developers (slightly less time for casual developers). For the Linux kernel,
this can take up 3–6 months.

Our work differs from the work above in multiple ways. First off, we studied the whole
integration process, i.e., not just reviewing. Furthermore, we studied the relation between
more than thirty metrics and patch acceptance (time) and how this relation evolves over time.
Finally, Linux has a much deeper hierarchical structure of contributors and maintainers,
whereas projects like Apache and Mozilla are relatively flat. As a consequence, the time to
get through reviewing or merging is much shorter than is the case for Linux, and the impact
of merging becomes more important.

Regarding software integration, various researchers have studied the impact of branch struc-
ture (e.g., the hierarchical structure of source code repositories in Linux) on software qual-
ity. Bird et al. [60] proposed a what-if analysis that allows to identify harmful, redundant
branches in order to simplify the branching structure. Such simplification can avoid merge
conflicts (incompatible changes in the two versions of the code base), which inflate integration
time. In their case study on a large commercial system, such a simplification was able to
reduce integration time by up to 9 days. Shihab et al. [146] found how a mismatch between
the branching structure and a company’s organizational structure can increase post-release
failure rate. This is why Linux kernel development uses a distributed version control system.

Brun et al. [64] studied different kinds of merging conflicts, and identified four major reasons
why integration can be risky: (1) The integrator did not develop the code herself, (2) the
patches to merge often contain too many changes in one big lump, (3) merging typically
happens a relatively long time after the actual development, and (4) most of the serious
conflicts are due to semantical instead of textual issues. We indeed found evidence for these
four reasons in Linux.

Our models to explain the reviewing and integration time are related to the work on bug
fix time prediction, where, based on a bug report, the time for fixing this bug report is
predicted. Guo et al. [84] built models to predict which Windows 7 bugs would be fixed. The
precision and recall of those models were around 65%. They found that having more people
following the status of a bug improves the probability of the bug being fixed. Similarly, having
submitted bugs before that ended up being fixed improves the chances of getting a bug fixed
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in the future, i.e., experience plays an important role. We made similar observations for our
models of acceptance (time).

Giger et al. [80] found that post-submission data of bug reports such as the number of
comments or number of interested people improves the accuracy of bug fix time prediction
models. However, in our models, adding the number of reviewers and the number of reviews
did not make a significant change. Finally, Zhang et al. [164] build a model to predict the time
between assignment of a bug report and the time when bug fixing starts. This corresponds
to the time between sending an email talking about a new idea for a feature and sending an
email with the patch implementing the idea. However, since related email threads are hard
to link to each other, we were not able to build models for this incubation time.

4.7 Conclusion

Given the complexity of code integration, and its opaque nature for most developers, we
studied the characteristics of patches that could explain patch acceptance and reviewing/in-
tegration time. We performed a study on the Linux kernel mailing lists and Git repository,
and found that reviewing and integration are two relatively independent processes. Developer
experience, patch maturity and prior subsystem churn play a major role in patch acceptance
and integration time, while submission time, the number of affected subsystems, the number
of contacted reviewers and developer experience correlate the most with reviewing time. The
one common thing in the three kinds of models is developer experience, i.e., there seems to
be no substitute for active participation in an open source project while learning the project’s
ins and outs.
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CHAPTER 5 ARTICLE 2: TRACING BACK THE HISTORY OF
COMMITS IN LOW-TECH REVIEWING ENVIRONMENTS

Yujuan Jiang, Bram Adams, Foutse Khomh, Daniel German

Abstract

Context: During software maintenance, people typically go back to the original
reviews of a patch to understand the actual design rationale and potential risks of
the code. Whereas modern web-based reviewing environments like gerrit make
this process relatively easy, the low-tech, mailing-list based reviewing environ-
ments of many open source systems make linking a commit back to its reviews
and earlier versions far from trivial, since (1) a commit has no physical link with
any reviewing email, (2) the discussed patches are not always fully identical to
the accepted commits and (3) some discussions last across multiple email threads,
each of which containing potentially multiple versions of the same patch.
Goal: To support maintainers in reconstructing the reviewing history of kernel
patches, and studying (for the first time) the characteristics of the recovered
reviewing histories.
Method: This paper performs a comparative empirical study on the Linux kernel
mailing lists of 3 email-to-email and email-to-commit linking techniques based
on checksums, common patch lines and clone detection.
Results: Around 25% of the patches had an (until now) hidden reviewing history
of more than four weeks, and patches with multiple versions typically are larger
and have a higher acceptance rate than patches with just one version.
Conclusion: The plus-minus-line-based technique is the best approach for linking
patch emails to commits, while it needs to be combined with the checksum-based
technique for linking different patch versions.1

5.1 Introduction

In November 2003, there was a suspected backdoor attempt to taint the source code of the
Linux kernel project [129]. The Linux team noticed that a patch popped up in the CVS copy
of the version control system that never appeared in the BitKeeper master copy. This patch
pretended to just check for errors, but actually contained a back door that could render a

1This paper has been published in the conference Empirical Software Engineering and Measurement in
2014.
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Figure 5.1 The reviewing and integration process of a patch in the Linux kernel project
(adapted from [100]).

system vulnerable. Up until today, it is still not clear whether this code was inserted by a
malicious hacker, since there was (and still is) no explicit link from a commit back to all
emails reviewing that patch or earlier versions of it. The recent “heartbleed” vulnerability
[94] also highlights the need to have traceability from commits in the version control system
to patches in the mailing list. Full traceability would have made a quicker and more accurate
audit of the code possible. Apart from security audits, traceability from submitted patches
to accepted commits would also benefit regular maintenance, as it will make it easy to review
the email messages around that patch which comprise the reviewing and design discussions
of the patches [40][49][136].

Although more and more open and closed source systems are migrating towards modern,
online reviewing environments like Gerrit, which consolidate all patch versions, discussions
and links to commits in one location, many open source ecosystems such as the Linux kernel
and the Apache Software Foundation still swear by low-tech reviewing environments based on
a mailing list [51]. Basically (Figure 5.1), a contributor sends an email containing a patch,
asking for feedback. Other project members with the required expertise then jump in to
provide design- and code-related comments. They either reject the patch up front (not an
interesting feature at all), they allow the responsible kernel maintainer to commit the patch
to the version control system as is, or they request a new version with modifications. In the
latter case, the original patch submitter should send a new patch version, hoping that this
one will be successful. This process continues until the patch is rejected, accepted or the
submitter gives up.

Although modern reviewing environments require the same steps, the usage of a low-tech
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environment introduces three major challenges for people to trace a commit back to the
original patch (and its reviews):

• Reviewing process detached from development process. Patches and reviews
are spread across email messages in one or more mailing lists, while commits are stored
in a version control system like Git (see Figure 5.1). Emails cannot reference the commit
id of a patch that has not been committed yet, while emails do not have a universal
identifier that can be referenced by a commit.

• Accepted commits can differ significantly from original, submitted patches.
During the reviewing process, the reviewers are likely to ask the developer to revise
it. Even after the maintainers integrate the patch into a Git branch, maintainers can
still modify a patch by changing the order of commits (“rebasing”) or filtering out
uninteresting changes from the patch(“cherry-picking”).

• Patches evolve across multiple versions, possibly submitted in multiple email
threads. During the reviewing process, a patch may evolve substantially, yielding a
series of patch versions. Such a version can be sent in a reply to the original email
thread, or sometimes in a new email thread. In the best case, such a sequel thread
is announced in the subject of the new thread, for example “[V2]Patch: remove the
deadlock code in driver subsystem”, however this practice is not enforced and typically
only used by more experienced developers.

In this paper, we propose an approach to recover the full reviewing history of a patch in a
low-tech reviewing environment. This approach mainly consists of two parts: (1) linking a
commit to any email submitting the original patch (often the last patch version), and (2)
linking all emails about the same patch together to reach the first version. We used three
techniques of different strictness and granularity to link commits to emails and emails to
emails: (1) a checksum-based technique (strictest, chunk level), (2) a novel plus-minus-line-
based technique (medium strict, line level), and (3) the CCFinder clone detection tool (least
strict, token level). After tracing the commits to all emails up to their very first patch version,
we are then able to quantitatively analyze (for the first time) the full reviewing history of a
patch sent to a mailing list.

We addressed the following three research questions:

RQ1) Can commits be linked accurately to emails containing the corresponding patch ver-
sion?
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Since emails and git commits are two different media, we first analyze which technique
works best to link an email containing a patch to the accepted commit. The checksum-
based technique has the highest precision (97.9%±5%), while the plus-minus-line-based
technique has the highest relative recall (85.69%±5%).

RQ2) Can emails containing different patch versions be linked accurately to each other?

Since different versions of a patch can be submitted and reviewed across different email
threads, we evaluate different techniques for linking related emails to each other. The
checksum-based technique again has the highest precision (86.98%±5%), while the plus-
minus-line-based technique again obtains the highest relative recall (68.68%±5%). To-
gether, the checksum-based and plus-minus-line-based techniques can discover more
than 95%±5% of the correct patch pairs.

RQ3) What are the characteristics of the reviewing history in a low-tech reviewing environ-
ment?

Given the means to link patch emails to each other and to commits, we can now study
the characteristics of patches having multiple versions. We find that around 25% of the
patches have a full reviewing history of more than four weeks. Patches that underwent
multiple versions have a higher chance to be accepted and especially consist of bug fixes
compared to regular patches.

In the rest of the paper, we first introduce the three techniques we applied (Section 5.2)
and provide our case study setup (Section 5.3), followed by the findings of our case study
(Section 5.4). We conclude with threats to validity (Section 5.5), related work (Section 5.6)
and the conclusion (Section 5.7).

5.2 Three Linking Techniques

In general, to recover the evolution process of a commit, we need to (1) trace it back from
its final version seen (the accepted commit) to the email submitting the committed version
of the patch, then (2) link together all emails containing different versions of the same patch
until we reach the first patch version. Since in both phases one tries to map one version of a
patch to another one, we use and evaluate the same linking techniques for both. We do not
consider the textual content of the reviewing emails themselves, nor commit metadata like
the commit log message or author names, since those contain natural language vocabulary,
which is known to be much more variable and hence harder to link than source code [92].
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Figure 5.2 The evolution process of a patch with multiple versions (“super-thread”).

Figure 5.3 shows an example committed patch in the git format used by Linux and many other
open source systems. The part above the “diff −−git” line consists of commit metadata such
as the commit id, author name, author data and commit log message, whereas the bottom
part contains the actual patch. In this case, the patch describes the changes to a file called
“src/networking.c”, where on line 989 the developer has removed the line starting with a
minus sign and replaced it by the lines starting with a plus sign. The code lines that do
not start with a plus or minus sign correspond to the context of the patch, showing the
surroundings of the changed lines.

Patches can contain multiple bursts of plus/minus lines (multiple changes to one file), and
even multiple “diff −−git” sections changes to multiple files. All changes to one file are called
a “chunk”. The difference between a committed patch (like Figure 5.3) and a patch version
in an email is that for the latter the commit log message occurs as email body, the author
name and data correspond to the sender name and date of the email, and there is no commit
ID attached to the email, since the patch is not yet committed.

5.2.1 Checksum-based Technique

The checksum-based technique is the strictest and most coarse-grained technique[100]. It
computes MD5 hash checksums for each chunk in a commit or email patch, then links each
chunk’s checksum to the most recent email patch chunk with the same checksum. If an email
patch has at least one chunk that was linked to a commit or email chunk, we link the patch
as a whole to that commit or email. Finally, we link two email threads together if they have
at least one linked email pair.

For each chunk, we first filtered out the unchanged code lines (those without plus or minus
sign), remove all white space and capitalization, then concatenate all changed lines (i.e., the
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lines starting with a + or - in Figure 5.3) into one line. After prepending the relative path
name of the file changed by the chunk, we calculate the chunk’s MD5 checksum. We perform
the white space, capitalization and concatenation processing to deal with small changes
done to a patch before merging, and the path name prepending to reduce false positive
matches with similar changes to other files. We perform the same chunk-level procedure to
the commits in the Git repository.

Similar to Bird et al. [57], we did not directly link a whole patch to a Git commit, but used
the intermediate step of chunks, because of “cherry-picking”. This is a common integration
activity where an integrator only picks the interesting parts of a patch and ignores the rest.
Large patches risk not being merged completely, or maybe not in one Git commit. We link
a whole patch to a commit, if at least one of its chunks are linked to that commit.

5.2.2 Plus-Minus-Line-Based Technique

The plus-minus-line-based technique looks for patches containing sufficient identical changed
lines (instead of a whole chunk), which is a compromise between both strictness and gran-
ularity compared to the other two techniques. Hence, the technique mainly focuses on the
lines beginning with a plus or minus sign in Figure 5.3.

The linking algorithm consists of two steps. First, we parse all the Git commits and extract
the changed file name, the changed line type (plus + or minus -) and the line content. We
save all the information into an sqlite3 database in chronological order. Then, we analyze
all emails containing a patch: for each line beginning with a plus “+” or minus “-”, we
query the database to find other emails or commits containing the same changed line in
order to compute the proportion of matched lines with each later patch. Finally, we rank
the matched patches according to the proportion of matched changed lines and output the
matched patch with the highest proportion. To avoid slight changes to the patch during the
reviewing process, we again remove all whitespace of each line (similar to the checksum-based
technique).

5.2.3 Clone-Detection-based Technique

As our third technique, we use the popular CCFinderX clone detection, which is a token-
based clone detection tool that can detect code clones in C, C++, Java, COBOL, and other
source files. It transforms the input source text into tokens, then compares files token by
token, and generates pairs of token sequences (“clones”) that are found to be very similar
(according to some threshold). Since such a technique allows some tokens in the matched
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Figure 5.3 A commit patch example. The line with a beginning of a plus sign “+” indicates
an added line while a minus “-” sign indicates a deleted line.

token sequences to be different, this is the least strict and most fine-grained technique of the
three [55].

We create one file for each patch version and each commit, then feed all files to CCFinderX.
Afterwards (for email to commit links), we remove pairs of clones belonging to two emails
from the output as well as unfeasible pairs where a commit occurred before the email was
sent. Note that to enable CCFinderX to process patches instead of regular source files, we
took the changed lines, removed the plus and minus characters, then put braces around the
resulting code, forcing CCFinderX to consider the changed lines as a regular code block.

Since CCFinderX is known to produce false positives, we need to filter out (email, commit) or
(email, email) pairs with just a few common clones. To help with this, CCFinderX computes
some metrics about the analyzed input files and clones, one of which is the RSA metric. This
metric indicates the similarity percentage between each file (based on the number of common
clones). If two files have an RSA value close to 100%, then one of them is very likely to be a
copy of another file. To use the RSA value as a threshold to filter out false positive pairs, we
rank all the (email, commit) or (email, email) pairs by their RSA value, see Figure 5.4, then
compute the delta in RSA value between each successive pair. We then define as threshold
the RSA value of the (email, commit) or (email, email) pair with the largest delta in RSA,
i.e., where the slope of the tangential line changes the most in Figure 5.4. We filter out the
clone pairs with a value lower than the RSA threshold.
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Figure 5.4 The value of RSA where the tangential line (blue) has the largest slope.

5.3 Case Study Setup

In this section, we present the details of the case study that we performed on the Linux
kernel data to evaluate the three linking techniques.

5.3.1 Data Extraction

This paper uses the Linux kernel as representative example of an open source project with
a low-tech reviewing environment. The Linux kernel reviewing and development process is
supported by the Git distributed version control system, the main kernel mailing list (LKML)
and more than 130 specialized subsystem mailing lists. These mailing lists are archived online
as textual mbox files. After downloading these files from 2009 to 2012, we imported their
content and metadata, e.g., subject and author, into a relational database using MailMiner
[54]. We ignore email attachments, since the Linux kernel developer guidelines state that all
patches should be inlined into the email body.

To analyze those patches that are successfully integrated into an official Linux release, we
collect the commits of Linus Torvalds’ repository from 2009 (start reviews data) until 2012,
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which contains the commit information of accepted patches ( Figure 5.3). Note that some
emails of end 2012 will not have had the chance of reaching Git, however this does not impact
our findings.

5.3.2 Evaluation of Linking Techniques

To evaluate the performance of the three techniques for RQ1 and RQ2, we compute precision
and relative recall for each, and compute “real” recall for RQ2.

In both cases, we manually analyze precision. We sample 384 pairs from the results of each
technique to obtain a confidence level of 95% and confidence interval of 5% [96]. Then, we
run scripts to collect the Git log of a commit and the contents of the email to which a commit
has been mapped in order to manually check attributes such as the title, author and review
comments to determine if the matched commit and patch are really talking about the same
patch.

Since pure recall is hard to compute due to the lack of ground truth, we use the concept of
relative recall in order to measure the sensitivity of the three techniques. Such relative
recall is defined as the number of correctly detected (email, commit) or (email, email) pairs
out of the union of true positive pairs identified during our manual analysis for precision of
the three techniques. Although not identical to pure recall, such a relative recall gives an
indication of the amount of false negatives in the results.

For example, Figure 5.5 shows how technique A detects 7 candidates, 4 of them being correct,
and how technique B detects 6 candidates, three of which are detected correctly. In this case,
the union of all correctly detected candidates is 6, 4 of which are detected by A while 3 are
detected by B. Then, the relative recall of technique A is 4 out of 6 (67%) while the relative
recall of technique B is 3 out of 6 (50%).

In the case of email to email linking, there is a partial source of ground truth, which we
also use to obtain a form of real (i.e., non-relative) recall. Basically, some developers reuse
the same subject for different email threads, or add a qualifier like “[v2]” or “[V 3]”. Using
regular expressions, we recovered such links between threads, then randomly sampled 384 of
them (confidence level of 95% and confidence interval of 5%) as ground truth for calculating
recall.

Finally, we also compare overlap between the results of each technique to figure out if the
techniques are complementary or subsume each other. The overlap is computed by counting
the number of detected pairs shared with the other techniques. If two techniques are over-
lapping substantially, it means that they detect almost the same pairs. On the contrary, if
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Table 5.1 Overview of the reviewing history metrics and dimensions analyzed.

metric name type source explanation

R
ev
ie
w

thr_volume numeric thread Number of email messages between start of current
thread and current patch version.

nr_reviews numeric thread Number of review messages of a patch version.
review_time numeric patch Time in seconds from current patch version to

its last review message.
response_time numeric thread Time in seconds from current patch version to

its first review message.
first_response_time numeric patch Time in seconds from first patch version in thread to

its first review message.

Pa
tc
h

size numeric patch Patch churn (sum of number of added and removed lines).
spread numeric patch Number of files changed by current patch version.

spread_subsys numeric patch Number of subsystems changed by current patch version.
bug_fix boolean patch Does this patch version contain a bug fix

(as opposed to a new feature or enhancement)?
accepted boolean commit Has this email patch version been accepted as a commit?

they are not overlapping too much, they are complementary to each other. In this case, one
should probably use the union of their results for further analysis to obtain the best precision
and recall.

5.3.3 Analysis of the Reviewing Process

As a first application of the linking techniques, we are able to analyze (for the first time) the
reviewing history of kernel commits back to the original submitted patch versions (depending
on the performance of the linking techniques). For this analysis, we introduce the concept
of “super-thread” ( Figure 5.2), which connects all patch versions of a commit to each other
chronologically. We call the sequence of all versions of a patch a “super-thread”, since the
email patches could be spread across one or more email threads. For example (Figure 5.6),
if there are three emails patches Ea, Eb and Ec in three different threads Ta, Tb and Tc,
and we are able to link Ea to Eb, and Eb to Ec, eventually we could link the three threads
Ta, Tb and Tc together. Figure 5.6 illustrates the three different kinds of super-threads: SS
(single patch version, single thread), MS (multiple patch versions, single thread) and MM
(multiple patch versions, multiple threads).

We use the following steps to identify super-threads: (1) mapping each email to its enclosing
thread (based on the mbox data), (2) lifting links between emails up to links between threads,
(3) filtering out pairs within the same thread, and (4) transitively chaining (thread, thread)-
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Figure 5.5 Example of precision and relative recall.

SS MS

MM

Ta Tb Tc
Ea Eb Ec

Figure 5.6 The three types of super-threads.

pairs together if they have at least one thread in common.

We use the best of the three linking techniques to recover the (email, commit) and (email,
email) links. Especially (relative) recall is important, however we also want to avoid too
many false positives. For this reason, we use one or two techniques that together cover a
large enough part of the relative recall, but we also take additional measures to keep precision
high enough. We will discuss these for RQ3.

After recovering the super-threads, we performed quantitative analysis to analyze the re-
viewing history and compare important review characteristics. The characteristics that we
analyzed are listed in Table 5.1. These characteristics cover two dimensions, i.e., “Review”
and “Patch”. “thr_volume” measures the reviewing activity for a patch. A higher value
means that the patch is being discussed more, “nr_reviews” indicates the number of reviews
on a patch version. “review_time” depicts the discussion time for a patch version. The
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“response_time” and “first_response_time” metrics measure the reaction of reviewers to a
patch. “size” indicates how large a patch is. “spread” and “spread_subsys” metrics depict
the invasiveness of a patch. Finally “bug_fix” and “accepted” indicate whether a patch ver-
sion contains a bug fix (i.e., contains the words “bug”, “fix” or “error” [104] in the commit
message) and whether it eventually was accepted as a commit.

5.4 Case Study Results

In this section, we answer each research question and present its motivation, approach and
findings.

RQ1: Can commits be linked accurately to emails containing the corresponding
patch version?

Motivation: In a project like the Linux kernel, where the development process and reviewing
process are supported by separate Git and mailing lists, there is no explicit link between the
reviews of a patch and its corresponding commit. Here, we analyze whether, despite the three
challenges of the introduction, the three linking techniques are still able to link a commit to
at least one of its patch versions. If so, the techniques could be used to retrieve details and
comments about the design rationale of a commit from corresponding emails.

Approach: We applied the three techniques to find the correct (email, commit) pairs. We
then calculate precision, and relative recall of a representative sample of 384 (email, commit)
pairs, one such sample per technique (all percentages need to be interpreted as having a 95%
confidence level ± 5% confidence interval). Finally we also calculate the overlapping results
between the three techniques. The results of precision, relative recall and F-score are listed
in Table 5.2.

Findings: The checksum-based technique has the highest precision in linking
commits to emails. The checksum-based technique detects 216,033 (email, commit) pairs,
while the plus-minus-line-based technique detects 531,381 and the clone-detection-based tech-
nique (CCFinderX) detects 168,408 (after filtering with an RSA threshold of 0.4). After man-
ually validating 384 random samples, we obtained a precision of 97.92% for the checksum-
based technique (376/384), 85.16% for the plus-minus-line-based technique (327/384) and
81.77% for the clone-detection-based technique (314/384).

The checksum-based technique has the highest precision since it is the most strict, which
means that it is very hard to accidentally find two almost identical changes (chunks) to the
same file. The heuristic to match a commit to an email patch as soon as they share one
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Table 5.2 Evaluation of three techniques of linking (email, commit) pair.

technique precision relative recall F-score
Checksum 97.92% 47.68% 0.64

Plus-minus-line 85.16% 85.69% 0.85
Clone-detection 81.77% 37.40% 0.51

common chunk seems to work well. On the other hand, the clone detection approach makes
the most errors since it is the most liberal of the three.

The plus-minus-line-based technique has the highest relative recall. Out of the 992
true positive (email, commit) pairs identified across the three techniques (union of unique
true positives after manual analysis), 473 are detected by the checksum-based technique,
850 by the plus-minus-line-based technique and 371 by the clone-detection-based technique.
The relative recall for each technique is 47.68%, 85.69% and 37.40% respectively. Hence,
relative recall-wise the plus-minus-based technique is almost twice as good as the other two
techniques.

We also found that between 16.98% and 19.23% of the techniques’ true positives mapped a
commit to the last available version of a patch, while more than 80% mapped the commit to
earlier versions (which are more different and hence harder to match). The low performance
of the checksum-based technique is due to activities like cherry-picking or modifications below
the chunk-level. Since checksums are calculated per chunk (i.e., per changed file), a patch that
is modified before being committed just to fix a typo or some other non-whitespace related
reason will yield a different checksum and hence not be linked correctly. This suggests that
the checksum-based technique likely needs to be refined below the chunk level.

The plus-minus-line-based technique has the highest F-score in linking (email,
commit) pair. Since the highest precision and relative recall go to different techniques, to
verify which technique is the best one overall we compute the F-score for each technique,
which is a combination of precision and recall [158]. As expected based on the recall results,
the plus-minus-line-based technique has the highest F-score (0.85), and hence works best for
linking commits to emails. It seems a good compromise between strictness and granularity.
Being less strict means that it can avoid false negatives while its fine granularity still does
not concede too many false positives.

The plus-minus-line-based technique can link the majority of (email, commit)
pairs. Figure 5.7 shows the overlap of results of the three techniques. Only 3.83% and
7.16% of the pairs are identified uniquely by the checksum-based technique and the clone-
detection-based technique respectively, whereas the plus-minus-line-based technique is the
most effective technique for linking commits to email patches.
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Figure 5.7 Overlap of (email, commit) pairs detected by the three techniques.

For linking emails to commits, the plus-minus-line-based technique has the highest relative
recall and F-score, and it covers most of the correct (email, commit) pairs.

RQ2: Can emails containing different patch versions be linked accurately to each
other?

Motivation: In the context of low-tech reviewing environments, the reviewing process con-
sists of replying to emails containing a submitted patch, sent to a developer mailing list.
However, sometimes the contributor may start a new thread to submit a new version of a
patch, causing multiple threads to exist that talk about the same patch (we call this set of
threads a super-thread), yet do not contain an explicit link to each other and to the final com-
mit. Hence, people may regard one thread of a super-thread as the sole reviewing thread of
a certain patch and ignore other related reviewing threads, which will cause underestimation
of the actual reviewing process and miss important design decisions.

Approach: In order to recover the reviewing super-threads, we apply the three linking
techniques to search the emails containing similar patches across different threads. We then
compute the precision and relative recall of the results of each technique, as well as the
overlap between techniques (just like for RQ1). Contrary to email-to-commit linking, we can
also provide real recall based on threads containing annotations in their subject. The results
are listed in Table 5.3. For CCFinderX we obtained a different RSA threshold (0.6) than for
RQ1.

Findings: The checksum-based technique has the highest precision. The checksum-
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based technique detects 3,020,582 (email, email) pairs, while the plus-minus-line-based tech-
nique detects 4,565,857 and CCFinderX detects 6,124,303, respectively. We again randomly
select 384 samples from the results of each technique. After manually validating the sam-
ples, we obtained a precision of 86.98% (334/384) for the checksum-based technique, 51.82%
(199/384) for the plus-minus-line-based technique, and 70.83% (272/384) for the clone-
detection-based technique.

The checksum-based technique again has the highest precision, for similar reasons as for RQ1.
However, the clone detection technique and (especially) the plus-minus-line-based techniques
dropped in precision. The explosion in number of patches available for linking makes the
plus-minus-line-based technique select incorrect patches.

The plus-minus-line-based technique has the highest relative and real recall. Out
of union of 796 true positive (email, email) pairs, 424 are detected by the checksum-based
technique, 547 by the plus-minus-line-based technique and 148 by the clone-detection-based
technique. According to our definition, the relative recall of the checksum-based technique
is 53.27%, of the plus-minus-line-based technique 68.72% and of the clone-detection-based
technique 18.59%.

For email to email linking, we also have an actual ground truth based on a convention in Linux
kernel reviews where the subjects of patch versions include tags like “V2” or “v3”. Starting
from the 463,697 subjects of the first email of each thread, we used regular expressions to
remove version tags like “V2” or “v3”, then counted how many subjects become identical
(only difference was the tag). Only 1,912 subjects (i.e., 0.41% of the threads) could be linked
this way. Although only few experienced contributors follow this convention, we randomly
selected 384 samples with confidence level of 95% and confidence interval of 5% as ground
truth, then checked how many of them are detected by each technique.

We found that the recall of the checksum-based technique is 76.83%, of the plus-minus-
line-based technique 80.47% and the recall of the clone-detection-based technique is 23.44%.
Although the values are slightly higher than the relative recall, it follows the same trend. As
in RQ1, the plus-minus-line-based technique still has the highest (relative) recall, but with
a lower performance than for (email, commit) pairs. The checksum-based technique does
better than for email to commit pairs, while the clone-detection-based technique loses half of
its relative recall compared to email to commit pairs. Note that, similar to RQ1, most of the
true positive results were relatively hard to match: less than 8.72% of the matched pairs of
each technique consisted of patch versions sent in the same thread, all others were between
patch versions in different threads!

The checksum-based technique has the highest F-score. Since the highest precision
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and relative recall again belong to different techniques, we compute the F-score for each
technique, similar to RQ1. The highest F-score goes to the checksum-based technique.

The checksum-based and the plus-minus-line-based techniques are complemen-
tary. Using the ground truth of 796 (email, email) pairs for relative recall, we can see
(Figure 5.8) that 21.08% of them are detected only by the checksum-based technique, while
39.37% could only be found by the plus-minus-line-based technique compared to 4.99% by
the clone-detection-based technique. The combination of the checksum-based and the plus-
minus-line-based techniques together take up more than 95% of the ground truth.

To better understand the performance of each technique, we randomly picked 10 pairs from
the results of each technique that are only detected by itself to analyze their characteristics:
The patches only linked by the checksum-based technique, typically range from 15 LOC
to 3,334 LOC, with an average size of 427.6 lines, compared to 3 LOC to 541 LOC (99.5
LOC on average) for the plus-minus-line-based technique and 45 LOC to 7,844 LOC (1,196.7
LOC on average) for the clone-detection technique. This difference stems from the fact that
the checksum-based technique matches full chunks instead of fine-grained lines or groups of
tokens. Furthermore, the plus-minus-based technique only matches pairs of patches who have
a majority of lines in common, which makes it hard for patches with uncomparable size or
large patches to obtain a match. Finally, the very large size of clone-detection-matches does
not just come from the minimum size threshold used by clone detection tools, but rather
from the many false positives amongst small clones. Generic patch lines consisting just of
an assignment or a for-loop will be matched to many emails incorrectly, while large sets of
lines or whole files containing common lines have a much higher chance of being uniquely
distinguishable and hence map only to the right patch.

For linking emails to emails, the checksum-based technique overall performs the best,
whereas it requires the plus-minus-line-based technique to obtain a higher recall.

RQ3: What are the characteristics of the reviewing history in a low-tech review-
ing environment?

Motivation: Now that we have successfully evaluated algorithms to link commits to their
earlier email patches, we can now (for the first time) study low-tech reviewing environments
from a quantitative point of view. Similar to studies on modern reviewing environments
[40][48][159], one can now study the following questions: How long do email-based reviews
take? How many reviewers and reviews are there? Since this paper is the first to trace back
from a commit to the earliest emails containing patch versions, we also try to understand
why some patch versions are spread across multiple threads. Is this a bad situation for a
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Table 5.3 Evaluation of the three techniques for linking (email, email) pairs.

technique precision rel. recall F-score real recall
Checksum 86.98% 53.27% 0.66 76.83%

Plus-minus-line 51.82% 68.72% 0.59 80.47%
Clone-detection 70.83% 18.59% 0.30 23.44%

21.08%

6.04%

5.25%

4.99% 39.37%

20.91%

2.36%

plus-minus-line-basedclone-detection-based

checksum-based

email-email

Figure 5.8 Overlap of (email, email) pairs detected by the three techniques.

submitter (lower acceptance rate?) and reviewers (waste of time to review later versions?),
or rather a recipe for success (higher acceptance rate?)? What kind of patches (bug fixes,
large vs. small, etc.) typically have multiple versions?

Approach: To answer the above questions, we combine the best and most complementary
techniques for linking emails to emails (the checksum-based and the plus-minus-line-based)
to obtain a linking technique capable of obtaining a high precision and recall for recovering
the super-threads of commits on the full data set, not just on a sample of 384 pairs.

Manual analysis of the resulting super-threads showed several infeasible matches with emails
more than ten years apart. To filter out such matching results, we only keep super-threads
with a time duration below the upper tail (ut) of the data set according to the following
formula [159]:

ut = (uq − lq) ∗ 1.5 + uq

Among them, uq indicates the 75% quartile, while lq indicates the 25% quartile of the data
as shown in Figure 5.9. The data with value higher than the upper tail uq are considered to



68
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scale
Figure 5.9 Boxplot indicating how to remove the outliers in our data.

be outliers and we remove them. Note that (contrary to RQ1 and RQ2) this RQ considers
both patches that are accepted (linked to a commit) as well as those that are rejected (no
corresponding commit).

Findings:

Qa) How far back does the reviewing history of a patch version go?

Around 25% of the MM patches has a previously “hidden” reviewing history of
more than four weeks. We analyzed the time duration of the MM super-threads, i.e., from
the very first design discussion until the last discussion of a patch (possibly across multiple
threads in case of MM). Table 5.5 shows that most of the super-threads consist of only few
patch versions (Mean. value is 3.172), but can last a long time (Mean. value is 21.341 days).
More than 25% of the patches have a reviewing time that is 4.5 weeks longer than considered
by researchers thus far [100].

Qb) What kind of patches undergo multiple patch versions?

Patches evolving across multiple versions are larger and affect more files than
those with a single version. The patches from threads of type MM (especially) and MS
have higher values for “size”, “spread” and “spread_subsys”, as shown in Table 5.4. This
indicates that the patches undergoing multiple versions tend to be larger and more complex,
and hence need more attention before being integrated. Surprisingly, such invasive patches
seem to feature especially in single threads, rather than multiple ones. As we will see below,
this means that they are still integrated relatively quickly, whereas the patches that need
more versions tend to be slightly less invasive. A Kruskal-Wallis test with post-hoc tests
verified the significant difference.
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Table 5.4 Average value of characteristics in different types of threads (including rejected
patches).

metric name MM MS SS

R
ev
ie
w

thr_volume 3.838 6.051 3.533
nr_reviews 1.046 1.936 1.165

review_time (day) 1.932 3.022 2.271
response_time (day) 0.871 1.131 1.030

first_response_time (day) 0.801 1.215 1.010

Pa
tc
h size 81.660 146.100 25.430

spread 2.398 3.811 1.016
spread_subsys 1.387 1.750 1.003

O
th
er acceptance 46.05% 43.97% 23.26%

bug-fix 49.94% 36.72% 31.10%

Table 5.5 Time duration (#days) of the super-threads of type MM.

time duration # of patch versions
Min. 0 2.000

1st Qu. 2.687 2.000
Median 10.061 2.000
Mean 21.341 3.172
3rd Qu. 32.923 3.000
Max. 107.524 108.000

Qc) What kind of patches undergo multiple threads?

Kernel developers use multiple threads if too much time has passed since the
previous patch version. We compared the time distribution of the interval between two
successive threads to that of two successive patch versions within one thread. The result is
shown in the boxplots of Figure 5.10. We can see that the time interval of threads is much
longer than that of patch versions. This seems to confirm the intuition that people typically
start a new thread when too much time has passed since the last review or version of a patch,
whereas they would continue the same thread otherwise. A Mann-Whitney test with as null
hypothesis “no difference between the average of both time distributions” obtained a p-value
<2.2e-16, which confirms that the differences are statistically significant.

Threads of type MM especially consist of bug-fixes. Out of all MM threads, 49.94%
are bug-fixes, compared to 36.7% for MS and 31.10% for SS threads. The pair-wised Mann-
Whitney test show that MM has no significant difference with MS, but that MM and MS are
significantly different from SS.
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Figure 5.10 Boxplot of average time interval (#days) between two successive patch version-
s/threads of super-threads.Given the log-scale, a value of 1e-05 in fact denotes zero.

On the one hand, this finding seems surprising, since one would expect bug-fixes to be smaller
and hence require less discussion. On the other hand, bugs might be risky to fix, and hence
require care and thorough reviews.

Qd) Do reviewers lose interest in multi-version patches?

Patches of MM and MS threads involve more discussion than SS threads. We
compared the number of reviews discussing a patch for the three different types of threads.
The value of “thr_volume” of MM and MS patches is higher than for the SS, which means
that if a patch needs to undergo one or more additional versions reviewers seem to discuss
more about it and provide more constructive comments to help improve it to be accepted.
The amount of reviewing hence does not suffer from having multiple versions of a patch. A
Kruskal-Wallis test with post-hoc tests showed that the three groups are different from each
other.

Patches of type SS and MS have fewer number of reviews. SS and MS patches
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receive the most receives (nr_reviews), and hence take more review_time as well. Hence, it
seems like patches evolving across multiple versions attract fewer reviews. A Kruskal-Wallis
test with post-hoc tests showed that the difference is significant. One possible explanation
could be that MM patches received the majority of their reviews early on, with later patch
versions receiving more focused reviewing.

Reviewers are more eager to review MM threads. Although we did not find a sta-
tistically significant difference between the distributions of metrics “response_time” and
“first_response_time” for SS and MS, we found that MM threads significantly take less time
before the first review. Reviewers seem to consider such patches as having a higher priority
than other types of superthreads.

Qe) Do multi-version patches have a lower chance of acceptance?

No, threads of type MM in fact have a higher acceptance rate. In Table 5.4, we have
marked a super-thread as accepted if at least one of its patch versions could be linked to a
commit. We found that the threads of type MM have the highest acceptance rate (46.05%),
followed by MS patches with 43.97% and SS patches with 23.26%. A Kruskal-Wallis test
for comparison of the characteristics among the three groups shows for all 3 patch-related
metrics a p-value <2.2e-10, meaning that at least one is significantly different from the
others. Subsequent post-hoc tests show that all three are significantly different from each
other. In other words, being asked by reviewers to write a second or later patch version is
not a guarantee for success, but at least a good sign: reviewers see potential and really want
to work on the patch.

5.5 Threats To Validity

Threats to external validity concern the fact that we have only studied one large open
source system. The Linux kernel is a prime example of a large open source project that uses
its mailing list as reviewing environment. We cannot automatically generalize our findings to
other projects, potentially supported by different reviewing mechanisms. Furthermore, since
Git is a flexible version control system that can be used in various setups, we also need to
take care of extrapolating our findings to other projects using Git or other version control
systems. Hence, more case studies on other projects are needed.

Threats to internal validity concern the relationship between treatment and outcome.
Since we did not study causal relationships, but quantitatively analyzed the characteristics
of the reviewing history, we do not consider threats to internal validity.
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Threats to construct validity concern the relation beween theory and observation. We
link the different threads belonging to the same super-thread together. However, the three
techniques that we applied are not perfect (precision and relative recall below 100%). Al-
though we use the complementary results of two techniques to improve the precision and
recall, and remove the outliers in the final results, the super-threads may not be the real
super-threads, due to false positive noise. However, given the amount of email and commit
data that we consider, we believe that the impact of noise is tolerable and that the resulting
trends are valid.

5.6 Related Work

Our work is mainly related to previous studies on the code review process of on open source
projects, traceability, mining unstructured log data and clone genealogies.

Rigby et al. [136] analyzed the code review process in the Apache open source system. They
found that small, independent, complete patches are faster to be accepted. In our paper,
we found that the patch versions in a super-thread are examples of patches that take longer
to be accepted. Since they seem to be larger and more invasive, this confirms Rigby et al.’s
findings

Bettenburg et al. [51] found that accepted contributions are on average 3 times larger than
rejected contributions, however, we did not study this phenomenon here.

Rigby et al. [134] studied the peer review process of a traditional inspection of a Lucent
project and six open source projects. They found that smaller changes take shorter review
time and the time from the start of the review to the end of the review was on the order of
weeks. Both of the findings are verified in our paper.

Mcintosh et al. [115] studied the impact of modern reviewing environments (Gerrit [95])
on software quality. The impact is assumed to be due to a large amount of freedom that
reviewers have when reviewing at their moment of choice via a website. It is not clear if
low-tech reviewing environments based on emails have the same issues.

Jiang et al [100] studied the integration process of the Linux kernel project. However, they
only considered the reviewing history inside the current thread and did not consider the
possibly “hidden” super-thread reviewing history. To our knowledge, the current paper is
the first to study the whole patch reviewing process across multiple threads in a low-tech
reviewing process, we also analyze the impact of different thread types on the acceptance
probability and the characteristics of different thread types.

There has been a lot of research on traceability between source code and software-related
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documents [38][81][82]. However, our work is the first to trace the commit back to its origin to
figure out its rationale. Bettenburg et al. [55] proposed an approach to link email discussion
text to source code fragments based on clone detection technique. This is one of the three
techniques in our work. Bettenburg et al. [52] developed a tool for mining the structural
information from natural text bug reports. Bacchelli et al. [41] proposed an approach to
classify email content into different source code artifacts at the line level. Since Git patches
have a very rigid format, we did not need to use there techniques to identify the Git patches
in emails.

Our work is also related to the research on the vast body of code clone genealogies during the
software evolution process [53][72][104][110], since those also track code (changes) across time.
Our work combines clone genealogies with the reviewing process in a low-tech environment
to help developers and reviewers understand the design rationale of patches.

5.7 Conclusion

Tracing the reviewing process of a patch to figure out its rationale plays an important role in
software maintenance. However, a low-tech reviewing environment is still commonly used in
many open source systems. In our study of the Linux kernel project, the reviewing and de-
velopment process are separated and furthermore, a patch may vary across multiple versions
and threads. In this paper, we propose an approach to recover the full lifecycle from commits
to emails and analyze the characteristics of different types of reviewing threads. We found
that the plus-minus-line-based technique is the best to link (email, commit) pairs, while the
combination of the plus-minus-line-based technique and the checksum-based technique works
best for linking (email, email) pairs.

As a first application of the recovered email to email links, we quantitatively analyzed the
reviewing process in a low-tech environment and found that around 25% of the patches have
a reviewing history of more than four weeks. Patches with multiple versions seem to be
larger and impact more files, while they are spread across multiple threads if they contain
bug fixes and long time has passed since the previous patch. Having to submit additional
patch versions is not a disaster, since relatively more such patches are accepted than for
patches with just one version, and reviewers keep on being interested in subsequent versions.

Our work opens up the possibility to compare low-tech reviewing environments head-to-head
with modern reviewing systems. We consider this to be our future work.
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CHAPTER 6 ARTICLE 3: EMPIRICAL CASE STUDY OF HYBRID
INTEGRATION APPROACH

Yujuan Jiang, Josh Chiang, Budhai Roy, Bram Adams

Abstract

The traditional “Branching” integration approach forces a major problem: “In-
tegration Conflicts”. Such conflicts are caused by long term isolation, and take
developers effort and time to fix. A new integration technique, “Toggling”, came
up as a solution by hiding features behind “if” conditions to solve this problem,
which allows teams work on different features on only one branch. However, tog-
gling causes controversial arguments about its tendency toward technical debts
as well as code complexity. So far, as many IT companies like Facebook and
Google have adopted toggling in their systems, many companies are trying to
migrate to this new technique. However, changing to this new technique from
scratch might be risky because of lack of experience and guidelines. We study a
project that adopted a compromise combining branching and toggling together
(hybrid). We look into the difference between the current hybrid structure and
the original pure branching structure from two perspectives (Integration Effort
and Productivity), aiming to understand if this hybrid structure works better
than branching. We found that the hybrid approach can help reduce integration
effort and improve productivity compared to the branching. Hence, this com-
promise might be a good choice for companies that want to adopt toggling in
their development process.1

6.1 Introduction and Motivation

Branching is an integration technique of that allows developers to work on a copy (“branch”)
of a repository (“trunk”). Developers can integrate (merge) any change task to trunk when
ready. Hence, Branching enables different teams to work on different features in parallel
isolatedly. This isolation helps prevent disturbing each other, yet also causes one of the
major issues of branching, which are so-called “Integration Conflicts”.

This is because after working separately for a long time, the original context where developers
started might have been changed by other developers. Then, developer need to spend time

1Paper submission pending on agreement by company.
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and effort to fix these conflicts in order to merge new code changes. For example, developer
A uses a public variable x in his new function, while developer B changes the permission
of variable x to private. After developer A integrates his change into trunk, it will fail to
compile the new version because the variable x is no longer accessible. Now developer A
needs to discuss with B about how to fix this problem, which could take a long time and
require coordination between different teams.

Toggling (also called “switches”, “flags” or “flippers”) emerged in order to overcome the
“Integration Conflict” problem typically associated with branching. Different teams will work
on only one branch, using individual conditional statements (“toggle”) to isolate different
tasks (“feature”). For example, if a new feature is under development, the whole code block
is toggled by an if statement “if(featureIsReady)”. If we set the toggle “featureIsReady” to
be true, the whole feature code block will be visible and can be tested, otherwise if the toggle
is false, this code block will have no impact on the whole project, no matter if it is ready or
not. Once this feature is stable in a couple of releases, the conditional code will be removed
and the feature will become permanent.

Theoretically, toggling should help overcome the isolation problem of branching, yet at the
same time it has been criticized for its own problems such as introducing technical debt and
increasing complexity. Currently, many IT companies such as Facebook, Google and Flickr
have adopted toggling in their development to replace older branching structure, in order
to deliver new features sooner to their end users. However, so far there has not been any
quantitative evidence yet about whether adopting toggling really improves the integration
efficiency. Furthermore, as this is a rather new phenomenon, for those companies trying this
new technique there is a lack of good practices and prior models to follow. As such, it might
be too risky for a commercial company to completely replace traditional branching.

Given this challenging practice, a compromise might be recommended at the beginning.
Technically, one can combine branching and toggling together in a hybrid structure, where
toggles are used in a branching structure. Eventually, if toggles really work better, branches
can be removed gradually and the whole project can migrate to full toggling. If this hybrid
structure also improves integration efficiency and helps avoid integration conflict, it is a good
start for companies that want to try this new integration technique.

In this paper, we empirically study a project that adopts the hybrid structure (combination of
branching and toggling), aiming to understand if this compromised solution really works. We
will compare the two integration approaches (hybrid and pure branching) from the following
two perspectives:
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RQ1) Does hybrid structure take less integration effort than branching?

It turns out that the hybrid structure helps reduce more integration effort than branching,
and takes less time to finish a complete feature.

RQ2) Does hybrid structure improve productivity?

It turns out that hybrid structure helps accept more production code and abandons less. The
hybrid structure also helps reduce the number of revisions a patch needs to go through before
being accepted. Additionally, the hybrid approach integrates more but smaller commits, while
the whole contribution is larger than for a branching approach.

6.2 Related Work

Continuous Integration. Continuous Integration (CI) [62] [142] is a practice of release
engineering that encourages developers to integrate any new change they make into the
central code base as soon as possible. Along with this concept, a lot of practices have
emerged, such as automated unit tests [29] [161], automated build server (e.g., Jenkins)
and DevOps [46], in order to improve the integration efficiency. There are more and more
researchers and workshops that focus on how to produce and deliver good product faster and
better [21] [32]. However, as far as we know, our work is the first quantitative comparison
of toggling & branching integration techniques.

Branching & Toggling. Branching and toggling are two integration techniques. Branching
avoids developers from disturbing each other, but does not deal well with “Integration con-
flicts”, while toggling allows team to work on the same branch, but increases code complexity
and technical debt [7] [8]. Our work is the first to compare the two integration technique in
practice from multiple dimensions to figure out if there is a compromise between these two
techniques.

Key Performance Indicator (KPI).

A Key Performance Indicator (KPI) is a management tool that is used to measure the
performance of a developer or the effect of development activities. KPIs are not only used
for business and marketing, in IT industry field they are also widely used to supervise the
health of a community or a system [127]. Fotrousi et al. [78] conducted a literature review
about 34 relevant studies about KPI. They gave recommendations to practitioners about how
to use KPIs in the management of an ecosystem and showed researchers the gap between
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theory and practical use of KPIs. Our work is the first to use KPIs to quantitatively analyze
the impact on development performance of different integration techniques.

Rotella et al. [140] at Cisco studied how quality metrics work and how to implement
applicable metrics to meet quality requirement. Our work is the first one to use quantitative
metrics to compare two different integration techniques and figure out which one works better
in practice.

6.3 Approach

6.3.1 Selecting Case Study

Project P of company S (anonymous names) was launched in May 2014. Project P is a cloud-
based data analytics software, containing more than eight million lines of code contributed
by more than six hundred developers. This project started with a branch-based integra-
tion approach in their development process, and as of May 2015 started adopting “Feature
Toggling” to improve the integration and testing efficiency. As removing all branches would
be a large step to take, they do not eliminate all branches but adopted a hybrid structure
(combination of branching and toggling), where there still exists a trunk branch with toggles
being used to determine whether release a new feature to next version.

Figure 6.1 shows the structure of this project of all code repositories before and after adopting
toggling in development process. The central white node is the trunk, which houses the whole
product’s code base. The red nodes are those sub-branches that contribute to the central
branch.

6.3.2 Feature Contribution

In order to check if a hybrid structure works better than a pure branching integration ap-
proach, first we introduce the concept of “Feature Contribution”. As shown in Figure 6.2,
when a new feature is started being developed, developers need to fork a feature branch from
trunk (sync-up). Once this feature is completed, developers need to integrate all changes on
this feature branch back to trunk (merge). Before the final merge, there could be additional
sync-ups from trunk to feature branch, in order to keep the branch synchronized with trunk.
A “Feature Contribution” consists of all commits from the first sync-up until final merge
back to trunk. It corresponds to a contribution cycle of submitting a complete feature.
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6.3.3 Data Collection

We collected the data of this project from May 2014 until September 2015, mainly from
three sources, including the build information from the CI server Jenkins (e.g., the number
of releases and the release date), review information from the Gerrit reviewing system (e.g.,
the number of patch versions a commit went through, and whether a commit is accepted or
abandoned at the end) and development information from Git (e.g., the number and date of
commits).

6.3.4 Key Performance Indicators

In order to compare the two techniques, we used a group of KPIs (Key Performance Indica-
tor) that are used to measure performance and production activities in this company, after
discussing with engineers of this company. Finally, we nailed down two main KPIs covering
different dimensions (shown in Table 6.1). These KPIs are the most concerned ones from
the industry perspective.

Integration Effort indicates how difficult it is to integrate a commit into the trunk. Prac-
tically, when a branch is merged in another branch seamlessly, the branch’s merge commit
should be empty. On the contrary, if a commit does not fit in perfectly, and causes integra-
tion conflicts, developers need to manually fix the conflicts in the merge commit. The more
adaptation needs to be made, the larger this merge/sync-up commit will be. We define the
integration effort as sum of lines of code of all sync-up and final merge commits during a
“Feature Contribution” cycle ( 6.2):

Integration Effort =
∑

(ESyn) + EFm (6.1)

Table 6.1 KPIs and corresponding decsription.

Dimension KPI description

Integration Effort
Integration Effort Sum of LOC of sync-ups and merge commits of

one feature contribution.
Normalized Effort Integration Effort per Contribution LOC.
Integration Time # Days a feature contribution cycle lasts.

Productivity
Volume # abandoned/accepted patches per calendar week

(across all branches vs. only master branch).
Contribution Size Size of individual commits & complete contribution.
Revision Number # Revisions one single commit goes through before

being accepted/rejected.
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Figure 6.2 Process of contributing a feature (Blue arrow indicates sync-up and red indicates
merge).

Effort is the total integration effort of contributing a feature, while ESyn means the effort of
sync-ups and EFm means the effort of final merge.

Furthermore, we also normalize the integration effort by the size of the whole contribution,
to reduce the impact of large features.

Normalized Effort = Integration Effort

Size of Complete Contribution
(6.2)

Besides code, we also consider the time length of a feature contribution cycle (“Integration
Time”). This is defined as the number of days from the first sync-up until final merge back
to trunk.

Integration T ime = # of Days of a Feature Contribution (6.3)

Productivity: In the development process of project P, a commit needs to go through peer
review before being merged into trunk branch. Patches are submitted and reviewed, once
integrated they become a commit. If this patch passes the automatic testing/building system
(i.e., Jenkins), it will be integrated into trunk as a commit. Otherwise, the developer of this
patch needs to still work on this patch according to feedback from reviewers and later submit
another version of this patch. A commit may experience multiple patch versions before being
accepted.

First, we use the number of accepted and abandoned commits per calendar week to mea-
sure productivity. More commits being accepted, or on the other hand, less commits being
abandoned indicates a high productivity.
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Productivity = Accepted |Abandoned Commits per Calendar Week (6.4)

We also use the size of single commits as well as the complete feature contribution (the real
production code integrated in a feature contribution cycle) to measure the productivity of
the two approaches.

Contribution Size =
∑

LOC of Single Commit or Complete Feature Contribution (6.5)

Additionally, we use the number of patch versions to indicate the efficiency of acceptance or
abandonment.

Revision Number = #Patch V ersions per Commit (6.6)

6.4 Case Study Results

6.4.1 Integration Effort

Motivation: In the ideal situation, a commit should be integrated into trunk without any
additional effort. Otherwise, it would take developers effort and time to fix these inconsis-
tencies. Thus, a good integration approach should help developers avoid the potential of
integration conflict and reduce the effort needed to fix a conflict, as well as integrate or give
up a feature contribution as soon as possible.

Approach: We compare the integration effort and normalized effort for both branching and
hybrid structure, as well as the number of days a feature contribution cycle lasts.

We visualize the distribution with beanplots, which is a visualization tool based on boxplot
but with extra density information.

Findings: A hybrid structure takes less effort to contribute a new feature than
branching. Figure 6.3a shows the total integration effort of branching and hybrid structure
respectively. We can see that the raw integration effort of branching (with a median value of
16 lines of code) is higher than for hybrid structure (median of 13). However, the t-test did
not show significant difference. After normalizing this effort by the size of the contribution
size (Figure 6.3b), we observe that branching still takes more relative integration effort
(with a median value of 0.027 effort per line of churn) than the hybrid structure (median
of 0.007). This time, the t-test shows a significant difference between both distributions. A
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further effect size test shows that this difference is a medium one, which indicates that the
integration effort per code line would be reduced by toggling.

This seems to confirm the intuition that toggling enables developers to submit new changes
sooner such that the integration conflicts are less common or easier to fix because of the
shorter isolation time.

Toggling takes the same time to merge a commit as branching. Figure 6.4 shows
the time it takes branching/hybrid structure to merge or give up a completed feature con-
tribution. The black bean represents the distribution of acceptance while the grey bean
represents the distribution of abandonment. We can see that hybrid structure takes longer
to merge/abandon a contribution than branching. It takes toggling 1.07 days to abandon
and 1.12 days to merge a contribution (in terms of median value), while branching takes
0.81 days to abandon and 0.79 days to merge a complete contribution (median). However, a
statistical test did not show a significant difference for the time distribution, so basically the
time of an integration does not differ too much between these two integration approaches.

This could be because (1) with toggling, the average contribution size increases so the time
it takes to complete a feature contribution also increases (we will indeed see such an effect
later on); (2) company S has been using this hybrid approach only for a short time, it could
still take developers time to get used to the new structure and technique. A follow-up study
should be conducted to verify whether the integration time is reduced after the new structure
is more steady. �

�
�
�

Hybrid-toggling takes less effort to inte-
grate a new contribution.

6.4.2 Productivity

Motivation: Productivity is a very important indicator for an industrial company, since it
hooks up directly with the market. The higher the productivity is, the faster the new features
and bug-fixes are sent to end users. Boiling down to low-level details, high productivity means
fewer reviews/revisions a commit goes through to get integrated, less waste (abandonment)
of production code, less time to review a commit and larger contribution size. A good
integration technique should help achieve this high productivity in practice.

Approach: We count the number of accepted/abandoned commits per calendar week for
both techniques. In order to control the numbers we also normalized by the total number of
commits. Additionally, we applied the same process on trunk only to see if the same trend
still holds.
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Figure 6.4 # days to accept/reject a contribution (black: abandoned, grey: accepted).
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Furthermore, in order to understand the deep reason of the difference, we also looked into the
size of accepted/abandoned commits, and the number of patch revisions an accepted commit
went through before being abandoned/merged.

Findings: A hybrid structure accepts more commits and abandons less commits
than branching. Figure 6.5b indicates that the number of accepted/abandoned commits
per calendar week are both higher for toggling than for branching. After being normalized by
the total number of commits, we found that hybrid structure accepts a higher percentage of
commits and abandons less than branching (Figure 6.5a). This also holds when considering
only trunk (Figure 6.6). This indicates that toggling can increase the velocity of commit
integration, because toggling enables developers to integrate their code whenever they want.
This makes the integration process and the feedback goes faster, such that evaluation of
commits (accept or abandon) is made sooner.

A hybrid structure integrates more but smaller individual commits, yielding
larger feature contributions in total. Figure 6.7a indicates that the size of abandoned
and accepted commits of the hybrid structure are both smaller than for branching (Figure
6.7a). Figure 6.7b shows the distribution of churn size of contributions. We can see that
toggling has a high median value (with a median value of 390 lines of code) than branching
(median of 165). A following t-test proves the significant difference. This is because toggling
enables developers to integrate their work into code repository as soon as any change has
been made, not having to wait until the whole features are completed. At the same time, it
helps reduce integration conflicts and speed up testing, so that a feature could be finished
and merged faster.

Hybrid and branching requires the same number of revisions to integrate com-
mits. Figure 6.8 demonstrates the number of reviews a commit needs to go through before
being accepted or abandoned. We find that the numbers do not differ between toggling and
branching, and most of the commits are accepted or abandoned in the second round (have
at least one patch version). This no difference is likely because integration does not impact
the review process, in the sense that independently from integration mechanism developers
still make mistakes in their initial patch submissions.

�

�

�



Hybrid accepts more and abandons less
commits per calendar week. It also in-
tegrates more but smaller individual com-
mits, yielding a large total contribution.
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Table 6.2 The median number/ratio of abandonment/merge of branching/hybrid per calendar
week.

branching hybrid
sum of all patches per week 54.0 720.5

# abandoned patches 9.00 104.5
# merged patches 48.00 590.0

ratio of abandoned patches 19% 16%
ratio of merged patches 78% 82%

6.5 Threats to Validity

6.5.1 External Validity

In this work of comparing two integration techniques (branching and hybrid-toggling), we
studied a commercial project from an industrial company, which adopts a hybrid integration
approach combining branching and toggling. On one hand, this helps us reduce noise and
focus on the same project. On the other hand, this restricts our analysis to a closed envi-
ronment and cannot generalize our findings to projects in other different conditions such as
open source systems.

However, access to software systems using toggles is still scarce [132], let alone projects that
migrated for toggling. Hence, to our knowledge, our work is the first study on this topic.

6.5.2 Internal Validity

This project was launched as of May 2014 and started with branch-based integration for
about six months, then migrated gradually to toggling approach. We studied one year of
history of this project, assuming the first six months are branch-based and the latter six
months are toggling-based. This short time period may not reveal the full characteristics of
hybrid structure and impact our findings.

6.5.3 Construct Validity

The threat to construct validity concerns about the KPIs. The KPIs in this study are
used by this company to measure the performance of individual developers and development
activities. They are mainly proposed by managers based on their specific expectations and
the reality of this company. Although this means that the company’s developers will focus
on these KPIs, since they are evaluated based on them, in a different company or context,
there might be different key indicators such that the KPIs should be adjusted accordingly.
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6.6 Conclusion and Recommendation

Branching and Toggling are two integration approaches. Branching isolates different teams
by working on different feature branches, which causes costly integration conflicts. Toggling
enables teams working together on different features on one branch, but with extra code
complexity and technical debts.

Toggling has been adopted by many companies in practice like Google and Facebook. How-
ever, so far there is little quantitative work studying whether this technique really works
better than branching. Companies wanting to try out this new technique lack a good guide-
book to follow, while it might be too risky to migrate to this new integration approach
completely.

In this paper, we conducted an empirical study to analyze a hybrid structure that combines
both branching and toggling integration to see whether it works better than pure branching
from two perspectives: “Integration effort” and “Productivity”.

We find that this hybrid structure takes significantly less relative integration effort than
branching, and makes larger contributions. In terms of productivity, a hybrid structure helps
accept more commits and abandons less per calendar week, reduce waste and help integrate
more production code.

Based on our case study results, we would recommend any company that wants to start
adopting toggling for integration to:

In the beginning, it would be a good choice to start with a combination of
branching and toggling. If the company wonders if there is potential risk of thoroughly
migrating to a new structure, especially for a project that has been developed for a while,
it then can try partially adopting toggling into the organization, such as the case study
company. One can keep the old structure (e.g., branching-based), while using toggles can
help A/B testing and introduce new features. This can also help save integration effort and
improve productivity.
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CHAPTER 7 ARTICLE 4: CO-EVOLUTION OF INFRASTRUCTURE
AND SOURCE CODE - AN EMPIRICAL STUDY

Yujuan Jiang, Bram Adams

Abstract

Infrastructure-as-code automates the process of configuring and setting up the
environment (e.g., servers, VMs and databases) in which a software system will
be tested and/or deployed, through textual specification files in a language like
Puppet or Chef. Since the environment is instantiated automatically by the
infrastructure languages’ tools, no manual intervention is necessary apart from
maintaining the infrastructure specification files. The amount of work involved
with such maintenance, as well as the size and complexity of infrastructure spec-
ification files, have not yet been studied empirically. Through an empirical study
of the version control system of 265 OpenStack projects, we find that infras-
tructure files are large and churn frequently, which could indicate a potential of
introducing bugs. Furthermore, we found that the infrastructure code files are
coupled tightly with the other files in a project, especially test files, which im-
plies that testers often need to change infrastructure specifications when making
changes to the test framework and tests.1

7.1 Introduction

Infrastructure-as-code (IaC) is a practice to specify and automate the environment in which
a software system will be tested and/or deployed [97]. For example, instead of having to
manually configure the virtual machine on which a system should be deployed with the right
versions of all required libraries, one just needs to specify the requirements for the VM once,
after which tools automatically apply this specification to generate the VM image. Apart
from automation, the fact that the environment is specified explicitly means that the same
environment will be deployed everywhere, ruling out inconsistencies.

The suffix “as-code” in IaC refers to the fact that the specification files for this infrastructure
are developed in a kind of programming language, like regular source code, and hence can
be (and are) versioned in a version control system. Puppet [154] and Chef [150] are two of
the most popular infrastructure languages. They are both designed to manage deployments

1This paper has been published in the conference of Mining Software Repositories 2015.
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on servers, cloud environments and/or virtual machines, and can be customized via plug-ins
to adapt to one’s own working environment. Both feature a domain-specific language syntax
that even non-programmers can understand.

The fact that IaC requires a new kind of source code files to be developed and maintained in
parallel to source code and test code, rings some alarm bells. Indeed, in some respects IaC
plays a similar role as the build system, which consists of scripts in a special programming
language such as GNU Make or Ant that specify how to compile and package the source
code. McIntosh et al. [114] have shown how build system files have a high relative churn
(i.e., amount of code change) and have a high coupling with source code and test files, which
means that developers and testers need to perform a certain effort to maintain the build
system files as the code and tests evolve. Based on these findings, we conjecture that IaC
could run similar risks and generate similar maintenance overhead as regular build scripts.

In order to validate this conjecture, we perform an empirical case study on 265 OpenStack
projects. OpenStack is an ecosystem of projects implementing a cloud platform, which re-
quires substantial IaC to support deployment and tests on virtual machines. The study
replicates the analysis of McIntosh et al. [114], this time to study the co-evolution relation-
ship between the IaC files and the other categories of files in a project, i.e., source code, test
code, and build scripts. To get a better idea of the size and change frequency of IaC code,
we first address the following three preliminary questions.

PQ1) How many infrastructure files does a project have?

Projects with multiple IaC files have more IaC files than build files (median of 11.11%
of their files). Furthermore, the size of infrastructure files is in the same ballpark as
that of production and test files, and larger than build files.

PQ2) How many infrastructure files change per month?

28% of the infrastructure files in the projects changed per month, which is as frequently
as production files, and significantly more than build and test files.

PQ3) How large are infrastructure system changes?

The churn of infrastructure files is comparable to build files and significantly different
with the other file categories. Furthermore, the infrastructure files have the highest
churn per file (MCF) value among the four file categories.
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Based on the preliminary analysis results, we then address the following research questions:

RQ1) How tight is the coupling between infrastructure code and other kinds of code?

Although less commits change infrastructure files than the other file categories, the
changes to IaC files are tightly coupled with changes to Test and Production files.
Furthermore, the most common reasons for coupling between infrastructure and test
are “Integration” of new test cases and “Updates” of test configuration in infrastructure
files.

RQ2) Who changes infrastructure code?

Developers changing the infrastructure take up the lowest proportion among all devel-
opers, and they are not dedicated to IaC alone, since they also work on production and
test files.

7.2 Background and Related Work

7.2.1 Infrastructure as Code

IaC (Infrastructure as Code) makes it possible to manage the configuration of the environ-
ment on which a system needs to be deployed via specifications similar to source code. A
dedicated programming language allows to specify the environment such as required libraries
or servers, or the amount of RAM memory or CPU speed for a VM. The resulting files can
be versioned and changed like any other kind of source code. This practice turns the tedious
manual procedure of spinning up a new virtual environment or updating a new version of the
environment (from the low-level operating system installed all the way up to the concrete
application stack) into a simple click of executing a script. This automation and simplication
helps shorten the release and test cycle, and reduces the potential of human error.

Currently, Puppet and Chef are the two most popular infrastructure languages. They allow to
define a series of environment parameters and to provide deployment configuration. They can
define functions and classes, and allow users to customize their own Ruby plug-ins according
to their specific requirements. Figure 8.1 shows two code snippets of Puppet and Chef that
realize the same functionality, i.e., initializing an https server on two different platforms (each
platform requires a different version of the server).
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# Chef snippet!
case node[:platform]!
when “ubuntu”!
! package “httpd-v1” do!
! ! version “2.4.12”!
! ! action: install!
! end!
when “centOS”!
! package “httpd-v2” do!
! ! version “2.2.29”!
! ! action: install!
! end!
end

# Puppet snippet !
case $platform{!
! ‘ubuntu’: {!
! ! package {‘httpd-v1’:!
! ! ! ensure =>  “2.4.12”!
! ! }!
! }!
! ‘centOS’: {!
! ! package {‘httpd-v2’:!
! ! ! ensure => “2.2.29”!
! ! }!
! }!
}

Figure 7.1 Code snippets of Puppet and Chef.

7.2.2 Related Work

Our work replicates the work of McIntosh et al. [114] who empirically studied the build
system in large open source projects and found that the build system is coupled tightly with
the source code and test files. In their work, they classify files into three different categories
including “Build”, “Production”, and “Test”. They also studied the ownership of build files
to look into who spent the most effort maintaining these files. They observed different build
ownership patterns in different projects: in Linux and Git a small team of build engineers
maintain most of the build maintenance, while in Jazz most developers contribute code to
the build system. In our work, we added a fourth category of files (IaC) and we focus the
analysis on those files. Hindle et al. [93] studied the release patterns in four open source
systems in terms of the evolution in source code, tests, build files and documentation. They
found that each individual project has consistent internal release patterns on its own.

Similar to McIntosh et al. [114], other researchers also used “association rules” to detect
co-change and co-evolution. Herzig et al. [91] used association rules to predict test failure
and their model shows good performance with precision of 0.85 to 0.90 on average. Zaidman
et al. [111] explored the co-evolution between test and production code. They found different
coupling patterns in projects with different development style. In particular, in test-driven
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projects there is a strong coupling between production and test code, while other projects
have a weaker coupling between testing and development. Gall et al. [79] studied the co-
evolution relation among different modules in a project, while our work focuses on the relation
among different file categories.

Adams et al. [31] studied the evolution of the build system of the Linux kernel at the level
of releases, and found that the build system co-evolved with the source code in terms of
complexity. McIntosh et al. [113] studied the ANT build system evolution. Zanetti et
al. [143] studied the co-evolution of GitHub projects and Eclipse from the socio-technical
structure point of view. Our work is the first to study the co-evolution process between
infrastructure and source code in a project.

Rahman et al. [131], Weyuker et al. [157], Meneely et al. [116] studied the impact of the
number of code contributors on the software quality. Karus et al. [102] proposed a model that
combines both code metrics and social organization metrics to predict the yearly cumulative
code churn. It turns out that the combined model is better than the model only adopting code
metrics. Bird et al. [61] proposed an approach for analyzing the impact of branch structure
on the software quality. Nagappan et al. [125] conducted a study about the influence of
organizational structure on software quality. Nagappan et al. [124] predicted defect density
with a set of code churn measures such as the percentage of churned files. They showed that
churn measures are good indicators of defect density.

Shridhar et al. [147] conducted a qualitative analysis to study the build file ownership styles,
and they found that certain build changes (such as “Corrective” and “New Functionality”)
can introduce higher churn and are more invasive. Our work is the first to study the ownership
style of infrastructure files.

Curtis et al. [67], Robillard [137], Mockus et al. [121] [119] focus on how domain knowledge
impacts the software quality. It turns out that the more experienced and familiar in a domain,
the fewer bugs are introduced. This suggests that if IaC experts change IaC files, they are
less likely to introduce bugs than, say, build developers. We study IaC ownership, yet do not
study bug reports to validate this link.

To summarize, our study is the first to analyze the co-evolution of IaC with known file
categories, as well as ownership of IaC file changes.

7.3 Approach

The process of our study is shown as a flow chart in Figure 8.4.
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Figure 7.2 Flow chart of the whole approach.

7.3.1 Data Collection

OpenStack is an open source project launched jointly by Rackspace Hosting and NASA in
July 2010. It is in fact governed by a consortium of organizations who have developed mul-
tiple interrelated components that together make up a cloud computing software platform
that offers “Infrastructure As A Service (IaaS)”. Users can deploy their own operating sys-
tem or applications on OpenStack to virtualize resources like cloud computing, storage and
networking.

Given that testing and deploying a cloud computing platform like OpenStack requires con-
tinuous configuration and deployment of virtual machines, OpenStack makes substantial use
of IaC, adopting both “Puppet” and “Chef” to automate infrastructure management. Apart
from its adoption of IaC, OpenStack has many other characteristics that prompted us to
study it in our empirical study. In particular, it has 13 large components (“modules”) spread
across 382 projects with their own git repositories, 20 million lines of codes, rapid release
cycle (cycle time of 6 months), and a wide variety of users such as AT& T, Intel, SUSE,
PayPal, and eBay.

7.3.2 Classifying Files into Five Categories

In order to study the co-evolution relationship between the infrastructure and the other files,
first we need to classify them into different categories. We mainly identify “Infrastructure”,
“Build”, “Production (i.e., source code)” and “Test” files. Other files, such as images, text,
and data files, were categorized into the “Others” category and were not considered in our
study. Note that we classified any file that ever existed in an OpenStack project across all
git commits, amounting to 133,215 files in total.

In order to do the classification, we used a similar approach as McIntosh et al. [114]. First, we
wrote a script to identify files with known naming patterns. For example, names containing
“test” or “unitest” should be test files, while the “Makefile” or “Rakefile” names are build
files, and the files with a programming language suffix such as “.py”, “.rb” (typically, but
not always) belong to the production files. The infrastructure files written in Puppet have a
suffix “.pp”. After classifying those files that are easily identified, we manually classified the
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remaining 25,000 unclassified files.

For this, we manually looked inside the files to check for known constructs or syntax, and
for naming conventions specific to OpenStack. If the content was not related to any of the
four categories of interest, we classified it as “Other”. We put the resulting file classification
online 2.

7.3.3 Splitting the OpenStack Projects in Two Groups

We collected all the revisions from the 382 git repositories of the OpenStack ecosystem.
After classification, we did a statistical analysis and found 117 projects without infrastruc-
ture file, so we removed them from our data set, as we focus on the analysis of IaC. Upon
manual analysis of the projects without infrastructure files, we found that they mostly do
not serve the main functionality of OpenStack (namely cloud computing), but rather pro-
vide the supporting services like reviewing management (e.g., “reviewday”), test drivers
(e.g., “cloudroast” and “cookbook-openstack-integration-test”), plugins for build support
(e.g, “zmq-event-publisher”), front-end user interface generation (e.g., “bugdaystats” and
“clif”), and external libraries (e.g., “cl-openstack-client” for Lisp).

Of the projects containing infrastructure files, we found that some of them have only few in-
frastructure files, while other projects have many infrastructure files. The former repositories
are relatively small in terms of the number of files (with a median value of 71.5 and mean
of 174.4). In order to study if the infrastructure system acts differently in these different
contexts, we split the remaining projects into two groups: the “Multi” group with projects
that contain more than one infrastructure file and the “Single” group with projects that con-
tain only one infrastructure file. The Multi group contains 155 projects, whereas the Single
group 110 projects. In our study, we compare both groups to understand whether there is
any difference in maintenance effort between the two groups.

7.3.4 Association Rules

To analyze the coupling relationship in RQ1 and RQ2, we use association rules. An associa-
tion rule is a possible coupling between two different phenomena. For example, supermarkets
found that diapers and beer are usually associated together, because normally it is the father
who comes to buy diapers and along the way may buy some beer for himself.

To measure the importance of an association rule, a number of important metrics can be
calculated, such as “Support” (Supp) and “Confidence” (Conf). The metric Support(X)

2https://github.com/yujuanjiang/OpenStackClassificationList.
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indicates the frequency of appearance of X, while the metric Confidence(X=>Y) indicates
how often a change of X will happen together with a change of Y. For example, if there
are 20 commits in total for project P, and 10 of them are changing infrastructure files,
then Supp(Inf)=0.5 (10/20). If among these 10 commits, 6 of them also change test files,
then Conf(Inf=>Build)=0.6 (6/10). Association rules can help us understand the coupling
relationship among different projects. Note that we don’t mine for new association rules, but
analyze the strength of the six rules involving IaC files and the three other file categories
(IaC =>Build, IaC =>Production, IaC =>Test and the three inverse rules).

Additionally, in the qualitative analysis of the change coupling, we need to select the most
tightly coupled commits for manual analysis. Since Confidence is not a symmetrical measure
(Conf(X=>Y) is different from Conf(Y=>X)), it yields two numbers for a particular pair
of file categories, which makes it hard to identify the projects with “most tightly coupled”
commits. For this reason, we adopt the metric “Lift”, which measures the degree to which
the coupling between two file categories is different from the situation where they would be
independent from each other. For each project, we computed the Lift value, then for the 10
projects with the highest lift value for a pair of file categories, we selected the top 10 most
tightly coupled commits. The formula for “Lift” related to the Conf and Supp metrics is as
follows:

Conf = P (A ⋂
B)

P (A)

Supp = P (A
⋂

B)

Lift = P (A ⋂
B)

P (A)P (B)

7.3.5 Card Sorting

For our qualitative analysis, we adopted “Card Sorting” [117] [43], which is an approach that
allows to systematically derive structured information from qualitative data. It consists of
three steps: 1) First, we selected the 10 projects with the highest lift value for a certain pair of
file categories. Then, for each such project, we wrote a script to retrieve all commits changing
files of both categories. 2) Then, we randomly sort all selected commits for a project and pick
10 sample commits. 3) The first author then manually looked into the change log message
and code of each commit to understand why this co-change happens. In particular, we were
interested in understanding the reason why changes of both categories were necessary in the
commit. If this is a new reason, we added it as a new “card” in our “card list”. Otherwise,
we just increased the count of the existing card. After multiple iterations, we obtained a
list of reasons for co-change between two file categories. Finally, we clustered cards that had
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related reasons into one group, yielding seven groups.

“Card sorting” is an approach commonly used in empirical software engineering when qual-
itative analysis and taxonomies are needed. Bacchelli et al. [40] used this approach for
analyzing code review comments. Hemmati et al. [88] adopted card sorting to analyze
survey discussions [147].

7.3.6 Statistical tests and beanplot vsualization.

In our work, we mainly used the Kruskal-Wallis and Mann-Whitney tests to do the statistical
tests, and used the beanplot package in R as the visualization tool for our results.

The Kruskal-Wallis test [12] is a non-parametric method that we use to test if there exists
any difference between the distribution of a metric across the four file categories. If the null
hypothesis (“there is no significant difference between the mean of the four categories”) is
rejected, at least one of the categories has a different distribution of the metric under study.
To find out which of the metrics has a different distribution, we then use Mann-Whitney
tests as post-hoc test. We perform such a test between each pair of file categories, using the
Bonferroni correction for the alpha value (which is 0.05 by default in all our tests).

A Beanplot [101] is a visualization of a distribution based on boxplots, but adding information
about the density of each value in the distribution. Hence, apart from seeing major moments
like median, minimum or maximum, one can also see which values are the most frequent
in the sample under study. By plotting two or more beanplots next to each other, one can
easily see asymmetry in the distribution of values (see Figure 7.5).

7.4 Preliminary Analysis

Before addressing the main research questions, we first study the characteristics of IaC files
themselves.

PQ1: How many infrastructure files does a project have?

Motivation: As infrastructure code is a relatively new concept, not much is known about
its characteristics. How common are such files, and how large are they in comparison to
other known kinds of files?

Approach: First, we compute the number and percentage of files in each file category
for each project. Afterwards, we computed the number of lines of each infrastructure file
in each project. Furthermore, we manually checked the Multi projects to understand why
they contain such a high proportion of infrastructure files, for example whether they are
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projects dedicated to IaC code. We also did Kruskal-Wallis and post-hoc tests to check the
significance of the results with as null hypothesis “there is no significant difference among
the distributions of the proportion/the LOC of each file category”.

Results: Multi projects have a higher proportion of infrastructure files than build
files, with a median value of 11.11% across projects. Figure 7.3 shows the boxplot of
the proportion of the four file categories relative to all files of a project, while Table 7.1 shows
the corresponding numbers. We can see that in both groups, the trends are the same except
for infrastructure files. Unsurprisingly, the production files take up the largest proportion of
files (with a median of 34.62% in group Multi and 47.80% in group Single). This makes sense,
because the source code files should be the fundamental composition of projects. The test
files take up the second largest proportion (with a median value of 12.95% in group Multi and
23.94% in group Single). By definition, for “Single” projects, the infrastructure files take up
the lowest proportion (with a median of 3.85%), behind build files (with a median of 17.24%),
while for Multi projects the order is swapped (with a median of 11.11% for Infrastructure
and 5.71% for Build files). Indeed, Multi projects not only have more than one infrastructure
file, they tend to have a substantial proportion of such files. The differences in proportion
between IaC files and the three other categories all are statistically significant.

The percentage of infrastructure files has a large variance for “Multi” projects.
The median value is rather small compared to the other three categories, but within four
projects, the percentage of infrastructure files can reach as high as 100%. Therefore, we
ranked all the projects by the percentage of infrastructure files (from high to low) and manu-
ally looked into the top ones. We found that those projects clearly are infrastructure-specific.
51 of these projects have names related to the infrastructure system (28 of them named af-
ter Puppet, 23 after Chef). For example, the “openstack-chef-repo” repository is an example
project for deploying an OpenStack architecture using Chef, and the “puppetlabs-openstack”
project is used to deploy the Puppet Labs Reference and Testing Deployment Module for
OpenStack, as described in the project profile on GitHub [18] [25].

Although production and test files statistically significantly are larger, the size of
infrastructure files is in the same ballpark. Figure 7.4 shows for each file category the
boxplot across all projects of the median file size (in terms of LOC). We can see that the sizes
of infrastructure (median of 2,486 for group Multi and 1,398 for group Single), production
(median of 2,991 for group Multi and 2,215 for group Single) and test files (with a median of
2,768 for group Multi and 1,626 for group Single) have the same order of magnitude. The size
of build files is the smallest (with a median of 54 for group Multi and 52 for group Single).
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Figure 7.3 Boxplot of median proportions of four file categories for each project across all
projects (excluding other files)

Table 7.1 The proportion of the four file categories in each project (%) in terms of the number
of files.

Infrastructure Build Production Test

Group Multi

1st Qu. 3.33 2.41 0.00 2.21
Median 11.11 5.71 34.62 12.95
Mean 38.40 11.72 31.84 18.04
3rd Qu. 89.47 12.37 57.73 29.91

Group Single

1st Qu. 1.73 7.60 11.46 12.71
Median 3.85 17.24 47.80 23.94
Mean 8.02 25.41 42.25 24.26
3rd Qu. 11.11 40.00 66.67 35.21
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Infrastructure files take up a small portion
of projects with a median value of 11.11%,
but their size is larger than build files and
in the same ballpark as code and test files.

PQ2: How many infrastructure files change per month?

Motivation: The results of PQ1 related to size and to some degree proportion of files
could indicate a large amount of effort needed to develop and/or maintain the infrastructure
files, both in Single and Multi projects. To measure this effort, this question focuses on the
percentage of files in a category that are being changed per month [114]. The more files are
touched, the more effort needed.

Approach: In order to see how often each file category changes, we computed the number of
changed files per month of each project. To enable comparison across time, we normalize the
number by dividing by the corresponding number of files in a category during that month,
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Figure 7.4 Boxplot of the median size (in LOC) of the four different file categories across all
projects (group “Multi”).

yielding the proportion of changed files. For each project, we then calculate the average
proportion of changed files per month, and we study the distribution of this average across
all projects. Note that we use average value in PQ2 and PQ3, whereas we use medians in
the rest of the paper, because “Single” projects only have one infrastructure file and hence a
median value would not make sense.

Furthermore, we again did a Kruskal-Wallis test and post-hoc tests to examine the statistical
significance of our results.

Results: The average proportion of infrastructure files changed per month is
comparable to that of source code, and much higher than that of build and test
files, with a median value across projects of 0.28. Figure 7.5 shows the distribution
across all projects in group “Multi” of the average proportion of changed files. Since the
group “Single” has the same trend, we omitted its figure. We can see that the production
files (with a median value of 0.28) change as frequently as the infrastructure files (with a
median value of 0.28). The test files change less frequently (with a median value of 0.21)
than infrastructure files but more frequently than build files (with a median value of 0.18).

The percentage of changed files per month for infrastructure and production files
are significantly higher than for build and test files. A Kruskal-Wallis test on all file
categories yielded a p-value of less than 2.2e-16, hence at least one of the file categories has
a different distribution of monthly change percentage at 0.05 significance level. We then did
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Infrastructure vs Build

Figure 7.5 Distributions of average percentage of changed files per project for the four file
categories (group “Multi”).

Mann-Whitney post-hoc tests, which showed that, except for infrastructure and production
files (p-value of 0.112 >0.05), the other file categories have a statistically significantly lower
change proportion (p-value <0.05). Since change of source code is known to be an indicator
of bug proneness [39] [105] or risk [145], infrastructure code hence risks to have similar issues.

�

�

�

�

The distribution of the median proportion
of monthly change for infrastructure files is
similar to production files, with a median
value of 0.28, being higher than the build
and test files.

PQ3: How large are infrastructure system changes?

Motivation: Now that we know how many infrastructure files change per month for all
the projects, we want to know how much each file changes as well. In addition to the number
of changed lines, the types of changes matter as well. For example, two commits could
both change one line of an infrastructure file, but one of them could only change the version
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number while the other one may change a macro definition that could cause a chain reaction
of changes to other files. Hence, we also need to do qualitative analysis on infrastructure
files.

Approach: Churn, i.e., the number of changed lines of a commit is a universal indicator for
the size of a change. In the textual logs of a git commit, a changed line always begins with
a plus “+” or minus “-” sign. The lines with “+” are the newly added lines, while the lines
with “-” are deleted lines from the code. In order to understand how much each file category
changes per month, we define monthly churn of a project as the total number of changed lines
(both added and deleted lines) per month. However, when we first looked into the monthly
churn value, we found that there are many projects not active all the time, i.e., in certain
months, the churn value is zero. Therefore, we just considered the “active period” for each
project, namely the period from the first non-zero churn month until the last non-zero churn
month.

To control for projects of different sizes, we also normalize the monthly churn of each project
by dividing by the number of files of that project in each month. This yields the monthly
churn per file (MCF). We study the distribution of the average value of churn and of the
average value of MCF across all projects.

Results: The churn of infrastructure files is comparable to build files and signifi-
cantly smaller than for production and test files. Figure 7.6 shows the beanplot of the
monthly churn for both groups. We can see in group “Multi” that the test files have the high-
est average churn value (with a median value of 9), i.e., the test commits have the largest size,
followed by production files (with a median value of 8). Infrastructure file changes (5.25) are
larger than build file changes (4.25). In group “Single”, the production files have the largest
commits (median of 10), followed by test files and infrastructure files (both median of 8),
and build files (median of 5). Kruskal-Wallis and post-hoc tests show that the distribution
of churn of IaC files is significantly different from that of the other files categories, except
from build files in the Single group.

The infrastructure files have the highest MCF value, with a median of 1.5 in
group Multi and median of 5 in group Single. Figure 7.7 is the beanplot of the MCF
for the two groups. We can see for both groups that the infrastructure files have the highest
MCF value (median 1.5 in group Multi and median 5 in group Single), which means that
the average change to a single infrastructure file is larger than for the other file categories.
Hence, although the number of infrastructure files is smaller than the number of production
files, there is proportionally more change being done to them.

The differences in average MCF between IaC files and the three other categories all are
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statistically significant.
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The churn of infrastructure files is compa-
rable to that of build files, while the average
churn per file of infrastructure is the high-
est across all file categories.

7.5 Case Study Results

Now that we know that projects tend to have a higher proportion of Infrastructure files than
build files, infrastructure files can be large, churn frequently and substantially, we turn to the
main research questions regarding the coupling relation among commits and IaC ownership.

RQ1) How tight is the coupling between infrastructure code and other kinds of code?

Motivation: Based on the preliminary questions, we find that infrastructure files are large
and see a lot of churn, which means that they might be bug prone. However, those results
considered the evolution of each type of file separately from one another. As shown by
McIntosh et al. [114], evolution of for example code files might require changes to build files
to keep the project compilable. Similarly, one might expect that, in order to keep a project
deployable or executable, changes to code or tests might require corresponding changes to
the infrastructure code. This introduces additional effort on the people responsible for these
changes. Kirbas et al. [106] conducted an empirical study about the effect of evolutionary
coupling on software defects in a large financial legacy software system. They observed
a positive correlation between evolutionary coupling and defect measures in the software
evolution and maintenance phase. These results motivate us to analyze the coupling of
infrastructure code with source, test and build code.

Approach: In order to identify the coupling relationship between changes of different file
categories, we analyze for each pair <A, B>of file categories the percentage of commits
changing at least one file of category A that also changed at least one file of category B.
This percentage corresponds to the confidence of the association rule A=>B. For example,
Conf(Infrastructure, Build) measures the percentage of commits changing infrastructure files
that also change build files. Afterwards, we performed chi-square statistical tests to test
whether the obtained confidence values are significant, or are not higher than expected due
to chance.
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Infrastructure vs Build Production vs Test

Figure 7.6 Beanplot of average monthly churn across all projects for the four file categories
(group “Multi”) (log scaled).

Finally, we also performed qualitative analysis of projects with high coupling to understand
the rationale for such coupling. We used “card sorting” (see Section 7.3.5) for this analysis.
We sampled 100 commits across the top 10 projects with the highest Lift metric (see Sec-
tion 7.3.4) to look into why IaC changes were coupled so tightly with changes to other file
categories.

Results: Infrastructure files change the least often in both groups. Table 7.2
shows the distribution of the Support and Confidence metrics across the projects in both
groups while Figure 7.8 visualizes the distribution of these metrics for the group Multi. We
do not show the beanplot of group Single, since it follows the same trends.

With group Multi as example, we can see that in terms of the Support metrics (i.e., the
proportion of all commits involving a particular file category), source code changes occur the
most frequently (with a median value of 0.3789), followed by test files (median of 0.2348),
then build files (median of 0.1276). The infrastructure files change the least often, which
suggests that the build and infrastructure files tend to be more stable than the other file
categories. We observed the same behavior in group Single.

The commits changing infrastructure files also tend to change production and test
files. In group Multi, Conf(Inf=>Prod) and Conf(Inf=>Test) have a high median value of
0.2637 and 0.4583 respectively. This indicates that most commits changing infrastructure
files also change source code and test files. Conf(Inf =>Bld) has the lowest median value
(0.0347), which indicates that commits changing infrastructure files don’t need to change
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Infrastructure vs Build Production vs Test

Figure 7.7 Beanplot of average MCF across all projects for the four file categories (group
“Multi”) (log scaled).

build files too often. Similar findings were made for group Single.

26% of test files require corresponding IaC changes in both groups. In group
Multi, the Conf(Test =>Inf) metric has a higher value (median value of 0.2578) than
Conf(Production =>Inf) (median value of 0.0885) and Conf(Build =>Inf) (median value of
0.1058). This means that one quarter of the commits changing test files also needs to change
infrastructure files. Furthermore, infrastructure files also have a relatively high coupling with
build files, i.e., around 11% of commits changing build files need to change infrastructure files
as well. The observations in group Single follow the same trend.

The observed high confidence values are statistically significant in the majority
of projects. Using a chi-square test on the confidence values, we found that in groupMulti,
among 155 projects, in 97 of them we observe a significant coupling between infrastructure
and test files, and in 90 of them we observe a significant coupling between Infrastructure and
Production files. In contrast, in only 2 of them we observe a significant coupling between
Infrastructure and Build files. This means that the latter co-change relation statistically
speaking is not unexpected, whereas the former ones are much stronger than would be ex-
pected by chance. In group “Single”, among 110 projects, we found 33 that had a significant
coupling between Infrastructure and Test files, and 35 of them that had a significant cou-
pling between Infrastructure and production files, while there was no significant coupling
observed between Infrastructure and Build files. Although the co-change relations with test
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Figure 7.8 Distribution of confidence values for the coupling relations involving IaC files
(Group Multi). The left side of a beanplot for A<=>B represents the confidence values for
A =>B, while the right side of a beanplot corresponds to B =>A.

and production files are less strong than for the Multi group, they are still significant for
many projects.

The most common reasons for the coupling between infrastructure and Build
files are Refactoring and Update. Table 7.3 contains the resulting seven clusters from
our card sort analysis. Those clusters group the different rationales that we identified by
manually analyzing 100 commits. The table also contains for each cluster the percentage of
the 100 commits that mapped to that cluster. Since each commit mapped to one cluster, the
proportions add up to 100%.

The coupling between IaC and build files only had the third highest median Confidence.
Coincidentally, the reasons for this coupling turn out to be simple, with three of the seven
reasons absent. The most common reasons for this coupling include refactoring and updating
files of both file categories because they share the same global parameters.

The most common reasons for the coupling between Infrastructure and Produc-
tion files are External dependencies and Initialization. The most common reason for
this coupling are changes in the IaC files to external dependencies like Ruby packages that
require corresponding changes to the production files where these dependencies are used.
Another common reason is initialization. If the project initializes a new instance of a client
instance, it needs to initialize the parameters in the infrastructure file and add new source
code for it.

The most common reasons for the coupling between infrastructure and test files
are “Integration” and “Update”. The coupling between infrastructure and test files has
the highest value, and the reasons are spread across all seven reasons (similar to the coupling
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Table 7.2 Median Support and confidence values for the coupling relations involving IaC files.
Valued larger than 0.1 are shown in bold.

system Group Multi Group Single

Support

Infrastructure 0.0402 0.0412
Build 0.1276 0.1324

Production 0.3789 0.3806
Test 0.2348 0.2344

Inf, Bld 0.0044 0.0044
Inf, Prod 0.0336 0.0335
Inf, Test 0.0585 0.0607

Conf

Inf =>Bld 0.0347 0.0343
Inf = >Prod 0.2637 0.2730
Inf =>Test 0.4583 0.4673
Bld =>Inf 0.1058 0.1140
Prod =>Inf 0.0885 0.0911
Test =>Inf 0.2578 0.2638

between Infrastructure and Production). The most frequent reason is integrating new test
modules into a project and updating the configuration for the testing process in the IaC files
as well as in the test files.�

�

�

�

Infrastructure files are changed less than
the other file categories. The changes to
Infrastructure files are tightly coupled with
the changes to Test and Production files.
The most common reasons for the coupling
between Infrastructure and Test are “Inte-
gration” and “Update”.

RQ2) Who changes infrastructure code?

Motivation: Herzig et al. [90] studied the impact of test ownership and team social struc-
ture on the testing effectiveness and reliability and found that they had a strong correlation.
This means that in addition to the code-change relations of RQ1, we also need to check the
relationship between the developers, i.e., the ownership among different file categories. Even
though test or code changes might require IaC changes, it likely makes a difference whether
a regular tester or developer makes such a change compared to an IaC expert.
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Table 7.3 The reasons for high coupling and examples based on a sample of 300 (100*3)
commits with confidence of 0.05.
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Approach: First, we need to identify the ownership for each category. For this, we check the
author of each commit. If the commit changes an infrastructure file, then we identify that
commit’s author as infrastructure developer. An author can have multiple identifications,
e.g., one can be an infrastructure file and production developer at the same time (even for
the same commit). We ignore those developers whose commits only change the files of the
“Other” category.

We then compute the RQ1 metrics, but this time for the change ownership.
Supp(Infrastructure) indicates the percentage of developers changing infrastructure files out
of the total number of developers. Supp(Infrastructure, Build) is the percentage of devel-
opers changing both infrastructure and build files out of the total number of developers.
Conf(Infrastructure, Build) is the percentage of IaC developers that also change build files
out of the total number of developers changing at least once at infrastructure file.

0.
2

0.
4

0.
6

0.
8

Infrastructure <=> Build Infrastructure <=> Production Infrastructure <=> Test

Figure 7.9 Distribution of confidence values for the coupling relations involving the owners
of IaC files (Group Multi).

Result: Infrastructure developers have the lowest proportion among all develop-
ers while the production developers are the most common. Table 7.4 and Figure 7.9
show the measurements support and confidence metrics in terms of change ownership for the
two groups of projects. Similar to RQ1, both groups have similar distribution trends, so we
only show the beanplots for the Multi group.

We can see that, as expected, the developers of production code take up the highest pro-
portion amongst all developers (with a median value of 0.6978), followed by test developers
(median of 0.2744) and build developers (median of 0.5392). The infrastructure developers
take up the lowest proportion (median of 0.2744).

The high value of metrics Supp(Inf, Prod) and Supp(Inf, Test) (with median values of 0.4442
and 0.4859 respectively) indicate that almost half of all developers in their career have had



110

Table 7.4 Median Support and confidence values for the coupling relations involving IaC
developers. Values larger than 0.5 are shown in bold.

system Group Multi Group Single

Support

Infrastructure 0.2744 0.2733
Build 0.5392 0.5384

Production 0.7378 0.7390
Test 0.6978 0.6977

Inf, Bld 0.2094 0.3726
Inf, Prod 0.4442 0.4443
Inf, Test 0.4859 0.4825

Conf

Inf =>Bld 0.3732 0.3726
Inf = >Prod 0.8034 0.8021
Inf =>Test 0.8967 0.8962
Bld =>Inf 0.7625 0.7635
Prod =>Inf 0.5934 0.5940
Test =>Inf 0.7064 0.7156

to change at least one Infrastructure and Production file, or Infrastructure and Test file.

The majority of the infrastructure developers also develop Production or Test
files. The Conf(Inf =>Prod) and Conf(Inf =>Test) both have a high value (with median of
0.8034 and 0.8967 respectively). This shows that most of the infrastructure developers are
also production and test developers. In contrast, the metric Supp(Inf =>Bld) has the lowest
value (median of 0.2094), which indicates that the developers changing infrastructure and
build files respectively do not overlap substantially.

All kinds of developers change the IaC files. The Conf(Bld =>Inf), Conf(Prod =>Inf)
and Conf(Test =>Inf) all have a very high value (median higher than 0.5). This shows that
most of the build, production and test developers are infrastructure developers at the same
time.

In particular, Conf(Inf =>Bld) has a lower value (median of 0.3732) compared to Conf(Bld
=>Inf) (median of 0.7625). Build developers can be infrastructure developers, but the ma-
jority of infrastructure developers hardly change the build system, since so many other kinds
of developers change the IaC files.

There is significant coupling between the Infrastructure and Test, and Infras-
tructure and Production ownership in most of the projects. In group Multi, for
107 projects we see that the coupling between Infrastructure and Test developers is signifi-
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cant, in 76 projects the coupling between Infrastructure and Production, and in 20 projects
the coupling between Infrastructure and Build change ownership. In group “Single”, in 59
projects we see significant coupling between Infrastructure and Test developers, in 41 projects
between Infrastructure and Production, and in 3 projects between Infrastructure and Build.

�

�

�

�

The infrastructure developers take up the
lowest proportion among all developers.
Developers working on infrastructure files
are normal developers that also work on
production and test files.

7.6 Threats To Validity

Construct validity threats concern the relation between theory and observation. First of all,
we use the confidence of association rules to measure how closely file categories and owners
co-change in our research questions, similar to earlier work [114]. Furthermore, we use the
monthly churn per file to measure the frequency of change and the number of changed lines
of code to measure the amount of change. However, these metrics might not 100% reflect
the actual coupling relationship and churn rate. Other metrics should be used to replicate
our study and compare findings.

Threats to internal validity concern alternative explanations of our findings where noise could
be introduced. During the classification of different file categories, we adopted the semi-
automatic approach of McIntosh et al. [114], consisting of a script to separate certain file
categories, then manually classifying the remaining files. To mitigate bias, at first the first
author of this paper did this classification, followed by an independent verification by the
second author.

Threats to external validity concern the ability to generalize our results. Since we have only
studied one large ecosystem of open source systems, it is difficult to generalize our findings
to other open and closed source projects. However, because OpenStack consists of multiple
projects, and also has adopted the two most popular infrastructure tools Puppet and Chef,
it is a representative case study to analyze. Further studies should consider other open and
closed source systems.
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7.7 Conclusion

IaC (Infrastructure as Code) helps automate the process of configuring the environment in
which the software product will be deployed. The basic idea is to treat the configuration files
as source code files in a dedicated programming language, managed under version control.
Ideally, this practice helps simplify the configuration behavior, shorten the release cycle,
and reduce the possible inconsistencies introduced by manual work, however the amount of
maintenance required for this new kind of source code file is unclear.

We empirically studied this maintenance in the context of the OpenStack project, which is a
large-scale open source project providing a cloud platform. We studied 265 data repositories
and found that the proportion of infrastructure files in each project varies from 3.85% to
11.11%, and their size is larger than for build files and the same order of magnitude of
code and test files (median value of 2,486 in group “Multi” and 1,398 for groups “Single”).
Furthermore, 28% of the infrastructure files are changed monthly, significantly more than
build and test files. The average size of changes to infrastructure files is comparable to build
files, with a median value of 5.25 in group Multi and 8 in group Single (in terms of LOC).
In other words, although they are a relatively small group of files, they are quite large and
change relatively frequently.

Furthermore, we found that the changes to infrastructure files are tightly coupled to changes
to the test files, especially because of “Integration” of new test cases and “Update” of test
configuration in the infrastructure file. Finally, infrastructure files are usually changed by
regular developers instead of infrastructure experts.

Taking all these findings together, we believe that IaC files should be considered as source
code files not just because of the use of a programming language, but also because their
characteristics and maintenance needs show the same symptoms as build and source code
files. Hence, more work is necessary to study bug-proneness of IaC files as well as help reduce
the maintenance effort.

Note that our findings do not diminish the value of IaC files, since they provide an explicit
specification of a software system’s environment that can automatically and consistently be
deployed. Instead, we show that, due to their relation with the actual source code, care is
needed when maintaining IaC files.
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CHAPTER 8 ARTICLE 5: DOES INFRASTRUCTURE-AS-CODE EVOLVE
AS CODE? - EMPIRICAL STUDY ON OPENSTACK AND MEDIAWIKI

Yujuan Jiang, Bram Adams

Abstract

Infrastructure-as-code (IaC) automates the process of configuring and setting up
the environment (e.g., servers, VMs and databases) in which a software system
will be tested and/or deployed, through textual specification files in a language
like Puppet or Chef. Since the environment is instantiated automatically by the
infrastructure language’s tools, no manual intervention is necessary apart from
maintaining the infrastructure specification files and the data that needs to be
put inside the generated environment. The amount of work involved with such
maintenance, as well as the size and complexity of infrastructure specification
files, have not yet been studied empirically. Through an empirical study of the
version control system of 50 OpenStack projects and 48 MediaWiki projects, we
find that infrastructure-heavy projects contain up to 50% infrastructure-related
files (median of 9 and 60 for MediaWiki and OpenStack respectively) with 11.8%
and 25% of these infrastructure files of MediaWiki and OpenStack changing
every month respectively. Furthermore, Infrastructure files tend to have a larger
relative churn than production files, and they are coupled strongly to either
Infrastructure-related data (MediaWiki) or test (OpenStack) files. These findings
indicate a non-neligible amount of effort involved with maintaining IaC files.1

8.1 Introduction

Infrastructure-as-code (IaC) is a recent practice to specify and automate the environment
(infrastructure) in which a software system will be tested and/or deployed [97]. For example,
instead of having to manually configure the virtual machine on which a system should be
deployed with a specific Linux distribution, web and database server, and the right versions
of all required libraries installed, one just needs to specify the requirements for the VM once,
after which tools automatically test and apply this specification to generate the VM image.
Run-time support files such as web server configuration files can then be copied into the
image to make it ready for deployment of the actual application under development. Apart

1This paper was invited to a special issue of journal Empirical Software Engineering, and got a major
revision.
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from automation, the fact that the environment is specified explicitly means that the same
environment will be deployed everywhere, ruling out inconsistencies.

The recent surge in interest in the release engineering and DevOps [32] [46] [97] process have
led to huge, with large investments by many big IT companies such as Google, Facebook and
Mozilla. with the aim to release high quality software products faster to the end user. To help
scale their deployment and release activities, these companies rely heavily on automation, in
particular to instantiate the test and production environments, embracing IaC technologies.

While, initially, infrastructure had to be installed and managed manually, the advent of cloud,
virtualization and containerization technologies has enabled the use of tools to automate
infrastructure management. Although general scripting languages like Bash or Python could
be used for this, dedicated IaC languages have emerged. Going back to at least 1993, cfengine
was introduced in academia [20], enabling to configure the state of Unix-like systems with
descriptive language. The surging interest in DevOps and release engineering, has sparked
development of newer languages like Puppet (2005) and Chef (2009), followed more recently
by Salt (2011) and Ansible (2012). Each of these languages can manage deployments on
servers, cloud environments and/or virtual machines, and can be customized via plug-ins to
adapt to one’s own working environment. They typically feature a domain-specific language
syntax that even non-programmers can understand. Similar to regular source code, they can
be (and are) versioned in a version control system.

The fact that IaC requires a new kind of source code files to be developed and maintained in
parallel to source code and test code could lead to new challenges for software maintenance.
Indeed, in some respects, IaC plays a similar role as the build system, which consists of
scripts in a special programming language such as GNU Make or Ant that specify how to
compile and package the source code. McIntosh et al. [114] have shown how such build
system files have a high relative churn (i.e., amount of code change) and have a high coupling
with source code and test files, which means that developers and testers need to perform
a certain amount of effort to maintain the build system files as the code and tests evolve.
Based on these findings, we conjecture that IaC could run similar risks and generate similar
maintenance overhead as regular build scripts.

In order to validate this conjecture, i.e., to better understand the potential maintenance effort
of IaC code, we perform an empirical case study on 50 OpenStack projects and 48 MediaWiki
projects. OpenStack is an ecosystem of projects implementing a cloud platform, which re-
quires substantial IaC to support continuous integration and testing during development,
while MediaWiki is a web-based wiki platform that forms the basis of many websites such as
Wikipedia, and uses IaC to provide a consistent development environment to developers as
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well as to deploy to production. The study replicates the analysis of McIntosh et al. [114],
this time to study how IaC files and related files evolve compared to the other categories of
files in a project, i.e., source code, test code, and build scripts:

RQ1) How many infrastructure files does a project have?

The top infrastructure projects of MediaWiki and OpenStack have a median of 9 and
60 IaC files, which yields a higher proportion up to 50% than the other file categories,
except for production files. Furthermore, these projects have a median of 5.5 and 11
IaC-related data files, and a median of 0 and 2 test cases for IaC code.

RQ2) How many infrastructure files change per month?

A median of 11.8% and 25% of the infrastructure files of MediaWiki and OpenStack
projects change every month. For OpenStack, this change rate is higher than all other
file categories including Production files. We also found IaC test files have a higher
change rate than IaC data files for MediaWiki, while for OpenStack we found the
opposite.

RQ3) How large are infrastructure file changes?

Infrastructure files see a larger churn than Production files for MediaWiki, with a me-
dian value lines of code per month of 20.1 compared to 19.56 of Production files, while
for OpenStack, infrastructure files have a smaller churn size (median of 21.97), com-
pared to that of production files (31.96). When controlling for the number of IaC and
production code files, infrastructure files have a higher relative churn than produc-
tion files, with a median value lines of code per month of 2.03 and 0.240 respectively,
compared to 0.02 and 0.024 of Production files.

RQ4) How tight is the coupling between infrastructure-related files compared to coupling
between traditional files?

14.3% of the commits changing IaC code in MediaWiki change IaC-related data files,
while for OpenStack 11.9% of the commits changing IaC code change IaC-related test
files. Both types of coupling tend to be higher than the coupling of Production and Build
files for MediaWiki and OpenStack, and even higher than coupling of Production and
Test files for MediaWiki. Based on qualitative analysis, the most popular reasons for
this coupling are “Integration” of new components or services, as well as “Modification”
of global environment configuration.
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RQ5) Who changes infrastructure code?

17% (MediaWiki) and 10% (OpenStack) infrastructure developers change InfraData
code as well, higher than coupling between Production and Build developers (median
of 11% and 5% for MediaWiki and OpenStack respectively), but lower than coupling
between Production and Test developers (median of 32% and 74% respectively).

While the reasons for coupling identified in this paper are similar as for coupling between
non-IaC files, unfortunately development environments for IaC are not as advanced yet as
those for regular development of code, which opens many areas of future work. This paper
extends our MSR 2015 paper [99] by adding an additional case study (MediaWiki), and
using a finer-grained classification of files with extra categories of “InfraData” and “InfraTest”.
Furthermore, instead of considering all projects of OpenStack and MediaWiki, we analyze the
RQs for the top IaC repositories, then use the top production code repositories as baseline.
Although this does not allow to measure coupling between IaC and production code files
directly, as was done in the previous paper (few of the analyzed repositories have both),
it does allow to isolate better the effects of IaC code versus production code. The rest
of the paper is organized as follows. We first introduce the background and related work
(Section 8.2) and our approach (Section 8.3), followed by our case study results (Section
8.4). We conclude with threats to validity (Section 8.5) and the conclusion (Section 8.6).

8.2 Background and Related Work

8.2.1 Infrastructure-as-code

IaC (Infrastructure-as-code) makes it possible to configure the environment on which a system
needs to be deployed via specifications similar to source code. A dedicated programming
language allows specification of the environment, such as required libraries or servers, or the
amount of RAM memory or CPU speed for a VM. The resulting files can be versioned and
changed like any other kind of source code. Similarly, once the environment is generated,
and before deploying the application under development into it, one needs to populate it
automatically with run-time configuration and data files.

This practice turns the tedious manual procedure of spinning up a new virtual environment
or updating a new version of the environment (from the low-level operating system installed
all the way up to the concrete application stack) into a simple execution of a script. This
automation and simplification helps streamline the development, test and deploy cycle, and
reduces the potential of human error.
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Currently, Puppet and Chef are the two most popular infrastructure languages. They allow
to define a series of environment parameters, configure nodes, and specify which services or
files should be deployed on each node. These languages provide support for reuse, allowing
the definition of functions and classes, and the development of plug-ins for to customization.
Figure 8.1 shows two code snippets of Chef and Puppet that realize the same functionality,
i.e., installing specific versions of a package on two different platforms.

# Chef snippet!
case node[:platform]!
when “ubuntu”!
! package “httpd-v1” do!
! ! version “2.4.12”!
! ! action: install!
! end!
when “centOS”!
! package “httpd-v2” do!
! ! version “2.2.29”!
! ! action: install!
! end!
end

# Puppet snippet !
case $platform{!
! ‘ubuntu’: {!
! ! package {‘httpd-v1’:!
! ! ! ensure =>  “2.4.12”!
! ! }!
! }!
! ‘centOS’: {!
! ! package {‘httpd-v2’:!
! ! ! ensure => “2.2.29”!
! ! }!
! }!
}

Figure 8.1 Code snippets of Puppet and Chef.

Apart from installing a server or generating a virtual image, infrastructure code typically also
needs to copy infrastructure-related data such as configuration files, SSH keys or certificates
into the generated environment, in order to support the environment. We refer to such
data files as infrastructure data (“InfraData”). An example InfraData code snippet is shown
in Figure 8.2. This snippet from MediaWiki contains configuration data for the nginx
webserver, such as server status and port number. Note the port variable, which gets its
value from the IaC code during instantiation of the infrastructure.

Finally, similar to regular source code, IaC code should be tested to make sure it executes as
requested. Puppet and Chef both provide test frameworks for infrastructure code. Usually
they are placed under a directory named “spec” or “rspec”. We refer to such test files as
infrastructure test files (“InfraTest”). An example InfraTest code snippet from MediaWiki
is shown in Figure 8.3. This snippet is used to test if component “mesos” is version 0.14.
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       # Nginx status and server metrics site
       server {

       listen       127.0.0.1:<%= @port %>;
       server_name  localhost;
       location     /nginx_status {

       stub_status  on;
       access_log   off;
       allow        127.0.0.1;
       deny         all;

       }
       }

Figure 8.2 InfraData code snippet.

8.2.2 Related Work

IaC emerged as a best practice in the DevOps community [46] [97], aiming to help reduce
manual work and its potential risk/effort, and bridge the gap between development and oper-
ation process. Spinellis [148] stated that IaC is an essential technology to reduce the pressure
and complexity of installing systems manually, without considering the potential cost of IaC
code. However, thus far, little work has been done to study IaC code. Delaet et al. [70]
conducted a survey on 11 popular automation configuration tools (such as BCFG2, Cfengine
3, Puppet and Chef) from four different perspectives, including their specification properties
(e.g., language type and modularization mechanisms), deployment properties (e.g., scala-
bility and architecture), specification management properties (e.g., usability and versioning
support), and support (e.g., available tutorial and community). Based on this survey, the
authors proposed a framework for users to quickly figure out which tools fit their requirement
the most. They also claimed in the paper that “Puppet has a lot of confusing terminology”
and “Chef is hard to use because of its syntax and the use of a lot of custom terminology”.
Hummer et al. [98] proposed a test framework for Chef, in order to make sure a Chef recipe
as a whole can make a system converge to a desired state. These works indicate that IaC
code might need effort to maintain. However, to our knowledge no work has been done to
quantitatively analyze the evolution process of IaC related code and compare it to that of
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require 'spec_helper'
 describe 'mesos' do

   context 'with given version' do
             let(:version) { '0.14' }
             let(:params) {{:ensure => version}}

             it { should contain_package(‘mesos').with(
          { 'ensure' => version

              })}
      end
end

Figure 8.3 InfraTest code snippet.

Production code.

Our work replicates the work of McIntosh et al. [114], who empirically studied the build
system in large open source projects and found that the build system is coupled tightly with
the source code and test files. In their work, they classify files into three different categories
including “Build”, “Production”, and “Test”, and also studied the ownership of build files
to look into who spent the most effort maintaining these files. They observed different build
ownership patterns in different projects: in Linux and Git a small team of build engineers
maintains most of the build maintenance, while in Jazz most developers contribute code to
the build system. In our MSR 2015 paper, we added a fourth category of files (IaC) and we
focused the analysis on those files. In this extension, we revisit this study by adding another
case study and focusing on the characteristics and coupling of infrastructure-related files, and
comparing them to the corresponding results for non-infrastructure code.

We used “association rules” to measure coupling between two different phenomena. Similar to
McIntosh et al. [114], other researchers also used “association rules” to detect co-change and
co-evolution. Herzig et al. [91] used association rules to predict test failure and their model
shows a good performance with precision of 0.85 to 0.90 on average. Zaidman et al. [111]
explored the co-evolution between test and production code. They found different coupling
patterns in projects with different development style. In particular, in test-driven projects
there is a strong coupling between production and test code, while other projects have a
weaker coupling between testing and development. Gall et al. [79] studied the co-evolution
relation among different modules in a project, while our work focuses on the relation among
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different file categories.

Hindle et al. [93] studied the release patterns in four open source systems in terms of the evo-
lution in source code, tests, build files and documentation. They found that each individual
project has consistent internal release patterns on its own. Gregorio et al. [138] conducted a
case study on the KDE project, classifying all the artifacts into nine types and analyzing the
relationship amongst. They found that beyond work on source code, a project could devote
much effort to other tasks. This motivates our concern that other than production code,
other artifacts in a project such ad IaC code can cost effort.

Adams et al. [31] studied the evolution of the build system of the Linux kernel at the level
of releases, and found that the build system co-evolved with the source code in terms of
complexity. McIntosh et al. [113] studied the ANT build system evolution. Zanetti et al. [143]
studied the co-evolution of GitHub projects and Eclipse from the socio-technical structure
point of view. Our MSR 2015 paper [99] is the first to study the co-evolution between
infrastructure and source code in a project, and this extension is the first to compare the
evolution process between infrastructure-related code and production-related code files.

Rahman et al. [131], Weyuker et al. [157], Meneely et al. [116] studied the impact of the
number of code contributors on software quality. Karus et al. [102] proposed a model that
combines both code metrics and social organization metrics to predict the yearly cumulative
code churn. It turns out that the combined model is better than the model only adopting code
metrics. Bird et al. [61] proposed an approach for analyzing the impact of branch structure
on the software quality. Nagappan et al. [125] conducted a study about the influence of
organizational structure on software quality. Nagappan et al. [124] predicted defect density
with a set of code churn measures such as the percentage of churned files. They showed that
churn measures are good indicators of defect density. This work motivates our third research
question to explore the monthly churn for infrastructure-related files.

Shridhar et al. [147] conducted a qualitative analysis to study build file ownership styles,
and they found that certain build changes (such as “Corrective” and “New Functionality”)
can introduce higher churn and are more invasive. Our work (the MSR 2015 paper [99]
and this extension) is the first to study the ownership style of infrastructure files. Curtis et
al. [67], Robillard [137], Mockus et al. [119, 121] focus on how domain knowledge impacts the
software quality. It turns out that the more experienced and familiar to a domain, the fewer
bugs are introduced. This suggests that if IaC experts change IaC files, they are less likely to
introduce bugs than, say, build developers. We study IaC ownership, yet do not study bug
reports to validate this link.

To summarize, our study is the first to compare the evolution and ownership of IaC with
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that of known file categories.

8.3 Approach

The methodology of our study basically consists of four steps as is shown as a flow chart
in Figure 8.4. First, we collected all revisions from the git repositories of MediaWiki and
OpenStack, then we classified them into six categories (and one “miscellaneous” category,
which is ignored). Next, we selected the top repositories containing the most IaC code and
Production code respectively. Finally, we compared the characteristics of both groups of
repositories (e.g., composition of repository, change rate and monthly churn) as well as the
coupling between IaC-related code and Production-related code in terms of code change and
ownership.

Figure 8.4 Flow chart of the whole approach.

8.3.1 Data Collection

We analyzed two large, popular, long-lived open source ecosystems, i.e., OpenStack and Me-
diaWiki. Both have a large number of repositories and developers, while at the same time
they are also following up-to-date release engineering practices, having invested substantial
effort and resources into IaC. While OpenStack uses IaC to manage its continuous inte-
gration and testing processes, MediaWiki uses it during regular development as well as to
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deploy production servers, Furthermore, MediaWiki projects often follow the best practices
of Humble et al. [97] to separate build/test/source code from infrastructure code by using
different repositories, while OpenStack instead stores its infrastructure-related code in its
regular version control repositories. This difference makes these two systems interesting to
compare to each other.

OpenStack

OpenStack [16] is an open source project launched jointly by Rackspace Hosting and NASA
in July 2010. It is in fact governed by a consortium of organizations who have developed
multiple interrelated components that together make up a cloud computing software plat-
form that offers “Infrastructure As A Service (IaaS)”. Users can deploy their own operating
system or applications on OpenStack to virtualize resources like cloud computing, storage
and networking.

Given that continuous integration and testing of a cloud computing platform like OpenStack
requires continuous configuration and deployment of virtual machines, OpenStack makes
substantial use of IaC, adopting both “Puppet” and “Chef” to automate infrastructure man-
agement. For the continuous integration and testing process of OpenStack, IaC code helps
to create server nodes on demand and manage CI machines on each. Then IaC code will
enable to automatically transfer/manage data such as passwords, SSH keys and so on.

Apart from its adoption of IaC, OpenStack has many other characteristics that prompted
us to study it in our empirical study. In particular, it has 13 large components (“modules”)
spread across 382 projects with their own git repositories, 20 million lines in total, a release
cycle time of 6 months, and a wide variety of users such as AT&T, Intel, SUSE, PayPal, and
eBay.

MediaWiki

MediaWiki [22] is a free open source web platform written in PHP with a MySQL backend.
It is the web platform of one of the most popular websites in the world, i.e., Wikipedia.
MediaWiki is also internally adopted by many known companies and government, such as
Intel and the United States Department of State. Its first official version was released in 2002,
and by now there are already 1,480 projects totally. The MediaWiki organization started
supporting IaC, i.e., Puppet and Chef, since 2011 to enable developers to work in a consistent
development environment (e.g., using the MediaWiki-Vagrant portable IDE), or to manage
deployment to production servers.
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8.3.2 Classifying Files into Categories

In order to address our research questions, first we need to classify files into different cate-
gories. In our prior work, we classified all files into four categories: “Infrastructure”, “Build”,
“Production (i.e., source code)” and “Test” files. In this extension, we add two more cate-
gories “InfraData (Infrastructure Data)” and “InfraTest (Infrastructure Test)”. The “Infra-
Data” files are data source files that are used by IaC, such as configuration files, images or
databases, while the “InfraTest” files are test cases especially designed to test infrastructure
code, using for example the rspec test framework [5] [24] [71]. Other unrelated files were
categorized into the “Others” category and were not considered in our study. Note that
we classified any file that ever existed in an OpenStack or MediaWiki project across all git
commits amounting to 133,215 files for OpenStack and 241,698 for MediaWiki in total.

In order to do the classification, we used a similar approach as McIntosh et al. [114]. First, we
wrote a script to identify files with known naming patterns. For example, names containing
“test” or “unittest” should be test files, while the “Makefile” or “Rakefile” names are build
files, and the files with a programming language suffix such as “.py”, “.rb” for OpenStack
and “.php” for MediaWiki typically (but not always) belong to the production files. The
infrastructure files written in Puppet have a suffix “.pp” or can be found under a directory
named “cookbook”, “recipes” or “attributes”. After classifying those files that are easily
identified, we manually classified the remaining 25,000 unclassified files for OpenStack and
20,386 for MediaWiki. To do this, we manually looked inside the files to check for known
constructs or syntax, and for naming conventions specific to OpenStack and MediaWiki. For
example, we found that in general the test files for Infrastructure code are under a directory
named spec or rspec. We put the resulting file classification online2.

8.3.3 Selecting Top Infra-specific and Production-specific Repositories

In this paper, we would like to compare the way in which both case study systems maintain
and take advantage of IaC (Infrastructure As Code) in practice. Given that both projects
follow different practices, with MediaWiki often storing its IaC-related projects in separate
repositories, while OpenStack also puts IaC files inside regular code repositories, we use a
different analysis approach than was done in our MSR study of OpenStack.

Instead of dividing the Git projects of MediaWiki/OpenStack based on the number of IaC
files that they have (none, one, or more), here we rank the projects based on the number
of IaC files, then consider the topmost projects as “Infra-specific”. Similarly, we also rank

2https://github.com/yujuanjiang/OpenStackClassificationList



124

the projects based on the number of production files, and consider the topmost projects as
“Production-specific”. We believe that the number of files is a better data selection criterion
than the number of commits, since our goal is to study infrastructure-rich projects. Our
study then compares the characteristics of the IaC code in the Infra-specific projects to those
of production code in the Production-specific projects. Note that the “Production-specific”
projects might as well contain little infrastructure code and vice versa, but no project ended
up as Infra- and Production-specific at the same time.

OpenStack: We collected all the revisions from the 382 available git repositories of the
OpenStack ecosystem. After classification and selection, we got 25 projects for both Infra-
specific and Production-specific groups.

MediaWiki: We collected all the revisions from the 1,480 repositories from MediaWiki,
then selected those with more than five infrastructure files. This resulted into 23 repositories.
Finally, we selected the top 25 projects in terms of production code as Production-specific
group. Eventually, we end up with 48 repositories in total, 23 of which are infrastructure-
specific (“Infra-specific” group) and 25 are regular production code repositories (“Production-
specific”).

8.3.4 Statistical tests and beanplot visualization.

In our work, we mainly used the Kruskal-Wallis and Mann-Whitney tests to do statistical
tests, and used the beanplot package in R as the visualization tool for our results.

The Kruskal-Wallis test [12] is a non-parametric method that we use to test if there exists
any difference between the distribution of a metric across the six file categories. If the null
hypothesis (“there is no significant difference between the mean of the candidate categories”)
is rejected, at least one of the categories has a different distribution of the metric under
study. To find out which of the metrics has a different distribution, we then use Mann-
Whitney tests as post-hoc test. We perform such a test between each pair of file categories,
using the Bonferroni correction for the alpha value (which is 0.05 by default in all our tests).

A beanplot [101] is a visualization of a distribution based on boxplots, but adding information
about the density of each value in the distribution. Hence, apart from seeing major moments
like median, minimum or maximum, one can also see which values are the most frequent
in the sample under study. By plotting two or more beanplots next to each other, one can
easily see asymmetry in the distribution of values (e.g., Figure 8.7).
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8.3.5 Change Coupling between File Categories

To analyze the coupling relationships in RQ4 and RQ5, we use association rules. An associ-
ation rule is a possible coupling between two different phenomena. For example, McIntosh
et al. [114] found that if a work item changes a source code file, there was a probability of
as high as 27% that a build file had to change as well.

To measure the strength of an association rule (and hence coupling), a number of metrics
can be calculated, such as “Support” (Supp) and “Confidence” (Conf):

Conf = P (A ⋂
B)

P (A)

Supp = P (A
⋂

B)

The metric Support(X) indicates the probability of appearance of X out of all items’ appear-
ance, while the metric Confidence(X=>Y) indicates the probability a change of X will happen
together with a change of Y. For example, if there are 20 commits in total for project P, and
10 of them are changing infrastructure files, then Supp(Inf)=0.5 (10/20). If among these 10
commits, 6 of them also change InfraTest files, then Conf(Inf=>InfraTest)=0.6 (6/10). The
confidence of an association rule can help us understand the coupling relationship among
different file categories. Note that we do not mine for new association rules, but analyze the
strength of the eight rules involving IaC/Production files and the two other file categories
(IaC =>InfraData, IaC =>InfraTest, Production =>Build, Production =>Test, and the
four inverse rules).

Additionally, in the qualitative analysis of the change coupling, we need to select the most
tightly coupled commits for manual analysis. Since Confidence is not a symmetrical measure
(Conf(X=>Y) is different from Conf(Y=>X)), it yields two numbers for a particular pair of
file categories, which makes it hard to identify the projects with the “most tightly coupled”
commits. For this reason, we adopt the metric “Lift”, which measures the degree to which
the coupling between two file categories is different from the situation where they would be
independent from each other. For each project, we computed the Lift value, then for the 10
projects with the highest lift value for a pair of file categories, we selected the top 10 most
tightly coupled commits. The formula for “Lift” related to the Conf and Supp metrics is as
follows:

Lift = P (A ⋂
B)

P (A)P (B)
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8.3.6 Qualitative Analysis using Card Sorting

For our qualitative analysis, we adopted “Card Sorting” [117, 43], which is an approach that
allows to systematically derive structured information from qualitative data. It consists of
three steps: 1) First, we selected the 10 projects with the highest lift value for a certain
pair of file categories. Then, for each such project, we wrote a script to retrieve all commits
changing files of both categories. 2) Then, we randomly sorted the retrieved commits for a
project and picked 10 sample commits. 3) The first author then manually looked into the
change log message and code of each commit to understand why this co-change happens. In
particular, we were interested in understanding the reasons why changes of both categories
were necessary in the commit. If this is a new reason, we added it as a new “card” in our
“card list”. Otherwise, we just increased the count of the existing card. After all cards are
sorted, we obtained a list of reasons (about 10 to 15 reasons for different coupling) for co-
change between two file categories. Finally, we clustered cards that had related reasons into
one group, yielding seven groups eventually.

“Card sorting” is an approach commonly used in empirical software engineering when qual-
itative analysis and taxonomies are needed. Bacchelli et al. [40] used this approach for
analyzing code review comments. Hemmati et al. [88] adopted card sorting to analyze survey
discussions [147]. We performed card sorting on both MediaWiki and OpenStack data set.

8.4 Case Study Results

RQ1: How many infrastructure files does a project have?

Motivation: As infrastructure code is a relatively new concept, not much is known about
its characteristics, for example “how common are such files?”, and “how large are they in
comparison to other known kinds of files?”. Hence, our first research question helps to obtain
a rough picture about the role of infrastructure files in a project.

Approach: First, we count the number and compute the percentage of files in each file
category for each project. Afterwards, we computed the size of files in terms of number of
lines of code, for each file category. Furthermore, we manually checked those projects with a
large number of infrastructure files to understand why they contain such a high proportion
of infrastructure files. We used Kruskal-Wallis and post-hoc tests to check the significance of
the results with as null hypotheses “there is no significant difference among the distributions
of the proportion (resp. LOC) of each file category”.

Results: In Infra-specific projects, the top infrastructure projects have 9 (Medi-
aWiki) and 60 (OpenStack) infrastructure files respectively, take up the largest
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proportion up to 50%, while in Production-specific groups, the production code
files dominate the project with a median value of 724.5 and 797 respectively.
Figure 8.5 shows the boxplots of the proportion of the six file categories relative to all files of
MediaWiki and OpenStack, while Table 8.1 shows the absolute number and Table 8.5 shows
the corresponding proportions (see appendix) of files. In absolute numbers, this means that
MediaWiki Infra-specific projects have a median of 9 IaC files compared to 724.5 production
files in the Production-specific projects, compared to 60 IaC files and 797 production files
for OpenStack. In Production-specific projects, Production files and Test files represent the
majority of files, with only few other files. These results makes sense, because the source code
files are the fundamental composition of projects. However, the proportion of infrastructure
files in each system can reach up to 50%.

However, there exists a difference in these two projects in terms of the Infra-specific projects.
For the Infra-specific group of MediaWiki, Production files represent only a median propor-
tion of 1%. For OpenStack, the production files in the Infra-specific group still take up a
high proportion (with a median value of 16%), right after Infrastructure code. InfraTest and
InfraData files (with median value of 1% respectively), and as large as build files (1%). This
mix of IaC and production code goes against best practices suggested by Humble et al. [?
] to always separate IaC and regular production code.

MediaWiki Infra-specific projects proportionally have more InfraData files than
InfraTest files, while OpenStack has the opposite. In terms of Infra-specific groups,
MediaWiki has a larger proportion of InfraData files (median of 23.3%) while in OpenStack,
InfraData has the lowest proportion. However, in terms of concrete numbers (as shown
in Table 8.1), the number of InfraData files of OpenStack is actually higher than that of
MediaWiki, with a median value of 11.00 compared to the 5.50 of MediaWiki. That said, IaC
developers of OpenStack have discussed the need for more unit tests for their IaC before [23].

For both MediaWiki and OpenStack, the percentage of infrastructure files has a
large variance for “Infra-specific” projects. To better understand the outliers in our
data, we manually looked into the top projects with a large Infrastructure file proportion. We
found that 11 of the OpenStack Infra-specific projects have names related to the infrastructure
system (7 of them named after Puppet, 4 after Chef) and 15 projects in WikiMedia have a
name containing “puppet”. For example, the “openstack-chef-repo” repository is an example
project for deploying an OpenStack architecture using Chef, and the “puppetlabs-openstack”
project is used to deploy the Puppet Labs Reference and Testing Deployment Module for
OpenStack, as described in the project profile on GitHub [18] [25].

The size of Infrastructure files is the largest across all file categories in Infra-
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Figure 8.5 Proportion of number of files for Infra-specific and Production-specific projects
respectively.

specific groups. Figures 8.6d are boxplots across all six file categories of file size (in terms
of LOC) for the Infra-specific group of MediaWiki and OpenStack, while Table 8.6 shows
the statistics. We can see that the size of Infrastructure files in Infra-specific group is larger
than that of other file categories, with a median of 47 and 76 lines of code for MediaWiki
and OpenStack respectively. For MediaWiki, the InfraData files (in the Infra-specific group)
are as large as Production files, ranking second (median of 20) after Infrastructure files. For
OpenStack’s Infra-specific projects, InfraTest files and InfraData files (in Infra-specific group)
are as large as Production and Test files, ranking second after Infrastructure and Build files.

Infrastructure files in Infra-specific projects are smaller than production code
in Production-specific projects (and than test files, for OpenStack). As shown in
Figure 8.6b, the Production files dominate the Production-specific projects, although for
OpenStack, Test files are the largest (Figure 8.6d). The Infrastructure files in OpenStack’s
Production-specific group have a size as large as Build files (see Table 8.6).
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Table 8.1 Distribution of the number of files for the MediaWiki and OpenStack projects
respectively.

Production Build Test Infrastructure InfraTest InfraData

M
ed
ia
W

ik
i Infra-specific

1st Qu. 0.0 0.00 0.0 6.0 0.00 1.75
Median 1.0 0.00 0.0 9.0 0.00 5.50
Mean 434.5 15.08 218.3 140.8 18.96 43.96
3rd Qu. 12.0 1.00 0.0 52.0 1.00 26.50

Production-specific

1st Qu. 389.0 4.5 118.2 0.0 0.0 0.0
Median 724.5 9.0 283.5 0.0 0.0 0.0
Mean 1994.4 43.0 6883.9 0.2 18.8 0.8
3rd Qu. 2519.8 39.0 548.8 0.0 0.0 0.0

O
pe

nS
ta
ck Infra-specific

1st Qu. 1 2.00 0.0 43.0 0 0.00
Median 14 4.00 12.0 60.0 2 11.00
Mean 351 26.04 100.9 275.4 62 62.96
3rd Qu. 839 16.00 183.0 185.0 52 11.00

Production-specific

1st Qu. 564 1.00 177.0 3.00 0 0
Median 797 6.00 316.0 4.00 0 0
Mean 1079 9.44 473.2 5.96 0.21 0.72
3rd Qu. 1496 9.00 462.0 5.00 0 0

�

�

�

�

Infra-specific projects have a median num-
ber of 9 (MediaWiki) and 60 (OpenStack)
IaC files, which is proportionally lower
than the number of Production, but higher
than Build and Test files of Production-
specific projects. IaC files have a me-
dian size of 47 (MediaWiki) and 76 (Open-
Stack) lines of code, which is smaller than
Production files.

RQ2: How many infrastructure files change per month?

Motivation: The results of RQ1 related to number and to some degree size of files could
indicate a certain amount of effort needed to develop and/or maintain infrastructure files, in
both projects. To measure this effort, this question focuses on the percentage of files in a
category that are being changed per month [114], i.e., the “monthly churn”. The more files
are touched, the more maintenance effort would be needed.

Approach: In order to see how often each file category changes, we computed the number of
changed files per month of each project. To enable comparison across time, we normalize the
number by dividing by the corresponding number of files in a category existing that month,
yielding the proportion of monthly changed files in each category. For each project and file
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Figure 8.6 File size (LOC) for the two groups of MediaWiki and OpenStack projects’ respec-
tively.

category, we then calculate the median proportion of changed files per month. Finally, we
compared each file category’s distribution of this median across all projects.

Furthermore, we again did a Kruskal-Wallis test and post-hoc tests to examine the statis-
tical significance of any differences in the average proportion of changed files between file
categories.

Results: The Infrastructure files change more frequently than InfraTest and In-
fraData files, in both projects. Figure 8.7 shows the distribution of proportion of monthly
changed file per project, while Table 8.7 in the appendix shows the statistics. Figures 8.7a
and 8.7c show for Infra-specific groups that in both projects, more Infrastructure files (me-
dian of 0.118 and 0.250 for MediaWiki and OpenStack respectively) change per month than
InfraTest and InfraData files (median of 0.036/0.019 and 0.115/0.134 respectively). However,
in the MediaWiki Infra-specific group, slightly more InfraTest files change per month than
InfraData files, while for OpenStack we can see the opposite. This might be because those
file categories are not that common in MediaWiki/OpenStack, respectively (see RQ1), hence
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it is easier to change a larger proportion of them.

In the Production-specific projects, Production files change more frequently than
Build files. Figures 8.7b and 8.7d demonstrate the change for Production-specific groups.
We can see that in both cases, Production files have a monthly change proportion of 0.277
(MediaWiki) and 0.229 (OpenStack), compared to 0.132 (MediaWiki) and 0.174 (OpenStack)
for Build files. For MediaWiki, more Production files change than Test files as well (median
of 0.123).

For MediaWiki, Production files in the Production-specific group change more
frequently than Infrastructure files in Infra-specific group, while for OpenStack,
Infrastructure files have the highest change rate. Figures 8.7a and 8.7b show how
Production files have the highest change rate amongst all (median of 0.277), while Infras-
tructure files change less than Production, Build and Test files (median of 0.118 compared to
0.277, 0.132 and 0.123). On the other hand, Figure 8.7c and 8.7d show that Infrastructure
code changes the most frequently every month (with a median value of 0.25), much more
frequently than the Production (0.201), Build (0.228) and Test (0.163) code of Production-
specific projects, and the InfraTest and InfraData files of Infra-specific projects. This confirms
our earlier findings for OpenStack [99].

�

�

�

�

Infrastructure files change more frequently
than InfraTest and InfraData files in
Infra-specific groups of both MediaWiki
and OpenStack, while they change even
more frequently than Production files in
the Production-specific OpenStack projects.
However, in MediaWiki, they change less
frequently than Production, Build and Test
files.

RQ3: How large are infrastructure file changes?

Motivation: Now that we know how many infrastructure files change per month for all
the projects, we want to know how much each file changes as well. For example, even though
IaC files change more frequently than production files in OpenStack, they might only involve
changes to one or two lines compared to typically larger code changes.

Approach: Churn, i.e., the number of changed lines of a commit, is a universal indicator
for the size of a change. In the textual logs of a git commit, a changed line always begins
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Figure 8.7 Proportion of changed files for Production-specific and Infra-specific projects,
respectively.

with a plus “+” or minus “-” sign. The lines with “+” are the newly added lines, while the
lines with “-” are deleted lines from the code. In order to understand how much each file
category changes per month, we define its monthly churn of a project as the total number of
changed lines (both added and deleted across all its files) per month.

To control for projects and file categories of different sizes, we also normalize the monthly
churn of each file category by dividing by the number of files of that file category in each
month. This yields the monthly churn per file (MCF). Finally, similar to RQ2, we calculate for
each project and file category the median monthly churn and median MCF across all months,
then compare the file categories’ distribution of these median values across all projects.

Results: For MediaWiki, Infrastructure files have a larger monthly churn than
InfraTest and InfraData files. Figures 8.8a and 8.8c show the distribution of monthly
change rate of Infra-specific projects for MediaWiki and OpenStack. We can see that for
MediaWiki, the Infrastructure files have the highest churn value (median of 20.01 lines of
code) compared to InfraTest and InfraData (median 0.00 and 1.0). However, for the Open-



133

Stack Infra-specific group, Infrastructure files (median of 21.97) have a monthly churn size
comparable to InfraTest (median of 25.45) and InfraData (median of 19.49) files.

Production files have a larger monthly churn than Build files (median of
19.56/31.96 vs 1.40/1.0 for MediaWiki and OpenStack respectively), while this
churn is comparable to that of Test files in both MediaWiki and OpenStack
projects. Figure 8.8b and 8.8d show the monthly churn distribution of Production-specific
projects for MediaWiki and OpenStack, while Table 8.8 in the appendix shows the corre-
sponding statistics. Production files have a monthly churn of 19.56 lines of code compared
to 1.4 for Build files in MediaWiki, and a median of 31.96 compared to 1.0 for OpenStack
respectively. Production files are almost as large as Test files, with a median of 33.4 and
36.81 lines of code respectively for MediaWiki and OpenStack.

For MediaWiki, the Infrastructure files of Infra-specific projects have a larger
monthly churn value than Production files in the Production-specific group, while
for OpenStack, we see opposite. Infrastructure files of Infra-specific group have a median
value of monthly churn of 20.01, higher than 19.56 of Production files of Production-specific
group. However, for OpenStack, the monthly churn size of Infrastructure files is smaller
(median of 21.97 lines of code) than Production files (median of 31.96 lines of code).

For MediaWiki, Infrastructure files have larger relative churn (MCF) than In-
fraTest and InfraData files, while for OpenStack InfraTest files have a higher
MCF value. Figures 8.9a and 8.9c show the MCF value for Infra-specific group of both
MediaWiki and OpenStack. We can see that for MediaWiki, Infrastructure files have highest
MCF value (median of 2.03 lines of code per file), followed by InfraTest (median of 1.00) and
InfraData (median of 0.16), while for OpenStack, Infrastructure files have a lower value than
InfraTest (median of 1.00), but higher than InfraData (median of 0.241).

For both MediaWiki and OpenStack, the Infrastructure files of Infra-specific
projects have a higher MCF value than Production files in the Production-specific
group. In order to control our churn findings for the impact of the number of files, we
normalized the monthly churn of each file category by the corresponding number of files.
Infrastructure files have a median MCF value of 2.03 and 0.240 lines of code per file for
MediaWiki and OpenStack respectively compared to a median of 0.02 and 0.024 lines of code
per file for Production files of Production-specific group. Additionally, Production files have
a lower MCF value than Build and Test files of the Production-specific group.
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In the new project groups (Infra-specific
and Production-specific), we found that In-
frastructure files have a larger monthly
churn than Production files for MediaWiki,
but smaller for OpenStack. After being
normalized, both MediaWiki and Open-
Stack ended up with Infrastructure files of
larger relative churn (MCF) than Produc-
tion files. This means that the already
high churn for Infrastructure Files is con-
centrated even more in the lower num-
ber of files compared to Production files.
This could indicate that Infrastructure files
potentially are more defect-prone (higher
churn in lower number of files), based on
defect model research on regular source
code.
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Figure 8.9 MCF value for MedianWiki and OpenStack (log-scaled).

RQ4: How tight is the coupling between infrastructure-related files compared to
coupling between traditional files?

Motivation: Based on the results of prior research questions, we find that OpenStack’s
infrastructure files are large and see a lot of churn, which means that they might be bug
prone (based on similar observations on production code [36] [37] [126] [133] [152]). However,
the previous research questions considered the evolution of each type of file separately from
one another. As shown by McIntosh et al. [114], evolution of, for example, code files might
require changes to build files to keep the project compilable. Similarly, one might expect
that, in order to keep a project deployable or executable, changes to IaC code might require
corresponding changes to the infrastructure data and/or tests. This introduces additional
effort on the people responsible for these changes. Kirbas et al. [106] observed a positive
correlation between evolutionary coupling and defect measures in an empirical study about
the effect of evolutionary coupling on software defects in a large financial legacy software
system. Since, contrary to our previous work [99], this study considers repositories that either
excel in IaC code or Production code, but not both (as this rarely happens in MediaWiki),
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we do not study direct coupling between IaC and production code. Instead, we calculate
coupling between Infrastructure and InfraTest/InfraData files in Infra-specific projects, and
compare this coupling to the normal coupling between Production, Build and Test code in
the Production-specific projects.

Approach: In order to identify the coupling relationship between changes of different file
categories, we analyze for each pair <A, B> of file categories the percentage of commits
changing at least one file of category A that also changed at least one file of category B.
This percentage corresponds to the confidence of the association rule A=>B. For example,
Conf(Infrastructure, InfraTest) measures the percentage of commits changing Infrastructure
files that also change InfraTest files. Afterwards, we performed chi-square statistical tests
to test whether the obtained confidence values are statistically significant, or are not higher
than expected due to chance.

Finally, we also performed qualitative analysis of projects with high coupling to understand
the rationale for such coupling. We used “card sorting” (Section 8.3.6) for this analysis.
We sampled 50 commits across the top 10 MediaWiki and 50 commits across the top 10
OpenStack projects with the highest Lift metric values (Section 8.3.5) for each coupled pair,
i.e., Infra&InfraData, infra&InfraTest, Production&Build, Production&Test. This resulted
in 400 commits in total for which we analyzed why IaC and Production files were so tightly
coupled with changes to other file categories.

Results: For MediaWiki, Infrastructure files are coupled more tightly with Infra-
Data files, while for OpenStack, Infrastructure files are coupled more tightly with
InfraTest files. Figures 8.10a and 8.10c show the coupling between Infrastructure files
and InfraData/InfraTest respectively for the Infra-specific group of MediaWiki and Open-
Stack. The two cases show similar trends to some extent: 31.9% (MediaWiki) and 15.5%
(OpenStack) commits, changing InfraData tend to change Infrastructure files as well, while
16.7% (MediaWiki) and 39.2% (OpenStack) commits, changing InfraTest tend to change
Infrastructure files. On the other hand, 14.3% commits changing infrastructure files tend
to change InfraData file for MediaWiki, while 11.9% commits changing infrastructure files
tend to change InfraTest files for OpenStack. This said, Infrastructure files are coupled more
tightly with InfraData files than with InfraTest, while for OpenStack we found the opposite:
Infrastructure files are coupled more tightly with InfraTest than with InfraData files. This
aligns with RQ1, where we found that MediaWiki has a higher proportion of InfraData files
and OpenStack has a higher proportion of InfraTest files.

Production files are coupled more tightly with Test files than with Build files.
Figures 8.10b and 8.10d show the coupling between Production files and Build/Test files.
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More statistics are shown in Table 8.2. In general, Conf(Production =>Test) has higher
value than Conf(Production =>Build), with median of 0.033 for MediaWiki and 0.149 for
OpenStack. This indicates Production files are coupled more tightly with Test files than
Build files. The low Conf(Production =>Build) might be since OpenStack and MediaWiki
are not developed in a compiled language, but instead use Python and PHP, respectively.
McIntosh et al. [114] found higher coupling values for Conf(Prod=>Build) in Java-based
systems.

Coupling between Infrastructure and InfraData/InfraTest files (for MediaWik-
i/OpenStack, respectively) in the Infra-specific group is stronger than coupling
between Production and Build files in the Production-specific group. Comparing
the coupling of Infrastructure-related files and Production-related files in each case study,
we can see that the coupling between Infra and InfraData/InfraTest in Infra-specific group
(0.143/0.025 for MediaWiki and 0.032/0.119 for OpenStack) is higher than the coupling
between Production&Build in the Production-specific group (0.0008 and 0.0012 for Me-
diaWiki and OpenStack respectively). Furthermore, for MediaWiki coupling between In-
fra&InfraData (median of 0.143) is stronger than Production&Test files (median of 0.033).

Table 8.2 Median confidence values for the coupling relations of code changes (high coupling-
more than 0.15 is in bold).

System MediaWiki-Infra OpenStack-Infra

Confidence

Infra =>InfraData 0.143 0.032
InfraData =>Infra 0.319 0.155
Infra =>InfraTest 0.025 0.119
InfraTest =>Infra 0.167 0.392

System MediaWiki-Production OpenStack-Production

Confidence

Production =>Build 0.0008 0.0012
Build =>Production 0.250 0.353
Production =>Test 0.033 0.149
Test =>Production 0.297 0.254

The most popular reason for coupling of both IaC-related code and Production-
related code is “Integration” of new components. Table 8.3 shows the results of our
qualitative analysis of the reason why coupling between IaC-related and Production-related
code happens. We found a similar trend for both MediaWiki and OpenStack projects. For
example, the most popular reason for coupling between Infrastructure and InfraData/InfraT-
est files in both MediaWiki and OpenStack is “Integration”, which indicates adding a new
component or service to a project. The second most popular reason is “Modification”, i.e.,
changing a parameter’s value or service configuration, which also often causes co-change of
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Figure 8.10 Coupling relationship of IaC-related code and Production-related code for Me-
diaWiki and OpenStack.

another file using the same information, representing the second most important reason for
coupling.

Despite the similarities between the different kinds of coupling in Table 8.3, we also found
differences. In particular, the coupling between production and build code shows a mostly
uniform distribution across the four different kinds of coupling. As mentioned earlier, this
could be due to the interpreted nature of the programming languages used, with build files
mostly used for coordinating packaging, deployment and testing.

Although IaC code seems to be coupled with InfraData and InfraTest for similar reasons as
Production and Test code, it is important to realize that regular IDEs have become mature
enough to provide tool support for many reasons of coupling of source code. However, to
support the same kind of coupling in IaC code, no such tool support currently exists, except
for rudimentary syntax highlighting. This is risky, and hence it is necessary to develop such
tool support.
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For MediaWiki, Infrastructure files are
coupled more tightly with InfraData files,
while for OpenStack, Infrastructure files
are coupled more with InfraTest files. Cou-
pling for Infrastructure and InfraData/In-
fraTest files is higher than that of Produc-
tion and Build files for both MediaWiki and
OpenStack, while coupling for Infrastruc-
ture and InfraTest files is higher than that
of Production and Test files for MediaWiki
as well. Furthermore, the most popular
reason for such coupling is “Integration” of
a new component or service.

RQ5: Who changes infrastructure code?

Motivation: Herzig et al. [90] studied the impact of test ownership and team social struc-
ture on the testing effectiveness and reliability and found that they had a strong correlation.
This means that in addition to the code-change relations of RQ4, we also need to check the
relationship between the developers, i.e., the ownership among different file categories. Even
though test or code changes might require IaC changes, it likely makes a difference whether
a regular tester or developer makes such a change compared to an IaC expert.

Approach: First, we need to identify the ownership for each category. For this, we check
the author of each commit. If a commit changes an infrastructure file, then we identify that
commit’s author as infrastructure developer. An author can have multiple identifications,
e.g., one can be an infrastructure file and production developer at the same time (even for
the same commit). We ignore those developers whose commits only change the files of the
“Other” category.

We then compute the RQ4 metrics, but this time for the change ownership.
Conf(Infrastructure, Build) is the percentage of IaC developers that also change build files
out of the total number of developers changing at least once infrastructure file.

Results: More Infrastructure developers change InfraData files than change In-
fraTest code. Figures 8.11a and 8.11c show how for MediaWiki and OpenStack, coupling
for Infrastructure and InfraData is higher (median of 0.17 and 0.10 for MediaWiki and Open-
Stack respectively) than coupling for Infrastructure and InfraTest (median of 0.08 and 0.07
respectively), while most of developers changing InfraData code also change Infrastructure
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code (median of 0.76 and 1.00 respectively), while for OpenStack, half of developers changing
InfraTest code change Infrastructure code as well.

Production developers change Test code as well, and 11% Production developers
change Build code as well for MediaWiki. Figure 8.11 and Table 8.4 show for the
Production-specific group that 32% (MediaWiki) and 74% (OpenStack) Production devel-
opers also change Test code. 11% Production developers change Build code for MediaWiki,
while for OpenStack, Production and Build are not coupled that much in terms of ownership
(median of 0.05).

Coupling between Infrastructure and InfraData developer ownership is stronger
to that of Production and Build code, but less than that of Production and
Test code. We observed that coupling between Infrastructure and InfraData in terms of
ownership for both MediaWiki (median of 0.17) and OpenStack (median of 0.10) is higher
than coupling between Production and Build (median of 0.11 and 0.05 for MediaWiki and
OpenStack respectively), while lower than coupling between Production and Test code (me-
dian of 0.32 and 0.74 respectively). On the other hand, coupling between Build/Test and
Production (median of 0.87/0.90 and 1.00/0.95 respectively) is higher than coupling between
InfraData/InfraTest and Infrastructure (median of 0.76/0.12 and 1.00/0.53).

Table 8.4 Median confidence values for the coupling relations involving IaC developers.

System MediaWiki-Infra OpenStack-Infra

Confidence

Infra =>InfraData 0.17 0.10
InfraData =>Infra 0.76 1.00
Infra =>InfraTest 0.08 0.07
InfraTest =>Infra 0.12 0.53

System MediaWiki-Production OpenStack-Production

Confidence

Production =>Build 0.11 0.05
Build =>Production 0.87 1.00
Production =>Test 0.32 0.74
Test =>Production 0.90 0.95

�

�

�

�

InfraData developers also change Infra-
Data files. Ownership coupling between
Infrastructure and InfraData in the Infra-
specific group is stronger than that of Pro-
duction and Build developers’ ownership.
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Figure 8.11 Coupling of ownership infra-specific (log-scaled).

8.5 Threats To Validity

Construct validity threats concern the relation between theory and observation. First of all,
we use the confidence of association rules to measure how closely file categories and owners
co-change in our research questions, similar to earlier work [114]. Furthermore, we use the
monthly churn per file to measure the frequency of change and the number of changed lines
of code to measure the amount of change. However, these metrics might not 100% reflect
the actual coupling relationship and churn rate. Other metrics should be used to replicate
our study and compare findings.

Another threat to construct validity concerns the impact of the manual classification on
our results. For this classification, we adopted the semi-automatic approach of McIntosh et
al. [114], consisting of a script to separate certain file categories, then manually classifying the
remaining files. To mitigate bias, at first the first author of this paper did this classification,
followed by an independent verification by the second author.

Threats to external validity concern the ability to generalize our results. Even though two
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large open source ecosystems have been studied, we cannot generalize our findings to other
open and closed source projects. On the other hand, because OpenStack and MediaWiki
consist of a variety of projects, and also have adopted the two most popular infrastructure
tools (Puppet and Chef), they are representative case studies to analyze. However, both
of them use interpreted programming languages, and they do not use the same conventions
regarding whether or not production and infrastructure code can be mixed in the same
repository. Further studies should consider other open and closed source systems.

Another threats to external validity concerns the use cases of IaC in different systems. Differ-
ent projects may use IaC ion different purpose, such as deploying applications, or integration
testing. This may bias our analysis, which ignores the role played by IaC in the analyzed
systems.

8.6 Conclusion

IaC (Infrastructure as Code) helps automate the process of configuring and populating the
environment in which the software product will be developed, tested and/or deployed. The
developed files that specify how to create the environment are a kind of source code files in a
dedicated programming language, managed under version control. Ideally, this practice helps
simplify the automatic generation of environments, shorten the release cycle, and reduce the
possible inconsistencies introduced by manual work, however the amount of maintenance
required for this new kind of source code file is unclear.

We empirically studied this maintenance effort and compared the evolution process for
Infrastructure-related code to that of Production-related code in the context of the Open-
Stack and MediaWiki ecosystems. These are large-scale open source ecosystems that have
adopted infrastructure-as-code since a couple of years. We studied 50 projects for OpenStack
and 48 projects for MediaWiki.

We found that the analyzed infrastructure-heavy projects have a median value of 9 and 60
IaC files for MediaWiki and OpenStack respectively, which yields a large proportion in each
(median value of 55% and 52% respectively). These IaC files are larger than infrastructure-
related data and test files, with a median value of 47 and 76 lines of code for MediaWiki
and OpenStack. 11.8% and 25% of the infrastructure files of MediaWiki and OpenStack
projects change monthly, which is higher than all other file categories for OpenStack and
higher than infrastructure-related data and test files for MediaWiki. The monthly churn
size of infrastructure files is not significantly higher than production files, but after being
normalized by the number of IaC and production files, infrastructure files have a higher
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relative churn than production files (with median value of 2.03 and 0.240 lines of code for
MediaWiki and OpenStack respectively, compared to 0.02 and 0.024 of production files). The
large relative churn size of Infrastructure files suggests potential high maintenance effort.

Furthermore, for MediaWiki Infrastructure files are coupled tightly with InfraData files in
Infra-specific group while for OpenStack, Infrastructure files are coupled more tightly with
InfraTest files. Both tend to be more tightly than coupling between Production and Build
files. Additionally, the most popular reason for such coupling is “Integration” of new com-
ponents or services. Finally, coupling between Infrastructure and InfraData developers is
stronger than that between Production and Build developers.

Taking all these findings together, we believe that IaC files should be considered as source
code files, not just because of the use of a programming language, but also because their
characteristics and maintenance show similar symptoms as source code files. Hence, more
work is necessary to study bug-proneness of IaC files as well as help reduce the maintenance
effort.

Furthermore, whereas IDE and other tool support exists to help developers deal with cou-
pling, no such support exists for IaC, hence future work should also focus on this.
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8.7 Appendix

Table 8.5 The proportion of the six file categories for Infra- and Production-specific group of
MediaWiki and OpenStack.

Production Build Test Infrastructure InfraTest InfraData

M
ed
ia
W

ik
i Infra-specific

1st Qu. 0.00 0.00 0.00 0.32 0.00 0.025
Median 0.01 0.00 0.00 0.55 0.00 0.233
Mean 0.15 0.017 0.05 0.49 0.03 0.267
3rd Qu. 0.12 0.06 0.00 0.72 0.00 0.411

Production-specific

1st Qu. 0.52 0.005 0.08 0.00 0.00 0.00
Median 0.76 0.007 0.22 0.00 0.00 0.00
Mean 0.64 0.043 0.29 0.005 0.001 0.02
3rd Qu. 0.83 0.009 0.42 0.00 0.00 0.00

O
pe

nS
ta
ck Infra-specific

1st Qu. 0.01 0.01 0.00 0.05 0.00 0.00
Median 0.16 0.02 0.03 0.52 0.01 0.01
Mean 0.28 0.03 0.07 0.45 0.12 0.04
3rd Qu. 0.70 0.03 0.15 0.68 0.24 0.02

Production-specific

1st Qu. 0.66 0.001 0.16 0.002 0 0.00
Median 0.72 0.003 0.28 0.003 0 0.00
Mean 0.72 0.008 0.26 0.005 0 0.0005
3rd Qu. 0.79 0.008 0.34 0.005 0 0.00
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Table 8.6 Distribution of file size (LOC) for the MediaWiki and OpenStack projects respec-
tively.

Production Build Test Infrastructure InfraTest InfraData

M
ed
ia
W

ik
i Infra-specific

1st Qu. 0 0 0 35 0 7
Median 37 0 0 47 0 20
Mean 125 20 26 80 12 31
3rd Qu. 236 30 0 120 0 44

Production-specific

1st Qu. 137 39 53 0 0 0
Median 216 78 91 0 0 0
Mean 205 132 101 26 89 7
3rd Qu. 283 164 153 0 0 0

O
pe

nS
ta
ck Infra-specific

1st Qu. 8 30 0 40 0 0
Median 29 68 39 76 41 25
Mean 79 90 61 81 48 32
3rd Qu. 99 93 89 138 72 58

Production-specific

1st Qu. 82 75 141 44 0 0
Median 117 104 215 78 0 0
Mean 134 102 196 95 0 4
3rd Qu. 166 146 265 138 0 0

Table 8.7 The proportion of changed files per month the MediaWiki and OpenStack projects
respectively.

Production Build Test Infrastructure InfraTest InfraData

M
ed
ia
W

ik
i Infra-specific

1st Qu. 0.239 0.061 0.129 0.116 0.023 0.016
Median 0.247 0.073 0.132 0.118 0.036 0.019
Mean 0.234 0.096 0.134 0.106 0.034 0.016
3rd Qu. 0.254 0.081 0.133 0.122 0.047 0.020

Production-specific

1st Qu. 0.245 0.128 0.119 0.043 0.002 0.009
Median 0.277 0.132 0.123 0.050 0.013 0.016
Mean 0.273 0.144 0.122 0.059 0.020 0.014
3rd Qu. 0.307 0.141 0.129 0.074 0.043 0.018

O
pe

nS
ta
ck Infra-specific

1st Qu. 0.190 0.222 0.149 0.243 0.096 0.120
Median 0.201 0.228 0.163 0.250 0.115 0.134
Mean 0.202 0.239 0.186 0.252 0.128 0.137
3rd Qu. 0.217 0.249 0.226 0.266 0.136 0.148

Production-specific

1st Qu. 0.214 0.162 0.196 0.197 0.052 0.064
Median 0.229 0.174 0.232 0.199 0.058 0.073
Mean 0.231 0.180 0.225 0.209 0.061 0.078
3rd Qu. 0.245 0.193 0.251 0.224 0.70 0.090
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Table 8.8 The distribution of monthly churn per project for the MediaWiki and OpenStack
projects respectively

Production Build Test Infrastructure InfraTest InfraData

M
ed
ia
W

ik
i Infra-specific

1st Qu. 1.00 8.78 1.00 17.56 0.00 0.0
Median 1.00 14.16 1.00 20.01 0.00 1.0
Mean 8.19 20.51 49.07 23.58 8.80 7.46
3rd Qu. 9.50 26.74 61.87 28.37 1.00 2.13

Production-specific

1st Qu. 14.21 0.00 27.54 0.00 16.77 0.00
Median 19.56 1.40 33.04 0.00 29.77 0.00
Mean 44.06 2.17 49.52 2.57 27.87 12.88
3rd Qu. 39.43 1.89 39.75 1.00 36.33 1.00

O
pe

nS
ta
ck Infra-specific

1st Qu. 10.52 1.65 15.82 16.34 2.00 0.00
Median 20.30 24.50 34.22 21.97 25.45 19.49
Mean 27.97 17.66 78.82 29.06 30.21 17.92
3rd Qu. 48.00 24.94 58.53 46.01 59.54 27.77

Production-specific

1st Qu. 19.08 0.00 30.01 17.28 28.84 0
Median 31.96 1.00 36.81 28.17 44.38 0
Mean 36.56 3.317 56.67 28.36 57.77 0.67
3rd Qu. 45.00 1.00 69.53 37.00 63.04 1

Table 8.9 The distribution of MCF value for the MediaWiki and OpenStack projects respec-
tively.

Production Build Test Infrastructure InfraTest InfraData

M
ed
ia
W

ik
i Infra-specific

1st Qu. 0.46 2.00 0.00 0.27 0.00 0.11
Median 1.00 9.24 3.70 2.03 1.00 0.16
Mean 2.02 12.36 39.91 2.44 3.85 1.26
3rd Qu. 1.00 16.34 25.64 2.77 2.10 0.63

Production-specific

1st Qu. 0.01 0.07 0.058 1.0 12.10 0.00
Median 0.02 0.11 0.118 1.0 18.83 2.20
Mean 1.16 0.20 0.360 1.46 22.37 12.80
3rd Qu. 0.05 0.28 0.265 2.0 36.02 5.06

O
pe

nS
ta
ck Infra-specific

1st Qu. 0.059 0.33 0.251 0.085 0204 0.083
Median 1.00 0.61 1.00 0.240 1.00 0.241
Mean 3.17 2.34 53.71 0.446 20.24 7.672
3rd Qu. 4.06 4.16 10.50 0.583 52.68 19.493

Production-specific

1st Qu. 0.011 0.11 0.090 2.50 28.84 1.00
Median 0.024 0.17 0.116 3.94 44.38 1.00
Mean 0.044 0.51 0.757 5.32 57.77 0.93
3rd Qu. 0.073 1.00 0.278 6.40 63.04 1.00
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CHAPTER 9 GENERAL DISCUSSION

In this thesis, we conducted a series of empirical studies on two critical phases of Release
engineering: Integration and Provisioning (Infrastructure-as-Code), in order to help practi-
tioners understand the progress of Release engineering and evaluate state-of-the-art tools.
Integration is one of the most complex phases of software engineering, while Infrastructure-
as-Code is one of the most recent techniques. Furthermore, ample repository data is available
about these two phases.

This chapter discusses the main contributions and findings of this thesis.

9.1 Explanatory Models in Integration Process

We studied the Integration process of the Linux kernel project in Chapter 4. While many
prior studies have been done about reviewing and integration process individually, our work
was the first to link data of reviewing and integration process together and analyze the overall
progress. In this chapter, we build the explanatory model to understand the reviewing and
integration process. Our model for simulating patch acceptance has high performance with up
to 74% precision and recall, and models for integration and reviewing time have an accuracy
of up to 70% and 76% respectively.

While explanatory models are not able to predict future acceptance or acceptance time, only
to explain the existing data, the good performance of such models paves the way for building
prediction models with reasonable performance. Of course, such prediction models could
introduce the risk of people “gaming” the system by abusing the knowledge in these models.
This is why we instead preferred explanatory models, since those provides key insights of
“good” patches that could be turned into best practices for the field.

Thus far, the work in Chapter 4 has had 37 citations, where people have been extending
their work in the areas of the impact of reviewing process on software quality, management
of community contributions and development decision-making analysis.

9.2 Major Factors Influencing the Integration Process

In Chapter 4, we did quantitative analysis of the reviewing and integration process and
proposes three lists of factors that impact Integration acceptance ratio, Reviewing time, and
Integration time. For example, five key factors related to acceptance ratio are msg_exp
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(number of patches sent by authors before), commit_exp (number of commits accepted thus
far by the author), thr_part (number of people participating in current thread until current
patch), nth_try (revision number of this patch), and commit_sub (prior churn). While
commit_sub is related to the history of changed subsystem, and hence cannot be controlled
by developers, msg_exp and commit_exp are relative to developer experience, and thr_part
and nth_try are relative to patch maturity. Hence, developers can learn that gaining relative
experience and developing more mature commits will increase the probability of getting
accepted.

Besides, we also provide many suggestions for developers to help increase the probability
of getting their patches accepted by enhancing the interaction with the OSS community, or
splitting a larger patch into smaller pieces. For maintainers, they can give high priority to
those patches that are submitted by more experienced developers, or those commits that
have gone through multiple discussions.

9.3 Novel Linking Approaches for Low-tech Reviewing System

In Chapter 5, we propose three different approaches that link (email, email) pairs and (email,
commit) pairs in the same thread. The three approaches include the token-based approach
(least strict, most fine-grained), plus-minus-line-based technique (medium strict, medium
fine-grained), and checksum-based approach (most strict, least fine-grained). We applied
these three techniques in the dataset of the Linux kernel and found that the plus-minus-
line-based approach achieves the best performance in linking (email, email) pairs while the
combination of plus-minus-line-based approach and checksum-based approach achieves the
best performance in linking (email, commit) pairs.

In our prior empirical study about the Integration process on the Linux kernel (Chapter 4),
we used the checksum-based approach to recover reviewing threads. According to our find-
ings in Chapter 4, the use of this technique instead of the plus-minus-line technique might
have missed links between some emails and commits. This might make our findings about
Integration process different. However, as the checksum-based approach is the most strict,
although we may miss some correct pairs, most of the linked pairs are correct. This could
be seen when we evaluated the precision of the checksum-based approach with 100 random
selected emails across all mailing lists, and found that had a precision of 100%±10%. Hence,
as models of integration process might not be using complete data, they do use accurate
data.

In addition, among all impact factors that influence the Integration process, only “nth_try”
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(revisions a patch has) might be affected by not using the plus-minus approach to link patch
revisions in different threads to each other. For that factor, we used the naming convention
used in the subject of a thread to link threads together, which is acceptable (and was used as
oracle in Chapter 5), but not perfect. Given that the heuristic we used in Chapter 5 misses
to link certain threads, our values for nth_try are lower than the real value. However, since
our findings show that a higher value of “nth_try” leads to higher acceptance probability
and shorter integration time, if we change to the plus-minus-line-based approach, the value
of “nth_try” will only be higher, and hence will not change our conclusion. Therefore, while
we consider to apply a more valid link approach to re-analyze the Integration process in
Chapter 4 in future work, the current findings still hold.

9.4 Empirical comparison of Different Integration Approaches

Chapter 6 presents our work about the impact of the toggling technique on integration
process. We conducted an empirical study on a real commercial project in a company. This
project started with a traditional branching structure, but gradually added toggles in their
source code after one year of development. This enables us to observe the difference before
and after adopting the toggling technique in one and the same project, avoiding noise caused
by changing case study context. Given that toggling is only fairly recently being used as
replacement for branching, and this is mostly done by industry, our analysis is based on
a unique data set. In addition, the good performance on the hybrid integration structure
shows other companies a promising solution of migrating to a new technique. However, we
also consider to conduct empirical studies on the pure toggling-based integration process to
explore more deeply this integration technique and how it impacts on Release engineering.
For now, access to a relevant (industrial) dataset is the main challenge.

Our case study and Google Chrome in [131] both use toggles to guard features developed by
different teams. While in our case study toggles are used as an alternative of branching used
to do integration, paper [131] empirically studied toggling usage in Google Chrome where
toggles are used for enabling features for testing and release. Toggling as an alternative
for branching might not be applicable in other large open source software systems, such as
the Linux kernel. The Linux kernel project accepts contribution from developers all over
the world and many of them are individuals instead of a team. Thus, the submitted patch
usually changes small code block such as a function or even a typo instead of contributing a
large and complete feature. Using toggles to guard such individual patches risks requiring too
many toggles for these patches, which introduce major code complexity and technical debt.
Hence, even though the Linux kernel uses toggles to select which features to compile into the
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kernel, using toggles to replace traditional branch-based integration in such large-scale OSS
projects needs further research.

9.5 Understand Characteristics of Infrastructure-as-Code (IaC)

It turned out that IaC code takes large proportion in OpenStack, and changes frequently,
with large churn size. IaC code changes practically co-evolve with production code change.
In MediaWiki, IaC code shows similar phenomena in terms of code changes. The most
popular reason for IaC code co-changes is “Integration of new modules/service”. All of this
indicates that the effort needed to maintain IaC code is underestimated. IaC code should be
considered separately and deserves more attention.

We also found IaC code is lightly coupled with IaC test and data files. This coupling is more
hidden and hence more risky, as it is easily ignored.

9.6 Datasets of IaC File Classification Lists

In Chapter 8, we studied the characteristics of IaC code and the coupling relationship between
IaC code change and source code change of OpenStack. We classified all files into five
categories: IaC code, Production code, Build, Test and Other. Furthermore, in Chapter 7
we studied the evolution of IaC-related code and compared with the evolution of Production-
related code of OpenStack and MediaWiki. In this paper, we classified all file revisions
into more detailed categories: IaC-related files (IaC code, IaC test and IaC data files), and
Production-related files (Production code, Build and Test files). All these classifications are
available online to encourage more researchers conduct empirical studies on IaC techniques.

Finally, our work about Infrastructure-as-Code (IaC) was the first empirical study ever on
this topic. Inspired by our work, Sharma et al. [144] performed analysis about quality of
infrastructure code.

Release engineering has developed enormously and been becoming mainstream in industry.
However, comparatively little empirical research of mining software repositories has been done
in this field. Our empirical studies have covered two critical phases of Release engineering,
where repository data is available. By our empirical research we desire to understand the
progress of Release engineering, and help practitioners gain sense of effort and expense they
need to pay for adopting the modern techniques.

Although, as is, our findings cannot be generalized to the whole release engineering and all
phases, we believe our studies present insight in Release engineering and propose considerable
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potential for future research.
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CHAPTER 10 CONCLUSION AND FUTURE WORK

Modern Release engineering (Releng) aims to provide an automated and smooth pipeline
to deliver high quality software products to end users as soon as possible. Release engi-
neering consists of several phases, from “Integration”, “Building”, “Testing’, “Provisioning
(Infrastructure-as-Code)” until finally “Deployment” and “Release”. Each phase should be
fully automated and, apart from some testing phases (such as UI testing), to get rid of human
labor involved, to increase release velocity and reduce the noise introduced by manual work.

A myriad of new techniques/tools keep on emerging to meet this demand of high speed
and low cost in Release engineering. Choosing one of the most suitable technique becomes a
problem for many communities especially for smaller companies or start-ups, where migrating
between techniques is very costly. To take full advantage of Release engineering requires
understanding the progress of Release engineering and how these new techniques work in
practice. However, research about related topics is still lacking. Especially for new Release
engineering techniques such as Infrastructure-as-Code, our work is the first empirical study
about IaC. Hence, in this thesis we argued for using mining software repositories to analyze
the progress of Release engineering phases, as well as help practitioners evaluate state-of-the-
art Releng techniques. We focused on the Integration and Provisioning (Infrastructure-as-
Code) phases of Release engineering, where ample repository data is available.

10.1 Understanding the progress of Integration

Integration is one of the most complex phases in software development. A complete product
is basically an assembly of contributions from all developers, integrated in a coordinated way.
Hence, an efficient integration approach will help significantly decrease the cost of Release
engineering in terms of time (delays) and hence money. However, current Integration process
bears many problems, such as integration conflicts and lack of transparency for contributors.
Integration conflicts are caused by developers working in parallel changing the same code
block, and take developers effort to figure out a solution and to fix them.

In addition, in large open source software (OSS) communities, the Integration process is not
completely transparent and visible to contributors, but under control of a small group of core
maintainers. Contributors involved with the Review process are unaware of what happens
after his patch is integrated by a subsystem maintainer until finally included in the new
release (if all goes well). Furthermore, in many large OSS communities (e.g., the Linux and
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Apache), the review process is still using a low-tech environment, where patches are submitted
by sending emails to maintainers. In this low-tech review environment, it is hard to track
the complete reviewing history of a patch, especially when it underwent multiple versions,
for lacking a physical link between patches (emails) and commits. New techniques such as
Toggling aim to increase the speed of integration to avoid integration conflicts. However, no
evidence yet has shown quantitatively that this technique works as expected.

We selected the Linux kernel as the case study to study the performance of reviewing and
integration processes (Chapter 4). We linked reviewing and integration data together and
analyzed what factors may have an impact on them. We found that smaller, more mature
patches targeting the right subsystems may get accepted more possibly. Meanwhile, reducing
the number of subsystems affected by the patch and being more active in the community can
help shorten reviewing and integration time.

During our study, we found out that a major challenge for MSR analysis is linking data
from different repositories. We proposed a checksum-based technique to link patches from
mailing lists and commits from git repositories together to recover the whole reviewing and
integration process. This approach has a high precision. However, we then proposed three
approaches with different granularity and strictness (Chapter 5). We found that the plus-
minus-line-based technique found the most links between patch revisions in different threads,
while the combination of the line-based technique and the checksum-based technique achieves
the best performance in linking reviewing and integration process.

These recovered links allowed us to find that 25% of patches have a reviewing history longer
than four weeks, and patches evolved multiple versions are easier to get accepted. These
novel link approaches will help (1) project communities migrate to another modern reviewing
system, and (2) researchers to study code changes with a complete history.

10.2 Evaluating an Integration Tool

Chapter 6 introduced a technique that aims to make integration more continuous to get rid of
problems in previous integration process based on traditional branching technique. Toggles
enable teams to work on the same branch, turning off toggles to make sure on different features
do not disturb each other. Yet, no quantitative evidence shows that Toggling can really
improve integration process efficiency. Hence, we empirically study a commercial project
that adopts this new technique. As it is risky to get rid of all branches and migrate to a
pure toggle-based integration, this project adopted a hybrid structure that combines toggles
with branching integration structure. By mining repositories, we found that this hybrid
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integration approach helps decrease integration effort and improve productivity significantly.
Hence, this practice is a good idea for those companies wanting to try out this new technique.

10.3 Understanding the Evolution of IaC

IaC is one of the latest techniques for automating the process of provisioning a new environ-
ment (infrastructure, e.g. a virtual machine), where an application can be compiled, tested,
and deployed. However, as IaC can be considered as source code that can be compiled, tested,
and version controlled, adopting this new technique requires maintenance effort. Hence, it is
vital to understand the potential effort required before deciding to use this new technique.

In Chapter 7 we conducted an empirical study on open source software project OpenStack to
study the characteristics and maintenance effort of IaC code. We collected all file revisions
from OpenStack git repositories and classified them into four categories: IaC code, Produc-
tion, Build and Test files. We found that IaC code files tend to take up a large proportion
and churn frequently in large size. In addition, the code change is coupled tightly with that
of source code. This implies substantial maintenance effort. The most popular reason for
this coupling is “Integration of new modules/frameworks”.

To understand more deeply the evolution process of IaC code, we conducted another empirical
study on two case studies: OpenStack and MediaWiki (Chapter 8). This time, we classified
all files into more detailed categories, basically two dimensions: IaC-related (IaC code, IaC
test and IaC data) files, and Production-related (Source code, Build and Test) files. We
tried to understand if IaC related code evolves similarly as Production-related code. Besides
general patterns such as IaC code still takes up a large proportion and change frequently,
we observed that IaC code files are lightly coupled with IaC test and data files. This hidden
relationship may be dangerous as developers hardly notice the hidden relationship. Based on
our findings, IaC code should be considered as normal source code that should deserve more
attention and support.

Overall, we found that by mining software repositories we gain more sense about the Inte-
gration and Provisioning two phases, as well as measuring how state-of-art techniques work
in practice. Meanwhile, additional MSR analysis should be performed to discover the proper
techniques and tools to improve the whole Release engineering process, and provide more
constructive advice to practitioners.
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10.4 Future Work

Our research is not perfect and we will improve in our future work the following aspects:

10.4.1 Re-analyzing Linux Integration Process with Other Linking Techniques

In our first empirical study about Integration process, we used the checksum-based technique,
which is strict and in a coarse-grained. However, in our following work, which compared three
different linking techniques, we found that a line-based approach can find more links. This
does not affect the correctness of our conclusion but causes missing information, hence we
would like to apply this technique to redo the empirical analysis to find out more character-
istics.

10.4.2 Exploring Toggling Technique More in Practice

In our case study about Toggling, toggles are used as guard of features in the integration
process. However, toggles can be used in various way, e.g., to help testing and release. We
would like to study toggling technique in different usage in other Release engineering phases.

Furthermore, our case study project adopted a hybrid structure combining toggling and
branching techniques. We want to analyze how Toggling works in a pure setting to analyze
if it still improves the efficiency of Release engineering.

10.4.3 Understanding the Coupling Relationship Between Source Code and Re-
source Data Files.

In our empirical study about IaC code, we studied the coupling relationship between IaC
code and IaC configuration data files. This inspires us to explore the relationship between
source code and general resource data files (e.g., pictures, textual configuration, videos). If
source code are coupled with other code files, we would notice this coupling by reading source
code. However, we hardly know which data resource files have been changed when we change
source code. How much effort is evolved by this co-change might be a good research topic in
future.

10.4.4 More Case Studies on Integration and Infrastructure-as-Code

In this thesis, we conducted empirical studies on Integration and Infrastructure-as-Code with
case studies of the Linux kernel, OpenStack and MediaWiki respectively. In our future work,
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we desire to apply the same approach on other case studies to validate and generalize our
findings.

10.4.5 Empirical Study on Other Release Engineering Phases

Besides Integration and Infrastructure-as-Code, Release engineering also includes other
phases like Continuous Integration, Building, Deployment and Release. Each phase has
an important impact on the whole Release engineering process. Hence, an empirical study
of each phase will help improve Release engineering from different perspectives.
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