
UNIVERSITÉ DE MONTRÉAL

VERIFICATION OF THE PERFORMANCE PROPERTIES OF EMBEDDED

STREAMING APPLICATIONS VIA CONSTRAINT-BASED SCHEDULING

OLFAT ELMAHI

DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION

DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)

JUIN 2016

c© Olfat Elmahi, 2016.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

VERIFICATION OF THE PERFORMANCE PROPERTIES OF EMBEDDED

STREAMING APPLICATIONS VIA CONSTRAINT-BASED SCHEDULING

présentée par : ELMAHI Olfat

en vue de l’obtention du diplôme de : Philosophiæ Doctor

a été dûment acceptée par le jury d’examen constitué de :

Mme BOUCHENEB Hanifa , Doctorat, présidente

M. PESANT Gilles, Ph. D., membre et directeur de recherche

Mme NICOLESCU Gabriela, Doctorat, membre et codirectrice de recherche

M. BELTRAME Giovanni, Ph. D., membre et codirecteur de recherche

M. BOIS Guy, Ph. D., membre

M. ZILIC Zeljko, Ph. D., membre externe

iii

DEDICATION

To my daughters for bringing the hope and happiness to my life,

my husband for his everlasting love, support, and encouragements,

my parents and sisters for their unquestioning faith in me. . . .

iv

ACKNOWLEDGEMENT

Firstly, I would like to thank my supervisors, Gilles Pesant, Gabriela Nicolescu, and

Giovanni Beltrame, for their time, support, and wisdom. they have been not only provi-

ding me with invaluable ideas through out the work but also being available to help me every

time I have challenges and difficulties.

I would like to give special thanks to Tamer Abd El-Dayem, my husband, who has been

a great help not only during my PhD. study but also during the years of my life abroad.

I also like to thank my mother Olfat Abou-Halawa and my father Ibrahim El-Mahi for

paying all the sacrifices to make me reach where I am today.

I extend my regards to all of my sisters Merit E-Mahi, HebaTallah El-Mahi and, Me-

naTallah El-Mahi, who have been encouraging me, supporting me, and more importantly

praying for me. I deeply thank my aunt Mervat Abou-Halawa for her non-stop encoura-

gement and support.

But above all, I thank Allah for providing me with such helpful professors, caring family, and

supportive friends. Thank You God !

v

RÉSUMÉ

Les capacités et, en conséquence, la complexité de la conception de systèmes embarqués ont

énormément augmenté ces dernières années, surfant sur la vague de la loi de Moore. Au

contraire, le temps de mise en marché a diminué, ce qui oblige les concepteurs à faire face

à certains défis, ce qui les poussent à adopter de nouvelles méthodes de conception pour

accrôıtre leur productivité. En réponse à ces nouvelles pressions, les systèmes modernes ont

évolué vers des technologies multiprocesseurs sur puce. De nouvelles architectures sont ap-

parues dans le multitraitement sur puce afin d’utiliser les énormes progrès des technologies

de fabrication. Les systèmes multiprocesseurs sur puce (MPSoCs) ont été adoptés comme

plates-formes appropriées pour l’exécution d’applications embarquées complexes.

Pour réduire le coût de la plate-forme matérielle, les applications partagent des ressources,

ce qui peut entrâıner des interférences dans le temps entre les applications dues à des conflits

dans la demande des ressources. Les caractéristiques d’un SoC typique imposent de grands

défis sur la vérification SoC à deux égards. Tout d’abord, la grande échelle de l’intégration

du matériel mène à des interactions matériel-matériel sophistiquées. Puisqu’un SoC a de

multiples composants, les interactions entre ceux-ci pourraient donner lieu à des propriétés

émergentes qui ne sont pas présentes dans un seul composant. En second lieu, l’introduction

de logiciels dans le comportement du matériel mène à des interactions matériel-logiciel sophis-

tiqué. Puisqu’un SoC a au moins un processeur, le logiciel constitue une nouvelle dimension

des comportements du SoC et donc apporte une nouvelle dimension à la vérification. Cela

rend la vérification d’une tâche difficile, en particulier pour les applications de communica-

tion et de multimédia. Cela est dû à des contraintes non-fonctionnelles des modules matériel

et logiciel, tels que la vitesse du processeur, la taille de la mémoire tampon, le budget de

l’énergie, la politique de planification, et la combinaison de multiples applications.

Cette thèse préconise la programmation par contraintes (CP) comme un outil puissant pour

la vérification des mesures de performance de MPSoCs. Dans ce travail, nous avons consi-

déré des applications de diffusion sur l’architecture cible d’un système-sur-puce (MPSoC)

multi-processeur comme un problème d’ordonnancement à base de contraintes. Nous l’avons

testé séparément et en interaction avec d’autres types d’applications. L’idée est de créer un

scénario au niveau du système qui prend en compte le flux de travail au niveau du système

par rapport aux ressources du système et des exigences de performance, à savoir les délais

vi

de la tâche, le temps de réponse, le CPU et l’utilisation de la mémoire, ainsi que la taille

de la mémoire tampon. Plus précisément, nous examinons si le comportement des différentes

interactions entre les composants du système d’exécution des tâches différentes peut être effi-

cacement exprimé comme un problème d’ordonnancement à base de contraintes sur l’espace

des entrées possibles du système, afin de déterminer si nous pouvons traiter des cas similaires

d’échec en utilisant ce modèle. Résoudre ce problème consiste à trouver une meilleure façon

d’inspecter le système en cours de vérification dans une phase de conception qui arrive très

tôt et dans un délai beaucoup plus raisonnable.

Notre approche proposée a été testée avec diverses applications, différents flux d’entrée et

des architectures différentes. Nous avons construit notre modèle en prenant en considération

les architectures existantes sur le marché, des applications choisies qui sont en courante et

comparé les résultats de notre modèle avec les résultats provenant de l’exécution des applica-

tions réelles sur le système. Les résultats montrent que la méthode permet de déterminer les

conditions de défaillance du système dans une fraction du temps nécessaire à la vérification

par simulation. Il donne à l’ingénieur d’essai la possibilité d’explorer l’espace de conception

et d’en déduire la meilleure politique. Il contribue également à choisir une architecture ap-

propriée pour des applications en cours d’exécution.

vii

ABSTRACT

The abilities and, accordingly, the design complexity of embedded systems have expanded

enormously in recent years, riding the wave of Moore’s law. On the contrary, time to market

has shrunk, forcing challenges onto designers who in turn, seek to adopt new design methods

to increase their productivity. As a response to these new pressures, modern-day systems

have moved towards on-chip multiprocessing technologies. New architectures have emerged

in on-chip multiprocessing in order to utilize the tremendous advances of fabrication tech-

nology. Multiprocessor Systems on a Chip (MPSoCs) were adopted as suitable platforms for

executing complex embedded applications.

To reduce the cost of the hardware platform, applications share resources, which may result

in inter-application timing interference due to resource request conflicts. The features of a

typical SoC impose great challenges on SoC verification in two respects. First, the large

scale of hardware integration leads to sophisticated hardware-hardware interactions. Since

a SoC has multiple components, the interactions between them could give rise to emerging

properties that are not present in any single component. Second, the introduction of software

into hardware behaviour leads to sophisticated hardware-software interactions. Since an SoC

has at least one processor, software forms a new dimension of the SoC’s behaviours and

hence brings a new dimension to verification. This makes verification a challenging task, in

particular for communication and multimedia applications. This is due to the non-functional

constraints of hardware and software modules, such as processor speed, buffer size, energy

budget, and scheduling policy, and the combination of multiple applications.

This thesis advocates Constraint Programming (CP) as a powerful tool for the verification

of performance metrics of MPSoCs. In this work, we mapped streaming applications onto a

target Multi-Processor System-on-Chip (MPSoC) architecture as a constraint-based schedul-

ing problem. We tested it separately and in interaction with other application types. The

idea is to create a system-level scenario that takes into account the system level work-flow

with respect to System resources and performance requirements, namely task deadlines, re-

sponse time, CPU and memory usage, and buffer size. Specifically, we investigate whether

the behaviour of different interactions among system components executing different tasks

can be effectively re-expressed as a constraint-based scheduling problem over the space of

possible inputs to the system, finding if we can address similar cases of failure using this

viii

model. Solving this problem means finding a better way to investigate and verify the System

under verification in a very early design stage and in a much more reasonable time.

Our proposed approach was tested with various applications, different input streams and

different architectures. We built our model for existing architectures on the market running

chosen applications and compared our model results with the results coming from running

the actual applications on the system. Results show that the methodology is able to identify

system failure conditions in a fraction of the time needed by simulation-based verification. It

gives the Test Engineer the ability to explore the design space and deduce the best policy. It

also helps choose a proper architecture for the applications running.

ix

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENT . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE OF CONTENTS . ix

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiv

CHAPTER 1 INTRODUCTION . 1

1.1 Problem statement . 3

1.2 Contributions . 5

1.3 Organization . 6

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 8

2.1 Embedded System Verification . 8

2.1.1 Verification Technology . 8

2.1.2 System-Level Verification Challenges 11

2.1.3 Current Research on System-Level Verification 14

2.2 Constraint Programming . 16

2.2.1 Basic Concepts of Constraint programming 16

2.2.2 Constraint Programming and System-Level Verification 18

2.2.3 IBM CPLEX Optimizer . 20

CHAPTER 3 MOTIVATIONAL EXAMPLES . 29

3.1 Motivative Examples One and Two . 30

3.1.1 Streaming Applications For Synthesis Case 31

3.1.2 Platform Architecture For Synthesis Case 34

3.2 Motivative Example Three . 36

x

3.2.1 Streaming Applications For Industrial Case 36

3.2.2 Platform Architecture For Industrial Case 38

CHAPTER 4 MAPPING PACKET FLOW OF STREAMING APPLICATIONS ONTO

MPSOC . 44

4.1 Constraint-Based Scheduling Approach . 44

4.1.1 Stream model . 45

4.1.2 Decision Variables . 48

4.1.3 Constraints . 48

4.2 Experimental Results . 55

CHAPTER 5 MAPPING FRAME FLOW OF STREAMING APPLICATIONS ONTO

MPSOC . 58

5.1 Alternative Model . 58

5.1.1 Stream model . 58

5.1.2 Decision Variables . 59

5.1.3 Constraints . 59

5.2 Experimental Results . 64

CHAPTER 6 MAPPING TASKS FLOW OF STREAMING APPLICATIONS ONTO

MPSOC . 68

6.1 Industrial-Case Model . 68

6.1.1 Stream model . 68

6.1.2 Decision Variables . 73

6.1.3 Constraints . 75

6.2 Experimental Results . 90

CHAPTER 7 CONCLUSION . 106

7.1 Work Summary . 106

7.2 Future Work . 107

REFERENCES . 109

xi

LIST OF TABLES

Table 3.1 Sitara Processor Features . 43

Table 3.2 Summary of BeagleBone components used in the CSP model described

in Chapter 6 [12] . 43

Table 4.1 Design space for the experimental platform 55

Table 4.2 experimental Results: the 2nd line indicate PE size, 3rd line Determine

application specifications, and 4th line is Bus Delay. note the results

with f symbol indicate that solution found in less then 15 second . . . 55

Table 5.1 Design space for the experimental platform 65

Table 6.1 Details of Streaming Application Running on the Industrial Platform . 71

Table 6.2 Devices input and traffic calculation for the different applications run-

ning in the system . 74

Table 6.3 Single case running test results. * indicates further explanation in the

results discussion. 94

Table 6.4 different case combinations running test results. * indicates further

explanation in the results discussion. 97

Table 6.5 Summary of the Different Parameters Considered for Each Application 100

xii

LIST OF FIGURES

Figure 1.1 Design and Verification Gaps. Design productivity growth continues

to remain lower than complexity growth - but this time around, it is

verification time, not design time, that poses the challenge. A recent

statistic showed that 60-70% of the entire product cycle for a complex

logic chip is dedicated to verification tasks [25]. 1

Figure 1.2 the verification gap from simulation point of view. Simulation is the

main approach to design verification, and there are simulation plat-

forms suitable for different abstraction levels. However, as integration

level increases, simulation efficiency always decreases; during the re-

quirement to thorough simulation increases. There is a widening gap

between the required and available simulation performance [35]. 2

Figure 1.3 the structure of the thesis. 2

Figure 2.1 Example 1: Framework Example. 10

Figure 2.2 HW/SO design trade-off. 18

Figure 2.3 Typical use of CP optimizer [13]. 20

Figure 2.4 Elementary cumul function expressions([13]). 25

Figure 2.5 Example of alternative constraint in ILOG solver. 27

Figure 3.1 MPEG-4 and VOIP packet flow in MPSoC architecture. 30

Figure 3.2 A 2 x 2 regular mesh MPSoC architecture. 31

Figure 3.3 MPEG-4 frame dependencies (The arrows display the dependants bet-

ween frames decompressed.) . 32

Figure 3.4 Upper picture: MPEG-4 and VOIP packet flow in MPSoC architec-

ture - Lower picture: Application-specific topologies under test. IP

denotes processor cores, pr private-Memories, and NI Network inter-

face. 35

Figure 3.5 BeagleBone Black Considered flow. 38

Figure 3.6 BeagleBone Black board ([12]). 39

Figure 3.7 BeagleBone Black block digram. 41

Figure 4.1 Original and decompressed packets in the system floe chart 46

Figure 4.2 Capacity constraints . 50

Figure 4.3 Alternative tasks constraints . 50

Figure 4.4 MPEG-4 Group Of Picture order and frame dependencies 53

Figure 5.1 MPEG-4 Group Of Picture order and frame dependencies 62

xiii

Figure 5.2 Results for MPEG4 and VOIP separately 65

Figure 5.3 Results for MPEG4 and VOIP combined 66

Figure 6.1 streaming applications flow in MPSoC industrial architecture. 69

Figure 6.2 DS-5 streaming Counters used to measure system performance. 72

Figure 6.3 Streamline Ds-5 Dhrystone application. 91

Figure 6.4 Streamline DS-5 WhestStone application. 92

Figure 6.5 Streamline for ice weasel applications browsing multiple web pages in

a separate window. 96

Figure 6.6 Streamline for ice weasel application browsing multiple web pages in a

separate tab. 96

Figure 6.7 Two different streamline analysis for MPlayer applications running lo-

cal video with low decompression rate for newsletter program (Case

b(c2)). 101

Figure 6.8 Two different streamline analysis for MPlayer application running local

video with high decompression rate for football game (Case a(c1)). . . 102

Figure 6.9 Two different streamline analysis for MPlayer application running live

stream video with high decompression rate for football game (Case

g(c1)). 103

xiv

LIST OF ABBREVIATIONS

API Application Programming Interface

ATPG Automatic Test-Pattern generator

BDD Binary Decision Diagram

BW Band Width

CP Constraint Programming

CSP constraint satisfaction problem

CPU Central Processing Unit

DUT Design Under Test

DSP Digital Signal Processing

FSM Finite-State-Machine

FIFO Frst In First Out

GOP Group of Pictures

HW Hardware

HDL Hardware Description Language

HVL Hardware Verification Languages

IC Integrated Circuit

IDE Integrated Development Environment

I/O Input/Output

IP Internet Protocol

MPEG Moving Picture Experts Group

MPSoC Multiprocessor System-on-Chip

MP Mathematical Programming

NOC Network-on-Chip

OOP Object Oriented Programming

OR Operations Research

OPL Optimization Programming Language

PCI Peripheral Component Interconnect

PAPS Periodic Admissible Parallel Schedules

PE Processing Element

RT Real Time

SOC System On Chip

SW Software

SDF Synchronous Data Flow

xv

TB Testbench

TDMA Time Division Multiple Access

VLSI Very-Large-Scale Integration

VOIP Voice Over Internet Protocol

WCET Worst Cases Execution Time

1

CHAPTER 1 INTRODUCTION

Figure 1.1 Design and Verification Gaps. Design productivity growth continues to remain
lower than complexity growth - but this time around, it is verification time, not design time,
that poses the challenge. A recent statistic showed that 60-70% of the entire product cycle
for a complex logic chip is dedicated to verification tasks [25].

The multiprocessor System-on-Chip (MPSoC) designs have become a very popular choice for

modern embedded systems [41]. These designs use complex on-chip networks to integrate

different programmable processor cores, specialized memories, and other components on a

single chip. The parallel nature of MPSoCs makes verification a challenging task, in par-

ticular for communication and multimedia applications. This is due to the non-functional

constraints of hardware and software modules, such as processor speed, buffer size, energy

budget, and scheduling policy [45], the combination of multiple applications.

System-level design and verification methodologies such as Constraint Programming (CP)

have been introduced as a solution to handle the design complexity of embedded systems [45].

The power of CP comes from the fact that validity, quality, and test specification requirements

for any system are naturally modeled through constraints, which are naturally represented

as a Constraint Satisfaction Problem (CSP). In this work, we introduce a constraint-based

scheduling model for concurrent streaming applications on MPSoCs with and without con-

sidering processor scheduling policies.

Our aim is to identify the critical system parameters (e.g. buffer size) that can lead to unsatis-

2

Figure 1.2 the verification gap from simulation point of view. Simulation is the main approach
to design verification, and there are simulation platforms suitable for different abstraction
levels. However, as integration level increases, simulation efficiency always decreases; during
the requirement to thorough simulation increases. There is a widening gap between the
required and available simulation performance [35].

Figure 1.3 the structure of the thesis.

3

fied application constraints. Also, we propose design optimization (e.g. buffer minimization)

to increase the system efficiency and reduce its cost.

1.1 Problem statement

From the design complexity point of view, although the SoC paradigm is very beneficial—it

has practically reduced designing a complex system to integrating pre-designed and reusable

components – the verification of the SoC becomes the critical bottleneck in further improving

SoC design productivity [40]. Generally speaking, verification refers to the practice of detect-

ing errors in designs. Designs that are not thoroughly verified are not worth manufacturing;

and errors should be corrected as early as possible—correcting errors at a late stage could be

forbiddingly costly.

Verification was regarded as the subservient issue compared with the implementation of a

design. This view soon became invalid. The well-known Moore’s law suggests that the com-

plexity of integrated circuits is growing at an exponential rate against time, whereas multiple

sources claim the verification complexity is growing at a double-exponential rate, i.e., expo-

nential with respect to Moore’s law. Figure 1.1 and 1.2 illustrate the growing verification

gap between the integrated circuit (IC) verification capability and the IC design and man-

ufacture capabilities. Nowadays about 50%-80% of the design time and efforts are spent in

verification. It has become well known that verification is the main bottleneck in integrated

circuit design [33].

The features of a typical SoC impose great challenges on SoC verification in two respects.

– First, the large scale of hardware integration leads to sophisticated hardware-hardware

interactions. Since a SoC has multiple components, the interactions between them could

give rise to emerging properties that are not present in any single component.

– Second, the introduction of software into hardware behavior leads to sophisticated hardware-

software interactions. Since a SoC has at least one processor, software forms a new dimen-

sion of the SoC behaviors and hence brings a new dimension in verification.

This is why our research focuses on the process of test-case generation based on two different

directions.

– Application-Dependent Verification. The application, instead of the test bench, should

4

take the more active role of test-case control, especially parallelism management; the test

bench, not the test-program, should take the relatively passive observation role.

– Interaction-Oriented Verification. The object-under-test should be the interactions among

components, rather than the components themselves.

The main approach to verifying a design, especially a very complex one, is by simulation.

Simulation is so important to verification that the term simulation and verification largely

share the same meaning in practice. Simulation refers to the practice of running tests on

models of a design before the design is actually manufactured. The term model refers to a

presentation of the hardware under design in the form of software. The simulation approach

inherently has the simulation performance issue. That is, simulation is a very time-consuming

process, while VLSI designers are constantly under the time-to-market pressure. Fast and

accurate simulation is always desired; however, being fast and being accurate are always

competing metrics for simulation-based approaches. The verification gap viewed from the

simulation point of view is shown in Figure 1.1 and 1.2.

As designs are becoming more complex, the requirement of thorough verification is soaring,

whereas the performance of various simulation technologies is degrading. The simulation

performance issue is more outstanding for SoC verification due to its high level of integra-

tion. Due to the high design complexity and manufacturing cost, new system-level design

methodologies for embedded systems have emerged to deal with the increasing time-to-market

pressure.

At system-level, the concurrency or parallelism, among multiple components is the defining

characteristics of a hardware system. The concurrency forms a new verification dimension.

System-level bugs are usually discovered in corner cases where parallel processes interact

with each other in an unexpected way. Resource-competition is an inevitable consequence of

concurrency. Hardware components could show functional problems when competing with

each other for resources, even if they have already passed component-level verification. Listed

next are some potential bugs found at system-level:

– Interaction between blocks that are assumed verified.

– Conflict in accessing shared resources.

– Arbitration problems and missing deadline.

– Priority conflicts in tasks.

5

– Unexpected hardware/software sequences.

All these bugs are related to component-to-component interactions, especially to concurrent

interactions with resource competitions. Therefore the key to system-level verification is to

construct concurrency/resource-competition satisfactorily.

1.2 Contributions

The main contribution of this thesis is improved verification and exploration of system-level

concurrency in MPSoCs. It addresses Constraint Programming (CP) as a powerful tool for

the verification of performance metrics of MPSoCs.

We studied the possibility of creating a system-level scenario that takes into account the sys-

tem level work-flow with respect to System resources and performance requirements, namely

task deadlines, response time, CPU and memory usage, and buffer size. Specifically, we in-

vestigate whether the behavior of different interactions among system components executing

different tasks can be effectively re-expressed as a constraint-based scheduling problem over

the space of possible inputs to the system, finding if we can address similar cases of failure

using this model. Solving this problem means finding a better way to investigate and verify

the System under verification in address a certain case of failure in a very early design stage

and in a much more reasonable time.

The idea is to choose various applications with different input streams and different work-flow

architectures, study its performance requirements with different order and interactions, and

then see how it affects the system. Having this information helps defining a set of constraints

to represent how each application should work on any architecture. This will be used in cre-

ating different system-level scenarios. It gives the ability to explore different architectures,

detect possible system failure at an early stage, and in some cases even suggest a proper

solution. Note that this approach is not about the detection of bugs in the logic of the ap-

plications.

Our proposed approach was tested with various applications, different input streams and

different architectures. Results show that the methodology is able to identify system failure

conditions in a fraction of the time needed by simulation-based verification. It gives the Test

6

Engineer the ability to explore the design space and deduce the best policy, also it helps

choose the proper a recommended architecture for the applications running. We built our

model for already built architectures in the market running chosen applications and compare

our model results with the results coming from running the actual applications on the system.

The research has produced the following publications:

– First Paper [16]: this paper contains the work introduced in Chapter 4. The main con-

tribution of this work is to provide a technique to map a synthesised but still interesting

MPSoC as a constraint scheduling problem and to generate interesting test cases based

on streaming applications. These tests are capable of discovering corner cases that would

cause system failure. The introduced model has a limitation of scaling. It has a large

number of tasks, because it uses packets generated by the applications to represent its flow

in the system.

– Second Paper [17]: this paper contains the work introduced in Chapter 5. This work re-

solved the scaling problem we faced in the first model. Here we introduced a new way to

decrease the number of tasks representing each application running in the system while

respecting the same system and application constraints. To achieve this, we changed the

way the application is mapped in the system from packets to frames. This proposal im-

proved the model performance, covering more test cases, and running the application for

longer periods of time on the system which make the results more accurate.

– Third Paper (pending): this paper contains the work introduced in Chapter 6. Here we deal

with an industrial case study with a commercial application. We overcome the problem

of representing hundreds of millions of instructions as a limited number of tasks running

in the system. These tasks calculations are based on traffic generated by its applications.

Also, we introduced new applications and studied how their overlapping with stream ap-

plications did affect the system.

1.3 Organization

The main structure of the thesis is shown in Figure1.3

– Chapter 1: gives an introduction to the thesis, including the problem statement, contribu-

tion and structure.

7

– Chapter 2: lays a firm background for further development of the thesis. The main topics

include:

– Basic concepts give a brief explanation to Constraint Programming and Verification

Technology focusing on the system level verification.

– Literature review of System-Level verification

– IBM CPLEX Optimizer the tool used in this thesis to create our model. It includes a

brief explanation of Scheduling with IBM ILOG CPLEX Studio and IBM ILOG CPLEX

Studio Search strategy which is the default strategy we used.

– Chapter 3 gives a description of MPSoC architecture platforms and applications considered

in building the first two case studies described in Chapters 4 and 5. And the specifications

of the industrial platform and applications used with the third case study in Chapter 6.

– Chapters 4, 5 and, 6 have the explanation and discussion of the proposed constraint pro-

gramming model for each case study in two different sections:

– Constraint-Based Scheduling Approach: contains an explanation for the stream model

and its decision variables followed by a description of each of the constraints and why

we added them.

– Experimental results with a complete description and discussion of the model results.

The strengths and weaknesses are also discussed.

– Chapter 7 concludes the thesis.

8

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

With the increasing complexity in embedded products and the improvements in development

technology, Multi-Processor System-On-Chip (MPSoC) architectures have become widespread.

They can now be found in many complex real-time systems (e.g. cell phones, video process-

ing or avionics). Theses systems usually share the same set of applications with a common

well-characterized context. However, each possible set of applications that can be active con-

currently in an MPSoC platform leads to a different use-case. And each use-case has to be

verified and tested while meeting several additional design constraints (e.g. energy consump-

tion or time-to-market). Therefore it takes a great amount of time for these applications to

be tested and optimized and, mechanisms to efficiently explore the different possible HW-SW

design interactions in complete MPSoC systems are in great need. In this chapter we try to

give a little bit of history of what have been done before and how this was affected by the

work in this thesis.

As discussed in Chapter 1, we want to tackle the two major problems: the generation of

test cases to verify the system and the interaction between the system components when

different tasks are running on the platform. This chapter is divided into two parts: To start

with, we discuss basics of embedded-system verification, system-level verification problems

and its literature review. Because Constraint Programming is considered an important part

of system-level verification researchers, the second part of this chapter focusses on Constraint

Programming basics, approaches and, researchers on the generation of test cases for verifica-

tion of mixed software/hardware systems.

2.1 Embedded System Verification

2.1.1 Verification Technology

The goal of verification is to ensure that the design meets the functional requirements as

defined in the functional specification. Verification of SOC devices takes anywhere from 40

to 70 percent of the total development effort for the design. Some of the issues that arise

are how much verification is enough, what strategies and technology options to use for ver-

ification, and how to plan for and minimize verification time. These issues challenge both

verification engineers and verification solution providers.

9

A wide variety of verification technology options are available within the industry. These

options can be broadly categorized into two classifications [42]

– Simulation-based methods or dynamic verification. In this category, the verifica-

tion engineers develop a set of tests known as test-cases to stress a given design. Hence,

the design is often called design-under-test or DUT. A test-case could be a very abstract

description of a scenario the DUT should be exercised in.

– Formal methods or static verification. This category is called static since no tests are

needed. Instead, the verification engineer should provide design properties (the properties

a correct design should have) in the form of temporal logic. The design is represented in

Finite State Machine (FSM) form. Then a Binary Decision Diagram (BDD) based model-

checking tool computes whether the design abides by the properties. If one property is

violated, the tool will produce at least one counter example – a sequence of input to the

FSM that leads to the violation of that property.

While formal verification techniques have their clear advantages, most notably the ability to

formally prove functional correctness of the design, they can hardly cope with modern com-

plex designs at the level of a single unit or larger. To this end, simulation-based verification,

in which the design behavior is checked by simulating it over external inputs, accounts for

roughly ninety percent of the overall verification efforts and resources. This is why the work

in this thesis focuses on Simulation-based Verification and to be more specific on system level

verification.

Simulation-based Verification and Stimuli Generation

The essence of simulation-based (or dynamic) verification is to test how the design conducts

itself when confronted with challenging stimuli. Stimuli generation, in turn, deals with the

problem of creating the appropriate stimuli in order to test the DUT as thoroughly as possible.

The nature and abstract level of the stimuli depends on the object being tested and the level

of verification. Automatic Test-Pattern Generator (ATPG) tools [37] test the manufacturing

of circuits by applying sequences of lowest-level bit-vectors at the circuit’s input interfaces.

A full processor can be tested by generating test programs in the assembly language of the

processor. At the highest abstraction level, system level stimuli can include commands that

10

Figure 2.1 Example 1: Framework Example.

produce transactions involving multiple system devices.

A good stimulus first needs to be valid with respect to the requirements imposed by the

DUT. It should also be of high quality in the sense that it tests the behaviour of the DUT

in some desired circumstances to improve the coverage of the tested behaviour, reach chal-

lenging corner cases, and hopefully trigger a bug. Also, the stimuli had better be able to

expose the bug if it indeed occurs during the test execution (and not render it unobservable,

for example, by masking its effects).

The most basic, technology-free method for generating stimuli is to write them by hand.

Surprisingly enough, this is still being done, especially if there are only a few simple directed

stimuli that are needed, or when there is no available technology to generate the type of

stimuli required. Needless to say, this method is limited in capacity, expensive, error-prone,

and often cannot achieve the precise stimuli that are required. A technology for automatic

stimuli generation is therefore needed.

The generated stimuli, usually in the form of test programs, are designed to trigger architec-

ture and micro-architecture events defined by a verification plan [20]. The input for a test

program generator is a specification of a test template. An example of such a test template

would be a set of tests that exercise the data cache of the processor and that are formed by

a series of double-word store and load instructions. The generator produces a large number

of distinct well-distributed test program instances that comply with the user’s specification.

The variation among different instances is achieved through a large number of random deci-

sions made during the generation process. In addition, generated test programs must meet

11

two inherent requirements: (1) tests must be valid, that is, their behaviour should be well

defined by the specification of the verified system; (2) test programs should also be of high

quality, in the sense that they should expand the coverage of the verified system and focus on

potential bugs. Recently, technology has shifted toward constraint-based formulations of the

generation task and generation schemes driven by solving constraint satisfaction problems

(CSPs) [20].

2.1.2 System-Level Verification Challenges

At system level, the concurrency among components is the defining characteristic of the hard-

ware system. Its bugs are usually discovered in corner cases where parallel processes interfere

with each other in an unexpected way. Resource competition is an inevitable consequence

of concurrency. HW components could show functional problems when competing with each

other for resources, even if they have already passed component-level verification.

System Level Stimuli Generation has four challenges:

– Specifying system level scenarios in an abstract form while generating the required low

level stimuli

– Generating coordinated system-level stimuli projected to each and every core in the system

– Effectively handling configuration changes (e.g.: 2-way system vs. 8-way system)

– Adapting to core modifications and new cores (e.g.: PCI to PCIe)

Currently, neither formal methods nor general simulation-based approaches are dealing with

the system-level behaviours such as concurrency/resource-competition satisfactorily.

Formal Methods

Formal methods are simply not in the position to discover system-level bugs due to the

nature of these bugs, so the industry is depending less on formal methods [18].

– Bugs caused by implementation details: system-level bugs could arise from an in-

accurate or a miss-interpreted design specification, as well as from the detailed im-

plementation of that specification. Formal methods may suit well for the former, in

which implementation details could be abstracted away. However, if the design is rep-

resented as an FSM with implementation details, the model-checkers will not scale up.

12

– Control and data-intensive failures: system-level bugs often arise in scenarios in which

data-intensive and control-intensive behaviours are loosely intertwined; whereas for-

mal methods work best with control-intensive applications.

– Failures across components: it is often impossible to attribute a system-level bug to

a particular hardware component; instead, the bug may be caused by the ill-matched

behaviors of multiple components [24]. It will be very difficult and un-scalable for

formal methods to deal with combined or communicating FSMs.

More importantly, the fact that the user is responsible to provide properties to formal

tools is the fundamental barrier to applying formal methods on system-level verification.

Hardware systems, which are made of multiple components and may be represented with

implementation details, do not have fixed failure modes. Therefore, verification engineers are

constantly faced with the difficult choice of “expecting something unexpected”. As a conse-

quence, they cannot postulate those properties that they are yet to know.

Testbench based Simulation Generation

System-level verification essentially based on the simulation approach, in which tests

are applied to the design-under-test (DUT) via a structure called testbench (TB). Yet, the

current practices based on testbench (TB) construction have encountered some problems:

– The TB stimulates DUT and observes the response from the exterior of

the DUT. This arise from the distinction between external and internal behaviours

where the TB treats the DUT as a black box. It applies stimulation and observation

from the outside of a DUT, so it is naturally difficult to force the TB to control and

observe the DUT’s internal behaviours. There are white-box approaches, i.e., adding

control and observation points around components inside a DUT, to supplement the

black-box approach. However, we could argue that this approach is still black-box

natured in the sense that the similar control and observation issues still exist at com-

ponent level.

– The divergence between the techniques to develop DUTs and those to

develop TBs rapidly becoming two distinct entities. In a word, a TB is more

a software occurrence in the real world than a hardware structure in the simulated

13

world ([42]).

– The languages used to develop a DUT continues to be HDLs. In addition, for pre-

cise simulation, the DUT should be described in the synthesisable subset of HDL

constructs. A DUT is largely understood as a hardware structure in the simulated

world.

– The languages used to develop a TB migrate to HVLs and other object-oriented

programming (OOP) languages. These languages provide dynamic constructs to

make possible dynamic connections. Still, being dynamic also means the loss of

synthesisability. The state-of-the-art TBs require OOP paradigm or even beyond.

– Increasing TB complexity. When components are integrated into a system, new ca-

pabilities have to be added in the TB to test the emerging properties caused by the

integration. In this way TB complexity could grow faster than DUT complexity. This

will eventually prevent us from relying on TB alone to verify a more complex DUT.

As we can see, the Testbench based Simulation Generation creates serious complications

for system-level verification. It is very complex to take control and observation responsibili-

ties; but in the end, it still does not touch the main challenging task of test generation.

Software.

Software (SW) may be responsible for the majority of the SoC functionalities, yet, soft-

ware does not have a proper place in TB-Based verification methodologies.

– SW-based verification is naturally used in processor verification. In this case, SW is

organised at the instruction-level and usually targets the micro-architecture of the

processor-under-test. Therefore, this category of verification methodologies does not

apply to system-level verification.

– SW-based tests are also found in SoC manufacturing-testing. Since the driving force

of design verification and manufacturing testing are substantially different, those

methods shed limited light on the area of SoC verification.

14

– The idea of “HW/SW co-verification” is practiced as running an operating system

(OS) and application software on a SoC model for the purpose of software verifica-

tion. Therefore, running these software components is the “liability” rather than the

“asset” for the hardware team.

– SW in the form of hardware diagnostics programs could be interpreted as the “asset”

to SoC verification. However, these diagnostics (a) are either too simplistic or too

specific, and (b) are poorly automated and require manual development. So using

this form of software cannot serve as a major verification approach.

Software is the valid testing factor alongside the DUT and the TB. For an SoC DUT, it

is common practice for a verification engineer to write tests in the form of software snippets.

This common practice actually demonstrates the software’s capabilities in controlling and

observing a DUT. Although writing test cases in software is often treated as an ad-hoc verifi-

cation technique, we should realise that the introduction of software in hardware verification

has overturned the traditional TB-Based verification problems.

2.1.3 Current Research on System-Level Verification

Simulation-based verification is a well-known method to determine the response time of

embedded systems. Simulation is the process of mimicking key characteristics of a system or

process. It can be performed at different levels of abstraction. At one end of the spectrum,

one finds tools such as Wind River Simics ([36]) or ReSP ([6]) which simulate a complete

system (software and hardware) in detail. Such simulators are used for low-level debugging

or for hardware/software co-design. This type of simulation can trade off speed and accuracy:

it can yield accurate timing analysis with long simulation time, or focus on speed by limiting

its scope to functional simulation.

At the other end of the spectrum we find scheduling simulators, which abstract from

the actual behaviour of the system and only analyze the scheduling of the system’s tasks,

specified by key scheduling attributes and execution times ([42]).

System verification technology has recently shifted towards the use of Constraint Pro-

gramming (CP) for random functional test generation. For example, several constraint-based

generators were developed at IBM: X-Gen [19] for system-level verification, GenesysPE [1] at

15

the architecture level, Piparazzi [2] at microarchitecture level, FPGen [4] and DeepTrans [3]

for hardware units, and SoCVer [31] for SoCs. These works use constraints both to describe

the hardware system and to express which areas of the design should be tested. They also

use randomness to achieve a balanced distribution of the generated test data in these areas.

Results show this relatively new trend as a promising alternative to simulation-based verifi-

cation of complex hardware systems.

Systems handling stream applications like MPEG-4 or VOIP, for example, define a

pipeline work flow with strict ordering of data transfers between system components. Such

systems typically employ a single controller core and a specific software model. Verification

of these systems requires creating a system-level scenario that takes into account the system

level workflow [31, 8, 34], with some random variance allowed.

Such systems are also decoupled, and allow a large variability in the interactions between

the cores, supporting a large number of system configurations. It is important to verify the

conjunction of functionalities of the different components, since errors are usually triggered

by specific interactions. Some errors can only be exposed if the components interact locally

in time and space, that is, if the interaction involves using the same resources at the same

time. One also has to consider multiple system resources such as CPUs, disks, and network

links that require coordinated scheduling to meet the end-to-end performance requirements

of streaming applications.

In general, scheduling problems are computationally challenging, and have been sub-

ject of active research in Constraint Programming (CP) and in Operations Research (OR)

for many years [30].

Constraint programming has been used more specifically in the scheduling of task graphs

on MPSoCs without violating computation capacity and communication bandwidth [7, 24],

and for data-stream (or cyclic) scheduling [10]. Since [24, 10] proposes a global cumulative

constraint for cyclic scheduling problems, they are not really applicable to our case. In our

work we consider problems arising from different tasks scheduling needs and interleaving be-

tween tasks applications at different timing. On the other handv [7] is more related. They

tackle the problem of allocating and scheduling processors, communication channels and

memories of multicore platform. They compare different approaches and results show that

Constraint Programming is a proper tool for dealing with multi-task applications achieving

16

very good performance.

Verification of embedded streaming applications in communication and multimedia do-

mains on MPSoCs has been widely explored by using the Synchronous Data Flow (SDF)

model [29, 38]. Lee and Messerschmitt [29] first present general techniques to construct pe-

riodic admissible parallel schedules (PAPS) on a limited number of multiprocessors. Govin-

darajan et al. [21] propose a linear programming formulation to obtain maximal throughput

and minimized buffer cost for SDF models without computation (number of processors)

constraints. Eles et al. [18] first address the scheduling on distributed systems with commu-

nication protocols optimization. Stuijk [38] propose a mapping and TDMA/list scheduling

design flow for throughput constrained SDF applications on MPSoCs. Zhu [44] propose a

design optimization framework for adaptive real-time streaming applications based on recon-

figurable devices. They further investigate buffer minimization and task scheduling issues for

streaming applications in [45]. In our work we took advantages of CSP to validate scheduling

of embedded streaming applications on distributed systems. We used objective function to

propose design optimization (e.g. buffer minimization - number of processors). We studied

the effect can be caused by interaction between this applications and other type of applica-

tions. Or, study the behaviour of the same application on different conditions (e.g. different

frame rate or size).

We can see a big part of research on system level verification lately shifted toward

Constraint Programming. For the problem of allocating and scheduling tasks on MPSoCs,

which is the problem we target in this research, the major advantage of using CP is the clarity

and understandability of the models. CP modeling is more flexible than other methods like

the Mixed Integer Programming (MIP) on many challenging optimization problems, including

mapping and scheduling [14].In the next few sections we will give some details on CP and

how it fits in with system level verification for MPSoC running stream applications.

2.2 Constraint Programming

2.2.1 Basic Concepts of Constraint programming

Constraint Programming (CP) deals with modelling and solving CSPs. CSPs are math-

ematical problems defined as a set of variables each with its own domain and whose state

must satisfy a number of constraints or limitations constraints that restrict the values those

variables can presume ([32]). For example, in an task/resource-scheduling problem, the vari-

17

ables may be the start and end time of each task on a certain resource, and a constraint may

specify the maximum number of tasks can be run on one resource at the same time, or tasks

sequence and dependant (one task can not be start before another end).

Mathematical formalism

Mathematically, a CSP P is a triplet (V,D,C) consisting of a set of variables V , a corre-

sponding set of domains D, and a set of constraints C. A solution to a CSP is an assignment

of a value to each variable out of the domain of the variable such that all constraints are

satisfied. A CSP is satisfiable if it has at least one solution and unsatisfiable otherwise.

In the task/resource-scheduling example, assuming there are N tasks, we would have

2N variables: one start time variable and one end time variable for each task. The domain

of the two variables may be the list of available hours for each of tasks period. Constraints

may specify such things as deadline for any particular task, requirements on resource sizes,

and tasks dependency. Mathematically, constraints are known as relations. A relation on a

set of k variables is the list of all legal combinations of k values, each taken from the domain

of the corresponding variables. For example, consider three variables a, b, c, with domains {1,

2}, {1, 2, 3}, {1, 2, 3}, respectively. A constraint requiring that the three variables assume

different values may be represented by the mathematical relation {(1, 2, 3), (1, 3, 2), (2, 1,

3), (2, 3, 1) }

CSP modelling

CSP modelling is the process of translating a real-world constraint problem into a CSP.

It involves identifying the variables in the problem, the variable domains (i.e., the values each

variable can have before considering conflicts due to the constraints), and the constraints.

There is usually more than one way to choose the variables and domains. For example, in the

task/resource-scheduling problem, we could have chosen the variables to be all combinations

of start-end dates of a task. Under this choice, the domains of all variables may be the names

of the tasks plus ”null, ” signifying that no task is scheduled at this particular resource in a

certain time.

18

2.2.2 Constraint Programming and System-Level Verification

Figure 2.2 HW/SO design trade-off.

Validity, quality, and test specification requirements are naturally modelled through

constraints . Consider the example, Figure 2.1, for testing performance of concurrent stream-

ing applications running on MPSoCs via simulation-based verification. Such tests have three

main challenges which are:

1. creating inputs, or ’stimuli’ that are:

– valid according to the hardware specification and the simulation environment,

– interesting in the sense that they are likely to excite prone-to-bugs areas of the de-

sign, and

– diverse.

2. Find the proper Trade-Offs in time, behavior and area in HW/SW design (Figure 2.2)

with the proper abstraction level expressing both the complexity of applications and

execution platforms

19

3. Analyze performance (ex: WCET ”Worst Case Execution Time”, Hard/Soft tasks dead-

lines, resources limit, ...).

Item (1) is dealt with by modelling the entire hardware specification, as well as that of

the simulation environment, as a set of mandatory constraints over the simulated variables

(memory addresses, data transferred, processor instruction parameters, and so on). Item (2)

is dealt with in two ways: first, generic expert knowledge is modelled as a set of soft, non-

mandatory, constraints (for example, a soft constraint may require the result of operation a +

b to be zero, because this is a known prone-to-bugs area of the floating point processing unit).

Item (3) is dealt with by adding a target for the model to achieve like Minimize memory used

or delays. In addition, the verification engineer, who is directly responsible for creating the

stimuli, may add mandatory and non-mandatory constraints to any particular run, directing

the stimuli into required scenarios.

Going back to Figure 2.2, having a stream application running on MPSoC. We have

item (1) as processes execute in a data driven manner, and communicate with each other

via FIFO channels as a mandatory constraint. And item (2) to decide the proper process

size to be considered (i.e. frames, packets, ...). Item (3) can be an optimization issue such

as the rate of displaced stream frames per second may be maximized or the buffer used

minimized. Once all specifications are modelled, this set of mandatory and non-mandatory

constraints can be fed into a constraint solver, which comes up with a solution to the con-

straint problem in the form of a valid and interesting stimulus. In order to achieve item (3),

the solver typically has a built-in diversification mechanism, for example, that several frames

access the same cache block, thus causing contention on resources shared between different

processors. For a CSP to drive test program generation, the program, or its building blocks,

should be modelled as constraint networks. A random test program generator can, therefore,

be viewed as a CSP solver. It constructs a CSP from the user requirements and the system

model, and produces a large number of distinct program instances that satisfy the constraints.

Constraint satisfaction problems that represent test programs share several character-

istics. Test program generation requires random, well-distributed solutions over the solution

space [20, 9], as opposed to the traditional requirement of reaching a single solution, all

solutions, or a ”best” solution [27]. Huge domains are the result of large address spaces in

modern architectures. The combination of huge domains (e.g., 264 values), linear constraints

20

(e.g., a = b + c) and non-linear non-monotonic constraints (e.g., A = B ⊕ C, where A, B,

and C are bit vectors, and ⊕ is the bit-wise XOR operation) make storing and operating

on these domains a difficult task. Other characteristics include a hierarchy of hard and soft

constraints and dynamic modelling (i.e., new variables being ”born” when values are assigned

to other variables).

2.2.3 IBM CPLEX Optimizer

(CPLEX Optimization Studio supports the rapid development, deployment and mainte-

nance of mathematical programming(MP) and constraint programming (CP) models from a

powerful integrated development environment (IDE) built on the Optimization Programming

Language (OPL), through programmatic APIs, or alternatively through third-party modeling

environments [26].) IBM ILOG CPLEX CP Optimizer is a constraint programming (CP)

Figure 2.3 Typical use of CP optimizer [13].

optimizer for solving scheduling problems, it also help solving some combinatorial optimiza-

tion problems that cannot be linearized and solved simply using traditional mathematical

programming methods (see Figure 2.3).

21

Scheduling with IBM ILOG CPLEX Studio

The CPLEX Optimization Studio provides easy and efficient access to CPLEX CP

Optimizer features, which are specially chosen to solve detailed scheduling problems over

fine-grained time. There are, for example, keywords mainly considered to represent such

aspects as tasks and temporal constraints. It offers a workbench of modeling features in

the CPLEX CP Optimizer engine that intuitively and naturally tackle the issues inherent in

detailed scheduling problems from manufacturing, construction, driver scheduling, and more.

In a detailed scheduling problem, the most basic activity is assigning start and end

times to an interval (interval here represent a task need to be scheduled in the system).

The CPLEX CP Optimizer implementation is particularly useful for fine-grained scheduling.

Scheduling problems also involve the management of minimal or maximal capacity constraints

for resources over time and of alternative modes to perform a task.

A typical scheduling problem is defined by:

– A set of time interval definitions of activities, operations, or tasks to be completed,

that might be optional or mandatory.

– A set of temporal constraints definitions of possible relationships between the start

and end times of the intervals.

– A set of specialized constraints definitions of the complex relationships on a set of

intervals due to the state and finite capacity of resources.

– A cost function: for instance, the time required to perform a set of tasks, cost for

some optional tasks that are not executed or the penalty costs of delivering some

tasks past a due date.

A scheduling model has the same format as other models in OPL:

– Data structure declarations.

– Decision variable declarations.

– Objective function.

22

– Constraint declarations.

OPL provides specialized variables, constraints and keywords designed for modeling

scheduling problems.

Data structure declarations

Data declarations allow you to name your data so that you can reference it easily in

your model. For example, if your data in a table defines the traffic running of one application

at one system resource, you might want to call your item of data traficij where i=1,...,

noApps, j=1,..., noResources, where noApps is the number of applications in your model and

noResources is the number of system resources. You tell OPL that your model uses this data

by declaring:

int noApps = ...;

int noResources = ...;

float trafic[1..noApps][1..noResources] = ...;

Decision variable declarations

Variable declarations name and define the type of each variable in the model. For

example, if you want to create a variable that equals the capacity of each resource used in

the system, you can create a variable named capacityi where j=1,..., noResources:

dvar int+ capacity[1..noResources];

The dvar keyword indicates that you are declaring a decision variable. Since int+ in-

dicates that the variables are nonnegative, this statement declares an array of nonnegative

integer variables.

For scheduling there are specific additional decision variables, namely interval: In

OPL, activities, operations and tasks are represented as interval decision variables. An in-

23

terval has a start, an end, a length, and a size. An interval variable allows for these values

to be variable within the model. The start is the lower endpoint of the interval and the end

is the upper endpoint of the interval. By default, the size is equal to the length, which is the

difference between the end and the start of the interval. In general, the size is a lower bound

on the length. Also, an interval variable may be optional, and whether or not an interval

is present in the solution is represented by a decision variable. If an interval is not present

in the solution, this means that any constraints on this interval acts like the interval is “not

there.” The exact semantics will depend on the specific constraint.

dvar interval app1[tinTask][rinResourc] size Duration[t] optional;

Other types exists but we did not use it in the scope of this thesis.

Objective function

The objective function is an expression that you want to optimize. This function must

consist of variables and data that you have declared earlier in the model. We use objective

function in our model to optimize our system. For example: determine the minimum cache

size that can be used to successfully run the system. Or, get the minimum delay that can be

used.

minimize sum(i in 1..noApps) startOf(app[i][1]);

minimize sizOf(capacity[1]);

Constraint declarations

Precedence constraints Precedence constraints are common scheduling constraints used

to restrict the relative position of interval variables in a solution. These constraints are used

to specify when one interval variable must start or end with respect to the start or end time

of another interval. A delay, fixed or variable, can be included. For example, if I have two

different intervals a and b to be scheduled on a number of resources. Different precedence

24

constraints can be expressed in OPL.

dvarintervala;

dvarintervalb;

List of precedence constraints in OPL:

– endBeforeStart: if we wants interval a ends before the start of interval b with at

least x time units.

endBeforeStart(a, b, x);

– startBeforeEnd: if we wants interval a starts before the end of interval b with at

least x time units.

startBeforeEnd(a, b, x);

– endAtStart: if we wants interval a ends at exactly the same time interval b starts.

endAtStart(a, b);

– endAtEnd: if we wants interval a ends at exactly the same time interval b ends.

endAtEnd(a, b);

– startAtStart: if we wants interval a starts at exactly the same time interval b starts.

25

startAtStart(a, b);

– startAtEnd: if we wants interval a starts at exactly the same time interval b ends.

startAtEnd(a, b);

Figure 2.4 Elementary cumul function expressions([13]).

Cumulative constraints A cumulative function expression, represented in IBM ILOG

OPL by cumulFunction, can be used to model a resource usage function over time. This

function can be computed as a sum of interval variable demands on a resource over time.

An interval usually increases the cumulated resource usage function at its start time and

decreases it when it releases the resource at its end time (pulse function).

26

For resources that can be produced and consumed by activities (for instance the con-

tents of an inventory or a tank), the resource level can also be described as a function of time.

A production activity will increase the resource level at the start or end time of the activity

whereas a consuming activity will decrease it. The cumulated contribution of activities on

the resource can be represented by a function of time, and constraints can be modeled on

this function (for instance, a maximal or a safety level).

The value of the expression at any given moment is constrained to be nonnegative. A cu-

mulative function expression can be modified with the atomic demand keywords (Figure 2.4):

– step, which increases or decreases the level of the function by a given amount at a

given time;

– pulse, which increases or decreases the level of the function by a given amount for

the length of a given interval variable or fixed intervals;

– stepAtStart, which increases or decreases the level of the function by a given amount

at the start of a given interval variable;

– stepAtEnd, which increases or decreases the level of the function by a given amount

at the end of a given interval variable.

A cumulative function expression can be constrained to model limited resource capacity

by constraining that the function be less than or equal the capacity [13].

Example of step functions

There is an interval A, fixed in time. Interval A increases the level of the resource by x

time units at the start of the interval, modeled by applying stepAtStart, created with Inter-

val A and the value x, to the cumulative function:

cumulFunction ff = stepAtStart(A, x);

A more simpler example is to consider a function measuring a consumable resource. The

level of the resource is zero, until time 2 when the value is increased to 4. This is modeled by

modifying the cumulative function with the elementary cumulative function step at time 2:

27

cumulFunction ff = step(2, 4);

No overlap constraints To constrain the intervals in a sequence such that they:

– Are ordered in time corresponding to the order in the sequence.

– Do not overlap.

– Respect transition times

Figure 2.5 Example of alternative constraint in ILOG solver.

Alternative constraints An alternative constraint between an interval decision variable

a and a set of interval decision variables B states that interval a is executed if and only if

exactly one of the members of B is executed. In that case, the two tasks are synchronized.

That is, interval a starts together with an interval from set B and ends together with it

(Figure 2.5).

This type of constraint used in our system to represent the alternative resources that

can be used by an application. Other types exists but we did not use them in the scope of

this thesis.

28

IBM ILOG CPLEX Studio Search Strategy

Scheduling can be viewed either as a constraint satisfaction problem or as a constraint

optimization problem. When we think of scheduling as a constraint satisfaction problem, our

aim is to find a schedule that satisfies the constraints, whatever they may be. When we think

of scheduling as an optimization problem, our aim is to find a schedule that is optimal or close

to optimal with respect to a given optimization criterion. The optimization criteria usually

relate to time, capacity, and sequence: typically the makespan, tardiness, peak capacity, or

transition cost.

In our model we used the default search strategies recommended by IBM ILOG CPLEX

scheduler. Its automatic search combines Large Neighbourhood Search with a portfolio of

neighbourhoods and completion strategies together with Machine Learning techniques to

converge on the most efficient neighbourhoods and completion strategies for the problem

being solved [28]

29

CHAPTER 3 MOTIVATIONAL EXAMPLES

In system level design, it is essential to capture the functional behaviour and architec-

tural characteristics independently for performance analysis and design space exploration.

The resources we need to allocate and schedule in MPSoCs are heterogeneous: they include

processing (micro-processors, DSPs, hardware accelerators), storage (i.e. on-chip memories)

and communication (i.e. on-chip buses and I/Os) elements.

The embedded system requirements for distributed embedded systems (DES) can be

divided into different groups which each impose a number of constraints on the scheduling

problem. The functional behaviour of a embedded system is determined by the tasks and

resources that constitute the system. Typical functional behaviour requirements are those

that control task execution order or task allocation, that is, how a task should execute. An

embedded system also have temporal behaviour requirements in addition to the functional

ones. The temporal behaviour of a task depends mainly on the environment (sensors, ac-

tuators or other tasks) that the task interacts with, that is, when a task should execute.

These requirements directly affect the modelling of the application tasks and consequently

the construction of the scheduling constraints.

Apart from mere software requirements, it is also a practical consideration that the

development of embedded systems is made cost-effective so as to allow for mass-production

of the system. That is why development using off-the-shelf hardware components has become

a viable alternative in modern designs. Other practical aspects of embedded system design

encompass the introduction of weight and power-consumption requirements. This means that

cost, performance and various physical characteristics of the hardware components (proces-

sors, memory and buses) need to be conveyed to the constraint construction process ([15]).

In this thesis, we have developed a scheduling framework based on constraint pro-

gramming which attempts to tackle these needs. We mapped streaming applications onto a

target Multi-Processor System-on-Chip (MPSoC) architecture as a constraint-based schedul-

ing problem. We introduced three motivated examples discussed in Chapters 4, 5 and, 6.

The first two examples discuss mapping streaming applications on a synthesis MPSoC sys-

tem architecture in two different ways. The third example discussed mapping streaming

applications on a industrial MPSoC system architecture. Further more, introduced more

30

applications into the system. This chapter introduces preliminaries of the streaming appli-

cation, the architecture platforms, and a declarative constraint programming paradigm used

in this thesis.

3.1 Motivative Examples One and Two

Figure 3.1 MPEG-4 and VOIP packet flow in MPSoC architecture.

These two examples considered MPEG-4 and VOIP as the two streaming applications

mapped into the DUT (see Figure 3.1). Both applications have a significant impact on the

traffic through the system. They have a bounded flow control with synchronization restric-

tion and, minimum accepted performance. This is why it can be used in creating a complex

scenarios used to discover interesting corner cases detected onto the DUT.

For the DUT we consider the regular 2-D mesh Network On Chip (NoC). It is simple

but can be scaled easily (Figure 3.2).

As a case study, the MPEG4 was tested with five different standard frame sizes (QCIF,

SDTV, HDTV, HDTV1, and HDTV2) where frameSize = pixelDepth×Width×Height.

The VOIP application was tested in two different cases: a non-restricted delay case which

represents applications with buffering flexibility (such as messaging), and a restricted delay

case for applications with hard deadlines and quality assurance.

The inputs to the system are packeted trace files for both applications. This makes the

31

Figure 3.2 A 2 x 2 regular mesh MPSoC architecture.

application more realistic and allows the use of different streams with different data rates.

In the following paragraphs we will give a brief description of the nature of each ap-

plication and constrains it forces. The details of the DUT and how it was represented in

the CSP model. A detailed discussion for each application will be provided in the following

chapters.

3.1.1 Streaming Applications For Synthesis Case

MPEG-4:

Our first application is MPEG-4. The MPEG standard defines four distinct pictures en-

coding: Intra-coded Picture (I-Picture), Predictive-Coded Picture (P-Picture), Bidirectional-

Predictive-Coded Picture (B-Picture) and DC-Coded Picture (D-Picture). The I-Picture is

coded using information only from the picture itself. The P-Picture is coded using motion

compensation prediction in reference to a previous I-Picture or another P-Picture. B-Picture

is coded in reference to either previous or future I-Pictures or P-Pictures. Finally, the D-

Picture stores the DC component of each DCT block. The I, B and P pictures are arranged

in a periodic pattern known as a Group of Pictures (GOP). Figure 3.3 shows the GOP of

MPEG-4 video that we used, and the relationships among pictures. The MPEG-4 Group of

32

Figure 3.3 MPEG-4 frame dependencies (The arrows display the dependants between frames
decompressed.)

33

Pictures (GOP) is made of 12 frames in the following order: IBBPBBPBBPBB ([23]).

The first two B pictures (2 and 3) are bi-directionally coded using the past frame (I

frame 1) and the future frame P (frame 4). Therefore, each B picture is encoded based on the

previous and following I and/or P pictures. P pictures on the other hand are dependent of

previous I or P pictures. It is worth mentioning that due to these dependencies the decoding

order will be different from the encoding order. The P frame 4 must be decoded before B

frames 2 and 3, and I frame 1 (the last I frame) before B frames 11 and 12. If the MPEG-4

sequence is transmitted over the network, the actual transmission order should be 1, 4, 2, 3,

7, 5, 6, 10, 8, 9, 1, 11, and 12. From the explanation above about the dependencies, it is easy

to conclude that I-Pictures are the most important ones since they contain the actual video

content and all other pictures are error-coded based on the I frames.

In this application the main constraints that should be satisfied are the following:

– The input data stream should be in the received order but the display stream must

be in the decoding order.

– The number of frames per second displayed should be at least 30 fps.

– The output file should be bigger than the input file.

VOIP:

VoIP is a technique for transmitting voice data over the Internet [5]. When sending

voice traffic over IP networks, a number of factors contribute to overall voice quality as per-

ceived by an end user. Two of the most important factors are end-to-end delay in the voice

carrier path and degraded voice quality. Performance requirements of VoIP by mapping the

human perceived voice quality is based on the two network centric parameters:

– Packet loss: It was reported in the literature [11] that voice packet loss rates are

acceptable within 1-3 % and the quality becomes intolerable when more than 3% of

the voice packets are lost.

– Maximum Tolerable Delay: one-way transmission time for connections with ade-

quately controlled echo should be in the 0-150 ms range to be acceptable for most

user applications. Because end-to-end delay for VoIP depends on various compo-

nents of the packet network, the queuing delay is variable depending on hops the

34

voice packet travelled through. Based on experiments proposed in [11] we assume the

queuing delay to be at most 5 ms.

3.1.2 Platform Architecture For Synthesis Case

Networks-on-Chip (NoC) are a promising solution for designing scalable communica-

tion architectures for MPSoC, featuring better modularity and design predictability when

compared to bus based systems. For this reason we will consider the NoC verification as the

architecture of our synthesis case study.

In the synthesis case, we give a demonstration of a SoC Figure 3.4 to map our strategy

on. We consider the regular 2-D mesh Network On Chip (NoC). We considered this archi-

tecture according to its application packet flow shown in Figure 3.1.

The system architecture consists of: one shared memory (SH) acting as a receiver for

different application streams, two processing elements (PE1, PE2) each with its own private

memory each to generate the output stream, one frame buffer for video display (GCr), and

an audio output port (AuP) for audio display. All connected via 2x2 router to handle traffics

between different modules. This architecture may be considered very simple but it can be

easily scaled to more complex architecture.

In the CSP model sometimes we represent the same resource with two different sym-

bols when the traffic goes through this resource more than once. In Figure 3.1, we have two

different parts. The upper one shows the traffic flow through the system starting from being

revived till it gets processed. It is numbered from 1 to 13. the lower part of the figure show

the system topology and were is the correspondent traffic flow on it. The symbols used in the

CSP model to express routers between resources are the same as the one used it the figure.

it is explained as follows:

– RS = Router at SH’s output.

– R11 = Router at PE1’s input.

– R12 = Router at PE1’s output.

– R21 = Router at PE2’s input.

– R22 = Router at PE2’s output.

– RG = Router at the GCr’s input.

35

Figure 3.4 Upper picture: MPEG-4 and VOIP packet flow in MPSoC architecture - Lower
picture: Application-specific topologies under test. IP denotes processor cores, pr private-
Memories, and NI Network interface.

36

Assume that every IP of a SoC represents different application traffic and respects its

real-time constraints. The architecture/micro-architecture definition and verification with

respect to the SoC performance must then focus on the following critical components:

– Communication structures;

– Shared memory controllers.

3.2 Motivative Example Three

This example considered MPlayer a commercial application to represent MPEG-4 and

VOIP streaming applications mapped into the DUT. Along with this application we added

another four applications to introduce more load in the system. This causes more interesting

scenarios. For the DUT we chooses BeagleBone Black.

In the following paragraphs we will give a brief description of the nature of each appli-

cation and the constraints it forces, the details of the DUT and how it was represented in

the CSP model. A detailed discussion for each application will be provided in the following

chapters.

3.2.1 Streaming Applications For Industrial Case

Five applications were used to represent batch, interactive and real-time computations

on the BeagleBone system to measure the system performance and create test cases:

– Dhrystone(batch)— Developed by Reinhold Weicker in 1984. This benchmark is

used to measure and compare the performance of computers. The test focuses on

string handling, as there are no floating point operations. It is heavily influenced by

hardware and software design, compiler and linker options, code optimization, cache

memory, wait states, and integer data types.

– WhestStone (batch)— This test measures the speed and efficiency of floating-point

operations. It contains several modules that are meant to represent a mix of oper-

ations typically performed in scientific applications. A wide variety of C functions

37

including sin, cos, sqrt, exp, and log are used as well as integer and floating-point

math operations, array accesses, conditional branches, and procedure calls. This test

measure both integer and floating-point arithmetic.

– MPlayer (Real-Time/Cashed)— is a popular movie player for GNU/Linux. It has

support for most video and audio formats and is thus highly versatile, even if it is

mostly used for viewing videos. It is a time stamp-based system capable of playing

synchronized audio and video streams. It adapts to its system environment by ad-

justing the quality of playback based on the system load. For the experiment, we use

this application in two different modes:

– News(Real-Time/Cashed)— This application displays synchronized audio and video

streams from website/local disk. Each media stream flows under the direction of an

independent thread of control. The audio and video threads communicate through

a shared memory region and use timestamps to synchronize the display of the

media streams. The video input stream contains frames at 24bpp format at 30

frames/second with different frame size. The audio input stream contains stan-

dard 44100Hz 2ch floatle (4 bytes per sample) samples. The captured data is from

a CBC news network. It represents a low frame change rate.

– Entertain(Real-Time/Cashed)— This application displays synchronized audio and

video streams from website/local disk. Each media stream flows under the direction

of an independent thread of control. The audio and video threads communicate

through a shared memory region and use timestamps to synchronize the display

of the media streams. The video input stream contains frames at 24bpp format

at 30 frames/second with different frame size. The audio input stream contains

standard 44100Hz 2ch floatle (4 bytes per sample) samples. The captured data is

from a you-tube website contains a mix of television programming. It represents a

high frame change rate.

– Music(Real-Time/Cashed)— This application displays audio streams from web-

site/local disk. Each media stream flows under the direction of an independent

thread of control. The audio input stream contains standard 44100Hz 2ch floatle

(4 bytes per sample) samples.

– Iceweasle (interactive) — is a free software rebranding of the Mozilla Firefox web

38

browser distributed by the GNU Project. It is compatible with Linux, Windows, An-

droid and OS X. The GNU Project keeps IceCat in synchronization with upstream

development of Firefox while removing all trademarked artwork. It also maintains a

large list of free software plug-ins. In addition, it features a few security features not

found in the mainline Firefox browser.

– Wget (Real-Time) — is a computer program that retrieves content from web servers,

and is part of the GNU Project. Its name is derived from World Wide Web and get.

It supports downloading via HTTP, HTTPS, and FTP protocols. We used it here to

test the effect of file downloads on other internet activities.

Figure 3.5 BeagleBone Black Considered flow.

All applications are represented in the CSP model as packets following the path in Fig-

ure 3.5. All data was captured using ARM DS-5 Development Studio Streamline performance

analyzer (www.arm.com/streamline). More details on the model presentation are discussed

in Chapter 6.

3.2.2 Platform Architecture For Industrial Case

As industrial platform for our case study we choose BeagleBone Black depicted in Fig-

ure 3.6. The BeagleBone is an embedded Linux development board that’s a low-cost,

community-supported development platform for developers and hobbyists. It’s a smaller,

more barebones version of the Beagle-board. Both are open source hardware and use Texas

Instrument’s OMAP processors, which are designed for low-power mobile devices. They boot

in Linux under 10 seconds. Get started on development in less than 5 minutes with just a

single USB cable.

The BeagleBone board is not only provided with a powerful processor over a typical

39

Figure 3.6 BeagleBone Black board ([12]).

40

micro controller-based board, but it also has some features that make it perfect for immediate

development and testing:

– Built-in networking: Not only does the BeagleBone have an on-board Ethernet con-

nection, but all the basic networking tools that come packaged with Linux are avail-

able. Several services can be used: like FTP, Telnet, and SSH, or even host your own

web server on the board.

– Remote access: Because of its built-in network services, the BeagleBone makes it

much easier to access electronics projects remotely over the internet.

– Timekeeping: Without extra hardware, the board can keep track of the date and time

of day, and it’s updated by pinging internet time servers, ensuring that it’s always

accurate.

– File system: Just like personal computers, embedded Linux platforms have a built-in

file system, so storing, organizing, and retrieving data is a fairly trivial matter.

– Multiple programming languages: C, C++, Python, Perl, Ruby, Java, or even a shell

script.

– Multitasking: Unlike a basic microcontroller, embedded Linux platforms can share

the processor between concurrently running programs and tasks.

– USB: The BeagleBone can act as both a USB host and a USB device — not only it

can be controlled from any computer, also it can be connected to a USB devices. This

makes it easy to integrate common USB peripherals like flash drives, wi-fi adapters,

and web-cams into any projects.

Figure 3.7 show the high level block diagram of the BeagleBone Black that is considered

in our CSP model.

– Processor: Sitara with ARM Cortex-A8 processor offers a proven high-performance

solution with millions of units shipped annually. The processor features a high-

performance, superscalar microarchitecture with targets ranging from 600MHz to

1GHz and above.

41

Figure 3.7 BeagleBone Black block digram.

– Memory: There are three memory devices found on the board. Two of them are

considered in our CSP model and will be detailed bellow.

– 512MB DDR3L: A single 256 Mb x 16 DDR3L 4Gb (512MB) memory device is

used. The memory used is the MT41K 512 M16HA - 125 from Micron. It will

operate at a clock frequency of 303 MHz yielding an effective rate of 606 MHZ on

the DDR3L bus allowing for 1.32 GB/S of DDR3L memory bandwidth.

– 2GB Embedded MMC: A single 2GB embedded MMC (eMMC) device is on the

board. The device connects to the MMC1 port of the processor, allowing for 8bit

wide access. Default boot mode for the board will be MMC1 with an option to

change it to MMC0 for SD card booting. MMC0 cannot be used in 8Bit mode

because the lower data pins are located on the pins used by the Ethernet port.

This does not interfere with SD card operation but it does make it unsuitable for

use as an eMMC port if the 8 bit feature is needed.

– PC USB Interface: The board has a mini USB connector that connects the USB0

port to the processor. This is the same connector as used on the original BeagleBone.

42

– HDMI Interface: A single HDMI interface is connected to the 16 bit LCD interface

on the processor. The 16b interface was used to preserve as many expansion pins

as possible to allow for use by the user. The NXP TDA19988BHN is used to con-

vert the LCD interface to HDMI and convert the audio as well. The signals are still

connected to the expansion headers to enable the use of LCD expansion boards or

access to other functions on the board as needed. The HDMI device does not support

HDCP copy protection. Support is provided via EDID to allow the SW to identify

the compatible resolutions. Currently the following resolutions are supported via the

software:

– 1280 x 1024

– 1440 x 900

– 1024 x 768

– 1280 x 720

Table 3.1 below shows the main high level features of the Sitara processor. Table 3.2

shows summary on speed/size of BeagleBone components used in the CSP model.

43

Table 3.1 Sitara Processor Features

Operating Systems Linux,Android,Windows
Embedded CE,QNX, MMC/SD 3

ThreadX

Standby Power 7 mW CAN 2

ARM CPU 1 ARM Cortex -A8 UART (SCI) 6

ARM MHz (Max.) 275,500,600,800,1000 ADC 8-ch 12-bit

ARM MIPS (Max.) 1000,1200,2000 PWM (Ch) 3

Graphics
Acceleration 1 3D eCAP 3

Other Hardware 2 PRU-ICSS,Crypto
Acceleration Accelerator eQEP 3

On-Chip L1 Cache 64 KB (ARM Cortex-A8) RTC 1

On-Chip L2 Cache 256 KB (ARM Cortex-A8) I2C 3

Other On-Chip
Memory 128 KB McASP 2

Display Options LCD SPI 2

General Purpose 1 16-bit (GPMC, NAND
Memory flash,NOR Flash,SRAM) DMA (Ch) 64-Ch EDMA

1 16-bit (LPDDR-400,
DRAM DDR2-532, DDR3-606) IO Supply (V) 1.8V(ADC),3.3V

Operating
USB Ports 2 Temperature -40 to 90

Range (C)

Table 3.2 Summary of BeagleBone components used in the CSP model described in Chapter
6 [12]

Component Speed Size
eMMc 400Mbit/s 4 GB

Network interface 25 Mbit/s (Download speed) 1 task at a time
HDTV 30 fps * frame size(in bits) bit/s 1 task at a time

Supported frame size:
1280 x 1024
1440 x 900
1024 x 768
1280 x 720

Stereo 44100 Hz, 2 ch 1 task at a time
Shared memory 1.6 Gbit/s 600 MByte

L2 Cache 1.8 Gbit/s 256 KByte
L1 Cache 2 Gbit/s 256 KByte
CPU core 2 Gbit/s 8 registers

44

CHAPTER 4 MAPPING PACKET FLOW OF STREAMING

APPLICATIONS ONTO MPSOC

The system requirements for an embedded system can be divided into different groups.

Each group imposes a number of constraints on the scheduling problem. The functional

behaviour of a real-time system is determined by the tasks and resources that constitute

the system. Typical functional behaviour requirements are those that control task execution

order or task allocation, that is, how a task should execute.

These tasks also have specific behaviour requirements in addition to the functional ones.

This behaviour of a task depends mainly on task type, its priority, and how it should interact

with another task, that is, when a task should execute. These requirements directly affect

the modelling of the application tasks and consequently the construction of the scheduling

constraints.

In this chapter we will discuss the construction of the CSP model used with the first

platform architecture described in Chapter 3. The input stream is generated in this model

as a series of packets. we will look closer at the model constraints and attempt to justify the

presence of each constraint construct by examining its origin. We will also discuss how con-

straints relate to each other, and, based on this information, attempt to identify a minimal

set of necessary constraints to be implemented in a scheduling framework.

At the end we will show how we could use this model to identify possible solutions in

case of system failure. For example: if the bottleneck is in the limited memory used. This

model will allow us to test different possible solutions like increasing the caches or the mem-

ory card instead of choosing the cheapest and most convenient one. Also, it helps identifying

the possible best performance for the DUT such as trading running time with some of the

components capacity and come up with the best combination.

4.1 Constraint-Based Scheduling Approach

The binding of streaming applications onto the target MPSoC architecture is a process

with resource limitations and real-time (RT) requirements. Here we use a constraint-based

45

formulation to model the application-to-architecture mapping, communication routing, flow

control, and computation scheduling. We mapped streaming applications onto the target

MPSoC architecture by modelling them as Constraint-based scheduling problems. Frames

from these applications are translated to sets of packets. Each packet is considered as a task

to be done on one of the system resources. The output either gives a suitable schedule for

the input stream or it indicates that no solution exists. Our model was implemented using

IBM ILOG OPL IDE v6.3 [13] and uses the default search strategy.

4.1.1 Stream model

Among standard types of scheduling problems, our problem is very close to flow shop

scheduling, known to be NP-hard. The flow shop scheduling problem consists of a finite set

of jobs to be processed on each of a finite set of machines. Jobs have the same processing

order through the machines but the order in which uninterruptible jobs are processed on a

given machine can vary between machines. Machines generally have a processing capacity

and each job-machine pair has its own capacity demand and processing time.

The problem we try to solve follows the same logic as the flow shop scheduling problem:

we have a finite set of packets to be processed on a set of system components or resources;

each packet-resource pair is called a task; packets have the same processing order through the

resources but the order in which non-pre-emptive tasks are processed on a given resource can

vary between resources; resources also have a processing capacity and each task has its own

capacity demand and processing time. All tasks must be processed before a fixed deadline

for the problem. And we try to process it using minimum capacity on each of the system

components.

Following the DUT mentioned in Figure 4.1 we have two streaming applications MPEG4

and VOIP (will be referred to as M and V in the equations respectively), each with two sets

of frame type (Original Fm = {fmi }
ϕm
i=1 and F v = {f vi }

ϕv
i=1, Decompressed Fm′ = {fm′i }

ϕm′
i=1 and

F v′ = {f v′i }
ϕv′
i=1), where ϕm, ϕv, ϕm′ , ϕv′ represent the number of original and decompressed

frames respectively for applications MPEG4 and V OIP .

Each of the frames is decomposed into a different number of packets depending on the

frame and packet size. fmi .size and f vi .size are the original frame size for applications M and

V respectively. As mentioned earlier both sets’ values are input from a trace file. Fm′ .size

and F v′ .size are the decompressed frame size for applications M and V respectively. These

46

Figure 4.1 Original and decompressed packets in the system floe chart

two values are defined by the type of decompression we use. The packet size through the

whole system is fixed and denoted by P.size. We denote by F = Fm ∪ Fm′ ∪ F v ∪ F v′ the

set of all frames.

Original packets Pm
i = {pmi,j}

ωmi
j=1 and P v

i = {pvi,j}
ωvi
j=1 correspond to the streams for

frame i received by the DUT into the shared memory and travelling through the system

until being processed on one of the two processors. Decompressed packets Pm′
i = {pm′i,j }

ωm
′

i
j=1

and P v′
i = {pv′i,j}

ωv
′
i
j=1 correspond to the streams for frame i generated in the processor as the

decompressed packets are the output of the original packets, where ωmi , ω
v
i , ω

m′ , ωv
′

represent

the number of packets for each frame, calculated as following:

ωmi = dfmi .size/P.sizee, 1 ≤ i ≤ ϕm

ωvi = df vi .size/P.sizee, 1 ≤ i ≤ ϕv

ωm
′
= dFm′ .size/P.sizee

ωv
′
= dF v′ .size/P.sizee

Note that the original frames have a different number of packets depending on the per-

centage of compression, whereas the number of packets for the decompressed frames is fixed

(depending on the display frame size).

Packets travels through the system until they reach the output resource element. We

47

denote by P = Pm ∪Pm′ ∪P v ∪P v′ the set of all packets. Note that since the decompressed

frame size is always the same, because it depends on the display resolution, the number of

decompressed packets for all frames is the same.

Each packet in each stream will be treated as a sequence of tasks, and each task is

processed using a single resource. Additional constraints come from the system architecture

and applications.

We make the following reasonable assumptions in order to simplify our model:

1. The most critical system resources are buffer capacity and processor frequency, so these

will be represented explicitly as resources in our scheduling problem. The NI will be

expressed instead by a minimum temporal separation between tasks processed on two

consecutive components. Shared memory is not an issue: it is big enough for all packets

to stay there as long as they need without violating other constraints.

2. Each packet can be put in one memory location or buffer location.

3. Each memory or buffer location can take only one packet.

4. If a packet is received while the private memory, shared memory, or router buffer is full

then it is dropped.

5. The processor speed is the same as the packet transmission speed (bit-rate per second).

6. The shared memory is embedded DRAM with a (single) integrated controller.

7. Packets use Shortest path first in routing decisions.

Then the DUT set of resources is { RS, R11, PE1, R12, R21, PE2, R22, RG, GCr, AuP

} (see Chapter 3 for more details) where buffers are represented in routers, processors, the

graphics card, and the audio port. Two properties are associated to each resource: speed

and capacity.

A packet travels through the system using different resource chains from the receiver

(shared memory) to one of the two processors and finally to its output device. The existence

of more than one processor makes some of the resources alternatives. For example 〈RS,R11,

PE1〉 and 〈RS,R21, PE2〉 are alternative resource chains for original packets before decom-

pression.

48

4.1.2 Decision Variables

Each packet (e.g. pmi,j) is further decomposed into a set of tasks (e.g. Tmi,j) one task per

possible resource in the resource chain. We denote by λx the number of tasks in T xi,j. Note

that in any solution some tasks will not be scheduled since they are associated to alternate

resource chains. 1

Our set of decision variables is then:

T =
⋃

1≤i≤ϕm
1≤j≤ωmi

Tmi,j ∪
⋃

1≤i≤ϕv
1≤j≤ωvi

T vi,j ∪
⋃

1≤i≤ϕm′
1≤j≤ωm′

Tm
′

i,j ∪
⋃

1≤i≤ϕv′
1≤j≤ωv′

T v
′

i,j (4.1)

where

Tmi,j = {tmi,j,k : 1 ≤ k ≤ λm}, Tm
′

i,j = {tm′i,j,k : 1 ≤ k ≤ λm′}, (4.2)

T vi,j = {tvi,j,k : 1 ≤ k ≤ λv}, T v
′

i,j = {tv′i,j,k : 1 ≤ k ≤ λv′}. (4.3)

As usual to each task we associate start, end which are the time the task starts and ends

being processed on the corresponding resource respectively, demand which is the space it oc-

cupies on the component while being processed by it, and presence which indicates whether

the task is actually scheduled. It is fixed to True for tasks associated with a compulsory

resource (i.e. not on an alternative resource chain).

Two last decision variables were used: StartAfterM and StartAfterV which are the

time before starting the display for MPEG4 and VOIP applications respectively (once enough

frames have been cached) in order to respect their frame rate.

4.1.3 Constraints

Basically we have four main sets of constraints controlling capacity, duration, schedul-

ing start and end time, and dependency. The constraints are chosen to ensure both system

and application rules are respected. We do not list all constraints but give a representative

of each type of constraint.

1. In ILOG Solver those are handled as ”optional” tasks.

49

Capacity Constraints Given D the simulation deadline, specify the different resources

needed by different tasks and the allowed maximum capacity for the constraints.

Constraint 1: Resource capacity must be respected at all time. For example, packets

always waits at the current resource until next one free even if they are done (see Figure 4.2).

Note that ILOG Solver uses a specialized, optimized constraint named ”pulse” to handle such

constraints globally [13].

∑
1≤i≤ϕm
1≤j≤ωmi

tmi,j,RS.demand ≤ RS.Capacity 0 ≤ d ≤ D

such that tmi,j,RS.start ≤ d ≤ tmi,j,RS.end∑
1≤i≤ϕm
1≤j≤ωmi

tmi,j,R11.demand ≤ R11.Capacity 0 ≤ d ≤ D

such that tmi,j,R11.start ≤ d ≤ tmi,j,R11.end∑
1≤i≤ϕm
1≤j≤ωmi

tmi,j,PE1.demand ≤ PE1.Capacity 0 ≤ d ≤ D

such that tmi,j,PE1.start ≤ d ≤ tmi,j,PE1.end∑
1≤i≤ϕm
1≤j≤ωmi

tmi,j,R21.demand ≤ R21.Capacity 0 ≤ d ≤ D

such that tmi,j,R21.start ≤ d ≤ tmi,j,R21.end∑
1≤i≤ϕm
1≤j≤ωmi

tmi,j,PE2.demand ≤ PE2.Capacity 0 ≤ d ≤ D

such that tmi,j,PE2.start ≤ d ≤ tmi,j,PE2.end

Constraint 2: Alternative tasks must be processed on only one of the alternative re-

sources(see Figure 4.3).

tmi,j,R11.presence 6= tmi,j,R12.presence, where 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

tmi,j,R11.presence = tmi,j,PE1.presence = tm
′

i,j,PE1.presence = tm
′

i,j,R12.presence,

where 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

50

Figure 4.2 Capacity constraints

Figure 4.3 Alternative tasks constraints

51

tmi,j,R21.presence = tmi,j,PE2.presence = tm
′

i,PE2.presence = tm
′

i,j,R22.presence,

where 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

Duration Constraints Specify the processing duration for different tasks.

Constraint 3: The task duration should be bigger than or equal to the time a certain

resource needs to process the application packet according to both resource speed and packet

size.

tmi,j,RS.presence = 1⇒ tmi,j,RS.duration ≥ P.size
RS.Speed

, 1 ≤ i ≤ ϕm and 1 ≤ i ≤ ωmi

Scheduling start and end time Constraints Specify the processing start and end time

for different tasks.

Constraint 4: Given D the simulation deadline, packets must end processing before

the simulation deadline. Here we need only to restrict the end on the last resource since

packets flow in the system sequentially.

tmi,j,λm .end ≤ D, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

Constraint 5: Let Υm
i,j be the time original packets for application MPEG4 arrive in

the system where 1 ≤ i ≤ ϕmand 1 ≤ j ≤ ωmi , SHSpeed and NISpeed represent the speed of

the shared memory and NI define the minimum temporal separation needed before packets

enter RS. Packets must not start processing on the system before their arrival time. Here we

need only to restrict the start on the first resource since packets flow in the system sequentially.

tmi,j,RS.start > Υm
i,j + P.size

SHSpeed
+ P.size

NISpeed
+ 2 ∗ LinkDelay,

1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

LinkDelay is the delay caused by packet transportation from one resource to the next.

Constraint 6: Given MaxD the maximum time a certain packet can stay on one resource,

packets must not stay on a certain resource more then the allowed maximum delay. Here

52

we have two different types of constraints: the first one to ensure the temporal separation

between packets’ start time and their appearance on the first resource RS cannot be more

than 2MaxD since it passes through two components (SH and NI); the second one to restrict

MaxD on each resource separately.

tmi,j,RS.start−Υm
i,j ≤ 2MaxD, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

tmi,j,k.duration ≤MaxD, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi and 1 ≤ k ≤ λm

Constraint 7: Decompressed packets of one frame cannot start before completely re-

ceiving all packets from their original frame; original packets of one frame cannot end before

starting of all packets of their decompressed frames.

Note that we cannot assume the start of decompressed packet must be later than the end of

the original ones. Because the original packets stay at the processor longer than their pro-

cessing time, and at least until the decompressed packets depending on them are processed.

tmi,ωmi ,λm .presence = 1⇒ tm
′

i,1,1.start ≥ tmi,ωmi ,λm .start+ P.size
PE.Speed

+ linkDelay, 1 ≤ i ≤ ϕm

tmi,ωmi ,λm .presence = 1⇒ tmi,ωmi ,λm .end ≥ tm
′

i,ωmi ,1
.start+ P.size

PE.Speed
, 1 ≤ i ≤ ϕm

Constraint 8: All original frames and there corresponding packets are processed in

sequential order on the same component.

tmi,j,k.start ≤ tmi,j+1,k.start, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi − 1 and 1 ≤ k ≤ λm

tmi,ωmi ,k.start ≤ tmi+1,1,k.start, 1 ≤ i ≤ ϕm − 1 and 1 ≤ k ≤ λm

Constraint 9: Application MPEG4 uses a periodic pattern known as a Group of

Pictures (GOP)[23] that causes a difference in the sequence of data transmitted and data

displayed: decompressed frames must follow the order 1, 4, 2, 3, 7, 5, 6, 10, 8, 9, 13, 11, 12.

This means that the frames, order will change but the packets order within the same frame

will stay the same. We define the corresponding permutation ρ to specify the new GOP

frames order (see Figure 4.4).

tmi,j,k.start ≤ tmi,j+1,k.start, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi − 1 and 1 ≤ k ≤ λm

53

Figure 4.4 MPEG-4 Group Of Picture order and frame dependencies

tm
′

ρi,ωm
′

i ,k
.start ≤ tm

′

ρi+1,1,k
.start, 1 ≤ i ≤ ϕm′ , 1 ≤ k ≤ λm′

Constraint 10: Given LinkDelay the delay caused by the packet transfer from one

resource to the next, tasks for a given packet are processed in order. The end of one task in

one resource means its start on the next resource is separated by the LinkDelay.

tmi,j,RS.end+ LinkDelay = tmi,j,R11.start, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

tmi,j,R11.end+ LinkDelay = tmi,j,NI11.start, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

tmi,j,NI11.end+ LinkDelay = tmi,j,PE1.start, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

tmi,j,RS.end+ LinkDelay = tmi,j,R21.start, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

tmi,j,R21.end+ LinkDelay = tmi,j,NI21.start, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

tmi,j,NI21.end+ LinkDelay = tmi,j,PE2.start, 1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi

Constraint 11: Given τi the MPEG frames display time, application MPEG4 decom-

pressed packets of the same frame must respect the video display rate of 30 frames per second.

tm
′

i,j,λm′
.end = StartAfterM + τi, 1 ≤ i ≤ ϕm′ and 1 ≤ j ≤ ωm

′

Constraint 12: Given UT a constant to ensure application VOIP’s decompressed

packets of the same frame respect a rate of 50 audio frames per second.

tv
′

i,j,λv′
.end = StartAfterV + i ∗ UT, 1 ≤ i ≤ ϕv′ and 1 ≤ j ≤ ωv

′

54

Dependencies Constraints : Some of the tasks depend on others.

Constraint 13: For application MPEG4, frames depending on other frames must be

processed on the same processor, (see Figure 4.4).

//IPBB

tm1,1,R11.presence = tmi,j,R11.presence, 1 ≤ i ≤ 4 and 2 ≤ j ≤ ωmi

tm1,1,R21.presence = tmi,j,R21.presence, 1 ≤ i ≤ 4 and 2 ≤ j ≤ ωmi

//PBB,IBB

tmi,1,R11.presence = tml,j,R11.presence, 5 ≤ i ≤ ϕm − 1 and i ≤ l ≤ i + 3 and 1 ≤ j ≤
ωmi and i mod 3 = 2 and ϕm mod 3 = 1

tmi,1,R21.presence = tml,j,R21.presence, 5 ≤ i ≤ ϕm − 1 and i ≤ l ≤ i + 3 and 1 ≤ j ≤
ωmi and i mod 3 = 2 and ϕm mod 3 = 1

tmi,1,R11.presence = tml,j,R11.presence, 5 ≤ i ≤ ϕm − 2 and i ≤ l ≤ i + 3 and 1 ≤ j ≤
ωmi and i mod 3 = 2 and ϕm mod 3 = 2

tmϕm,1,R11.presence = tmϕm,j,R11.presence, 1 ≤ j ≤ ωmi and ϕm mod 3 = 2

tmi,1,R21.presence = tml,j,R21.presence, 5 ≤ i ≤ ϕm − 2 and i ≤ l ≤ i + 3 and 1 ≤ j ≤
ωmi and i mod 3 = 2 and ϕm mod 3 = 2

tmϕm,1,R21.presence = tmϕm,j,R21.presence, 1 ≤ j ≤ ωmi and ϕm mod 3 = 2

tmi,1,R11.presence = tml,j,R11.presence, 5 ≤ i ≤ ϕm − 3 and i ≤ l ≤ i + 3 and 1 ≤ j ≤
ωmi and i mod 3 = 2 and ϕm mod 3 = 0

tmϕm−1,1,R11.presence = tmi,j,R11.presence, varphim−1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi and ϕm mod 3 =

0

tmi,1,R21.presence = tml,j,R21.presence, 5 ≤ i ≤ ϕm − 3 and i ≤ l ≤ i + 3 and 1 ≤ j ≤
ωmi and i mod 3 = 2 and ϕm mod 3 = 0

tmϕm−1,1,R21.presence = tmi,j,R21.presence, varphim−1 ≤ i ≤ ϕm and 1 ≤ j ≤ ωmi and ϕm mod 3 =

0

tmi,RS+1.presence = tmj,RS+1.presence, 5 ≤ i ≤ ϕm − 1, i ≤ j ≤ i+ 3

Constraint 14: For application VOIP, packets of the same frame must be processed

on the same processor.

tv1,1,R11.presence = tvi,j,R11.presence, 1 ≤ i ≤ ϕv and 2 ≤ j ≤ ωvi

55

A detailed discussion for experiments and results will follow in next section.

[htbp!]

4.2 Experimental Results

Our aim is to experimentally identify some non-trivial cases of system failure which are

unlikely to be detected manually by a Test Engineer. Particular interest is given to cases

that show the impact of independent applications sharing the same computational resources.

Our model was implemented using IBM ILOG OPL IDE v6.3 and used the default search [39].

The CSP model created simulating one second running simulation is summarized as:

! —————————————————————————-

! Satisfiability problem - 25,136 variables, 89,763 constraints

Table 4.1 Design space for the experimental platform

Parameter From To

PE BW 1Mb/s 512Mb/s

PE Memory Size 1.5KB 15KB

Bus Latency 10ns 100ns

Max Delay 2ms 1s

Frame size QCIF SDTV

Simulation deadline 2 seconds

Table 4.2 experimental Results: the 2nd line indicate PE size, 3rd line Determine application
specifications, and 4th line is Bus Delay. note the results with f symbol indicate that solution
found in less then 15 second

Application M Application V Applications M + V

≥ 6K

< 6K

≥ 3K

< 3K

≥ 6K

< 6K(QCIF) (SDTV) (2ms) (1s) (QCIF, 2ms) (QCIF, 1s) (SDTV, 2ms) (SDTV, 1s)

PE BW 10ns 100ns 10ns 100ns 10ns 100ns 10ns 100ns 10ns 100ns 10ns 100ns 10ns 100ns 10ns 100ns

1 f f f f f f f – – – f f f f f f f f f

2 f f f f f f f – – – f f f f f f f f f

4 f f f f f f f – – – f f f f f f f f f

8 – – f f f f f 1 1 f f f – – f f f f f

11 69 65 f f f f f 1 1 f f f f f f f f f f

16 52 73 f f f f f 1 1 f f f 76 66 f f f f f

32 68 82 f f f f f 1 1 f f f 71 72 f f f f f

64 93 86 f f f 2 2 1 1 f 388 386 97 102 f f f f f

128 98 85 – – – 2 2 1 1 f 379 418 168 154 – – – – –

256 91 88 – – – 2 2 1 1 f 406 432 279 275 – – – – –

512 103 87 – – – 2 3 1 1 f 431 510 276 281 – – – – –

56

! Presolve : 24,409 extractables eliminated

! FailLimit = 10

! RandomSeed = 2

! RestartFailLimit = 50

! Initial process time : 17.79s (17.54s extraction + 0.25s propagation)

! . Log search space : 592,706.4 (before), 592,706.4 (after)

! . Memory usage : 198.1 MB (before), 204.3 MB (after)

! Using parallel search with 8 workers.

! —————————————————————————-

All experiments were run on Intel Core i7 computer with 4GB RAM. The target con-

figuration parameters are shown in Table 4.1.

We take our results shown in Table 4.2 for M (with two different frame sizes) and V

(with either a delay restriction like a phone call, or some allowed buffering flexibility like

voice message) separately and then combined. Entries labelled ”f” indicate a proven system

failure, i.e. the solver showed that there is no solution. Entries labelled ”–” indicate that the

solver could neither find a feasible schedule nor prove that there is none.

Our tests show how the applications affect each other. For example, when M is dealing

with an SDTV stream with a PE BW of 64Mb/s, the non-restricted delay version of V will

always fail. Similarly, the delay-restricted version of V will always fail when M is processing

a QCIF stream with a PE BW of 64Mb/s

Our methodology has also allowed us to identify some corner cases, such as the com-

bination of M and V will fail with a PE BW 11 Mb/s, even if both applications can be

successfully scheduled independently, meanintg that methodology can identify issues due to

the non-obvious interaction of multiple applications.

Assuming that PEs need to be fast enough to produce the required frame rate, one can

devise the following empirical rule:

Fsfps/Ps
Outmax

> 1 (4.4)

with Fs, Ps the frame and packet size, respectively, and Outmax the maximum processor out-

put.

57

When applying this rule, the DUT should fail when running only M using QCIF with

a PE BW < 14.5 Mb/s. Nevertheless, our methodology shows that a PE BW = 11 Mb/s

is sufficient for the application. This shows that non-trivial optimizations can be discovered

with our methodology.

Conversely for V , a PE BW = 6.8 Kb/s should be sufficient, but we can observe that

in delay-restricted conditions the system could not be scheduled if PE BW < 64 Mb/s. This

shows we can detect issues related to buffering and link delays.

To test the performance of our methodology, we compared the it with the use of the

ReSP MPSoC Simulation Platform [6]. When using FFMPEG, our system can detect system

failure in less then 15 second and verify system success in 10 minutes, as opposed to ReSP,

which takes around 30 minutes to run a single simulation.

58

CHAPTER 5 MAPPING FRAME FLOW OF STREAMING

APPLICATIONS ONTO MPSOC

5.1 Alternative Model

Although the previous model in Chapter 4 did define some corner cases, unfortunately it

will not scale very well because of its large number of tasks (typically hundreds of thousands).

This is why we created a new model directly from frames tasks, which will significantly reduce

the number of tasks needed to be scheduled (a few hundreds) and at the same time will not

violate the system constraints as we will take into consideration new constraints to ensure

system validity.

The scheduling problem will use the same set of frames, the same set of resources and,

the same processing chains used before except that we will add NI as one of the resources

to ensure a more correct timing between different resources as the problem becomes more

complex.

5.1.1 Stream model

The model will have the same two streaming applications MPEG4 and VOIP (will be

referred to as M and V in the equations respectively), each with two sets of frame type (Orig-

inal Fm = {fmi }
ϕm
i=1 and F v = {f vi }

ϕv
i=1, Decompressed Fm′ = {fm′i }

ϕm′
i=1 and F v′ = {f v′i }

ϕv′
i=1),

where ϕm, ϕv, ϕm′ , ϕv′ represent the number of original and decompressed frames respectively

for applications MPEG4 and V OIP . Note that for our case study since we are dealing with

frames and not packets, the number of original frames is the same as the number of decom-

pressed frames: they differ only in size (i.e. ϕm = ϕm′ and ϕv = ϕv′), also the packet size

through the whole system is fixed and denoted by P.size.

Then the DUT set of resources is { RS, R11, NI11, PE1, NI12, R12, R21, NI21, PE2,

NI22, R22, RG, NIG, GCr, NIA, AuP } (see Chapter 3 for more details)

59

5.1.2 Decision Variables

Each frame (e.g. fmi) is further decomposed into a set of tasks (e.g. Tmi) one task per

possible resource in the resource chain. We denote by λx the number of tasks in T xi . Note

that in any solution some tasks will not be scheduled since they are associated to alternate

resource chains.

Our set of decision variables is then:

T =
⋃

1≤i≤ϕm

Tmi ∪
⋃

1≤i≤ϕv

Tm
′

i ∪
⋃

1≤i≤ϕm′

T vi ∪
⋃

1≤i≤ϕv′

T v
′

i (5.1)

where

Tmi = {tmi,k : 1 ≤ k ≤ λm}, Tm
′

i = {tm′i,k : 1 ≤ k ≤ λm′}, (5.2)

T vi = {tvi,k : 1 ≤ k ≤ λv}, T v
′

i = {tv′i,k : 1 ≤ k ≤ λv′}. (5.3)

As usual to each task we associate start, end which are the time the task starts and

ends being processed on the corresponding resource respectively, demand which is the space

it occupies on the component while being processed by it, and presence which indicates

whether the task is actually scheduled.

It is fixed to True for tasks associated with a compulsory resource (i.e. not on an alternative

resource chain).

Two last decision variables were used: StartAfterM and StartAfterV which are the

time before starting display for MPEG4 and VOIP applications respectively (once enough

frames have been cached) in order to respect their frame rate.

5.1.3 Constraints

Basically we have four main sets of constraints controlling capacity, duration, schedul-

ing start and end time, and dependency. The constraints are chosen to ensure both system

and application rules are respected. We do not list all constraints but give a representative

of each type of constraint.

60

Capacity Constraints Given D the simulation deadline, specify the different resources

needed by different tasks and the allowed maximum capacity for the constraints.

Constraint 1: Resource capacity must be respected at all time. Note that ILOG solver

use a specialized, optimized constraint named ”pulse” to handle such constraints globally [13].

∑
1≤i≤ϕm

tmi,RS.demand ≤ RS.Capacity, 0 ≤ t ≤ D

such that tmi,RS.start ≤ t ≤ tmi,RS.end

Constraint 2: Alternative tasks must be processed on only one of the alternative re-

sources.

tmi,R11.presence 6= tmi,R12.presence, 1 ≤ i ≤ ϕm

tmi,R11.presence = tmi,PE1.presence = tm
′

i,PE1.presence = tm
′

i,R12.presence,
1 ≤ i ≤ ϕm

tmi,R21.presence = tmi,PE2.presence = tm
′

i,PE2.presence = tm
′

i,R22.presence,
1 ≤ i ≤ ϕm

Duration Constraints Specify the processing duration for different tasks.

Constraint 3: As the task duration is not only the time a certain resource needs to

process it but also we need to consider the delays added if this was sent as packets and also

that any delay on a previous resource must affect the duration on the next one. Here we

need to know the number of packets on each frame:

pmi = df
m
i .size

P.size
e, 1 ≤ i ≤ ϕm

pvi = df
v
i .size

P.size
e, 1 ≤ i ≤ ϕv

pm
′
= dfm

′
.size

P.size
e

pv
′
= dfv

′
.size

P.size
e

Note that the original packets have a different number of frames depending on the per-

centage of compression, whereas the number of packets for the decompressed frames is fixed

(to the display frame size). Let Υm
i be the time original packets for application MPEG4

61

arrive in the system where 1 ≤ i ≤ ϕm , SHSpeed and NISpeed represent the shared memory

and NI speed defined the minimum temporal separation needed before packets enter RS.

Because the first task cannot consider a delay from the previous components its duration is

calculated differently:

tmi,RS.duration ≥
fmi .size

RS.Speed
+ linkDelay ∗ pmi + tmi,RS.start

−(Υm
i +

fmi .size

SHSpeed
+

fmi .size

NISpeed
), 1 ≤ i ≤ ϕm

All other components follow the same rule so here we show only the duration for the

second task.

tmi,2.precence = 1⇒ tmi,2.duration ≥
fmi .size

RS.Speed
+ linkDelay ∗ pmi + tmi−1,RS.duration

−(
fmi−1.size

RS.Speed
+ linkDelay ∗ pmi−1), 1 ≤ i ≤ ϕm

Scheduling start and end time Constraints Specify the processing start and end time

for different tasks.

Constraint 4: Given D the simulation deadline, frames must end processing before

the simulation deadline.

tmi,λm .end ≤ D, 1 ≤ i ≤ ϕm

Constraint 5: Packets must not start processing on the system before their arrival

time. Here we need only to restrict the start on the first resource since packets flow in the

system sequentially.

tmi,RS.start > Υm
i +

fmi .size

SHSpeed
+

fmi .size

NISpeed
+ 2 ∗ linkDelay ∗ pmi ,

1 ≤ i ≤ ϕm

Constraint 6: Given MaxD the maximum time a certain frame can stay on one re-

source, frames must not stay on a certain resource more then the allowed maximum delay.

Here we have two different types of constraints: the first one to ensure the temporal sepa-

ration between frames’ start time and their appearance on the first resource RS cannot be

62

more than 2MaxD since it passes through two components (SH and NI); the second one to

restrict MaxD on each resource separately.

tmi,RS.start−Υm
i ≤ 2MaxD, 1 ≤ i ≤ ϕm

tmi,k.duration ≤MaxD, 1 ≤ i ≤ ϕm, 1 ≤ k ≤ λm

Constraint 7: Decompressed frames cannot start before completely receiving their

original frame; original frames cannot end before starting their decompressed frames.

tm
′

i,1 .start ≥ tmi,λm
.start+

fmi .size

PE.Speed
+linkDelay∗pmi +tmi−1,1.duration−(

fmi−1.size

NI.Speed
+linkDelay∗pmi−1), 1 ≤ i ≤ ϕm

tmi,λm
.end ≥ tm

′
i,1 .start+

P.size
PE.Speed

, 1 ≤ i ≤ ϕm

Constraint 8: All original frames are processed in sequential order on the same com-

ponent.

tmi,k.start ≤ tmi+1,k.start, 1 ≤ i ≤ ϕm − 1, 1 ≤ k ≤ λm

Constraint 9: Application MPEG4 uses a periodic pattern known as a Group of

Pictures (GOP)[23] that causes a difference in the sequence of data transmitted and data

displayed: decompressed Frames must follow the order 1, 4, 2, 3, 7, 5, 6, 10, 8, 9, 13, 11, 12.

We define the corresponding permutation ρ to specify the new GOP frames order (see Figure

5.1).

Figure 5.1 MPEG-4 Group Of Picture order and frame dependencies

63

tm
′

ρi,k
.start ≤ tm

′

ρi+1,k
.start, 1 ≤ i ≤ ϕm, 1 ≤ k ≤ λm′

Constraint 10: Given LinkDelay the delay caused by the frame transportation from

one resource to the next, tasks for a given packet are processed in order. Here we allow tasks

of one frame to start on the next resource as soon as one packet has been processed.

tmi,RS.start+ LinkDelay + P.size
RS.Speed

≤ tmi,R11.start, 1 ≤ i ≤ ϕm

tmi,R11.start+ LinkDelay + P.size
R11.Speed

≤ tmi,NI11.start, 1 ≤ i ≤ ϕm

tmi,NI11.start+ LinkDelay + P.size
NI11.Speed

≤ tmi,PE1.start, 1 ≤ i ≤ ϕm

tmi,RS.start+ LinkDelay + P.size
RS.Speed

≤ tmi,R21.start, 1 ≤ i ≤ ϕm

tmi,R21.start+ LinkDelay + P.size
R21.Speed

≤ tmi,NI21.start, 1 ≤ i ≤ ϕm

tmi,NI21.start+ LinkDelay + P.size
NI21.Speed

≤ tmi,PE2.start, 1 ≤ i ≤ ϕm

tmi,k.end− tmi,k+1.start ≤ tmi,k.duration+ linkDelay, 1 ≤ i ≤ ϕm, 1 ≤ k ≤ λm

Constraint 11: Given τi the MPEG frames display time, application MPEG4 decom-

pressed frames must respect the video display rate of 30 frames per second.

tm
′

i,λm′
.end = StartAfterM + τi, 1 ≤ i ≤ ϕm′

Constraint 12: Given UT a constant to ensure application VOIP’s decompressed

packets of the same frame respect a rate of 50 audio frames per second.

tv
′

i,t̂v′
.end = StartAfterV + i ∗ UT, 1 ≤ i ≤ ϕv′

Dependencies Constraints : Some of the tasks depend on others.

Constraint 13: For application MPEG4, frames depending on other frames must be

processed on the same processor, (see Figure 5.1). Constraints are shown for complete IPBB,

PBB, IBB sequences for simplicity but all cases are considered in the model.

//IPBB

tm1,RS+1.presence = tmi,RS+1.presence, 1 ≤ i ≤ 4

//PBB,IBB

64

tmi,RS+1.presence = tmj,RS+1.presence, 5 ≤ i ≤ ϕm − 1, i ≤ j ≤ i+ 3

A detailed discussion for experiments and results will be followed in next section.

5.2 Experimental Results

Our aim is to experimentally identify non-trivial cases when the system fails to meet

its performance goals, in particular if they are unlikely to be detected manually by a test

engineer. We also aim at finding corner cases where there is a chance of succesfully meeting

the performance goals, and it is worth investing time for testing in higher detail. Particular

interest is given to cases that show the impact of competition between independent applica-

tions sharing the same computational resources. All experiments were run on an Intel Core

i7 computer with 8GB RAM. The target parameters are shown in Table 5.1. The design

space is explored by manually and sequentially applying these parameters. Because In the

synchronous dataflow (SDF) MoC, the static data rate allows for the construction of peri-

odic schedules with bounded memory size at compile time [43], simulation deadline defined

consider enough to ensure the validity of infinite behaviour of the system.

The CSP model created to represent one second summarized as follow:

! —————————————————————————-

! Satisfiability problem - 11,903 variables, 58,999 constraints

! Presolve : 26,658 extractables eliminated

! SearchType = MultiPoint

! SolutionLimit = 1

! Initial process time : 2.20s (2.08s extraction + 0.11s propagation)

! . Log search space : 148,970.0 (before), 148,970.0 (after)

! . Memory usage : 104.0 MB (before), 112.1 MB (after)

! Using parallel search with 8 workers.

! —————————————————————————-

We tested our model with 50 different system configurations. The results came to con-

firm the one published on [16] with more gain offered by the new model.

Results are shown in Figure 5.2 and Figure 5.3 for different processing element band-

widths. These are 2n where n = 0, 1, 2, ..., 11 (on the vertical axis), for different architecture

65

Table 5.1 Design space for the experimental platform

Parameter From To Parameter Value

Processing Element (PE) Size 1.5KB 15KB Packet Size 1.5 KB

PE Band Width (BW) 1Mb/s 512Mb/s Num. of PEs 2

Bus Latency 10ns 100ns Memory BW 2 Gb

Max Allowed VOIP Delay 2ms 1s Buffer Size 1.5 KB

MPEG frames Size QCIF SDTV Simulation deadline 2 seconds

Figure 5.2 Results for MPEG4 and VOIP separately

configurations (on the horizontal axis). We used five different frame sizes for MPEG4 (with

FS meaning that results apply to all frame sizes), and two configurations for V OIP (delay-

restricted and non-restricted, with RD meaning that results apply to both versions). The

two applications were tested separately, and then combined to study the impact of one ap-

plication on the other. The last parameter we considered is the scheduling policy associated

to the processors: either load balancing or FIFO.

We used three different terms to represent the results for each architecture: “success”

indicates that a solution was found at this level of detail, and it can be investigated further;

“failure” indicates that the solver showed that there is no solution; “timeout”, indicates that

the solver could neither find a feasible schedule nor prove that there is none for this band-

width within a 10-minutes time limit.

Figure 5.2 shows results for the model (”none”, ”load bal.”) where ”none” indicates that

no processor scheduling policy was used, and ”load bal.” indicates that load balance processor

scheduling policy was used, running only one application and Figure 5.3 show results when

combining the two applications.

66

Figure 5.3 Results for MPEG4 and VOIP combined

Adding load balancing generally gives better results, except in some cases shown in Fig-

ure 5.3 where the solver could not prove the absence of solutions when the two applications

are combined. This does not reduce the value of the model since the results prove the lack

of solution with any processor scheduling policy.

Some tests gave straightforward results: both applications will always fail if the private

memory of the PEs is less than 3 KB and 6 KB for MPEG4 and VOIP, respectively. This is

due to inter- and intra-frame packet dependencies.

Other tests show how one application failure might affect the other, when running si-

multaneously. For example, when MPEG4 is dealing with an SDTV stream with a PE BW

of 64Mb/s, the non-restricted delay version of V OIP will always fail. Similarly, the delay-

restricted version of V OIP will always fail when MPEG4 is processing a QCIF stream with

a PE BW of 64Mb/s.

But our methodology also allowed us to identify some interesting cases. For example

the combination of MPEG4 and V OIP will fail with a PE BW 11 Mb/s even if both ap-

plications can be successfully scheduled independently, meaning that our methodology can

identify issues due to the non-obvious interaction of multiple applications. Please note that

this case is not shown in the figure; we narrowed in on this particular critical point.

67

Given that PEs need to be fast enough to produce the required frame rate, one can

devise the following empirical rule: Fsfps/Ps
Outmax

> 1 with Fs, Ps the frame and packet size, re-

spectively, and Outmax the maximum processor output. Hence the DUT should fail when

running only MPEG4 using QCIF with a PE BW < 14.5 Mb/s. Nevertheless our method-

ology shows that a PE BW = 11 Mb/s is sufficient for the application. This shows that

non-trivial optimizations can be discovered as well with our methodology. Conversely, for

V OIP , a PE BW = 6.8 Kb/s should be sufficient, but we can observe that in delay-restricted

conditions the system could not be scheduled with PE BW < 64 Mb/s. This shows we can

detect issues related to buffering and link delays.

By analyzing our results, we can recommend an architecture to run these two appli-

cations using requirements such as a minimum processor private memory of 6KB, and a

reasonable processor bandwidth of 1 Gb/s to run the more demanding application.

To test the performance of our methodology, we compared it with the use of the ReSP

MPSoC Simulation Platform [6]. When using FFMPEG, our system can detect system failure

in less than 15 seconds and verify system success in 10 minutes, while ReSP takes around 30

minutes to run a single simulation.

68

CHAPTER 6 MAPPING TASKS FLOW OF STREAMING

APPLICATIONS ONTO MPSOC

The next step in our work is to test the proposed methodology on an already existing

architecture by running selected applications and by comparing results with our models.

6.1 Industrial-Case Model

As mentioned in Chapter 3, BeagleBone Black (BBB) is our test architecture platform.

Five applications were used to represent interactive computations on the BBB to measure

system performance:

– (Dhrystone—WhestStone) from UnixBench benchmark: the main purpose of running

these is to generate activity on the cache memory and processor. This will help

discover critical cases when interacting with other applications.

– MPlayer movie player: MPlayer is a source of test cases that need synchronization

between different tasks (audio/video), it must respect a certain task order (the one

in which frames are received), and has a minimum performance target (the minimum

display rate is 30 frame/sec). The application was used in two different modes: real-

time stream and local stream. Both modes were tested with different video rates,

resolution, and quality in order to create diverse test cases with different system

needs and constraints.

– (Iceweasle—Wget): both applications are used to create more activity on the cache

memory, processor, and network interface. This will help create more critical test

cases when interacting with other applications.

Taking the BBB with the five previously mentioned application, we reused the model

described in Chapter 5 to create a constraint-based scheduling problem for our industrial

case and generate the appropriate test cases for it. A detailed discussion is provided through

the following sections.

6.1.1 Stream model

Each application has a number of instructions that must be executed through different

system components, which in turn causes a number of memory access hits and misses through

the system. We use these numbers to calculate applications activity requirements and perfor-

mance throughout the system. The number of instructions/hits-misses are huge (hundreds of

69

Figure 6.1 streaming applications flow in MPSoC industrial architecture.

millions of instructions) and require a very small fraction of time to be done(being read and

copied from one resource to the next along with data input/output needed to be correctly

executed). This makes it impossible to be expressed as a CSP scheduling problem. This is

due to the fact that Large-Scale scheduling problems are NP-hard [22]. Accordingly, in our

model we will assume that each application has one job to be run on each of the components

in its running path. The number of tasks needed by each of the jobs depends on the max-

imum capacity of the component and the minimum time fraction that can be considered in

the model. We explain it further in the next few paragraphs.

Following the DUT in Figure 6.1, our model was applied to 8 different streaming appli-

cations. Application 1 and 2 represent MPlayer application video and audio streams running

from the local mass memory (will be referred to as Al and V l in the equations respectively).

Application 3 and 4 represent the MPlayer application video and audio streams running as

a live stream from an online website (will be referred to as An and V n in the equations,

respectively). Application 5 represent downloading files from the Internet using the Wget

tool (will be referred to as Wg in the equations). Application 6 represent the ice-weasel web-

browser opening a different sequence of websites (will be referred to as Iw in the equations).

Applications 7 and 8 are both benchmarks (Dhrystone—WhestStone), used to stress cache

70

memory and processor (will be referred to as Dh and Wh in the equations respectively) –

See Table 6.1 for more details.

Each of the applications from 1 to 8 is represented by a set of jobs: Jal = {jali }
ϕal
i=1, Jvl =

{jvli }
ϕvl
i=1, Jan = {jani }

ϕan
i=1 , Jvn = {jvni }

ϕvn
i=1 , Jwg = {jwgi }

ϕwg
i=1 , J iw = {jiwi }

ϕiw
i=1, Jdh = {jdhi }

ϕdh
i=1 ,

Jwh = {jwhi }
ϕwh
i=1 , where ϕal, ϕvl, ϕan, ϕvn, ϕwg, ϕiw, ϕdh, ϕwh represent the number of jobs for

each of the applications Al, V l, An, V n, Wg, Iw, Dh, and Wh, respectively. Note that for

our case study, since each job is done in only one system component, the number of jobs and

their sequences are the same as the path each application has to go through in the system in

order to be complete.

The DUT set of resources is {RJ,HD, SM,PE,LC1, LC2, GCr,AuP} (see Chapter 3

for more details). The application requirements on each of these resources will be considered

as the amount of traffic generated inside this resource or component in order to finish all

applications, tasks and successfully run on the system.

As mentioned earlier, we are using the BBB which has an ARM Cortex-A8 as its

processor core. The Cortex-A8 uses c9, the Event SELection (EVTSEL) Register, to select

the events that you want a Performance Monitor Count Register to count.

The EVTSEL Register is:

– a read/write register common to Secure and Insecure states

– accessible as determined by c9, User Enable Register.

Different application activities on each of the BBB system components are measured

using the DS-5 streamline performance analyzers. The main problem in estimating the min-

imum requirement for each application running through the system is to combine the traffic

generated by each of the applications inside the processor core. We use 5 counters (Figure 6.2)

to calculate this information:

– Data Access: memory read and write operations that cause a cache access to at

least the level of data or unified cache closest to the processor;

– L2 Access (0x43): any access to L2 cache;

– L2 miss (0x44): any cache-able miss on L2 cache;

– Instructions Executed (0x08): Instructions architecturally executed. This counter

counts for all instructions, including conditional instructions that fail their condition

codes;

– L1 inst Hash miss (0x4a): any L1 instruction memory access that misses in the

cache as a result of the hashing algorithm. The cases covered are:

– Hash hit and physical address miss;

– Hash hit and physical address hit in another way;

71

Table 6.1 Details of Streaming Application Running on the Industrial Platform

Application name Application case description

MPlayer local audio play
(Al)

This application will be running in two different cases, one is
as a stand alone application representing a song playing from
a local storage device. The other case is when this applica-
tion is synchronized with MPlayer local video play to represent
audio/video movie running from a local storage device.

MPlayer local video play
(V l)

This application will be running in two different cases, one is
as a stand alone application representing a video playing from
a local storage device. The other case is when this applica-
tion is synchronized with MPlayer local audio play to represent
audio/video movie running from a local storage device.

MPlayer live audio play
(An)

This application will be running in two different cases, one is
as a stand alone application representing a live stream playing
song. The other case is when. This application is synchronized
with MPlayer live video stream to represent audio/video movie
play

MPlayer live audio play
(V n)

This application will be running in two different cases, one is
as a stand alone application representing a live stream video.
The other case is when this. Application is synchronized with
MPlayer live audio stream to represent audio/video movie play.

Wget tool (Wg) This application is used to simultaneously download from one
to x number of files from an online server in a fixed amount of
time, where x is the maximum number of files that the system
can successfully download at the same time.

Ice-weasel web-browser
(Iw)

This application is used to web-browse from one to x on-line
web sites sequentially separated by a fixed time interval, where
x is the maximum number of websites that the system can
successfully open at the same time.

Dhrystone’s benchmark
(Dh)

This application focuses on string handling, as there are no
floating point operations. It is heavily influenced by hardware
and software. design, compiler and linker options, code opti-
mization, cache memory, wait states, and integer data types.

WhestStone benchmark
(Wh)

This test contains several modules that are meant to represent
a mix of operations typically performed in scientific applica-
tions. A wide variety of C functions including sin, cos, sqrt,
exp, and log are used as well as floating-point math operations,
array accesses, conditional as an integer and branches, and pro-
cedure calls. This test measures both integer and floating-point
arithmetic.

72

– Hash miss and physical address hit.

Figure 6.2 DS-5 streaming Counters used to measure system performance.

By using the previous 5 counters we are able to estimate the traffic generated by each

application, calculated as follows:

– Traffic on shared memory = L2 miss (0x44)

– Traffic on L2 Cache = The number of L2 hits = Data Access—L2 miss (0x44)

– Traffic on L1 Cache = The number of L1 instruction hits + the number of L1 Cache

hits = (Instruction Executed [0x08]—L1 inst Hash miss [0x4a]) + (Data Access—L2

Access [0x43])

– Traffic on Processing unit = It should be the same as the traffic on L1 Cache

= the number of L1 instruction hits + the number of L1 Cache hits = (Instruction

Executed [0x08]—L1 inst Hash miss [0x4a]) + (Data Access—L2 Access [0x43])

The estimate of traffic on the input and output component is calculated differently,

based on the type of application (see Table 6.2 for more details). For this purpose, we use 4

more counters from the streamline DS-5 analyzer:

– Disk IO read counter: Disk IO Bytes Read.

– Disk IO write counter: Disk IO Bytes Written.

– Network receive counter: Receive network traffic, including the effect from stream-

line

73

– Network transmit counter: Transmit network traffic, including the effect from

streamline

We try to minimize the cases where we use the previous counters to calculate the input

and output devices’ traffic. This is because these counters are for all reads and writes on the

system and cannot be isolated for one application.

To use it, we try to take the counters reading when only the operating system running.

And we take the reading again while the application running, Capture the difference and use

it. Another way is to

Alternatively, we replace these reading by the reasing taken from application itself. For

example, Mplayer have benchmark command line option provide such information.

6.1.2 Decision Variables

Each job (e.g. jali) is further loosen up into a set of tasks (e.g. T ali), one task per possible

resource in the resource chain. This number is the same as the number of jobs needed by

each application have to run through the system in order to be complete.

Furthermore, each task on each component is decompressed into a set of subtasks. The

number of these subtasks changes based on the maximum capacity of the resource and the

minimum unit of time needed to handle this task.

Note that the number of tasks on each resource changes from one resource to the next.

We denote this number by λxi where i is the task location in the resource chain for application

x.

Since the BBB has only one processing core, no alternate resource is considered in the

application resource chains. Of course this can be changed easily by adding a variable to

represent the number of available cores in the system and apply the alternative task option

as we did in the model described in Chapter 5.

Our set of decision variables is then:

T =
⋃

1≤i≤ϕal

Tali ∪
⋃

1≤i≤ϕvl

T vli ∪
⋃

1≤i≤ϕan

Tani ∪
⋃

1≤i≤ϕvn

T vni ∪
⋃

1≤i≤ϕwg

Twgi ∪
⋃

1≤i≤ϕiw

T iwi ∪
⋃

1≤i≤ϕdh

T dhi ∪
⋃

1≤i≤ϕwh

Twhi

(6.1)

where

74

Table 6.2 Devices input and traffic calculation for the different applications running in the
system

Application
name

Input device Input device
Calculations

Output
device

Output device calculations

(Al) HD Disk IO read
counter

AuP benchmark command-line op-
tion in MPlayer application

(V l) HD Disk IO read
counter

GCr benchmark command-line op-
tion in MPlayer application

(An) RJ Network re-
ceive counter

AuP benchmark command-line op-
tion in MPlayer application

(V n) RJ Network re-
ceive counter

GCr benchmark command-line op-
tion in MPlayer application

(Wg) RJ Network re-
ceive counter

HD Disk IO write counter

(Iw) RJ Network re-
ceive counter

HD Disk IO write counter

(Dh) HD Disk IO read
counter

HD Disk IO write counter

(Wh) HD Disk IO read
counter

HD Disk IO write counter

T ali = {tali,k : 1 ≤ k ≤ λali , 1 ≤ i ≤ ϕal}

T vli = {tvli,k : 1 ≤ k ≤ λvli , 1 ≤ i ≤ ϕvl}

T ani = {tani,k : 1 ≤ k ≤ λani , 1 ≤ i ≤ ϕan}

T vni = {tvni,k : 1 ≤ k ≤ λvni , 1 ≤ i ≤ ϕvn}

Twgi = {twgi,k : 1 ≤ k ≤ λwgi ∗ noF, 1 ≤ i ≤ ϕwg}

T iwi = {tiwi,k : 1 ≤ k ≤ λiwi ∗ noW, 1 ≤ i ≤ ϕiw}

T dhi = {tdhi,k : 1 ≤ k ≤ λdhi , 1 ≤ i ≤ ϕdh}

Twhi = {twhi,k : 1 ≤ k ≤ λwhi , 1 ≤ i ≤ ϕwh} (6.2)

Note that there are two more parameters noF and noW , considered with Wg and Iw,

respectively.

This is because these two applications will have to run more than once through the

system try to cause the system to fail.

As usual for each task, we associate the start, end times when the task starts and ends

75

being processed on the corresponding resource respectively, demand (the space it occupies

on the component while being processed), and presence, which indicates whether the task is

currently scheduled.

6.1.3 Constraints

As with the previous models, we have 4 main sets of constraints controlling capacity,

duration, scheduling start and end time, and dependency. Also, we added existence group, a

group of constraints to separate the optional from the mandatory tasks. The constraints are

chosen to ensure both system and application rules are respected. In here we did not list all

constraints. We gave example of each one used.

Existence Constraints This constraint enforces the existence or absence of some of the

tasks on the system. It is represented by the variable presence. If the task exists the variable

is set to True — otherwise, it will be False.

Constraint 1: Once we decide which application should be running into the system,

all its tasks must be scheduled and exist on the model. We are using the parameter ε to

represent if the application is or is not running on the system. We will set all tasks presence

value to True if its corresponding ε parameter is true.

tali,k.presence = True, Where 1 ≤ i ≤ ϕal, εal = True, 1 ≤ k ≤ λali (6.3)

tvli,k.presence = True, Where 1 ≤ i ≤ ϕvl, εvl = True, 1 ≤ k ≤ λvli (6.4)

tani,k.presence = True, Where 1 ≤ i ≤ ϕan, εan = True, 1 ≤ k ≤ λani (6.5)

tvni,k.presence = True, Where 1 ≤ i ≤ ϕvn, εvn = True, 1 ≤ k ≤ λvni (6.6)

twgi,k .presence = True, Where 1 ≤ i ≤ ϕwg, εwg = True, 1 ≤ k ≤ λwgi ∗ noF (6.7)

tiwi,k.presence = True, Where 1 ≤ i ≤ ϕiw, εiw = True, 1 ≤ k ≤ λiwi ∗ noW (6.8)

tdhi,k.presence = True, Where 1 ≤ i ≤ ϕdh, εdh = True, 1 ≤ k ≤ λdhi (6.9)

twhi,k .presence = True, Where 1 ≤ i ≤ ϕwh, εwh = True, 1 ≤ k ≤ λwhi (6.10)

Capacity Constraints Given D the simulation deadline, these constraints specify the

different resources needed by different tasks and the allowed maximum capacity for the con-

straints.

Constraint 2: Resource capacity must be respected at all times. Note that ILOG

solver use specialized, optimized function named “cumulFunction” and “pulse” to handle such

76

resource usage constraints globally. This was explained more in Chapter 2.

Each of the 8 applications follows a various ordered chain of resources depending on

the application input and output. This ordered chain is denoted by ωxi where 1 ≤ i ≤ ϕx.

ωal = {HD,LC2, LC1, PE,AuP}, ωvl = {HD,LC2, LC1, PE,GCr},

ωan = {RJ,LC2, LC1, PE,AuP}, ωvn = {RJ,LC2, LC1, PE,GCr},

ωwg = {RJ,LC2, LC1, PE,HD}, ωiw = {RJ,LC2, LC1, PE,HD},

ωdh = {HD,LC2, LC1, PE,HD}, ωwh = {HD,LC2, LC1, PE,HD}

(6.11)

Depending on the resource chain flow of each application the following constraints apply:

RJ.Capacity ≥
∑

1≤k≤λal1

(tal1,k.demand ∗ tal1,k.presence) +
∑

1≤k≤λalϕal

(talϕal,k.demand ∗ t
al
ϕal,k

.presence) +

∑
1≤k≤λvl1

(tvl1,k.demand ∗ tvl1,k.presence) +
∑

1≤k≤λvlϕvl

(tvlϕvl,k.demand ∗ t
vl
ϕvl,k

.presence) +

∑
1≤k≤λan1

(tan1,k.demand ∗ tan1,k.presence) +
∑

1≤k≤λanϕan

(tanϕan,k.demand ∗ t
an
ϕan,k.presence) +

∑
1≤k≤λvn1

(tvn1,k.demand ∗ tvn1,k.presence) +
∑

1≤k≤λvnϕvn

(tvnϕvn,k.demand ∗ t
vn
ϕvn,k.presence) +

∑
1≤k≤λwg1 ∗noF

(twg1,k.demand ∗ t
wg
1,k.presence) +

∑
1≤k≤λwgϕwg∗noF

(twgϕwg ,k.demand ∗ t
wg
ϕwg ,k

.presence) +

∑
1≤k≤λiw1 ∗noW

(tiw1,k.demand ∗ tiw1,k.presence) +
∑

1≤k≤λiwϕiw∗noW

(tiwϕiw,k.demand ∗ t
iw
ϕiw,k

.presence) +

∑
1≤k≤λdh1

(tdh1,k.demand ∗ tdh1,k.presence) +
∑

1≤k≤λdhϕdh

(tdhϕdh,k.demand ∗ t
dh
ϕdh,k

.presence) +

∑
1≤k≤λwh1

(twh1,k.demand ∗ twh1,k.presence) +
∑

1≤k≤λwhϕwh

(twhϕwh,k.demand ∗ t
wh
ϕwh,k

.presence) +

Where 0 ≤ d ≤ D such that :

tal1,k.start ≤ d ≤ tal1,k.end And talϕal,k
.start ≤ d ≤talϕal,k

.end Given ωal
1 = RJ And ωal

ϕal
= RJ,

tvl1,k.start ≤ d ≤ tvl1,k.end And tvlϕvl,k
.start ≤ d ≤tvlϕvl,k

.end Given ωvl
1 = RJ And ωvl

ϕvl
= RJ,

tan1,k.start ≤ d ≤ tan1,k.end And tanϕan,k.start ≤ d ≤tanϕan,k.end Given ωan
1 = RJ And ωan

ϕan
= RJ,

tvn1,k.start ≤ d ≤ tvn1,k.end And tvnϕvn,k.start ≤ d ≤tvnϕvn,k.end Given ωvn
1 = RJ And ωvn

ϕvn
= RJ,

twg
1,k.start ≤ d ≤ twg

1,k.end And twg
ϕwg,k

.start ≤ d ≤twg
ϕwg,k

.end Given ωwg
1 = RJ And ωwg

ϕwg
= RJ,

tiw1,k.start ≤ d ≤ tiw1,k.end And tiwϕiw,k.start ≤ d ≤tiwϕiw,k.end Given ωiw
1 = RJ And ωiw

ϕiw
= RJ,

tdh1,k.start ≤ d ≤ tdh1,k.end And tdhϕdh,k
.start ≤ d ≤tdhϕdh,k

.end Given ωdh
1 = RJ And ωdh

ϕdh
= RJ,

twh
1,k.start ≤ d ≤ twh

1,k.end And twh
ϕwh,k

.start ≤ d ≤twh
ϕwh,k

.end Given ωwh
1 = RJ And ωwh

ϕwh
= RJ,

(6.12)

77

In the previous equation we consider only the first and last jobs in the resource chain.

This is because the RJ component is only used as an input or output device (see Table 6.2).

The same equation can be applied to the HD resource. Note that d here represent time in

the equation.

HD.Capacity ≥
∑

1≤k≤λal
1

(tal1,k.demand ∗ tal1,k.presence) +
∑

1≤k≤λal
ϕal

(talϕal,k.demand ∗ talϕal,k.presence) +

∑
1≤k≤λvl

1

(tvl1,k.demand ∗ tvl1,k.presence) +
∑

1≤k≤λvl
ϕvl

(tvlϕvl,k.demand ∗ tvlϕvl,k.presence) +

∑
1≤k≤λan

1

(tan1,k.demand ∗ tan1,k.presence) +
∑

1≤k≤λan
ϕan

(tanϕan,k.demand ∗ tanϕan,k.presence) +

∑
1≤k≤λvn

1

(tvn1,k.demand ∗ tvn1,k.presence) +
∑

1≤k≤λvn
ϕvn

(tvnϕvn,k.demand ∗ tvnϕvn,k.presence) +

∑
1≤k≤λwg

1 ∗noF

(twg1,k.demand ∗ twg1,k.presence) +
∑

1≤k≤λwg
ϕwg
∗noF

(twgϕwg,k
.demand ∗ twgϕwg,k

.presence) +

∑
1≤k≤λiw

1 ∗noW

(tiw1,k.demand ∗ tiw1,k.presence) +
∑

1≤k≤λiw
ϕiw
∗noW

(tiwϕiw,k.demand ∗ tiwϕiw,k.presence) +

∑
1≤k≤λdh

1

(tdh1,k.demand ∗ tdh1,k.presence) +
∑

1≤k≤λdh
ϕdh

(tdhϕdh,k.demand ∗ tdhϕdh,k.presence) +

∑
1≤k≤λwh

1

(twh1,k.demand ∗ twh1,k.presence) +
∑

1≤k≤λwh
ϕwh

(twhϕwh,k.demand ∗ twhϕwh,k.presence) +

Where 0 ≤ d ≤ D such that :

tal1,k.start ≤ d ≤ tal1,k.end And talϕal,k
.start ≤ t ≤talϕal,k

.end Given ωal
1 = HD And ωal

ϕal
= HD,

tvl1,k.start ≤ d ≤ tvl1,k.end And tvlϕvl,k
.start ≤ d ≤tvlϕvl,k

.end Given ωvl
1 = HD And ωvl

ϕvl
= HD,

tan1,k.start ≤ d ≤ tan1,k.end And tanϕan,k.start ≤ d ≤tanϕan,k.end Given ωan
1 = HD And ωan

ϕan
= HD,

tvn1,k.start ≤ d ≤ tvn1,k.end And tvnϕvn,k.start ≤ d ≤tvnϕvn,k.end Given ωvn
1 = HD And ωvn

ϕvn
= HD,

twg
1,k.start ≤ d ≤ twg

1,k.end And twg
ϕwg,k

.start ≤ d ≤twg
ϕwg,k

.end Given ωwg
1 = HD And ωwg

ϕwg
= HD,

tiw1,k.start ≤ d ≤ tiw1,k.end And tiwϕiw,k.start ≤ d ≤tiwϕiw,k.end Given ωiw
1 = HD And ωiw

ϕiw
= HD,

tdh1,k.start ≤ d ≤ tdh1,k.end And tdhϕdh,k
.start ≤ d ≤tdhϕdh,k

.end Given ωdh
1 = HD And ωdh

ϕdh
= HD,

twh
1,k.start ≤ d ≤ twh

1,k.end And twh
ϕwh,k

.start ≤ d ≤twh
ϕwh,k

.end Given ωwh
1 = HD And ωwh

ϕwh
= HD,

(6.13)

For the next four resources (SM,LC2, LC1, PE) the application runs through them

only once in a fixed order: SM− > LC2− > LC1− > PE, starting from the second to

the fifth location. Getting back to Figure 6.1, we can see the traffics assumed to be uni-

direction. Since we measure the traffics from the counters read fro DS-5, it is safe to assume

the applications traffic is uni-direction.

78

SM.Capacity ≥
∑

1≤k≤λal2

(tal2,k.demand ∗ tal2,k.presence) +
∑

1≤k≤λvl2

(tvl2,k.demand ∗ tvl2,k.presence) +

∑
1≤k≤λan2

(tan2,k.demand ∗ tan2,k.presence) +
∑

1≤k≤λvn2

(tvn2,k.demand ∗ tvn2,k.presence) +

∑
1≤k≤λwg2 ∗noF

(twg2,k.demand ∗ t
wg
2,k.presence) +

∑
1≤k≤λiw2 ∗noW

(tiw2,k.demand ∗ tiw2,k.presence) +

∑
1≤k≤λdh2

(tdh2,k.demand ∗ tdh2,k.presence) +
∑

1≤k≤λwh2

(twh2,k.demand ∗ twh2,k.presence)

Where 0 ≤ d ≤ D such that :

tal2,k.start ≤ d ≤ tal2,k.end And ωal2 = SM,

tvl2,k.start ≤ d ≤ tvl2,k.end And ωvl2 = SM,

tan2,k.start ≤ d ≤ tan2,k.end And ωan2 = SM,

tvn2,k.start ≤ d ≤ tvn2,k.end And ωvn2 = SM,

twg2,k.start ≤ d ≤ twg2,k.end And ωwg2 = SM,

tiw2,k.start ≤ d ≤ tiw2,k.end And ωiw2 = SM,

tdh2,k.start ≤ d ≤ tdh2,k.end And ωdh2 = SM,

twh2,k.start ≤ d ≤ twh2,k.end And ωwh2 = SM,

(6.14)

LC2.Capacity ≥
∑

1≤k≤λal3

(tal3,k.demand ∗ tal3,k.presence) +
∑

1≤k≤λvl3

(tvl3,k.demand ∗ tvl3,k.presence) +

∑
1≤k≤λan3

(tan3,k.demand ∗ tan3,k.presence) +
∑

1≤k≤λvn3

(tvn3,k.demand ∗ tvn3,k.presence) +

∑
1≤k≤λwg3 ∗noF

(twg3,k.demand ∗ t
wg
3,k.presence) +

∑
1≤k≤λiw3 ∗noW

(tiw3,k.demand ∗ tiw3,k.presence) +

∑
1≤k≤λdh3

(tdh3,k.demand ∗ tdh3,k.presence) +
∑

1≤k≤λwh3

(twh3,k.demand ∗ twh3,k.presence)

Where 0 ≤ d ≤ D such that :

tal3,k.start ≤ d ≤ tal3,k.end And ωal3 = LC2,

tvl3,k.start ≤ d ≤ tvl3,k.end And ωvl3 = LC2,

tan3,k.start ≤ d ≤ tan3,k.end And ωan3 = LC2,

tvn3,k.start ≤ d ≤ tvn3,k.end And ωvn3 = LC2,

twg3,k.start ≤ d ≤ twg3,k.end And ωwg3 = LC2,

tiw3,k.start ≤ d ≤ tiw3,k.end And ωiw3 = LC2,

tdh3,k.start ≤ d ≤ tdh3,k.end And ωdh3 = LC2,

twh3,k.start ≤ d ≤ twh3,k.end And ωwh3 = LC2,

(6.15)

The same equation applied to LC1 and PE with there corresponding locations.

Duration Constraints Specify the processing duration for different tasks.

79

Constraint 3: The task duration should be bigger than or equal to the time a certain

resource needs to process the application packet according to both resource speed and task

size.

The task size or duration is changeable from one resource to the next. The task duration

depending on the Max resource capacity and the minimum unit time can be used along with

the application properties.

Some of the streaming applications constraints should be satisfied in one second (e.g.

number of displayed frames per second), so we prefer to use the traffic generated per second

by each of the applications and use it to calculate the task duration. The start of each of the

sequential tasks is separated by one second.

It means that the number of tasks per application will be equal to the number of

seconds the application spends in the system. For example, if we have an application runs-

time equal 13 second, we will start with considering 13 subtasks needed in each resource in

this application chain of resource to complete all tasks related to this application and consider

it run through the system.

Then we calculate the subtask duration by dividing the traffic generated on the resource

in one second by the resource speed. And we force separation between tasks with one second.

Unfortunately, this is not possible in all cases as the traffic generated in one second for

some subtasks takes a tiny fraction of time can not be represented in a microsecond unit.

This is why further calculations are needed to get the most suitable number of tasks based

on task duration. We need to find the minimum subtask duration run on the resource. And

at the same time this traffic is not exceeded the resource capacity.

Each of the applications has a total traffic generated per component, a total duration

equal to the total application run-time in the system, the initial task time which is the theo-

retical proposed task time based on the nature of the application and, total traffic duration

which is the actual time the application needed the resource to finish its tasks. This is

denoted by Ttraffic, Duration, Tduration and, TTDuration respectively. For example,

making application Al running on the PE resource:

Al.TTDurationPE = dAl.T trafficPE
PE.speed

e

λal
ωal4 =PE

= dAl.TTDurationPE
Al.TdurationPE

e

Note that we choose the task duration as the minimum possible time value representable

in the system. And at the same time, it does not violate the total application traffic duration

80

and bigger than one time unit.

tal
ωal4 =PE,j

.presence = True⇒ tal
ωal4 =PE,j

.duration ≥ Al.TdurationPE, 1 ≤ j ≤ λal
ωal4 =PE

The same constraint is applied to every component in each of the applications chain of

resources.

Scheduling start and end time Constraints Specify the processing start and end time

for different tasks.

Constraint 4: tasks must end processing before the simulation deadline D. Here we

need only to restrict the end of the last resource since packets flow in the system sequentially.

talϕal,j.end ≤ D, 1 ≤ j ≤ λalϕal

tvlϕvl,j.end ≤ D, 1 ≤ j ≤ λvlϕvl

tanϕan,j.end ≤ D, 1 ≤ j ≤ λanϕan

tvnϕvn,j.end ≤ D, 1 ≤ j ≤ λvnϕvn

twgϕwg ,j.end ≤ D, 1 ≤ j ≤ λwgϕwg ∗ noF

tiwϕiw,j.end ≤ D, 1 ≤ j ≤ λiwϕiw ∗ noW

tdhϕdh,j.end ≤ D, 1 ≤ j ≤ λdhϕdh

twhϕwh,j.end ≤ D, 1 ≤ j ≤ λwhϕwh

(6.16)

Constraint 5: Some applications restrict the maximum delay allowed by the system

buffer or any other reason before it actually starts running. Each of the applications has a pa-

rameter to define the maximum start delay allowed. This parameter denoted by startDelay.

This is restricted only to the first task run on the processor core PE per application.

81

talωal4 =PE,1.start ≤ Al.startDelay

tvlωvl4 =PE,1.start ≤ V l.startDelay

tanωan4 =PE,1.start ≤ An.startDelay

tvnωvn4 =PE,1.start ≤ V n.startDelay

twg
ωwg4 =PE,1

.start ≤ Wg.startDelay

tiwωiw4 =PE,1.start ≤ Iw.startDelay

tdhωdh4 =PE,1.start ≤ Dh.startDelay

twhωwh4 =PE,1.start ≤ Wh.startDelay

(6.17)

Note that here the noF and noW did not affect this constraint as the running of all

these applications is sequential. We need only to restrict the first task of the first website or

file.

Constraint 6: All tasks are processed in sequential order on the same component.

tali,j.start ≤ tali,j+1.start, 1 ≤ i ≤ ϕal and 1 ≤ j ≤ λali − 1

tavi,j.start ≤ tavi,j+1.start, 1 ≤ i ≤ ϕav and 1 ≤ j ≤ λavi − 1

tani,j .start ≤ tani,j+1.start, 1 ≤ i ≤ ϕan and 1 ≤ j ≤ λani − 1

tvni,j .start ≤ tvni,j+1.start, 1 ≤ i ≤ ϕvn and 1 ≤ j ≤ λvni − 1

twgi,j .start ≤ twgi,j+1.start, 1 ≤ i ≤ ϕwg and 1 ≤ j ≤ (λwgi ∗ noF)− 1

tiwi,j .start ≤ tiwi,j+1.start, 1 ≤ i ≤ ϕiw and 1 ≤ j ≤ (λiwi ∗ noW)− 1

tdhi,j .start ≤ tdhi,j+1.start, 1 ≤ i ≤ ϕdh and 1 ≤ j ≤ λdhi − 1

twhi,j .start ≤ twhi,j+1.start, 1 ≤ i ≤ ϕwh and 1 ≤ j ≤ λwhi − 1

(6.18)

Constraint 7: One task cannot start on the next resource on its application resource

chain before it spends the time required processing at least one packet on its current re-

source. Also one task must start on its next resource in the application resource chain once

the time required to process tasks on the current resource reaches the resource’s maximum

82

capacity. To insure these two constraints each of the resources is assigned two parameters,

minProcessT ime and maxProcessT ime to represent the time required to process traffic to

fill one location into the resource and time require to completely fill this resource.

Because the number of tasks differs from one resource to the next into the application

chain resource, there will be three different cases:

1. Case one (the number of tasks in two sequence chains is the same):

For example: reviewing the model specifications you can notice that the PE unit and

the L1-Cache will probably have the same number of tasks as they have almost the

same speed and traffic load. The only difference is in the size of each of the resources.

talLC1,j
.start− talPE,j.start ≥ LC1.minProcessT ime,

Where λalωal3 =LC1
= λalωal4 =PE and 1 ≤ j ≤ λalωal3 =LC1

tvlLC1,j
.start− tvlPE,j.start ≥ LC1.minProcessT ime,

Where λvlωvl3 =LC1
= λvlωvl4 =PE and 1 ≤ j ≤ λvlωvl3 =LC1

tanLC1,j
.start− tanPE,j.start ≥ LC1.minProcessT ime,

Where λanωan3 =LC1
= λanωan4 =PE and 1 ≤ j ≤ λanωan3 =LC1

tvnLC1,j
.start− tvnPE,j.start ≥ LC1.minProcessT ime,

Where λvnωvn3 =LC1
= λvnωvn4 =PE and 1 ≤ j ≤ λvnωvn3 =LC1

twgLC1,j
.start− twgPE,j.start ≥ LC1.minProcessT ime,

Where λwg
ωwg3 =LC1

= λwg
ωwg4 =PE

and 1 ≤ j ≤ λwg
ωwg3 =LC1

∗ noF

tiwLC1,j
.start− tiwPE,j.start ≥ LC1.minProcessT ime,

Where λiwωiw3 =LC1
= λiwωiw4 =PE and 1 ≤ j ≤ λiwωiw3 =LC1

∗ noW

tdhLC1,j
.start− tdhPE,j.start ≥ LC1.minProcessT ime,

Where λdhωdh3 =LC1
= λdhωdh4 =PE and 1 ≤ j ≤ λdhωdh3 =LC1

twhLC1,j
.start− twhPE,j.start ≥ LC1.minProcessT ime,

Where λwhωwh3 =LC1
= λwhωwh4 =PE and 1 ≤ j ≤ λwhωwh3 =LC1

(6.19)

83

talLC1,j
.start− talPE,j.start ≤ LC1.maxProcessT ime,

Where λalωal3 =LC1
= λalωal4 =PE and 1 ≤ j ≤ λalωal3 =LC1

tvlLC1,j
.start− tvlPE,j.start ≤ LC1.maxProcessT ime,

Where λvlωvl3 =LC1
= λvlωvl4 =PE and 1 ≤ j ≤ λvlωvl3 =LC1

tanLC1,j
.start− tanPE,j.start ≤ LC1.maxProcessT ime,

Where λanωan3 =LC1
= λanωan4 =PE and 1 ≤ j ≤ λanωan3 =LC1

tvnLC1,j
.start− tvnPE,j.start ≤ LC1.maxProcessT ime,

Where λvnωvn3 =LC1
= λvnωvn4 =PE and 1 ≤ j ≤ λvnωvn3 =LC1

twgLC1,j
.start− twgPE,j.start ≤ LC1.maxProcessT ime,

Where λwg
ωwg3 =LC1

= λwg
ωwg4 =PE

and 1 ≤ j ≤ λwg
ωwg3 =LC1

∗ noF

tiwLC1,j
.start− tiwPE,j.start ≤ LC1.maxProcessT ime,

Where λiwωiw3 =LC1
= λiwωiw4 =PE and 1 ≤ j ≤ λiwωiw3 =LC1

∗ noW

tdhLC1,j
.start− tdhPE,j.start ≤ LC1.maxProcessT ime,

Where λdhωdh3 =LC1
= λdhωdh4 =PE and 1 ≤ j ≤ λdhωdh3 =LC1

twhLC1,j
.start− twhPE,j.start ≤ LC1.maxProcessT ime,

Where λwhωwh3 =LC1
= λwhωwh4 =PE and 1 ≤ j ≤ λwhωwh3 =LC1

(6.20)

2. Case two (the number of tasks in one resource is bigger than the next in

two sequence chains): For example: Assume the number of tasks needs to run on

HD is bigger than the tasks run on SM then we need to ensure that the first task of

the sequence running on the HD and the corresponding task run on SM respects the

same minimum and maximum process time gap role.

talSM,j.start− tal
HD,1+(

λal
ωal1 =HD

λal
ωal2 =SM

∗(j−1))

.start ≥ HD.minProcessT ime,

Where λalωal1 =HDλ
al
ωal2 =SM and λalωal1 =HD mod λalωal2 =SM = 0 and 1 ≤ j ≤ λalωal2 =SM

(6.21)

84

talSM,j.start− tal
HD,1+(

λal
ωal1 =HD

λal
ωal2 =SM

∗(j−1))

.start ≤ HD.maxProcessT ime,

Where λalωal1 =HDλ
al
ωal2 =SM and λalωal1 =HD mod λalωal2 =SM = 0 and 1 ≤ j ≤ λalωal2 =SM

(6.22)

The previous constraints applied to all applications except Wg and Iw as we should

consider the amount of time the applications rerun into the system according to the

number of files noF downloaded and the number of webs noW browsed.

twg
SM,j+((i−1)∗λwg

ω
wg
2 =SM

)
.start− tal

HD,1+(

λ
wg

ω
wg
1 =HD

λ
wg

ωal2 =SM

∗(j−1)+((i−1)∗λwg
ω
wg
1 =HD

))

.start ≥ HD.minProcessT ime,

Where λwg
ωwg1 =HD

> λwg
ωwg2 =SM

and λwg
ωwg1 =HD

mod λwg
ωwg2 =SM

= 0 and

1 ≤ i ≤ noF and 1 ≤ j ≤ λwg
ωwg2 =SM

(6.23)

twg
SM,j+((i−1)∗λwg

ω
wg
2 =SM

)
.start− tal

HD,1+(

λ
wg

ω
wg
1 =HD

λ
wg

ωal2 =SM

∗(j−1)+((i−1)∗λwg
ω
wg
1 =HD

))

.start ≤ HD.maxProcessT ime,

Where λwg
ωwg1 =HD

> λwg
ωwg2 =SM

and λwg
ωwg1 =HD

mod λwg
ωwg2 =SM

= 0 and

1 ≤ i ≤ noF and 1 ≤ j ≤ λwg
ωwg2 =SM

(6.24)

3. Case three (the number of tasks in one resource is smaller than the next in

two sequence chains):

For example: Assume the number of tasks needing to run on LC2 is smaller than the

tasks running on LC1 then we need to ensure that the first task on the sequence running

on the LC1 and the corresponding task running on LC2 respects the same minimum

and maximum process time gap role.

85

tal

LC1,(j−1)∗
λal
ωal4 =LC1

λal
ωal3 =LC2

.start− talLC2,j
.start ≥ LC2.minProcessT ime,

Where λalωal4 =LC1
> λalωal3 =LC2

and λalωal4 =LC1
mod λalωal3 =LC2

= 0

and 1 ≤ j ≤ λalωal3 =LC2

(6.25)

tal

LC1,(j−1)∗
λal
ωal4 =LC1

λal
ωal3 =LC2

.start− talLC2,j
.start ≤ LC2.maxProcessT ime,

Where λalωal4 =LC1
> λalωal3 =LC2

and λalωal4 =LC1
mod λalωal3 =LC2

= 0

and 1 ≤ j ≤ λalωal3 =LC2

(6.26)

The previous constraints applied to all applications except Wg and Iw as we should

consider the amount of time the applications rerun into the system according to the

number of files noF downloaded and the number of webs noW browsed.

twg

LC1,(j−1)∗
λ
wg

ω
wg
4 =LC1

λ
wg

ω
wg
3 =LC2

+((i−1)∗λwg
ω
wg
4 =LC1

)

.start− twg
LC2,j+(i−1)∗λwg

ω
wg
3 =LC2

.start ≥ LC2.minProcessT ime,

Where λwg
ωwg4 =LC1

> λwg
ωwg3 =LC2

and λwg
ωwg4 =LC1

mod λwg
ωwg3 =LC2

= 0 and 1 ≤ i ≤ noF

and 1 ≤ j ≤ λwg
ωwg3 =LC2

(6.27)

twg

LC1,(j−1)∗
λ
wg

ω
wg
4 =LC1

λ
wg

ω
wg
3 =LC2

+((i−1)∗λwg
ω
wg
4 =LC1

)

.start− twg
LC2,j+(i−1)∗λwg

ω
wg
3 =LC2

.start ≤ LC2.maxProcessT ime,

Where λwg
ωwg4 =LC1

> λwg
ωwg3 =LC2

and λwg
ωwg4 =LC1

mod λwg
ωwg3 =LC2

= 0 and 1 ≤ i ≤ noF

and 1 ≤ j ≤ λwg
ωwg3 =LC2

(6.28)

Dependencies Constraints : Some of the tasks on one resource depend on the existence

of other tasks on other resources on the application resource chain.

86

Constraint 8: Make sure that the task remains enough time in one resource until it

is processed on the next one.

Because the number of tasks differs from one resource to the next in The application

chain resource, this constraint will have three different cases:

1. Case one (the number of tasks in two sequence chains is the same):

talLC1,j
.size ≥ Al.TdurationPE,

Where λalωal3 =LC1
= λalωal4 =PE and 1 ≤ j ≤ λalωal3 =LC1

(6.29)

twg
LC1,j+((i−1)∗λwg

ω
wg
4 =LC1

)
.size ≥ Wg.TdurationPE,

Where λwg
ωwg3 =LC1

= λwg
ωwg4 =PE

and 1 ≤ j ≤ λwg
ωwg3 =LC1

and 1 ≤ i ≤ noF

(6.30)

2. Case two (the number of tasks in one resource is bigger than the next in

two sequence chains):

tal

HD,

λal
ωal1 =HD

λal
ωal2 =SM

∗j

.end− tal
HD,1+(

λal
ωal1 =HD

λal
ωal2 =SM

∗(j−1))

.start ≥ Al.TdurationSM ,

Where λalωal1 =HD > λalωal2 =SM and λalωal1 =HD mod λalωal2 =SM = 0

and 1 ≤ j ≤ λalωal1 =HD

(6.31)

87

twg

HD,(

λ
wg

ω
wg
1 =HD

λ
wg

ω
wg
2 =SM

∗j)+((i−1)∗λwg
ω
wg
1 =HD

)

.end− twg
HD,(1+(

λ
wg

ω
wg
1 =HD

λ
wg

ω
wg
2 =SM

∗(j−1)))+((i−1)∗λwg
ω
wg
1 =HD

))

.start

≥ Al.TdurationSM ,

Where λwg
ωwg1 =HD

> λwg
ωwg2 =SM

and λalωwg1 =HD mod λwg
ωwg2 =SM

= 0

and 1 ≤ j ≤ λwg
ωwg1 =HD

(6.32)

3. Case three (the number of tasks in one resource is smaller than the next

in two sequence chains):

tal

HD,

λal
ωal2 =SM

λal
ωal1 =HD

∗j

.end− tal
HD,1+(

λal
ωal1 =HD

λal
ωal2 =SM

∗(j−1))

.start ≥ Al.TdurationSM ,

Where λalωal1 =HD < λalωal2 =SM and λalωal2 =SM mod λalωal1 =HD = 0

and 1 ≤ j ≤ λalωal1 =HD

(6.33)

twg

HD,(

λ
wg

ω
wg
2 =SM

λ
wg

ω
wg
1 =HD

∗j)+((i−1)∗λwg
ω
wg
1 =HD

)

.end− twg
HD,(1+(

λ
wg

ω
wg
1 =HD

λ
wg

ω
wg
2 =SM

∗(j−1)))+((i−1)∗λwg
ω
wg
1 =HD

)

.start

≥ Al.TdurationSM ,

Where λwg
ωwg1 =HD

< λwg
ωwg2 =SM

and λwg
ωwg2 =SM

mod λwg
ωwg1 =HD

= 0

and 1 ≤ j ≤ λwg
ωwg1 =HD

(6.34)

Per Application Constraints : Some constraints are application-specific.

Constraint 9: In case we run the audio/video stream we must make sure Audio/video

tasks synchronize on the output resource.

88

talAuP,j.start = tvlGCr,j.start

Where λalωal6 =AuP = λvlωal6 =GCr and 1 ≤ j ≤ λalωal6 =AuP

(6.35)

Constraint 10: The number of audio and video output tasks is the same as the

number of seconds the application actually runs. And their starts are separated by exactly

one second.

talAuP,j+1.start− talAuP,j.start = 1Second

Where 1 ≤ j ≤ λalωal6 =AuP − 1

(6.36)

Constraint 11: Statistically, users lose interest in the website they are browsing after

the first five seconds if it does not have the information they are looking for. As a constraint

we restricted the start of the first task in the processor core for each of the websites running

by exactly five seconds.

tiwPE,j+1.start− tiwPE,j.start = 5Seconds

Where 1 ≤ j ≤ (λalωal5 =PE ∗ noW)− 1 and j mod λalωal5 =PE = 1 and λalωal5 =PE 6= 1

(6.37)

tiwPE,j+1.start− tiwPE,j.start = 5Seconds

Where 1 ≤ j ≤ noW − 1 and λwg
ωwg5 =PE

= 1

(6.38)

Constraint 12: The time between downloading different files through the Wg appli-

cation is fixed and denoted by Γwg.

89

twgPE,j+1.start− t
wg
PE,j.start = Γwg

Where 1 ≤ j ≤ (λwg
ωwg5 =PE

∗ nof)− 1 and j mod λwg
ωwg5 =PE

= 1 and λwg
ωwg5 =PE

6= 1

(6.39)

twgPE,j+1.start− t
iw
wg,j.start = Γwg

Where 1 ≤ j ≤ noF − 1 and λwg
ωwg5 =PE

= 1

(6.40)

Constraint 13: As we can see in Figure 6.3 the Dh application is divided into 10

separate tasks. Each of the tasks runs in the processor for 11 seconds then writes to the disk

for two seconds.

tdhωdh6 =HD,j+1.start− t
dh
ωdh6 =HD,j.start = 13Second

Where 1 ≤ j ≤ λdhωdh6 =HD

(6.41)

tdhωdh6 =HD,j.start− t
dh

PE,(j−1)∗(
λdh
ωdh5 =PE

λdh
ωdh6 =HD

+1)

.start = 11Seconds

Where 1 ≤ j ≤ λdhωdh6 =HD and

(
λdh
ωdh5 =PE

λdh
ωdh6 =HD

) ∗ j ≤ λdhωdh5 =PE and λdhωdh5 =PE mod λdhωdh6 =HD = 0

(6.42)

Constraint 14: As we can see in Figure 6.3 the Dh application first loads the whole

code to memory then starts running. The same constraints apply to the Wh application

(Figure 6.4).

90

tdhHD,λdh
ωdh1 =HD

.start+Dh.TdurationHD ≥ tdhSM,1.start

(6.43)

twhHD,λwh
ωwh1 =HD

.start+Wh.TdurationHD ≥ twhSM,1.start

(6.44)

Constraint 15: As we can see in Figure 6.3 the Wh application is divided into 10

separate tasks. Each of the tasks runs in the processor for 14 seconds then writes to the disk

for two seconds.

twhωwh6 =HD,j+1.start− t
wh
ωwh6 =HD,j.start = 16Second

Where 1 ≤ j ≤ λwhωwh6 =HD

(6.45)

twhωwh6 =HD,j.start− t
wh

PE,(j−1)∗(
λwh
ωwh5 =PE

λwh
ωwh6 =HD

+1)

.start = 14Seconds

Where 1 ≤ j ≤ λwhωwh6 =HD and

(
λwh
ωwh5 =PE

λwh
ωwh6 =HD

) ∗ j ≤ λwhωwh5 =PE and λwhωwh5 =PE mod λwhωwh6 =HD = 0

(6.46)

6.2 Experimental Results

Our aim from this experiment is to validate our theory by identifying different test

cases. Run these test cases through the actual system. Then compare these results with the

results we get when we run same cases through our model.

91

F
ig

u
re

6.
3

S
tr

ea
m

li
n
e

D
s-

5
D

h
ry

st
on

e
ap

p
li
ca

ti
on

.

92

F
ig

u
re

6.
4

S
tr

ea
m

li
n
e

D
S
-5

W
h
es

tS
to

n
e

ap
p
li
ca

ti
on

.

93

All experiments were run on an Intel Core i7 computer with 8 GB RAM. All data was

captured using ARM DS-5 stream line v5.2. And the model was run on IBM ILOG CPLEX

Optimization Studio v12.6.1.0.

We defined in Table 6.5 the different parameters considered with each application. Be-

cause BeagleBone black processor core has only four counters to be used and we need five,

we had to repeat each of the experiments 20 times while replacing the counters used on the

DS-5 stream line. Then we used the average in our mode.

The design space is explored by manually and sequentially applying these parameters.

Because in the synchronous dataflow (SDF) MoC, the static data rate allows for the con-

struction of periodic schedules with bounded memory size at compile time [43], the simulation

deadline defined was considered sufficient to ensure the validity of an infinite behavior of the

system.

We tested our model with different combinations of 16 different application configura-

tions mentioned earlier. The results came to confirm our theory, and the model proposed

earlier.

Results are shown in Table 6.3. We used three different terms to represent the results

for each case: “success” terms under (Run column) indicates that the application run success-

fully in the system, “Fail” on the other hand, indicates that the system will not successfully

run the application. (Model time) column indicates the time in seconds taken by the CSP

model to produce a successful schedule for the tasks. “—” indicates the solver could neither

find a feasible schedule nor prove that there is none for this bandwidth within a 10-minute

time limit. The (System time) is the time the application actually took to run on the system.

Note that we did not consider the time needed by the operating system to start or to run the

application which should be between two and 10 minutes. The (Results) column indicates if

the CSP model results match the system running results.

Results in Table 6.3 show a comparison between the time taken by the CSP model to

identify a decision to the actual running time into the system. The x-axis shows the different

cases, and the Y-axis shows the time in seconds. We can see that the CSP model typically

94

Table 6.3 Single case running test results. * indicates further explanation in the results
discussion.

Case Run Model time System time Results

a (c1) Success 6.7s 77s Match

a (c3) Success 3.92s 77s Match

b (c2) Success 3.73s 120s Match

b (c4) Fail 1.50s 120s Match

c Success 3.47s 77s Match

d Success 3.51s 172s Match

e (c1) Success 3.65s 77s Match

e (c3) Success 3.29s 77s Match

f (c2) Success 3.50s 120 s Match

f (c4) Fail 1.42s 120 s Match

g (c1) Success 4.21s 77 s Match

g (c3) Success 4.10s 77 s Match

h (c2) Success 3.55s 120 s Match

h (c4) Fail 2.55s 120 s Match

i Success 3.87s 77 s Match

j Success 3.34s 172 s Match

k (c1) Success 3.24s 77 s Match

k (c3) Success 3.46s 77 s Match

l (c2) Success 2.86s 120 s Match

l (c4) Fail 2.46s 120 s Match

m Success∗ 1.96s 1s * noF Match∗

n Fail∗ 1.96s 5s * noW + 15s Not−Match∗

o Success 2.32s 130 s Match

p Success 3.11s 160 s Match

95

takes a few seconds whereas the system takes a few minutes to get the decision. We only

consider the application running time in the system.

All the test cases match the actual run except for cases m and n. In case m, where we

represent downloading files, the actual system fails to respect the download deadline after the

ninth file. On the other hand, the CSP model detects this failure early on the seventh file.

Although this is not a match it is still compatible since the CSP model is more restricted. It

did not wrongly attribute success.

In the case m the model (Where Success noted with a ∗ in Table 6.3) as explained ear-

lier in the previous paragraph, the system was able to to download the files up to nine files

each in one second with separation one second between the start of two sequential downloads.

Each is 2MB and the network download speed is 25 Mbit/Second. With this download speed

the system should be able to download more files within 9 seconds. But the system failed

after the ninth file. It is interesting because the failure occurs with the file download was not

expected but it happens. This means it is due to some system limitation not network speed

limitation which is the more expected reason. The CSP model was able to detect the same

failure but earlier (only at the seventh file).

The false success occurring in case n can be explained. Consider the two figures 6.5 and

6.6 taken from streamline analysis. The first page shows the results of browsing web pages

using ice weasel separately on a separate web browseres or pages by closing one browser

before opening the next. Following this way the test would work fine and be consistent with

the CSP model. But this is not the case since usually we open a new page in a new tab in

the same browser and maybe not close the previous one. With ice weasel even if you closed

the old tab the system halted after the eleventh tab and the CPU got full contention (Figure

6.6). This irregular behavior could not be represented in the CSP model. This is because

even when you close the current tab the application will be still loaded in the memory causing

activities not being completely closed.

96

Figure 6.5 Streamline for ice weasel applications browsing multiple web pages in a separate
window.

Figure 6.6 Streamline for ice weasel application browsing multiple web pages in a separate
tab.

97

Table 6.4 different case combinations running test results. * indicates further explanation in
the results discussion.

Case Wg Dh Wh

Run Model

time

System

time

Results Run Model

time

System

time

Results Run Model

time

System

time

Results

a (c1) S 2.7s 77s Match∗ S 2.21s 130s Match S 1.58s 160s Match

a (c3) S 3.2s~ 77s Match∗ S 2.14s 130s Match S 2.18s 160s Match

b (c2) S 3.51s 120s Match∗ S 2.85s 130s Match S 2.98s 160s Match

c S 2.71s 77s Match∗ S 2.21s 130s Match S 2.32s 160s Match

d S 3.62s 172s Match∗ S 2.21s 172s Match S 2.89s 172s Match

e (c1) S 1.68s 77s Match∗ S 2.21s 130s Match S 1.58s 160s Match

e (c3) S 2.43s~ 77s Match∗ S 3.21s 130s Match S 4.11s 160s Match

f (c2) S 2.54s 120s Match∗ S 2.76s 130s Match S 3.16s 160s Match

g (c1) S 4.21s 77s Match∗ S 2.41s 130s Match S 3.58s 160s Match

g (c3) S 2.25s~ 77s Match∗ S 3.71s 130s Match S 3.68s 160s Match

h (c2) S 3.15s 120s Match∗ S 5.07s 130s Match S 2.98s 160s Match

i S 3.77s 77s Match∗ S 3.21s 130s Match S 4.10s 160s Match

j S 2.57s 172s Match∗ S 2.26s 130s Match S 3.10s 160s Match

k (c1) S 2.47s 77s Match∗ S 4.12s 130s Match S 3.87s 160s Match

k (c3) S 3.15s~ 77s Match∗ S 3.21s 130s Match S 2.66s 160s Match

l (c2) S 2.86s 120s Match∗ S 2.71s 130s Match S 2.92s 160s Match

98

Case Application name Application Parameters

a Al + V l Al. Duration = Vl. Duration = 77 s, Al. Tduration =

Vl. Tduration = 1 s, Al. startDelay = Vl.startDelay= 5

s, Activity type = entertainment, Audio output = 44100

Hz 2 ch floatle (4 bytes per sample)

c1: Video resolution = 314 *240 24bpp 30 fps,

c2: Video resolution = 426 *240 24bpp 30 fps,

c3: Video resolution = 470 *360 24bpp 30 fps,

c4: Video resolution = 1280 *720 24bpp 30 fps

b Al + V l Al. Duration = Vl. Duration = 120 s, Al. Tduration =

Vl. Tduration = 1 s, Al. startDelay = Vl.startDelay= 5

s, Activity type = news, Audio output = 44100 Hz 2 ch

floatle (4 bytes per sample)

c1: Video resolution = 314 *240 24bpp 30 fps,

c2: Video resolution = 426 *240 24bpp 30 fps,

c3: Video resolution = 470 *360 24bpp 30 fps,

c4: Video resolution = 1280 *720 24bpp 30 fps,

c Al Al. Duration = 77 s, Al. Tduration = 1 s, startDelay =

5 s, Audio output = 44100 Hz 2 ch floatle (4 bytes per

sample)

d Al Al. Duration = 172 s, Al. Tduration = 1 s, startDelay

= 5 s, Audio output = 44100 Hz 2 ch floatle (4 bytes per

sample)

e V l Vl. Duration = 77 s, Vl. Tduration = 1 s, Vl.startDelay=

5 s, Activity type = entertainment

c1: Video resolution = 314 *240 24bpp 30 fps,

c2: Video resolution = 426 *240 24bpp 30 fps,

c3: Video resolution = 470 *360 24bpp 30 fps,

c4: Video resolution = 1280 *720 24bpp 30 fps

f V l Vl. Duration = 120 s, Vl. Tduration = 1 s,

Vl.startDelay= 5 s, Activity type = news

c1: Video resolution = 314 *240 24bpp 30 fps,

Continued on next page

99

Table 6.5 – continued from previous page

Case Application name Application Parameters

c2: Video resolution = 426 *240 24bpp 30 fps,

c3: Video resolution = 470 *360 24bpp 30 fps,

c4: Video resolution = 1280 *720 24bpp 30 fps

g An + V n An.Duration = Vn. Duration = 77 s, An.Tduration =

Vn. Tduration = 1 s, An. startDelay = Vn.startDelay=

10 s, Activity type = entertainment, Audio output =

44100 Hz 2 ch floatle (4 bytes per sample), Download

speed = 25 Mbps,

c1: Video resolution = 314 *240 24bpp 30 fps,

c2: Video resolution = 426 *240 24bpp 30 fps,

c3: Video resolution = 470 *360 24bpp 30 fps,

c4: Video resolution = 1280 *720 24bpp 30 fps

h An + V n An.Duration = Vn. Duration = 120 s, An.Tduration =

Vn. Tduration = 1 s, An. startDelay = Vn.startDelay=

10 s, Activity type = news, Audio output = 44100 Hz

2 ch floatle (4 bytes per sample), Download speed = 25

Mbps,

c1: Video resolution = 314 *240 24bpp 30 fps,

c2: Video resolution = 426 *240 24bpp 30 fps,

c3: Video resolution = 470 *360 24bpp 30 fps,

c4: Video resolution = 1280 *720 24bpp 30 fps

i An An. Duration = 77 s, An.Tduration = 1 s, An.startDelay

= 5 s, Audio output = 44100 Hz 2 ch floatle (4 bytes per

sample), Download speed = 25 Mbps

j An Al. Duration = 172 s, Al. Tduration = 1 s, startDelay

= 5 s, Audio output = 44100 Hz 2 ch floatle (4 bytes per

sample), Download speed = 25 Mbps

Continued on next page

100

Table 6.5 – continued from previous page

Case Application name Application Parameters

k V n Vn. Duration = 77 s, Vn. Tduration = 1 s,

Vn.startDelay= 10 s, Activity type = entertainment,

Download speed = 25 Mbps,

c1: Video resolution = 314 *240 24bpp 30 fps,

c2: Video resolution = 426 *240 24bpp 30 fps,

c3: Video resolution = 470 *360 24bpp 30 fps,

c4: Video resolution = 1280 *720 24bpp 30 fps

l V n Vn. Duration = 120 s, Vn. Tduration = 1

s,Vn.startDelay= 10 s, Activity type = news, Download

speed = 25 Mbps,

c1: Video resolution = 314 *240 24bpp 30 fps,

c2: Video resolution = 426 *240 24bpp 30 fps,

c3: Video resolution = 470 *360 24bpp 30 fps,

c4: Video resolution = 1280 *720 24bpp 30 fps

m Wg Wg. Duration = 1 s, Wg. Tduration = 1 s,

Wg.startDelay= 1 s, Gap between files = 1, Download

speed = 25 Mbps, 1 ≤ noF ≤ 20

n Iw Iw. Duration = 40 s, Iw. Tduration = 1 s,

Iw.startDelay= 5 s, Gap between webs = 5, Download

speed = 25 Mbps, 1 ≤ noW ≤ 20

o Dh Dh. Duration = 130 s, Dh. Tduration = 13 s, Dh. start-

Delay = 1 s

p Wh Wh. Duration = 160 s, Wh. Tduration = 16 s, Wg.

startDelay = 1 s

Table 6.5: Summary of the Different Parameters Considered

for Each Application

The next step in our experiment is to test different application combinations. As the

most load on the system comes from stream applications so we tested running these appli-

cations when combined with Wg, Iw, Dh, and Wh. Table 6.4 shows the results of different

combinations. Note that although we used the same notations from Table 6.3, we replaced

101

“Success” with a “S” symbol to save space.

We did not go through with combining with the Iw application because of its original

results when we tested it running stand-alone. We did not expect accurate results for such

a combination either. Furthermore we excluded cases c(c4), f(c4), h(c4), and l(c4). Theses

four cases were failed running as stand-alone applications. So there is no need to test their

combinations as it is expected to fail.

A simple direct result came from combining test cases with Dh and, Wh applications.

As we can see, both applications had no effect on the system and considered low priority on

the processor. It created a Match/Success in all cases. At the same time, we can see the big

gap in time detection between CSP model and actual run.

Figure 6.7 Two different streamline analysis for MPlayer applications running local video
with low decompression rate for newsletter program (Case b(c2)).

However the Wg application has a different result. We can combine the explanation of

102

Figure 6.8 Two different streamline analysis for MPlayer application running local video with
high decompression rate for football game (Case a(c1)).

some of the results. First we would like to comment on the ∗ beside the Match in Table 6.4.

It means that we got a match in the results between the CSP model and the actual system

running but with a different condition associated with the application:

– Cases a(c3), e(c3), g(c3), andk(c3): system failure was detected in the CSP model

when noF for the Wg application reached six files. However the actual failure occurs

at the eighth file.

– All other cases: system failure detected in the CSP model when noF for the Wg

application reached seven files. However the actual failure occurs at the eighth file.

In both cases the CSP model was more restricted than the actual run (it detected fail-

ure with Wg using a less noF number then the actual run. This means less restrictions and

resources used in the system) which means that the CSP model did not detect a wrong

success but instead a wrong failure. This is less critical.

Secondly, we will comment on ~ beside the Model time column in Table 6.4. Although

having a time in this field means the solver successfully found a solution, this was not the

103

Figure 6.9 Two different streamline analysis for MPlayer application running live stream
video with high decompression rate for football game (Case g(c1)).

104

case all the time. For the four cases a(c3), e(c3), g(c3), andk(c3) as previously mentioned we

test the combination with Wg with different numbers of files noF . Although we detected

failure on the sixth file and success on one, two, and three files, still the fourth and fifth file

cases were infeasible. The CSP model still could not find a solution for these two cases.

Looking at the bigger picture for the complete results combining with Wg applications,

the result shows much better timing with not much difference in the results.

By analyzing our results, some cases give more interesting information about the system

running:

1. Cases a(c3), e(c3), g(c3), andk(c3), local and live stream video running with high de-

compression rate and big frame size, show the system would be affected by other ap-

plications running Wg and reduce the efficiency of this application to keep its initial

performance. We can note that there was not much different in performance between

live stream and local video. This is supported by the analysis we get from DS-5 stream-

line. Comparing performance is shown in Figures 6.8 and 6.9. The two figures show

the real-time analysis of local and live stream videos running in the system. The CPU

activities for both applications were almost the same (Local 45%:48%, Live 51%:52%).

2. Cases a(c1), e(c1), g(c1), and k(c1), local and live stream video running with high

decompression rate and smaller frame size, shows no effect on the system even when

combined with Wg applications. Combining this with the first note, we can confirm

that a not so much change in the frame size could affect the system performance. In

this case the frame size reduced from (470 * 360) to (314 * 240).

3. Cases c, d, i, and j, local and live stream audio, shows no effect on the system even when

combined with Wg applications. Combining this with the first notes, we can confirm

that the video decompression rate has a greater effect on the system performance than

audio.

4. Cases b(c2), f(c2), h(c2), and l(c2), local and live stream video running with low decom-

pression rate and bigger frame size, shows no effect on the system even when combined

with Wg applications. Although there is a big change in the frame size between first

case and this one, still the system did not fail. This is due to the fact that this video

has a lower decompression rate. This is supported by the analysis we get from DS-5

streamline. Comparing performance is shown in Figures 6.8 and 6.7. The two figures

show the real-time analysis of local stream videos running in the system. The first

for a video with high decompression rate and the other for a low decompression rate.

105

Although the second case shows a bigger frame size display rate ([314 * 240] to [426 *

240]), still it shows much less CPU activity (High 45%-48%, low 21%-22%).

According to the previous results, the CSP model results were consistent with the real

system results. It generated decisions in much less time and respected both system and

application rules.

106

CHAPTER 7 CONCLUSION

7.1 Work Summary

This thesis has been concerned with system-level verification using constraint program-

ming. Our focus was to identify the critical system parameters (e.g. buffer size) that can

lead to unsatisfied application constraints. We also propose design optimization (e.g. buffer

minimization) to increase the system efficiency and reduce its cost. The research emphasizes

test-case generation with a particular focus on the interaction between system components,

concurrency and resource competition, and the role of running applications in the verification

process.

We studied the possibility of creating a system-level scenario that takes into account

the system level work-flow with respect to system resources and performance requirements,

namely task deadlines, response time, CPU and memory usage, and buffer size. Specifically,

we investigated whether the behaviour of different interactions among system components

executing different tasks can be effectively re-expressed as a constraint-based scheduling prob-

lem over the space of possible inputs to the system, finding out whether we can address similar

cases of failure using this model. Solving this problem means finding a better way to inves-

tigate early on the system under verification and potentially address a certain case of failure

in a very early design stage in a much more reasonable time.

The approach was tested with various applications, different input streams and different

architectures. Results show that the methodology is able to identify system failure conditions

in a fraction of the time needed by simulation-based verification. It gives the Test Engineer

the ability to explore the design space and deduce the best policy, and also helps choose a

proper a recommended architecture for the applications running. Our work culminated in

modelling an existing architecture on the market running selected applications and comparing

our model results with the results coming from running the actual applications on the system.

We do not claim that our work can handle any situation but we show a valid approach

with very acceptable results. The model we proposed can be easily changed to test different

system architectures running a various applications.

107

7.2 Future Work

This thesis has a number of issues that should be addressed in our future work:

– Introduce a work specific search strategy and propagation algorithms that

improve results. The time needed by CP to find a solution depends on three pa-

rameters: the size of the search space, the capability to trim down that search space,

and the way it is searched. In our model we have two types of DUT. The first, where

it is an optimization problem when we try to defined the minimum requirements to

run a certain set of applications. This applies to the first two motivated examples

mentioned in Chapters 4 and 5. The second type is when we have a specific architec-

ture that cannot be modified and needs to be tested against a number of applications.

This applies to the third motivated example mentioned in Chapter 6. To solve our

scheduling problem, different basic search strategies can be used:

– first-fail strategy: This strategy can be used with the first type of DUT. We

start by assigning the minimum possible values for the used resources. It is based

on the principle of beginning where a failure is more likely to be detected. More

parts of the search space are removed earlier, and important decisions are taken as

soon as possible, rather than waiting for an extensive search to be completed.

– The second search strategy is similar to the previous one. But it can be used with

the two types of DUT. It is based on application needs constraints. We start by

choosing the task with the biggest resource need or hardest deadline.

– Create a variety of test cases: although the third motivated example had dif-

ferent types of applications, these applications were not fully investigated. As the

testbench provides a powerful observation tool for both the DUT and the application,

we need to give more space to the testbench used, run it for longer periods of time,

and give it a higher priority on the system. We would study how this should affect

the results. For example, in the third motivated example we used only two tests

(Dhrystone, Whetstone) out of the ten available with unixBench testbench (execl

Throughput, File Copy, Pipe Throughput, Pipe-based Context Switching, Process

Creation, Shell Scripts, System Call Overhead, Graphical Tests). Each of the two

tests ran only once. This was not enough to generate enough load to the system, to

cover more cases. Considering more tests in different timing and order will increase

108

the varity and quality of the generated test cases.

– Insure Portability among different DUT specifications with minimum mod-

ification to the model used: In our third motivated example we used DS-5 to

measure the performance of each of the applications used to create scenarios running

through the CSP model. Although the model was able to predict the same results

in a shorter period of time still, the model needed the information collected from the

actual application running in the system. This makes the CSP model need more time

than the actual test time. To argue with that we need to test these scenarios with

other platforms without the need to first recover information about the application

traffic and performance on the new platform using DS-5. We still have to prove the

model will provide acceptable results with the same application properties and infor-

mation collected from the original platform.

– Provide further analysis of applications’ irregular behaviour: As we show

in our third motivated example we received irregular behaviour of false success with

the Ice Weasel web browser. This behaviour is very interesting and needs further

analysis after adding more constraints to model this behaviour.

109

REFERENCES

[1] Adir, A. and Almog, E. and Fournier, L. and Marcus, E. and Rimon, M. and Vinov, M.

and Ziv, A. (2004). Genesys-pro: Innovations in test program generation for functional

processor verification. Design & Test of Computers, IEEE, 21 (2), 84–93.

[2] Adir, Alion and Bin, Eyal and Peled, Ofer and Ziv, Avi (2003). Piparazzi: a test

program generator for micro-architecture flow verification. Proceeding of the Eighth

IEEE International Workshop on High-Level Design Validation and Test (HLDVT 03).

IEEE Press, 23–28.

[3] Adir, Allon and Emek, Roy and Katz, Yoav and Koyfman, Anatoly (2003). Deeptrans-

a model-based approach to functional verification of address translation mechanisms.

Proceeding of the fourth IEEE International Workshop on Microprocessor Test and Ver-

ification: Common Challenges and Solutions. IEEE Press, 3–6.

[4] Aharoni, M. and Asaf, S. and Fournier, L. and Koifman, A. and Nagel, R. (2003).

Fpgen-a test generation framework for datapath floating-point verification. Proceeding

of the Eighth IEEE International Workshop on High-Level Design Validation and Test

(HLDVT03). IEEE, 17–22.

[5] Barbieri, Roberto and Bruschi, Danilo and Rosti, Emilia (2002). Voice over ipsec: Anal-

ysis and solutions. Proceedings of the 18th Annual Computer Security Applications Con-

ference (ACSAC’02). IEEE Press, 261–270.

[6] Beltrame, G. and Fossati, L. and Sciuto, D. (2009). Resp: a nonintrusive transaction-

level reflective mpsoc simulation platform for design space exploration. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 28 (12), 1857–1869.

[7] Benini, L. and Lombardi, M. and Milano, M. and Ruggiero, M. (2008). A constraint

programming approach for allocation and scheduling on the cell broadband engine. Pro-

ceedings of the 14th International Conference on Principles and Practice of Constraint

Programming. Springer LNCS 5202, 21–35.

[8] Berry, G. and Blanc, L. and Bouali, A. and Dormoy, J. (2002). Top-level validation of

system-on-chip in esterel studio. Proceeding of the Seventh IEEE International Workshop

on High-Level Design Validation and Test Workshop (HLDVT02). IEEE, 36–41.

[9] Bohizic, Theodore J and Duale, Ali Y and Wittig, Dennis W (2011). System for esti-

mating and improving test case generation. US Patent 7,904,270.

110

[10] Bonfietti, A. and Lombardi, M. and Benini, L. and Milano, M. (2012). Global cyclic

cumulative constraint. Proceedings of Integration of AI and OR Techniques in Contraint

Programming for Combinatorial Optimzation Problems (CPAIOR12), 81–96.

[11] Chuah, Chen-Nee and Katz, Randy H (1999). Network provisioning and resource man-

agement for IP telephony. University of California, Berkeley, Computer Science Division,

Report No. UCB/CSD-99-1061.

[12] Coley, Gerald (2013). Beaglebone black system reference manual.

[13] Cplex, IBM Ilog (2010). 12.1 reference manual. URL {http://www. ilog. com}.

[14] Demiriz, Ayhan and Bagherzadeh, Nader and Alhussein, Abdulaziz (2015). Using con-

straint programming for the design of network-on-chip architectures. Computing, 97 (6),

579–592.

[15] Ekelin, Cecilia and Jonsson, Jan (2000). Solving embedded system scheduling prob-

lems using constraint programming. Technical report, Dept. of Computer Engineering,

Chalmers University of Technology.

[16] El-Mahi, O. and Nicolescu, G. and Pesant, G. and Beltrame, G. (2012). Embedded

system verification through constraint-based scheduling. The 17th IEEE International

High Level Design Validation and Test Workshop (HLDVT12).

[17] El-Mahi, Olfat and Pesant, Gilles and Nicolescu, Gabriela and Beltrame, Giovanni

(2013). Embedded system verification through constraint-based scheduling. Proceeding

of International Symposium on the Rapid System Prototyping (RSP13). IEEE Press,

73–79.

[18] Eles, P. and Doboli, A. and Pop, P. and Peng, Z. (2000). Scheduling with bus access

optimization for distributed embedded systems. Proceeding of the IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 8 (5), 472–491.

[19] Emek, R. and Jaeger, I. and Naveh, Y. and Bergman, G. and Aloni, G. and Katz, Y.

and Farkash, M. and Dozoretz, I. and Goldin, A. (2002). X-gen: A random test-case

generator for systems and socs. Proceedings of the Seventh IEEE International Workshop

on High-Level Design Validation and Test (HLDVT02). IEEE, 145–150.

[20] Fournier, Laurent and Arbetman, Yaron and Levinger, L (1999). Functional verification

methodology for microprocessors using the genesys test-program generator. application

to the x86 microprocessors family. Proceedings of the Design Automation and Test in

Europe Conference and Exhibition (DATE99). IEEE, 434–441.

[21] Govindarajan, R. and Gao, G.R. and Desai, P. (2002). Minimizing buffer requirements

under rate-optimal schedule in regular dataflow networks. The Journal of VLSI Signal

Processing, 31 (3), 207–229.

111

[22] Gratch, Jonathan and Chien, Steve (1996). Adaptive problem-solving for large-scale

scheduling problems: A case study. Journal of Artificial Intelligence Research, 365–396.

[23] Haskell, BG and Puri, A. (2012). Mpeg video compression basics. The MPEG Repre-

sentation of Digital Media, 7–38.

[24] Hladik, P.E. and Cambazard, H. and Déplanche, A.M. and Jussien, N. (2008). Solving

a real-time allocation problem with constraint programming. Journal of Systems and

Software, 81 (1), 132–149.

[25] Hunt, Warren A (2002). Introduction: Special issue on microprocessor verifications.

Formal Methods in System Design, 20 (2), 135–137.

[26] IBM (2012). IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual. IBM,

http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud, 12th édition.

[27] Kumar, Vipin (1992). Algorithms for constraint-satisfaction problems: A survey. AI

magazine, 13 (1), 32.

[28] Laborie, Philippe and Godard, Daniel (2007). Self-adapting large neighborhood search:

Application to single-mode scheduling problems. Proceedings MISTA-07, Paris, 276–284.

[29] Lee, E.A. and Messerschmitt, D.G. (1987). Static scheduling of synchronous data flow

programs for digital signal processing. IEEE Transactions on Computers, 100 (1), 24–35.

[30] Lombardi, M. and Milano, M. (2012). Optimal methods for resource allocation and

scheduling: a cross-disciplinary survey. In Constraints, 17 (1), 1–35.

[31] Nahir, A. and Ziv, A. and Emek, R. and Keidar, T. and Ronen, N. (2006). Scheduling-

based test-case generation for verification of multimedia socs. In Proceedings of the

43rd Design Automation Conference. New York: Association for Computing Machinery.

ACM Press, 348–351.

[32] Naveh, Yehuda and Richter, Yossi and Altshuler, Yaniv and Gresh, Donna L and Con-

nors, Daniel P (2007). Workforce optimization: Identification and assignment of profes-

sional workers using constraint programming. IBM Journal of Research and Develop-

ment, 51 (3.4), 263–279.

[33] Palnitkar, Samir (2004). Design Verification with e. Prentice Hall Professional.

[34] Rashinkar, P. and Paterson, P. and Singh, L. (2001). System-on-a-chip verification:

methodology and techniques. Springer.

[35] Rashinkar, Prakash and Paterson, Peter and Singh, Leena (2007). System-on-a-chip

verification: methodology and techniques. Springer Science & Business Media.

[36] River, Wind (2006). Simics full system simulator.

112

[37] Smith, Taber H and White, David (2011). Electronic design for integrated circuits based

on process related variations. US Patent 7,962,867.

[38] Stuijk, S. and Basten, T. and Geilen, MCW and Corporaal, H. (2007). Multiprocessor

resource allocation for throughput-constrained synchronous dataflow graphs. Proceedings

of the 43rd annual conference on Design automation (DAC’07). IEEE Press, 777–782.

[39] Van Hentenryck, P. and Perron, L. and Puget, J.F. (2000). Search and strategies in opl.

ACM Transactions on Computational Logic (TOCL), 1 (2), 285–320.

[40] Wang, Rui and Zhan, Wenfa and Jiang, Guisheng and Gao, Minglun and Zhang, Su

(2004). Reuse issues in soc verification platform. Proceedings of The 8th International

Conference on Computer Supported Cooperative Work in Design. IEEE, vol. 2, 685–688.

[41] Wolf, W. (2004). The future of multiprocessor systems-on-chips. Proceedings of the 41st

annual Design Automation Conference. ACM, 681–685.

[42] XU, Xiao Xi (2009). Software-Centric and Interaction-Oriented System-on-Chip Verifi-

cation. Thèse de doctorat, Shanghai Jiao Tong University, China, 1996.

[43] Zhu, Jun and Sander, Ingo and Jantsch, Axel (2008). Energy efficient streaming applica-

tions with guaranteed throughput on mpsocs. Proceedings of the 8th ACM international

conference on Embedded software. ACM, 119–128.

[44] Zhu, J. and Sander, I. and Jantsch, A. (2009). Buffer minimization of real-time streaming

applications scheduling on hybrid cpu/fpga architectures. Proceedings of the Conference

on Design, Automation and Test in Europe. European Design and Automation Associ-

ation, 1506–1511.

[45] Zhu, J. and Sander, I. and Jantsch, A. (2010). Constrained global scheduling of stream-

ing applications on mpsocs. Proceedings of the 2010 Asia and South Pacific Design

Automation Conference. IEEE Press, 223–228.

	DEDICATION
	ACKNOWLEDGEMENT
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 Problem statement
	1.2 Contributions
	1.3 Organization

	2 BACKGROUND AND LITERATURE REVIEW
	2.1 Embedded System Verification
	2.1.1 Verification Technology
	2.1.2 System-Level Verification Challenges
	2.1.3 Current Research on System-Level Verification

	2.2 Constraint Programming
	2.2.1 Basic Concepts of Constraint programming
	2.2.2 Constraint Programming and System-Level Verification
	2.2.3 IBM CPLEX Optimizer

	3 MOTIVATIONAL EXAMPLES
	3.1 Motivative Examples One and Two
	3.1.1 Streaming Applications For Synthesis Case
	3.1.2 Platform Architecture For Synthesis Case

	3.2 Motivative Example Three
	3.2.1 Streaming Applications For Industrial Case
	3.2.2 Platform Architecture For Industrial Case

	4 MAPPING PACKET FLOW OF STREAMING APPLICATIONS ONTO MPSOC
	4.1 Constraint-Based Scheduling Approach
	4.1.1 Stream model
	4.1.2 Decision Variables
	4.1.3 Constraints

	4.2 Experimental Results

	5 MAPPING FRAME FLOW OF STREAMING APPLICATIONS ONTO MPSOC
	5.1 Alternative Model
	5.1.1 Stream model
	5.1.2 Decision Variables
	5.1.3 Constraints

	5.2 Experimental Results

	6 MAPPING TASKS FLOW OF STREAMING APPLICATIONS ONTO MPSOC
	6.1 Industrial-Case Model
	6.1.1 Stream model
	6.1.2 Decision Variables
	6.1.3 Constraints

	6.2 Experimental Results

	7 CONCLUSION
	7.1 Work Summary
	7.2 Future Work

	REFERENCES

