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RÉSUMÉ 
Une prise de conscience des problèmes environnementaux à l'échelle mondiale ainsi que des 
avantages économiques a stimulé les chercheurs à trouver les possibilités de réutiliser et de recycler 
les produits en fin de vie. Chaque année plusieurs centaines d'avions atteignent globalement fin de 
leur navigabilité et doivent être retirés du service actif. De ce fait, une attention accrue est 
maintenant accordée à la fin de vie des avions. 
Désassemblage joue un rôle important dans la prise de décision de fin de vie. La faisabilité 
économique du processus de démontage avec beaucoup d'incertitudes est une préoccupation 
majeure limitant sa mise en œuvre dans la pratique de l'industrie. De nombreuses recherches dans 
le domaine de la planification et des opérations de processus de démontage a été fait, qui visent de 
plus en plus la faisabilité économique du démontage avec la réduction des temps de démontage de 
proposer des séquences de démontage optimisées. Par conséquent, ces dernières années, de 
nombreux chercheurs ont publié des articles sur la planification de la séquence de démontage des 
produits en fin de vie qui est un problème NP-complet  optimisation combinatoire. Néanmoins, il 
y a eu un peu d'attention à la planification de la séquence de démontage d'avions en fin de vie. 
Cette thèse aborde la planification de séquence de démontage des pièces réutilisables d'avions en 
fin de vie avant le démantèlement pour le recyclage. Puisque les composants récupérés vont être 
utilisés à nouveau, une approche non-destructive tout en respectant les instructions fournies dans 
le manuel d'entretien d'avion intitulé « Aircraft Maintenance Manuel » (AMM) pour le retrait des 
pièces est prise en considération. 
Ordonnancement de désassemblage dans cette recherche ne traite pas le séquençage le démontage 
des pièces comme dans d'autres études, mais il planifie séquence de tâches de démontage dans 
l'AMM. Une tâche de démontage consiste combinaison d'opérations pour la préparation du 
démontage ou le procède de démontage pour un ou plusieurs pièces. 
Tout d'abord, un modèle de séquençage de démontage est proposé par l'examen structure des tâches 
de démontage dans l'AMM. Ensuite, un code Matlab est développé qui lit la base de données 
énuméré des tâches et sous-tâches qui sont acquises à partir de l'AMM et génère la séquence de 
démontage des tâches et sous-tâches automatiquement en utilisant le modèle proposé. Le code est 
capable de générer des séquences de désassemblage de tâches pour n’importe quelle pièce 
sollicitée. 
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Enfin, un algorithme glouton et un algorithme glouton adaptatif sont évalués pour optimiser la 
séquence de démontage des tâches afin de minimiser nombre de changements dans les zones 
d'opérations de démontage. Les résultats générés dans le code Matlab, suggère l'efficacité de 
l'algorithme glouton adaptatif proposé. 
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ABSTRACT 
An awareness of the world’s environmental problems plus economic benefits has stimulated 
researchers to seek the opportunities to reuse and recycle end-of-life (EOL) products. Each year 
hundreds of aircraft globally reach end of their airworthiness and should be withdrawn from active 
service. Due to this fact, increased attention is now being paid to EOL of aircrafts. 
Disassembly plays an important role in EOL decision making. The economic feasibility of the 
disassembly process with lots of uncertainties is a main concern limiting its implementation in 
industry practice. Many researches in the field of disassembly process planning and operations has 
been done that aim increasing economic feasibility of disassembly with reducing disassembly times 
with proposing optimized disassembly sequences. Consequently, in recent years, many scholars 
have published articles on disassembly sequence planning of EOL products that is a NP-complete 
combinatorial optimization problem. Nevertheless, there has been a scant attention towards 
disassembly sequence planning of EOL aircrafts.  
This thesis addresses disassembly sequence planning of reusable components of EOL aircrafts 
before dismantling it for recycling. Since retrieved components are going to be used again, a non-
destructive approach with respecting all instructions provided in aircraft maintenance manual 
(AMM) for removal of parts is taken into consideration.  
Disassembly scheduling in this work does not deal with scheduling disassembly of components as 
in other works but it schedules sequence of removal Tasks in AMM. A removal task consists 
combination of operations for preparation of disassembly or process of disassembly for a part or 
multiple parts.  
At first, a disassembly sequencing model with considering structure of disassembly tasks in AMM 
is proposed. Afterwards a Matlab code is developed which reads from enumerated database of tasks 
and subtasks that are acquired from AMM and generates disassembly sequence of tasks and 
subtasks automatically using the proposed model. The code is capable of generating disassembly 
sequences of tasks for any given removal task of solicited part.  
Finally, a greedy and an adaptive greedy algorithm are proposed to optimize disassembly sequence 
of tasks with minimizing changes in visited zones of disassembly operations. Results generated in 
Matlab code, suggests effectiveness of proposed adaptive greedy algorithm.  
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CHAPTER 1 INTRODUCTION 
 

1.1 Problem statement 
Technically life of an airplane is close to indefinite. As long as aircraft is serviced and there are 
spare parts available, an aircraft can be kept airworthy. The business life of an aircraft, however, is 
limited. Maintenance costs will increase when an aircraft becomes older and bear in mind that new 
aircraft with newer technology has higher passenger comfort and lower utilization cost, such as 
fuel and maintenance cost. When an aircraft has reached the end of its business life, it will be retired 
and withdrawn from service.  Over the next 20 years, it is estimated that approximately 12000 
airplanes, which are currently in service for different purposes, will reach their End of Life (EOL) 
(Asmatulu et al., 2013). Consequently, this question raises that what we can do with hundreds of 
aircrafts arriving at the end of life. Stock them in deserts or crush them to recycle materials. There 
are several alternatives, but original equipment manufacturers (OEMs) are also attentive that any 
alternatives, as a global analysis, should consider different criteria of sustainable development. 
Upon reaching the end of aircraft airworthiness, the airline/owner decides what to with the aircraft. 
From environment and economic point of view abandonment or unlimited duration stock of 
airplanes are not wise choices. Therefore, the owner may decide to perform a reconversion activity 
(commercial to freight for example) or sell the retired aircraft for being disassembled (The process 
comprising all the activities required to remove all the valuable components from an aircraft, which 
can be re-used in another aircraft), dismantled (The process comprising all the activities required 
to make it possible to recycle materials from an aircraft) and subjected to a recovery of its materials 
for recycling.  
As it was explained, we understand that it is a significant need to recycle materials or re-use parts 
and equipment of dismissed aircrafts that are still in a good state of functioning. In this context, the 
Project CRIAQ ENV412 was defined to allow university researchers to study on sustainable 
development and end of life of aircrafts. Current thesis will only discuss retrieving of selective and 
non-destructive disassembly of high value parts, which are considered reusable.  
For the re-use/resale of retrieved items and new assemblies as previously used parts, the 
disassembly of aircraft parts is subject to following best practices (AFRA, 2013). Furthermore, 
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reusability of removed parts and equipment is conditional upon meeting all required maintenance 
procedures. The procedure of disassembling parts is quite same as if the aircrafts parts were in 
phase of maintenance, thus the operators should respect procedures in Aircraft Maintenance 
Manual (AMM). 
In this study, we do not have access to design data, 2D or 3D drawing of parts or general assemblies 
of airplane. Therefore we do not have distances between parts or precedence relationships among 
them. Also we do not have a database that provides costs of disassembly operations, the tools 
utilized and man-hour estimates of activities. The only document which is handed over to us is the 
AMM in the PDF format files which a computer code reads these files as texts and retrieves 
enumerated tasks. In the AMM, duration of disassembly tasks is not provided but order of 
execution of procedures for each of tasks is written in there. Each of tasks in AMM has a task 
number and is enumerated in accordance with ATA standard.  
Since an airplane is a large product, during disassembly of reusable parts at EOL stage, different 
areas of disassembly operations will be existed. Therefore, disassembly tasks are dispersed in 
different zones of airplane. In some cases of part removals, platforms, technicians with specified 
skills and training or special equipment is needed.  The disassembly operations are labour intensive 
and disassembly project manager needs to plan for different teams of technicians and acquisition 
of equipment. With considering a lean approach, which eliminates waste from process, we do not 
like to change our working zone as much as possible. Therefore, we are interested in an approach 
to minimize changing working zones and displacements of labor and equipment consequently. 
The target is generating an optimized disassembly sequencing plan for retrieving reusable parts of 
an aircraft its EOL. The optimization factor is total number of zones changed in a disassembly 
project.  
The AMM is more than 3000 pages with more than 45000 tasks. This requires power of a computer 
software to aid automatic data acquisition from AMM and to generate disassembly task sequencing 
and applying optimization algorithms. For this reason a Matlab code is developed.   
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1.2 Literature review  
1.2.1 Disassembly sequencing  
Disassembly for recovery is defined as the systematic extraction of valuable parts of an outdated 
product with goal of re-using or recycling extracted parts. Disassembly as a process was performed 
in the slaughterhouses more than a century ago. However, the “systematic approach” of 
disassembly has relatively a short history of 30 years.  
Disassembly is an important process in retrieving some value of outdated products since it allows 
for the selective retract of desired parts. In the literature, because of this benefit many studies has 
been done in the area of disassembly. 
In other hand, many papers focus on disassembly for the purposes of maintenance and repair, 
particularly if these had to be performed in environments such as space stations, nuclear power 
plants, etc. with harsh or hard to access environments. In these cases, the design should foresee and 
allow for automated or remote disassembly and reassembly. 
Lambert (2003) categorizes a variety of purposes of works on disassembly sequences as following:   

- Remote construction and repair in inaccessible or hazardous environments such as in 
spacecraft and nuclear equipment. 

- Optimal repair and maintenance. 
- A tool for assembly optimization.  
- Design and optimization of disassembly lines. 
- Optimum product design regarding the product’s end-of-life phase, which is called 

Design for Disassembly (DFD). 
 
Disassembly sequencing is about the problem of finding the best order of disassembly tasks in the 
retrieving of different parts of a product. Disassembling of complex products requires mathematical 
modelling and a connection representation aimed at selecting a good or optimum sequence of 
disassembly tasks. To find the best or optimum path, in most cases heuristics, metaheuristics or 
mathematical programming is applied on the model. 
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In the literature on disassembly sequencing, two basic approaches can be recognised: (a) the 
mechanical approach that is mainly used in the analysis of mechanical assemblies, and (b) the 
hierarchical tree approach that is mainly applied to electrical and electronic equipment. The 
mechanical approach originates from the assembly study, and the hierarchical tree approach is 
related to the Bill of Materials, which is applied in Materials Resource Planning.  
Disassembly is considered to be as the reverse process of assembly method by many disassembly 
researchers and then, most authors in disassembly area have researched in assembly area. 
Takeyama et al. (1983) said, “The sequence of assembly is the reverse of that of disassembly”. 
Lambert (2003) summarized essential differences between assembly and disassembly as following:  

- Disassembly is usually not performed to its full extent: incomplete disassembly is often 
preferred, which adds the disassembly depth to the decision variables. 

- The assembly process is often not completely reversible (decisions need to be made 
between destructive and non-destructive disassembly). 

- The value added in disassembly processes is usually modest compared to that obtained in 
assembly. 

- Uncertainty exists with regard to the quality of the components,  
- Uncertainty exists in the supply of discarded products from both qualitative and quantitative 

points of view,  
- In disassembly, a variety in supplied products might be present.  
- Due to mentioned features, disassembly is mainly carried out by human labour instead of 

by automated assembly lines and robots. 
 
Bourjault (1984) did the first attempt and formulated assembly sequencing problem using a 
systematic approach in his doctoral thesis. He presented automatic generation of assembly 
sequences of a product with using rules by answering a series of “yes” or “no” questions about 
mating of parts for an assembly and modeled a product by utilizing the information contained in a 
BOM and an assembly drawing to form a liaison graph, where the components are the nodes and 
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the liaisons are the arcs representing the mates. An Algorithm determined assembly sequences 
using the liaison graphs. 
De Fazio and Whitney (1987) proposed simplified set of rules, “precedence constraints”, by asking 
two questions about liaison precedence. Questions ask about “what liaisons must be done prior to 
doing liaison i” and “what liaisons must be left to be done after doing liaison i”.  
Khosla and Mattikali (1989) developed a methodology that uses software to automatically generate 
assembly sequences from a 3D model of the assembly.  
Baldwin et al. (1991) also utilized CAD for automatic assembly sequence generation.  
Kanai et al. (1996) developed a computer aided Assembly Sequence Planning and Evaluation 
system (ASPEN) that takes all the solid model components of a product and automatically 
determines all feasible sequences by decomposition. ASPEN also determines the optimum 
sequence using Methods Time Measurement (MTM) as time standards for operating time 
determination. 
Zhang and Kuo (1997) proposed a graph-based approach to find feasible disassembly sequences 
from the CAD system directly and automatically. 
Gungor and Gupta (1997) developed a methodology to evaluate different disassembly strategies to 
choose the best among them. They also proposed a disassembly sequence generation heuristic, 
which gives a near optimum disassembly sequence. 
Moore et al. (1998) proposed an algorithm which automatically generates a disassembly Petri net 
(DPN) from a geometrically-based precedence matrix. They analyzed the resulting DPN to 
generate all feasible disassembly process plans (DPPs), and cost functions were utilized to 
determine the optimal DPP. 
O'Shea et al. (1998) provided the state of the art different issues particular related to disassembly 
planning. The subjects covered issues from product representation, to task analysis, task 
representation, sequencing, clustering, life cycle engineering issues, and cost estimation. Materials 
data requirement issues and some practical applications in disassembly plant. 
Gungor and Gupta (1998) discussed the uncertainties and its sources in disassembly sequence 
planning (DSP) and presented a methodology to deal with uncertainty in DSP implementation for 
products with defective parts.  
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Srinivasan and Gadh (2000) analysed the problem of removing one or more components of an 
assembly, defined as selective disassembly, and presented geometric abstractions and 
representations for automated selective disassembly analysis of geometric models. 
Hsin-Hao et al. (2000) developed the economic analysis method of the disassembly process and 
develop an artificial neural network approach for disassembly sequence generation problem. Due 
to combinatorial nature of disassembly sequencing problem, there is an increasing trend in the use 
of metaheuristics. 
Lazzerini and Marcelloni (2000) presented a Genetic Algorithm (GA) for generating optimal 
assembly sequences. Population generation randomly generated usually non-feasible sequences, 
however they defined crossover and mutation operators to allow the GA to evolve to feasible 
optimal sequences. The algorithm were applied to sequences consisted of up to 17 components. 
Kuo (2000) addressed the disassembly sequence and cost analysis for the electromechanical 
products during the design stage. He divided disassembly planning into four stages: geometric 
assembly representation, cut-vertex search analysis, disassembly precedence matrix analysis, and 
disassembly sequences and plan generation. The disassembly cost is categorized into three types: 
target disassembly, full disassembly, and optimal disassembly. 
Seo et al. (2001) presented a genetic algorithms based heuristic approach for an optimal 
disassembly sequence considering economic and environmental aspects. 
Murayama et al. (2001) presented a methodology of generating disassembly sequences for 
component replacement at maintenance stages using information entropy evaluation and heuristics 
for efficient generation of disassembly sequences. They evaluated disassembly based on two 
criteria: disassembly time and disassemblability. 
Erdos et al. (2001) investigated the modelling and evaluating product end-of-life options that is the 
problem of representing products and finding disassembly sequences with the goal of maximizing 
revenue. They developed algorithms to generate the product recovery graph, to find optimal 
disassembly plans that maximize revenue using the generated product recovery graph with 
uncertainties of the end-of-life products. 
Gungor and Gupta (2001) presented a systematic approach to generate an optimum disassembly 
sequence plan for product recovery. They generated a disassembly precedence relationships matrix 
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representing the geometric precedence information using CAD representation of the product. 
Afterwards, they utilized a branch-and-bound heuristic to find an optimum disassembly sequence. 
Tang et al. (2002) surveyed the state of art in disassembly modelling, planning and its application. 
Rai et al. (2002) presented a disassembly sequence generation methodology using the Petri net 
technique by correlating cost indices combined with heuristic search procedures. The presented 
heuristic generates and searches a partial reachability graph to arrive at an optimal or near-optimal 
disassembly sequence based on the firing sequence of transitions of the Petri net model. 
Lambert (2003) surveyed the literature on disassembly sequencing and summarised and 
categorised work of more than 200 articles in the area of disassembly sequencing.  
Torres et al. (2003) presented an algorithm based on a representation method for products, which 
shows the hierarchical relationships among components of the product. They established an 
algorithm for partial non-destructive disassembly sequence of a product. The disassembly sequence 
were obtained automatically from design CAD data. 
Mascle and Balasoiu (2003) addressed a wave propagation based disassembly algorithm to select 
the disassembly sequence of a specific component of a product. 
Lambert (2005) presented the search for optimum disassembly sequences for products that can be 
represented by disassembly precedence graphs and that are subjected to sequence-dependent 
disassembly costs. He applied an exact approach, based on iteratively solving a binary linear 
programming. 
Li et al. (2005) presented an object-oriented intelligent disassembly sequence planner for 
maintenance based on the disassembly constraint graph using genetic algorithms to generate near 
optimal disassembly sequence from all the feasible combination of the disassembly operations. 
Lambert and Gupta (2005) in their book reviewed disassembly related issues and presented 
comprehensive details about methods, approaches, and applications in this field. 
Dong et al. (2006) presented an approach to automatic generation of disassembly sequence from 
hierarchical attributed liaison graph of an assembly through recursively decomposing the assembly 
into subassemblies. Their approach integrates general geometric reasoning with the knowledge 
about how to generate feasible and practical disassembly sequences. 
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Chung and Peng (2006) presented an evolutionary algorithms approach to generate a feasible and 
optimal plan for selective disassembly in remanufacturing, ensuring both batch disassembly of 
components and tool accessibility to fasteners. 
Kongar and Gupta (2006) addressed a genetic algorithm for disassembly sequencing of EOL 
products. 
Sarin et al. (2006) developed a disassembly optimization problem as precedence constrained 
asymmetric traveling salesman problem and developed an iterative procedure to minimize the costs 
associated with the disassembly process while maximizing the benefits resulting from the recovery 
of components and subassemblies that constitute the product. 
Kang and Xirouchakis (2006) surveyed the disassembly sequencing problems in which second-
hand or EOL products are disassembled into basic parts and components, especially due to repair 
and maintenance.  
Langella (2007) presented heuristic algorithm with considering demand for disassembled part for 
remanufacturing of products. 
Shimizu et al. (2007) applied genetic algorithms to address a system supporting strategic decision-
making on disassembly for recycling at the design stage of the product life cycle. The issue of 
uncertainty modelling and management arises in the context of the optimal disassembly planning 
problem, one of the problems to be addressed by remanufacturing processes. 
Reveliotis (2007) addressed a reinforcement learning approach for providing optimal solutions to 
the optimal disassembly problem considering uncertainties. 
Kim et al. (2007) provided a literature review on works done in disassembly scheduling area. 
Giudice and Fargione (2007) presented a genetic algorithm approach to disassembly process 
planning that supports the search for the disassembly sequence best suited for both aspects, service 
of the product and recovery at the end of its useful life. 
Dong et al. (2007) offered an approach based on accessibility and EOL strategy, using Petri net 
modelling to generate an optimal disassembly sequence.  Their approach utilize AND/OR graphs 
to generate all feasible disassembly sequences, and then graphs are transferred into Petri net graphs 
while accessibility values and life span values of components are taken into consideration to obtain 
the optimal disassembly sequence. 
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Duta et al. (2008) developed an evolutionary algorithms approach for the multi-criteria 
optimization problem of the disassembly scheduling. 
Lambert and Gupta (2008) presented a heuristic algorithm for disassembly sequencing problems 
subjected to sequence dependent disassembly costs using disassembly precedence graph of a cell 
phone with twenty-five parts. 
Wang et al. (2008) presented a GA method to solve disassembly sequence planning problem. To 
describe product disassembly sequence and operation information, they presented disassembly 
feasibility information graph (DFIG). Then, disassembly sequence planning problem is mapped 
onto the DFIG as an optimal path-searching problem. In GA a chromosome represents the sequence 
of disassembly operations, and they applied the precedence preservative crossover (PPX) as 
crossover operator for establishing next generation of chromosomes. The generated chromosomes 
which does not respect precedence relations are rejected. 
Adenso-Díaz et al. (2008) claimed since determining an optimal disassembly sequence planning is 
NP-complete and complex as well as a challenging problem to solve, heuristic and metaheuristic 
techniques may be the only practical ways to solve such problems. They considered two criteria to 
look for: First, a sequence that its cost is close to their cost aspiration. Second, a sequence that 
prioritizes some selected parts to be disassembled as early as possible. In their article they presented 
a greedy randomized adaptive search procedure (GRASP) and path-relinking-based heuristic 
methodology to solve this bi-criteria disassembly planning problem. The proposed algorithm were 
applied to four different products with a maximum of 100 components in each.   
Tripathi et al. (2009) proposed a metaheuristic named Algorithm of Self-Guided Ants (ASGAs) to 
solve the computationally hard fuzzy disassembly optimization model (FDOM) problem. Their 
algorithm aims to maximize the net revenue generated from disassembled components from an 
EOL product. The factors considered for their model are number of parts, number of subassemblies, 
number of joints, setup costs, joint breaking costs, recovery value and disposal costs. 
Grochowski and Tang (2009) presented a machine learning approach based on a DPN and a hybrid 
Bayesian network (HBN) to model the disassembly process and predict the outcome of each 
disassembly action by examining the probabilistic relationships between the different aspects of 
the disassembly process. 
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Puente et al. (2010) presented an algorithm to sequence tasks to be performed in the disassembly 
of a specific material from a product or to separate all the materials of a product. They utilized 
hierarchical model of a product with having disassembly time of components. 
Yun and Moon (2011) proposed a GA approach with utilizing a topological sort (TS) based 
procedure for solving precedence constrained sequencing problems. The TS-based procedure used 
in the proposed GA approach can generate feasible sequences in precedence constrained 
sequencing problems. The proposed algorithm is applied to a problem with a maximum of seventy-
five nodes. 
ElSayed et al. (2011) developed an automated disassembly cell for online (real time) partial 
disassembly operations of PCs at their EOL. Their cell consists a robotic arm, a camera, range-
sensing and component segmentation visual algorithms. The authors applied an online GA 
approach for finding near/optimal disassembly sequencing. The precedence preservative crossover 
(PPX) methodology was utilized for the crossover operation. The fitness value was obtained by the 
overall disassembly time. 
Go et al. (2011) reviewed several disassembly methods to enhance the recovery of EOL products, 
especially for vehicles, so that valuable parts are efficiently retrieved 
Liu et al. (2012) applied an improved max–min ant system based algorithm to generate a near-
optimal solution for the problem of product disassembly sequence planning in a virtual 
maintenance environment with considering all disassembly constraint information, such as 
adjacency and constraint relations between parts and subassemblies, disassemble time, disassemble 
tool, disassemble priority, quality, reliability and load of disassemble machine, etc 
Smith et al. (2012) introduced an approach for creating, and searching methods of disassembly 
sequence structure graph model for multiple-target selective disassembly sequence planning. The 
approach uses expert rules to choose parts, part order, and part disassembly directions, based on 
contact, motion, and fastener constraints. 
Go et al. (2012) utilized a GA approach implemented in Matlab in order to determine the optimal 
disassembly sequence of an engine of an EOL vehicle. The applied method achieves the minimum 
disassembly time with considering precedence relationships. 
Wan and Gonnuru (2013) proposed the use of radio-frequency identification (RFID) technology to 
support disassembly decisions for end-of-life products. They presented a fuzzy-based disassembly 
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planning and a disassembly sequencing model to maximize net profit and utilized GA approach for 
finding an optimal solution. 
Tian et al. (2013) presented chance constrained programming models based on the uncertainty 
feature of a disassembly process. In their model removal times, labour costs and disassembly 
direction changes is taken into consideration. Authors proposed two hybrid intelligent algorithms 
to solve the proposed models: one integrating stochastic simulation and neural network, and 
another integrating stochastic simulation, genetic algorithm and neural network. 
Popescu and Iacob (2013) proposed a disassembly method based on two elements: The connection 
interface concept and the mobility operator that integrates information on geometrical constraints, 
contact surface relative position and common area, neighboring components, and relative 
mobilities of the assembly components from the 3D CAD model of a product. Heuristic rules and 
unit ball concept for determining component mobility is utilized. 
Wang et al. (2013) reviewed the fundamental methodology and its development of computerized 
intelligent disassembly planning research. It is concluded that heuristic algorithms are increasingly 
being used to search for the optimal solution to improve efficiency. However due to complexity of 
the matter for more accurate results there is a demand to integrate intelligent methods such as 
genetics algorithm or artificial networks. They also argue that disassembly planning is essentially 
a process that needs person’s knowledge and experience of engineering, so solely a perfect 
mathematical optimization theory is not a way to the final resolution.  
Zhao et al. (2014) presented a reasoning algorithm using a Fuzzy reasoning PN for optimisation of 
a disassembly process based on the maximal reclaiming profit of retrieved parts. 
Rickli and Cameliob (2014) investigated impact of EOL product quality variability, represented as 
an EOL product age distribution, on the optimal or near-optimal partial disassembly sequence. 
Moreover, they utilized a GA heuristic based on sequence feasibility, expected profit standard 
deviation and profit probability per EOL product. 
Xia et al. (2014) proposed a simplified Teaching–Learning-Based Optimization algorithm for 
solving disassembly sequence planning problems. The algorithm utilizes population-based 
evolutional method and consists of three parts: a Feasible Solution Generator to generate a feasible 
disassembly sequence, a Teaching Phase Operator and a Learning Phase Operator used to learn 
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and evolve the solutions towards better ones by applying crossover operation that preserves 
precedence relationships.  
Giri and Kanthababua (2015) proposed a method to generate the disassembly sequences for 
mechanical products, which uses the part interference matrix that contains the removal directions 
of the parts and the part connection graph that indicates the contact among the parts in the assembly.  
For generating the part connection graph, 2D views generated from the CAD assembly model for 
automatically identifying the part removal directions is utilized. They applied a heuristic method 
to generate the best feasible disassembly sequences. 
Issaoui et al. (2015) presented a solution space reduction for disassembly sequencing problems. 
Connection tree of a target component is constructed with using its CAD model. The generation of 
sequences is based on reading of connection tree branches and elimination of infeasible ones. They 
applied their method to a product with 22 components.  
Riggs et al. (2015) presented a two-stage optimization algorithm that first determines the optimal 
partial disassembly sequence according to reuse value of components, and in next stage adds 
sequence dependence task times and finds the optimal partial disassembly sequences. 
Berg et al. (2015) presented an application of immersive computing technologies to aid in 
evaluating disassembly sequences in early design. The application displays both 3D geometry of a 
product and an interactive graph visualization of existing disassembly sequences. For presented 
work, authors generated the disassembly graphs manually. The calculated optimal path can be 
highlighted allowing the user to compare the optimal sequence against alternatives.  
Mitrouchev et al. (2015) presented a method based on the lowest levels of a disassembly product 
graph instead of considering the geometric constraints for each pair of components. It is discussed 
that if the product has a modular design, this will allow aggregating some parts of the assembly in 
modules and reaching the target without dismantling the components one by one. The proposed 
method first generates disassembly geometry contacting graph of the product and then generates 
the feasible disassembly sequences. Moreover, authors proposed concept of micro-units that 
eliminates all the components that are unrelated to the target ones, permitting reducing the number 
of iterations for disassembly sequence generation and consequently reducing the search time. 
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Wang et al. (2016) introduced a method for evaluation of disassembly operations in Virtual 
Environment. A set of five criteria is proposed: visibility of the sub-assembly part, disassembly 
angles, stability of the subassembly, number of tools’ changes and path direction change. The 
presented method can be used for disassembly sequence generation either at early stage of design 
or at EOL.   
Alshibli et al. (2016) presented a metaheuristic algorithm for disassembly sequencing, with using 
a sensory system and an online real-time Tabu search applied to a robotic arm that executes 
disassembly operations. The objectives of the proposed algorithm are to minimize the traveled 
distance by the robotic arm, the number of disassembly method changes, and the number of robotic 
arm travels by combining the identical-material components together. The authors state that the 
applied Tabu search runs faster than GA approach for the similar problem.  
 
1.2.2 Aircraft at its end-of-life 
Until a few years ago, EOL aircrafts were abandoned. Starting in the 2000s, the two largest aircraft 
manufacturers Airbus and Boeing began to get interested in the management of aircrafts to develop 
alternative approaches of how to handle aircrafts at their EOL. Airbus launched the PAMELA 
project (Process for Advanced Management of End-of-Life Aircraft), as an aircraft dismantling 
demonstration project with support from the European Commission's "LIFE" initiative under the 
classification of "waste management, recycling and reduction of landfill". 
The main concept was implementing strategies to develop a set of best practices, and standards, 
for the dismantling of an aircraft safely and with respect for the environment. 
During the PAMELA project (Airbus, 2008), the consortium created a three-stage process approach 
of handling EOL aircraft, called 3D approach. Table 1-1: Table 1-1 shows summary of this 3D 
approach. 
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Table 1-1: PAMELA 3D approach 

D1- Decommissioning 

- Cleaning & Decontamination 
- Draining of tanks 
- Implementation of safety procedures under EASA 

(European Aviation Safety Agency) Part 145 

D2- Disassembly - Equipment removal under EASA Part 145 
- Parts removal 

D3- Smart Dismantling 
 

- Final draining of systems 
- Dedicated removal of material 
- Aircraft Deconstruction & Categorization of materials 
- Shipping of extracted categorized materials to waste 
treatment channels 

 
In other hand, in 2006 eleven charter companies established AFRA (Aircraft Fleet Recycling 
Association) with the goal to organize and present an industry perspective on aircraft sustainability 
through the development and recommendation of best practices and technologies for the 
management of the world’s older fleet.  
The AFRA has published “Best Management Practice for Management of Used Aircraft Parts and 
Assemblies and for Recycling of Aircraft Materials” (BMP). BMP is a document that represents a 
collection of recommendations concerning best practices for the management of parts that are 
removed from an aircraft at its EOL.  

- The disassembly: intended to guide aspects of the management of parts removed from an 
EOL aircraft. 

- The recycling: intended to guide aspects of the processing of aerospace materials in order 
to transform these into usable materials. 
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Law does not enforce AFRA’s procedures and guidelines. However, AFRA provides accreditation 
to companies in the field of dismantling and disassembling aircraft parts. It gives confidence to 
clients who want to use the spare parts, which are retrieved from EOL aircrafts that they will use 
the parts that are in good state and all the best practices has been considered at the time of retrieval 
from airplanes. 
Another important study in this context is a major research project named CRIAQ ENV-412 that 
is an initiative of the “Consortium de recherche et d'innovation en aérospatiale au Québec” 
(CRIAQ) and funded by Natural Sciences and Engineering Research Council (NSERC) and 
partners Bombardier Aerospace, Bell Helicopter Textron Inc., Aluminerie Alouette, BFI Canada, 
Sotrem-Maltech, CRIAQ, Nano Québec and Mitacs with collaboration of École Polytechnique de 
Montréal, Centre technologique en aérospatiale (CTA), Université Laval, École de technologie 
supérieure (ETS) and McGill University. 
 

1.2.3 Disassembly sequence planning for aircrafts  
Even though the literature is abound with disassembly sequencing, except the works done in 
context of CRIAQ-ENV412 project, one cannot find studies specifically dealing with issue of 
disassembly sequence planning of aircraft re-usable part at EOL of aircraft. 
There is just a very few studies concerning disassembly of parts, which is for the purpose of 
maintenance of aircraft parts. 
Cheung et al. (2005) and Cho et al. (2009) discussed staff rostering to facilitate the allocation of 
labor resources at the time of aircraft maintenances.  
Christiand and Yoon (2007) proposed a GA approach for determining an optimal 
assembly/disassembly path planning for maintenance of aircraft parts. Constraints such as 
obstacles and the part distances was taken into consideration.  
Zhang et al. (2008) presented a component disassembly approach for aircraft assembly process 
based on fuzzy-clustering algorithm. 
Hassan and Yoon, (2010) presented a disassembly path planning algorithm for maintenance of 
aircraft parts considering geometry constraints with the purpose of optimizing time of disassembly. 
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Zhong et al. (2011) proposed metaheuristic methods for maintenance of large equipment parts 
including aircrafts. They presented a Dijkstra’s algorithm and particle swarm optimization (PSO) 
to determine optimal disassembly sequences. The proposed method was applied to disassembly 
sequences for maintenance of a nose landing gear system of a regional jet with ten components to 
be disassembled. The authors state that their proposed method reduce the calculation complexity, 
and it is faster than a GA approach. 

1.2.4 Conclusion of literature review 
As presented in previous section study of disassembly sequencing has started about thirty years 
ago and has attracted many scholars. However, apparently researchers are not done with this issue 
due to its complexities.  Many improvements has taken place but limits are still there. Each 
disassembly case and its constraints is different with another one and a solution that best fits that 
specified problem should be determined.  
Table 1-2 summarizes disassembly sequencing problems into three categories: applications, 
representations and methodologies. As it can be seen from methodology section, there are quite 
considerable number of techniques that are used for determination of optimal disassembly 
sequences. Nevertheless, seems that publication with utilizing genetic algorithm approach are more 
than other approaches. However, this method also has its own limits and that is why scholars are 
still seeking other methods.  
The state-of-the-art about the disassembly sequence planning of aircrafts shows that there is just a 
couple of studies with the application of maintenance of aircrafts and there is a big gap in literature 
in this subject. Actually, the only related work towards disassembly sequence planning of EOL 
aircraft parts has been initiated in CRIAQ-ENV412 and Camelot (2012) has addressed this subject 
in her master studies. 
Current work presented in this thesis was defined as continue of Camelot’s study with the purpose 
of checking and validation of her model and algorithm, and to automatically generate disassembly 
sequences in case of verification/modification of proposed model. Therefore, Camelot’s approach 
is investigated thoroughly and details will be presented in next chapters. 
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Table 1-2: Disassembly sequence planning 

Application 
Design For Disassembly 
Maintenance  
End-Of-Life Disassembly 

Representation 
 

Disassembly Precedence Graph 
Disassembly Tree  
State Diagrams  
And/Or Graphs 

Methodology 

Graphical, Linear Programming, Mixed Integer Linear 
Programming, Dynamic Linear Programming, Heuristics, 
Metaheuristics, Ant Colony Optimization, Artificial 
Immune System, Artificial Neural Network, Bayesian 
Network, Differential Evolution, Evolution Algorithm, 
Evolution Programming, Fuzzy System, Genetic 
Algorithm, Greedy Randomized Adaptive Search 
Procedure, Memetic Algorithm, Multi-Agent System, 
Neighborhood Search, Particle Swarm Optimization, Path 
Relinking, Reinforcement Learning, Scatter Search, 
Simulated Annealing, Tabu Search, Multi-Criteria 
Analysis, Stability Analysis, Precedence Relations, 
Modularity Analysis, Parallelism, Uncertainty, Case-
Based Planner, Economic Analysis, Environmental Cases, 
2D Views, 3D Models, Mechanical Assemblies 
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1.3 Objective 
In this study, target is to have an optimized disassembly sequence of reusable parts of an aircraft 
in its end-of-life, leading to an automatic generation of a disassembly process with respecting 
maintenance procedures. 
In literature review, many different approaches for optimizing a disassembly sequencing were 
explained. Obviously when talking about optimizing, there should be a parameter to optimize. The 
main parameters which was consider in researches is reducing time and costs. For this most of 
studies offered had considered times of disassembly tasks for all operations or costs of any 
disassembly action or equipment utilized and with applying their proposed optimization algorithm 
could find an optimized disassembly sequence. 
However, for our study, we do not have any of such databases. The only resource that is available 
is the Aircraft Maintenance Manual. Hopefully since tasks in AMM is standardized by ATA for all 
type of airplane, (no matter who the OEM is), we have access to ATA chapter of is each task which 
is part of task’s name in the AMM. Consequently, we can understand the task is performed in 
which zone of the aircraft.    
Since an airplane is a large product, during disassembly or reusable parts at EOL stage, different 
areas of work will be existed. Therefore, disassembly tasks are dispersed in different zones. In 
some cases of part removals, platforms, technicians with specified skills and training or special 
equipment is needed.  To plan for different team of technicians and acquisition of equipment, with 
considering lean approach, which eliminates waste from process, we do not like to change our 
working zone frequently. Therefore, we are interested in an approach to minimize changing 
working zones and displacements of labor and equipment consequently. With considering this 
concept, disassembly operations has to be generated by maximizing the number of executed tasks 
in a working zone. The procedure has to address all necessary tasks and subtasks requested by 
AMM to remove parts. 
AMM has more than 45000 tasks. That is why generating a disassembly sequencing procedure 
needs is not something than can be easily done manually and that is why a Matlab code is utilized 
for this purpose. 
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1.4 Thesis structure 
In next chapter, an overview of methodology and approach of current work is presented. In Chapter 
3, discussions about a model for disassembly sequencing of aircraft parts is provided. After 
reviewing principles in section 3.1, previous model of disassembly sequencing is investigated in 
section 3.2 and problems with that model is outlined. Since the previously proposed model is not 
applicable, a correct model is developed which is described section 3.3. 
Afterwards, automatic generation of disassembly tasks with using computer aid and validation of 
the proposed model is discussed in section 3.4. 
Determination of an optimized disassembly task sequences and utilized algorithms and its 
efficiencies is discussed in Chapter 4.  
Contributions and recommendations is summarized in Chapter 5. 
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CHAPTER 2 METHODOLOGY 
 

2.1 Studying of previous works 
As discussed earlier this project is a successive to work of Camelot (2012). Camelot in her research 
did a study on available data and methods to be applied on a disassembly sequencing of an EOL 
aircraft. Since the study is for the parts or systems that are re-usable, the methodology should only 
study non-destructive methods of parts retrievals. Consequently, all the disassembly operation 
should respect the AMM. Eventually Camelot came up with a model of disassembly and presented 
an imaginary disassembly graph and developed an algorithm for finding a disassembly sequence.  
In another project, Yongliang Cai, developed a computer code for the purpose of data acquisition 
from the AMM manual. In this work, Cai changed the format of PDF files of AMM to TEXT files 
and with using a Matlab code, found all of the tasks and subtasks in each AMM file (Mascle et al., 
2014).  Output of this code can be used to find subtasks of a task automatically via searching the 
generated database. 
The purpose of current project is to integrate the model to database for automatic generation of an 
optimized disassembly sequence. For this reason, a very detailed study was required on those 
pervious works, first to understand their work and later utilize the concepts. 

2.2 Developing new model 
With studying the previous existing model, I concluded that, the model violates the AMM 
requirements that need respecting precedence constraints. Therefore, in this project the author 
developed correct model.  Problems of the previous model, and new model will be presented in 
next sections. 

2.3 Validation of the model 
The main input the process is the AMM files. Model should respect the AMM procedures. With 
integrating the model to automatically read tasks from manual, there is only a manual approach to 
see if the generated sequences respects the AMM. 
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With doing this manual verifications, using many different random input tasks, author observed 
that the output has a problem and is not in accord in manual.  
With different root cause analysis, I could figure out that the problem was becoming from the code 
that read from AMM. As it was the input to the model, it affected the output. 
Different problems were found in the output of the code guidelines and errors feedbacks were made 
to developer of the code. With this collaborating and by many different random analysis on output 
of code, the problem was solved. 
Consequently, input to the model was corrected and correction in output of the model was 
observed. 
 

2.4 Finding an optimized disassembly sequence  
In literature for the purpose of generating an optimal or near optimal disassembly sequence 
parameters such as cost of each disassembly action, time of each disassembly action, number of 
tool changes or revenue generated from disassembled parts has been elaborated. 
As it was discussed earlier, for this work, we do not have any data regarding previously mentioned 
parameters. Nevertheless, with using concept ATA chapter, we can figure out in which zone of 
aircraft the disassembly operation is performed. As a matter of fact with eliminating unnecessary 
change of work zones, time and cost of disassembly can be improved. In this manner, project 
manager can plan for special task force with skills and tools required in a specified zone of the 
aircraft. Thus, we are interested in an approach to minimize changing working zones and 
displacements of labor and equipment. With considering this concept, disassembly operations has 
to be generated by maximizing the number of executed tasks in a working zone. 

2.5 Automatic generation of sequences of disassembly  
At the time of disassembly when we are visiting a zone, the disassembly model provides other 
available tasks that can be performed in that zone. An algorithm finds this zone and when all the 
available task in that zone are preformed, the algorithm finds the next best zone.  
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A Matlab code is developed, which can perform all of these procedure and with giving removal 
task number of required parts, it automatically generates a model and sequences of disassembly 
tasks. 
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CHAPTER 3 MODEL FOR DISASSEMBLY OF RE-USABLE 
AIRCRAFT PARTS 

3.1 Principles 
3.1.1 TASK numbering in AMM 
As discussed earlier, we have the AMM as our input source and our desire is to eliminate excessive 
displacement with minimizing visiting different zones.  
In the AMM, for each of actions such as servicing, removal of parts or system and installing them 
a task number has been assigned. This task number has the format of XX-XX-XX-XXX-XXX 
where X is a number. For example, a task number in manual will look like 32-10-12-400-801. 
Fortunately, no matter who the OEM is, ATA has standardized the first three elements which each 
consist two digits (XX-XX-XX) in ATA spec 100 standard and later in ATA iSpec 2000 standard 
with some modifications in ATA spec 100.  These standards contains format and guidelines for 
technical manuals written by aviation manufacturers and suppliers and is used by airlines and other 
segments of the industry in the maintenance of their respective products. These documents provide 
standard for aircraft systems numbering, often referred to as ATA system or chapter numbers. 
First element of a task number is its ATA chapter that refers to a system, the second element is its 
subsystem (section) and the third element is the unit (subject). Together, these elements identify 
the applicable aircraft hardware.  
The XXX-XXX at the end of the task number is called AMTOSS index (Aircraft Maintenance Task 
Oriented Support System). The first three digit of AMTOSS, which is the fourth element of a task 
number, defines the maintenance function being performed. The fifth element of a task number is 
a three-digit number used to create unique numbers for all tasks or subtasks which are similarly 
numbered through the first four elements. Tasks are numbered from 801 through 999. Subtasks are 
numbered from 001 through 800. 
At the time of disassembly of aircraft, there are tasks that have the same first three elements (XX-
XX-XX). Therefore, one can compare these numbers and verifies that if the disassembly is taken 
place in a same zone. The definition of zone can go to fewer depths if a user like to choose just two 
elements (XX-XX). This will lead to wider areas in zones.  
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Figure 3-1, demonstrates an example of a maintenance task. With considering ATA 
standardization, we can assign all of tasks that have 32-10-12 at its beginning to a same zone. 

 
Figure 3-1: An example of maintenance task in AMM 

 

3.1.2 AMM structure 
AMM contains all of the tasks that address disassembly, assembly, service, inspection, etc. of an 
aircraft. The subjects in the maintenance manual are divided into following categories: 

- Description and Operation  
- Maintenance Practices  
- Servicing  
- Deactivation/Reactivation 
- Removal/Installation  
- Adjustment/Test  
- Inspection/Check  

32-10-12
ATA Chapter

Sub-system

Unit

32-10-12-400-801A task number:

400-801

Maintenance operation Task Unifier

32-10-12

400-801

ATA standard

AMTOSS Index
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- Cleaning/Painting  
- Repairs 

As discussed in previous section, all of these tasks have a task number that is a unique number for 
that specified task. A task consists all of the procedure that should be performed on an aircraft to 
satisfy the needed operation. Each task is structured by subtasks and can also refer to other tasks 
in the AMM.  
A subtask is a logical division of a task, and is used to divide tasks into understandable parts. A 
subtask generally contains only one type of information such as a table, a reference to a task, or a 
simple procedure. For each subtask same as tasks, a number is assigned but subtasks are not 
referenced by tasks or other subtasks. 
Each of task of AMM has for main sections: 

- Job Set-Up Information  
- Job Set-Up 
- Procedure 
- Close-Out 

Job Set-Up Information (JSUI): This section of the task consists all of the information and list of 
tasks and tools that is required to perform the task. Therefore, in this section an operator can have 
an overview of the work that should be done. 
Job set-up (JSU): This section of the task lists and describe all of the preparation operations and 
set-ups before performing the main process. 
Process (P): This section is for the subtasks and tasks that the main operations are taking place. 
Close-out (Co): This section is for the subtasks that is performed to return the state of the aircraft 
to the state which was before performing Job set-up and Process tasks. 
 
It is a remarkable note in AMM that we should pay attention in our disassembly-sequencing 
problem: 
“The steps written within the procedures for the various tasks or subtasks in the AMM are in logical 
order as interpreted by the Technical Writer. They are correct if followed step by step for the 
completion of the task or subtask. However, if the intent of the maintenance procedure is not altered 
and the objective is met, the order of the steps required to complete the task or subtask may be 
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revised at the discretion of the technician (Example: step 4.f. before step 4.e.). Unless otherwise 
specified, the elapsed time between the start and the end of a procedure is not important.” 
This statement provides a guideline for us: 
In our problem, we should consider the precedence logic that is provided in the AMM. Therefor at 
the time disassembly, tasks and subtasks should be executed in accordance with to order of 
appearance in the AMM. Figure 3-2 demonstrates a structure of a task in AMM and direction that 
should be taken for the executing tasks and subtasks. 
Furthermore as it was said in previous chapter, the AMM does not provide elapsed times of 
procedures.  

 
Figure 3-2: Structure of a TASK in AMM 

3.1.2.1 Implementation of a task  
In AMM, a task is divided to several subtasks. In each of subtasks maybe a procedure is described 
or maybe along with that procedure it can refer to the other tasks. All of these tasks and subtasks 
should be implemented in accordance with order of appearance in the AMM.  
For example lets say we want to implement an imaginary task named: TASK 21-22-23-400-800. 
Therefore if with referring to AMM it is observed that there are fourteen tasks and subtasks, named 
T1, T2, …., T14, Figure 3-3 shows the sequence of implementing tasks.      
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Figure 3-3: Sequence of implementing tasks in AMM 

It should be noted that it is possible that each of Tasks or subtasks of T1 to T14 refer to other tasks 
in AMM.  In this case, again same principles applies. 
Actually, there are several tasks that are needed to be performed for different tasks and those tasks 
are not uniquely preformed for a single operation. That is why technical writer of AMM assigns a 
task name to such kind of tasks and instead of repeating the procedure in text of several tasks, the 
technical writer just simply refers to name of that task. 
At the time of operation, if the operator notices a referral to other task, he or she should find the 
procedure of implementing that task in AMM. 
For example of Figure 3-3, any tasks or subtasks of T1 to T14 can refer to other tasks. In this case 
again same principle of Figure 3-3 applies for those referral tasks and operator should implement 
all of subtasks and tasks mentioned in AMM for any of T1 to T14 if any. Let us imagine that T4, 
T8 and T9 refer to other tasks. Figure 3-4: An example of a task with Figure 3-4 demonstrates such 
this case. 

 
Figure 3-4: An example of a task with referral to other tasks 

For above example operator performs T1, T2, T3 and reaches T4. He or she notices that in T4 there 
is reference to other tasks. Therefore, he/she should implement those tasks before moving to task 
T5. After tasks T41, T42, T43 and T44 are implemented then T5 should be performed.  

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14
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After performing T7, its T8’s turn to be executed. It is noticed that there are nine tasks which this 
tasks or subtask of T8 refers to. Again before being able to implement T9, the operator should 
execute tasks of T81, T82,…to, T89. The same goes for T9. 
The referral to other tasks does not stop here!  T41 to T44, T81 to T89 and T91 to T93, are tasks 
themselves. Any of these tasks can refer to other tasks. Therefore, same principle of previous 
paragraph applies. For example if T43 refers to other tasks, the operator should implement those 
tasks before being able to move to T44.  
3.1.2.2 Tasks needed from AMM  
For our purpose that is an automatic disassembly sequencing, two sections of a Task is required: 

- Job set-up (JSU) section 
- and process (P) section 

Job setup information (JSUI) section is not required because it provides an overview of tasks in 
next sections. This information is redundant for our purpose and tasks are again repeated in next 
sections. 
It is also important to note that, for our disassembly procedure we do not need to perform tasks in 
close-out (CO) sections. AMM states that this section is for returning the status of airplane to what 
has been before performing maintenance tasks. In fact, when we are disassembling parts at stage 
of end-of-life of aircraft, this issue is not our concern anymore. 

3.2 Disassembly model in the previous work 
3.2.1 Methodology  
Ms. Camelot in her thesis and in (Camelot et al., 2013), presented a model for disassembly graph 
of an EOL aircraft.  It supposed to be used in this project for generating automatic disassembly 
sequences with utilizing the output of code that Mr. Cai had developed, and provides digital 
database of all of tasks in AMM with their subtask. For this purpose, the author did a very detailed 
study of the existing model to be utilized. However, it was concluded that Camelot’s model violates 
AMM procedures. Even though the model tries to respect maintenance procedure implied by the 
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AMM, but it contains fatal errors. In next paragraph, discussion is provided about fundamental of 
these errors. 
Figure 3-5 demonstrates an imaginary model for a disassembly graph developed by Camelot. Each 
of tasks from t1 to t19 should be executed and as discussed earlier each of these tasks can have 
tasks/subtasks. In this model, all of these subtasks of a task are aggregated in one node for each 
task. To represent this aggregation, on node of each task a fraction with two numbers is provided: 
The numerator is for status corresponding to the number of executed tasks/subtasks in that node. 
Obviously, at start of disassembly all of numerators in all nodes are zero. The denominator is total 
number of tasks/subtasks for that task. For example, t15 has five, t17 has seven, and t18 has 12 
subtasks/tasks. 

 
Figure 3-5: An example of disassembly graph model developed by Camelot 

 
Edges represents a link between two nodes (tasks). It is used when one of tasks/subtask of a task 
calls another task. As shown in Figure 3-6, the number on the edge (m) represents the order of 
task/subtask in entering edge of node (task i) that calls the task in origin of edge (task j). 
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Figure 3-6: Edge between two tasks 

 
For example in Figure 3-5, for task t18, its 10th task/subtask calls the task t16 and its sixth 
task/subtask calls the tasks t7 and t13.   
Furthermore, in accordance with three double digit of task number which was discussed before 
(ATA 2200), for each of nodes/tasks, the zone which that task is executed is colored. In this 
representation, nodes with same color are those tasks that are in the same zone.  
There are other details about this model such as mathematical representation, and how it is used to 
find an optimal disassembly sequence, which can be found in details in Camelot’s publications. 
However, provided information to this extend would be enough to explain the problems with the 
model.  

3.2.2 Problems with Camelot’s model: 
3.2.2.1 Aggregating subtasks in one node 
3.2.2.1.1 Eliminating information about tasks/subtasks  
Aggregating subtasks/tasks of a task in one node deletes all the attributes of those subtasks/tasks. 
In a less important matter, the disassembly model will not provide details of those tasks in that 
node. For example in Figure 3-5, at the time of disassembly operator is advised that t17 should be 
executed. This model just tells the operator that t17 has seven subtasks and does not provide any 
more details for which task should be implemented. 
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3.2.2.1.2 Wrong assignment of zones 
Further to previously mentioned problem, a zone of disassembly is defined by the aggregated task 
number. However, a task can have many subtasks and with a quick review of AMM, it can be seen 
that, hardly ever those subtasks of a task are always in the same zone of the task. 
For our purpose zone of operation, should be found by tasks inside of each node and there is highly 
probable that subtask belong to different zones. Therefore, aggregation of subtasks in their parent 
node will lead to fatal error in zone definition where operations are executed. 
3.2.2.2 Not considering precedence relation between tasks/subtasks 
As discussed in in 3.1.2.1 section an illustrated in Figure 3-4, any subtask of a task can refer to 
other tasks. The order of execution of those tasks is a logical order that the technical writer has 
provided and those tasks should be executed in accordance with order appearance in the manual. 
For example in Figure 3-5 task t18, 10th task calls t16 and sixth task calls t7 and t13. As it is clear 
from the graph there is not any link between t7 and t13. These two subtasks are both called by sixth 
task of task t18 and there should be an order of execution for it in the AMM. As it has been for the 
t18 itself. So the model is violates itself an AMM.  
Ms. Camelot in her thesis presented an actual graph for an actual task of CRJ100. That graph is 
shown in Figure 3-7. From this graph, all of previously mentioned problems can be seen again. 
The main task has eight subtasks and it has been colored as a zone. Subtasks T1 to T7, have 
subtasks/task themselves with quantity of their denominators, however, a color that means all of 
these subtasks are in the same zone is assigned to these nodes. 
Furthermore, it can be seen that the T1 to T7, all are called by fifth subtask of main task. However, 
any link between them has not been established that leads to an arbitrary order of execution of these 
tasks at time of disassembly. As discussed earlier, this is contrary to the logical ordering of tasks 
that technical writers of AMM manual have stated in AMM.  

3.2.3 Conclusion  
With this investigation of previous work and model, it is concluded that we do not have a viable 
model and the author needs to develop a new model.  
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Figure 3-7 Camelot’s disassembly graph for an actual task of CRJ 100/200 AMM 

 

3.3 Developing a model for disassembly sequencing 
3.3.1 Establishing a graph for disassembly of one part 
If a disassembly ‘Task’ has four subtasks, the graph would be a directed graph that would look like 
a chain. Figure 3-8: Example of a Task with four subtasks. Figure 3-8 is an example of such this 
graph. This representation means for executing the ‘Task’, first subtask 1 (sub1), then subtask 2 
(sub 2), then subtask 3 (sub 3) and finally subtask 4 (sub 4) should be executed. 
In other hand, these subtasks can refer to (call) other tasks. All those tasks should be performed 
one by one, and once all those tasks in a subtask are executed, we can consider that specified 
subtask is completely done and we can move to next subtask for execution. 
Tasks called by a subtask again should be executed in specified order in AMM; therefore, the 
precedency constraint should be constructed in the graph. Figure 3-9, shows order of execution of 
tasks for an imaginary example, if subtask 1 calls one task (T11), Subtask 2 calls three tasks of 
(T21, T22 and T23), Subtask 3 calls T31 and finally subtask 4 calls two tasks of (T41 and T42). 
Our endeavor does not stop here. Any of tasks T11, T21, T22, T23, T31, T41 and T42 have their 
own subtasks and again those subtasks can call other tasks. This process should continue to the 
point that all the tasks which calls are made to them are found and listed in their corresponding 
subtask.  
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Figure 3-8: Example of a Task with four subtasks 

 
Figure 3-9: Subtasks referring to other tasks 

 
 

For our example, for the simplicity we assume that T11, T21, T22, T23, T31, T41 and T42 do not 
call other tasks. Therefor at this time, a final graph can be generated. In Figure 3-10, this graph is 
demonstrated. 
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Figure 3-10: Graph of tasks for implementing ‘Task’ 

With retrieving this information from AMM, a sequence of execution of tasks and subtasks is 
generated, so for implementing ‘Task’ here is the sequences: 

1. Execute Subtask 1 
2. Execute T11 
3. Execute Subtask 2 
4. Execute T21 
5. Execute T22 
6. Execute T23 
7. Execute Subtask 3 
8. Execute T31 
9. Execute Subtask 4 
10. Execute T41 
11. Execute T42 

A computer code using Matlab is developed that generates these sequences automatically with 
getting the ‘Task’ as an input to the code. The methodology will be presented in the next sections. 

Sub1

T11
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T21

T22
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T23
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3.3.2 Establishing a graph for disassembly of multiple parts 
When we are dealing with an EOL aircraft there are several reusable parts that are going to be 
disassembled. For each of these parts there is a disassembly (removal) task in the AMM. Therefore 
as presented in previous section, separately for each of these parts a graph of disassembly can be 
generated. 
In our separate graphs, it can happen that some of the tasks be common in each of these graphs. 
This is because some of the operation is same and shared between several tasks. This is why 
technical writers of AMM have assigned Task numbers to all of different operations in the AMM.  
These common operations can be either in section of job setup (JSU) or process (P). For example 
in the job setup depressurizing a hydraulic cylinder can be common for many different task 
assemblies. Alternatively, in the section of process removing a panel can be a common operation 
for two different tasks if they are taking place around the same zone of airplane. When we are in 
the phase of EOL of an aircraft, when we have removed an access panel when performing task A, 
if also in procedures of task B, removal of access panel is required, we call this task a common 
task. Actually in AMM, when both of task A and task be call a same task number in their subtask, 
we can figure out that task is common and shared. With removing the access panel, which was in 
the procedure for performing task A, at the time of executing disassembly tasks for task B, this 
removal is already, done. Therefore, from a global point of view, for disassembly of multiple parts 
we will perform all the tasks in all the graphs so we can connect the common tasks in each of 
graphs. With doing this we will have a graph of disassembly for multiple parts. 
Figure 3-11 demonstrates an example of disassembly graph for removal of two parts. Removal task 
A for disassembly of part A and removal task B for disassembly of part B. With using the task 
numbers and comparing them, we can find if in sequences of these two graphs there is a call to a 
same task. For instance let us assume that we do these comparison and it is seen that T12 has the 
same task number as T22. These two node will be the nodes that graphs can make a link. Therefore, 
with establishing this link we connect these two separate graphs together (Figure 3-12). 
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Figure 3-11: Disassembly graph for two tasks for removal of two parts 

  

 
Figure 3-12: Connecting two graphs at the common tasks 

 
Alternatively, in some cases it is also possible that the common operations for removal of two parts 
are not just common in just one task and the consecutive tasks are common tasks too. For instance 
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if the task T13 and task T23 be the same tasks, Figure 3-13 shows how two graphs are linked 
together. 

 
Figure 3-13:  Connecting two graphs with consecutive common tasks  

Similarly, if there are more parts this concept can be applied (Figure 3-14).  

 
Figure 3-14: Connecting multiple graphs at the common tasks  
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3.3.3 Mathematical model of a disassembly graph 
Adjacency matrix is a common method to mathematically represent graphs. For our case the 
principle is that with forming the disassembly graph for multiple parts, we will have a total number 
of “n” unique tasks in the graph, so we can make a matrix of (n x n) and assign a number starting 
from 1 and ending to n for each of tasks. 
If task i is connected to task j, in adjacency matrix, related element of aij of matrix would get a 1 
otherwise it would be a zero.  Figure 3-15 illustrates an example of forming an adjacency matrix 
for a directed acyclic graph. 
 

 

  1 2 3 4 5 6 7 8 9 
1 0 1 0 0 0 0 0 0 0 
2 0 0 1 1 1 0 0 0 0 
3 0 0 0 0 0 0 1 0 0 
4 0 0 0 0 0 0 0 0 0 
5 0 0 0 0 0 1 0 0 0 
6 0 0 0 0 0 0 1 0 0 
7 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 0 0 0 1 
9 0 0 0 0 0 0 0 0 0 

 

 
Figure 3-15: Forming adjacency matrix of a Graph  

3.4 Automatic generation of disassembly sequences  
3.4.1 Data acquisition from AMM 
As discussed earlier AMM consists of more than 45000 tasks. At the time of disassembly for an 
EOL aircraft, many tasks should be executed and tasks are dispersed in 3000 pages of AMM. Since 
task numbers are numerated in AMM, we can use this attribute to read from manual and find tasks, 
subtasks, and those tasks that are called in subtasks. (Mascle et al. 2014) describes how a Matlab 
code reads from PDF files of AMM CRJ 100/200: 

1 2

53

6

4

7

8

9
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“The function "Main" enters into the file, calculates the number of files, records the names of files 
in a variable and erases the useless files. The list of names is then transferred to the function 
"Analyse_files”. This function sends the names of AMM files one by one to "Files_details" so that 
the latter sends back(dismisses) the various main tasks of the same AMM file as well as the location 
of the "JSUI", "JSU", "Procedure" and "Close-Out". With all this information, "Analyse_files" 
analyzes the subtasks and the tasks (sub-function "Subtask" which are in the paragraphs of "JSUI", 
"JSU", "Procedure" and "Close-Out".” 
The output is saved in a variable named “data”. Figure 3-16 shows structure of the data. 

 
Figure 3-16: Structure of data generated from AMM 

In the column of “AMM number”, all of the tasks and subtasks in the AMM is listed. With looking 
up an AMM number, all the tasks associated with that AMM number can be found in its related 
row, which is divided and categorized in accordance with structure of AMM: JSUI, JSU, P and 
CO. For each of these sections, 40 columns has been considered, but not necessarily, all of the cells 
are filled. It is just the maximum space that is available. Depending on the task, these cells can be 
all empty or a few tasks or in some cases, more than ten tasks can be found in each section. 

3.4.2 Automatic generation of disassembly sequences  
For a given part, there should be a task number for removal/disassembly of that part in the AMM. 
Having the task number, a code can refer to databases of tasks described in Figure 3-16. With 

AMM number Task or subtask JSUI JSU P CO

1 for Subtasks,2 for Tasks
40 columns for tasks in JSUI

40 columns for tasks in JSU 40 columns for tasks in P
40 columns for tasks in CO
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performing a search and comparing the task number to tasks numbers in cells of “AMM number”, 
the related task and its related row can be found. Then all the subtasks and tasks which are for that 
task in AMM, is found in the associated row and can be listed. The found tasks are stored in a 
“cell” array. The property of a cell in Matlab permits storages of multiple of cells in a cell. A 
function named “subtask” serves this purpose. 
As discussed earlier, JSUI section and close-out section is not required for our case which is 
disassembly of parts at EOL stage, therefore the “subtask” function does not look up in these two 
sections and won’t retrieve the related in those mentioned section. 
Now we have a list of tasks and subtasks that is found and should be executed, however as described 
in section 3.3.1, the model needs to verify if these tasks and subtasks call other task. Therefore, if 
at first step for example 5 tasks/subtasks has been found, these 5 tasks/subtasks will be the input to 
“subtask” function, to find their associated tasks/subtasks (Figure 3-17). This iterative procedure 
continues to the point that all of tasks and subtasks are found and listed.  
Management and recording the tasks according to the order found in the AMM is very important 
here. Not to lose the trace of sequences, right after subtasks are found, they are inserted into a 
graph. For management of this graph, a “tree class” in Matlab is utilized. Though the tree can have 
branches, we do not use that attribute and will just make a chain of nodes, which each node is a 
task. The root of the tree is a node that has no parents, so node is our “main task”. For other nodes, 
each node can only have one parent, which for our case is the precedence task and they do not have 
any siblings. The node can store any kind of data and a “string array” with name of task number 
with the format of xx-xx-xx-xxx-xxx is assigned to nodes. Nodes are mainly accessed through their 
index.  
For the example in Figure 3-17, at first iteration, a chain is established. The parent is the main task 
(Node 0) and T1, T2, T3, T4 and T5 task numbers are assigned to node 1, 2, 3, 4, 5 accordingly. 
At next iteration, first subtasks of T1 are found. These subtasks are stored in a branch with the class 
of tree. Then the tree is chopped at node 1, the chopped part are stored in a temporary branch. After 
that, the branch of subtasks of T1 is grafted to the tree and following it, the temporary branch is 
grafted at the end of the tree. With applying this procedure, we have followed principles of our 
model described in section 3.3.1 and sequences of execution of tasks are retained as specified in 
AMM. Figure 3-18 demonstrates this procedure.  
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With the same procedure, subtasks of tasks T2, T3, T4, and T5 should be retrieved and are grafted 
to the tree (which is actually a chain).  

 
Figure 3-17: Iterative procedure of retrieving subtasks 
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Figure 3-18: Procedure of establishing disassembly sequences for a Task 

In an EOL aircraft, several parts are going to be disassembled. Then we will have several main 
tasks. Each of these tasks can be the input to the code and with the same procedure as described in 
this section, disassembly sequences of those tasks are generated and stored in a “tree class” variable 
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in Matlab. With having several parts as input to our code, consequently, we will have several trees 
in output. Each of these trees provides a sequence of disassembly for these parts. 

3.4.3 Validation of model  
 To see how the developed model and code works, the best way is verifying it by referring to the 
Database that has read tasks from AMM as discussed in section 3.4.1. However to get sure that the 
database is also correct and for adding a second verification, at early stages of verification, to verify 
database, the AMM was a direct reference itself. By comparing the results (as output of code) with 
the AMM, an extra layer of Database verification is added to the validation of model. If the code 
read correctly from database but results was not in accord with AMM, the only possible reason 
would be that database has some bugs and is not in accord with AMM. If this was the case, 
feedbacks to developer of the data acquisition from AMM was sent to correct his code. 
For the purpose of model validation, one can give any task as an input to the code and get subtasks 
from it, and then will refer to the Database/AMM to verify if the output is correct. When this 
verification is done for several any arbitrary tasks, it is concluded that the code will generate a 
correct output for any task.  
 In following example TASK 27−34−01−000−801 that is the task Removal of the Elevator is given 
to code and it automatically find all the subtasks and generates disassembly sequences 
automatically. In all of the iterations with referring to the AMM, correct output is verified.  
 
1st iteration 
Getting subs for:  27-34-01-000-801 
The output is: 27-34-01-865-001, 27-34-01-941-002, 27-34-01-010-001,  
27-34-01-490-002, 27-34-01-030-001, 27-34-01-020-001 
 
2nd iteration:  
Getting subs for: 27-34-01-865-001 
Getting subs for: 27-34-01-941-002 
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Getting subs for: 27-34-01-010-001 
Getting subs for: 27-34-01-490-002 
Getting subs for: 27-34-01-030-001 
Getting subs for: 27-34-01-020-001 
Among these tasks, only 27-34-01-010-001 has subtasks and the output is:  
55-12-01-000-801, 55-12-01-000-802, 55-23-01-000-801, 55-23-01-000-802 
55-23-01-000-803, 55-23-01-000-804, 55-32-07-000-814 
 
3rd iteration: 
Getting subs for: 55-12-01-000-801 
Output is: 55-12-01-941-001, 55-12-01-865-001, 55-12-01-020-001 
 
Getting subs for: 55-12-01-000-802 
Output is: 55-12-01-941-003, 55-12-01-865-003, 55-12-01-020-002 
 
Getting subs for: 55-23-01-000-801 
Output is: 55-23-01-863-001, 55-23-01-941-004, 55-23-01-865-001, 55-23-01-020-002 
 
Getting subs for: 55-23-01-000-802 
Output is: 55-23-01-863-002, 55-23-01-941-005, 55-23-01-865-003, 55-23-01-020-003 
 
Getting subs for: 55-23-01-000-803 
Output is: 55-23-01-863-003, 55-23-01-941-006, 55-23-01-865-005, 55-23-01-020-004 
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Getting subs for: 55-23-01-000-804 
Output is: 55-23-01-863-004, 55-23-01-941-010, 55-23-01-865-007, 55-23-01-020-005 
 
Getting subs for: 55-32-07-000-814 
Output is: 55-32-07-863-014, 55-32-07-941-040, 55-32-07-865-027, 55-32-07-020-014 
 
The iterations goes on in the same manner with finding subtasks for each task. 
 
4th iteration: 
Getting subs for: 55-12-01-941-001 
Getting subs for: 55-12-01-865-001 
Getting subs for: 55-12-01-020-001 
Getting subs for: 55-12-01-941-003 
Getting subs for: 55-12-01-865-003 
Getting subs for: 55-12-01-020-002 
Getting subs for: 55-23-01-863-001 
Getting subs for: 55-23-01-941-004 
Getting subs for: 55-23-01-865-001 
Getting subs for: 55-23-01-020-002 
Getting subs for: 55-23-01-863-002 
Getting subs for: 55-23-01-941-005 
Getting subs for: 55-23-01-865-003 
Getting subs for: 55-23-01-020-003 
Getting subs for: 55-23-01-863-003 
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Getting subs for: 55-23-01-941-006 
Getting subs for: 55-23-01-865-005 
Getting subs for: 55-23-01-020-004 
Getting subs for: 55-23-01-863-004 
Getting subs for: 55-23-01-941-010 
Getting subs for: 55-23-01-865-007 
Getting subs for: 55-23-01-020-005 
Getting subs for: 55-32-07-863-014 
Getting subs for: 55-32-07-941-040 
Getting subs for: 55-32-07-865-027 
Getting subs for: 55-32-07-020-014 
 
5th iteration:  
Getting subs for: 12-00-06-863-802 
Getting subs for: 12-00-06-863-804 
 
6th iteration:  
Getting subs for: 12-00-06-869-001 
Getting subs for: 12-00-06-910-002 
Getting subs for: 12-00-06-863-003 
Getting subs for: 12-00-06-863-004 
Getting subs for: 12-00-06-869-002 
Getting subs for: 12-00-06-910-004 
Getting subs for: 12-00-06-863-006 
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7th iteration:  
Getting subs for: 29-00-00-910-801 
 
At this point, there are no other tasks called and iterations are stopped. Eventually the code 
generates disassembly sequences task 27-34-01-000-801 as following:  
 

1. 27-34-01-865-001 
2. 27-34-01-941-002 
3. 27-34-01-010-001 
4. 55-12-01-000-801 
5. 55-12-01-941-001 
6. 55-12-01-865-001 
7. 55-12-01-020-001 
8. 55-12-01-000-802 
9. 55-12-01-941-003 
10. 55-12-01-865-003 
11. 55-12-01-020-002 
12. 55-23-01-000-801 
13. 55-23-01-863-001 
14. 12-00-06-863-802 
15. 12-00-06-869-001 
16. 12-00-06-910-002 
17. 29-00-00-910-801 
18. 12-00-06-863-003 
19. 12-00-06-863-004 
20. 12-00-06-863-804 
21. 12-00-06-869-002 
22. 12-00-06-910-004 
23. 12-00-06-863-006 
24. 55-23-01-941-004 
25. 55-23-01-865-001 
26. 55-23-01-020-002 
27. 55-23-01-000-802 
28. 55-23-01-863-002 
29. 55-23-01-941-005 
30. 55-23-01-865-003 
31. 55-23-01-020-003 
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32. 55-23-01-000-803 
33. 55-23-01-863-003 
34. 55-23-01-941-006 
35. 55-23-01-865-005 
36. 55-23-01-020-004 
37. 55-23-01-000-804 
38. 55-23-01-863-004 
39. 55-23-01-941-010 
40. 55-23-01-865-007 
41. 55-23-01-020-005 
42. 55-32-07-000-814 
43. 55-32-07-863-014 
44. 55-32-07-941-040 
45. 55-32-07-865-027 
46. 55-32-07-020-014 
47. 27-34-01-490-002 
48. 27-34-01-030-001 
49. 27-34-01-020-001 
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CHAPTER 4 DISASSEMBLY OPTIMIZATION 
4.1 Introduction 
The owner of a product at its EOL should decide which parts are in good state and have value to 
be used again and weather there are parts for being sent recycling facilities. The latter one can be 
performed using destructive approaches. However, when the parts are going to be used again, the 
process is commonly not destructive and is expressed as sequences of disassembly procedure. 
Usually there are many different ways for disassembly of a product. Disassembly optimization is 
involved with selecting an optimum sequence through set of all the possible disassembly 
sequences. The literature of disassembly sequencing implies optimization process is done via 
heuristics, metaheuristics, or mathematical programming.  
Heuristic and metaheuristic methods usually return a ‘good enough’ solution. For having an exact 
optimum solution, mathematical programming is utilized but it deals with so much of computation 
and normally is for products with very few components since for determining all possible 
disassembly sequences, the search space tends to increase exponentially with the number of 
components (Lambert and Gupta, 2005). Figure 4-1 illustrates an example of a directed precedence 
graph with six parts. 

 
ABDEFG  ADEFGB  DAEBFG  DEABFG DEGABF 
ABDEGF ADEGBF    DAEBGF  DEABGF  DEGAFB 
ABDGEF  ADEGFB   DAEFBG  DEAFBG  DEGFAB 
ADBEFG  ADGBEF   DAEFGB  DEAFGB  DGABEF 
ADEBGF  ADGEBF  DAEGBF  DEAGBF  DGAEBF 
ADBGEF  ADGEFB   DAEGFB  DEAGFB  DGAEFB 
ADEBFG  DABEFG   DAGBEF  DEFABG  DGEABF 
ADEBGF  DABEGF   DAGEBF  DEFAGB  DGEAFB 
ADEFBG  DABGEF   DAGEFB  DEFGAB  DGEFAB 

Figure 4-1: Possible sequences for a directed precedence graph 
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It is seen that for a simple graph with just six components, there is 45 possible sequences. Thus for 
a case of disassembly with more parts there can be millions of possible sequences that is why 
heuristic or metaheuristic methods are widely used in finding an optimal (near optimal) 
disassembly procedure among many possible solutions.  
For disassembly sequence optimization, researchers have chosen different parameters such as: 

- Disassembly time for each part. 
- Disassembly costs for each part. 
- Tool change during disassembly. 
- Disassembly direction changes.  
- Revenue generated by part. 
- Fastener types. 
- Market demand of part.  
- Combined multi-criteria. 

Nevertheless, all the parameters eventually will lead to a disassembly project with less cost. For 
our case that is an aircraft at its end-of-life, none of the above parameters is available. We have the 
AMM and we have the tasks in AMM.  In fact, a major difference with other works in literature 
shows up here. The other works focus on the disassembly sequencing of parts itself, but we have a 
task scheduling process that is constrained by its precedence. In each of our tasks, many parts might 
be mentioned to be disassembled and we do not have any information about quantity of these parts, 
duration of operations nor costs of disassembly or other parameters. Fortunately, as discussed in 
previous sections, ATA has standardized names of tasks with giving each task a task number. Task 
number helps us to specify zone of operation in the aircraft. 
Since tasks are dispersed in different areas of aircraft, at the time of disassembly, different zones 
are visited. Thus, our optimization parameter is defined as number of total zone changes during a 
disassembly procedure.  
For defining the zone of task numbers, the user can decide for depth of the zone using different 
elements of first three double digit of a task number: XX-XX-XX. If all these three elements are 
chosen, the zone depth will be at the device level and if first two element (XX-XX) is chosen, the 
zone depth will be at subsystem level. 
With performing different simulations, it was observed that when the zone is chosen at device level, 
there is fewer chance that other tasks take place in that zone, however if the depth be chosen at 
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subsystem level, there is a good chance that a few other task take place in that zone. This will be 
in align with our target to have some other tasks in same zone so we can execute also those tasks. 
Eventually the author choses first two elements of a task number for assigning zones of operation 
to task number. 
Figure 4-2 illustrates an example of a colored disassembly graph for disassembly of five parts 
generating five chains of disassembly sequences.   
 

 
 

Figure 4-2: Assigning zones to disassembly tasks in disassembly model 
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In this example, in first instance of disassembly tasks 1 and 12, 7 and 16 are at the same zone 
though they are in different chains, thus our general concept for optimization is to perform task 12 
also if we were directed to execute task 1 or similarly performing task 16 if disassembly was 
directed to execute task 7.    

4.2 Graph theory  
Graph theory is a very complex theory developed by mathematicians and has wide range of 
applications in engineering. One of the applications of graph theory is for finding shortest path 
problems. In this context, one of the most important and useful algorithm is Dijkstra’s shortest path 
algorithm, that is an algorithm that finds shortest paths in a weighted acyclic directed graph. 
The weighted graph is a graph that a weight is assigned on edges of the graph and actually, sum of 
weights of a path is the parameter that should be optimized. For instance, in google map for driving 
from a location to another location there can be several paths and on each edge between nodes of 
direction in the path, the distance between nodes can be assigned as the weight. In this example, 
Dijkstra’s algorithm searches all possible routes and suggests an optimal path based on optimum 
total distance between departure and arrival nodes.  
Acyclic graph is a graph that does not have any loops/cycles between its nodes. If cycles were 
existed in a graph, the algorithm falls into loops and actually will not be able to find any path.  
Inspired by this shortest path problems in graph theory, the author tried to verify whether the 
disassembly model could be represented as an acyclic directed graph.  
Since we have different parts at the time of disassembly of EOL aircraft, for some of the parts it is 
probable that their disassembly tasks call same tasks. This gives an idea to connect separate chains 
of disassembly sequences at the common tasks. Then instead of separate chains of disassembly 
sequences, an integrated graph is generated. If such this graph be generated all the precedence tasks 
of a common task would be executed and at the time of reaching the common task with performing 
the common task all of successors task will be available to be executed.   
In this context, a Matlab code was developed to automatically generate the adjacency matrix of a 
disassembly graph with getting removal task number of two or more parts as inputs.  
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With analyzing the generated integrated graph for removal of different parts, it was concluded that 
generated graphs will not be acyclic and loops will exist in the graph.   
Figure 4-3 illustrates how a loop is generated. In fact, this comes from structure of the tasks in 
AMM. For performing maintenance and for removal of parts at the time of maintenance, the 
technical writer actually has just taken into consideration the best procedures that is deemed 
feasible for removal of that part. Therefore, the focus has been for just that part not all the parts of 
aircraft. Apparently, at time of writing other procedures for other parts it has been possible to 
schedule some of tasks in different sequences for different parts at the discretion of technical writer. 
 

 
Figure 4-3: (a) Disassembly graph as separate chains (b) Forming of loops after integration of 

disassembly chains into one graph  
 
Using real tasks of AMM and automatic generation of disassembly sequences and graphs could 
provide a bigger picture of the way tasks are scheduled in the AMM with more than 45000 tasks. 
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Eventually, the idea of using an integrated disassembly graph is overruled because of generating 
loops. 

4.3 Heuristic methods  
The developed Matlab code for this project automatically retrieves all tasks and subtasks that 
should be executed for disassembly of a part and generates a chain of disassembly sequences for 
each part. With using the code, we can arbitrary give one or several removal tasks as inputs to the 
code and check the quantity of tasks/subtasks that should be implemented. This will give an 
impression of the search space that we are dealing with. An example of a component that can be 
disassembled from aircraft is the engines. By referring to the AMM of CRJ100/200, it is observed 
that the removal procedure is a 62-pages procedure with so many subtasks that also call other tasks. 
In fact, the code generated a disassembly sequence chain with more than 700 tasks to be executed 
for just this single component. With adding disassembly sequence chain of some other parts, we 
have billions of feasible disassembly sequences that we need to choose one among them. This huge 
search space calls for a heuristic algorithm for determination of an optimal disassembly sequence.    

4.3.1 Greedy algorithm 
A greedy algorithm is an algorithm that selects best solution at an instance of a problem for the 
maximal immediate benefit, without considering how this selection affects future choices. A greedy 
algorithm works in phases. At each phase: 

 It takes the best it can get right now, without regard for future consequences. 
 It hopes that by choosing a local optimum at each step, it will end up at a global optimum. 

Huffman encoding algorithm, Dijkstra’s algorithm, Kruskal’s algorithm and Prim’s algorithm are 
examples of greedy algorithm.  
This algorithm has also been widely used for disassembly sequencing problems. For example, (Han 
et al. 2013), utilized a “priority rule” or (Riggs et al., 2015) considered higher value parts for ruling 
the greedy algorithm. The “priority rule” has been used in other researches too. This method at 
each node for each of possible of paths, counts all the following nodes and selects a path with the 
more nodes in that path. For instance in Figure 4-2, node 16 has the highest priority with having 
more nodes after it to be executed; therefore, this node is selected to be executed first. In next 
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iteration, priorities for nodes are calculated again and next node is found for being executed is 
found. 
For each case of disassembly, according to the configuration of graph and parameters that are 
considered for optimization, different rules can be applied in the greedy algorithm. For our case, 
the “priority rule” will not help that much because we have separate chains of disassembly and this 
rule just finds a chain with bigger size and executes its node till its size become less than second 
biggest chain and then implement one from 1st chain then the second chain till their size become 
less than third biggest chain.  
Therefore, for our problem we define the greedy rule as following: 
In each instance of disassembly, count tasks in each available zone and execute tasks in the zone 
that has highest number tasks.  
Since our target is minimizing zone changes, when a task is implemented if the successor is still in 
the same zone, that successor can also be counted. This means that for example in Figure 4-2, for 
the case of Blue zone at the first instance, tasks 1 and 12 are available, but when we perform task 
12, task 13 will also become available.  
With considering this concept and counting successors tasks that are in the same zone and adding 
them to the tasks that we have right now available, we will have a total number of tasks which we 
can perform when we are in a zone. For example in Figure 4-2 we have three zones and if we go 
to a zone, below are the tasks that can be performed and that zone: 

 
- 1st zone: tasks 1, 12, 13  
- 2nd zone:  tasks 7, 16, 17  
- 3rd zone: task 23 

 
Since 1st zone and 2nd zone both have same number of tasks either of zones can be considered for 
implementation. However, the algorithm goes for the first index, which is 1st zone, and adds tasks 
1, 12 and 13 in disassembly path for implementation. 
Order of execution of tasks of 1, 12, 13 in disassembly path can be any of following: 
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11213   
12131  
12113 
It is remarkable that in any of above orders of execution, the precedence constraint of disassembly 
graph is respected. (Which is for this case task 13 is done only if task 12 has been done before that). 
Therefore, we are looking for feasible disassembly sequences and we are free to choose among any 
of these orders, because our main concern is that a zone change does not happen.   
At next iteration, tasks 2 and 14 become available for execution.  Since task 3 is in the same zone 
as task 2, it is also counted in tasks that are executable in that zone without switching to another 
zone. It applies to task 17 too.  Therefor at this instance we will have:  

- 1st zone: tasks 2, 3, 7, 16, 17 
- 2nd zone: task 14 
- 3rd zone: task 23 

 
Figure 4-4: Update of Disassembly Graph at second iteration 
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Since 1st zone has higher number of tasks, therefore algorithm chooses this zone for implementation 
of its tasks at puts tasks 2, 3, 7, 16, 17 in disassembly path. 
Next iteration (Figure 4-5): 
1st zone: tasks 4, 23 
2nd zone: tasks 8, 9 
3rd zone: task 14 
4th  zone: task 18  

 
Figure 4-5: Update of Disassembly Graph at third iteration 

 
At this instance, algorithm chooses tasks 4 and 23 for implementation and adds them in disassembly 
path.  
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- Tasks 8, 9, 26 
- Tasks 19, 20  
- Tasks 15, 21, 22 
- Task 10 
- Task 11 
- Task 27 
- Task 30 

Eventually the disassembly path generated by the greedy algorithm will be as following:  
1 , 12, 13, 2, 3, 7, 16, 17, 4, 23, 5, 6, 18, 14, 24, 25, 8, 9, 26, 19, 20, 15, 21, 22, 10, 11, 27, 30 
With this algorithm and using the code, a path with disassembly tasks is automatically generated. 

4.3.2 Adaptive greedy algorithm 
A modification to greedy algorithm is the adaptive greedy algorithm. This algorithm make 
decisions greedily/locally but tries to take into consideration some parameters from global point of 
view to help the decision to be more effective on global conditions. 
In previous rule, we counted total number of executable tasks in each zone at each instance, no 
matter what are total number of tasks in that zone globally. Therefore switching to a zone with 
highest number of executable tasks in that zone does not have any attribute that how tasks in a zone 
are progressed.  
For our adaptive greedy algorithm to choose between available zones, a parameter named AR is 
defined and utilized. The AR ratio is total number of executable tasks in a zone divided by total 
number of tasks to be done in that zone:  
 

AR = ா௫௘௖௨௧௔௕௟௘ ௧௔௦௞௦ ௜௡ ௔௡ ௔௩௔௜௟௔௕௘ ௭௢௡௘
்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௧௔௦௞௦ ௜௡ ௧௛௔௧ ௭௢௡௘       (4.1) 

 
For example in Figure 4-2 we will have: 
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- 1st zone: tasks 1, 12, 13 : (3 tasks can be done in this zone, without changing this zone)  
Total number of tasks in this zone: 5  

- 2nd zone:  tasks 7, 16, 17 : (3 tasks can be done in this zone, without changing this zone) 
Total number of tasks in this zone: 9 

- 3rd zone: task 23 : (1 task can be done in this zone, without changing this zone)  
 Total number of tasks in this zone: 3 

Therefore, for calculating AR of each zone we will have:  
- 1st zone:   AR1= 3/5=0.6   
- 2nd zone:  AR2= 3/9=0.333  
- 3rd zone:   AR3=1/3=0.333 

 
At each iteration, the algorithm calculates AR for all of the available zones and executable tasks. 
Then tasks that are in the zone with maximum AR are selected to be implemented. Accordingly, 
the quantity of executed tasks in zone of operation is deducted from sum of total tasks in that zone. 
Therefore, value of “total number of tasks” in each zone is updated at each iteration. 
For our example at this instance, AR1 has the maximum value, therefore tasks 1, 12, 13 are selected 
to be executed and algorithm puts them on disassembly path. 
For next iteration, we will have:  

- 1st zone: tasks 2, 3, 7, 16, 17 
Total number of tasks in this zone: 9 

- 2nd zone: task 14 
Total number of tasks in this zone: 4 

- 3rd zone: task 23 
Total number of tasks in this zone: 3 

Therefore, for calculating AR of each zone we will have:  
- 1st zone:   AR1= 5/9=0.555 
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- 2nd zone:  AR2= 1/4=0.25 
- 3rd zone:   AR3=1/3=0.333 

AR1 has the maximum value, therefore tasks 2, 3, 7, 16, 17 are selected to be executed and 
algorithm puts them on disassembly path. 
For next iteration, we will have:  
1st zone: tasks 4, 23 
Total number of tasks in this zone: 3 
2nd zone: tasks 8, 9 
Total number of tasks in this zone: 3 
3rd zone: task 14 
Total number of tasks in this zone: 4 
4th  zone: task 18  
Total number of tasks in this zone: 4 
Therefore, for calculating AR of each zone we will have:  

- 1st zone:   AR1= 2/3=0.666 
- 2nd zone:  AR2= 2/3=0.666 
- 3rd zone:   AR3=1/4=0.25 
- 4th zone:   AR4=1/4=0.25 

AR1 and AR2 are equal and have the maximum values, so either tasks in 1st zone or 2nd zone can be 
chosen to be implemented. Our algorithm chooses the first zone and puts 4 and 23 in disassembly 
path.   
Figure 4-6 shows the updated disassembly graph at this instance. 
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Figure 4-6: Update of Disassembly Graph at fourth iteration 

For next iteration, we will have:  
1st zone: tasks 5, 6, 18 
Total number of tasks in this zone: 4 
2nd zone: tasks 8, 9 
Total number of tasks in this zone: 3 
3rd zone: task 14, 24, 25  
Total number of tasks in this zone: 4 
Therefore, for calculating AR of each zone we will have:  

- 1st zone:   AR1= 3/4=0.75 
- 2nd zone:  AR2= 2/3=0.666 
- 3rd zone:   AR3=3/4=0.75 

AR1 and AR3 are equal and have the maximum values, so either tasks in 1st zone or 3rd zone can be 
chosen to be implemented. Our algorithm chooses the first zone and puts tasks 5, 6 and 18 in 
disassembly path.   
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Figure 4-7: Update of Disassembly Graph at fifth iteration 

For next iteration, we will have:  
1st zone: tasks 8, 9 
Total number of tasks in this zone: 3 
2nd zone: tasks 14, 24, 25 
Total number of tasks in this zone: 4 
3rd zone: task 19, 20  
Total number of tasks in this zone: 2 
Therefore, for calculating AR of each zone we will have:  

- 1st zone:   AR1= 2/3=0.666 
- 2nd zone:  AR2= 3/4=0.75 
- 3rd zone:   AR3=2/2=1 

AR3 has the maximum value, therefore tasks 19, 20 are selected to be executed and algorithm puts 
them on disassembly path. 
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Figure 4-8: Update of Disassembly Graph at sixth iteration 

For next iteration, we will have:  
1st zone: tasks 8, 9 
Total number of tasks in this zone: 3 
2nd zone: tasks 14, 24, 25 
Total number of tasks in this zone: 4 
3rd zone: tasks 21, 22  
Total number of tasks in this zone: 4 
Therefore, for calculating AR of each zone we will have:  

- 1st zone:   AR1= 2/3=0.666 
- 2nd zone:  AR2= 3/4=0.75 
- 3rd zone:   AR3=2/4=0.5 

AR2 has the maximum value, therefore tasks 14, 24, 25 are selected to be executed and algorithm 
puts them on disassembly path. 
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Figure 4-9: Update of Disassembly Graph at seventh iteration 

 
For next iteration, we will have:  
1st zone: tasks 8, 9, 26 
Total number of tasks in this zone: 3 
2nd zone: tasks 15, 21, 22  
Total number of tasks in this zone: 4 
Therefore, for calculating AR of each zone we will have:  

- 1st zone:   AR1= 3/3=1 
- 2nd zone:  AR2= 3/4=0.75 

AR1 has the maximum value, therefore tasks 8, 9, 26 are selected to be executed and algorithm puts 
them on disassembly path. 
 

 
Figure 4-10: Update of Disassembly Graph at eighth iteration 
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With same manner, algorithm will choose tasks as following for next iterations: 
- Task 10  
- Task 11 
- Task 27  
- Tasks 15, 21, 22, 30 

Eventually the disassembly path generated by the greedy adaptive algorithm will be as following:  
1 , 12, 13, 2, 3, 7, 16, 17, 4, 23, 5, 6, 18, 19, 20, 14, 24, 25, 8, 9, 26,  10, 11, 27, 15, 21, 22, 30 
 In next section, comparison of these two discussed algorithms will be presented. 

4.3.3 Comparison of results 
For applying the proposed algorithms twenty different removal tasks are selected from AMM. The 
Matlab code automatically generates twenty separate chains of disassembly sequences. Now it is 
time for applying the optimization algorithms: 1- greedy algorithm 2- adaptive greedy algorithm. 
Eventually, a disassembly sequence for all the given parts is automatically generated.  
In other hand, a disassembly sequence without applying the optimization algorithm is also 
generated. For generating this disassembly sequences, each part is disassembled one by one from 
its start node to its end node and minimizing zone changes is not considered. This provides grounds 
for comparing the effects of optimization algorithms. Therefore, three feasible disassembly 
sequences is generated and each one is saved in variable named “route". 

- Route 1: Disassembly sequences generated without optimization. 
- Route 2: Disassembly sequences generated with greedy algorithm. 
- Route 3: Disassembly sequences generated with adaptive greedy algorithm. 

For the given 20 parts, the search space is around 12,000 tasks. The CPU time for this search 
space with applying greedy algorithms is approximately 14 min. After generation of routes, for 

each of routes, total number of zone changes is counted. Results is shown in  
 

Table 4-1. 
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Table 4-1: Comparison of zone changes 
Method Total number of zone changes 

Without Optimization 2567 
Greedy Algorithm 1835 

Adaptive Greedy Algorithm 976 
 
Clearly, the applied adaptive greedy algorithm has been quite effective and works perfectly for our 
problem. 
In our optimization problem from our graph of disassembly chains a graph with coloring of each 
node is established. The optimization was based on the number of colors, which actually resents 
number of tasks in a zone.  
As discussed in previous sections, there is a possibility that in some of chains, common tasks exist 
in two or more chains. An approach is that when the algorithm determines a task to locate it in the 
route, that task be eliminated from all other chain if any. But since different operations maybe are 
done during disassembly operations and this is an automatic generation of disassembly task 
generation without human interference, a very conservative approach was applied. In this 
conservative approach, the algorithm does not remove the tasks located in disassembly route from 
other chains. This brings the opportunity to the operator to verify if that task with all the attributes 
is still in state of previous implementation. Therefore, instead of removing common tasks 
automatically in algorithm, the verification is left for discretion of disassembly technician.  If all 
states and attributes of previous disassembly operation is still the same, actually, there is nothing 
left to be done and operator can simply go to the next sequence. However if this is not the case, the 
generated sequences is on the safe side. We can rest assured that any changes during disassembly 
operation with an effect on the previously implemented common task is foreseen in our procedure.  
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CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 
This chapter includes the contribution of this work. Recommendations for the future works are also 
listed. 

5.1 Contributions 
 Reviewing the result of the code for data acquisition from AMM. The provided database 

for this project had many several problems and with tedious manual verifications/checking 
of outputs and comparison with the data in AMM, the author provided feedback to the 
developer of code to remove bugs and correct his code.  

 Studying the previous model developed by Camelot and outlining the problems. 
 Developing a correct model for disassembly sequencing tasks in accordance with the 

structure and instructions of AMM. It was also pointed out that JSUI and CO sections of 
AMM is not required to be considered in retrieval of tasks. 

 Developing a Matlab code for automatic generation of disassembly task sequences for any 
given removal task of AMM.  

 Establishing an integrated digraph of tasks for disassembly of several parts of AMM with 
considering the proposed model and a Matlab code. The graph turned out to be a cyclic 
graph. For the problem of shortest path distances in graphs, the graph should be acyclic, 
consequently it is concluded utilizing graph theory for automatic determination of an 
optimized disassembly sequence is ruled out.    

 Proposing and applying two algorithms for determination of an optimized disassembly 
sequencing with purpose of minimizing total number of changes in zones of operation in a 
disassembly project. With generating sequences automatically, it was observed that an 
adaptive greedy algorithm is quiet efficient for our problem. 

5.2 Recommendations for future works 
This work was done with a limited source of data in hand. The main constraint came from 
precedence relationships between tasks in the AMM. For reaching a better optimized disassembly 
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sequence plan, in the definition of fitness function that searches for optimized sequences, based on 
requirements of the project, other data such as following parameters from the case of an EOL 
aircraft should be integrated:  

- Time of disassembly operations.  
- Changes in direction of disassembly. 
- Distance between zones of disassembly operations. 
- Changes in tools. 
- BOM of components. 
- 3D models. 
- Type of fasteners. 
- Required skills of operators for different types of disassembly actions. 
- Required equipment. 
- Value of all of parts in the disassembly path for a selective disassembly. 
- Priority ordered parts to supplied or reused. 

 It is hoped that this work encourages future studies in this subject to create a database for 
aforementioned parameters to be used for the application of disassembly sequence planning of 
EOL aircrafts.  
Furthermore, most of algorithms in recent studies take advantage of evolutionary concept. 
Therefore, as first populations, some feasible solutions are provided for the algorithm. As much as 
the first populations are closer to a good optimal sequence, the inherited generations are better 
optimized. Consequently, results of this work provides inputs to those algorithms.  
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